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native (United Kingdom) and introduced (New Zea-
land) ranges of three dock (Rumex, Polygonaceae) 
species: R. conglomeratus Murray (clustered dock), 
R. crispus L. (curly dock) and R. obtusifolius L. 
(broad-leaved dock). We captured both above- and 
below-ground insect herbivores, measured herbivore 
damage, and plant biomass as an indicator for perfor-
mance. In the introduced range, Rumex plants had a 
lower diversity of insect herbivores, all insect special-
ists present in the native range were absent and plants 
had lower levels of herbivore damage on both roots 
and leaves. Despite this, only R. crispus had greater 
fresh weight in the introduced range compared to the 
native range. This suggests that enemy release, par-
ticularly from below-ground herbivores, could be a 
driver for the success of R. crispus plants in New Zea-
land, but not for R. conglomeratus and R. obtusifolius.

Keywords  Alien species · Native · Introduced · 
Herbivory · Plant invasion · Weeds

Introduction

The success of introduced plants is often credited to 
their escape from co-evolved natural enemies (Keane 
and Crawley 2002; Lake and Leishman 2004; Lam-
bert and Casagrande 2006; Mukherjee et  al. 2012). 
If plants experience enemy escape, then the Enemy 
Release Hypothesis (ERH) proposes that if plants 
are limited by herbivores in their native range, loss 

Abstract  The enemy release hypothesis states that 
introduced plants have a competitive advantage due 
to their release from co-evolved natural enemies (i.e., 
herbivores and pathogens), which allows them to 
spread rapidly in new environments. This hypothesis 
has received mixed support to date, but previous stud-
ies have rarely examined the herbivore community, 
plant damage, and performance simultaneously and 
largely ignored below-ground herbivores. We tested 
for enemy release by conducting large scale field sur-
veys of insect diversity and abundance in both the 

Supplementary Information  The online version 
contains supplementary material available at https://​doi.​
org/​10.​1007/​s10530-​022-​02810-w.

C.-A. Costan (*) · W. K. Godsoe · J. L. Bufford · 
J. W. M. Marris · P. E. Hulme 
Bio-Protection Research Centre, Lincoln, 
Canterbury 7647, New Zealand
e-mail: andrei.costan@far.org.nz

W. K. Godsoe 
e-mail: William.godsoe@lincoln.ac.nz

J. L. Bufford 
e-mail: Jennifer.bufford@lincoln.ac.nz

J. W. M. Marris 
e-mail: John.marris@lincoln.ac.nz

P. E. Hulme 
e-mail: Philip.hulme@lincoln.ac.nz

C.-A. Costan 
Foundation for Arable Research, Templeton, 
Canterbury 7678, New Zealand

http://orcid.org/0000-0003-1623-8649
http://orcid.org/0000-0003-1697-6916
http://orcid.org/0000-0003-3320-6024
http://orcid.org/0000-0003-4366-8708
http://orcid.org/0000-0001-5712-0474
http://crossmark.crossref.org/dialog/?doi=10.1007/s10530-022-02810-w&domain=pdf
https://doi.org/10.1007/s10530-022-02810-w
https://doi.org/10.1007/s10530-022-02810-w


	 C.-A. Costan et al.

1 3
Vol:. (1234567890)

of these natural enemies in the introduced range will 
increase their survival, biomass and fecundity (Wil-
liamson and Fitter 1996; Simberloff and Von Holle 
1999; Richardson et al. 2000; Maron and Vila 2001; 
Kolar and Lodge 2001; Keane and Crawley 2002; 
Bruno et al. 2003; Daehler 2003; Duncan et al. 2003; 
Keane and Crawley 2002; Huang et al. 2018). Multi-
ple studies, including a meta-analysis (Liu and Stil-
ing 2006), have supported the ERH (Bigger and Mar-
vier 1998; Colautti et  al. 2004; Kater 2016; Torchin 
et al. 2001). In their native range, plants are exposed 
to pressures from both specialist and generalist her-
bivores, but specialist herbivores that have coevolved 
with the plant host rarely occur outside the native 
range of their host plant (Orians and Ward, 2010). 
As a result, plant species in the introduced range may 
have reduced herbivore pressure with mostly poly-
phagous generalist herbivores, while in their native 
range they may have both generalist and specialist 
natural enemies (Frenzel and Brandl 2003; Orians 
and Ward 2010; Van Lenteren et  al. 2003). Studies 
comparing herbivore communities and the level of 
herbivory between the native and introduced ranges 
have found that plants in the introduced range often 
experience a lower overall diversity of natural ene-
mies, a shift from specialists to generalist herbivores, 
and reduced herbivory (Colautti et al. 2004; Hinz and 
Schwarzlaender 2004; Willis et al. 2000), all indica-
tive of enemy escape and possibly leading to enemy 
release. The success of biocontrol agents underscores 
the potential for natural enemies to control the popu-
lation dynamics of their host plant, which can also be 
taken as evidence for the ERH (DeLoach 1995).

Most studies addressing the ERH that have 
undertaken field surveys have only examined one or 
two plant species (Meijer et al. 2016) and typically 
only look at above-ground natural enemies (Huang 
et al. 2018). The fact that below-ground insect her-
bivores have received so little attention is unfortu-
nate, as they are pervasive in most terrestrial eco-
systems and play a crucial role in moderating the 
spread and abundance of plants (Johnson and Ras-
mann 2015; van Dam 2009; Van Der Putten et  al. 
2009). Shoot herbivory can lead to a reduction of 
photosynthetic tissue (Hambäck 2001) and repro-
ductive output (Karban and Strauss 1993; Zangerl 
et  al. 2002). Root herbivory can reduce water and 
nutrient uptake and disrupt their transportation 
within the plant (Blossey and Hunt-Joshi 2003; 

Zvereva and Kozlov 2012). Furthermore, shoot and 
root herbivory may interactively influence plant fit-
ness (Johnson et al. 2016; Maron 1998).

In this study, we tested for both enemy escape and 
enemy release between the native (United Kingdom) 
and introduced (New Zealand) ranges of three species 
of Rumex (R. conglomeratus Murray, R. crispus L. 
and R. obtusifolius L.). Here, enemy escape is defined 
as the absence of specialists in the introduced range, 
whereas enemy release also implies that plants would 
have evolved as a results of this reduced specialist 
pressure. Each of the three plant species are native 
to Eurasia, occupy a wide range of natural and cul-
tivated habitats across the world (Kubát 1990) and 
are considered problematic weeds in both the native 
and introduced environments (Bond et  al. 2007). 
The three Rumex species serve as a good model for 
testing the ERH across a suite of related species 
because they: (i) have multiple specialist herbivores 
in the native range (Martinková and Honěk 2004); (ii) 
occupy similar habitats and often co-occur in both the 
native and introduced ranges; (iii) were introduced to 
New Zealand almost two centuries ago, which should 
have given them sufficient time to acquire natural 
enemies in their new environment (Atwood and Mey-
erson 2011); and (iv) were accidental introductions 
and thus not exposed to deliberate plant breeding that 
might influence plant traits such as size.

There are at least 32 species of insect herbivores 
that feed on R. crispus and R. obtusifolius in the 
native range (Cavers and Harper 1964). This includes 
several herbivores that are sufficiently specialized on, 
and damaging to Rumex, that they have been consid-
ered as potential biological control agents: the shoot 
herbivores Gastrophysa viridula (De Geer) (Coleop-
tera, Chrysomelidae) (Martinková and Honěk 2004), 
Hypera rumicis L. (Coleoptera, Curculionidae), 
species of Apion weevils (Grossrieder and Keary 
2004) and the root herbivore Pyropteron chrysidi-
formis (Esper) (Lepidoptera, Sesiidae) (Hahn et  al. 
2016). In particular, Gastrophysa viridula can reduce 
Rumex species seed production (Bentley et al. 1980; 
DeGregorio et  al. 1992), regeneration (DeGrego-
rio et al. 1992), leaf and shoot growth (Cottam et al. 
1986) and alter Rumex cover (Kohout and Kohoutova 
1994; Kohout 1994). The larvae of clearwing moths, 
Pyropteron spp., can increase root decay and reduce 
the number of rosettes in R. obtusifolius (Hahn et al. 
2016).
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Here we tested three predictions of the ERH: (i) 
insect herbivore communities in the native range will 
be more diverse than in the introduced range; (ii) the 
introduced range contains fewer specialist herbivores 
than the native range; (iii) Rumex in the introduced 
range experience lower levels of herbivory and are 
larger than their counterparts in the native range.

Materials and methods

To quantify invertebrate herbivore abundance, par-
ticularly of specialist natural enemies, as well as leaf 
and root herbivory, field surveys were conducted in 
June and July of 2017 in the United Kingdom (UK, 
native range) and December 2017 and January 2018 
in New Zealand (NZ, introduced range). These sam-
pling periods represent the summer in both ranges, 
when plants were large and not yet senescent. We 

sampled across England and Scotland in the UK and 
across the South Island of NZ to encompass a similar 
array of climatic conditions in both ranges across a 
large latitudinal gradient as both climate and latitude 
can influence the strength of enemy release (Allen 
et  al. 2017). For R. crispus and R. obtusifolius, 16 
populations were surveyed from each range, but for R. 
conglomeratus only 12 populations were surveyed in 
the UK, as only four populations could be located in 
Scotland. The exact coordinates of the sampling loca-
tions can be found in the supplementary material.

Insect and leaf collection in the native and introduced 
ranges

In each range, insect and leaf samples were collected 
from 10 individual plants per population (Fig.  1). 
Although all three Rumex species are widespread in 
both the UK and NZ, we targeted populations that 

Fig. 1   Populations of three Rumex species sampled for herbiv-
orous insect abundance and diversity, leaf and root damage and 
plant biomass from a the United Kingdom (native range) and b 

New Zealand (introduced range). The different shades of green 
are as a result of overlapping sites
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had at least 30 individuals growing in close proxim-
ity. In both the UK and NZ, populations were sam-
pled across a range of temperature and precipita-
tion environments which largely overlapped across 
the two ranges (Carlin 2022). All populations were 
located below 300  m elevation, at least 1  km away 
from the coast in open habitat and at least 3.5  km 
away from other surveyed conspecific populations 
(mean = 38  km, range = 3.5 to 120.8  km). For the 
most part, each location only contained a single 
Rumex species, but a few sites in both the native and 
introduced range contained two species. Since multi-
ple Rumex species were often found growing in close 
proximity to each other, prior to collection, each plant 
was examined to confirm species identity and exclude 
obvious hybrids based on morphological traits. In 
both ranges, we only collected from plants that were 
either flowering or beginning to set seed, to standard-
ize plant life stage and available herbivore habitat.

To collect insect herbivores, each Rumex plant was 
cut at ground level, placed in a bag and vigorously 
shaken to cause insects to drop into the bag. The plant 
was also inspected for insects that did not fall after 
shaking. In the UK, stem burrowing weevils, such 
as Apion violaceum Kirk can be found in their larval 
state on Rumex from mid-May to mid-June (Freese 
1995). This means that sampling in the native range 
took place after they emerge into adulthood, which is 
why stems were not inspected for weevil larvae but 
adults were nevertheless collected on the plants. All 
insects were stored in 70% ethanol for later identi-
fication. This technique is similar to the beat sheet 
method which is fast, has low variability (Turnipseed 
1974) and is effective for counting mobile insects 
(Deutscher et al. 2003). The roots of each plant were 
also collected to check for any root feeders inside the 
central tap root and were scored as damaged by dis-
ease (evidence of root rot) and/or herbivory (present/
absent).

The five largest leaves from each surveyed plant 
were collected and photographed to determine the 
percentage of leaf area damaged by herbivores. 
The photos were analysed using the image process-
ing program BioLeaf (Machado et al. 2016). To test 
for differences in performance, we measured fresh 
biomass by cleaning and weighing the above- and 
below-ground parts of the collected plants on the 
same day as collection. Biomass is correlated with 

seed production in short-lived herbaceous species like 
Rumex (Pino et al. 2002; Grime et al. 2007).

All herbivorous insect specimens were separated 
into morphospecies and a representative from each 
of these groups was identified to order and family 
(where possible) (Coleoptera: Brentidae, Curculioni-
dae, Elateridae, Nitidulidae, Scarabaeidae; Diptera: 
Tipulidae; Forficulidae; Hemiptera: Aphidae, Cer-
copidae, Coreidae, Miridae, Pentatomidae, Psillidae; 
Lepidoptera: Sesiidae; and Thysanoptera). Known 
Rumex-specialist insects and any insects found in 
both the native and introduced ranges were identified 
to the species level: Gastrophysa viridula (De Geer), 
Hypera rumicis (L), Coreus marginatus (L), Pyrop-
teron chrysidiforme (Esper), Philaenus spumarius (L) 
and Closterotomus norwegicus (Gmelin). We chose 
to group insects by morphospecies because they are 
accurate surrogates for estimates of species num-
bers (Oliver and Beattie 1996) and the large number 
of individuals collected meant identifying each to 
species was not feasible. Morphospecies were clas-
sified by feeding mode as chewers or sap-suckers. 
Chewing insects cause damage that can be visually 
quantified on leaves and typically include the orders 
Coleoptera (adults and larvae), Lepidoptera (larvae), 
Symphyta (sawfly larvae), Orthoptera and Phasmato-
dea (Elliott et al. 1998). Phloem feeders can remove 
as much biomass as chewers, but damage from sap-
sucking insects is less obvious and more difficult to 
quantify (Leigh 1997). Sap-sucking insects belong to 
the orders Hemiptera and Thysanoptera (Elliott et al. 
1998).

Statistical analyses

To test whether insect communities differed between 
the native and introduced ranges, we compared insect 
abundance across common orders. We tested whether 
the abundance of insects in each order in NZ was sig-
nificantly different from what we would expect based 
on observations in the UK using a chi-squared test. 
This analysis included four insect orders (Thysanop-
tera, Lepidoptera, Hemiptera, Coleoptera) and “Oth-
ers”, which due to the very low number of insect indi-
viduals (< 20 per order), included all other orders.

Differences in the diversity of insect herbivore 
morphospecies found on Rumex plants between the 
native (UK) and introduced (NZ) ranges were 
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calculated using an unpaired t-test of the Shannon 
index entropy at the population level 
�

H�
�

= −

s
∑

i=1

pi ln pi , where pi is the proportion of 

individuals of species i divided by the total number of 
individuals across all species. The number of species 
is s. Morphospecies richness (the number of insect 
morphospecies) and total abundance of chewing and 
sucking insects per plant was modelled using general-
ized linear mixed effects models with a Poisson distri-
bution. Each model had fixed effects of range (UK or 
NZ) and total plant fresh weight, which was centred 
and scaled (Schielzeth 2010), and population was 
included as a random effect.

To assess whether Rumex species herbivore dam-
age differed between the native and introduced ranges, 
we compared rates of damage for both above- and 
below-ground plant parts across ranges. To analyse 
the proportion of roots diseased or damaged within 
a population we used generalized linear models with 
a binomial distribution and range (UK or NZ) as the 
predictor. For the analyses of the percentage of leaf 
area lost to herbivory and of total plant fresh weight, 
we used linear mixed effects models with a Gaussian 
distribution, where range (UK or NZ) was included as 
a fixed effect and population as a random effect. Per-
centage of leaf area lost was calculated as the average 
across five leaves per plant.

To determine the significance of the range effect, 
a Wald Z test or a Wald Chi-squared test were used. 

Each Rumex species was modelled separately. Resid-
ual plots and diagnostics were checked for all analy-
ses to ensure the validity of the model assumptions. 
All statistical analyses were performed in R (R Core 
Team 2019) and mixed models were run using ‘lme4’ 
R package v.1.1–19 (Bates et al. 2015).

Results

Abundance and diversity of insect herbivores 
between native and introduced ranges

The abundance of insects across orders in NZ was 
significantly different from what would be expected 
based on the abundance of insects across orders in the 
UK: R. conglomeratus (χ2 = 1705, df = 4, p < 0.001), 
R. crispus (χ2 = 2544, df = 4, p < 0.001) and R. obtusi-
folius (χ2 = 3606, df = 4, p < 0.001). In the introduced 
range, all three Rumex species had fewer Coleoptera 
and Thysanoptera individuals (Fig. 2). In both ranges, 
Hemiptera individuals were highly abundant and 
Lepidoptera individuals were uncommon (Fig. 2).

There was a significantly greater Shannon entropy 
of herbivorous insect morphospecies in the native 
range for R. conglomeratus (p < 0.001) and R. obtusi-
folius (p = 0.032), but not for R. crispus (p = 0.796) 
(Fig.  3). Rumex conglomeratus, R. crispus and R. 
obtusifolius all had significantly greater abundance 

Fig. 2   Relative abundance 
of morphospecies across 
different insect orders 
found on Rumex conglom-
eratus, R. crispus and R. 
obtusifolius in their native 
(UK) and introduced (NZ) 
ranges. The abundance of 
each order was calculated as 
the percentage of the total 
insect individuals found per 
range
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of chewing insects in the native range than in the 
introduced range (p ≤ 0.004, Fig. 4). However, no dif-
ferences between ranges in sap-sucking insect abun-
dance were detected for any Rumex species (p ≥ 0.17) 
(Fig. 4).

In the native range, the leaf specialist Gastro-
physa viridula was found on 3% of R. conglomera-
tus (mean ± 1SE 0.09 ± 0.06 insects per plant), 10% 
of R. crispus (0.94 ± 0.32) and 16% of R. obtusifo-
lius (1.26 ± 0.45) and the root specialist Pyropteron 
chrysidiforme was found on 2% of R. conglomeratus 

(mean ± 1SE insects per plant 0.02 ± 0.01), and 6% of 
R. crispus and R. obtusifolius (0.06 ± 0.02). No spe-
cialist insect herbivores were found in the introduced 
range. However, two generalist hemipteran species 
native to Europe, Philaenus spumarius and Closter-
otomus norwegicus, were present in large numbers on 
plants in both ranges.

Fig. 3   Mean Shannon 
entropy of herbivorous 
insect morphospecies found 
per plant in populations of 
Rumex conglomeratus, R. 
crispus and R. obtusifolius 
in their native (UK) and 
introduced (NZ) ranges. 
*P < 0.05; ***P < 0.001. 
Error bars ± 1SE
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Root condition and leaf herbivore damage

The presence of root herbivory was significantly 
higher in Rumex plants in the native range than in the 
introduced range for all three study species (Fig. 5a). 
However, only R. conglomeratus plants had a signifi-
cantly higher incidence of root disease in the native 
range (p < 0.001; Fig. 5a). Leaf damage in the native 
range was rarely more than 4%, but was on average 
six times greater (mean ± SE 3.43 ± 0.24) than in the 

introduced range (0.58 ± 0.05) for all three Rumex 
study species (p < 0.001; Fig. 5b).

Plant biomass

In the introduced range, R. crispus plants had signifi-
cantly (p = 0.04) higher total fresh weight than in the 
native range. The other two Rumex species showed 
no significant differences in the total fresh weight 
between ranges (Fig. 6).

Fig. 5   Percent of plants 
with damaged roots in a 
population a and percent 
leaf area damaged by 
herbivory b for Rumex con-
glomeratus, R. crispus and 
R. obtusifolius plants in the 
native (UK) and introduced 
(NZ) ranges. ***P < 0.001. 
Error bars ± 1SE
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Discussion

We provide evidence of enemy escape as a result 
of fewer herbivorous insects and indicated by lower 
damage in the introduced range for all three Rumex 
species. Even though damage was lower in the intro-
duced range (NZ), only R. crispus showed evidence 
for enemy release, having a higher biomass in NZ. 
Two Rumex species (R. conglomeratus and R. obtusi-
folius) had a greater diversity of insect morphospecies 
in the native range (UK), but no difference between 
ranges was observed for R. crispus. All three Rumex 
species had a greater abundance of chewing insect 
herbivores, as well as greater leaf and root dam-
age in the native range, as opposed to the introduced 
range. Specialist insect herbivores, although found 
frequently on plants in the native range, were absent 
from the introduced range.

At a family level, there was a greater diversity 
and abundance of chewing insect herbivores on 
Rumex plants in the native range than in the intro-
duced range, which may reflect the fact that the native 
range hosts a greater variety of chewing insect fam-
ilies than the introduced range. For example, in the 
UK there are 103 Coleoptera families (UK Natural 
History Museum 2020), whereas in New Zealand, 
there are only 82 Coleoptera families (Leschen et al. 
2003). However, among sap-sucking insects the same 

six Hemiptera families were found on plants from 
both the native and introduced range and Hemip-
teran abundance was similar between ranges, despite 
greater diversity in the UK. Alternatively, lower 
diversity and abundance in the families of insect her-
bivores could be a result of the lack of co-evolved 
herbivores in the introduced range, as predicted for 
enemy escape (Keane and Crawley 2002).

For all three Rumex study species, specialist 
herbivores like Gastrophysa viridula and Pyrop-
teron chrysidiforme, although fairly common in the 
native range, were absent from the introduced range. 
Thus, it appears that introduced Rumex populations 
have indeed escaped from specialist herbivores, as 
have other species (Kwon 2008; Kwon et  al. 2006; 
Park et  al. 2008), such as tall goldenrod, Solidago 
altissima L. (Asteraceae) (Uesugi and Kessler 2016), 
and creeping thistle, Cirsium arvense (L.) Scop. 
(Cripps et al. 2011, 2010). Instead, insect herbivores 
feeding on the three Rumex species in the introduced 
range have been recorded as generalist feeders in the 
native range (Cavers and Harper 1964), consistent 
with the predictions for arthropods colonizing intro-
duced plants (Fraser and Lawton 1994) and other 
comparative studies (Goeden 1974; Jobin et al. 1996; 
Memmott et al. 2000). Introduced plants can also be 
colonised by native insect species, which can thus 
act as potential biocontrol agents, as was the case 

Fig. 6   Mean fresh weight 
of Rumex conglomeratus, 
R. crispus and R. obtusifo-
lius plants collected from 
populations in their native 
and introduced ranges. 
*P < 0.05. Error bars ± 1SE
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for R. obtusifolius in Korea, where it encountered 
Gastrophysa atrocyanea (Motschulsky) (Coleop-
tera, Chrysomelidae), Ostrinia palustralis memnia-
lis (Walker) (Lepidoptera: Crambidae) and Allantus 
luctifer (Smith) (Hymenoptera: Tenthredinidae). 
Alternatively, specialist herbivores can sometimes be 
introduced either at the same time as the host (Cana-
van et al. 2019) or at a later date and the longer the 
residence time, the more likely this is to happen by 
chance (Hawkes 2007; Schultheis et  al. 2015). For 
example, the parsnip webworm (Depressaria pas-
tinacella Goeze (Depressariidae)) re-associated with 
wild parsnip (Pastinaca sativa L. (Apiaceae)) roughly 
150  years after the introduction of wild parsnip to 
New Zealand (Zangerl et al. 2008). Although no spe-
cialist Rumex herbivores have been introduced from 
their native range, two generalist sap-sucking insect 
herbivores native to the UK, Philaenus spumarius 
L. (Hemiptera, Aphrophoridae) and Closterotomus 
norwegicus (Gmelin) (Hemiptera, Miridae), were 
frequently present on Rumex plants in both ranges. 
As they were found on 18–24% of surveyed plants 
and have been present in NZ since at least the 1960s 
(Archibald et al. 1979; Myers and China 1928), it is 
possible that these two species could have limited 
enemy release for R. conglomeratus and R. obtusi-
folius. Of note is the fact that New Zealand has two 
native Rumex species (R. flexuosus Sol. and R. neglec-
tus Kirk), both of which are endemic and of cultural 
importance for the Māori people. This would make 
it unlikely that specialists will be introduced to New 
Zealand for the biocontrol of invasive Rumex species, 
as there would be a high chance that the native spe-
cies will also be affected.

Rumex plants in the native range had significantly 
higher herbivore damage on both roots and leaves than 
plants in the introduced range, as predicted by the ERH 
and found in other studies (Adams et  al. 2009; Cas-
tells et al. 2013; Cripps et al. 2006; DeWalt et al. 2004; 
Memmott et al. 2000; Veselkin et al. 2019; Vilà et al. 
2005 but see Williams et al. 2010), including in New 
Zealand (Fenner and Lee 2001; Lieurance and Cipol-
lini 2012, but see Cripps et  al. 2010). Leaf herbivory 
in our system was low in both ranges, which could 
mean herbivory had only a modest effect on plant per-
formance. Other studies that found low levels of leaf 
damage (< 10%), similarly did not find support for 
enemy release in the introduced range (Adams et  al. 
2009; Kater 2016; Lieurance and Cipollini 2012). 

Gastrophysa viridula has been shown to significantly 
reduce the performance of Rumex (Moore et al. 2003), 
although this only occurs at experimental densities of 
at least two adult beetles and their offspring per plant 
(Bentley and Whittaker 1979), whereas under natu-
ral conditions we found an average of 0.83 individuals 
(adult and larvae) per plant. This suggests that most of 
the leaf damage was not caused by chewing insects, but 
possibly by snails and slugs, which can be found fre-
quently on Rumex plants in both the native and intro-
duced ranges (Costan C. A., pers. obs.). Mammalian 
herbivores or anthropogenic disturbances can also 
greatly affect the development and growth of Rumex 
plants, but in this study, we excluded highly disturbed 
or heavily grazed sites. Thus, it is likely that for the 
plants that we surveyed, insect herbivory played a 
prominent role.

Together these results suggest enemy escape in the 
introduced range, but there is little evidence of a per-
formance increase, and therefore enemy release, as a 
result of this loss of natural enemies. Since fecundity 
is likely highly corelated to biomass in Rumex (Pino 
et  al. 2002; Bufford and Hulme 2021), an increase in 
biomass would be a good indication of success. In the 
introduced range, R. crispus had a significantly greater 
fresh weight than in the native range, possibly as a 
result of lower root herbivory compared to R. crispus 
plants in the native range. Both Rumex conglomeratus 
and R. obtusifolius had lower root herbivory than R. 
crispus and tend to have multiple tap roots, while R. 
crispus plants generally have one main tap root with a 
larger diameter (Cavers and Harper 1964). This makes 
R. crispus a more favourable target for attack by larvae 
of the specialist clearwing moth, Pyropteron chrysidi-
forme, which needs a sufficiently large root diameter 
to survive (Spafford et al. 2008). Consistent with this, 
a closely related insect species Pyropteron doryliformis 
(Ochsenheimer), which was introduced as a biocontrol 
agent in Australia, established on R. crispus plants but 
not on R. obtusifolius and R. conglomeratus (Morley 
et al. 2008). Plant biomass was similar for R. conglom-
eratus and R. obtusifolius between ranges, suggesting 
that the differences in herbivory had modest effects on 
performance and that escape from specialist herbivores 
does not always result in an increased plant perfor-
mance (Chun et al. 2010). This provides at best mixed 
evidence for the ERH and that evidence is primarily 
for effects of below-ground herbivores, which are less 
often examined in ERH studies.
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Conclusion

This work provides multi-species evidence that inva-
sive plant species can escape from specialist insect 
herbivores in their introduced range and, although 
hosting a different insect herbivore community, expe-
rience greatly reduced herbivory compared to their 
counterparts in their native range. Herbivore damage 
in both ranges was low, however, and no significant 
difference in plant biomass was observed between the 
native and introduced ranges for R. conglomeratus 
and R. obtusifolius, suggesting that enemy escape is 
not a main driver of the success of these two Rumex 
species in New Zealand. For R. crispus, however, 
release from root herbivory in the native range may 
explain the significantly greater fresh weight of R. 
crispus plants in the introduced range, which could 
indicate support for the enemy release hypothesis 
for this species in New Zealand and emphasizes the 
importance of considering below-ground interactions.
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