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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Assessment and mapping of soil water repellency using remote sensing and 

prediction of its effect on surface runoff and phosphorus losses 

by 

Mohamed Bayad 

 

The soil water repellency spatial and temporal dynamics remain ambiguous. Water 

repellency is an inherent soil property that refers to the impedance in dry soil wetting. This 

phenomenon was ascribable to the hydrophobic compounds coating the soil particles and has 

emerged as a recalcitrant issue impacting multiple processes upon agroecosystems. The 

apprehensions around soil water repellency include its impact on surface runoff, plant growth, and 

nutrients losses (e.g. phosphorus). The soil hydrophobic compounds, which are intrinsic constituents 

of the soil carbon pool, have different sources including plant leaves and roots, soil microbial 

communities and fungi. Previous methods for water repellency measurements are laborious, time-

consuming and costly. The raison d'être of this thesis was to i) explore and test novel approaches for 

estimation of soil water repellency in pastoral ecosystems, and ii) study the factors controlling soil 

water repellency and assess its impact on surface runoff volumes and phosphorus losses in surface 

runoff. In the present work, multiple remote sensing approaches were tested to assess and map soil 

water repellency at multiple scales. The liaison between water repellency and soil surface reflectance 

was exploited to access the water repellency using the satellite multispectral reflectance and 

hyperspectral satellite data. A novel approach implicating the use of time series of surface 

reflectance and water deficit data was used to study the impact of both surface biomass and soil 

moisture temporal dynamics on the occurrence of water repellency and carbon content in pastoral 

systems. Multispectral broadband data from both Landsat-7 and Sentinel-2 satellites showed big 

potential for assessing soil water repellency and carbon content in permanent pastures. Partial least 

square regression models were calibrated and cross-validated using topsoil measurement of water 

repellency and soil carbon from 41 and 35 pastoral sites that were matched with reflectance spectra 

from Landsat-7 and Sentinel-2, respectively. Soil carbon showed higher predictability compared to 

water repellency with R2
v=0.50, RMSEv=2.58 when using Landsat-7 spectra. The higher predictability 

performance for water repellency persistence was reached using Sentinel-2 spectral (R2
v=0.45; 

RMSEv=0.98). However, using hyperspectral narrowband data from the Hyperion satellite showed a 
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higher prediction accuracy (R2
v=0.78; RMSEv=0.58). Prediction performance was generally higher 

when using the calibration sets, indicating the possibility of improving these prediction models when 

using larger datasets. A novel approach was tested using multiple predictors for soil water repellency 

occurrence. The predictors included time series of surface biomass assessed through normalised 

difference vegetation index (NDVI) and soil moisture data estimated through water deficit and 

synthetic aperture radar satellite data. The results showed an attractive opportunity for water 

repellency and soil carbon mapping. Three machine learning algorithms including artificial neural 

networks, random forest, and support vector machine were trained and cross-validated using 

multiple configurations of satellite time-series data and topsoil measurement from 58 pastoral sites. 

Random forest and support vector machine (RMSEv=0.82 and 0.87, respectively) outperformed 

artificial neural networks (RMSEv=1.23). With increasingly available remote sensing data, the use of 

satellite time-series data will open unprecedented opportunities for soil carbon, water repellency 

mapping, and potentially other functional chemical and physical soil attributes.  

To understand water repellency dynamics and evaluate their impact on surface runoff and 

phosphorus losses in pastoral soils, two experiments were conducted. The first experiment aimed to 

understand the relationship between the actual water repellency persistence and water content in 

drying hydrophobic soils. The second experiment had the objective to evaluate the impact of soil 

water repellency on the surface runoff and phosphorus losses in runoff. Results from the first 

experiment showed that the actual water repellency increased dramatically when water content 

decreased, especially when moisture dropped below a critical value. Using lab measurements, the 

actual water repellency was modelled using a simple sigmoidal model, as a function of water 

content, the potential water repellency, and two characteristic parameters related to the response 

curve shape. Results from the runoff trial showed that the surface runoff was influenced by soil 

water repellency to some extent (R2=0.46). Although more than 90 % of phosphorus losses happened 

in incidental losses following fertiliser application, the data point to non-incidental phosphorus loads 

being related to soil water repellency (R2=0.56). These results bespoke the effect of soil water 

repellency on background phosphorus losses through surface runoff during post-summer runoff 

events in pastoral ecosystems. 

Keywords: Soil water repellency, soil hydrophobicity, soil carbon, pastures, remote sensing, 

multispectral topsoil reflectance, hyperspectral topsoil reflectance, Sentinel-2, Landsat-7, Hyperion 

Sensor, remote sensing time series, water deficit time series, normalised difference vegetation index.  
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Chapter 1 

Introduction 

Soil water repellency (SWR) is a widespread phenomenon that refers to the delay of water 

absorption in hydrophobic dry soils. This issue has been identified in different soils and climate 

combinations (Dekker et al., 2005). Theoretically, the origins of water repellency are the 

hydrophobic compounds coating the hydrophilic soil minerals. This causes water droplets to ball up 

on the dry soil surface and prevent it from infiltration (Doerr et al., 2000). The decrease in water 

infiltration has major repercussions for water runoff, plants growth and nutrient loss (Leitch et., 

1983). In New Zealand, SWR has negative environmental and economic consequences on the 

pastoral systems. In a study of 15 pastoral sites, Müller et al., (2010) reported that SWR caused 

pastures growth to decrease between 5 and 20% and increased the risk of herbicides loss through 

the water surface runoff. The authors stated that SWR constitutes a risk for New Zealand’s pasture 

production, particularly with eventual climate changes leading to periodic summer droughts. In 

another study, Müller et al., (2014) demonstrated that a large part of the variability in pasture 

production was affected by the degree and the persistence of SWR. In Australia, this issue affects 

more than 10 Mha of arable soils (Roper et al., 2015). In pastures, losses related to water repellency 

are significant and have been reported to be around 30% annually for dry-sown lupin (Blackwell et 

al., 1994). The decrease in water filtration is presumed to be an important cause of increases in 

runoff, erosion and nutrient loss (Leitch et al., 1983). To properly understand this problem, an 

effective characterisation of water repellency and its dynamics is needed. Knowing the severity, 

nature and occurrence probability of SWR in different points of an agricultural field may help reduce 

nutrient loss through site-specific management (e.g. fertiliser application). There are numerous 

methods to measure SWR in the laboratory and the field, however, these conventional methods are 

time-consuming and point scale measurements. Thus, the possibility of constructing reliable spatial 

and temporal data using these methods is limited. There were a few attempts at characterising SWR 

spatial and temporal dynamics using novel approaches. Infrared thermography (Abrantes et al., 

2017) and laboratory visible and near-infrared spectroscopy (Kim et al., 2014) were tested as an 

alternative method for the assessment of SWR. These studies showed promising results, indicating 

the potential of the remote sensing approach for water repellency assessment. However, there was 

no research work on the possibilities of using remote sensing to assess SWR in the field, at farm or 

regional scale. The spatial characterisation of SWR in pastures could provide valuable data, which 

will help in the decision making related to fertilizers application, water repellency remediation 
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approaches, and grazing and thus reduce surface water runoff and phosphorus loss in surface runoff. 

This general introduction discusses research history, current methodologies and understanding of 

soil water repellency. The knowledge gaps related to the impact on surface runoff, soil nutrient 

movement and the possibilities of using remote sensing as novel approach for water repellency will 

be highlighted.  

1.1 Chronological and global highlights  

Soil water repellency historical background was reviewed by DeBano (2000). They highlighted 

that Schreiner and Shorey (1910) were the first to report a soil that could not be wetted either by 

irrigation, rain, or water movement from the subsoil. The period between the 1920s and the 1940s 

saw the earliest development of the understanding of SWR occurrence. Albert and Köhn (1926) work 

on water repellent sands and report on the creation of artificial catchments by Kenyon (1929) were 

the only publications implicating SWR in this period. Several studies started emerging in several 

journals in the 1940s. Jamison (1947) demonstrated that the low soil wettability reduced the citrus 

orchards’ productivity in Florida, USA. Low wetting soils were also reported in the Netherlands by 

(Domingo 1950). In the late 1950s, Woudt (1959) reported that organic coatings of soil particles 

altered the soils’ wettability in New Zealand. The 1960s and 1970s decades witnessed important 

milestones in SWR research. Many intelligible studies from the USA and Australia targeted a broad 

range of aspects of water repellency. Over 80 publication was published on different aspects of 

water repellency in this period (Fig. 1). A major milestone was the development of a physical method 

to characterise SWR using the contact angle method by Letey et al., (1962). The number of 

publications on SWR has increased exponentially after the 1980s in different parts of the world.  
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Figure 1-1 Number of publications and the cumulative number of publications on soil 

water repellency. Data acquired from Scopus database. The search was conducted within 

the article title, abstract, and Keywords using “soil water repellency” keywords. 

The scientific production in different regions of the world translates the wide range of 

climates, soils, and ecosystems where water repellency issues might arise (Fig. 2). Water repellency 

has been the object of systematic studies since the 1960s and gained remarkable effervescence after 

the year 2000. The number of documents by country published between the 1960s and 2020 shows 

that the USA, Australia, Netherlands, New Zealand had the higher number of publications on soil 

water repellency (Fig. 2). 
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Figure 1-2 Number of publications per country between 1960 and 2020. Data was 

acquired from the Scopus database. The search was conducted within article title, 

abstract, and Keywords using “soil water repellency” keywords and over 1400 

publications were found.  

1.2 Characterisation of soil water repellency  

Soil water repellency has been reported to decrease water infiltration, inducing runoff and soil 

erosion. A better understanding of the SWR required an advanced characterisation of the 

components causing hydrophobicity in soils. Characterisation of SWR was reviewed by  Doerr et al., 

(2000). Several investigations have been done to chemically characterise the hydrophobic materials 

causing SWR. Horne and McIntosh, (2003), extracted organic compounds from sandy soils of the 

southwest coast of New Zealand’s North Island and classified the extractions into lipid and water-

soluble fractions. Identification of the extractions showed that lipid fraction contains neutral, acidic, 

and polar lipids. The water-soluble fraction was reported to show amphipathic characteristics. This 

study showed that water repellency was ruled by the nature of the organic compounds rather than 

the total carbon content. Another investigation by Franco et al., (2003) on the physicochemical 

characteristics of hydrophobic Australian sands was carried out through the extraction and the 

analysis of natural waxes coating the sands. The analysis of the extracted waxes showed that they 

comprised mainly branched and unbranched C16 to C36 fatty acids and their esters, phytanols, 

alkanes, phytanes and sterols. McKissock et al., (2003) had established a link between SWR and 

aliphatic C and kaolin measured using diffuse reflectance infrared Fourier transform. This method 

was suggested earlier by Capriel et al., (1995) to estimate SWR in the lab, based on the principle that 
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the hydrophobicity of organic matter is caused by methine, methyl, and methylene groups present 

in aromatic and aliphatic compounds. 

The potential SWR, which is the higher level of water repellency can attend, is related to the 

chemistry, amount, and arrangement of the hydrophobic compounds at soil particles at the 

nanoscale. However, the actual soil water repellency is highly affected by soil water content. 

Previous research showed that generally SWR is negatively correlated with soil moisture in field 

conditions (Dekker et al., 2001; Müller et al., 2014). In a study of the relationship between the 

severity, the persistence of SWR and the critical water content (CWC) in soils from 13 sites including 

natural, reclaimed and agricultural soils, Chau et al., (2014) found that high severity does not 

necessarily mean a long persistence or high CWC. The authors reported that the measured values of 

severity and persistence are associated with differences and variations in surface energy between 

water and the soil surface, respectively. This examination of repellency variations as a function of 

CWC for the studied soils revealed different patterns. Some soils showed a rapid decrease of contact 

angle when water content increased; this indicated less severity, regardless of the initial repellency. 

Other soils showed a slow decrease in contact angle at low water contents, which indicated high 

severity and a need for more water or surfactant for remediation (Chau et al., 2014). Most of the 

previous work on the SWR-soil moisture relationship was carried out by changing soil moisture by 

adding water and measuring the repellency level after equilibrium for specific water content. 

However, studying water repellency as a function of moisture for drying soil could have different 

dynamics. The only study that investigated the water repellency characteristic curves in drying soils 

was carried out by Li et al., (2016) using artificially hydrophobised soils. However, understanding the 

characteristic curves of naturally hydrophobic drying soils is needed. This could allow the modelling 

and mapping of the actual water repellency levels, using soil moisture data and the potential SWR 

level which per se could be estimated using a remote sensing approach. 

1.3 Soil water repellency measurements  

To make comparisons amongst the overwhelming number of works on SWR in different areas 

around the world it was necessary to work with standardised methods. Traditionally, different 

methods have been proposed for SWR measurement. The following section provides an overview of 

the different methods used in SWR characterisation as reviewed by Letey et al., (2003). 

1.3.1 Contact angle 

The wettability of a solid is tied to the value of the solid-liquid contact angle. When a droplet 

of water is placed on a hydrophobic surface, it balls up, and thus forms a large contact angle with 
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this surface. However, water droplet placed on a hydrophilic surface tends to spread and have a 

narrow contact angle (Fig. 3). 

.  

Figure 1-3 Representation of the variation of the contact angle as a function of water 

repellency (from Deurer & Müller, 2010) 

To measure the contact angle, Letey et al., (1962) assumed the soil to be presented by 

cylindrical capillaries. The pressure (P) applied to the liquid rising on these capillaries was expressed 

by capillary and gravitational forces. The capillary pressure is: 

𝑃𝑐 =
2𝛾 cos 𝜃

𝑟
      (1-1) 

 

where 𝜃 is the solid-liquid contact angle, 𝑟 in the capillary radius, and 𝛾 is the liquid-air surface 

tension. The gravitational pressure is: 

𝑃𝑔 = 𝜌𝑔ℎ      (1-2) 

where 𝜌 the liquid density, 𝑔 the gravitational constant, and ℎ the height of the rise. 

Since 𝑃𝑐 = 𝑃𝑔 at the equilibrium, the height of the capillary rise is: 

ℎ =
2𝛾 cos 𝜃

𝜌𝑔𝑟
      (1-3) 

Letey et al., (1962) found that ethanol wet all the soil materials with a contact angle of zero. This 

helps in deducing the capillary radius, which in turn could be used to determine the contact angle for 

water or other solution used in infiltration. Thus, the contact angle could be calculated using the 

following equation: 

cos 𝜃 =
ℎ𝑤𝛾𝑒𝜌𝑤

ℎ𝑒𝛾𝑤𝜌𝑒
     (1-4) 

where ℎ𝑤𝛾𝑤𝜌𝑤 and ℎ𝑒𝛾𝑒𝜌𝑒 are the height of the rise, liquid-air, and surface tension of water and 

ethanol, respectively.  

Image removed for Copyright compliance 
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1.3.2 Water drop penetration time  

The water drop penetration time (WDPT) approach involves placing water drop on the soil 

surface and recording the time it takes to penetrate (Letey et al., 2003). As the water penetrates the 

soil when the contact angle θ is less than 90ᵒ, WDPT measures the time taken by θ to change from 

values >90ᵒ to 90ᵒ. Doerr et al., (1998) standardised the WDPT method by placing 5 or 15 droplets of 

distilled water on the soil surface. The penetration time was recorded for each drop and the median 

was considered to represent the WDPT. For soil water repellency classification, this standardization 

used 11 penetration time categories instead of only five (Bisdom et al., 1993) to ensure high 

resolution of WDPT.  

1.3.3  Ninety-degree surface tension 

Based on the assumption that liquids can penetrate the soil only if θ is less than 90ᵒ, 

(Watson and Letey, 1970) proposed the liquid surface tension that enters the soil at 90ᵒ to be an 

index of SWR. To identify this surface tension, a series of dilutions of ethanol in water are prepared 

and the respective drops are placed on the soil surface. The increasing gradient of ethanol 

concentrations engenders decreasing surface tensions. Drops with a surface tension higher than that 

of the soil surface will persist on the surface, while the drops with inferior surface tension will enter 

immediately. The 90° surface tension was assumed to be the transition from penetration to 

persistence on the soil surface with five seconds as an arbitrary time of drop infiltration (Letey et al.,  

2003).  

1.3.4 Molarity of Ethanol Droplet test 

The molarity of ethanol drop (MED) test is derived from the 90ᵒ surface method as they 

share the same principle and logic, except that it considers the ethanol molarity of the droplet as an 

index of water repellency (instead of the surface tension). King, (1981) used ethanol solution of 

concentrations intervals of 0.2 M with a range of 0-5 M. Water repellency was represented by the 

ethanol molarity of the droplet that entered the soil surface in 10s. Only four classes of water 

repellency were adopted based on MED values (7 classes were used by  Doerr, (1998)). 

1.3.5 Solid-air surface tension  

A key physical characteristic of a solid is the solid-air surface tension 𝛾𝑠. The measurement of 

this property that affects the wetting behaviour provides valuable information. Carrillo et al., (1999) 

and Letey et al., (2003) combined previously published developments to measure the solid-air 
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surface tension. In this development, the solid-vacuum surface tension was assumed to be equal to 

solid-air surface tension (𝛾𝑠) and the liquid-vacuum surface tension to be equal to liquid-air surface 

tension(𝛾𝑙). Carrillo et al., (1999) used the equation: 

𝛾𝑠𝑙 = 𝛾𝑠 + 𝛾𝑙 − 2𝜙(𝛾𝑠𝛾𝑙)1/2     (1-5) 

where the constant 𝜙 is a function of molecular properties of the solid and the liquid with empirical 

values ranging from 0.5 to 1.15 and approximately unity for a water-hydrocarbon system (Adamson 

1982). Assuming the liquid is in contact with soil for a certain time and become stationary. This leads 

to a speeding equilibrium pressure equal to zero (𝛾𝑠 =  𝛾𝑙). Young (1805) suggested that the contact 

angle θ at three phases contact is determined by balance of surface tensions (Fig. 1-4). This 

assumption could formally be translated to the following equation (Makkonen 2016). 

  𝛾𝑠 = 𝛾𝑠𝑙 + 𝛾𝑙cos 𝜃   

𝛾𝑙cos 𝜃 = (𝛾𝑠 − 𝛾𝑠𝑙)        (1-6) 

     

 

Figure 1-4 Young’s representation for the contact angle between a solid and liquid drop 

and its vapour (from Makkonen, 2016) 

Combining Eq. 1-5 and 1-6, we get  

cos 𝜃 = 2(𝛾𝑠 𝛾𝑙⁄ )1/2 − 1      (1-7) 

For the ninety-degree surface tension 𝛾𝑙 = 𝛾𝑁𝐷 (θ=90°; cos 𝜃 = 0) Eq. 1-7 becomes  

𝛾𝑠 = 𝛾𝑁𝐷 4⁄        (1-8) 

1.3.6 Breakthrough pressure head  

Soil water repellency is a transient property. Thus, contact with water causes soil wettability 

changes over time. Carrillo et al., (1999) proposed a technique to measure the initial soil-water 

contact angle. For contact angle θ>90°, a positive pressure should be applied to force water 

infiltration into the capillary tube. This pressure was named the breakthrough pressure head (ℎ𝑝) 

and was calculated using the following equations: 

ℎ𝑝 =
2[(𝛾𝑤𝛾𝑁𝐷)]1/2 − 𝛾𝑤

𝑟𝜌𝑔⁄      (1-9) 

Image removed for Copyright compliance 
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The contact angle, 𝜃, was related to 𝛾𝑁𝐷through the submission of Eq. (1-6) into Eq. (1-5) 

cos 𝜃 = [(𝛾𝑁𝐷 𝛾𝑤)⁄
1

2 − 1]     (1-10) 

 

These equations were validated using experimental apparatus that records the 

breakthrough pressure head when water penetrates sand packed in a plastic column (Carrillo et al., 

1999). The soil pore radius, r, can be computed using the values of ℎ𝑝 and 𝛾𝑁𝐷.  

This overview of the main methods used for SWR characterisation shows that their major 

limitation is that they are dedicated to point-scale measurements. However, previous research has 

established that SWR has a very high spatiotemporal variability. In a study investigating the temporal 

variation of the field actual SWR on sandy forest soil, Buczko et al., (2005) found a notable seasonal 

variability from being extreme in summer to low in autumn. In the same vein, Dekker et al., (2001) 

found a pronounced spatial variability of SWR in soil depth varying from 0 to 19 cm. Horizontal and 

vertical SWR variation in afforested mine soils was noticed at the decimetre scale (Gerke et al., 

2001), and has even a considerable variability at the millimetre scale in grassland soils (Hallett et al., 

2004). This evidence regarding the temporal and spatial variability of SWR highlight the difficulties in 

(1) precisely assessing its level in different points of the field using the conventional methods; (2) 

predicting its occurrence over a small lapse of time. Therefore, new tools and methods are needed 

to track SWR temporal and spatial dynamics. Another major limitation of these methods is they are 

time-consuming. This makes it very difficult to construct spatiotemporal data, describing SWR 

variations in the field using these methods. Settling for data generated by these point measurements 

obfuscate our understanding of this phenomenon and its repercussion on pastoral ecosystems. 

Remote sensing could provide a promising solution to map SWR dynamics instead of using 

interpolations of point scale data. However, there has been a diminutive effort in using remote 

sensing for SWR assessment in the past. Testing the possibilities of using topsoil reflectance through 

both multispectral and hyperspectral satellite data for SWR estimation is needed.  

1.4 Hyperspectral remote sensing 

Methods of SWR measurement are laborious, costly, and involve point scale measurements, 

which means mapping SWR at the farm or regional scale is constrained. Remote sensing could 

provide an efficient technique for mapping SWR at multiple scales. Visible, near-infrared (Vis-NIR), 

and shortwave-infrared (SWIR) hyperspectral remote sensing have opened new possibilities for 

assessing topsoil attributes and creating digital soil maps. Numerous studies proved that 

hyperspectral remote sensing can be useful for estimating multiple soil properties. Well-known 

examples include soil C (Castaldi et al., 2016; Cécile Gomez et al., 2008; Leone & Escadafal, 2001) soil 
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texture (Casa et al., 2013; Galvão et al., 2008), pH and EC (Ben-Dor et al., 2002). Empirical models 

were developed to estimate soil properties that are associated with chemical chromophores altering 

surface reflectance at specific bands (e.g. OH groups in clays) (Ben-Dor et al., 1999) or properties 

that are reliably correlated with them (e.g. soil C with nitrogen). Hence, correlations of SWR with soil 

C (Hermansen et al., 2019a) and specific organic materials (Bisdom et al., 1993) could be utilised to 

predict SWR from surface reflectance signatures. However, no study has investigated the capability 

of remote sensing surface reflectance data for SWR assessment. Earlier attempts used laboratory 

VNIR/SWIR spectroscopy for estimating the potential SWR (Kim, I. et al., 2014) and predicting the 

relationship between SWR and soil moisture (Hermansen et al., 2019b; Knadel et al., 2016). 

Nevertheless, characterising SWR using satellite data presents a matchless advantage to map soil 

properties at larger scales, i.e., from farm to regional scale. Evaluating soil surface reflectance 

satellite data for predicting SWR and soil C has not been attempted in permanent pasture systems. 

Working with hyperspectral satellite data presents three major challenges. First, because of its high 

dimensionality, hyperspectral data storage and processing represent an issue to be reckoned with; 

especially when dealing with data at regional scales. Second, often adjacent bands provide similar 

information, thus for many applications, bands redundancy will be present. Third, to maintain the 

classification accuracy, the number of observations required to train a classifier increases 

exponentially when the number of bands in the image increases. In the past twenty years, multiple 

hyperspectral sensors have been used for soil C monitoring at different scales, in different studies. 

These studies used ground, airborne and spaceborne sensors. However, there were very few 

applications of spaceborne hyperspectral sensors compared to airborne hyperspectral sensors. The 

revisit feature and the global coverage provided by satellite data poses key advantages over ground 

and airborne hyperspectral data. These unique features raised special attention to the satellite 

hyperspectral sensors for soil C assessment and mapping. Although the prevalent number of studies 

implicating airborne data, the number of studies using satellite hyperspectral data is still very limited 

(Table 1-1). In this thesis, the use of hyperspectral satellite data from Hyperion was tested for 

modelling and estimating SWR and soil C levels in permanent pastures.  

 

Table 1-1 Case studies on the use of hyperspectral remote sensing to estimate soil 

organic carbon.  

Sensor Method n R2 RMSE RPD Research 

AHS PLSR 306 0.54 6.08 1.50 (Stevens et al., 2010) 
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 PLSR 81 0.75 2.2 1.9 (Steinberg et al., 2016) 

 PLSR 89 0.78 7.01 2.13 (Peón et al., 2017) 

APEX PLSR 88 - 3.6 2.1 (Castaldi et al., 2018) 

AISA PLSR 40 0.89 0.27 3.03 (Kanning et al., 2016) 

AVNIR MLR 321  0.48 0.08 - (DeTar et al., 2008) 

CASI SMLR 50 0.74 0.49 - (Uno et al., 2005) 

 ANN 50 0.59 0.59 - (Uno et al., 2005) 

 PLSR 234 0.85 5.1 1.86 (Stevens et al., 2006) 

 SVM 45 - 0.12 2.05 (Gholizadeh et al., 2018) 

HyMAP PLSR 72 0.90 0.29 - (Selige et al., 2006) 

 MLR 72 0.86 0.22 - (Selige et al., 2006) 

 PLSR 95 0.02 2.6 0.99 (Gomez et al., 2012) 

 PLSR 142 0.98 0.67 7.48 (Patzold et al., 2008) 

  61 0.87 0.08 2.90 (Schwanghart et al., 2011) 

  204 0.83 1.05 2.45 (Hbirkou et al., 2012) 

  38 0.71 1.64 1.80 (Gerighausen et al., 2012) 

  42 0.73 0.25 1.94 (Vohland et al., 2017) 

Hyperion PLSR 303 0.52 4.88 - (Jaber et al., 2011) 

 SPR 303 0.39 5.76 - (Jaber et al., 2011) 

 PLSR 65 0.51 0.73 1.43 (Gomez et al., 2008) 

 PLSR 49 0.63 1.60 1.65 (Lu et al., 2013) 

 PLSR 33 0.71 0.26 1.88 (Zhang et al., 2013) 

  713 0.27 0.46 1.23 (Castaldi et al., 2016) 

  111 0.61 0.76 - (Minu et al., 2017) 

 PLSR 72 - 0.38 - (Castaldi et al., 2014) 

 SMLR 39 0.62 9.05 1.62 (Peón, Recondo, et al., 2017) 

 PLSR 31 0.66 0.18  (Nowkandeh et al., 2018) 

HyperSpecTIR PLSR 269 0.65 0.19 - (Hively et al., 2011) 

ProspecTIR PLSR 60 0.75 2.22 1.98 (Franceschini et al., 2015) 

RDACS/H-3 PLSR 645 0.56 - - (Bajwa and Tian 2005) 

TASI PLSR 52 0.80 0.11 - (Eisele et al., 2012) 

 PLSR 58 0.95 0.08 4.51 (Pascucci et al., 2014) 
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1.5 Multispectral remote sensing 

Even though satellite hyperspectral remote sensing offers a useful tool to estimate soil 

properties, the limited availability of hyperspectral data has impeded its use. Till 2018, Hyperion 

aboard Earth Observing 1 (EO-1) was the only functional hyperspectral sensor (Folkman et al., 2001). 

The newly deployed hyperspectral sensor PRISMA (Loizzo et al., 2018) offers a spectral resolution of 

10 nm, a spatial resolution of 30 m for VNIR/SWIR bands, 10 m for panchromatic bands, a swath 

width of 30 km and a revisit time of 7 days. In comparison with hyperspectral sensors, multispectral 

sensors like Landsat-7 have a lower spectral resolution. Still, Landsat-7 provides the most valuable 

multispectral global archive (Kovalskyy & Roy, 2013). The recently implemented Sentinel-2 satellites 

by the European Space Agency (ESA) offer multispectral images with high revisit times (2-3 days) 

that include 13 bands (VNIR/SWIR) and have a spatial resolution between 10 and 60 m (depending 

on the bands). Yet a small number of studies accomplished good accuracy in predicting topsoil 

physical and chemical properties using multispectral satellite images. Using Sentinel-2 multispectral 

data, Vaudour et al., (2019) obtained a useful model with an intermediate prediction accuracy for 

soil C (R2=0.56; RMSE=1.23), pH (R2=0.51; RMSE=0.51), and CEC (R2=0.75; RMSE=1.23) in a temperate 

and in a Mediterranean region. In terms of comparison between hyperspectral and multispectral 

remote sensing, Castaldi et al., (2019) reported that there was no considerable difference between 

the spatial variability of soil C maps obtained from Sentinel-2 data and the ones derived by 

hyperspectral airborne data for a study area dominated by cropping. Likewise, Gomez et al., (2018) 

reported that there was no substantial difference between Sentinel-2 and hyperspectral (airborne 

and satellite) data in estimating clay content in a semiarid Mediterranean region.  

Prediction accuracies of remote sensing methodologies rely on the quality of the remote 

sensing data, modelling approach, and the ground-truthing conducted. Remote sensing using 

satellite data poses many challenges including the atmospheric interaction with reflected 

electromagnetic radiation, surface roughness and the nature of the land cover. Ben-Dor, (2002) 

reviewed in detail the challenges and the difficulties influencing quantitative remote sensing of soil 

properties. Estimating the topsoil properties of permanent pastures is even more challenging 

because of the additional complexity through the temporal dynamics of the surface biomass and 

water content. Surface biomass in permanent pastures impedes bare soil surface reflectance 

acquisition. Hence, finding a reliable procedure to deal with this issue is required. In permanent 

pastures, topsoil spectra could be obtained by selecting dates with the least surface biomass using 

an NDVI threshold. Grass surface biomass and per cent ground cover are positively correlated with 

NDVI values (Prabhakara et al., 2015). Regarding the topsoil moisture effect on surface reflectance, 
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the increase in water content decreases surface reflectance over the whole VIS-NIR and SWIR 

spectrum and especially in 1200, 1400, and 1800 nm wavelengths (Lesaignoux et al., 2013; Lobell & 

Asner, 2002). Hence, the moisture effect could be reduced by considering spectra with the highest 

reflectance from time-series data as dry topsoil spectra. This approach will be tested on Landsat-7 

and Sentinel-2 time series to determine its efficacy in acquiring topsoil spectra to be used for 

modelling soil C and SWR. 

1.6 Predicting the occurrence of soil water repellency using remote sensing 

time series data 

Previous attempts tested lab visible and near-infrared spectroscopy for SWR assessment (Kim 

et al., 2014; Hermansen et al., 2019b). Although these studies proved promising results, acquiring 

topsoil surface reflectance can be challenging using satellite data. Issues like cloud cover and 

permanent vegetation cover make it difficult to acquire soil reflectance values. Numerous studies 

used different approaches such as normalised difference vegetation index (NDVI) (Burnham and 

Sletten 2010; Zhang et al., 2019), or NDVI and multiple environmental predictors to assess and map 

soil carbon at regional scales (Wang et al., 2017). The later approach relies on the surface biomass 

dynamics and important variables influencing soil C cycling, such as precipitation, temperature, and 

land use. This approach could help predict the occurrence of SWR based on temporal dynamics of 

key factors controlling hydrophobic compounds cycling in the soil C pool.  

Water deficit and pasture management are crucial factors controlling surface biomass 

temporal dynamics. Remote sensed surface biomass and water deficit temporal dynamics could 

offer a useful tool to predict SWR occurrence in permanent pastures. However, testing this novel 

approach with real data from pastoral systems is needed to draw any conclusions on its efficacy. 

Assessment of surface moisture using the Synthetic Aperture Radar (SAR) and surface biomass using 

satellite multispectral data could provide a large advantage in terms of spatial and temporal 

assessment of biomass dynamics. Satellite multispectral reflectance gives valuable information of 

the aboveground biomass state, which is directly involved in the cycling of hydrophobic compounds. 

The normalised difference vegetation index is highly correlated with surface biomass and surface 

cover percentage (Prabhakara et al., 2015). Synthetic Aperture Radar backscatter showed a high 

relationship with the soil surface moisture (Zhang et al., 1998). Exploiting the available NDVI, water 

deficit and SAR time series (TS) data could allow the evaluation of surface biomass dynamics and 

therefore, reflect the impact on SWR occurrence. These interactions between topsoil moisture, 

biomass temporal dynamics, and the appearance of water repellency are still scantily understood. 
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Jaramillo et al., (2000) theorised that dry conditions would result in low biomass production rates 

and, thus, a lesser likelihood for the development of SWR. While humid conditions are beneficial for 

biomass production and, therefore, to produce hydrophobic compounds from decomposed biomass. 

According to this theory, carbon and hydrophobic materials share the same cycling mechanisms, 

assuming that hydrophobic compounds are a natural component of the soil C pool in pastoral 

ecosystems. In the present thesis the use of water deficit, NDVI and SAR time series data will be 

tested to predict the occurrence of SWR in pastures. 

1.7 Effect on hydrological processes 

1.7.1 Effect on water dynamics and evaporation  

Much of the literature on SWR pays attention to its effect on water movement. Numerous 

authors have considered the effect of water repellency on surface runoff, water infiltration, and 

evaporation. Ritsema and Dekker, (1994) showed that water paths were affected by the degree of 

water repellency and that the repellent volumes between these paths temporary prevented water 

and solute transport. In the same vein, Burch et al., (1989) noted that soil surface water repellency 

reduces water infiltration and caused runoff in a forested catchment to increase significantly. 

Similarly, in Japanese cypress forests, surface runoff was increased by SWR which, in its turn, was 

influenced by the length of the drying period between rainfall events and thus by soil water content 

(Miyata et al., 2007). Clay soils with grass cover showed the presence of preferential water flow 

paths due to water repellency (Dekker and Ritsema, 1996). These preferential flow paths have also 

been found in sandy soils, where water and solute flows are influenced by extreme water repellency 

(Ritsema and Dekker, 1995; Ritsema et al., 1993). Doerr et al., (2003) identified water repellency as a 

major cause of the reduction of soil wettability and its associated flow response at a laboratory 

scale. In an investigation into raindrop impact on soil particles mobilization, Ahn et al., (2013) found 

that SWR affected splash erosion, causing the water droplet to induce higher and longer trajectories 

for hydrophobic soil particles than hydrophilic ones. Regarding water evaporation, SWR was 

reported to reduce water evaporation from the soil. Rye and Smettem, (2017) showed that the 

increase in water repellency led to a significant decrease in water evaporation. In this study, the soils 

covered with a decreasing repellent layer over 10 to 30 cm depth exhibited evaporative losses over 

70% lower than the wettable soils.  
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1.7.2 Soil water repellency and water content relationship  

The actual SWR level is strongly related to soil water content. Water repellency as a function 

of water content, which is commonly referred to as the SWR characteristic curve has been examined 

in numerous studies (Chau et al., 2014a; Hermansen et al., 2019a; Wijewardana et al., 2016). 

Nevertheless, most of the prior studies were dedicated to the water repellency severity and soil 

moisture relationship, and less work has been made on SWR persistence dynamics. The 

characteristic curves of SWR severity as a function of soil water content have been examined in 

reclaimed soils (Chau et al., 2014a), pastoral (Hermansen et al., 2019a), and a forest ecosystem 

(Karunarathna et al., 2010). Different studies showed that the SWR severity characteristic curves are 

usually a unimodal curve where the contact angle increases with decreasing water content, achieves 

a peak, and then declines again (Kawamoto et al., 2007). Other studies showed bimodal response 

curves, sigmoidal curves or irregular patterns (Chau et al., 2014a; Hermansen et al., 2019a). The 

issue with the patterns observed in these lab studies is that water repellency dynamics are different 

from the observed field patterns. Most of the field work showed that the actual water repellency 

increased dramatically with soil water content decrease. Results from Dekker et al., (2001) who 

studied soil water repellency persistence in dune sands showed a significant increase of water 

repellency persistence when water content drops below a critical value. The difference between 

these patterns observed in the field and the laboratory simulation could be due to the differences in 

drying and wetting regimes. To simulate the SWR persistence dynamics in drying periods, soil drying 

conditions need to be similar to field drying. In the present thesis, we investigated the effect of soil 

drying on water repellency persistence dynamics of hydrophobic pastoral soils. This will help 

comprehend and quantify the impact of dying on soil water repellency occurrence in pastoral soil. 

1.8 Effect of runoff nutrient losses in pastoral systems 

Fertilisers are critical inputs in the New Zealand agricultural systems. The use of fertilisers has 

increased over the last 50 years, with phosphorus (P) as the main fertiliser nutrient applied in the 

sheep-beef farms. However, P application to these pastoral systems and its release from catchments 

to streams was associated with water quality issues. In fact, in addition to nitrogen, P is a key 

element that sustains aquatic biomass growth. Therefore, these two elements are a potential source 

of drinking water pollution but also limiting factors of eutrophication inducing alga blooms and dead 

zones in aquatic ecosystems (Conley et al., 2009; McDowell et al., 2020). Phosphorus control alone 

has been proven to abate eutrophication in many studies reviewed by Schindler and Vallentyne, 

(2008).  
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Phosphorus loss can have both anthropogenic and (or) natural causes. Transport processes 

are the link between agroecosystems and catchments estuaries. The combination of the dominant 

transport processes with land management results in critical source-areas in catchments (Gburek et 

al., 2005). These particular and identifiable areas are the most susceptible to P loss (Gburek et al., 

2005). Identification of P losses applies an understanding of the mechanisms of P mobilization and 

an accurate examination of soil physicochemical characteristics, agricultural practices and climatic 

factors. Haygarth and Jarvis, (1999) described two basic mechanisms generally known to be involved 

in P mobilization. (1) Solubilization, which is a chemical process, was defined as all P from analysis 

after a <0.45 µm filtration. This process involves the transfer of P from a solid phase to a soluble 

phase (soil solution) due to chemical non-equilibrium between the two phases. And (2) the physical 

detachment of soil colloids and particles associated with P by the kinetic energy of water. When it 

comes to the soil, the type and acidity are the main criteria determining how P reacts with soil 

minerals. Condron et al., (2005) and Shen et al., (2011) reviewed the physicochemical factors 

influencing P retention and availability. In acidic soils, P retention is dominated by Al and Fe oxides 

and hydroxides; for instance, hematite, gibbsite and goethite (Parfitt 1989). In neutral and 

calcareous soils, P mainly occurs as Ca- and Mg-phosphates precipitates or sorbed to Ca- and Mg-

carbonates (Lindsay and Moreno, 1960). Although the soil chemical properties determine P 

availability, the hydrological processes are still decisive in P transport and fate (McDowell 2012). 

Rainfall intensity and frequency influence the amount and concentration of P lost through the runoff 

or drainage. Rainfall events with high intensity resulted in P losses through the surface runoff and 

the losses were accentuated when the soils became water repellent after a dry period (McDowell 

2012).  

Multiple trials on P losses in pastoral soils indicated that P losses via surface runoff decreased 

exponentially after P-fertiliser application, with the higher losses recorded in the first overland flow 

event following P fertiliser application (McDowell et al., 2003; McDowell et al., 2003; Nash et al., 

2005). These trials show in the early runoff events subsequent to fertiliser application are mainly 

influenced by fertilisers' solubility and application rate. However, P losses concentration in surface 

runoff is independent of the fertilisers' solubility or application rate after this period (after three 

important runoff events) (McDowell et al., 2003). Nash et al., (2019) theorised that P exports from 

the topsoil are controlled by transfers of P precipitates from fertiliser granules after fertilisers 

application. This form of P mobilisation, which is a direct export of the P source itself, has been 

considered incidental (Gburek et al., 2005; Preedy et al., 2001). Therefore, the application rate and 

fertiliser solubility are the most important factors during this period. The subsequent period P losses 

are related to soil P status (McDowell and Catto 2005). These background losses were considered 
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non-incidental. McDowell and Condron (2004) reported that P losses in simulated runoff are highly 

correlated with soil P extractability by water and suggested the use of H2O extractable P to assess 

non-incidental P concentrations in runoff. However, estimation and modelling of P loads in surface 

runoff require an understanding of the relationship between P concentrations and runoff volumes. 

Nash et al., (2019) reported that TP concentrations in individual runoff events were unrelated to 

runoff volumes in field conditions. Lucidly, it is difficult to comprehend the relationship between 

runoff magnitude and P concentrations in surface runoff without dealing with incidental and non-

incidental P separately. The effect of severe hydrophobicity on non-incidental P losses in surface 

runoff is unknown in post-summer runoff events, in field conditions. In the present thesis, surface 

water runoff and P concentration in runoff were quantified in a field trial including wettable and 

hydrophobic soils in post-summer runoff events. This trial had the objective to understand the 

implication of SWR in P losses in both incidental and non-incidental P losses in pastoral soils. 

1.9 Remediation of SWR 

A range of remediation strategies has been used to reclaim repellent soils. Müller and Deurer, 

(2011) review 12 key direct and indirect remediation strategies. Direct strategies including clay 

spreading, surfactants, cultivation and aeration aim to eliminate SWR causes. While indirect 

strategies that include liming, fungicides and slow-release fertilisers aim to alleviate the symptoms 

and the environmental impact of water repellency. The authors highlighted that it is not easy to 

remedy SWR using easily measurable and site-specific soil and vegetation properties and attributed 

this to the poor understanding of SWR evolution in the field. Amongst the different remediation 

methods, clay spreading has been largely used against SWR. This strategy has significantly enhanced 

the wettability of repellent sandy soils in Australia (Cann 2003). However, clay spreading may be 

very costly if clay is not available close to the application site. Organic amendments can increase 

significantly the repellency of agricultural soils. Provided that the organic compost will potentially 

become the main inputs of future farming systems, innovative and cost-effective methods are 

needed to decrease their effect on soils wettability. In an attempt to reduce the hydrophobicity of 

an organic amendment, thermal treatment was adopted by Comino et al., (2017) who effectively 

treated olive mill pomace waste by heating it to 275 °C. Heat has been also used to reduce SWR and 

increase water infiltration rate in soil aquifer treatment (Nadav et al., 2013). This method seems to 

be practical as it does not need a chemical surfactant or any other agent to control the water 

repellency of the organic amendment.  
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Surfactant application is a common practice in agriculture and golf courses since the 1960s. 

When dissolved in water, surfactants decrease surface tension. The decrease in surface tension of 

water results in lowering its contact angle with soil and thus enhancing soil wettability. Surfactants 

are well known for the remediation of water repellency in turfgrass sandy soils (Kostka, 2000; 

Oostindie et al., 2008). Different field trials showed that surfactants application considerably 

decreased the critical moisture content and water repellency in the surface layer (Dekker et al., 

2003), restored turfgrass quality in severely water repellent golf greens (Aamlid et al., 2009), and 

improved the homogeneity on the wetting and enhancing grass performance (Cisar et al., 2000). 

Dekker et al., 2019 theorised that the increase in turfgrass quality is related not only to the 

improvement in wetting distribution but also to the effect on nitrogen availability. However, the 

study they conducted to test this hypothesis showed no significant differences in NO3, NH4, and total 

soluble nitrogen, between control and surfactant treatments. Testing the efficacy of these products 

is limited due to the unpredictability of SWR occurrence. Leinauer et al., (2007) tested 10 different 

commercial wetting agents and reported that SWR was significantly decreased by these products, 

particularly at the surface (2.5cm depth). In a study on the use of surfactants to improve irrigation 

efficiency in golf putting greens in the southeast US, (Karnok and Tucker, 2008) reported that 

wetting agents enhanced the uniformity of water infiltration and thus decreasing the need for 

irrigation. Implementing a suitable remediation strategy at larger scales requires the assessment and 

mapping of water repellency for site-specific remediation. The remote sensing methodologies 

explored in this thesis would provide a unique advantage in mapping and remediating soil water 

repellency at larger scales. 

 

 

 

 

1.10 Hypothesis and objectives  
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Hypothesis:  Soil properties that are highly correlated with soil hydrophobicity and have high effect on soil surface reflectance can be used 

assess soil water repellency in permanent pastors. 

Specific objective 1: To assess the factors controlling the 

actual and the potential soil water repellency and evaluate 

the effect of SWR on surface runoff and phosphorus 

losses. 

Specific objective 2: To assess the capabilities of multispectral, hyperspectral, 

and surface biomass and moisture temporal dynamics for soil water repellency 

and soil carbon assessment in permanent pastures. 

Chapter 2: The 

relationship between 

SWR persistence and 

soil moisture in 

hydrophobic soils.  

Chapter 3: Surface 

runoff and losses of 

phosphorus from 

hydrophobic pastoral 

soils. 

Chapter 4: Time 

series of remote 

sensing and water 

deficit to predict the 

occurrence of SWR. 

repellency. 

Chapter 5: The 

potential of 

multispectral satellite 

data to predict SWR and 

soil C in pastures. 

Chapter 6: 

hyperspectral 

satellite data to 

assess SWR and 

soil C in pastures. 

General objective: Investigate the factors controlling the soil water repellency in pastoral systems and assess its levels using multispectral, 

hyperspectral, surface biomass, and water deficit temporal dynamics in permanent pastors.  

Chapter 7: Summary. 

Figure 1-5 Hypothesis, general and specific objectives and the organisation of the thesis chapters. 
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Chapter 2                                                                                                        

The relationship between soil moisture and soil water repellency 

persistence in hydrophobic soils 

This chapter has been published in a special issue: Soil water repellency, Water Journal.  

Water 2020, 12(9), 2322; https://doi.org/10.3390/w12092322 

2.1 Abstract  

In this work, we modelled the response of soil water repellency (SWR) persistence to the 

decrease in moisture in drying soils, and we explored the implication of soil particle size distribution 

and specific surface area on the SWR severity and persistence. A new equation for the relationship 

between SWR persistence and soil moisture (θ) is described in this chapter. The persistence of SWR 

was measured on ten different hydrophobic soils using water drop penetration time (WDPT) at 

decreasing levels of gravimetric water content. The actual repellency persistence showed a 

sigmoidal response to soil moisture decrease, where Ra(θ) = Rp 1 + eδ(θ−θc)⁄ . The suggested 

equation enables one to model the actual SWR persistence (Ra) using θ, the potential repellency 

(Rp) and two characteristic parameters related to the shape of the response curve. The two 

parameters are the critical soil moisture θc, where the Ra increase rate reaches its maximum, and 

the parameter δ affecting the steepness of the curve at the inflexion point of the sigmoidal curve. 

Data shows that both soil carbon and texture are controlling the potential SWR in New Zealand 

pastures. 

2.2 Introduction 

Soil water repellency refers to the inability of soils to absorb water. This phenomenon has 

been identified in different soils and climate combinations (Dekker et al., 2005). Theoretically, the 

origin of water repellency is due to hydrophobic materials coating the soil particles (Bisdom et al., 

1993). Doerr and Thomas (2000) theorised that after the amphiphilic molecules have been separated 

from the mineral particles during the wetting of the soil (making the soil particles wettable), these 

molecules remain intact. When the soil moisture becomes low enough during the drying process, 

their polar groups re-associate and interact through the hydrogen bonds, forcing the molecules back 

into position with the polar heads attached to the mineral surface and the non-polar tails orientated 

https://doi.org/10.3390/w12092322
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outwards resulting in the reestablishment of hydrophobicity (Dekker and Ritsema 1994; Doerr et al., 

2000; Doerr and Thomas 2000; Kaiser et al., 2015; Kawamoto et al., 2007; Tschapek 1984). 

Therefore, soils express water repellency when moisture drops below a critical water content. This 

issue has serious implications in decreasing water infiltration (Leighton‐Boyce et al., 2007), inducing 

surface runoff, nutrient losses through runoff (Jeyakumar et al., 2014) and causing preferential flow 

(Jonge et al., 2009). 

Soil water repellency can be characterised by two different criteria. Its severity or degree, 

which is an estimate of the soil surface tension, indicates the initial strength of the repellency 

between water and soil surface. The persistence is a measure of how long it takes to break down the 

repellent property after prolonged contact with water to make the soil wettable again. The severity 

of SWR can be estimated using the molarity of ethanol drop (MED) (Letey et al., 1962), contact angle 

(CA) (Carrillo et al., 1999) or, sessile drop methods (Bachmann, Ellies, and Hartge 2003; Chau et al., 

2010). The persistence of soil water repellency (SWR) can be estimated using water drop 

penetration time (WDPT). The water drop penetration time approach involves placing a water drop 

on the soil surface and recording the time it takes to penetrate (Letey et al., 2003). As water 

infiltrates the soil surface when the contact angle is less than 90°, WDPT measures the time taken by 

the contact angle to change from values > 90° to 90° (Letey et al., 2003) or 0° if a complete drop 

penetration is considered (Letey et al., 1962). 

The actual SWR level is tightly related to soil moisture. Soil water repellency as a function of 

θ, which is usually referred to as the SWR characteristic curve and has been investigated in different 

studies (Chau et al., 2014; Hermansen et al., 2019b; Wijewardana et al., 2016). However, most of the 

previous work has focused on SWR severity and moisture relationship (Chau et al., 2014; Hermansen 

et al., 2019b; Karunarathna et al., 2010), and less effort has been made on SWR persistence 

dynamics. The characteristic curves of SWR (MED or CA) as a function of soil moisture (θ) have been 

studied in reclaimed and agricultural soil (Chau et al., 2014), pastures (Hermansen et al., 2019b) and, 

forest ecosystems (Karunarathna et al., 2010). In a study of the relationship between the SWR 

severity and water content in natural, reclaimed and agricultural soils, Chau et al., (2014) revealed 

that SWR severity showed different patterns in drying soils. Some soils showed a rapid decrease in 

the contact angle when θ increased; this indicated less severity, regardless of the initial repellency. 

Other soils showed a slow decrease in contact angle at higher water contents, which indicated high 

severity and the need for more water or surfactants for remediation (Chau et al., 2014). The SWR 

severity characteristic curves are typically a unimodal curve where the contact angle increases with 

decreasing θ, reaches a peak and then decreases again (Kawamoto et al., 2007). Other studies 
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showed bimodal response curves, sigmoidal or irregular patterns (Chau et al., 2014; Hermansen et 

al., 2019b). 

The SWR severity is a measure of the initial strength of the soil hydrophobicity and does not 

describe how soil behaves in prolonged contact with water. Thus, SWR measured with MED or CA, 

for example, does not permit the perception of how SWR influences natural hydrological processes. 

The parameters controlling the SWR persistence response to drying are to date, still poorly 

understood. The only study implicating modelling the persistence of SWR in drying soils was 

conducted on artificially hydrophobised soils (Li et al., 2016). Data from this study showed a typical 

sigmoidal curve of WDPT (θ) for sand and unimodal curves for finer textures. Artificially induced 

hydrophobicity has been used in many studies to understand the impact of water repellency on 

hydrological processes at the theoretical level. However, the stable characteristics of the artificial 

hydrophobic chemicals used for this purpose make it difficult to compare results with naturally 

hydrophobic soils. Natural SWR represents unique features because it results from a combination of 

natural hydrophobic materials of different sources (Franco et al., 2003). Modelling the SWR 

persistence characteristic curves is urgently needed for naturally hydrophobic soils. This will help to 

understand and quantify the impact of SWR on runoff and nutrients losses to waterways in 

agroecosystems. 

Characterisation of actual SWR and water content relationship was assessed in field 

conditions (Müller et al., 2014; Ritsema and Dekker 1994), by adding water or drying soils in 

laboratory conditions (Hermansen et al., 2019b; Kawamoto et al., 2007; King 1981). Using air or 

oven-dry (65 °C) soils gives an estimate of the potential SWR, which is the highest level that SWR can 

reach when the soil dries out completely (Deurer et al., 2011; Ritsema and Dekker 1994). Estimation 

of the potential SWR provides insight into the potential consequences of soil hydrophobicity in an 

eventual drought situation. However, only in-situ measurement at field moist conditions gives the 

actual SWR level (Müller et al., 2014). Adding water would simulate the soil wetting phase but does 

not give information about SWR dynamics during the drying phase (Li et al., 2016). On a drying soil 

surface, the hydraulic potential is constantly changing, and hydrophobic compounds would not have 

the same behaviour toward soil minerals, as if they remained at constant water content for 48 h. 

Thus, understanding the SWR–moisture natural dynamics needs the closest possible scenario to field 

dry conditions. Moreover, the drying temperature has a significant effect on the reestablishment of 

SWR in sands (Dekker et al., 1998). The micromorphological investigation by Dekker et al., (1998) 

showed that high drying temperatures caused an increase in the formation of organic materials 

coatings responsible for SWR. Hence, soil drying at 105 °C used in some studies can give an incorrect 

estimate of SWR. Air drying was suggested as a laboratory approach to study the SWR–moisture 



34 

 

relationship in different studies (Doerr and Thomas 2000). Still, the effect of drying temperature on 

SWR reestablishment for different soil textures, is not fully understood. 

Throughout the literature, there have been substantial advances in understanding the soil 

properties affecting the potential SWR. There is a strong indication of organic compounds' 

implication on controlling the potential SWR (Regalado and Ritter 2006; Wijewardana et al., 2016). 

However, a large body of research shows the implication of soil texture as another important factor 

controlling SWR levels. Although SWR can occur in a wide range of soil textures (Deurer et al., 2011; 

Mcghie and Posner 1980; Wallis et al., 1991), sandy soils are more susceptible to coating by 

hydrophobic materials because of their low surface area (SA) (Wallis and Horne 1992). In a study of 

fire-induced SWR, DeBano et al., (1970) reported that the thickness of the hydrophobic layer 

increased with the decrease in clay content resulting in significantly higher water repellency in sands 

compared to heavy textured soils. Soil specific surface area (SA) would be a key factor controlling 

SWR occurrence in the pastoral systems in New Zealand. Yet, a complete assessment of the SA 

influence on water repellency needs data that include a wide range of SWR, soil C and SA. 

Hermansen et al.’s (2019) survey on the South Island of New Zealand included a wide range of soil C. 

Still when it comes to texture, this survey included mainly silt, silt loam and sandy loam (no clay and 

only one sandy textured soil) (Hermansen et al., 2019b). Thus, it is difficult to draw a solid conclusion 

on the impact of soil texture and SA on the potential SWR. This chapter aims to: 

i) Model actual SWR persistence as a function of θ and the potential SWR in drying hydrophobic 

soils; 

ii) Examine the implication of soil particle size distribution and SA in controlling the potential SWR 

through a combination of published datasets from New Zealand case studies. 

2.3 Theory 

Different models were suggested by Li et al., (2016) for SWR characteristic curves for 

artificially hydrophobised soil (e.g., Gaussian and Lorentzian models). However, measurements of 

SWR persistence showed a consistent sigmoidal response to the decreasing θ in naturally 

hydrophobic soil. A suitable form of equations that perfectly simulate the response of SWR 

persistence Ra to soil moisture θ (g g−1) is the following reversed sigmoidal equation: 

Ra(θ) =
Rp

1 + eδ(θ−θc)
 (2-1) 

where Rp is the potential persistence of SWR (Rp = Log WDPT(s) of dry soils) and the parameters θc 

and δ are curve characteristics that need to be determined for each soil type through fitting 
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experimental data to the model. Factors controlling Rp, including soil C, texture and pH, will be 

discussed in section 4.2. The first and second derivatives of Equation (2-1) are 

Ra
′(θ) =

−δRpeδ(θ−θc)

[1 + eδ(θ−θc)]2
 (2-2) 

Ra
′′(θ) =

δ2Rpeδ(θ−θc)[e2δ(θ−θc) − 1]

[1 + eδ(θ−θc)]4
 (2-3) 

For θ = θc, Rareaches its half potential, the first derivative Ra
′ is in its minimum and the 

second derivative Ra
′′ is equal to 0 (inflexion point): 

Ra(θc) =
Rp

2
 (2-4) 

Ra
′(θc) =

−δRp

4
 (2-5) 

Ra
′′(θc) = 0 (2-6) 

The higher the factor δ, the lower the curve slope value at the inflexion point. Thus, this 

parameter describes how SWR persistence changes with the drying rate. The higher δ, the faster the 

transition from the wettable to the water repellent state when drying soils. Parameter θc is moisture 

at the inflexion point that corresponds to half of the potential persistence. Dekker and Ritsema 

(1994) introduced the critical water content as the value above which the soil is wettable, and below 

is water repellent. However, the repellency at this moisture level is easily reversible and not 

necessarily critical. Here, we introduce a new definition of the critical water content θc that 

corresponds to the highest increase in SWR persistence in drying soils, and it is significantly difficult 

to rewet hydrophobic soils past this point. Determination of θc is essential for the prediction of soil 

moisture effect on the surface runoff during rain events after dry periods. 

2.4 Materials and Methods 

In the present study, soil properties analysis was carried out as the following: SWR persistence 

and severity was measured on nine soil samples from nine pastoral sites representing four soil 

orders: Recent (Entisols, Inceptisols), Brown (Inceptisols), Pallic (Alfisols) and Pumice (Andisols) (New 

Zealand Soil Classification (Hewitt 2010) and Soil Taxonomy equivalent (Schoeneberger et al., 2012). 

Water repellency persistence vs. water content was measured on ten hydrophobic soils representing 

four soil orders and a wide range of textures (Table 1). The actual persistence of SWR (Ra) was 

measured using the WDPT method. The soil samples were brought to saturation and gradually air-

dried at room temperature (20 to 22 °C). Five replicates of WDPT measurements were carried out 
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using 40 µL drops of deionised water that were placed on the soil smoothed surface, and the full 

drop penetration time was recorded in seconds (s) (Doerr 1998). Measurement of WDPT was carried 

out at different levels (around 10% reduction each step) of gravimetric soil moisture (g g−1). When 

moisture reached a stable minimum, air drying samples were dried at 105 °C for dry soil weight 

estimation. The estimation of the SWR degree was done by the MED method. Ethanol 

concentrations of 0, 3, 5, 8.5, 13, 24 and 36% by volume were prepared, and five droplets of 40 µL 

were placed on the smoothed soil sample surface. The molarity of the ethanol test was represented 

by the ethanol concentration of the droplet that entered the soil surface in 5 s. 

To assess the effect soil particle size, SA and C content on the severity and the persistence Rp, 

we aggregated the published soil data from three recent New Zealand Studies (Hermansen et al., 

2019b; Müller et al., 2014; Simpson et al., 2019). Eight soils and their respective particle size 

distribution data were sampled by Whitley (2018) from eight dryland pasture sites, including three 

from the North Island and five from the South Island of New Zealand. We measured the persistence 

and the degree of SWR on these soils.  

Observed values of the actual SWR persistence (Log WDPT) and water content were used to 

find the two parameters of the curve that best fit the experimental data and have the lowest RMSE: 

RMSE = √
1

n
∑(Rai

− Roi
)2

n

i=1

 (2-7) 

Roi
 are the observed values of SWR persistence and Rai

 are the fitted values using Equation (1). The 

specific surface area of sand and silt fractions as, were estimated based on particles size distribution 

using the following equation by Hillel (2013): 

as =
6

ρs
∑ (

fi

di
) (2-8) 

where fi is the mass fraction of particles with a diameter di and ρs is the respective particle density 

(2.65 g cm−3 for sand and silt and 2.67 g cm−3 for clay were used). For clay fraction, surface area 

ac was estimated using Equation (2-9) (Hillel 2013): 

ac =
2fc

ρsl
 (2-9) 

where fc is the mass fraction of clay particles, l is the thickness of clay platelets assumed to have an 

average of 4. 10−9 m. Total soil specific area SA is then estimated as the sum: 

SA = as + ac (2-10) 
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2.5 Results and Discussions 

2.5.1 The Actual SWR (𝑹𝒂) as Function Soil Moisture 

The potential WDPT of air-dry soils varied between 38 and 8460 s (Rp from 1.57 to 4.2) 

(Table 2-1). This means that water repellency classes varied from strong to severe according to the 

classification suggested by Doerr (1998). Total carbon ranged between 3.6 and 12.9 % (Table 2-1). 

Water repellency persistence (WDPT) increased significantly with decreasing soil moisture. All the 

studied samples representing different soil orders, textures and potential SWR represented a 

sigmoidal response to the decrease in soil moisture where WDPT attends a maximum for air-dry 

soils. This typical sigmoidal response of WDPT to moisture decrease was observed in dunes sand 

(Dekker et al., 2001), SWR in New Zealand hydrophobic soils determined by sessile drop method 

(Wijewardana et al., 2016), hydrophobic peat (Michel 2009), post-fire hydrophobic soils (Stoof et al., 

2011) and Portuguese sandy loam and loamy sand in a forest ecosystem study (Doerr and Thomas 

2000). However, the present result is different from the data reported by Li et al., (2016), who 

established SWR persistence curves for artificially hydrophobised soils using octadecylamine 

(C18H39N). Data from this study showed that the SWR persistence curve represented typical sigmoid 

shape for sand samples while it presented unimodal curves for loam, clay loam and silt loam 

samples. Results from studies using artificially hydrophobised soils cannot be generalised as a 

universal model for hydrophobic soil. Natural SWR is caused by a complex combination of organic 

materials (e.g., plants fragments, roots) (Bisdom et al., 1993) and hydrophobic compounds (Franco 

et al., 2003). Organic materials are a principal component in high C soils. For these reasons, natural 

SWR is difficult to simulate by adding one hydrophobic compound to the soil. Efforts have been 

made to understand the reestablishment of SWR. This theory fits well with our experimental data 

showing a sigmoidal increase in SWR persistence in drying soils. The present data fit well with the 

conceptual model of SWR development (Doerr et al., 2000). From the sigmoidal curves in the 

present study, three phases can be observed (Figure 2-1, a-f). (i) The wettable phase where the 

hydrophobic compounds are detached from the soil minerals (suspended in water). (ii) The 

transition phase, which corresponds to the exposure of the mineral surfaces to the attachment of 

the hydrophobic compounds (from the first SWR appearance to the inflexion point). In this phase, 

the increase in SWR persistence is exponential. (iii) The saturation phase extends from the inflexion 

point to a stable maximum. This final phase represents the coating of soil minerals that is limited by 

the saturation of the available surface area and the amount of the hydrophobic compounds. 
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Table 2-1 Potential soil water repellency (SWR), C content and texture of different soil 

samples and the fitted model parameters with their respective RMSE. Water drop 

penetration time (WDPT) was measured on individual samples using five water drops at 

five to six decrements. 

Sample NZ Classification 
WDPT 

s 

Texture 

 

C 

% 

𝐑𝐩  

Log s 

𝛉𝐜   

g g -1 
𝜹 
 

RMSE 

Log s 

1 
Pallic Orthic 

Brown 
3900 

Clay 

loam 
12.89 3.68 0.35 18.69 0.18 

2 
Typic Orthic 

Pumice 
3660 Sand 4.93 3.56 0.13 49.06 0.01 

3 
Typic Immature 

Pallic 
168 

Loamy 

Silt 
3.6 2.23 0.13 57.28 0.00 

4 
Typic Orthic 

Pumice 
8460 Sand 4.6 4.2 0.19 14.93 0.24 

5 
Mottled Argillic 

Pallic 
782 Silt loam 8.65 2.78 0.26 33.46 0.11 

6 
Pallic Orthic 

Brown 
604 Silt loam 6.69 2.78 0.17 48.84 0.13 

7 
Mottled Argillic 

Pallic 
286 

Light silt 

loam 
7.4 2.42 0.29 27.75 0.24 

8 
Pallic Orthic 

Brown 
604 Silt loam 6.69 2.78 0.21 37.32 0.22 

9 
Mottled Argillic 

Pallic 
38 

Light silt 

loam 
4.92 1.57 0.16 33.29 0.14 

10 
Mottled Argillic 

Pallic 
1800 

Light silt 

loam 
5.86 3.25 0.17 34.65 0.03 

After fitting the sigmoidal function (Equation (2-1)) to the experimental data and analysing 

the relationship between the three parameters of the equation, the following patterns have been 

observed. There was no evident relationship between the measured Rp and the critical water 

content θc (Table 2-2). This means that the potential hydrophobicity does not control the level of 

moisture below; drying soils become critically water repellent (peak in the Ra
′(θ)). Nevertheless, 

there was a strong correlation between C and θc with R = 0.91 (R2 = 0.82). We theorize that θc is 

logically controlled by the amount and the type of hydrophobic materials present in the C pool, as 

there are different compounds involved in this process (Franco et al., 2003; Horne and McIntosh 

2003). There was a relatively low determination coefficient (R2 = 0.19) for the linear regression 
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between the Rp and δ coefficient that is involved in the steepness of the slope at the inflexion point. 

The higher Rp is, the lower the coefficient δ is and thus, the smoother the transition between the 

wettable and the repellent phases when drying the soils. The lower Rp is, the higher δ is, and 

therefore, the steeper is the increase in SWR persistence when water content drops near θc. When 

it comes to the relationship between θc and the coefficient δ, there was a moderate linear 

relationship with R2 = 0.45. The lower θc is, the steeper the slope is near the inflexion point (lower δ) 

and vice versa. However, one Orthic Pumice soil diverged from this rule with a relatively low θc and 

δ (Figure 2-1, d). This suggests that SWR persistence develop smoothly when this soil dries out, 

without a sudden transition toward the potential value Rp. An investigation at the nanoscale is 

needed to understand how soil properties, such as texture and soil order, affect the hydrophobic 

compounds’ behaviour toward soil minerals. 

Table 2-2 Coefficient of determination of linear regressions between C (%) and the model 

parameters Rp(Log s), θc (g g−1) and δ. 

 C 𝐑𝐩 𝛉𝐜 𝛅 

C 1 0.06 0.82 0.24 

𝐑𝐩  1 0.04 0.19 

𝛉𝐜   1 0.45 

𝛅    1 

 

The present soils showed significantly different critical soil moisture θc going from 0.13 to 

0.35 g g−1 and different steepness curves at the inflexion point δ, going from 14.9 to 57.3 (Table 2-1). 

Data from (Dekker et al., 2001) showed that the water content below which sand becomes repellent 

changes with soil depth. This suggests different θc levels over the soil profile. The decrease in θc 

would result from decreasing concentrations of hydrophobic materials in the C pool with depth if we 

assume that they occur at the soil surface. Indeed, hydrophobic compounds can result from plant 

leaves and root decomposition (Bisdom et al., 1993; Franco et al., 2003; Mao et al., 2014) that are 

probably the main source of hydrophobicity in New Zealand pastoral systems. The potential SWR 

persistence is controlled by many parameters, including soil C, particle size distribution and the type 

and the amount of the hydrophobic materials in the C pool. In the second part of the results (Section 

4.2.), a detailed analysis of the implication of C and particle size on the distribution in the potential 

SWR is presented. 

From the fitted curves of the studied soils (Table 2-1 and Figure 2-1, a-f), we can 

differentiate three SWR persistence patterns, representing three soils categories. Soils with low θc 
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(0.13 to 0.17 g g−1) and a steep slope at θc (δ from 48.8 to 57.3). These soils are less susceptible to 

persistent SWR in the drying phase compared to soils with higher θc. However, the Ra increase rate 

in these soils is very high when moisture drops near θc. This implies that a persistent water 

repellency can appear suddenly when water content approaches θc in these soils. The second 

category represents a low δ and high θc. These soils express a smooth increase in SWR persistence 

when going from saturated soils to the critical moisture θc. However, the high θc (0.26 to 0.35 g g−1) 

means that these soils are more prone to SWR in the early stages during the dry periods. The third 

pattern was observed in the soils with the relatively higher θc and steepness at the inflexion point. In 

these soils, a persistent repellency would develop promptly in the early stages of a dry period. 

Remediation strategies (e.g., surfactant application) would be necessary for the second and the third 

categories to attenuate the agro-environmental effect of SWR (Müller and Deurer 2011a). 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 2-1 Persistence of soil water repellency (SWR) (Log water drop penetration time 

(WDPT) (Log s)) as a function of water content θ (g g−1) measured during dying soil 

samples and corresponding fitted curve using the Equation (2-1) for the first six soils from 

Table 1: (a) Pallic Orthic Brown, (b) Typic Orthic Pumice, (c) Typic Immature Pallic, (d) 

Typic Orthic Pumice, (e) Mottled Argillic Pallic, (f) Pallic Orthic Brown. 

2.5.2 Soil Properties Controlling the Potential SWR (𝑹𝒑) 

Modelling the actual persistence of SWR (Ra) using the sigmoidal function (Equation (2-1)) 

needs a determination of the potential SWR (Rp). Data from a wide range of soil textures from fine 

(34% clay, 40% silt) to coarse (85% sand) (Table 2-3) showed a strong implication of soil C and soil 

texture in controlling Rp. In this combined dataset, carbon content ranged from 2.49 to 12.89% 

(Table 2-3). Soils showed different levels of SWR persistence ranging from wettable (Log WDPT = 0) 

to severe persistence (Log WDPT = 3.95) and a MED from 0 to 27%. Podzol and Pumice orders 

represented a higher severity (27 and 24%, respectively), while Ultic and Semiarid showed the 

lowest MED values (3 and 1.5%, respectively). There was a significant positive correlation between 

WDPT and MED, the reported persistence of Ultic soil from (Müller et al., 2014) was the highest (Log 

WDPT of 3.95), followed by the Pumice order (Log WDPT of 3.83). Many studies demonstrated that 

high persistence does not necessarily mean high severity of SWR (Chau et al., 2014). 
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Table 2-3 Soil characteristics from our study and other studies including pH, sand, silt, 

clay, C contents, surface area (SA), the molarity of ethanol drop (MED) and Log WDPT. 

Soil 

Order 

(NZ) 

n 

 
pH 

 

Silt  

g g−1 

Sand 

g g−1 

Clay  

g g−1 

SA 

m2g-1  

C 

% 

MED 

% 

Log 

WDPT 

Log s 

Study 

Recent 1 5.3 0.36 0.55 0.09 1.84 2.49 0.00 0.00 
This 

study: 

Sampled 

by 

Whitley 

et al., 

(2018) 

Brown 1 5.2 0.39 0.34 0.28 5.31 12.89 13.00 3.73 

Pumice 1 5.2 0.14 0.86 0.01 0.16 4.93 24.00 3.77 

Pallic 1 5.6 0.32 0.62 0.06 1.17 2.74 0.00 0.00 

Brown 1 5 0.39 0.48 0.13 2.52 6.18 5.00 1.54 

Pallic 1 5.2 0.47 0.5 0.03 0.74 3.6 13.00 2.84 

Brown 1 4.7 0.32 0.51 0.17 3.27 4.91 6.75 1.87 

Pumice 1 5.1 0.14 0.85 0.01 0.18 6.7 24.00 3.89 

Brown 21 5.3 0.58 0.34 0.08 1.66 6.3 7.50 ND* 

Hermanse

n et al., 

(2019) 

Pallic 12 5.5 0.73 0.21 0.06 1.30 3.8 3.00 ND 

Podzol 12 5.4 0.62 0.29 0.09 1.89 9.5 27.00 ND 

Recent 18 5.2 0.67 0.25 0.08 1.66 4.2 9.00 ND 

Semiarid 9 5.6 0.48 0.40 0.13 2.52 4.1 1.50 ND 

Pallic 12 4.5 0.22 0.49 0.27 5.61 11.6 2.00 3.07 Müller et 

al., (2014) Ultic 9 4.9 0.41 0.25 0.34 6.53 8.1 3.00 3.95 

Recent 6 4.5 0.64 0.32 0.04 0.96 9.06 11.50 3.65 Simpson 

et al., 

(2019) 
Brown 6 4.7 0.49 0.49 0.02 0.56 8.69 10.00 3.71 

(*) not measured in the study. 

The persistence of SWR estimated was significantly (R = 0.66; p < 0.05) correlated with soil C 

(Table 4). The simple linear regression between Log WDPT and C had R2 of 0.44 and RMSE of 1.15 

Log s. Using both C and SA in multiple linear regression (MLR) improved the prediction of Log WDPT 

(R2 = 52, RMSE = 1.12 Log s) (Figure 2-2, d). 

𝐿𝑜𝑔 𝑊𝐷𝑃𝑇 = 0.38 𝐶 − 0.029 𝑆𝐴 + 0.60 (2-11) 

This level of correlation is in agreement with previous results from a New Zealand North 

Island survey on SWR, which showed an R of 0.61 (R2 = 0.37) between C and Log WDPT (Deurer et 
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al., 2011). Hermansen et al., (2019) reported a high correlation between SWR severity (measured 

with MED) and organic C with an R = 0.82 (R2 = 0.68) in the South Island of New Zealand survey. 

Unlike the aggregated dataset in the present work, the soil dataset from this survey contains mainly 

coarse- and medium-textured soils (sand, sandy loam, silt loam). Only six soil samples out of 78 soils 

were silty clay and silty clay loam, and only one sand textured sample. Although MED had no 

significant correlation with soil properties (Table 2-4), C content, sand, silt, clay and SA seem to 

affect the MED unobtrusively. The SA was negatively correlated with MED, and C was positively 

correlated with MED (Table 2-4). As clay contributed significantly to the estimated SA (R = 1 and p < 

0.001), there is a strong indication that there is an opposing contribution of SA and C in the 

expression of the severity of SWR. An increase in the amount of the hydrophobic compounds in soil 

C pool enhances the coating of minerals surfaces. However, this process might be restricted by the 

high SA in clays. 

 

Table 2-4 Pearson product moment correlation matrix of pH, silt (g g−1), sand (g g−1), clay 

(g g−1), SA (m2 g−1), C (%), MED (%), Log WDPT (Log s). 

 pH Silt Sand Clay SA C MED Log WDPT 

pH 1 0.2 −0.03 −0.29 −0.29 −0.54 * −0.01 −0.49 

Silt  1 −0.85 *** −0.15 −0.13 −0.06 −0.15 0.01 

Sand   1 −0.4 −0.42 −0.23 0.34 −0.09 

Clay    1 1 *** 0.53 * −0.38 0.13 

SA     1 0.53 * −0.39 0.13 

C      1 0.29 0.66 * 

MED        1 0.65 * 

Log WDPT       1 

p levels: * 0.05, ** 0.01, *** 0.001 Multiple linear regression (MLR) modelling showed that C (p 

= 0.024), sand, silt, clay (p = 0.022 each) similarly contribute at 70% of MED variation with an RMSE 

of 5.4% (Equation (2-9), Figure 2-2 a). In contrast, an MLR model based on C and SA showed that 

they contributed significantly (p = 0.009 and 0.005, respectively) to 48% of MED variation with an 

RMSE of 6.59% (Equation (2-13), Figure 2-2 b, c). 

𝑀𝐸𝐷 = 1.41 𝐶 + 161.61 𝑠𝑎𝑛𝑑 + 161.44 𝑠𝑖𝑙𝑡 + 161.04 𝑐𝑙𝑎𝑦 − 16148.23 (2-12) 

𝑀𝐸𝐷 = 1.89 𝐶 − 0.41 𝑆𝐴 + 4.27 (2-13) 
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Carbon was moderately correlated with clay content and SA (R = 0.53; p = 0.028) (Table 2-4). 

The estimation of SA was not 100 per cent accurate based on a coarse particle size distribution 

alone. In soil with high variability in particle type, using the particle size distribution can 

underestimate SA by one-two orders (Koptsik et al., 2003). Thus, an accurate estimation of MED was 

possible based on C content and improved estimation of SA. 

  

(a) (b) 

  

(c) (d) 
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Figure 2-2 Multiple linear regressions (MLR) for the molarity of ethanol drop (MED) using 

(a) carbon and soil particles size distribution; (b) carbon and surface area (SA); (c) carbon 

and clay (Cy); and (d) the MLR for Log WDPT using C and SA. 

 

2.6 Conclusions 

The suggested equation enables modelling of the actual repellency persistence (Ra) to the 

moisture decrease in drying hydrophobic soils using the potential repellency (Rp) and two shape 

parameters θc and δ. The curve shape parameters give valuable information on how SWR 

persistence behaves in the drying period. In the studied hydrophobic soils, three main patterns were 

observed in the response curves  Ra(θ). (i) The first pattern is associated with soils that have low θc 

and high δ (steep slope at θc). These soils were less prone to express persistent SWR in the early 

stages of the dry period. Nevertheless, SWR persistence increased suddenly when moisture drops 

near θc. (ii) The second pattern represents soils with low δ and high θc (0.26 to 0.35 g g−1), which 

meant prompt development of SWR in the early stages of dry periods, although there was a smooth 

increase in SWR persistence. (iii) The third pattern showed a relatively higher θc and steepness at 

the inflexion point δ. This implies that a persistent repellency would appear suddenly in the early 

stages of the summer period. A nanoscale investigation of soil properties controlling the SWR 

persistence dynamics in drying soil is needed to understand better these patterns and how they 

would affect plant growth and hydrological processes. 

When it comes to soil properties controlling the potential water repellency Rp, carbon and 

soil texture showed strong implications in this regard. The present data from pastoral soils showed 

that C has a significant influence on the potential severity of SWR and the critical soil moisture in 

hydrophobic soils. Both the specific surface area and soil C contribute to controlling the potential 

SWR degree in the studied soils. The present model and results will serve for a better understanding 

of SWR behaviour in drying hydrophobic soils and its hydrological implications. 
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Chapter 3                                                                                              

Surface runoff and losses of phosphorus from hydrophobic pastoral 

soils 

3.1 Abstract 

The impact of soil water repellency (SWR) on soil phosphorus (P) mobility in surface water 

runoff remains contentious. Although SWR may cause a significant increase in surface runoff, 

especially in post-summer rainfall events, whether it contributes to background phosphorus losses 

remains unclear. Surface runoff and phosphorus concentrations in runoff were measured on hilly 

Allophanic pastoral soils with different water repellency levels using seven runoff collectors. 

Phosphorus fertiliser was broadcasted at 18 kg P ha-1 in the summer over dry soils. Runoff volumes 

and P concentrations were measured after each rain event prompting surface runoff. The highest 

runoff/rainfall ratios were observed at the early rainfall events following the dry summer and then 

decreased significantly by the end of autumn and winter. The post-summer surface runoff 

correlation with SWR had an R2 of 0.46, and hydrophobic soils had significantly higher runoff ratios 

than wettable soils. Measurements of the dissolved reactive phosphorus (DRP) and total phosphorus 

(TP) in the surface runoff showed decreasing exponential trends with the highest values recorded at 

the first runoff event following P fertiliser application, where over 90% of losses occurred (incidental 

losses). After the incidental loss phase, DRP concentrations were related to surface runoff ratio, soil 

P extractability by water, and SWR. Our data point to non-incidental TP loads being related to SWR 

(R2=0.53). The present results will improve the understanding of the SWR effect on surface runoff 

and will reconcile the controversy regarding its contribution to non-incidental P losses. 
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3.2 Introduction  

Soil water repellency (SWR) is an intrinsic physicochemical property controlling water 

infiltration in hydrophobic soils. This phenomenon has been reported in different soils and climate 

conditions (Mao et al., 2019). It is caused by the hydrophobic organic compounds that coat the soil 

mineral particles and reduce the soil wettability. In the agroecosystems, this issue has severe 

consequences for runoff (Jeyakumar et al., 2014), plant growth (Osborn et al., 1967) and nutrient 

losses (Müller et al., 2018). Different studies reported the significant effect of SWR on runoff in fire-

induced SWR situations (Ferreira et al., 2016; Granged et al., 2011; Imeson et al., 1992; Larsen et al., 

2009), forest (Miyata et al., 2007), and pastoral ecosystems (Müller et al., 2018; Wallis et al., 1991). 

Water repellency increased runoff three times in eucalyptus forest soil study (Burch, Moore, and 

Burns 1989) and 16 times in fire-induced hydrophobicity in a forest study (Leighton‐Boyce et al., 

2007). Lemmnitz et al., (2008) studied the temporal dynamics of surface runoff in wettable and 

hydrophobic sand and reported that seasonal variations in the actual water repellency caused an 

increase of runoff coefficient in the summer and autumn. In a pastoral case study, a run-on 

simulation on a water repellent Andosol, Müller et al., (2018) showed that 88 % of the run-on water 

was collected as surface runoff, while no runoff was observed when using an aqueous ethanol 

solution to separate the effect of soil hydrophobicity from other hydrological processes (e.g. slaking). 

However, the authors used a 1h simulated run-on equivalent to 60mm/h rainfall intensity. Such a 

storm event has an annual recurrence interval longer than 100 years for the soil sampling site. 

Studying this issue under field conditions would give better insight into the interactions between 

SWR and surface runoff.  

Phosphorus (P) fertilisers application in pastoral systems and their release from catchments 

to streams has been associated with water quality issues (Condron et al., 2005; Sharpley et al., 

2001). In fact, in addition to nitrogen, P is a crucial element that sustains aquatic biomass growth. 

Therefore, these two elements are potential sources of drinking water pollution but limiting factors 

of eutrophication inducing alga blooms and dead zones in marine ecosystems (Conley et al., 2009). 

Phosphorus control alone has been proven to decrease eutrophication in many studies reviewed by 

Schindler and Vallentyne (2008).  

Identification of P losses applies the understanding of P mobilization mechanisms and the 

accurate examination of soil physicochemical characteristics, agricultural practices, and climatic 

factors. Haygarth and Jarvis, (1999) described two basic mechanisms generally known to be involved 

in P mobilization. (1) Solubilization, which is a chemical process, defined as all P in water after a 
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<0.45 µm filtration. This process involves the transfer of P from a solid phase to a soluble phase due 

to non-chemical equilibrium between the two phases. And (2) the physical detachment of soil 

colloids and particles associated with P by the kinetic energy of water (i.e. surface runoff). Soil type 

and acidity are the main criteria determining how P reacts with soil minerals. Condron et al., (2005) 

reviewed the physicochemical factors influencing P retention and availability. Although the soil 

chemical properties determine P availability, the hydrological processes are still critical in P transport 

and fate (McDowell 2012; Haygarth et al., 2005). Phosphorus can be transported from soils to 

waterways through different pathways. Infiltration-excess surface runoff, which is highly affected by 

SWR, is a crucial conduit of P exports. Rainfall events with high intensity resulted in higher P losses 

through the surface runoff (McDowell 2012). Water repellency impact on surface runoff volumes 

(Müller et al., 2018), could contribute drastically to increasing P loads. However, there has been no 

evidence from field data to support this hypothesis. An increase in runoff volumes effect on P 

dilution would be difficult to understand in field conditions. Field data is needed to reconcile the 

understanding of the SWR effect on P loads in surface runoff.  

Different trials on P losses in pastures showed that P losses via surface runoff decreased 

exponentially after P-fertiliser application, starting from the first overland flow event (McDowell et 

al., 2003; McDowell et al., 2003; Nash et al., 2005). These trials show that P losses are the highest in 

the early runoff events following fertiliser application and are mainly controlled by the fertilisers' 

application rate and solubility. However, P concentrations in surface runoff is unrelated to the 

fertilisers' solubility or application rate after this period (around three months or three important 

runoff events) (McDowell et al., 2003). Nash et al., (2019) theorised that P exports from the soil 

surface are dominated by exports of P precipitates from fertiliser granules following fertilisers 

application. This form of P movement, which is a direct mobilization of the P source itself, has been 

labelled incidental (Gburek et al., 2005; Preedy et al., 2001). Thus, the application rate and fertiliser 

solubility are the main controlling factors during this period. After this period, P losses are not 

related to fertiliser application rate and solubility, but soil P status (McDowell and Catto 2005). 

These background losses were labelled non-incidental. McDowell and Condron (2004) reported that 

P losses in simulated runoff are perfectly correlated with P extractability by water and suggested 

that H2O extractable P can be used to estimate non-incidental P losses in runoff simulation. 

However, estimation and modelling P loads in surface runoff require an understanding of the 

relationship between P concentration and runoff volumes. Nash et al., (2019) reported that TP 

concentrations in individual runoff events were unrelated to runoff volumes in field conditions. 

Obviously, it is difficult to understand the relationship between P concentrations in runoff and runoff 

magnitude without dealing with incidental and non-incidental P separately. Also, the effect of severe 
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hydrophobicity on P losses in surface runoff is unknown in post-summer runoff. This study was 

initiated as a first test of the hypothesis that soil water repellency increases surface runoff volumes 

and non-incidental phosphorus losses in post-summer rainfall events. Thus, the present work aimed 

to: 

i) Characterise the temporal dynamics of SWR effect on runoff magnitude in post-

summer rainfall events.  

ii) Understand the relationship between surface runoff, P concentrations in surface 

runoff, and SWR.  

3.3 Material and Methods 

3.3.1 Study area  

This research was conducted over moderate to steep hill country pasture in Maraetotara, 

Hawke's Bay region, North Island of New Zealand (39°50'52.72" S, 176°53'02.91" E). The farm 

includes sheep, beef, and deer production. The area has a mean annual total precipitation of around 

1400 mm (2015-2020) (data from Hawke's Bay regional council weather station near the site), 

mainly falling in winter and spring. The farm's main plant species are perennial ryegrass, white 

clover, red clover, fescue, brown top, and crested dog's tail. The soil type is Allophanic, derived from 

the weathering of North Island volcanic ashes. The summer of 2019 was extremely dry as there was 

no rainfall over the site during January and February. The runoff collectors were installed on dry soil 

at the end of February. Superphosphate fertiliser was applied on dry soils after runoff collector 

installation over the whole farm at 200 kg ha-1 (18 kg P h-1) using a spreader truck. 

3.3.2 Runoff collectors  

The runoff collectors design has been adapted from Gillinghm & Gray (2006). Surface runoff 

was collected by 1.5 m lengths of commercially available plastic roof gutters. The collection area is a 

1.5 x 5 m rectangle with plot length down-slope. The collection area was constrained by a rigid 

plastic wall driven in the soil surface at around 5 cm of the soil surface at the upper and the lateral 

sides. At the down-slope boundary, the gutter length was set in a trench, and runoff water was 

conveyed to the gutter by mean of tin length embedded 3 cm below the surface into the upslope 

wall of the trench. Soil above the tin sheet and the gutter edge was sealed by a silicon glue spray to 

prevent any associated movement of soil into the gutter. An expanding sealing foam was used to 

seal the upper and the lateral sides of the collector. The gutter was slightly inclined to one end 

where a vinyl tube was connected to transfer the collected water to a 20-litter bucket installed at a 
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level lower than the gutter. A total of seven runoff collectors were installed in areas with different 

levels of soil water repellency. Three manual plastic rain gauges were placed in each runoff collector 

to record rainfall. Rainfall data measured with these gauges were equal to data from the weather 

station installed by the Hawke's Bay regional council nearby the site. After each rainfall event, runoff 

volumes were measured (bucket emptied), samples from runoff were taken and frozen in the lab for 

further P analysis. The surface runoff coefficient was determined as the ratio between surface runoff 

and rainfall for each runoff event.  

3.3.3 Soil analysis  

Ten samples were collected for each runoff collector using a 7.5 cm depth corer from just 

outside and around the collection area to avoid soil deterioration inside the collector and maintain 

the hydrologic properties of the actual runoff plot. Soils were sampled in February (end of summer) 

and May (end of autumn). Samples were sealed, transferred to the lab, oven-dried for 24 h at 65 °C, 

and stored for further analysis. On each sample, the water drop penetration test (WDPT) was carried 

out by placing three water droplets of 40μL on the soil smoothed surface placed in an aluminium tin 

and measuring the time (s) they took to penetrate the surface (Doerr, 1998). The test's results were 

used to classify the soils' hydrophobicity status (Bisdom et al., 1993). The median value for the WDPT 

was used to classify the persistence of SWR into five classes including wettable (<5 s), slightly 

hydrophobic (5-60 s), strongly hydrophobic (60-600 s), severely hydrophobic (600-3600 s) and 

extremely hydrophobic (>3600 s). Soils were also tested for pH, Olsen P (Olsen 1954), sulphate sulfur 

using 0.02M potassium phosphate extraction followed by ion chromatography, and total extractable 

sulfur using inductively coupled plasma - optical emission spectrometry (ICP-OES).  

Runoff samples were transported to the lab and frozen till the day of analysis. For analysis, 

unfrozen samples were filtered (0.45 mm) and analysed for dissolved reactive P (DRP) within 24 h. 

Total P (TP) was estimated by digesting unfiltered samples using the persulfate oxidation method 

(Koroleff 1977). Water extractable-P (H2O-P) was determined using a soil-water ratio of 1:25 and a 

shaking time of 45 min before measuring DRP in the filtrate (<0.45 µm) (modified from McDowell 

and Condron, 2004). Different P extracts were analysed using the Murphy & Riley (1962) method. 

Total C and N were measured using Elementar Vario-Max CN Analyser, Germany. Soil specific surface 

area was measured using the ethylene glycol monomethyl ether (EGME) method (Cihacek and 

Bremner 1979).  
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3.4 Results  

The potential SWR remained stable as there was no significant change in the potential SWR 

from February to May (Table 3-1). Soils in all runoff collectors remained in the same hydrophobicity 

class over the experiment period, except the collector number 4 where the potential SWR decreased 

from the "Severely hydrophobic" to "Strongly hydrophobic" class (Table 3-1). Data from (Müller et 

al., 2014) shows that potential SWR evolution was rather slow over time. Potentially extreme levels 

of SWR from this study persisted almost one year before dropping to a strong level. The soils' water-

extractable P (WEP) varied between 0.04 and 0.29 mg L-1. There were no obvious changes before the 

P application (February) and three months later (May) except for runoff collector number seven 

where WEP doubled after the P application. Carbon which ranged from 4.9 to 8.6 %, can be classified 

as a medium level for New Zealand soils (Webb and Wilson 1995).
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Table 3-1 Measured pH, soil C (%), ethylene glycol monomethyl ether (EGME) surface area (m2/g), Olsen P (mg/L), sulphate sulfur (mg/kg), 

Extractable Organic sulfur (mg/kg), and Water extractable P (mg/L), and log WDPT(s) measurement in February and May 2020. 

Runoff 

collectors  

 

pH C  

(%) 

EGME  

Surface 

 area 

(m2 g-1) 

Olsen P 

(mg L-1) 

Sulphate 

Sulfur  

(mg kg-1) 

Extractable  

Organic  

Sulfur  

(mg kg-1) 

WEP  

(mg L-1) 

Log 

WDPT  

(s) 

WEP  

(mg L-1) 

Log 

WDPT 

(s) 

SWR Class 

       February May  

1 5.8 4.91 18.3 27 12 6 0.28 0.89 0.29 0.82 Wettable 

2 5.8 6.10 25.5 16 20 9 0.09 0.35 0.09 1.61 Wettable 

3 5.4 5.86 43.2 21 14 11 0.04 3.53 0.04 3.78 Extremely hydrophobic 

4 4.8 5.79 69.2 15 15 14 0.05 3.07 0.05 2.35 Severely hydrophobic 

5 5.6 6.68 34.6 13 26 12 0.05 2.08 0.04 2.50 Strongly hydrophobic 

6 5.7 8.64 22.8 41 45 15 0.09 2.18 0.10 2.12 Strongly hydrophobic 

7 5.3 7.39 22.2 18 44 9 0.06 1.76 0.12 2.22 Strongly hydrophobic 
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3.4.1 Moisture and Rainfall data 

A clear difference in water content was observed between wettable and extremely 

hydrophobic soils. The extremely hydrophobic collector's moisture was lower than in the wettable 

soils. This difference in volumetric moisture diminished for the high frequency and intensity rainfall 

periods (mid-May to early and late June 2020) (Fig. 3-1). The increased amount and frequency of 

rainfall tightened the gap between moisture levels of the extremely hydrophobic soil and wettable 

soils (Fig. 3-1). This would be due to the decrease of SWR levels under very wet conditions (Doerr 

and Thomas 2000).  

 

Figure 3-1 Rainfall (mm) from the end of Jan to the end of June 2020 and volumetric 

water content (VWC) (m3 m-3) from recorded for the runoff collector 3 (extremely 

hydrophobic) and collector 2 (wettable). 

3.4.2 Surface runoff and P losses  

The surface runoff ratio was significantly higher in severely hydrophobic collectors than 

strongly hydrophobic, which was higher than the wettable collectors. These differences were more 

important in the period Feb-Mar (Fig. 3-2). Severely hydrophobic soils had runoff ratio between 0.20 

and 0.23, strongly hydrophobic soils between 0.16 and 0.17, while wettable soil had ranged between 

0.01 and 0.07. After this period, the surface runoff ratio gradually decreased for all runoff collector 

until no difference was observed by the end of Jun. After mid-January, all soils showed runoff ratios 

lower than 0.05 (Fig. 3-2). Surface runoff data showed a positive correlation between the potential 

SWR and the runoff coefficient (R2=0.46) (Fig. 3-3).  
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Figure 3-2 Mean surface runoff /rainfall ratio for the three classes of SWR as described 

and classified in table 1, from February to June 2020. 
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Figure 3-3 Mean surface runoff ratios versus Log WDPT (s) for all the runoff collector 

during the period between February and June 2020. 
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Figure 3-4 Mean dissolved reactive P concentrations (mg L-1) in the surface runoff for 

wettable, strongly, and severely hydrophobic classes during the period between 

February and June 2020. 

Estimating the amount and the concentrations of DRP mobilised via surface runoff showed 

an exponential decrease from the first rain event to the experiment's end. The DRP and TP loads in 

the first event counted for more than 90 % of the losses in the Feb-Jun period (Fig. 3-4, 3-5, 3-6). 

Total P loads were between 0.2 and 10.4 kg ha-1 and DRP loads were between 0.1 and 3.7 kg ha-1, 

depending on the runoff plots (Fig. 3-6). The DRP loads of the first runoff event counted for between 

36 and 73% of the total P loads (Fig. 3-6).  

During the March-June period dominated by non-incidental P losses, a strong relationship 

between DRP concentrations and runoff coefficient have been observed in the different water 

repellency levels (Fig. 3-7). The R2 of the regression between runoff coefficient and DRP 

concentrations were equal to 0.79 and 0.48 for strong and severely hydrophobic soils, respectively. 

For wettable soils, the runoff coefficient was less than 0.021 during this whole period, except for 12th 

May, where the runoff coefficient exceeded 0.075. Although wettable soils were dominated by 



58 

 

drainage, the high correlation between DRP and runoff coefficient can still be observed (R2=0.58) if 

we exclude the high runoff point of 12th May. The correlation between SWR and TP loads increased 

progressively when receding from the first runoff events toward the winter period (Fig. 3-8). The 

determination coefficient of regression between TP loads and SWR (R2=0.53) was significantly higher 

in the non-incidental losses period (June 2020) compared to the incidental losses period (Feb 2020) 

where R2 was equal to 0.01 (Fig. 3-8). 
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Figure 3-5 Mean total P concentration (mg L-1) per runoff event for the wettable, strongly 

hydrophobic, and severely hydrophobic classes. 
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Figure 3-6 Total loads of dissolved reactive P (DRP) and total P in surface runoff (kg/ha) in 

the seven runoff collectors during the post-summer rain events (Feb-Jun 2020). Hatched 

areas represent the first runoff event after the dry period and P fertiliser application. 

 

Figure 3.7 Relationship between dissolved reactive P concentration in runoff and runoff 

ratio for the period March-June. The trendline of wettable plots excludes the date with a 

0.075 runoff ratio (12th May 2020). 
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Figure 3.8 Scatter plots of Log WDPT(s) and total P loads (kg ha-1), in the first runoff 

event, Feb-Jun, Mar-Jun, mid-May-June, late May-June, and June 2020 periods.  

3.5 Discussions  

As expected, the surface runoff was higher in hydrophobic soils compared to wettable soils, 

especially in the early runoff event following the dry period (Feb-Mar). The decrease in the actual 

water repellency during the wet period (Mar-Jun) attenuated the differences in surface runoff ratio 

between the hydrophobic and wettable soils. Gillingham and Gray (2006) reported that surface 

runoff was highest from summer to autumn and inversely related to soil moisture in dryland pasture 

study in Hawke's Bay region. This trend of increasing surface runoff when soil water content 

decreased was consistent in a two-year study with a correlation coefficient R=-0.38 (Gillingham and 
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Gray 2006). In another study, Gillingham and Gray (2000) reported that most surface runoffs 

occurred when surface gravimetric moisture (0-7.5 cm depth) dropped below 10%, while very low 

runoff was collected when moisture was higher. This is highly likely to be associated with the 

increase of SWR when moisture drops below a critical water content (Bayad et al., 2020; Chau et al., 

2014; Dekker and Ritsema 1994). Similarly, Müller et al., (2014) reported a significant negative 

correlation between soil moisture and SWR measured by the WDPT test (R=-0.41).  

Concentrations and loads of TP and DRP mobilised via surface runoff were the highest in the 

first runoff event following the dry period and then decreased exponentially in the subsequent 

events. The DRP and TP loads in the first event represented more than 90 % of the losses of the Feb-

Jun period (Fig. 3-4, 3-5, 3-6). These results were comparable to results from McDowell and Catto 

(2005). The exponential decrease of P losses in superphosphate fertilised soil was reported by 

McDowell and Catto (2005), who reported that these losses were dictated by fertiliser solubility. 

However, the proportion of DRP in the subsequent events decreased, and the relationship between 

DRP and the solubility of fertiliser became insignificant. This indicated the P mobilization's 

diminishing effect from fertiliser granules as it was lost in the first runoff event or adsorbed to the 

soils (McDowell et al., 2003). The DRP and TP concentrations and loads were unrelated to SWR, 

Olsen P, or WEP in the first runoff event. The effect of SWR repellency could not be evaluated in this 

incidental phase as fertilisers were applied by the farmer using a broadcasting truck over the whole 

farm. Although the application rate was set to 18 kg P ha-1, a uniform fertiliser application could not 

be guaranteed.  

Phosphorus losses in the March-June period were more likely background losses originated 

from soils but not from fertiliser granules. During this period, a strong relationship between DRP 

concentrations and runoff coefficient have been observed in the different SWR levels (Fig. 3-7). The 

positive correlation between runoff rations and DRP concentrations in all the water repellency 

categories (R2 between 0.79 and 0.48) suggest the important implication of runoff in all surface 

mixing and mobilisation of dissolved phosphorus. In addition to the influence of WEP on P losses 

(McDowell and Condron 2004), we assume that non-incidental DRP and TP loads after each rain 

events are also influenced by SWR as the latest has a direct impact on surface runoff ratio. The 

determination coefficient of regression between TP loads and SWR (R2=0.53) was significantly higher 

in the non-incidental losses period (June 2020) compared to the incidental losses period (Feb 2020) 

(Fig. 3-8). This result represents the first evidence from a field experiment indicating the implication 

of SWR in increasing non-incidental P loads in surface runoff.  
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Concentrations of DRP seemed to be influenced by both SWR and WEP of the soils. 

However, this relationship's slope could be affected by the WEP levels as there is a positive 

correlation between DRP and WEP. Still, DRP concentration in the wettable soils did not exceed 1.40 

ml L-1. McDowell and Condron (2004) reported that DRP concentrations in simulated surface runoff 

are positively correlated with the WEP. However, Nash et al., (2019) reported that TP concentrations 

in individual runoff events are unrelated to runoff volumes. Nash and Murdoch (1997) reported that 

in many cases, within-storm TP concentrations were inversely proportional to the overland flow rate 

at the time, due to dilution. The surface runoff ratio gives more insight into the dissolution and 

mobilisation of soil phosphorus on the surface in the mixing surface layer compared to runoff 

volume which is the output of the runoff process. A higher runoff ratio suggests a higher mixing, 

dissolution, and mobilization of phosphorus on the surface. Nevertheless, soil water repellency 

would decrease mixing and dissolution below the wetting front, and thus reducing phosphorus 

losses from subsurface layers. Hence, we suggest the use of runoff coefficient instead of runoff 

volume to adequately model DRP concentrations in surface runoff (Fig. 3-7). Nash et al., (2019) 

demonstrated that overland flow dominated hydrology are associated with a high risk of P losses 

into waterways and concluded that fertilisers selection is essential in these circumstances. Sparingly 

soluble P fertiliser would significantly decrease P losses in hydrophobic soils. In an evaluation of two 

management options in a two-year study to reduce P losses in surface runoff from dairy farms, 

McDowell (2010) reported that a reactive phosphate rock decreased TP load and DRP concentrations 

in the runoff by 30 and 58 %, respectively, compared to superphosphate. Data from McDowell et al., 

2020 showed that up to 0.5 kg ha-1 of DRP was lost in the 21 first days following application in soils 

with strong repellency that received 40 kg P ha-1. In our study, the incidental DRP losses ranged 

between 1.7 and 3.7 kg in the same water repellency soil class and where only 18 kg P ha-1 was 

applied (Fig. 3-6). Water repellency was more decisive in the transport of P from the mixing layer (0-

3cm) than the water P extractability from the soils. 

 The DRP losses in the first runoff event are more influenced by P availability (fertiliser 

application) than P extractability from the soil (McDowell et al., 2007). Phosphorus is directly 

exported from the fertiliser granules' precipitation zone in the first event following fertilisers 

application. Then, P mobilization is more dominated by export from the adsorption zone as fertilisers 

dissolve in the soil.  

3.6 Conclusions  

The potential SWR had a clear impact on the surface runoff over the rainfall ratio. The 

surface runoff generated in the summer-autumn period were significantly higher in hydrophobic 



64 

 

soils compared to wettable soils. There was an exponential decrease of DRP and TP concentrations 

in surface runoff starting from the first runoff event from the dry summer to winter. In the first 

runoff event following fertiliser application (incidental losses), phosphorus losses were unrelated to 

SWR or WEP but more likely to the amount of P applied in each plot. The P loads in this event 

accounted for more than 90 % of the summer-autumn period. While P loads were mainly dominated 

by incidental losses that are directly related to the amount and the solubility of the P fertilisers 

applied, the background P losses were strongly controlled by hydrological processes, especially SWR. 

A strong relationship has been observed between runoff coefficients and DRP concentrations in the 

surface runoff after the incidental losses period. Besides, non-incidental total P loads in surface 

runoff seem to be related to SWR. Based on these results, DRP concentrations can be modelled from 

the surface runoff coefficients, which in turn can be modelled from SWR and soil moisture dynamics. 

More field data is needed to consolidate these finding and allow modelling P losses in hydrophobic 

pastoral soils. 
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Chapter 4                                                                                                     

The potential of multispectral satellite data to predict soil water 

repellency and soil carbon in temperate pastures 

4.1 Abstract 

Soil water repellency (SWR) is a critical soil property with several implications upon 

ecosystems functions, including physicochemical and hydrological processes. The occurrence of SWR 

is governed by the cycling of hydrophobic materials, which are intrinsic constituents of the soil 

carbon (C) pool. This study aims to explore the capability of multispectral satellite data from 

Sentinel-2 and Landsat-7 satellites to predict the level of SWR and topsoil C in pastures. Surface 

reflectance time series data of permanent pastures were filtered using the normalised difference 

vegetation index (NDVI) to select dates with the least aboveground biomass and acquire topsoil 

spectra. The potential persistence of SWR was measured using water drop penetration time (WDPT) 

and the molarity of ethanol droplet (MED) test was used to measure SWR severity. Partial least 

square regression (PLSR) models were calibrated and validated using topsoil measurements of SWR 

from 35 and 41 sites matched with topsoil spectra from Sentinel-2 and Landsat-7, respectively. Root 

mean square error (RMSE), coefficient of determination (R2), and the ratio of performance to 

deviation (RPD) were calculated for predictions using leave-one-out cross-validation (v) and for 

predictions from the calibration set (c). Prediction performance for Log (WDPT) and MED compared 

was lower than that for soil C. The best prediction for SWR was achieved using Sentinel-2 spectra 

(R2
v=0.45; RMSEv=0.98 for Log WDPT) and (R2

v=0.23; RMSEv=4.95 for MED). Accuracy was improved 

using the calibration set for predicting Log WDPT (R2
c=0.64; RMSEc=0.77 with Sentinel-2 spectra), 

which indicated larger datasets might improve predictions. Soil C showed better predictability with 

Landsat-7 spectra (R2
v=0.50; RMSEv=2.58; R2

c=0.70; RMSEc=1.92) providing a useful model and 

offering an improvement to the current soil C assessment and mapping in pastoral ecosystems. This 

will help to quantify the magnitude of soil C to underpin the pastoral soils inventories. 

4.2 Introduction 

Soil water repellency (SWR) is a natural phenomenon that refers to the delay of soil wetting 

when water is applied. This transient property is driven by soil moisture and occurs when potentially 

water-repellent soils dry out below critical soil moisture (Dekker & Ritsema, 1994; Chau et al., 2014), 
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that is soil and site-specific. With the increasing risks of droughts (Clark et al., 2011), soil moisture 

may drop below the critical soil moisture more often and thus hindering soil rewetting after 

precipitation events or irrigation application. Detrimental consequences of SWR include increased 

surface runoff (Müller et al., 2018) and nutrient losses (Jeyakumar et al., 2014), and decreased soil 

water storage (Kobayashi & Shimizu, 2007). This dynamic property can be assessed by two different 

criteria, i) its degree or severity, which is a measure of the initial soil surface tension: and ii) its 

persistence, which is an estimate of the time taken to break down the repellent character of a soil 

surface in contact with water. The degree of SWR can be estimated by measuring the contact angle 

(Carrillo et al., 1999), the molarity of ethanol drop (MED) (Letey, 1969), or sessile drop methods 

(Chau et al., 2010). The persistence of SWR can be assessed using the water drop penetration time 

(WDPT) method (Letey et al., 2003). The actual level of SWR persistence as a function of soil 

moisture can be modelled, for example, using a reversed sigmoidal function that takes into account 

the potential SWR, the critical soil moisture and a curve shape parameter (Chapter 2). Some 

previous research in pastoral systems has shown a strong relationship between potential SWR and 

soil carbon (C). For example, Deurer et al., (2011) and Hermansen et al., (2019) reported significant 

correlations between SWR and soil C for two soil surveys of New Zealand pastures. Nevertheless, soil 

texture has an important influence on the occurrence of SWR (Bayad et al., 2020a; Capriel et al., 

1995; McKissock et al., 2003).  

Conventional methods of SWR measurement are time-consuming and require point scale 

measurements. Thus, mapping SWR at the farm or regional scale is limited. Remote sensing could 

provide an effective method for mapping SWR at different scales. Visible, near-infrared (Vis-NIR), 

and shortwave-infrared (SWIR) hyperspectral remote sensing have opened new opportunities for 

assessing topsoil properties and producing digital soil maps. Several studies demonstrated that 

hyperspectral remote sensing can be used to estimate many soil attributes. Examples include soil C 

(Castaldi et al., 2016; Cécile Gomez et al., 2008; Leone & Escadafal, 2001) soil texture (Casa et al., 

2013; Galvão et al., 2008), pH and EC (Ben-Dor et al., 2002). Empirical models were developed to 

estimate soil properties that are related to chemical chromophores affecting surface reflectance at 

specific bands (e.g. OH groups in clays) (Ben-Dor et al., 1999) or properties that are consistently 

correlated with them (soil C and nitrogen). Therefore, correlations of SWR with soil C (Hermansen et 

al., 2019a) and specific organic materials (Bisdom et al., 1993) could be exploited to predict SWR 

from surface reflectance signatures. However, no research has investigated the potential of remote 

sensing surface reflectance data for SWR estimation. Previous attempts used laboratory VNIR/SWIR 

spectroscopy for estimating the potential SWR (Kim, I. et al., 2014) and predicting the relationship 

between SWR and soil moisture (Hermansen et al., 2019b; Knadel et al., 2016). However, modelling 
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SWR using satellite data provides a unique advantage to map soil properties at larger scales, i.e., 

from farm to regional scale. Bayad et al., 2020b suggested a remote sensing approach using surface 

biomass (estimated using NDVI) and the temporal dynamics of topsoil water deficits for predicting 

the occurrence of SWR in pastoral ecosystems. Still, evaluating soil surface reflectance data from 

satellites for predicting SWR and soil C has not been attempted in permanent pasture systems. 

Although hyperspectral remote sensing provides a valuable tool to estimate soil properties, the 

limited availability of hyperspectral data has restricted its use. Until 2018, Hyperion was the only 

hyperspectral sensor operational (Folkman et al., 2001). The recently implemented hyperspectral 

sensor PRISMA (Loizzo et al., 2018) provides a spectral resolution of 10 nm, a spatial resolution of 30 

m for VNIR/SWIR bands, 10 m for panchromatic bands, a swath width of 30 km and a revisit time of 

7 days. Compared with hyperspectral sensors, multispectral sensors like Landsat-7 have a low 

spectral resolution. Still, Landsat-7 offers the most important multispectral global archive (Kovalskyy 

& Roy, 2013). The newly deployed Sentinel-2 satellites by the European Space Agency (ESA) offer 

multispectral images with high revisit time (2-3 days) that include 13 bands (VNIR/SWIR) and have a 

spatial resolution between 10 and 60 m (depending on the bands). However, very few studies 

achieved good accuracy in predicting topsoil physical and chemical properties using multispectral 

satellite data. Using Sentinel-2 multispectral data, Vaudour et al., (2019) acquired a useful model 

with an intermediate prediction accuracy for soil C (R2
v=0.56; RMSEv=1.23), pH (R2

v=0.51; 

RMSEv=0.51), and CEC (R2
v=0.75; RMSEv=1.23) in a temperate region. In terms of comparison 

between hyperspectral and multispectral remote sensing, Castaldi et al., (2019) showed that there 

was no substantial difference between the spatial variability of soil C maps derived by Sentinel-2 

data and the ones derived by hyperspectral airborne data for a study area dominated by cropping. 

Similarly, Gomez et al., (2018) reported that there was no significant difference between Sentinel-2 

and hyperspectral (airborne and satellite) data in predicting clay content for a semiarid 

Mediterranean region.  

The prediction accuracy of remote sensing approaches depends on the quality of the remote 

sensing data, modelling approach, and the ground-truthing conducted. Remote sensing using 

satellite data presents many challenges including the atmospheric interaction with reflected 

electromagnetic radiation, surface roughness and the nature of the land cover. Ben-Dor, (2002) gives 

a detailed review of the challenges and the problems influencing quantitative remote sensing of soil 

properties. Assessing the topsoil properties of pastures is even more challenging because of the 

additional complexity through the temporal dynamics of the crop canopy and soil moisture. 

Aboveground biomass in permanent pastures complicates acquiring bare soil surface reflectance. 

Thus, finding a reliable procedure to deal with this issue is needed. In the present study, topsoil 
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spectra were acquired by filtering time series data from Landsat-7 and Sentinel-2 to select dates 

with the least surface biomass. Surface biomass and per cent ground cover are highly correlated 

with NDVI (Prabhakara et al., 2015). The use of the NDVI threshold to select bare soil areas have 

been used in several remote sensing studies to estimate topsoil properties. An NDVI threshold could 

help to select dates with a near bare soil condition from time-series satellite data of a given 

permanent pasture. When it comes to soil moisture effect on surface reflectance, an increase in 

water content decreases surface reflectance over the whole VIS-NIR and SWIR spectrum and 

particularly in 1200, 1400, and 1800 nm wavelengths (Lesaignoux et al., 2013; Lobell & Asner, 2002). 

Hence, the soil moisture effect could be minimised by considering the higher reflectance spectra 

from time-series data as dry topsoil spectra. 

 Soil C was assessed with respectable accuracies (R2
v=0.56; RMSEv=1.23) (Vaudour et al., 

2019) using surface reflectance multispectral data from Sentinel-2 and low accuracies using S-1/2 

and digital elevation model (DEM) derivatives (R2
v=0.44; RMSEv=0.57) (Zhou et al., 2020). Organic 

matter is a key chromophore across the entire VNIR/SWIR spectral region (Ben-Dor et al., 1999). We 

assume that relationships between SWR and soil C could be used to indirectly predict SWR using 

multispectral satellite data. 

This research aims to: 

i) Retrieve topsoil multispectral surface reflectance from Sentinel-2 and Landsat-7 time series 

data in permanent pastures; 

ii) Investigate the potential of satellite multispectral data in predicting the SWR degree (MED) 

and persistence (WDPT) and soil C in pastoral soils. 

4.3 Materials and methods 

4.3.1 Soil sampling and analysis  

The present study includes datasets of SWR in pastoral soils from three different surveys. i) 

The SWR survey conducted in the North Island of New Zealand by Deurer et al., (2011) in 2009; ii) a 

soil survey from several New Zealand dryland pastures by Whitley et al., (2018) conducted in 2014; 

and iii) soil samples collected in the Hawke’s Bay region in 2019 (Bayad et al., 2020b). The North 

Island survey (Deurer et al., 2011) examined the influence of drought proneness and soil order on 

the occurrence of SWR in New Zealand pastures. Sampling in this survey was guided by soil drought-

proneness and soil characteristics. The detailed sampling approach and site selection criteria are 

thoroughly explained in the survey paper by Deurer et al., (2011). The Whitley et al., (2018) survey 

comprised nine pastoral sites (6 in the South Island and 3 in the North Island). The Hawke’s Bay 
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region sampling in 2019, covered 25 dryland pastoral sites. Combining these soil datasets yielded a 

varied range of textures from clay to sand. The sampling sites cover a wide selection of soil orders 

that include Podzol (Spodosols), Allophanic (Andisols), Gley (Aquic groups), Pallic (Inceptisols, 

Alfisols), Organic (Histosols), Recent (Entisols, Inceptisols), Pumice (Andisols, Vitric), Brown 

(Inceptisols, Alfisols), Granular (Ultisols), and Ultic (Ultisols) soils (New Zealand soil classification and 

their taxonomy equivalent (Hewitt, 2010)). Five topsoils (7.5 cm) samples were collected in a star-

shaped pattern, 25 m apart in the 2009 survey. Samples were collected at 7.5 cm depth in a cross-

shaped pattern and 2 m apart in the 2019 survey. In 2014, soils were collected along 50 m transects 

at 15 cm depth (Whitley et al., 2020). Soils were sieved at 2 mm and oven-dried at 65 degrees C for 

the analysis of potential SWR. The WDPT test was carried out by placing three water droplets of 40 

µl (50 µl in the 2009 survey) onto a smoothed surface of the soil samples and recording the total 

infiltration time in seconds (s) (Doerr, 1998). For SWR severity measurements, ethanol 

concentrations of 0, 3, 5, 8.5, 13, 24, and 36% by volume were prepared, and five droplets of 40 µL 

were placed on the smoothed soil sample surface. The MED was represented by the ethanol 

molarity of the droplet that penetrated the soil surface in 5 s (10 s was used in the 2009 survey). The 

median of the measurements was used instead of the mean since it represents better the tendency 

in skewed data such as WDPT. Total C was measured using an Elementar Vario-Max CN Analyser, 

Germany.  

4.3.2 Remote sensing data and modelling  

Multispectral data were acquired from Landsat-7 and Sentinel-2. Landsat-7 surface 

reflectance data are provided by the United States Geological Survey (USGS) agency. This dataset is 

an atmospherically corrected surface reflectance from the Enhanced Thematic Mapper Plus (ETM+) 

sensor aboard Landsat-7. Atmospheric correction of the raw data was carried out by the USGS using 

the C Function of Mask (CFMask) algorithm (Foga et al., 2017). The Multi-Spectral Instrument (MSI) 

aboard the Sentinel-2 satellite provides 13 spectral bands covering VIS-NIR and SWIR region. Surface 

reflectance data is provided by the Copernicus program, ESA. Atmospheric correction on this dataset 

was done by the Sen2cor algorithm (Main-Knorn et al., 2017).  

Surface reflectance time series from 1999 to 2020 for Landsat-7 and from 2017 to 2020 for 

Sentinel-2 were filtered for cloud cover (Fig. 4-1. a, b). Cloud-free dates with an atmospheric opacity 

of less than 10% were used. An NDVI threshold was used to separate dates with bare soil (Gomez et 

al., 2018). A value of 0.30 was used after considering the lab spectra of 78 soil samples. This 

threshold was used to identify dates with the bare soil surface and extract reflectance spectra 

samples (Fig. 4-1. c, d). Surface NDVI was calculated for the whole dataset using the bands B3 and B4 
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from Landsat-7 (630-690nm and 770-900nm, respectively) and B4, B8 from Sentinel-2 (650-680nm 

and 785-899nm, respectively).  

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-1 Histogram of the number of images per site from a) Sentinel-2, b) Landsat-7; 

and cloud-free samples of bare soil spectra per site from c) Sentinel-2, and d) Landsat-7. 

A sample of cloud-free, low atmospheric opacity, and NDVI <0.3 was needed for a pixel 

to be counted. 

Dates with higher reflectance were selected as reflectance samples spectra of dry soils 

(Lobell & Asner, 2002; Weidong et al., 2002) and were used to build multispectral data inputs. For 

this purpose, two configurations were tested: i) Upper spectra, which had the higher average surface 

reflectance of MSI and ETM+ bands and, ii) maximum spectra that were reconstituted from the 
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maximum reflectance on each band. An example of a Sentinel-2 time series spectra from a Raw Soil 

site in Hastings is presented in Figure 4-2. In this example, a cloud-free, low atmospheric opacity, 

and a 0.3 NDVI threshold were applied. The Upper spectra, in this case, correspond to the 15th Feb 

2020 and is equal to the maximum spectra.  

 

Figure 4-2 Cloud-free surface reflectance samples after application of bare soil threshold 

for a Raw Soil site located in Hastings, Hawke’s Bay, New Zealand. 

Separately from the satellite spectra, a set of 78 soil samples were used to get lab spectra 

using a proximal multispectral sensor. These soils were sampled in 2018 and 2019 from Hastings, 

and Te Pohu, Hawke’s Bay region, New Zealand. The lab spectra were measured using the 

multispectral sensor Altum, Micasence, USA. For this purpose, the smoothed soil samples were 

placed near a white reference panel and were evenly illuminated by a halogen lamp. The Altum 

sensor was positioned at 50 cm height above the sample. The soil reflectance was estimated by 

multiplying the relative radiance (to the reference panel) with the panel’s reflectance. The sensor’s 

spectral bands include blue, green, red, red-edge, and near-IR (475, 560, 668, 717, and 842 nm, 

respectively). The comparison between MSI, ETM+, and Altum multispectral bands used in this study 

are presented in Figure 4-3. 
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Figure 4-3 Multispectral channels and band-passes different sensors used in the study 

and atmospheric transmission % (grey background). ETM+ of Landsat-7 (excluding 

thermal band B6); MSI of Sentinel-2 (excluding B1, B9, and B10); and Altum Micasense 

sensor (Modified from the source: NASA/Landsat Legacy Project Team and American 

Society for Photogrammetry and Remote Sensing by adding Altum bands). 

The combined soil database contained between 2.49 and 40.5 % C. A peat soil site with soil C 

equal to 40.5 % was excluded from the ground-truthing data as peat covers merely 0.7 % of New 

Zealand’s land area, with 50 % located in Waikato (Davoren et al., 1978). 

Partial least squared regression (PLSR) models were built from the soil spectral and the soil 

measured data. The PLSR models were developed using all the data (calibration), and using leave-

one-out cross-validation (validation). 

4.3.3 Measured SWR and soil C matched with soil spectra 

After filtering remote sensing data to retrieve soil surface spectra, 41 sites were matched 

with Sentinel-2 spectra and 34 sites were matched with Landsat-7 spectra. The number of lab 

spectra was equal to the number of soil samples used in the laboratory (78 samples). Descriptive 

statistics of the measured soil properties used for calibration and validation of the PLSR model with 

remote sensing data are presented in Table 4-1. In the three datasets, SWR persistence ranged from 

wettable to extremely hydrophobic (Table 4-1). The mean Log (WDPT), MED and soil C were within 

the same range for the three datasets matched with Sentinel-2, Landsat-7, and lab spectra.   
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Table 4-1 Summary statistics of the dataset used for model calibration with Sentinel-2, 

Landsat-7, and Laboratory spectra. 

  
Log (WDPT) 

(s) 

MED 

(%)  

C 

(%) 

Sentinel-2     

n=41 Mean 1.63 4.07 6.58 
 

Max 4.00 24.00 20.20 
 

Min 0.00 0.00 2.49 
 

Std. Deviation 1.30 5.58 3.41 

Landsat-7 
    

n=34 Mean 1.52 4.26 6.81 
 

Max 3.79 13.00 19.62 
 

Min 0.00 0.00 2.49 
 

Std. Deviation 1.26 4.51 3.62 

Lab Spectra     

n=78 Mean 1.49 ND  6.57 

 Max 3.89 ND 12.89 

 Min 0.00 ND 2.49 

 Std. Deviation 1.07 ND 2.45 

(ND) not measured.  
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Partial least square regression (PLSR) method as implemented by (Mevik & Wehrens, 2015) 

was used to model soil properties based on multispectral and measured SWR and soil C data. The 

PLSR method provides a robust alternative to multiple linear regression and principal component 

analysis (Geladi & Kowalski, 1986). The method is one of the most used approaches for multi and 

hyperspectral data (Viscarra Rossel et al., 2006). It handles better multicollinearities and minimises 

the effect of data noise. The models’ performances were assessed using the root mean squared 

error (RMSE), the coefficient of determination (R2) and the ratio of performance to deviation (RPD). 

4.4 Results  

4.4.1 Measured soil properties 

The soil orders Recent, Organic and Pumice had the highest medians of Log (WDPT), while 

Brown, Organic, and Recent had the highest medians of MED (Fig. 4-4). However, Log (WDPT) values 

for Pumice and Recent soil orders were more spread around the medians compared to those of the 

Organic soil order. Raw, Brown, Pallic, Allophanic, and Granular soil orders showed the lowest 

persistence of SWR. In comparison to SWR data, soil C data were less spread around the median (Fig. 

4-4). The positive correlation between soil C and both Log (WDPT) and MED had an R2 of 0.22. These 

findings were different to Hermansen et al., (2019a) who found a strong correlation between SWR 

degree and soil C. However, (Doerr et al., 2006) found no obvious relationship between SWR 

persistence and soil C in a study covering multiple land-uses in a humid temperate region.  

In the soil dataset used for the laboratory spectra analysis, the Pumice and Allophanic had 

the higher Log (WDPT) and soil C, while Raw and Pallic soil orders showed the lowest Log (WDPT) 

and soil C. The correlation between soil C and Log (WDPT) in this dataset has an R2 of 0.28.  
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Figure 4-4 Box plots of laboratory analysed soil C (%), water drop penetration time Log 

(WDPT) (s), and MED (%) (n=41). Points are the outliers, centre lines are median, box 

limits are lower and upper quartiles; whiskers are 1.5x the interquartile. 

4.4.2 Models performance  

Performance of models using Sentinel-2, Landsat-7 and lab spectra-derived models are 

summarised in Table 4-2. The PLSR models performance (R2 and RMSE) dropped when cross-

validation was performed instead of fitting using the calibration set. Generally, the SWR predictions 

were less accurate than the prediction of soil C. However, the predictions of Log (WDPT) were more 

accurate than those of MED. The Sentinel-2 derived model performed best for Log (WDPT) 
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predictions based on the calibration data set (RMSEc=0.77 and R2
v=0.64) and predictions with cross-

validation (RMSEv=0.98; R2
v=0.44) (Fig. 4-6. a). The Landsat-7 derived model showed the best 

prediction performance for soil C for both the calibration (RMSEc=1.92; R2
c=0.71) and the validation 

data sets (RMSEv=2.58; R2
v=0.50) (Fig. 4-6. b). The lab spectra derived model showed the best 

prediction with cross-validation for soil C (RMSEv=1.62; R2
v=0.52) (Fig. 4-6. c) and the lowest error for 

log (WDPT) (RMSEv=0.86; R2=0.35) (Table 4-2 and Fig. 4-6.d). Models built using satellite 

multispectral data showed comparable performance to models developed using lab multispectral 

reflectance. The PLSR calibration and cross-validation prediction accuracies can be classified in three 

levels as described by Vaudour et al., 2019: i) models with intermediate to high predictability (R2>0.5 

and RPD>1.4); ii) models with poor predictability (R2 of 0.4 – 0.5 and RPD of 1.3); and iii) models with 

poor to very poor predictive potential (R2<0.4; RPD<1.3). 

Landsat-7 and Sentinel-2 derived models exhibited intermediate prediction accuracies for 

soil C and Log (WDPT) using the calibration set. However, prediction capacity dropped to poor or 

very poor for all models (except for soil C with Landsat-7 data), when using leave-one-out cross-

validation. Laboratory spectra derived model’s performance had no significant drop in performance 

between calibration and validation sets. This drop in performance could be caused by the limited 

number of samples in the training set and/or the high variability across the data set (Fig. 4-4). This 

limits the possibility of adequate training of the model with sufficient redundancy in the predicted 

features. However, the prediction capacity of the calibration set indicates that using a larger dataset 

with enough redundancy in the measured features might improve models’ performance. 

The PLS regression coefficients for prediction of the measured soil properties using Sentinel-

2 and Landsat-7 spectra are illustrated in Figure 4-5, a-c. The coefficient’s magnitude represents the 

wavebands contribution in accommodating the measured SWR and soil C data. Thus, the higher the 

coefficient value, the higher the waveband importance in building the predictive model for the 

measured property. The green (560 nm) and red-edge bands (703 and 782 nm) had a higher 

contribution in predicting Log (WDPT) using Sentinel-2 spectra, while the red-edge bands (703-782 

nm) and SWIR (1613 nm) all slightly contributed equally to the prediction of Log (WDPT) (Fig. 4-5. c). 

Red-edge (740 nm) and red (664 nm) bands influenced the prediction of soil C the most (Fig. 4-5. d). 

When using Landsat-7 spectra, the blue, red and SWIR bands (485, 660, and 1650, respectively) were 

the most influential bands in determining water repellency and soil C (Fig. 4-5. a, b).  

4.4.3 Discussions 

The performance of the multispectral data for soil C was comparable to previous studies. Soil 

C prediction model using the Landsat-7 surface reflectance showed an intermediate performance (R2 
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= 0.50, RPD=1.40) (Table 4-2), which is higher than some studies that used Sentinel-2 for soil C 

prediction (e.g. Zhou et al., 2020) (R2=0.44, RPD=1.29) or simulated spectra of different multispectral 

imagers by Castaldi et al., 2016, who found an R2 ≤ 0.20 and RPD ≤ 0.13 using soil C data from 

European Land/Use Cover Area frame Statistical Survey. However, these studies used the top canopy 

reflectance instead of bare soil reflectance. This might affect the prediction of topsoil attributes in 

cases where a large number of the training points are covered by surface biomass when the 

reflectance data is acquired.  

The lower performance of the PLSR models in predicting SWR compared to predicting soil C 

suggests that soil hydrophobicity prediction did not exclusively rely on its spectral chromophore. If 

the considered property was highly correlated with a strongly expressed spectral property, this 

might give an advantage in terms of its prediction capability. Soil organic C has a known spectral 

sensitivity over the whole VNIR-SWIR spectral interval (Ben-Dor et al., 2009). As expected for soil C, 

loading values were found to have noticeable peaks in the B1, B3, and B5 bands of Landsat-7 

corresponding to 470 nm, 660 nm, and 1650 nm, respectively, and B4, B5, and B11 from Sentinel-2 

(665 nm, 705 nm, and 1610 nm, respectively) (Fig. 4-5). Similar patterns were observed by Vaudour 

et al., 2019 who predicted the soil C model based on Sentinel-2 data.  

In our study, the correlation between soil C and SWR persistence (Log (WDPT)) in the 

combined datasets had an R2 of 0.22. In contrary to the present combined datasets, data from 

Hermansen et al., 2019a showed a high correlation between soil C and SWR. This could be due to the 

uniform sampling and a measurement methodology (e.g. same sampling depth and period). 

Although soil C was not strongly correlated with SWR persistence, it might contribute to the 

prediction of SWR. Hydrophobic compounds constitute a very small part of the whole soil C pool 

(Franco et al., 2003), and hydrophobic compounds derived from different sources will not 

necessarily dramatically change the reflectance signature of the soil. Still, the occurrence of SWR 

would be partly influenced by soil order (Fig. 4-4) and soil texture (Bayad et al., 2020a). Clay content, 

which has intermediate predictability because of the spectral behaviour of OH groups (e.g. R2
v=0.71; 

RPD=1.9, in Gomez et al., 2018), could have impacted the predictability of SWR persistence to some 

extent. Surface reflectance data quality could also have affected the results: aboveground biomass, 

including dead leaves, could have an important influence on surface reflectance, although the low 

NDVI threshold was applied. 
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Table 4-2 Partial least squares regression (PLSR) statistics of prediction from calibration and leave-one-out cross-validation of multispectral 

data for soil C, the molarity of ethanol droplet test (MED), and water drop penetration time test (Log(WDPT)). 

Configuration  Calibration  Validation  
  

RMSE R2 NF RPD RMSE R2 NF RPD 

Sentinel-2 (n=41) 
   

     
 

Max spectra Log (WDPT) (s) 0.77 0.64 10 1.68 0.98 0.44 7 1.32 
 

MED (%) 4.28 0.39 10 1.30 5.14 0.17 3 1.08 
 

C (%) 2.20 0.57 10 1.55 3.32 0.07 10 1.02 

Upper spectra  Log (WDPT) (s) 0.89 0.52 10 1.46 1.16 0.21 8 1.12 

 MED (%) 3.91 0.49 10 1.42 4.95 0.23 4 1.12 

 C (%) 2.28 0.54 10 1.49 3.33 0.06 8 1.02 

Landsat-7 (n=34) 
   

     
 

Max spectra Log (WDPT) (s) 0.92 0.48 6 1.36 1.15 0.23 5 1.09 
 

MED (%) 3.81 0.28 6 1.18 4.61 0.00 5 0.97 
 

C (%) 2.11 0.62 6 1.71 2.86 0.35 6 1.26 

Upper spectra Log (WDPT) (s) 0.94 0.43 6 1.34 1.10 0.25 3 1.14 

 MED (%) 3.73 0.29 6 1.20 4.44 0.05 3 1.01 

 C (%) 1.92 0.71 6 1.88 2.58 0.50 6 1.40 

Lab Spectra           

 Log (WDPT) (s) 0.77 0.47 5 1.38 0.86 0.36 5 1.24 

 C (%) 1.45 0.64 5 1.68 1.62 0.52 2 1.51 
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Figure 4-5 Loading plots for Log (WDPT) and soil C for (a) and (b) using ETM+ bands B1 to 

B7; (c) and (d) using MSI bands (B2 to B12). F1 to F4 are the PLSR components. 
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(a) 

 

(b) 
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(c) 
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(d) 

 

Figure 4-6 Predicted vs. measured (a) Log (WDPT) using Sentinel-2 data; (b) Soil C using 

Landsat-7 data; (c) Soil C using lab spectra, and (d) Log (SWR) using lab spectra. The point 

labels represent the soil orders: Raw (W), Pallic (P), Allophanic (L), Gley (G), Brown (B), 

Organic (O), Recent (R), Pumice (M), Ultic (U), Podzols (Z), and Granular (N). 

 

4.5 Conclusions 

This study investigates the potential of using multispectral satellite time series data to predict 

SWR and soil C in pastoral systems. It showed that: i) Sentinel-2 and Landsat-7 time series can be 

used to acquire surface reflectance spectra with low aboveground biomass in permanent pastures, 

and ii) the extracted surface reflectance data can help in predicting SWR and soil C levels in 

permanent pastures. Soil C was predicted with an intermediate accuracy (R2
v=0.50; and RPD=1.4) 

using Landsat-7 data. However, a lower accuracy was achieved for WDPT prediction (R2
v=0.45; 

RPD=1.32 using Sentinel-2). The PLS models trained using multispectral data showed higher accuracy 

for soil C prediction when predicting values from the calibration dataset compared to when using 

cross-validation. This indicates the potential of model improvement with a larger training dataset. 

With the increased availability of multispectral satellite data, the present methodology will help to 

improve the resolution of soil C inventories in permanent pastures. Further research is needed to 

understand the effect of SWR on surface reflectance and exploit the full potential of multispectral 
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satellite data for SWR characterisation. Larger ground truth data could improve the model prediction 

accuracy and provide a valuable tool for SWR mapping that will guide remediation strategies and 

reduce the impact of SWR on environmental services. 
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Chapter 5                                                                                                   

Time series of remote sensing and water deficit to predict the 

occurrence of soil water repellency in New Zealand pastures 

This chapter has been published in the ISPRS Journal of Photogrammetry and Remote Sensing. 

https://doi.org/10.1016/j.isprsjprs.2020.09.024 

5.1 Abstract 

Soil water repellency (SWR) is a natural phenomenon occurring in soils throughout the world, 

which impacts upon ecosystem services at multiple temporal and spatial scales (nano to ecosystem 

scale). In pastures, the development of SWR is primarily determined by the cycling of hydrophobic 

materials at the soil surface and is controlled by climate, management, and soil properties. The 

complex interactions between these factors make it an intricate system to understand and model. 

Detailed spatiotemporal characterisation of the surface moisture and biomass in pastoral ecosystems 

would allow for a better understanding of this phenomenon. Normalised Difference Vegetation Index 

(NDVI) and Synthetic Aperture Radar (SAR) backscatter are good predictors for surface biomass and 

soil moisture, respectively. Machine learning on remote sensing time series (TS) data shows promise 

to predict the occurrence of SWR in pastures. This study evaluates the ability of remote sensing TS to 

predict the occurrence of SWR in New Zealand pastures, using three machine learning algorithms. 

Soil water repellency data were collected from 58 pastoral sites. Machine learning models were 

trained and cross-validated on monthly aggregated remote sensing and water deficit TS data to 

predict SWR level. Prediction output from artificial neural networks (ANN), random forest (RF), and 

support vector machine (SVM) were compared using root mean squared error (RMSE). When using 

NDVI TS data from 58 sites as predictors of SWR, the SVM and RF (RMSE= 0.82 and 0.87, respectively) 

outperformed ANN (RMSE=1.23). Random forest was used to map SWR magnitude over Hawke’s Bay 

region in the North Island of New Zealand, and the overall accuracy was equal to 86%. This study is 

the first investigation implicating remote sensing TS data to predict the occurrence of SWR at the 

regional scale. Mapping the potential SWR will aid in identifying critical zones of SWR, to attenuate 

its effect on pastures through adapted management. 
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5.2 Introduction  

Soil water repellency (SWR) refers to the inability of dry soils to absorb water spontaneously. 

This phenomenon has been identified in multiple soil types and under a variety of climate 

conditions (Dekker et al., 2005; Roper et al., 2015). The origin of SWR is due to hydrophobic 

compounds covering the hydrophilic soil minerals. This issue causes water droplets to ball up on the 

soil surface and prevent them from infiltration (Doerr et al., 2000). In agroecosystems, water 

repellency can occur after the decomposition of plants and the release of hydrophobic compounds or 

because of hydrophobic root exudates. Most grasses have superhydrophobic leaves (Barthlott et al., 

2017). Thus, dead leaves decomposition would be a potential source of SWR in pastures. Drought in 

pastures can significantly contribute to these processes through biomass degradation and the release 

of hydrophobic compounds. Sudden drought may also contribute to this phenomenon through 

changes in roots metabolisms resulting in hydrophobic exudates. Many plant species inherently 

release hydrophobic root exudates (Erickson et al., 2001; Netzly & Butler, 1986; Y. Zhang et al., 

2010). Gargallo-Garriga et al., (2014) reported that drought significantly changed root metabolism of 

two grass species (Holcus lanatus L. and Alopecurus pratensis L.). Data from this study showed that 

drought increased the production of some hydrophobic metabolites (e.g. proline, thymine). 

However, the effect of root exudate under hydric stress on SWR in not fully understood. There are no 

systematic studies on how these exudates impact SWR. Microbial communities such as fungi would 

also have a strong implication in cycling the hydrophobic compounds. 

The decrease in water infiltration has significant repercussions for runoff (Müller et al., 

2018), reduction in plant growth (Blackwell et al., 1994), and increases in water and nutrient losses 

(Leitch et al., 1983). In pastoral systems, SWR has negative environmental and economic 

consequences. In a study of 15 pastoral sites in New Zealand, Müller et al., (2010) reported that SWR 

caused pastoral growth to decrease between 5 and 20% and significantly increased the risk of 

herbicide loss via surface runoff. The authors stated that SWR constitutes a risk for New Zealand’s 

pasture production, particularly in the face of future climate change, leading to more periodic 

summer droughts in some regions of New Zealand. In another study, Müller et al., (2014) 

demonstrated that a large part of the variability in pasture production was affected by the degree 

and the persistence of SWR.  

To properly understand this problem, adequate characterisation of SWR and its persistence is 

needed. Knowing the likelihood and severity of SWR in different points of an agricultural field could 

help reducing water and nutrient losses by advising land managers when and where to use fertilisers 

and suitable mitigation practices such as surfactant application, lime, and cultivation and resowing 

(Müller & Deurer, 2011). However, no current method enables the assessment of SWR 

spatiotemporal dynamics. Although there are different conventional methods for SWR 
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measurement, such as the water drop penetration time (WDPT) and molarity of ethanol drop (MED) 

test, these methods are time-consuming and are point scale measurements. Thus, the possibility of 

constructing spatial and temporal data based on this measurement is limited. To improve the 

understanding of SWR, we need to investigate SWR occurrence at multiple scales (Mao et al., 2019). 

Remote sensing provides a promising alternative for SWR characterisation. Abrantes et al., (2017) 

suggested a method involving the use of infrared thermography and cold water to map soil water 

repellency at the laboratory scale. In other studies, visible and near-infrared spectroscopy (Kim et al., 

2014; Abrantes et al., 2017; Hermansen et al., 2019) was tested for SWR assessment in the lab. These 

studies showed promising results, indicating the potential for remote sensing in water repellency 

assessment. Since pasture management and water deficit are important factors controlling surface 

biomass temporal dynamics, remote sensing and water deficit time series (TS) could provide a 

valuable tool to predict SWR occurrence in pastures. Still, no experimental approach has been 

developed to map SWR under field conditions; and more importantly, to predict its occurrence using 

readily available data.  

The recently deployed Sentinel constellation by ESA has opened new horizons for remote 

sensing applications. These Synthetic Aperture Radar (SAR) and multispectral satellites provide high 

spatial resolution data, which are required for different remote sensing applications. Another 

instrument that provides remote sensing data with high temporal frequency (1 to 2 days) is the 

Moderate Resolution Imaging Spectroradiometer (MODIS). The high temporal resolution is 

indispensable for tracking surface biomass in highly dynamic agroecosystems like pastures.   

Multispectral surface reflectance offers a consistent record of the aboveground biomass, 

which is directly implicated in the regeneration of hydrophobic materials. The normalised difference 

vegetation index (NDVI) is highly correlated with surface biomass (Prabhakara et al., 2015). Synthetic 

Aperture Radar backscatter is highly related to soil surface moisture dynamics (Zhang et al., 1998). 

Using NDVI, water deficit and SAR TS data would allow the assessment of surface biomass dynamics 

and thus, reflect the effect on SWR occurrence. These interactions between soil moisture, surface 

biomass dynamics, and the appearance of water repellency are still poorly understood. Jaramillo et 

al., (2000) theorised that arid conditions would result in low biomass production rates and, 

therefore, a lower probability for the development of SWR. While very humid conditions are 

favourable for biomass production and, thus, for the generation of hydrophobic compounds from 

decomposed leaves. Based on this theory, soil carbon (C) and hydrophobic compounds share the 

same cycling dynamics, considering that hydrophobic compounds are a natural constituent of the soil 

carbon pool in pastoral ecosystems. Soil fungal communities are an additional source of hydrophobic 

compounds and are profoundly affected by soil moisture dynamics (Castaño et al., 2018; Meisner et 

al., 2018). Nevertheless, remote sensing TS could be instrumental in tracking soil hydrophobicity 



 

 

87 

because it allows the assessment of critical components of this complex system, namely, 

aboveground biomass and moisture dynamics. 

Given that the nature and causes of spatial variability in remote sensing data are not fully 

understood, the analysis of the remote sensing data has been limited to empirical relationships 

between ground truth data and patterns identified in remotely sensed images, assuming that surface 

ground truth data are consistently reflected in images (Belgiu et al., 2016; Woodcock et al., 1988). 

However, the interaction between factors like resolution and the nature of the explored properties 

makes it difficult to perceive this consistency between ground truth data and images using simple 

modelling approaches (Marceau, Howarth, and Gratton 1994). Non-parametric supervised 

algorithms like artificial neural networks (ANN), random forest (RF), and support vector machine 

(SVM), provide the advantage of deciphering hidden patterns and learning from complex data (Zhu et 

al., 2017). The present study investigates the potential of these algorithms to predict SWR using 

remote sensing and water deficit TS as predictors.  

The main objectives of this study were to:  

i) Explore the potential of remote sensing and water deficit TS in predicting the 

occurrence of SWR and assessing soil C in pastures; 

ii)  Understand how surface biomass and soil moisture temporal dynamics affect the 

SWR occurrence through the use of NDVI and water deficit TS. 
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5.3 Material and methods 

5.3.1 Study area 

 

Figure 5-1 The 58 sampling sites, including North Island survey, 2009 Deurer et al., (2011) 

the 2014 sampling campaign by Whitley et al., (2018), and Hawke’s Bay survey, 2019. 

This work combines three soil datasets that were collected in three different surveys. New 

Zealand North Island SWR-survey conducted by Deurer et al., (2011) in 2009. A soil sampling from 

various New Zealand dryland pastures in 2014 (Whitley 2018) and a soil sampling conducted over 

Hawke’s Bay region in 2019 (Fig. 5-1). The North Island survey (Deurer et al., 2011) had the objective 

to access the effect of soil order and drought proneness on the occurrence of SWR under pastoral 

land use. Sampling sites in this survey were selected based on soil order and annual drought-

proneness criteria. The detailed soil sampling design is described in the survey paper by Deurer et al., 

(2011). From the original 50 sites of the survey, 24 suitable sites were selected for our study based 
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on the homogeneity of the land cover, the absence of trees, buildings and cast shadows in the sites 

(visually inspected on satellite imagery). Hawke’s Bay region sampling in 2019, included 25 dryland 

pastoral sites and Whitley et al., (2018) sampling included nine different sites (3 in North Island and 6 

in South Island). The combined soil dataset represents a wide range of textures including clay, clay 

loam, silt loam, loam, sandy loam, and sands. The sampling sites represent a wide variety of soil 

orders, including Allophanic (Andisols), Brown (Inceptisols, alfisols), Granular (Ultisols), Gley (Aquic 

groups), Pallic (Inceptisols, alfisols), Organic (Histosols), Podzol (Spodosols), Recent (Entisols, 

inceptisols), Pumice (Andisols, vitric), and Ultic (Ultisols) soils (New Zealand soil classification and Soil 

Taxonomy equivalent (Hewitt 2010)).  

5.3.2 Ground truth data 

Soils were sampled from the top 7.5 cm in the 2009 and 2019 samplings and from the top 15 

cm in the 2014 sampling. In the 2009 survey, ten soil samples were sampled in a star-shaped pattern, 

25 m apart (Deurer et al., 2011). The ten samples include five bulk topsoil (depth, 0-5 cm) and five 

undisturbed soil cores (0-5 cm). Sampling in Hawke’s Bay (2019) was carried out in a cross-shaped 

pattern with approximately 2 m distance between sampling points. In 2014, ten soils were collected 

along a transect (minimum 50 m long) (Whitley 2018). Samples were sealed in plastic bags, 

transferred to the lab, and then oven-dried at 65 °C for 24 h to assess the potential SWR. The 

potential SWR is the higher level of water repellency a soil can reach when it dries out. For each 

sample, the WDPT test was carried out by placing three water droplets of 4 μL (5 μL for the 2009 

survey) on the smoothed soil surface and measuring the time (s) they took to infiltrate the surface as 

a measure of the persistence of SWR (Doerr, 1998). The soils were also tested for SWR severity using 

the MED test. Ethanol concentrations of 0, 3, 5, 8.5, 13, 24, and 36% by volume were prepared, and 

three droplets of 4µL (5 μL for the 2009 survey) were placed on the smoothed soil surface. The MED 

was represented by the ethanol molarity of the droplet that entered the soil surface in 5 s (10s for 

the 2009 survey (Deurer et al., 2011)). The median value for the WDPT was used to classify the 

persistence of SWR into five classes including wettable (<5s), slightly hydrophobic (5-60s), strongly 

hydrophobic (60-600s), severely hydrophobic (600-3600s) and extremely hydrophobic (>3600). The 

median was used instead of the mean since it represents better the central tendency of the WDPT 

skewed data. The mean value of MED was used to classify SWR severity into seven classes (Doerr, 

1998). Total C was measured using Elementar Vario-Max CN Analyser, Germany.  

5.3.3 Remote sensing and water deficit data  

The present study uses two types of TS data as predictors for the potential SWR. The remote 

sensing data including Sentinel-1, Sentinel-2 and MODIS and water deficit data from the TerraClimate 
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dataset (Abatzoglou et al., 2018). The C-band backscatter of single vertical (VV) and dual-polarization 

(VV+VH). Sentinel-1 data have a spatial resolution of 10 m and a temporal resolution of 12 days. The 

12 bands multispectral data from Sentinel-2 including Vis-NIR, shortwave infrared (SWIR) provide a 

spatial resolution between 10 to 60 m (depending on the bands) and revisit time of 5 days for the 

combined constellation (10 days for a single satellite). Sentinel-1 A and B images of IW acquisition 

mode were pre-processed using the SNAP ESA toolbox (Warren et al., 2019). Sentinel-1 data pre-

processing included precise orbit application, terrain correction, orthorectification, radiometric 

calibration, and conversion to logarithmic scale (dB). Moderate Resolution Imaging 

Spectroradiometer data with 500 m spatial resolution and two days revisit time was used to create 

monthly NDVI TS. In addition to SAR data, water deficit modelled data (4000 m resolution) from the 

TerraClimate dataset (Abatzoglou et al., 2018) were tested to verify the consistency of the 

relationship between temporal moisture dynamics and SWR occurrence. TerraClimate is a global 

dataset that interpolates high spatial climatological records from the WorldClim dataset to produce a 

monthly dataset including precipitations, soil moisture, water deficit, and other parameters 

(Abatzoglou et al., 2018). Although these data have a significantly lower resolution compared to 

satellite data, we suggest that monthly aggregated soil moisture values of pastoral sites are 

reasonably homogeneous within the same pixel.  

To understand how temporal changes of surface biomass and drought affect SWR 

occurrence, both remote sensing and water deficit datasets were aggregated on a monthly basis. 

Monthly data provided higher temporal resolution and allowed a better understanding of drought 

and biomass relationship compared to seasonal aggregation. The time series configurations included 

three years of monthly NDVI (MODIS) and monthly water deficit data tested on the 58 sites dataset. 

This configuration was tested to see explore the potential of remote sensing TS for SWR prediction, 

regardless of the sampling date. A one year monthly multispectral (S2) NDVI (MODIS and S2), C-band 

backscatter (VV, VV+VH) and water deficit configuration was tested on 25 sites from the Hawke’s Bay 

region (sampled in 2019). The 25 sites from Hawke’s Bay were used to model and map SWR in this 

region.  

5.4 Machine learning and modelling framework  

5.4.1 Machine learning algorithms 

To build the model and predict SWR and soil C in the studied sites, RF, SVM and ANN models 

were trained on monthly (12 months) aggregated datasets for 3-years data for the 58 sites and 1-

year data from the 25 sites in Hawke’s Bay region (2019). A brief introduction of the three used 

classifies is presented in the next sections. 
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Random forest 

Random forest is an ensemble learning algorithm (Breiman 2001) that has shown big 

potential for remote sensing application such as land cover classification and cropland mapping 

(Belgiu and Csillik 2018; Gislason, Benediktsson, and Sveinsson 2006; Ham et al., 2005; Pal 2005). 

Breiman (2001) defined RF as an ensemble of tree-structured predictors {ℎ(𝒙, 𝛩𝑘), 𝑘 = 1, … } where 

{𝛩𝑘} are autonomous identically distributed vectors and each tree gives an elementary vote for the 

most popular class at input 𝒙. In a regression situation, the classifier decision is based on the 

collective responses of all trees in the forest. The trees are trained on multiple sample combinations 

form the training dataset. Training sets are created from the input training data using the bootstrap 

approach. This approach consists of arbitrarily selecting subsets of variables and choosing vectors 

with a replacement for training. This implies that some vectors arise many times in the trees while 

would not appear at all. For each trained tree, a random subset of variables is used to determine the 

best classification. Two parameters need to be tuned for the RF algorithm used in the CARET package 

(Kuhn 2008): the number of trees and the maximum depth of trees or the number of variables used 

in tree nodes ramification.  

Support vector machine 

The original method of SVM developed by Cortes & Vapnik (1995) aims to classify labelled 

datasets by finding an optimal separating hyperplane that discriminates classes in agreement with 

the training data with the largest margin. The generalization of this method to construct an optimal 

hyperplane in non-separable training data became known as the SVMs (Vapnik, 2006). The term 

optimal hyperplane is used for the decision edge that reduces misclassifications, vis-à-vis the training 

data. Learning refers to the interactive process of finding this optimal edge that classifies the training 

patterns and the generalization of this classification for the original data (Zhu et al., 2017). Thus, the 

cost of misclassification (C parameter) is to be determined for each classification. Pal & Mather 

(2005) reported that the SVM method showed a higher level of classification accuracy on 

multispectral and hyperspectral data compared to maximum likelihood and ANN methods. Fukuda & 

Hirosawa, (2001) performed an efficient land cover classification using an SVM-based classification 

scheme of SAR data. A detailed review of SVM and its use in remote sensing can be found in 

Mountrakis et al., (2011). 

Artificial neural networks  

Artificial neural networks are structurally brain-inspired computational methods. These 

machine learning algorithms have been used to solve a wide variety of modelling problems. 

Applications in remote sensing have shown that ANNs are powerful methods for landcover 

classification (Kussul et al., 2017; Li et al., 2011) and weather forecasting (Abhishek et al., 2012; 

Zhang et al., 1998). In contrast to the conventional modelling methods, ANNs are data-driven and 
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independent learning methods with no prior requirement for a conceptual model. Different studies, 

including land-cover classification methods (Civco, 1993; Yuan et al., 2009). LeCun et al., (2012) 

provided a detailed explanation of how the ANN algorithm works and how to achieve the best 

performance using them.  

5.4.2 Modelling Framework 

To inspect the relationship between measured soil properties, surface biomass and water 

deficit, the correlation between seasonal NDVI, water deficit, SWR and C were studied. A strong 

correlation between these variables has been observed in the summer period. A summary of these 

correlations is presented in the results section (Fig. 5-1). The modelling framework of this study 

consisted of the following steps:  

i) Remote sensing and water deficit TS were aggregated on monthly basis. The final input data are 12 

months mean values (instead of seasonal); 

 ii) Training and validation of the models on Log (WDPT) and soil C datasets as predicted variables and 

remote sensing TS as predictors using three different classifiers in CARET (Kuhn 2008) and Orfeo 

ToolBox package (OTB) (Grizonnet et al., 2017);  

ii) Evaluation and generalization of the output using the trained models. Training and validation were 

carried with regression type models in the CARET library and classification type (5 SWR-classes) in the 

OTB package as implemented by Grizonnet et al., (2017).  

A leave-one-out cross-validation was adopted for the training validation process in CARET. 

This approach allowed building the models using training sets of 57 sites and testing them against the 

single leftover site. This process is repeated 58 times, ensuring that all sites are used as part of the 

training and test sets. The RMSE values from each of the 58 runs are then combined to select the 

model with the least error. The RF algorithm from the OTB package used in this study is a linear 

kernel. The number of trees was fixed at 100, and the number of variables to be considered in each 

split of the trees (mtry parameter in CARET) was tuned to get the best model. The support vector 

machine tuning includes the misclassification cost (C parameter). The general accuracy of the models 

was evaluated using the RMSE in the CARET library and the kappa coefficient (Cohen 1960) in OTB. 

Sigmoid function has been chosen for the ANN algorithm, and the number of neurons in the hidden 

layer was tuned to achieve the best performance. To provide more information about the classifiers’ 

quality, OTB output maps are supported by confidence maps. The confidence level for RF is 

calculated based on the proportion of vote for the majority class. The best performing model on the 

58 sites dataset using CARET was selected and used to map SWR classes (as described in Table 2) on 

the Hawke’s Bay region using 25 training sites on OTB. Classification accuracy in the OTB package is 

further evaluated by precision, recall and F-score for each SWR class.  
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5.5 Results and discussions  

5.5.1 Modelling SWR using remote sensing time series  

Potential SWR showed high spatial variability. The persistence of SWR expressed here by the 

Log (WDPT) values ranged from 0 to 3.9 s. The degree of SWR measured by MED showed values 

ranging from 0 to 24 % (Table 5-1). Both Log WDPT and MED had high standard deviation, which 

indicated high spatial variability of SWR across the studied pastoral sites. This variability has already 

been noticed at the plot scale (20 m2) and even within individual samples from the Hawke’s Bay 

sampling. Also, the standard deviation was very high within different classes (Table 5-2). This result 

agreed with previous research indicating a high variability of water repellency at different scales 

(Deurer et al., 2011; Gerke et al., 2001; Hallett et al., 2004). Classification based on Log (WDPT) 

(Doerr, 1998) showed that most of the sampled sites were strongly hydrophobic (18 sites). The Log 

(WDPT) showed a bimodal distribution with a major mode in the strong repellency class and a minor 

mode in the severe repellency class (Table 5-1 and Fig. 5-2). Total C values were between 2.49 and 

13.24%, which can be classified as low to high C contents for New Zealand soils (Webb & Wilson, 

1995).  

Table 5-1 Summary statistics of the measured soil properties for all samples used in this 

study. 

Soil Property Mean Min Max Standard deviation 

Log WDPT (s) 1.86 0 3.89 1.20 

MED (%) 6.24 0 24.00 6.23 

C (%) 6.92 2.49 13.24 2.70 

 

 

Table 5-2 Summary of SWR Classification using Log (WDPT) and number of sites per class. 

Classes Log WDPT (s) Number of locations Mean  STDV 

Wettable ≤0.69 12 0.15 0.22 

Slightly hydrophobic 0.69-1.77 14 1.32 0.35 

Strongly hydrophobic 1.77-2.77 18 2.15 0.31 

Severely hydrophobic 2.77-3.55 6 3.28 0.23 

Extremely hydrophobic >3.55 8 3.68 0.10 
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The initial analysis of the soil and remote sensing dataset showed a strong relationship 

between the measured soil properties, remote sensing, and water deficit data. There was a 

significant correlation between Log (WDPT), MED and C (P<0.001) and a strong correlation between 

Log (WDPT), summer NDVI and water deficit (December-Mars) (Fig. 5-2). The strong relationship 

between the potential SWR and C have been observed in a survey on SWR conducted in the South 

Island, New Zealand (Hermansen et al, 2019). This study, including 26 pastoral sites, found a 

significant linear correlation between C and MED (Hermansen et al., 2019). Grazing management is a 

crucial driver of aboveground biomass dynamics. Overgrazed pastures have a higher proportion of 

actively growing young plant and fewer stem and dead leaves compared to under grazed pastures 

(Waghorn and Barry 1987). Despite this consistent relationship between C and MED at the regional 

scale, other factors may control SWR at a farm or even paddock scale. Soil particle size distribution is 

a crucial factor influencing SWR occurrence. Wallis & Horne (1992) reported that sandy soils are 

more prone to coating by hydrophobic compounds because of their small specific surface area. In a 

study of fire-induced SWR, DeBano et al., (1970) reported that the thickness of the hydrophobic layer 

increased with the decrease of clay content resulting in significantly higher water repellency in sands 

compared to heavy textured soils. The correlation between NDVI TS data and Log (WDPT) helps to 

understand the relationship between the surface biomass dynamics and SWR. The strong correlation 

between summer NDVI, water deficit and SWR supports the assumption of the implication of 

drought in the generation of hydrophobic compounds from plants in dry periods. The lower the 

water deficit in the summer periods, the higher the mean NDVI and WDPT, and vice-versa. This 

suggests that plants were the main source of the hydrophobic compounds in the pastures explored in 

this study. Jaramillo et al., (2000) suggested that dry conditions would result in low biomass 

production and, therefore, less SWR occurrence. In contrast, very humid conditions are beneficial for 

biomass production and, consequently, for the generation of hydrophobic materials from decaying 

plants when soils dry out. Previous studies showed that root exudate metabolism is affected by 

drought, and some species can release hydrophobic compound (e.g. leucine and proline) in the 

drought period (Gargallo-Garriga et al., 2018). Another explanation could be the welting and 

decomposition of plant leaves in the summer period, which could be the source of hydrophobicity, 

considering that most grass leaves functional surfaces are naturally superhydrophobic (Barthlott et 

al., 2017).  

A summary of the RMSE of models trained and cross-validated at different dataset 

configurations using the three classifiers is presented in Table 5-3. Random forest performed better 

in predicting Log (WDPT) and soil C compared to SVM and ANN (Table 5-3). Except for the one-year 

MODIS NDVI in Hawke’s Bay region, RF had smaller RMSE followed by SVM and ANN. For the New 

Zealand dataset (n=58), the RMSE for Log (WDPT) was 0.82 when combining MODIS and water deficit 
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data or when using MODIS data alone. Using water deficit data alone resulted in an RMSE of 0.84. 

For C prediction, using water deficit TS alone, resulted in RMSE of 1.63%. 

The importance of variables in the random forest model using MODIS NDVI showed that the 

January NDVI was the most influential factor in the model output, followed by February NDVI (Fig. 5-

3). January corresponds to the driest month for the aggregated water deficit data, followed by 

February (Fig. 5-4). This supports the assumption that drought was highly influential in SWR 

occurrence.  
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Figure 5-2 Scatter plots and frequency charts of Log (WDPT) (s) MED (%), C (%) mean 

summer NDVI and water deficit (mm). The shaded band around the regression lines 

represent a pointwise 95% confidence interval on the fitted values. Pearson Product 

Moment correlation matrix of P levels: *0.05, **0.01, ***0.001. 
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Table 5-3 Summary of leave-one-out cross-validation of Log WDPT (s) and C (%) using RF, 

SVM and ANN on different dataset configurations. 

 
 

Log WDPT, RMSE (s) Carbon, RMSE (%) 

Sites Configuration SVM ANN RF SVM ANN RF 

New Zealand (n=58) Water deficit + MODIS NDVI 0.82 1.24 0.82 2.11 5.92 1.68 

Three years Water deficit 0.84 1.22 0.84 1.80 5.92 1.63 

 MODIS NDVI 0.87 1.23 0.82 1.86 5.92 1.75 

        

Hawke’s Bay (n=25) S2 (Multispectral) 0.93 1.13 0.74 1.45 1.76 1.15 

One year  S2 (NDVI) 0.93 0.89 0.73 1.42 4.95 1.31 

 S1 (VV, VV+VH) 0.87 0.89 0.78 1.79 4.95 1.47 

 S1+S2 (NDVI; VV, VV+VH) 0.66 0.89 0.71 1.06 4.95 1.27 

 MODIS NDVI 0.60 0.88 0.69 1.27 4.92 1.24 

 

 

Figure 5-3 Importance of the variables RF model using monthly MODIS NDVI aggregated 

over 3 years prior sampling dates for all the sites combined. 
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Figure 5-4 Monthly soil water deficit over all the studied sites (n=58) over three years 

before the sampling dates, retrieved from TerraClimate data (Abatzoglou et al., 2018). 

When using the Hawke’s Bay dataset alone (n=25), SVM had a higher accuracy for predicting 

Log (WDPT) when using a one-year monthly MODIS NDVI time series (RMSE=0.60). However, RF had 

an RMSE of 0.69. Random forest and ANN best predictions for soil C were achieved with Sentinel-2 

multispectral time series (RMSE equal to 1.15 and 1.76, respectively). Support vector machine had 

the lowest RMSE (1.06) for soil C prediction using NDVI and C-band backscatter. The importance of 

variables of RF using MODIS-NDVI showed that Mars and November mean NDVI were the most 

important factors for the model output (Fig. 5-5). For the Hawke’s Bay region in 2019, these two 

months were the driest (Fig. 5-6) with over 40 mm-mean water deficit. 

Although SVM performed had the least error when working with Hawke’s Bay data, its 

performance decreased when using the larges dataset. The Hawke’s Bay data has a clear margin 

between sites in terms of NDVI and Log (WDPT) compared to the larger dataset (n=58). Support 

vector machine performs better when clear margin separation between features is present 

(Sugiyama 2015). Thus, performance may drop with datasets with high noise and overlapping 

features. Random forest generally provides a reliable importance of variables estimate (Breiman 

2001; Liaw and Wiener 2002), which would give a better advantage when working with time series, 

where some dates are more influential than others. When it comes to ANN, the method had the least 

error for Log (WDPT) when performing regression type models. Artificial neural networks showed a 

limited capability to identify casual and explicit relationships between input variables (Tu 1996). For 

example, in our situation, the high correlations between NDVI and SWR are limited to dry months 

and ANN would be unlikely to provide any predictive advantage over SVM and FR in this case. 
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Figure 5-5 Importance of variables RF model using monthly MODIS NDVI for the year 2019 

for Hawke’s Bay sites (n=25). 

 

 

Figure 5-6 Monthly soil water deficit over Hawkes Bay sites (n=25) in 2019 retrieved from 

TerraClimate data (Abatzoglou et al., 2018). 

The time series of Sentinel-2 multispectral configuration showed the lowest error for the 

prediction of soil C with the RF method (RMSE=1.15). Unlike the NDVI configuration, multispectral 

data has the additional advantage of including the reflectance of bare soil surface. Indeed, many 

studies showed the potential of multispectral soil reflectance for the prediction of soil C (Asner and 

Heidebrecht 2002; Ceddia et al., 2017; Peng et al., 2015). In a farm-scale study (~1km) of soil C 

mapping using multispectral remote sensing, Žížala et al., (2019) reported a cross-validation RMSE of 

0.16 using SVM. Multispectral reflectance also reflects the amount of organic materials on the 
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surface, including dead leaves and decomposed organic matters. In situations where under grazing is 

dominant during the summer period, dead leaves’ reflectance signature dominates the RS data. 

Although these areas could potentially be characterised by high levels of hydrophobic compounds 

derived from decomposed leaves, this would not be registered by using NDVI alone because provides 

limited information on surface biomass compared to multispectral data. 

5.5.2 Mapping SWR in Hawke’s Bay region  

Using RF and SVM on monthly MODIS-NDVI TS alone provided higher accuracies for 

predicting potential SWR compared to the ANN model. The RF configuration were used to map the 

five classes of Log (WDPT) (as described in Table 5-2) for the Hawke’s Bay region for the 2019 

summer.  

The global kappa index for the SWR classification using the RF model was equal to 0.86. The 

precisions, recalls, and the F-scores of each class for the RF output are presented in Table 5-4. The 

class “strongly hydrophobic” represented the best precision, recall and F-score (0.91, 1 and 0.95, 

respectively). The extremely hydrophobic class showed the lowest recall and F-score (0.72 and 0.80, 

respectively). While the severely hydrophobic class had the least precision (0.76) (Table 5-4). 

Table 5-4 Precision, recall and F-score of the RF classification of the five SWR classes for 

the Hawke’s Bay Region. The global Kappa index was equal to 0.86. 

SWR class Precision Recall F-score 

Wettable 1 0.90 0.95 

Slightly hydrophobic 0.90 0.90 0.90 

Strongly hydrophobic 0.91 1 0.95 

Severely hydrophobic 0.76 0.90 0.83 

Extremely hydrophobic 0.88 0.72 0.80 

The output of random forest modelling (Fig. 5-7) showed a similar distribution of the five 

SWR classes compared to the ground truth data (Fig. 5-8), with the strong hydrophobic class as the 

most abundant class and severely hydrophobic class as the least abundant class. However, the strong 

hydrophobic class showed the highest bias between the generalization map and the measured data 

(Fig. 5-8). This is obviously due to the limited number of samples that are not covering the entire 

Hawke’s bay region. Still, the strong hydrophobicity class showed higher confidence level compared 

to other classes (Fig. 5-7).  
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Figure 5-7 Random forest model classification output (a) and classification confidence (b) 

of the five potential SWR classes for the Hawke’s Bay region using monthly MODIS NDVI 

TS as predictors in 25 sampling sites as ground truth data for training. 

 

Figure 5-8 The abundance SWR five classes (wettable, slightly hydrophobic, strongly 

hydrophobic, severely hydrophobic, and extremely hydrophobic) of the Hawke’s Bay 

region calculated based on RF output map (surface area distribution) and the number of 

sites per class from measured data. 

5.6 Conclusion 
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Soil water repellency is a dynamic property that has many repercussions on the 

agroecosystems. The impact of SWR on hydrological processes is hard to predict using conventional 

point measurements. In this study, we tested the potential of remote sensing and water deficit TS in 

predicting the persistence SWR level in New Zealand pastures using three different machine learning 

algorithms; namely RF, SVM, and ANN. Models were trained and cross-validated using measured 

SWR at 58 pastoral sites. This approach improved the understanding of how surface biomass, soil 

moisture and their temporal dynamics affect the persistence of SWR and also allowed the mapping 

of the SWR using remote sensing data. 

Training and validating the machine learning algorithms on SWR data from 58 sites, remote 

sensing, and water deficit TS showed strong capability of predicting the persistence of SWR and soil C 

levels. Generally, RF and SVM models outperformed ANN in predicting SWR and C levels. The 

monthly NDVI TS resulted in the best prediction of SWR with the RF model (RMSE=0.82). For soil C, 

water deficit TS data with the RF model showed the lowest error (RMSE=1.63).  

Prediction models and maps will help in understanding the spatio-temporal dynamics of SWR 

and how they might impact hydrological processes. In addition, mapping the potential SWR will aid in 

identifying critical zones for remediation and attenuating its effect on the agroecosystems through 

adapted local management (e.g. grazing, fertilisers application, and surfactant treatment).  
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Chapter 6                                                                                  

Hyperspectral satellite data to assess topsoil water repellency and 

carbon content in permanent pastures 

6.1 Abstract  

Previous work using lab visible and near-infrared (VIS-NIR) spectroscopy and satellite 

broadband multispectral surface reflectance showed large potential for predicting topsoil carbon and 

soil water repellency (SWR) persistence. A higher spectral resolution in some hyperspectral sensors 

such as Hyperion could allow better estimation of soil carbon (C) and water repellency persistence in 

permanent pastures. The present study tested the predictability of both topsoil carbon and water 

repellency in permanent pastures using hyperspectral satellite data. Measurements of water 

repellency and topsoil carbon content were paired with Hyperion sensor data to train and cross-

validate partial least squared regression (PLSR) models. The paired ground-truth included 

measurements from 16 and 22 pastoral sites for SWR and soil C, respectively. This approach showed 

an important capability for water repellency persistence prediction. The PLSR had high predictability 

for Log (WDPT) with R2
v=0.78, RMSEv=0.54, and RPDv=2.01. Prediction for topsoil carbon had an 

R2
v=0.47, RMSEv=1.96, and RPDv=2.01. The present work is the first investigation of the suitability of 

hyperspectral satellite data for water repellency estimation. The results consolidated previous work 

using lab spectra and supporting the possibility for implementing large scale mapping of SWR using 

the existing measured datasets, and the hyperspectral data from current and future sensors. 

6.2 Introduction  

The comprehension of the spatial and temporal dynamics of soil physicochemical properties 

are vital for the sustainable management of agroecosystems. The current soil repositories and maps 

are often unsatisfactory to meet the need for integrated sustainable farming practices. The benefits 

of quantitative soils information include the possibility to support the precision agricultural approach 

and helps to understand the long term repercussions on the ecosystems. However, sustainable and 

site-specific management of agroecosystems requires accurate quantitative information on key soil 

properties such as texture, carbon, nitrogen content, and moisture dynamics. The remote sensing 

approach opens unprecedented opportunities for upgrading the existing soil inventories (Barnes et 

al., 2003).  
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In the past three decades, a substantial amount of work has been done on the use of remote 

sensing for soil properties assessment (Wang & Qu, 2009; Ge et al., 2011). Examples included soil 

texture (Ben-Dor et al., 2002; Castaldi et al., 2016; C. Gomez et al., 2018; Lagacherie et al., 2008), soil 

carbon (Castaldi et al., 2019; Castaldi et al., 2019; Gholizadeh et al., 2018; Gomez et al., 2008; 

Hbirkou et al., 2012), salinity (Mougenot et al., 1993; VERMA et al., 1994), pH (Zhang et al., 2018), 

soil moisture (Mohanty et al., 2017).  

Previous work on soil attributes retrieval used topsoil multispectral and hyperspectral 

imagers. Numerous studies used multispectral satellite data to retrieve soil properties with 

intermediate accuracy. For example, Vaudour et al., (2019) used Sentinel-2 to assess soil carbon, 

texture, pH, EC, CaCO3, CEC with different accuracies in the Mediterranean region. Castaldi et al., 

(2014) obtained reasonable accuracy for clay content prediction using Advanced Land Imager (ALI) 

multispectral data. Because of their lower spatial resolution, multispectral satellite data, theoretically 

provide inferior results compared to hyperspectral. Still, many case studies showed no significant 

difference between hyperspectral and multispectral satellite data for assessing key soil properties.  

When it comes to hyperspectral data, both space and airborne hyperspectral imagers provide 

higher spectral resolution, which theoretically improves the prediction capabilities compared to 

multispectral sensors. However, their performance can be hampered by the low signal to noise ratio 

(Castaldi et al., 2014). To date, only three hyperspectral imagers were available for remote sensing 

application; namely, Hyperion onboard earth observer one (EO-1) launched by NASA (Folkman et al., 

2001), the Compact High-Resolution Imaging Spectrometer (CHRIS) onboard PROBA satellite 

launched by the European Space Agency (Barnsley et al., 2004), and PRISMA sensor lunched by the 

Italian space program (Loizzo et al., 2018).  

Soil water repellency (SWR) is a crucial soil property that controls water absorption dynamics 

at the soil surface. It is caused by amphiphilic compounds inducing soil hydrophobicity. Whether this 

property can be estimated using soil reflectance signature was inspected by (Kim, I. et al., 2014) who 

used lab VIS-NIR spectroscopy. Their results showed that the visible bands around 457, 622, and 670 

nm had a high influence on SWR repellency prediction. For the infrared bands, 1364, 1765, 1936, 

2167, 2381, and 2356 nm were the most influential in predicting the degree of SWR measured by the 

molarity of the ethanol test. The coefficients pattern of the partial least square regression (PLSR) in 

their study showed that soil carbon and water repellency degree were generally different. 

Nevertheless, these two properties shared common active spectral regions around 1364, 1740, and 

2164 nm. Soil carbon characteristic expressed in the 2100 to 2437 wavebands were speculated to be 

associated with aliphatic C-H bonds. Many workers reported that these compounds contributed to 

soil hydrophobicity (Capriel et al., 1995; McKissock et al., 2003).  
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Since its launch by the National Aeronautics and Space Administration (NASA) in the year 

2000, Hyperion sensor acquired more than 89000 hyperspectral images globally in 2017 

(decommissioning year) (Middleton et al., 2017). However, full global coverage is not achieved with 

the existing hyperspectral imagers. The increasing availability of hyperspectral satellite data with 

existing sensors such as Hyperion (Folkman et al., 2001) and Prisma (Loizzo et al., 2018) and the 

upcoming spaceborne sensors such as Hyperspectral Imager Suite (HISUI) (Tanii et al., 2012), EnMap 

(Sang et al., 2008), HyspIRI (Lee et al., 2015), and HypXIM (Michel et al., 2011) will open a broad 

range of opportunities for quantitative soil information mapping.  

The present study was initiated to test the hypothesis that soils with different levels of 

topsoil water repellency and carbon have distinguishable reflectance features that can be 

characterised using Hyperion reflectance data. Thus, the objective of this study was to estimate soil 

water repellency and soil C in permanent pastures using Hyperion satellite data. 

6.3 Materials and methods 

6.3.1 Remote sensing data 

Radiometrically calibrated and orthorectified radiance data published by the United States 

Geological Survey (USGS) were used. The data is a 30 meters spatial resolution for all 220 bands with 

10 nm bandwidth. This top of atmosphere radiance data was used as input to train and cross-validate 

partial least square regression (PLSR). Radiance data for each site were filtred for cloud cover and 

NDVI index to select dates with the nearest possible state to bare soil. Different preprocessing 

operations were conducted on the calibrated radiance data including the pseudo-absorbance 

transformation Log (1/R), Savitzky Golay (SG), and first derivative (D) (Fig. 6-1). Saviszky Golay filter 

allows noise reduction and derivative transformation enhances differences between peaks 

separation in overlapping bands (Castaldi et al., 2016).  

Soil water repellency and topsoil carbon data were acquired in surveys conducted by (Bayad 

et al., 2020) and (Deurer et al., 2011) (Chapter 5) in addition to the South Island of New Zeland 

survey on SWR by (Hermansen et al., 2019) and carbon data in multiple pastoral sites published by 

(Schipper et al., 2010). Sampling sites from these surveys that have been scanned by Hyperion 

satellite were used for training and cross-validation of PLSR models. The PLSR calibration and 

cross-validation prediction accuracies could be classified in three classes as described by 

some workers (e.g. Vaudour et al., 2019): i) models with intermediate to high predictability 

(R2>0.5 and RPD>1.4); ii) models with poor to intermediate predictability (R2 of 0.4 – 0.5 and 
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RPD between 1.3 and 1.4); and iii) models with poor to very poor predictive potential 

(R2<0.4; RPD<1.3). 

 

Figure 6-1 The pre-processed Hyperion spectral of wettable (Log (WDPT)=0 s) and 

hydrophobic spectra (Log (WDPT)=3.37 s) using a) pseudo-absorbance Log (1/R) and b) 

raw radiance data calibrated. 

6.4 Results 

For the studies sites, soil water repellency persistence ranged from wettable to severely 

hydrophobic. The log (WDPT)(s) at the 16 sites matched with Hyperion data ranged between 0 and 

3.37 s (Table 6-1). The 22 sites matched with Hyperion data had a wide soil carbon range (1.17 to 

13.2 %; Table 6-1). 
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Table 6-1 Summary statistics of the topsoil carbon and Log (WDPT) dataset matched with 

Hyperion data. 

 Nb. sites  Min Max Mean Stdv. 

Log (WDPT)(s) 16 0 3.37 1.19 1.09 

Soil C (%) 22 1.17 13.2 4.36 2.58 

The performance of models trained and cross-validated using Hyperion calibrated radiance, 

measured topsoil soil C, and Log (WDPT) (s) are presented in Table 6-2. The PLSR models’ 

performance for both water repellency persistence and soil C varied depending on whether 

calibration or validation sets were used and on the spectral data preprocessing used. Soil water 

repellency persistence estimated using Log (WDPT) had an RMSEv of 0.54, R2
v of 0.78, and RPDv of 

5.73 when Log(1/R) transformation was used. The highest carbon content prediction model (RMSEv 

of 1.96, R2
v of 0.47, and RPDv of 1.31) was acquired with Savitsky Golay transformation and first 

derivative. The calibration model had high predictability within the used dataset for both soil C and 

Log (WDPT) (R2
c =0.98 and 0.99, respectively) (Table 6-2).  

 

Table 6-2 Partial least squares regression (PLSR) prediction statistics for calibration and 

leave-one-out cross-validation of Hyperion data for topsoil carbon and Log (WDPT). 

   Calibration Validation 

 No. 

Sites 

Tr. RMSE R2 RPD NF RMSE R2 RPD NF 

C (%) 22 R 0.81 0.90 3.18 7 2.34 0.43 1.10 5 

  Log (1/R) 0.73 0.92 3.53 7 2.23 0.31 1.15 3 

  SG+D 0.30 0.98 8.6 7 1.96 0.47 1.31 5 

  D 0.30 0.98 8.6 7 1.96 0.47 1.31 5 

Log (WDPT) 

(s) 

16 R 0.19 0.96 5.73 7 1.76 NA* 0.61 7 

  Log(1/R) 0.13 0.98 8.38 7 0.54 0.78 2.01 6 

  SG+D 0.08 0.99 13.62 7 1.30 NA 0.83 3 

  D 0.08 0.99 13.62 7 1.30 NA 0.83 3 

NA*: The R2 had a negative value. Spectra transformations (Tr.) include calibrated radiance (R), 

standard normal variate (SNV), and pseudo-absorbance Log (1/R).   
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For topsoil carbon, the explained variability of the prediction model exceeded 20% at the 

second factor and reached its peak at the fifth factor (47 %) (Fig. 6-2, a). The explained variability of 

the PLSR model for Log (WDPT) exceeded 40% starting from the second factor to reach its peak (78 

%) with the sixth factor (Fig. 6-2, b). Explained variability in the calibration model of soil C increased 

gradually with the number of factors used. However, the water repellency persistence calibration 

model explained more than 70 % with the first factor (Fig. 6-2; a,b).   

 
 

Figure 6-2 Explained variability in the PLSR calibration and validation models for topsoil 

carbon and Log (WDPT) as a function of the number of factors used for calibration and 

validation on the model. 

Weighted coefficients of the PLSR models for topsoil carbon and SWR persistence prediction 

using Hyperion spectra are illustrated in Figure 6-3. The wavebands coefficients’ magnitude 

represents their contribution in explaining Log (WDPT) and soil C data. Accordingly, important 

wavelengths have high regressions weighted coefficients. For soil C, the bands 426 nm and 752 nm, 

915, 1023, and 1164, 1316-1326 nm were the most important bands for the PLSR models (Fig. 6-3, a). 

The bands 426-447 nm, 942 nm, 1124 nm, 1487 nm, 1981-2052 nm were the most important factors 

for predicting SWR persistence (Fig. 6-3, b).  
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Figure 6-3 Weighted PLSR regression coefficients for a) topsoil carbon model using 

Savitzky Golay plus first derivative pre-processing and b) Log (WDPT) prediction model 

using Log (1/R) transformation.  

6.5 Discussions 

Bases on ground-truth data from 16 permanent pastoral sites matched with Hyperion data, 

the PLSR models showed a high prediction capability for SWR resistance and poor predictability for 

soil C (Figure 6-3). Whereas data transformation had no impact on the calibration PLSR models, 

cross-validation models performance was affected by the type of preprocessing used. After testing 

several preprocessing methods, the first derivative showed the highest performance for carbon 

content prediction models. For, water repellency persistence, Log (1/R) was the only transformation 

to yield a reliable cross-validated model (R2
v=0.78) (Table 6-2). Prediction capability dropped 

significantly when switching from training to cross-validation datasets for topsoil carbon (Fig. 6-3, a). 

However, SWR persistence prediction showed high accuracy with both training and cross-validation 

datasets (Fig. 6-3, b).  
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Figure 6-4 Scatter plots of the measured versus predicted a) soil carbon and b) Log 

(WDPT) calibration and cross-validation PLSR models. 

Topsoil carbon prediction accuracy levels acquired within the used soil dataset are 

comparable with previous studies that used Hyperion data (Chapter 1; Table 1-1). Using a dataset of 

over 700 data points, Castaldi et al., (2016) evaluated the prediction capabilities of soil C using 

simulated Hyperion spectra. The result from this simulation showed poor prediction capabilities with 

the used dataset (R2
v=0.27; RMSEv=0.46, RPD=1.23). The present result showed relatively higher 

prediction accuracy compared to this study (R2
v=0.47; RMSEv=1.96, RPD=1.31), but lower accuracy 

compared to numerous studies that reported intermediate to high accuracies for soil C (e.g. Gomez 

et al., 2008; Minu et al., 2017; Peón et al., 2017; T. Zhang et al., 2013). In terms of comparison with 

multispectral data, Hyperion models showed similar accuracy for soil C prediction compared to the 

PLSR model developed using Landsat-7 in Chapter 5 (R2
v=0.50; RMSEv=2.58, RPD=1.40). Although 

hyperspectral data supposedly provides better performance compared to multispectral broadband 

data, Castaldi et al., (2014) found no remarkable difference between the Advanced land imager (ALI) 

multispectral broadband data and Hyperion narrowband data, for soil C prediction. The authors 

speculated that this could be attributed to the low signal to noise ratio of the Hyperion sensor, 

particularly in the SWIR region which is highly important for soil C estimation. Another reason for this 

drop in accuracy for soil C would be the atmospheric effect (Goetz et al., 2002). The lack of 

atmospheric correction may have an impact on the quality of the multispectral data in the present 

study.  

Prediction capability for water repellency persistence of model developed with Hyperion 

(R2
v=0.78; RMSEv=0.54, RPD=5.73) had higher prediction capability than the best performance of 

multispectral PLSR models (Sentinel-2; R2
v=0.44; RMSEv=0.98, RPD=1.32) developed in Chapter 5. This 

is highly likely attributed to the capabilities of hyperspectral data to exploit the higher spectral 

resolution in accomodating soil water repellency. The clear contribution of both VIS, NIR, and SWIR 

specific bands in assisting SWR prediction suggest that key soil chromophores have an important 

influence on SWR. Topsoil reflectance bands around 426 nm and 752 nm importance indicated that 

kye colour compounds contribute to the estimation of water repellency persistence. Kim, I. et al., 

2014 who used lab spectra to assess water repellency levels reported that wavelengths around 447, 

622, and 670 nm have large coefficients for SWR severity (MED test). The change in visible bands 

reflectance can be related to key soil properties such as organic C, iron oxides, clay minerals (Rossel 

& Behrens, 2010). The important NIR bands in Log (WDPT) estimation were 1487, 1487, 1981, 2012, 

2375 nm. These bands are quite similar to the lab spectra coefficient for MED estimation from Kim, I. 

et al., (2014) who reported a high importance at 1364, 1765, 1936, 2167, 2381, and 2356 nm. 

Radiation absorbance at 1487 and 1981 nm were attributed to O-H bonds groups. The bands around 
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2012 nm were attributed to absorption by organic compounds, clay and polysaccharides by Rossel & 

Behrens, (2010). They specifically identified 2307–2496 nm to be related to methyls (C-H) and 2381 

nm to be related to carbohydrates (C-O). The wavelength 2200-2300 nm were reported to have high 

absorbance by phenolic O-H and aliphatic C-H compounds (Cozzolino & Moron, 2003). We suggest 

that these compounds have contributed to the prediction of SWR persistence in the present study. 

6.6 Conclusion  

Soil reflectance data from different satellite sensors showed important potential for predicting 

multiples soil properties. The present studies revealed that Hyperion sensor data allowed reliable 

prediction of water repellency persistence in permanent pastors. Training and cross-validating PLSR 

models using hyperspectral radiance from Hyperion and measured SWR and soil C as inputs yielded a 

high accuracy model for SWR and but low accuracy for soil C. For water repellency persistence, the 

PLSR model had an R2
v=0.78 and RMSEv=0.54. Topsoil carbon had an R2

v=0.47 and RMSEv=1.96. 

However, calibration models had an R2
v=0.90 and RMSEv=0.81 indicating the possibility of 

improvement for bigger datasets. Variables importance analysis of the PLSR showed that many 

wavebands were related to water repellency persistence in VIS and NIR spectrum. The present 

results demonstrated the feasibility of estimating topsoil water repellency persistence using satellite 

hyperspectral data. The increasing availability of hyperspectral data from current and future space 

sensors will allow larger surface coverage providing unprecedented opportunities for mapping water 

repellency at the farm to regional scales.  
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Chapter 7                                                                                            

Summary  

The present thesis attempted to 1) model the relationship between SWR persistence and soil 

moisture in drying hydrophobic soils; 2) investigate the effect of SWR on surface water runoff and 

phosphorus losses in surface runoff; and 3) testing for the first time the assessment and map SWR in 

permanent pastures using remote sensing data from multiple satellites using multiple approaches. 

The relationship between soil water repellency persistence and soil moisture was assessed in air-

drying hydrophobic soils (Chapter 2). The actual soil water repellency persistence increased with 

decreasing water content in sigmoidal patterns. We suggested a simple sigmoidal equation to model 

the actual repellency persistence as a function of soil moisture, the potential repellency and two 

curve shape parameters. The potential water repellency was controlled by soil carbon and soil 

texture in the pastoral soils investigated in this study. The suggested model can be used to simulate 

the evolution of water repellency in drying soils. Thus, the actual water repellency spatial dynamics 

could be estimated in real-time in dry seasons using i) available soils moisture data and ii) the 

potential SWR data which in turn could be estimated using the remote sensing approaches tested in 

Chapters 4, 5, and 6. The results provide an unprecedented opportunity for mapping the 

spatiotemporal dynamics of SWR at the farm and regional scales.  

In terms of the environmental impact of soil water repellency, surface runoff and phosphorus 

losses in surface runoff we measured in a field trial in hydrophobic and wettable soils during post-

summer rainfall event; when water repellency is in full swing (Chapter 3). The surface runoff 

engendered at the post-summer period was considerably higher in hydrophobic soils compared to 

wettable soils. The P loads in the first runoff following phosphorus application accounted for more 

than 90 % of the total losses in the summer-autumn period. These first loads after phosphorus 

application, which are considered incidental losses, are mainly controlled by the amount and the 

solubility of the fertiliser per se. Still, a strong liaison has been observed between phosphorus loads 

and water repellency beyond the incidental losses period (background losses). This was the first 

evidence from a pastoral trial implicating SWR on non-incidental phosphorus losses in surface runoff. 

The results provide new insight into the implication of SWR in phosphorus losses dynamics in 

pastoral ecosystems. This understanding is indispensable for modelling and quantification of 

phosphorus losses dynamics in hydrophobic losses.  

The first remote sensing approach implemented in this thesis consists of the use of temporal 

dynamics of surface biomass estimated through NDVI and water deficit time series as predictors of 
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SWR occurrence in permanent pastures and topsoil carbon content. Assuming that the occurrence of 

water repellency is controlled by the cycling of hydrophobic compounds within the soil carbon pool. 

The surface biomass, which is mainly controlled by the management and climate (e.g. rainfall), plays 

a vital role in the cycling of these compounds. The approach adopted in Chapter 5 aimed to 

understand how surface biomass, soil moisture and their temporal dynamics affect soil water 

repellency occurrence and topsoil carbon contents permanent pastures. This novel method bypasses 

the need for the topsoil surface reflectance data to estimate the studied properties. The studied soil 

attributes are the results of the temporal dynamic of climate and agricultural practices directly 

impacting surface biomass (e.g., grazing). To test this approach, machine learning algorithms were 

trained and validated on measurement of soil water repellency from 58 sites, and time-series of 

remote sensing, and water deficit. Random forest algorithm showed the strong capability of 

predicting the persistence of SWR and soil C levels using these time series data. Prediction models 

were used to generate the first soil water repellency map in Hawke’s Bay region, New Zealand. The 

next step of this research would be the improvement of these maps using larger ground truth 

datasets. The suggested approach would also help monitor long term carbon stocks changes in 

pastures. To achieve this, longer remote sensing time-series should be tested (ten to twenty years) 

should be used (e.g. Landsat-7); and measurements of soil carbon stock (e.g. at one-metre depth) 

long term evolution could be used. The advances in computation power and the tremendous amount 

of remote sensing data allow unmatched possibilities for assessing not only SWR and soil carbon, but 

also additional properties such as soil fertility, microbial communities, and carbon stocks long term 

changes. 

This thesis provides the first evaluation of the multispectral topsoil reflectance from satellites 

such as Sentinel-2 and Landsat-7 (Chapter 4) and hyperspectral data from Hyperion sensor (Chapter 

6) for water repellency and soil carbon estimation in permanent pastures. Results showed that soil 

carbon can be predicted with intermediate accuracy using Landsat-7 spectra, while water repellency 

showed a lower prediction accuracy using Sentinel-2. Hyperspectral data from the Hyperion sensor 

provided a better prediction accuracy for topsoil water repellency prediction compared to 

multispectral data. With the overwhelming accessibility of multispectral and hyperspectral satellite 

data, the suggested methodology could help to ameliorate the accuracy and the spatial resolution of 

the existing soil carbon inventories in permanent pastures. Larger soil water repellency measured 

datasets could improve the prediction models’ accuracy for soil water repellency, and thus provide 

an additional layer consisting of water repellency spatial dynamics to the current soil inventories. The 

soil water repellency spatial data is indispensable for guiding the remediation strategies and 

attenuating the impact of soil water repellency on environmental services. 
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