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A B S T R A C T

The wine business relies heavily on wine quality certification. The excellence of New Zealand Pinot noir wines
is well-known worldwide. Our major goal in this research is to predict wine quality by generating synthetic
data and construct a machine learning model based on this synthetic data and available experimental data
collected from different and diverse regions across New Zealand. We utilised 18 Pinot noir wine samples
with 54 different characteristics (7 physiochemical and 47 chemical features). We generated 1381 samples
from 12 original samples using the SMOTE method, and six samples were preserved for model testing. The
findings were compared using four distinct feature selection approaches. Important attributes (referred as
essential variables) that were shown to be relevant in at least three feature selection methods were utilised
to predict wine quality. Seven machine learning algorithms were trained and tested on a holdout original
sample. Adaptive Boosting (AdaBoost) classifier showed 100% accuracy when trained and evaluated without
feature selection, with feature selection (XGB), and with essential variables (features found important in at
least three feature selection methods). In the presence of essential variables, the Random Forest (RF) classifier
performance was increased.
. Introduction

Pinot noir wines feature scents of game, leather, mushroom/vegetal,
iolets, cherry, plum, and raspberry and are light red wines (Lecat &
hapuis, 2017). New Zealand, Australia, the United States, Switzerland,
nd Romania are among the countries that make Pinot noir wines
Baird et al., 2018). Pinot noir cultivation is considerably more complex
han that of other grape types due to its particular soil needs and
emand for a chilly environment. Pinot noir grapes do not appreciate
eep, rich soil; instead, they prefer soil with sand deposits and fissures.
inot noir also has the earliest bud break and harvest dates, which
eans winemakers must be extra cautious since their vines are more

usceptible to spring frosts. Pinot noir grapes with a low yield and tiny
ruit size are used to make high-quality wines (Martin et al., 2020). The
rape clusters should be small to produce high-quality Pinot noir. The
lavours will be diluted if there is too much water in the mix. Growers
ry to solve these problems by keeping an eye on the water supply and
lanting in low-nutrient soil so that the vines produce fewer bunches.
inemakers also trim their vines to avoid the overproduction of grapes,

edirecting water and nutrients to the remaining grapes (Aipperspach
t al., 2020).
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endy.parr@lincoln.ac.nz (W. Parr), Don.kulasiri@lincoln.ac.nz (D. Kulasiri).

Pinot noir is a genetically complicated grape that is susceptible to
point mutations, which can result in the production of different clones,
even on the same plant. There are a total of 40 Pinot noir clones
that have been identified. 15 of them are recognised for producing
higher-quality grapes. The temperature, the soil, and the winegrower’s
objective all have a role in clone selection. In Pinot noir vineyards, it is
not uncommon to discover one or more vines with a single branch on
the same plant that has distinct characteristics (Richter et al., 2020).
If all buds of the newly suspected clone have the same characteristics
as the original shoot after mutation, it might be termed a new variety
of Pinot noir. Pinot noir has given rise to grape varietals such as
Pinot Gris, Pinot Franc, and Meunier. Differences in fruit colour, fruit
flavours, and wine smells are all noticeable (Jones et al., 2014).

New Zealand Pinot noirs are well-known across the world. The
South Island of New Zealand produces the majority of New Zealand
Pinot noir. The primary regions for Pinot noir production are Marl-
borough, Nelson, Canterbury/Waipara Valley, and Central Otago. After
1990, the number of winegrowers growing Pinot noir grapes in New
Zealand grew. Pinot noir wine’s output in New Zealand reached to
a new height in 2019, surpassing Sauvignon Blanc (Samoticha et al.,
2017; Sousa et al., 2014; Waterhouse et al., 2016).
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Fig. 1. Complete workflow diagram.
Wine quality is one of the most significant issues in the wine
ndustry. Quality is defined by the person who defines it, regardless
f whether they are an expert or not. Experts offer a unique viewpoint
n wine quality due to their deep understanding of wine production,
articularly the chemical composition of wine. Non-experts, on the
ther hand, are more likely to describe wine quality in terms of price,
resentation, and provenance. The fragrance and flavour qualities of
he wine have a big role in its quality (Waterhouse et al., 2016).

The chemical makeup of the wine determines the wine’s flavour,
ragrance, colour, and other characteristics (Sousa et al., 2014; Wa-
erhouse et al., 2016). The chemical composition is influenced by
he grape type, environmental circumstances, microbial strains present
uring fermentation, and viticulture practises (Cortez et al., 2009). Due
o the presence of water, carbohydrates, phenols, volatile chemicals,
ldehyde, organic acids, nitrogenous compounds, minerals, and vita-
ins, the chemical makeup of the grape is complicated (Waterhouse

t al., 2016). Each chemical component has an impact on the wine’s
uality: volatile compounds give the wine its fragrance, while phenolic
ompounds give it its flavour (Sousa et al., 2014; Waterhouse et al.,
016). Physiochemical laboratory tests are used to describe wine char-
cteristics such as pH, alcohol content, total sulphur, and anthocyanin
evels, which are all important in wine quality certification (Cortez
t al., 2009).

Machine learning is a branch of artificial intelligence (AI) that has
een around since the 1950s and is now gaining traction (Samuel,
959). Modern computer technology has the ability to solve mathe-
atical equations that enable machine learning more efficient, which
as increased its appeal. The popularity of machine learning can also
e linked to the abundance of high-quality datasets to work with. This
mplies that it can provide correct interpretations to aid in the making
f important judgments. The quantity of research being performed in
he subject has quickly expanded, with the emergence of new subfields,
s a result of its growing application in many sectors (Samuel, 1959).
ethods in such disciplines are expanding and fading at a rapid rate,
hich implies that some published research, even within the previous
ecade, may be obsolete in current practise. Machine learning research
ocuses on utilising machine learning to address real-world problems
y breaking problems down into manageable chunks that may be
andled individually using one or more machine learning algorithms
2

(Samuel, 1959). Dahal and colleagues chose essential features that
affect wine quality using a variety of machine learning methods (Dahal
et al., 2021). The authors of this study employed 11 physiochemical
characteristics to create machine learning models for predicting red
wine quality (Dahal et al., 2021). Kumar et al. (2020) used data mining
methods to extract information on red wine quality from the UCL
machine learning repository. According to the authors, the SVM model
had a 67.25 percent accuracy, while Random Forest and Nave Bayes
had 65.83% and 55.91% accuracy respectively (Kumar et al., 2020).
Shaw et al. (2020) and Trivedi and Sehrawat (2018) did a comparison
of several classification algorithms and explained why some of the
classification algorithms produce more accurate findings as compared
to others (Shaw et al., 2020; Trivedi & Sehrawat, 2018). In a study
conducted by Lee and group (Lee et al., 2015) a decision tree classifier
is utilised to assess wine quality and in Mahima Gupta et al. (2020),
a machine learning model based on RF and KNN algorithm is built to
determine if the wine is good, average, or terrible (Mahima Gupta et al.,
2020).

The primary goal of this research is to predict wine quality using
machine learning techniques that include physio-chemical and chem-
ical characteristics. There are, however, certain difficulties involved
with this research project. The limited sample size is the most signifi-
cant issue we are attempting to overcome in this study. Obtaining huge
amounts of data in viticulture is extremely difficult and expensive, just
as it is in other experimental research. For this reason, we created
synthetic data that had a comparable characteristics to the original
data in order to solve this problem. Another issue to contend with is
the possibility of data leaking. Data leaking is defined as the exchange
of information across data sets during the pre-processing stage of a
program’s execution. For example, if we produce synthetic data from
all of the original samples and then divide the dataset into training
and testing datasets, we will get the desired results due to the passed
information during pre-processing stage. To resolve this issue, we pro-
duced synthetic instances from 12 samples and set aside six samples
for model testing. Third, we tackled the problem of a large number
of features (54 in this study), and applied several feature selection
techniques to resolve this issue. We compared the findings with 54
features, the top 10 features, and the six key features. Fig. 1 depicts
the workflow implementation that was employed in this study.



P. Bhardwaj, P. Tiwari, K. Olejar Jr et al. Machine Learning with Applications 8 (2022) 100261

d
a
l
d
k
a
r
h

2

b
C

Table 1
Descriptive statistics of Pinot noir samples.

Variables Count Mean Std Min 25% 50% 75% Max

Ethanol 18 13.85 0.64 12.26 13.54 13.97 14.28 14.78
pH 18 3.63 0.10 3.43 3.56 3.66 3.72 3.77
Acid 18 5.09 0.31 4.61 4.89 5.12 5.35 5.55
Sul 18 51.78 16.14 30.40 41.20 50.40 56.40 96.00
Sugar 18 0.47 0.22 0.23 0.32 0.44 0.53 1.17
Phenolics 18 1811.94 465.76 1057.63 1447.93 1790.48 2152.85 2581.20
Anthocyanin 18 66.16 25.58 17.51 53.62 67.72 80.29 118.81
Ethyl acetate 18 118 752.90 21 349.67 89 839.04 101 647.60 113 534.70 136 361.20 167 570.10
Ethyl 2-methylpropanoate 18 243.58 84.99 145.19 182.93 232.01 265.33 416.30
Ethyl butanoate 18 280.54 80.90 186.11 229.37 273.97 306.21 544.97
Ethyl 3-methylbutanoate 18 35.95 12.94 15.24 28.58 33.35 39.87 64.17
2-Methylpropan-1-ol 18 61 148.66 8743.97 36 696.52 56 818.85 60 666.13 67 206.51 74 067.52
3-Methylbutyl acetate 18 160.51 42.79 112.18 132.04 146.69 186.00 278.79
Ethyl pentanoate 18 1.47 0.52 0.93 1.11 1.25 1.82 2.78
3-Methylbutan-1-ol 18 174 224.50 29 671.59 141 578.20 152 023.80 165 589.50 181 570.90 238 397.10
Ethyl hexanoate 18 437.17 79.59 318.56 404.31 422.51 480.30 666.31
Hexyl Acetate 18 5.75 6.93 1.46 2.47 3.06 6.85 31.92
Ethyl 2-hydroxypropanoate 18 171 857.20 31 976.94 125 956.60 148 126.30 162 451.50 191 605.10 233 843.20
Hexan-1-ol 18 2104.15 431.73 1421.54 1809.08 2024.10 2255.13 3051.93
(E)-Hex-3-en-1-ol 18 77.02 13.39 48.96 69.40 75.54 81.10 102.30
Ethyl heptanoate 18 2.03 0.38 1.40 1.82 2.01 2.20 3.08
(Z)-Hex-3-en-1-ol 18 45.73 19.24 24.05 38.87 41.40 50.13 112.46
Heptan-1-ol 18 43.32 8.04 26.29 39.30 42.86 47.29 56.89
Ethyl octanoate 18 575.37 95.35 389.69 516.97 592.09 643.65 721.37
Benzaldehyde 18 50.02 150.88 0.17 4.10 15.49 18.13 652.25
Ethyl decanoate 18 274.82 101.55 65.77 207.85 262.42 341.44 461.80
2-Phenylethan-1-ol 18 36 241.13 18 696.78 23 003.95 25 283.02 30 544.65 37 095.61 101 412.60
2-Methylpropyl acetate 18 73.18 21.41 42.70 58.86 67.18 80.72 119.98
Ethyl 2-methylbutanoate 18 31.79 9.72 19.41 26.34 30.00 34.46 51.81
2-Methyl butyl acetate 18 253.65 71.87 163.10 207.33 229.23 287.98 462.34
(E)-Hex-2-en-1-ol 18 15.25 7.56 5.39 9.31 14.45 18.72 30.45
3,7-Dimethylocta-1,6-dien-3-ol 18 4.11 1.58 2.29 3.38 3.80 4.19 9.46
Octan-1-ol 18 67.24 16.12 31.74 57.51 67.77 77.57 99.13
3,7-Dimethyloct-6-en-1-ol 18 4.24 1.57 1.48 3.25 4.12 5.48 7.32
(2Z)-3,7-Dimethylocta-2,6-dien-1-ol 18 2.64 0.95 1.79 1.95 2.49 2.87 5.68
2-Phenethyl acetate 18 19.83 11.12 9.90 13.56 15.53 20.41 55.35
(E)-1-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one 18 1.83 0.55 0.92 1.47 1.83 2.02 3.12
2-Methoxyphenol 18 10.76 3.36 6.43 8.42 10.25 12.23 19.43
(2E)-3,7-Dimethylocta-2,6-dien-1-ol 18 4.23 3.69 1.26 2.23 2.63 4.60 14.46
(E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-3-en-2-one 18 0.06 0.01 0.05 0.06 0.06 0.06 0.08
Ethyl 3-phenylpropanoate 18 1.31 0.64 0.53 0.85 1.03 1.67 3.11
(E)-4-(2,6,6-Trimethylcyclohexen-1-yl)but-3-en-2-one 18 1.36 0.10 1.19 1.28 1.38 1.42 1.54
Phenol 18 8.23 2.01 5.95 6.72 7.62 9.29 13.01
4-Ethyl-2-methoxyphenol 18 14.03 32.87 0.58 0.93 1.29 4.19 108.14
Ethyl (E)-3-phenylprop-2-enoate 18 3.77 2.72 1.23 2.01 2.40 5.05 11.13
2-Methoxy-4-prop-2-enylphenol 18 24.19 3.92 18.94 21.68 22.87 25.61 32.97
Methyl-2-aminobenzoate 18 3.84 1.40 1.33 2.97 3.55 5.11 6.18
Acetic acid 18 620 964.60 102 939.80 451 071.70 555 058.10 594 726.70 698 778.20 864 620.60
2-Methylpropanoic acid 18 1898.17 669.77 1227.35 1416.90 1854.85 2092.09 4175.82
Butanoic acid 18 1112.33 285.60 817.81 955.31 1032.99 1170.22 2120.86
3-Methylbutanoic acid 18 507.61 156.70 337.64 427.41 471.26 546.36 1007.49
2-Methylbutanoic acid 18 472.08 154.77 324.86 374.39 441.34 511.77 976.44
Hexanoic acid 18 1564.66 338.33 1160.88 1377.56 1493.16 1679.11 2681.09
Octanoic acid 18 1615.97 264.41 1157.90 1431.17 1587.47 1732.62 2099.87
Quality 18 5.74 5.32 4.72 5.45 5.81 6.09 6.55
The rest of the paper is organised as follows: Section 2 explains the
ata used in this study and gives a brief introduction of the methods
pplied. The results obtained from statistical analysis and machine
earning process are elucidated in Section 3 with a comparative study of
ifferent algorithms. Section 4 summarises all the results and discusses
ey aspects of using this approach. Key findings of relevant articles
re discussed in this section and significant outcomes of the current
esearch are validated with the existing literature. The last section
ighlights the conclusion and future directions.

. Material and methods

All the analysis in this study was performed using the Spyder note-
ook, Python version 3.7, 8 GB RAM, and Intel(R) Core(TM) i5-7200U
PU.
3

2.1. Data acquisition

As part of a larger research program to examine links between
composition and wine quality in New Zealand Pinot noir (NZW, 2018),
18 wines were selected to be representative of current production prac-
tices. The wines chosen were from different producers from different
regions within New Zealand: Nelson, North Canterbury, Wairarapa,
central Otago and Marlborough. Of the 18 bottles, 15 were from the
2016 vintage; the remaining three were from 2013. Six bottles involved
in this study were considered to be of commercial quality, while the
remaining 12 bottles were considered premium. The wines varied in
terms of their price, from NZD 13 to NZD 140 per bottle. Seventeen
of the bottles had screw caps and the remaining one had corks (see
Table 1). The grapes harvested for the premium wines were done
by hand, a process which generally results in a much lower yield.



P. Bhardwaj, P. Tiwari, K. Olejar Jr et al. Machine Learning with Applications 8 (2022) 100261

G
i

Z
(
v
S
w
o

s
1
o
3
q

p
f
w
t
e
P
u
q
v
2
w
c
I
s
p
v
w

2

m
l
T
S
s
a
i

m

Fig. 2. Expert quality indices (at a 10 point scale) for each of the Pinot noir bottles from 18 different vineyards.
𝑥

c
s
s
b

rapes for commercial use were harvested using machines, resulting
n moderate to high yields.

This study examined chemical and physicochemical data from New
ealand Pinot noir wines. There were 54 features in the 18 samples
Wairarapa; Marlborough; Nelson; North Canterbury; Central Otago),
intage (2016; 2013), The quality of the wine was the main focus.
even of the 54 characteristics are connected to physiochemical data,
hile the other 47 are related to chemical data. Descriptive statistics
f data is mentioned in Table 1.

The quality of the 18 samples was assessed by 22 wine experts
eparately, as shown in Fig. 2. The experts average experience was
8.2 years (range 3–40 years), and the majority of the participants were
enologists and winemakers, with an average age of 42.7 years (range
3–62). For this wine data, a sensory analysis for perception of wine
uality and complexity was done (Parr et al., 2020)

This research built on previous work on wine quality by including
erceptions of red wine complexity (Parr et al., 2020). Important
actors and the relationship between perceived quality and complexity
ere established by the researchers in this study. To further understand

he intrinsic, chemosensory wine characteristics that influence wine
xperts perceptions of quality, complexity, and varietal typicality in
inot noir wines, a tasting research involving wine professionals was
ndertaken (Parr et al., 2020). The influence of glass colour on wine
uality, complexity, and intensity was investigated using analysis of
ariance with R packages at a 5% level of significance (Parr et al., 2020,
011). Tannin complexity and harshness, bitterness, and astringency
ere shown to be negatively associated, but softness was favourably

orrelated in the black glass condition (not in the clear glass condition).
n the transparent glass, the correlation coefficient for fruit and floral
mells was greater (not in the black glass condition). The study sur-
risingly concluded that for New Zealand Pinot noir wines, perceived
arietal typicality, wine quality, and complexity are all intertwined for
ine experts

.2. Data augmentation and data pre-processing

There are just 18 samples in the raw data, which is insufficient for
achine learning analysis. To produce enough samples for machine

earning training, we employed the Synthetic Minority over Sampling
echnique (SMOTE). We split our dataset into two pieces before using
MOTE. One dataset had 12 samples, which was utilised to create
ynthetic samples, while the remaining six samples were placed aside as
testing dataset for subsequent evaluation of machine learning models

n order to protect data leakage.
The SMOTE method is typically used to balance data by creating
inority class samples that may be matched against the majority class t

4

(Chawla et al., 2002). If a dataset contains 1000 samples, 600 of
which are red wine and 400 of which are white wine, white wine is
the minority class while red wine is the dominant class, for example.
However, in our study, the situation is different: we received a total of
18 samples, all of which were Pinot noir wines, therefore we made a
few assumptions to produce synthetic data:

• In the beginning, we created a dummy data set with 1400 rows
and 55 columns in the excel spreadsheet. These 55 columns
contains physiochemical, chemical and wine quality information.
First 12 rows of this dataset are belong to the original samples
and remaining 1388 rows contains value 0 which we inserted
manually. Now, we add another column to the data and named
as class column. First 12 rows were considered as class 0 and
remaining rows containing value 0 were considered as class 1.
Now, class 0 is the minority class because of the less samples than
the class 1 (1388 samples). Next, we use this dataset for data
generation using SMOTE. After applying SMOTE to the dummy
dataset, we removed the class column and all the rows containing
value 0. At this stage, we have total 1381 rows and 55 columns
in which last column is related to the wine quality, hence we
encoded the wine quality with 0 (less and equal to 5.77) and 1
(greater than 5.77). At this stage, after encoding we have 1381
samples with 54 independent variables, 1 dependent variable
(wine quality). Out of 1381 samples, 770 samples were associated
with class 0 and remaining with class 1. This dataset was used in
the training of the machine learning models

• The SMOTE algorithm utilises the KNN method to generate new
samples by setting the minority class as set A. For each 𝑥 ∈
𝐴, 𝑘 the nearest neighbours (𝑥′) were attained by calculating
the Euclidian distance between 𝑥 and every other sample in 𝐴.
Similarly, for each 𝑥 ∈ 𝐴, 𝑁 (the sampling rate) was randomly
selected from its KNN and they construct a new minority class
set 𝐴1 equivalent to majority class. The formula outlined below
in Eq. (1) explains how we generated the new samples. Here rand
(0,1) represents random numbers, with values between 0 and 1
(Shrivastava et al., 2020).

′ = 𝑥 + 𝑟𝑎𝑛𝑑 (0, 1) ∗ |𝑥 − 𝑥𝑘| (1)

Generation of synthetic data is imperative for achieving good classifi-
ation results with machine learning. However, confirming distribution
imilarity between synthetic and original data is also important. We
upposed the null hypothesis that there is no significant difference
etween both samples, we performed Kolmogorov–Smirnov two sample

est on raw and SMOTE dataset and calculated critical value and
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(
k
W
f
m

W
u
c
i
p
T
n
G
q
p

t
b
p
t
e
i
r
t
f
a
a
T
o
l
E
s

w
m

statistic score. Test statistic 𝐷 is defined in the Eq. (2), where 𝐸1 and
2 are two empirical distribution functions for two samples. On the
ther hand, Eq. (3) is the critical value formula in which 𝛼 is the level

of significance, 𝑐(𝛼) is the coefficient, and 𝑛1 (raw dataset-12 samples),
𝑛2 (SMOTE dataset-1381 samples) represents the size of the dataset.
For this study, level of significance value was set to 0.05 and based
on that, coefficient value was taken as 1.36. Overall, statistic score
after comparing each feature with both datasets was found lesser than
the critical value (0.3). Based on the results we can conclude that
both datasets follow the same statistical characteristics and probability
distributions as shown in Fig. 3.

𝐷 = |𝐸1 (𝑘) − 𝐸2 (𝑘) | (2)

𝐷𝛼 = 𝑐(𝛼)

√

𝑛1 + 𝑛2
𝑛1𝑛2

(3)

he descriptive analysis of synthetic data is shown in Table 2. Table 2
hows a total of 1387 samples; however, six of these samples are from
he original data and were not included in the data creation.

Data pre-processing plays a vital role in machine learning and can
nfluence the performance of a classifier or machine learning algo-
ithms. Hence, we checked all the SMOTE data subject to machine
earning analysis for any null values. We later scaled the data using
he standard scaling method.

.3. Feature selection and machine learning analysis

A huge amount of input parameters of induction algorithms can
ometimes make them inefficient and can consume large memory
nd/or time, if not completely used. In addition, irrelevant data may
erplex algorithms, causing them to draw incorrect inferences and so
rovide poor outcomes. Benefits of feature selection include improved
omprehension and cheaper data gathering and handling expenses.
ecause of these benefits, feature selection gained a lot of attention
rom the Machine Learning and Data Mining fields, and a lot of
pproaches have been created (Arauzo-Azofra et al., 2011). Extra
rees classifier, Gradient boosting classifier, Extreme gradient boosting
 r

5

XGB), and Random forest (RF) classifier are some of the most well-
nown examples of feature selection algorithms (explained below).
e utilised these four approaches in this study to identify the top 10

eatures out of 54 features and then used the retrieved features for
achine learning analysis.

We applied machine learning techniques to estimate wine quality.
e classified this problem as a binary classification problem. We

tilised newly produced data (1381) for training the machine learning
lassifiers, and six samples put aside as testing samples (explained
n Section 2.2) were used to assess the classifiers performance in
redicting wine quality. Support vector machine (SVM), RF, Decision
ree Classifier (DTC), Gaussian Naive Bayes (GNB), XGB, K closest
eighbour (KNN), Adaptive Boosting (AdaBoost), and the Stochastic
radient Decision Classifier (SGDC) were all employed to predict wine
uality. All the machine learning classifiers were used with their default
arameters.

Extra trees classifier builds a set of unpruned decision trees using
he standard top-down technique. It includes substantially randomising
oth attribute and cut-point selection while splitting a tree node. It
roduces totally randomised trees with topologies independent of the
raining sample’s output values. It differs from previous tree-based
nsemble techniques in two ways: it divides nodes at random and
t grows trees from the entire training sample (not just a bootstrap
eplica) (Ampomah et al., 2020). The majority of the trees projec-
ions determine the final forecast. Extra-trees classifier assumes that
ull randomisation of cut-point and attribute, along with ensemble
veraging, reduces variance better than previous techniques. Using
ll original training data rather than bootstrap copies reduces bias.
his algorithm’s computational efficiency is a big plus. Similar to the
ther algorithms, Extra trees has a wide range of applications in the
iterature. For example, a multi-layer intrusion detection system with
xtra trees feature selection, extreme learning machine ensemble, and
oftmax aggregation (Ampomah et al., 2020).

Gradient boosting (GB) builds new models from an ensemble of
eak models, aiming to minimise the loss function. Gradient descent
easures this loss function. Using the loss function improves the accu-

acy of each new model and hence the overall accuracy. Boosting must
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Table 2
Descriptive analysis of synthetic data.

Variables Count Mean Std Min 25% 50% 75% Max

Ethanol 1387 13.60 0.55 12.26 13.32 13.69 13.97 14.78
pH 1387 3.64 0.08 3.43 3.58 3.64 3.71 3.77
Acid 1387 5.00 0.23 4.61 4.80 5.04 5.16 5.55
Sulphur 1387 57.65 15.03 30.40 47.55 53.84 67.45 96.00
Sugar 1387 0.43 0.11 0.23 0.35 0.43 0.51 1.17
Phenolics 1387 1712.33 347.59 1057.63 1435.58 1714.60 1951.11 2581.20
Anthocyanin 1387 74.53 18.09 17.51 65.06 74.97 84.40 118.81
Ethyl acetate 1387 115 503.50 13 714.08 89 839.04 104 551.10 114 568.30 124 683.80 167 570.10
Ethyl 2-methylpropanoate 1387 248.12 58.93 145.19 207.89 232.69 267.48 416.30
Ethyl butanoate 1387 274.93 46.96 186.11 230.88 284.33 314.61 544.97
Ethyl 3-methylbutanoate 1387 35.97 10.12 15.24 30.17 32.94 40.37 64.17
2-Methylpropan-1-ol 1387 60 140.85 6853.98 36 696.52 56 915.75 59 604.11 64 667.22 74 067.52
3-Methylbutyl acetate 1387 159.49 34.82 112.18 133.95 149.08 176.74 278.79
Ethyl pentanoate 1387 1.47 0.43 0.93 1.14 1.30 1.75 2.78
3-Methylbutan-1-ol 1387 169 601.00 22 046.35 141 578.20 155 234.90 164 699.50 173 911.80 238 397.10
Ethyl hexanoate 1387 434.38 51.47 318.56 407.52 435.78 474.98 666.31
Hexyl Acetate 1387 6.34 5.95 1.46 2.85 4.69 6.85 31.92
Ethyl 2-hydroxypropanoate 1387 173 244.10 26 046.88 125 956.60 155 583.70 170 629.30 188 505.70 233 843.20
Hexan-1-ol 1387 2011.52 281.30 1421.54 1822.10 1976.03 2155.83 3051.93
(E)-Hex-3-en-1-ol 1387 74.46 6.79 48.96 69.87 73.76 77.07 102.30
Ethyl heptanoate 1387 2.05 0.31 1.40 1.89 2.03 2.18 3.08
(Z)-Hex-3-en-1-ol 1387 45.21 16.13 24.05 36.23 41.01 49.90 112.46
Heptan-1-ol 1387 42.92 6.58 26.29 39.29 42.70 46.75 56.89
Ethyl octanoate 1387 594.07 75.75 389.69 538.81 612.63 651.49 721.37
Benzaldehyde 1387 54.23 119.97 0.17 9.90 17.36 30.67 652.25
Ethyl decanoate 1387 279.99 79.78 65.77 225.64 275.47 333.27 461.80
2-Phenylethan-1-ol 1387 36 074.59 16 349.97 23 003.95 25 856.52 30 267.84 38 996.51 101 412.60
2-Methylpropyl acetate 1387 69.97 14.62 42.70 59.99 65.38 77.25 119.98
Ethyl 2-methylbutanoate 1387 32.25 7.52 19.41 27.06 31.11 35.64 51.81
2-Methyl butyl acetate 1387 252.41 59.06 163.10 214.96 235.34 273.94 462.34
(E)-Hex-2-en-1-ol 1387 14.55 6.52 5.39 9.00 13.69 18.64 30.45
3,7-Dimethylocta-1,6-dien-3-ol 1387 4.04 1.32 2.29 3.35 3.71 4.29 9.46
Octan-1-ol 1387 69.25 13.29 31.74 60.65 69.88 78.72 99.13
3,7-Dimethyloct-6-en-1-ol 1387 4.36 1.15 1.48 3.56 4.37 5.10 7.32
(2Z)-3,7-Dimethylocta-2,6-dien-1-ol 1387 2.76 0.80 1.79 2.16 2.57 3.07 5.68
2-Phenethyl acetate 1387 19.76 9.02 9.90 14.30 16.09 21.07 55.35
(E)-1-(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)but-2-en-1-one 1387 1.74 0.34 0.92 1.52 1.71 1.94 3.12
2-Methoxyphenol 1387 10.45 2.31 6.43 8.79 10.28 11.85 19.43
(2E)-3,7-Dimethylocta-2,6-dien-1-ol 1387 4.19 2.87 1.26 2.25 2.94 5.12 14.46
(E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl)but-3-en-2-one 1387 0.06 0.01 0.05 0.05 0.06 0.06 0.08
Ethyl 3-phenylpropanoate 1387 1.17 0.32 0.53 0.92 1.07 1.39 3.11
(E)-4-(2,6,6-Trimethylcyclohexen-1-yl)but-3-en-2-one 1387 1.35 0.08 1.19 1.28 1.35 1.40 1.54
Phenol 1387 8.49 1.77 5.95 7.08 8.06 9.67 13.01
4-Ethyl-2-methoxyphenol 1387 20.88 29.85 0.58 1.31 3.87 31.62 108.14
Ethyl (E)-3-phenylprop-2-enoate 1387 3.38 1.62 1.23 2.19 2.71 4.27 11.13
2-Methoxy-4-prop-2-enylphenol 1387 24.44 3.35 18.94 21.78 24.05 26.52 32.97
Methyl-2-aminobenzoate 1387 3.86 1.06 1.33 3.17 3.93 4.53 6.18
Acetic acid 1387 613 894.70 87 132.37 451 071.70 560 466.00 594 752.20 656 922.70 864 620.60
2-Methylpropanoic acid 1387 1938.15 519.42 1227.35 1651.10 1845.85 2022.50 4175.82
Butanoic acid 1387 1086.77 131.94 817.81 970.89 1102.42 1195.19 2120.86
3-Methylbutanoic acid 1387 508.14 123.75 337.64 433.61 477.70 538.66 1007.49
2-Methylbutanoic acid 1387 474.52 130.38 324.86 385.95 434.34 518.26 976.44
Hexanoic acid 1387 1536.17 176.46 1160.88 1417.48 1531.71 1673.72 2681.09
Octanoic acid 1387 1656.40 185.61 1157.90 1537.93 1665.49 1772.94 2099.87

Std = Standard Deviation, Min = Minimum, Max = Maximum.
𝐾
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be discontinued eventually or the model will overfit. The terminating
criteria might be a prediction accuracy level or a model count barrier
(Rahman et al., 2020) .

A support vector machine works by finding natural splits in the data
that allow the largest consistent margin from the path of the chosen
function. A support vector machine has more flexibility because it can
implement different kernels to change the type of discriminating func-
tion. Kernels define how the support vector machine should separate
the data. While a linear kernel tries to separate the data using a straight
line (similar to logistic regression), a Gaussian kernel allows for more
complex, organic data trends to be separated. To use a support vector
machine for multiclass classification, a researcher needs to implement
a one vs all methodology. Eq. (4) explains how kernel (𝐾) works. Here
𝑥 and 𝑦 demonstrate the 𝑛 -dimensional inputs, and f defines the map
rom the n dimensional space to m dimension space (n is smaller than
6

m) and ⟨𝑥, 𝑦⟩ defines the dot product.

(𝑥, 𝑦) = ⟨𝑓 (𝑥), 𝑓 (𝑦)⟩ (4)

NB relies on the Bayes theorem by assessing the probability of an
vent occurring from the probability of a different event that has
lready occurred. Eq. (5) represents the mathematics behind the Bayes
heorem. Using event 𝐵 as evidence, it attempts to find the probability
f event 𝐴 occurring. 𝑃 (𝐴) denotes the prior probability in the absence
f evidence. 𝑃 (𝐴|𝐵) is called the posteriori probability of B in the
resence of evidence (Fahidy, 2011).

(𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
(5)

SGDC represents a process or system that is linked with random possi-
bility. In this approach, a few samples from a dataset were randomly
chosen for each iteration (Yune et al., 2019). A gradient for each
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iteration was calculated using a single sample. In traditional gradient
classifiers, such as batch gradient descent, the whole dataset is taken
to achieve less noisy minima. However, this process is computationally
expensive. SGDC can solve this problem due to the small batch size used
for each iteration. The stochastic optimisation method is the stochastic
gradient method (SG), where the (𝑘 + 1)th iterate is defined in Eq. (6).
Here, for all 𝑘 ∈ 𝑁 , the index 𝑖𝑘 is randomly chosen from {1, 2, . . . . . . ,
n} and 𝛼𝑘 is a positive step-size. While each direction ∇𝑓𝑖𝑘 (𝑤𝑘) might
not be one of descent from 𝑤𝑘, if it is a descent direction:

𝑤𝑘+1 ← 𝑤𝑘 − 𝛼𝑘∇𝑓𝑖𝑘 (𝑤𝑘) (6)

The KNN algorithm performs classification based on the nearest train-
ing examples in the feature space. The performance of KNN depends
on the K value and the distance metric applied, such as the Euclidean
distance (Eq. (7)) where n is the dimensional feature space and the
distance between 𝑥 and 𝑦 (Fahidy, 2011):

𝐸 (𝑥, 𝑦) =

√

√

√

√

𝑛
∑

𝑖=1

(

𝑥𝑖 − 𝑦𝑖
)2 (7)

RF is an ensemble of decision trees. It uses the bagging method. Bagging
is a machine learning ensemble meta-algorithm designed to improve
the stability of the model. It also reduces variance. Ensembles are a
divide and conquer approach used to improve performance. The main
principle behind ensemble methods is that a group of weak learners
can come together to form a strong learner. Each classifier is indi-
vidually a weak learner; however, when taken together, the classifiers
are strong learners. Ensemble methods thus reduce the variance and
improve model performance. RF implements extra randomness while
growing trees and searches for the best feature among a random set of
features (Géron, 2017). Eq. (8) shows that the RF classifier consists of
a compilation of tree-structured classifiers, where 𝜃𝑘 is the identically
istributed random vectors. Each tree casts a unit vote for the most
opular class at input 𝑥.

ℎ(𝑥, 𝜃𝑘), 𝑘 = 1} (8)

he XGB algorithm prevents overfitting by introducing regularisation
t 𝑘 time iteration 𝑅(𝑓𝑘) in the objective function (Eq. (9)) and 𝐶 is
onstant. Individually, 𝑅(𝑓𝑘) can be defined as in Eq. (10). Here, 𝛼
enotes the complexity of leaves, 𝐻 represents the number of leaves,
he output result of each node is defined by 𝑤𝑗 , and 𝜂 indicates the
enalty parameter (Liang et al., 2020).

=
𝑛
∑

𝑖=1
𝐿
(

𝑦𝑖, 𝐹
(

𝑥𝑖
))

+
𝑡

∑

𝑘=1
𝑅(𝑓𝑘) + 𝐶 (9)

𝑅
(

𝑓𝑘
)

= 𝛼𝐻 + 1
2
𝜂

𝐻
∑

𝑗=1
𝑤2

𝑗 (10)

XGB relies on the second-order Taylor series of the objective function
and when the mean square error is utilised as loss function, the objec-
tive function is defined. As shown in Eq. (11), 𝑞

(

𝑥𝑖
)

is the function that
ssigns data points. The sum of all loss values is used to calculate the
inal loss value (Eq. (12)). Here 𝑃𝑗 =

∑

𝑖𝜖𝐼𝑗
𝑝𝑖, 𝑄𝑗 =

∑

𝑖𝜖𝐼𝑗
𝑞𝑖, and 𝐼𝑗 is

he number of all the samples in leaf node j (Liang et al., 2020).

=
𝑛
∑

𝑖=1

[

𝑝𝑖𝑤𝑞(𝑥𝑖) +
1
2

(

𝑞𝑖𝑤
2
𝑞(𝑥𝑖)

)]

+ 𝛼𝐻 + 1
2
𝜂

𝐻
∑

𝑗=1
𝑤2

𝑗 (11)

𝑂 =
𝑇
∑

𝑗=1

[

𝑝𝑗𝑤𝑗 +
1
2
(𝑄𝑗 + 𝜂)𝑤2

𝑗

]

+ 𝛼𝐻 (12)

DTC is a structured tree that consists of three elements: decision nodes,
edges that correspond to different possible attributes, and leaves which
include objects that are similar or belong to the same class. Building
a decision tree involves starting with empty tree and selecting appro-
priate attributes for each decision node. The principle is to select the
attribute that maximally diminishes the mixture of classes between
 t

7

each training subset created by the test. The process continues for each
sub-decision tree until it reaches the leaves and fixes their correspond-
ing classes. To classify a new instance, when one only has the values
of all its attributes, one needs to start with the root of the constructed
tree and follow the path corresponding to the observed value of the
attribute in the interior node of the tree. We continued this process
until we encountered a leaf. Finally, we used the associated label to
obtain the predicted class value of the instance at hand (Jenhani et al.,
2008).

AdaBoost is basically used to boost the performance of decision trees
with the help of weak learners, also known as stumps, each with one
node and two leaves (Wang, 2012). AdaBoost combines various stumps
in order to accomplish classification. Every stump learns from the
previous stump’s mistakes. Every sample within the dataset is assigned
a sample weight. In the beginning, the sample weight will be the same
(Eq. (10)). Later, after creating the first stump, these weight will change
in order to direct how the next stump will be created.

𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 = 1
𝑇 𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

(13)

2.4. Model evaluation

The accuracy, precision, sensitivity, and specificity numbers, as well
as an F1 score and the ROC-AUC score, are all included in a classifica-
tion report. These scores can be used to assess the performance of a
model (Sidey-Gibbons & Sidey-Gibbons, 2019). The fraction of correct
predictions out of all guesses is referred to as accuracy (Eq. (14)).
(Bergstra & Bengio, 2012). Precision refers to a classifiers ability to
avoid labelling a negative instance as positive (Eq. (15)). The true
positive rate, also known as sensitivity/recall, is the model’s ability to
identify all positive events from the total of true positives and false
negatives (Eq. (16)) (Haury et al., 2011; Lai et al., 2006). The true
negative rate, also known as specificity, is the number of accurate neg-
ative class predictions out of all the negatives in the dataset (Eq. (17)).
The harmonic mean of accuracy is the F1 score. The number of actual
instances of the class in the provided dataset is referred to as recall and
support (Eq. (18)). Receiver Operating Characteristics – the area under
the curve (ROC-AUC) and the Precision–Recall curve score – were also
used to assess classification models. Apart from the evaluation measure
mentioned above, we also calculated the computational time in seconds
(during training and testing together) and memory usage by every
classifier.

Accuracy =
Number of correct predictions
Total number of predictions (14)

Precision = True Positives
True Positives + False Positives (15)

True positive rate∕Recall = True Positive
True Positives + False Negatives (16)

True negative rate =
True Negatives

True Negatives + False Positives (17)

F1 − measure = 2∗ Precision*Recall
Precision + Recall (18)

. Results

.1. Feature selection

Four methods (XGB, Extra trees classifier, RF and Gradient Boosting
lassifier) were implemented in order to attain top ten features out of
4 features (as shown in Fig. 4).

According to the findings, six features are extremely essential since
hey rank in the top 10 in at least three methods (from here onwards
e call them essential variables). Two variables (Ethyl octanoate and
-ethyl-2-methoxyphenol) out of six were determined to be signifi-
ant by all four methods (Fig. 4). According to the literature, ethyl
ctanoate is a member of the ester family and is responsible for
he sweet and fruity qualities of Pinot noir wine (Longo, Pearson
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Fig. 4. Features selection using RF, XGB, extra trees classifier and gradient boosting classifier.
et al., 2020). The relevance of ethyl octanoate in increasing the red
fruits fragrance of Pinot noir wine was discovered in a study done by
Tomasino and colleagues (Tomasino et al., 2015). Furthermore, 4-ethyl-
2-methoxyphenol belongs to the volatile phenol family and is respon-
sible for Pinot noir spicy and flowery qualities (Brizuela et al., 2017).
Remaining four variables, 2(Z)-3,7-Dimethylocta-2,6-dien-1-oL (Geran-
iol), ethyl-3-phenyl propanoate, 2(E)-3,7-Dimethyllocta-2,6-dien-1-ol
(Nerol), and (E)-4-(2,6,6-Trimethylcyclohex-2-en-1-yl) but-3-en-2-one
(𝛽-Ionone) were found significant in at least three selection methods.
Nerol belongs to the monoterpene family and gives Pinot noir its
caramel, apple-sweet, and flowery notes. Geranoil, is from the same
family as Nerol and gives Pinot noir a rose-like varietal flavour. On
the other hand, another member of the ester family, ethyl -3-phenyl
propanoate, was discovered to be important and add to the honey
qualities of Pinot noir (Longo, Carew et al., 2020). In addition, 𝛽-
onone, a 𝐶13 -Norisoprenoids member, was shown to be important. In
inot noir, this compound is responsible for the violet and black berry
otes (Longo, Pearson et al., 2020).

.2. Model learning analysis

We conducted machine learning analysis in six situations.

(i) Without any feature selection
(ii) Top ten features extracted using RF

(iii) Top ten features extracted using gradient boosting classifier
(iv) Top ten features extracted using extra trees classifier
(v) Top ten features extracted using XGB

(vi) Using essential variables

e performed machine learning analysis results with XGB-extracted
eatures and essential variables because machine learning models per-
ormed exceptionally well with these set of features. Results from
emaining scenarios have been demonstrated in the figures mentioned
n the supplementary section (S.Fig1-4, S.Table1-4).

To estimate wine quality (0 and 1), we utilised a total of seven
lgorithms. A total of 1387 samples were used (1381 samples for
raining and six samples for testing). Testing samples were set aside
rior to this stage to prevent data leakage. According to the findings
as shown in Fig. 5), the AdaBoost classifier obtained the maximum
8

Table 3
Classifiers performance with XGB features.

Classifiers Precision Recall F1 ROC_AUC MCC Time (s)

XGB 0.90 0.75 0.78 0.75 0.63 0.127
RF 0.90 0.75 0.78 0.75 0.63 0.52
GNB 0.38 0.38 0.33 0.375 −0.25 0
AdaBoost 1 1 1 1 1 0.31
SGD 0.90 0.75 0.78 0.75 0.63 0.003
SVM 0.90 0.75 0.78 0.75 0.63 0.018
DTC 0.50 0.5 0.49 0.5 0 0.01
KNN 0.90 0.75 0.78 0.75 0.63 0.008

accuracy of 100% utilising features derived from the XGB technique.
The GNB and DTC classifiers, on the other hand, underperformed,
with total accuracy of 33% and 50%, respectively. Furthermore, the
remaining four classifiers (SVM, KNN, RF, SGD) had an aggregate
accuracy of 83% in predicting wine quality.

Several evaluation metrics were explored in order to evaluate the
performance of machine learning models (Precision, Recall, F1 score,
ROC-AUC score and MCC score). According to the findings (Table 3),
AdaBoost received a perfect score of 1 for each of the assessing mea-
sures. Furthermore, XGB, RF, SVM, and KNN all performed similarly,
with precision of 0.90, recall of 0.75, F1 score of 0.78, ROC-AUC of
0.75, and MCC of 0.63. Moreover, in terms of computational time, RF
classifier took 0.52 s during training and testing phase followed by
AdaBoost classifier (0.31 s) (as shown in Table 3). In case of memory
usage, 211.4 to 211.6 mb memory was utilised by every classifier in
both training and testing phase.

Apart from using features from XGB method, we trained machine
models with essential features mentioned in Section 3.1 and the predict-
ing ability was tested using testing samples, and results were compared.
According to the findings, utilising essential features had no effect on
the performance of AdaBoost (100%), XGB (83%), SGD (83%), and
SVM (83%) (as shown in Fig. 6). The RF classifiers accuracy, on the
other hand, improved from 83% to 100%. Furthermore, DTC and GNB
both obtained an accuracy of 83 percent, compared to 50% and 33%,
respectively. Unlike others, KNN performance deteriorated, with an
overall accuracy of 67%.

According to the evaluating scores included in Table 3, implement-

ing essential features for model training, there was no difference in
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Fig. 5. Prediction accuracy of all classifiers on testing dataset using XGBOOST features for algorithm training.
Fig. 6. Classifiers performance with essential features.
Table 4
Classifiers performance with essential features.

Classifiers Precision Recall F1 ROC_AUC MCC Time (s)

XGB 0.83 0.88 0.83 0.875 0.70 0.06
RF 1 1 1 1 1 0.363
GNB 0.83 0.88 0.83 0.875 0.70 0.001
AdaBoost 1 1 1 1 1 0.18
SGD 0.83 0.88 0.83 0.875 0.70 0.002
SVM 0.83 0.88 0.83 0.875 0.70 0.011
DTC 0.90 0.75 0.78 0.75 0.63 0.008
KNN 0.62 0.62 0.62 0.625 0.25 0.004

the performance of the AdaBoost classifier. However, the RF classifier
received a perfect score of 1 for every evaluating metrics. In con-
trast, precision score of XGB, SGD, and SVM dropped to 0.83 from
0.90, however all other scores (Recall, F1, ROC AUC, MCC) improved.
Furthermore, the GNB and DTC classifiers improved significantly (as
shown in Table 4). In case of computational time during training and
testing, 0.001 to 0.363 s were spent by classifiers. On the other hand, in
terms of memory usage, all the classifiers used 101 to 103.6 mb during
training and testing phase each.

Post machine learning analysis in all scenarios, AdaBoost classifier
performed exceptionally well while using features extracted from XGB
method and also with essential variables. On the other hand, RF clas-
sifiers performance improved when trained and tested on the essential
variables.

4. Discussion

The present study is done to predict wine quality rating using
machine learning techniques. To achieve this goal, we implemented
9

various steps to prepare the data before subjecting it to machine
learning analysis. The generation of synthetic data played a crucial role
in this study, as there was limited raw data. It is almost impossible to
train and test machine learning models using such a small sample space.
Hence, we implemented a SMOTE algorithm (explained in Section 2.2)
using 12 samples and remaining samples were used for testing. We
introduced several features related scenarios in this study in order to
improve models performance. We tested machine learning model with-
out feature selection, feature selected using XGB, RF, gradient boosting,
extra trees classifier and essential variables (combination of features
from all four feature selection methods). We identified the AdaBoost
and RF classifier to be the best model for predicting wine quality after
completing model training and testing utilising diverse situations. By
boosting the accuracy of classifiers, we also demonstrated the relevance
of feature selection. We also showed that essential variables selected
from all four feature selection method had a favourable influence on
the models performance.

Because quality certification is so important in the wine business,
companies invest millions of dollars on research to develop improved
methods for predicting wine quality. Machine learning techniques are
being used to advance wine studies in recent years. A group of re-
searchers demonstrated the ability of SMOTE algorithm with machine
learning techniques to classify 4898 samples of Portugal white wine and
predicted the quality based on high, normal and poor wine (Hu et al.,
2016). For the same set of data, in a different study, a data mining
strategy is applied to extract the knowledge about raw wine data. In this
study, results are validated with the oenological theory (Cortez et al.,
2021). Authors found that volatile acidity has an adverse effect on
wine quality and also suggested that a balance between sweetness and
freshness for good wine is desirable (Cortez et al., 2021). Furthermore,
a Recursive Feature Elimination approach (RFE) is used to identify
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important features affecting wine quality and performance metrics are
obtained on the basis of non-linear decision tree classifiers (Aich et al.,
2018) . Results from a machine learning focused study (Gupta, 2018)
showed that neural network regression analysis successfully predicts
wine quality with an error rate of 0.195660. A recent research article
investigated the sensory profiles and colour of Australian Pinot noir
using machine learning and successfully predicted sensory profiles with
an average correlation coefficient score of 0.96 (Fuentes et al., 2020).
Another machine learning study on red wine data containing 1599
instances, with physiochemical features, demonstrates the capability of
data mining in predicting wine quality (Ye et al., 2020). This investiga-
tion was able to predict wine quality with 91.04% accuracy. Focusing
on aging as an important factor to wine quality, Astray and colleagues
demonstrated the ability of machine learning models to predict aging
time (Astray et al., 2019). The results indicated that the RF model was
able to efficiently predict aging time with a perfect coefficient of de-
termination score (Astray et al., 2019). Moreover, in another study on
white wine, machine learning models were successfully classified wine
with 100% accuracy using a RF classifier (Gómez-Meire et al., 2014).
Similarly, RF classifier in another investigation (Canizo et al., 2019)
was able to classify wine grapes with overall 88.9% accuracy rate. They
confirmed their results using 10-fold cross-validation. Overall, results
from various wine quality related studies completely support results
acquired in this study.

Conclusion and Future Direction
The current study provides evidence about the use of synthetic data

generation, feature selection prior to the machine learning analysis to
predict quality for New Zealand’s Pinot noir wines. We introduced the
RF and AdaBoost model as a machine learning classifiers to predict
wine quality after evaluating its performance based on the accuracy,
precision, recall, F1 scores, the ROC-AUC score. According to the
results, AdaBoost predicted wine quality with higher accuracy during
without feature selection, with feature selection (XGB) and with es-
sential variables. Overall, performance of all classifiers (except KNN)
improved when model trained and tested using essential variables. The
usefulness of data generation algorithms and importance of feature se-
lection is the key feature in this study. We are in progress of developing
a machine learning-based web application that wine researchers and
wine growers can use to predict wine quality based on the important
available chemical and physio-chemical compounds in their wines, one
that has the capability to tune various variable quantities.
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