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Background: A novel data-driven Boolean model, namely, the fundamental Boolean model (FBM), has been proposed
to draw genetic regulatory insights into gene activation, inhibition, and protein decay, published in 2018. This novel
Boolean model facilitates the analysis of the activation and inhibition pathways. However, the novel model does not
handle the situation well, where genetic regulation might require more time steps to complete.

Methods: Here, we propose extending the fundamental Boolean modelling to address the issue that some gene
regulations might require more time steps to complete than others. We denoted this extension model as the temporal
fundamental Boolean model (TFBM) and related networks as the temporal fundamental Boolean networks (TFBNs).
The leukaemia microarray datasets downloaded from the National Centre for Biotechnology Information have been
adopted to demonstrate the utility of the proposed TFBM and TFBNs.

Results: We developed the TFBNs that contain 285 components and 2775 Boolean rules based on TFBM on the
leukaemia microarray datasets, which are in the form of short-time series. The data contain gene expression
measurements for 13 GC-sensitive children under therapy for acute lymphoblastic leukaemia, and each sample has
three time points: 0 hour (before GC treatment), 6/8 hours (after GC treatment) and 24 hours (after GC treatment).
Conclusion: We conclude that the proposed TFBM unlocks their predecessor’s limitation, i.e., FBM, that could help
pharmaceutical agents identify any side effects on clinic-related data. New hypotheses could be identified by analysing
the extracted fundamental Boolean networks and analysing their up-regulatory and down-regulatory pathways.

Keywords: Boolean modelling; Boolean network; time series data; network inference; data-driven boolean modelling;
fundamental boolean model; fundamental boolean networks; orchard cube

Author summary: Boolean modelling has been applied in numerous areas. However, minimal effort has been put into
creating activation, inhibition and protein decay networks. In the previous study, we proposed a novel concept, namely,
fundamental Boolean model, to address these issues. However, it does not reflect that genetic regulation might require
more time steps to complete. Hence, in this paper, we proposed extending the original model to temporal fundamental
Boolean model and demonstrated the new model with the leukaemia datasets downloaded from NCBI. Our result shows
that the proposed model’s capacity could identify crucial signalling pathways for glucocorticoid treated childhood
leukaemia patients.

INTRODUCTION to draw genetic regulatory insights into gene activation,

inhibition, and protein decay, published in Chen ez al. [1].
A novel data-driven Boolean model, namely, the This novel Boolean model separates the activation and
fundamental Boolean model (FBM), has been proposed inhibition functions from conventional Boolean
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functions, and this separation could facilitate scientists
in seeking answers in such as how an amendment of one
gene distresses other genes at the expression level. In
this paper, we extend the FBM to take the best temporal
time step as a count for the clinical data [2], which are in
the form of short-time series. The biological meaning of
the fundamental Boolean functions separated in terms of
activation and inhibition is that a fundamental Boolean
function can be regarded as a regulatory activator/
inhibitor or regulatory complex function (transcription
factor) of its target gene [1].

Fundamental background

The dominant belief of cellular functions mainly depends
on coordinated interactions between genes, RNAs and
proteins, to form the foundation of genetic regulatory
networks (GRNs). Within GRNs, activators and
inhibitors play an important role in controlling gene
expression pattern by activating or inhibiting cellular
functions [3]. Hence, discovering interconnected know-
ledge about gene activation and inhibition is essential
for uncovering the apoptosis process mechanisms; these
are crucial for cancer therapy today.

As shown in Fig. 1, an activator is a transcription
factor (TF) type of protein that can increase the protein
concentration through direct binding to the protein or the
promoter sites of its genes to increase its genetic
activities. The process is termed gene activation [4].

In contrast, an inhibitor is a repressor that decreases
the protein’s concentration to reduce its genetic activities.
Thus, the process is named gene inhibition [4]. Genetic
inhibitors can be used as pharmaceutical agents in
human, veterinary medicine, herbicides and pesticides
[4,5].

Facilitated by the emergence of biotechnologies, such
as Affymetrix™ microarray technology, an enormous
amount of high-throughput genetic data are being
generated every day, enabling reverse engineering of
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Figure 1. Concept of gene activation and
repression.

unknown regulatory networks, such as revealing the
relationships among the functional genes in the mam-
malian cell cycle [6,7] and leukaemia [§—14]. However,
it is evident from these examples that analysing massive
datasets to understand the coordinated interactions
among genes is still a significant challenge.

Boolean modelling

Different GRN models, such as ordinary differential
equations (ODE) [15], neural networks [16], informa-
tion theory model [17], Bayesian networks [18] and
Boolean networks [19], have been proposed to recon-
struct genetic regulatory networks. However, the current
experimental methods are usually insufficient to identify
large GRNs due to the lack of reproducibility for many
genes involved in complex GRNs [20]. Even so, of the
models, Boolean networks still attract much interest
[21]. Boolean network models do not need information
about kinetic parameters [22-27] and have explicit
regulatory rules while carrying vital information [28].
However, Boolean models are still complex enough to
review non-trivial behaviour among the genes, in
general [29]. Boolean network modelling’s downside is
that it may oversimplify biological signalling, where
molecules often exist in multiple conditions with
connections that are rarely binary [30].

Boolean modelling was initially presented by Kauffman
et al. [31,32] in 1969, following discovering the primary
gene regulatory mechanisms in bacteria [33]. A Boolean
model consists of Boolean variables in either two binary
states — On (1) or Off (0) as in digital circuits, denoting
gene activation or inhibition. Each Boolean variable in a
GRN represents a gene with its next state determined by
a Boolean function.

The Boolean network’s fundamental premise is that
the genes exhibit switch-like behaviour during the
regulation of their functional states, ensuring the move-
ment of a GRN from one state to another [3,22,34].
Hence, within signal processing theory, Boolean models
can be transformed into electronic circuits, as shown in
Fig. 2, to facilitate the study of Boolean networks’ rich
dynamics [28].

By definition, the conventional Boolean network is
wired in a series circuit format, as shown in Fig. 2.
When there is a perturbation, the control switch could be
On/Off, which turns the lamp On/Off. The resistor
represents a functional rule that controls the lamp’s light
intensity, i.e., controlling the lamp’s expression level.
Because a conventional Boolean model only has two
states, it can serve only as a series circuit, and the output
of the circuit is either expressed or not expressed.
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Figure 2. A simple series circuit representing a
conventional Boolean model.

Microarray data analysis

Affymetrix® GeneChip arrays are high-density oligo-
nucleotide gene expression arrays mainly used in biomedi-
cal research. The DNA microarray technology, including
the design of experiments to extract mRNA samples, has
been applied to analyse human cancers, such as breast,
prostate and leukaemia [35]. mRNA samples are
hybridised using a gene chip, which contained a strand
of all human genome genes, such as HG-U133 Plus 2.
Raw gene data are extracted from image analysis by
measuring the level of hybridisation on the chip. Comple-
mentary DNA (cDNA) microarray and oligonucleotide
chips are the two approaches for manufacturing the
microarrays. cDNA arrays are fabricated by robotic
spotting on glass slides, and oligonucleotide arrays are
developed by photolithographic chemistry and light-
directed chemical synthesis on small glass plates [36].

Gene expression matrices are microarray data analysis,
where rows denote genes and columns indicate samples.
Microarray data analysis can be conducted by
generating cell intensity (.CEL) files using the Affy-
metrix GeneChip Operating System Software (GCOS).
The generated cell intensity files can then be converted
into gene expression matrices using the R package affy
[37]. An experiment may commonly involve extracting
gene expression matrices at different time points with
the same sample set. We will yield time series
expression data if we reorganise the extracted gene
expression matrices based on time points.

Time series expression data typically contain a series
of m microarray expression measurements in the order
of time points involving n genes. The gene expression
data represent an m x n table (I) where m served as
columns and n as rows [38]. There might be multiple
samples, and each sample contains the same number of
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m and n but with different measurements. Combining all
samples, it becomes a three-dimensional sample data
space, S. IjIence, the entry, ¢;,, in row i and column ;j of
the table 7, denotes the expression level of gene i in the
Jj-th measurement of the sample, s. Most data analysis is
undertaken with a straightforward table, 7, (matrix) such
as using cell cycle analyses. However, data analysis on a
three-dimensional sample data space (S,) might become
more prevalent [38].

Meaningful temporal gene expression patterns can be
extracted from the time series data and genes associated
with each gene group. The relationships of gene groups
can be modelled and depicted by GRNs, such as
Boolean network modelling. Based on the availability of
time points extracted from experiments, time series data
can be categorised into two main groups: short time
series with the number of time points fewer than eight
and long-time series with the number of time points
more than eight [39,40].

According to previous research [40,41], about 80% of
published experimental data are short time series because
the cost involved in acquiring microarray data is still
high. Besides, the period of a patient’s treatment is
usually either too short or fatal [42]. Even if the expense
is not a concern, short time series experiments are still
dominant because obtaining large quantities of biological
material is prohibitive [40].

Traditional algorithms do not perform well on short
time series data due to the lack of the time series’s
required length [42,43]. The construction and validation
of traditional models are also complicated [44]. Short
time series data typically contain an enormous number
of genes but only a few observations. Knowledge of the
kinetic parameters and mechanical details cannot be
inferred consistently from short time series data because
the data are very noisy and contain various lengths of
temporal observational gaps. Valuable information may
be missing between the sparse observation gaps and may
lead to incorrect conclusions.

Choosing the most suitable and dependable method to
address a particular biological question from a specific
dataset is a significant research question. One criterion
is the capability to detect differentially expressed genes
in terms of precision (specificity/variance) and accuracy
(sensitivity/bias) [45].

Differentially expressed genes are highly dependent
on the normalisation methods that alter how the
correction structure from the data impacts the accuracy
of cellular networks’ inference. Microarray normalisa-
tion typically involves three main steps: background
correction that removes background noise from the
signal intensities; data normalisation that eliminates
non-biological variability between arrays and makes
distributions across arrays; and summarisation, which
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provides a single expression measure to each probe set
in the array. The most common normalisation methods
are MASS5.0, RMA (robust multichip average) and
GCRMA (GeneChip RMA). MASS.0 applies MM probes
to adjust the PM probes for probe-specific non-specific
binding for background correction. MASS5.0 uses a
baseline array and scales all the other arrays to have the
same mean intensity for normalisation and uses Tukey’s
biweight function for summarisation [46]. RMA [47]
applies a global correction, quantile normalisation and a
median polish summarisation. The GCRMA [48] has
been improved from RMA in that it uses the probe
sequence information for background correction and is
bias-corrected.

Leukaemia

Leukaemia is white blood cell-related disease driven by
the cumulative mutations in the immature white blood
cells from the bone marrow that reduce red cells, healthy
white cells and platelets [49-53]. The cause of leukae-
mia is controversially due to multifactorial and exogenous
or endogenous exposures and genetic (inherited)
susceptibility [49-55]. Exposure to radiation and certain
chemicals has been commonly linked to leukaemia, but
evidence shows that these associations are only found in
a very small minority of cases [54,55]. The redundant
and unhealthy white blood cells enter the bloodstream
and accumulate in organs such as the liver or spleen that
could cause many problems [53,55]. For example,
leukaemia presenting symptoms could be bruising or
bleeding because of thrombocytopenia, pallor and
fatigue from anaemia, and infection caused by
neutropenia [55].

Leukaemia has been categorised into two main groups:
childhood and adult. Childhood leukaemia can be
divided further into two subtypes: acute or chronic.
Most childhood leukaemia is acute. Acute childhood
leukaemia can be divided into two groups: acute
lymphoblastic leukaemia (ALL), in which lymphocytic
cells are affected; and acute myelogenous leukaemia
(AML), in which granulocytic cells are affected.

Apoptosis is a programmed cell death (PCD) process,
also named ordered cellular suicide, which may happen
in a multicellular organism as a controlled mechanism to
maintain the balance of cell multiplication [56-58].
Introducing apoptosis in the aberrant white blood cells is
common to stop cumulative mutations [56]. The apoptosis
process in cells involves multiple biochemical events
that lead to characteristic cell changes, such as cell
shrinkage, blebbing, chromatin condensation, nuclear
fragmentation, chromosomal DNA fragmentation and
death [56]. Therefore, drugs like glucocorticoids (GCs)
are commonly applied in chemotherapy. Glucocorticoids,

a family of steroid hormones, contain synthetic products
like dexamethasone (Dex) and prednisolone (PRD).
Mainly, Dex is applied as an alternative to the natural
human glucocorticoid cortisol [59]. GCs are essential
steroid types of drugs commonly used to induce
apoptosis in the malignant cells of childhood ALL
during chemotherapy [59-61]. However, prolonged use
of chemotherapy to introduce apoptosis may result in
severe short-term or long-term side effects, such as
osteoporosis, hypertension, psychosis, Cushing’s
syndrome and leucopenia [41,58,62,63]. GCs enter into
the leukaemia cell via a functional glucocorticoid
receptor (GR), ie., NR3Cl [64] ligand-activated
transcription factor that exerts a pivotal role in inducing
apoptosis in malignant lymphoid cells. The steroids are
located in the cytosolic compartment in the absence of
ligands [59]. When GRs bind with ligands on their high-
affinity site in the carboxy-terminal portion, the
glucocorticoid receptors (GRs) translocate to the nucleus
and then bound with other transcription factors to
regulate specific sets of genes [59]. However, GR alone
is not sufficient for producing apoptosis. Accumulating
evidence suggests that many leukaemic cells, which
contain abundant quantities of normal GRs, are still
unaffected by glucocorticoid-evoked apoptosis. For
example, the steroid ligands could be blocked from
passage through the plasma membrane and are
destroyed biochemically-conjugated with GRs [59].
Besides, the resistant cells may have genetically or
phenotypically altered the response systems to GCs to
resist their lethal effects such as critical reductions in the
quantity of one or more transcription factors, develop-
ment of a dominant-negative form of such a factor or
improper post-translational modifications of GRs or an
interactive element [59]. The changes that affect the
general pathways of apoptosis are: the alterations in the
balance of pro- and anti-apoptotic members of the Bcl2
family of proteins; the loss of or inactivating mutations
in caspases or other lethal proteases; the changes in one
or more critical protease substrates rendering them, and
the alternation in specific genes’ abilities to be regulated
by ligand-driven GRs [59].

Currently, the transactivation or transrepression of
target genes caused by GCs is still not well understood;
primarily, the clinical effects of GCs are poorly
understood [65]. For example, glucocorticoid (GC)
resistance mechanisms in the clinical setting remain
largely unresolved because the findings from the cell
line model of GC resistance in ALL almost invariably
exhibiting altered GR function are incongruous with
those using specimens derived directly from a leukaemia
patient [66]. Besides, GC signalling exerts a wide range
of physiological actions because of the broad distribu-
tion. The activities include positive regulation of
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metabolism in the liver, adipose tissue or the induction
of apoptosis and cell cycle arrest, and anti-inflammatory
effects in the immune compartment [64]. Another exam-
ple is PFKFB2 (6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase-2) is widely believed as a crucial
regulator of glycolysis that is induced more than 4-fold
in all three T-ALL cases as well as in the T-ALL cell
line CCRF-CEM [67]; however, Carlet et al. [67]
suggested that the GC response gene, PFKFB2 (6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase-2) is
not a critical upstream regulator of the anti-leukaemic
effects of GCs.

To understand these drug-related genetic problems,
scientists attempt to reconstruct the dynamics represented
by time and the discrete state transition systems to gain
insights into cell systems’ functioning [68—71]. These
dynamics can be used to simulate the perturbations of
new drugs in silico to reduce the potential risks of
applying drugs to humans. Two common research issues
are emerging for GCs: GC regulated genes and the
glucocorticoid receptor gene network. Signalling
pathways and gene networks can be inferred from gene
expression data grouped in a time series format. The
concept of Boolean modelling has been applied to the
signalling pathways and gene network analysis from
time series data.

Fundamental Boolean modelling

The hypotheses of conventional Boolean models do not
deliver an intuitive technique to separate the individual
activation and inhibition pathways [1]. The processes of
gene activation and inhibition are the two fundamental
processes of genetic regulation. For example, activation
may result in substantial drug regulatory effects, such as
modifications in the metabolism of in vivo substances
and vitamins [72]. Likewise, inhibition may result in
crucial clinical drug interactions formed by a wide range
of drugs [72]. Inhibition can be classified into two
groups: reversible inhibitors that can be easily inverted
by dilution or dialysis since the interactions of this
group are non-covalent with the enzyme surface and
irreversible inhibitors that usually endure even during
complete protein breakdown due to their sturdy covalent
bonds on the enzyme surface [1,4].

Base on the theory of an enzyme reaction exposed to
the action of a reversible inhibitor, the degree of
inhibition may be modelled as the decreased rate of
reaction divided by the uninhibited reaction rate [1,4]:

. V.=V
i= 7
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where V' and V, represent the rates of the inhibited and
uninhibited reactions, respectively [4]. The degree of
inhibition (/) may present uncertainty into the target
gene if the value of i is lower than 1. Similarly, enzyme
activation contains the same concept as a reversible type
of reaction. Hence, the degree of inhibition can be
upgraded to the degree of the enzyme reaction, encapsula-
ting the inhibition and activation degrees. For that
reason, we could redefine the degree of the enzyme
reaction to a conditional probability measure to repre-
sent the propensity rate of an enzyme reaction towards
the target gene [1]. A conditional probability measure is
the probability of an event that occurs given another
event has happened. If the conditional probability
measure is 1, the inhibitor is irreversible; otherwise, it is
reversible [1].

Conventional Boolean models do not consider the
reversible and irreversible behaviour of enzyme reac-
tions. In biology, the disappearance of an activator does
not preclude the emergence of an inhibitor because the
proteins transcripted by a pre-activated gene might be
still in the status of activation. The way we judge
whether a gene activates or inhibits is based solely on
the concentration rate of the proteins produced by the
gene. Therefore, there are logical reasons to separate the
general Boolean function into the domains of gene
activation and inhibition [1].

At present, the leading emerging biological network
inference methods to recognise functional modules are
motivated either by the definition of gene regulatory
networks or functional networks in which an edge
indicates a functional relationship, and this is also a
subset of entities that describe, explain or predict a
biological process or phenotype [73]. Minimal effort has
been made to construct activation, inhibition, and
protein decay networks that could specify the direct func-
tions of a gene or its synthesised protein as an activator
or an inhibitor. To overcome the limitation of current
conventional Boolean modelling, Chen et al [1]
proposed a novel Boolean model, denoted as fundamen-
tal Boolean modelling (FBM), to draw insights into gene
activation, inhibition, and protein decay. The FBM can
serve as both a series and a parallel circuit, as shown in
Fig. 3.

The delay switch represents a gene decay function that
might take a few time steps to turn the expression of its
target gene entirely off if no inhibitors and activators are
present. However, if any inhibitor exists (one with the
inhibitor switched on), the target gene (the lamp) will be
turned off immediately regardless of the presence of
activators. The model shown in Fig. 3 is still a Boolean
model as the series circuit shown in Fig. 2 because it has
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Figure 3. Series and parallel circuits representing
a fundamental Boolean model.

the same Boolean output, i.e., expressed or not expressed.
However, it wires the subfunctions of activation as a
parallel circuit and the inhibition subfunction as a series
circuit. One of the chief advantages is that we can split
the fundamental Boolean network into an up-regulation
network and a down-regulation network by removing all
inhibitor or activator circuits.

Base on the concept of FBM, Chen et al. [1] extended
the original definition of Boolean network modelling as
a graph G (X, E,, E;), where the node collection, V=
{vi, v, ..., v,}, corresponds to a group of states, X=
{x;,/i=1, ..., n} of size n. Each node is a variable that is
only in one of two states: On(1) or Off{(0). The general
edge set, £, commonly found in traditional Boolean
modelling, is divided into two sets of fundamental
Boolean functions, E, and E,, based on their regulatory
functions, i.e., activation and inhibition, rather than a
single function, as in all conventional Boolean models.
The direction of the edges represents the propagation of
their effectiveness on the target node, such as the signal
flow between signalling molecules, genes or protein
regulation. This graph, thus, conceptualised by Chen
et al. [1] as a new type of Boolean network modelling,
namely the fundamental Boolean network (FBN).

The two sets of fundamental Boolean functions,
E, and E,, are modelled as:

Fundamental Boolean functions of activation

Fi={filj=1l..l®}.f {0, 1> (= 1};  (La)
Fundamental Boolean functions of inhibition
Fy={filk=1...L0}.f (0. 1} > (-, 0}, (1b)

where F' and F', denote a set of fundamental Boolean
activation and inhibition functions of gene i, respec-
tively. Notably, —, here, refers to that the output of the
function does not affect the target gene i. [,(i)
symbolises the total number of fundamental Boolean
functions activating the target gene i. I,(i) symbolises
the total number of fundamental Boolean functions
deactivating the target gene i. When the Boolean activa-
tion function’s output is Omn, the target gene i is
activated, and Off means that the activation function
does not influence the target gene i. Similarly, when the
Boolean inhibition function’s output is On, the target
gene is repressed and Off means that the inhibition
function does not affect the target gene. The definition
of the two types of Boolean functions set out the novelty
of the proposed Boolean modelling [1].

The essential biological philosophies behind the
fundamental Boolean functions are that a fundamental
Boolean function can be treated as a simple transition
rule. The rule takes a minimum required essential gene
states as the input and then governs their regulation
effects on the target gene [1]. In general, a fundamental
Boolean function is an atomic function that cannot be
separated any further. Hereafter, we can treat the
concept of fundamental Boolean functions as conditions
that constrain gene activity, a delegation of stereochemi-
cal reactions, and a transcription factor complex moulded
by the transcription factor to proteins or protein to
protein bindings [1].

The output of the proposed fundamental Boolean
functions is only associated with the potential effective-
ness of gene regulation on the target gene. For that
reason, there is a need to calculate the level of confidence
by what percentage we can trust the regulatory functions
in affecting the target gene [1]. As stated previously, the
degree of enzyme reaction can be substituted by the
conditional probability that an enzyme reaction can
influence the target gene. Hereafter, the concept of
conditional probability can be used to measure the
confidence of the proposed functions. The following
formulae, called confidence measures, model the
conditional probability of each fundamental Boolean
function [1].

Confidence measure of activation:

C, 4 (Al )| =p (o' = 14] () = 1)
r(Am=1nor=1)
=)

Confidence measure of inhibition:

; (2a)
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C, | £ (DE @) =p (o = 0Dk () = 1)
_p(Dim=1ngt" =0)
T pDm=1)

where o denotes the Boolean state of gene i at time ¢,
and o!*' denotes the Boolean state of gene i at time ¢+ 1.
N refers to a logical And connector. C, and C, delegate
the confidence function with the input of the fundamen-
tal Boolean functions f; and f;, respectively. A/ and D!
denote the set of inputs required or the state of the gene
functions, fa’ and f;, respectively. Al(t)=1or D) =1
mean the required gene input of f; or f; at time ¢ is
satisfied with the conditions of affecting the target gene,
i[1].

There are various debates about mRNA/protein decay
times in Boolean models. The decay time is the time that
allows a gene to remain in the On state when there are
no activators or inhibitors [1]. Albert [74] assumed that
this decay might occur in two time steps. To capture the
characteristics of protein decay, we induced a function
Jaecay to fulfil the requirements of protein degradation
with input from the target gene i at time ¢ [1]:

Saeeay (0,9) = 2 (T < 9) X0, 3)

SN CAY)

where 7 represents an incremental variable presenting
the number of time steps processed. T will be reset to 0
when there is any fundamental Boolean function
affecting the target gene (7) at time ¢ + 1. 9 delegates the
decay period to reflect that the attenuation or enhance-
ment of the mRNA expression requires time. — represents
a negation operator that changes a Boolean function
from On to Off or vice versa. X is a logical And operator
[1]. The output of the decay function fi..., is a Boolean
state of On at time ¢ + 1 if the gene state of o; of time ¢ is
On within the endured period or Off at time ¢ + 1 when
the tolerated period is expired regardless of the gene
state of o; of time ¢ [1]. In this study, the tolerated
period ¢ is set to one time step, i.e., # =1 due to the
expemeriment data are short time series [1].

By combining Egs. (1.a), (1.b), (2.2), (2.b) and (3),
Chen et al. [1] defined the novel Boolean model (FBM)
to calculate a gene state o; at time ¢ + 1 based on the
immediately previous time ¢ as

A0
T =] frea (0 9) + v {p[[c: | @l ][]} >
j=1
1)

ﬁ\/ {Pﬂcfh lfé (D,A(t))”]} , 4)
k=1
where + is a logical Or operator and X is a logical And

operator. The decay function fy...,(c},®) in Eq. (3) is to
ensure the gene state o at time ¢ +1 depends on the
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prestate of the gene at time ¢ if no activators are present
at time ¢ and they are still tolerated by the parameter ¢, a
decay period. P[[x]] is a Boolean function that takes a
uniform distributed random number, p, and outputs a
value of On if p < x and Off otherwise. V{x} denotes
the logical connective function of Or, ie., Vi}{Fi}

= plci (£)]+Plc. (F)]|+-+P[c., (£, )] The
FBM defines rules on how a gene’s state can be transited
from ¢ to ¢ + 1 based on its activation (E,) and inhibition
(E,) functions. FBN shows how genes can be regulated
via their activation (E,) and inhibition (E,) functions in
a graph. Figure 4 shows an example of a fundamental
Boolean network that includes up-regulation (activation
regulation) and down-regulation (inhibition regulation)
networks with a regulatory time step of 1:

sl Gene 3 % -~
! p— ]
+1 i ‘
4y
Gened q ‘
~ ‘ ‘\ ™ +1
Gene 5_ \
=1 i 7/4 ad .
; ; |
-1 e
%/ +1
. ] .
+ 14 r 7
" Gene 2 % & — %1
— sene 1 "

Fundamental Boolean functions:
Gene1_1_Activator: Gene1 = Gene1
Gene1_2_Inhibitor: Gene1 = !Gene1
Gene2_1_Activator: Gene2 = Gene1&Gene5&!Gene4
Gene2_2_Inhibitor: Gene2 = Gene4
Gene2_3_Inhibitor: Gene2 = |Gene1
Gene2_4_Inhibitor: Gene2 = |Gene5
Gene3_1_Activator: Gene3 = Gene3
Gene3_2_Inhibitor: Gene3 = !Gene3
Gene4_1_Activator: Gene4 = Gene3
Gene4_2_Inhibitor: Gene4 = Gene1&Gene5
Gene4_3_Inhibitor: Gene4 = !Gene3
Gene5_1_Activator: Geneb = 1Gene2
Gene5_2_Inhibitor: Geneb = Gene2

LEGEND of FBN: Gene Activate function (+, Timestep)  Inhibit function (-, Timestep)

Activate—» Inhibit » Activated-input -Deactivated-input - -

Figure 4. A general type of fundamental Boolean
networks of an example FBN.
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Figure 4 also shows the fundamental Boolean func-
tions used to construct the example FBN. Gene 1 can be
activated among the fundamental Boolean functions if
its previous state was promoted, but it can also be
inhibited if its previous state was deactivated; Gene 2
can be activated if the previous states of Gene 1 and
Gene 5 were activated and Gene 4 was deactivated. The
inhibitors of Gene 2 show that Gene 2 can be inhibited
by Gene 4 when its previous state was activated. Gene 2
can also be inhibited by Gene 1 if its previous state was
deactivated. Gene 5 is also an inhibitor of Gene 2 if
Gene 5’s previous state was deactivated.

To proof, the concept of FBM, Chen et al. [1] con-
ducted an experiment to demonstrate that, under synchro-
nous Boolean model schema, FBM can produce the
same result as the traditional Boolean modelling. For
example, Chen et al. applied the proposed FBM with the
mammalian cell cycle and yielded the same attractors as
that have been reported by [6,75], as shown in Fig. 5.
Attractors refer to the recurrent cycles of the states [75]
and are of particular interest in Boolean modelling.
Once a network reaches an attractor, it is entrapped in a
cycle that repeats until an external perturbation happens
to change some of the production of the essential genes
of the attractor to let the network come out from
entrapment. In the study of [1], this outcome confirmed
that FBM and FBN are novel extensions of the
traditional Boolean modelling and networks.

Discovered attractors via fundamental Boolean model
Genes are encoded in the following order:
CycD Rb E2F CycE CycA p27 Cdc20 cdhl ubcH10 CycB

Attractor 1 is a simple attractor consisting of 1 state(s)

Figure 5. Synchronous attractors of the cell cycle
fundamental Boolean model, published in [1]. Re-
produced with permission.

Temporal fundamental Boolean modelling

The original FBM we defined in Eq. (4) provides a
mechanism to calculate gene state o; at time ¢ + 1 based
on the immediately before time #; however, some gene
regulations might require more time steps to complete
than others. Silvescu and Honavar [38] extended the
traditional Boolean network modelling to temporal
Boolean network modelling that transforms the Boolean
Networks from a Markov(l) to Markov(T) model,
where T is the length of the time window during [38].
Silvescu and Honavar explained that a gene state at 7 + 1
should not only depend on the inputs immediately
before tbutalsot—1, ..., t—m (1 <m < t). m here refers
to the maximum temporal decrement value [38].

A similar but not identical to the concept of Silvescu and
Honavar [38], we propose to extend the original fundamen-
tal Boolean network modelling to temporal fundamen-
tal Boolean network modelling as graph G(X,E,,E,;,T),
where T is the best time step in the time window during
which a gene can be regulated by corresponding E,, E,.
We denoted this extension model as the temporal
fundamental Boolean model (TFBM) and its associated
network as the temporal fundamental Boolean network
(TFBN). Unlike the temporal Boolean network model-
ling proposed by Silvescu and Honavar [38], in which a
gene’s state depends on several previous time steps,
TFBM’s concept is that a gene at time ¢ + 1 only
depends on the best previous time step that has the best
statistical measurements on its activation and inhibition
functions. Statistical measurements are used to mine the
fundamental Boolean functions from time series data
such as confidence measure, confidence counter
measure, and conditional causality test measure as
discussed in [1]. By extending the Eq. (4), TFBM can be
defined as

A0
7" =(fueen (s 9+ \/{P[[CL | £l [[|H
j=1
0

<=\/{P[c; £ @] 5)

where T/ and T* are the best previous time step for the
activation function f,; and inhibition function f; of gene
i, respectively. A’ and D* represent the set of required
inputs for the gene state functions, f; and f; at the best
previous time step T/ and T¥, respectively.

To calculate the best previous time step T/ or T¢ for
the extended model, we need to calculate all previous’s
measurement matrix (input genes’ statistical states) that
could derive the target gene i at ¢ + 1, up to r—m level.
Let us define a measurement matrix as A, for the
activation function fa",, and a perfect vector A;, which
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contains the best value for all measurements:

If we define the measurement matrix as:

measurement; measurement;' measurement; ™

A= measurement; measurement; ' measurement; "
= 2

measurement; measurement;”’ measurement;”

where e denoted as a measurement of the matrix A,. The
perfect vector A, is a one column measurement matrix
that contains the best value of all measurements. For
example, the best value for the confidence measure is 1,
and the confidence counter measure is 0.

Hence, the best previous time step value of the
activation function f; can be calculated based on the
shortest distance between measurements on time step ¢
to t —m and the perfect vector A :

T/ = min (distf"” (A,-, AI-)).

T/ illustrates a simple method to find the best previous
time step value where dist() is a Euclidean distance
function. However, it is unnecessary to set m to the
value of the total previous time points less one as the
biological reaction might only need a few time steps to
complete. It might be common to set the maximum
decrement value (m) to two or three because about 80%
of time series data are short time series data in which the
sparse gap between each time step might not support the
hypothesis that a regulation process of a gene might take
more than two or three time points to complete.

TFBM may handle short time series better because it
evaluates more time points than the initially proposed
model [1]. Furthermore, it reflects the reality that most
biochemical reactions are asynchronous since each gene
may be updated in different timescales. For example, a
gene could be regulated by an activation function at /2,
and an inhibition function could regulate other genes at
1.

Fundamental Boolean network inference

There are two main steps required to infer fundamental
Boolean networks. The initial step is to construct a cube
type database to store all critical pre-computed
measures, and the second step is to search for the best
Boolean functions from the cube [1]. Hence, the
network inference process is separated from construct-
ing the cube and identifying the Boolean rules from the
cube. The separation between the network extraction
and construction of the cube enables further develop-
ment of scalable methods to infer genetic networks
effectively and efficiently because a cube has compara-
tively fewer updates, although it can be consistently
enhanced by feeding it more time series data [1].

© The Author(s) 2021. Published by Higher Education Press

A data cube is a data abstraction providing a
mechanism to analyse aggregated data from multiple
dimensions. A data cube can also be regarded as a
collection of identical 2-D tables stacked one upon the
other. For example, many standard genetic time series
data are multi-dimensional and involve the three main
dimensions of genes, time steps, and samples. Research-
ing multi-dimensional data could entrap performance
bottlenecks [1].

To mine the fundamental Boolean networks, Chen et al.
[1] extended the data mining technique of bottom-up
computation (BUC) to a prefix tree type of cube,
namely, Orchard cube, as shown in Fig. 6. BUC is an
algorithm designed to compute sparse cubes from the
Apex cuboid downward [76].

Every branch or link of a tree above ground is referred
to as a regulatory function. Each node on a branch
contains possible regulatory functions. Due to the
regulatory functions being the information we are
searching for, we call them fruit. The gene nodes on the
ground are named seeds. The training data are called
fertilisers as they aid the trees to grow more significant
(more confident and, hence, more satisfied with the
functions). This cube can distribute the computational
costs to multiple computing nodes in a cloud computing
environment because each branch can be calculated
independently. Moreover, the pre-computing cube can
persist in any distributed database, so inferring networks
from the cube is straightforward [1].

As shown in Fig. 6, the mined result of G1 has two
activation functions and one inhibition functions: The
G1 can be activated by itself if its previous state was
activated; G1 can also be activated by G2 and G4 if G2
was activated and G4 was inhibited; G1 can be inhibited
if its previous state was deactivated. Figure 7 presents a
schematic diagram of the fundamental Boolean network
inferences [1].

Network types of fundamental Boolean model

The novel Boolean model, i.e., the fundamental Boolean
model and the related Boolean network, provides a
mechanism to intuitively analyse the activation,
inhibition, and protein decay pathways. We outline the
main subtypes of the novel Boolean networks that could
be applied to investigate the drug-related gene
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TT: Target gene state is true and conditional gene state is true.

TF: Target gene state is true and conditional gene state is false.
FT: Target gene state is false and conditional gene state is true.
FF: Target gene state is false and conditional gene state is false.

Figure 6.

regulations because a novel drug’s inhibition pathways
can be exposed intuitively through an investigation of
activation or inhibition related downstream cascade
networks. These subtypes of fundamental Boolean net-
works are the principal characteristics that differ FBM
from other traditional Boolean networks. There are six
subnetwork types derived by the novel fundamental
Boolean modelling and networks, as shown in Fig. 8.

* FBNNet FAA (type 1): the input genes are up-
regulated, and their target genes are up-regulated,
denoted as the forwarding regulatory pathway of type 1.
The subnetwork type 1 shown in Fig. 8 presents an
example to answer the question of that if Gene 1 is an
input gene and is activated, then what the up-regulation
network should look like, as a downstream effect. In this
case, Gene 1 activates Gene 2.

* FBNNet FAI (type 2): the input genes are up-
regulated, and their target genes are down-regulated,
denoted as the forwarding regulatory pathway of type 2.
The subnetwork type 2 shown in Fig. 8 presents an exa-
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lllustration of an orchard cube, published in [1]. Reproduced with permission.

mple to answer the question of that if Gene 1 is an input
gene, and is activated, then what the down-regulation
network should look like, as a downstream effect. In this
illustration, the activated Gene 1 and Gene 5 inhibit
Gene 4.

* FBNNet FIA (type 3): the input genes are down-
regulated, and their target genes are up-regulated,
denoted as the forwarding regulatory pathway of type 3.
The subnetwork type 3 shown in Fig. 8 presents an
example to answer the question of that if Gene 1 is an
input gene and is inhibited, then what the up-regulation
network should look like, as a downstream effect. In this
case, the inhibited Gene 1 activates Gene 4.

* FBNNet FII (type 4): the input genes are down-
regulated, and their target genes are down-regulated,
denoted as the forwarding regulatory pathway of type 4.
The subnetwork type 4 shown in Fig. 8 presents an
example to answer the question of that if Gene 1 is an
input gene and is inhibited, then what the down-
regulation network should look like, as a downstream
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Figure 7. Schematic diagram of FBN modelling and network inferences [1]. Reproduced with permission.

effect. In this example, inhibited Gene 1 continually
down-regulates itself, and it also deactivates Gene 2.

* FBNNet BA (type 5): the backward regulatory
pathway of activation. i.e., the networks that drive a
target gene to be activated denoted as type 5. The
subnetwork type 5 shown in Fig. 8 presents an example
to answer the question of that if the Gene 4 is the target
gene and is activated, then what causes the target gene
to be activated as an upstream effect. In this case, Gene 4
can be activated by either Gene 3 & not Gene 1 or Gene 3
& not Gene 5.

* FBNNet BI (type 6): the backward regulatory
pathway of inhibition. i.e., the networks that drive a
target gene to be inhibited denoted as type 6. The
subnetwork type 6 shown in Fig. 8 presents an example
to answer the question of that if the Gene 4 is the target
gene and is inhibited, then what causes the target gene to
be inhibited, as an upstream effect. In this case, Gene 4
is deactivated by either the transcription factor type
component made from Gene 5 & Gene 1 or not Gene 3.
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RESULTS

The networks (TFBN) extracted from the constructed
Orchard cube contain 285 components and 2775
Boolean rules, separated by activation and inhibition.
Appendix C shows the common annotated genes, and
Appendix D shows the complete fundamental Boolean
networks. For brevity, we only discuss a few genes in
the following subsections. As discussed in [1], the
fundamental Boolean model splits the Boolean functions
into gene activation and inhibition domains. Hence, we
started to explore the gene networks by filtering the
extracted TFBN ( see Appendix D ) and then plotted
their network graphs within the six types (We skipped
the general type as it contains too many nodes).

As shown in Table 2, gene CDC42EP3, clustered as a
membrane-type gene (Table 3), was the only one that
highly expressed in all B-All samples, and genes
SCMLA4, DDIT4, SLA, PFKFB2, CDKN3, ZFP36L2,
FKBP5, SNX29P2 (pseudogene), PIK3IP1, TNFSFS,

1"
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Figure 8. The subnetwork types of fundamental Boolean networks.

PTTG1, MCM4, MIR8071-1 (non-coding RNA) were
differentially regulated in all T-ALL samples and the
majority of B-All samples (6/13). The 11 coding genes
(excludes the non-functional genes SNX29P2 and
MIR8071-1) may suggest that the T-ALL samples may
be more sensitive to GC treatment than the B-ALL
samples. Genes PFKFB2, BTNL9, SNF1LK, FKBPS5,
ZBTB16, KIF26A, SLA, SOCS1, DDIT4, GBP4,
MGC17330, ZFP36L2, EPPK1, P2RY14, FGR, WFSI1,

12

ARPP-21, SERPINA1, GIMAP7, MYCPBP and LGAL-
S3 are the key GC-regulated genes reported in [2] but
also appeared in the common gene list.

Notably, as shown in Table 3, 72 common genes
belong to the cell cycle, and 50 of them also belong to
cell division. Gene CDC45 belongs to the two classes:
signal and cell cycle, which might indicate the gene
CDCH45 is the bridge type connector between signal and
cell cycle classes. Indeed, CDC45 is an essential protein
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required to initiate DNA replication [77]. Hence, the 285
common differentially expressed genes across three
different normalisation methods do encapsulate important
genes. Additionally, the genes ABHD17B, BCLI10,
CPM, EGRI1, ELL2, KCNKI12, PFKFB2, RASSF4,
SNTB2, ZFP36L2, identified especially by TFBN, have
rules of two time steps. These genes confirmed that
some genes require more time steps to complete their
biochemical reactions, and the proposed TFBN did
extract these regulations.

Networks of CDC42EP3

The product of CDC42EP3 belongs to BORG family
proteins, and overexpression of Cdc42EP3 in fibroblasts
can enhance the formation of pseudopodia and F-actin-
containing structures [78]. However, BORG proteins’
role in the tumour microenvironment is still unclear
[78]. Therefore, we interpret the fundamental Boolean
networks of CDC42EP3 extracted from this experiment.

As shown in Table 2, gene CDC42EP3 was highly
expressed in all B-All type samples and was a common
gene at 0—24 h and 6—24 h. Hence, we are interested in
finding out what activated this gene and the consequen-
ces of the activation. The sub-networks type 1, type 2,
and type 5 networks should address this question.

Figure 9 shows that activated CDC42EP3 up-regulates
genes EPPKI1, F13Al1, FGL2, LGALS3, NPCDRI,
PPBP, PRDM1, RAB31 and STABI. Five out of nine
genes were documented in the B-ALL gene network list
from Chaiboonchoe [41]: EPPK1, FGL2, LGALS3,
PRDM1 and STABI. In addition, PPBP was documented
in the list of T-ALL gene networks list from [41]. The
remaining three genes, F13A1, NPCDRI1 and RAB31,
are new findings that had not been reported before that
could be up-regulated by CDC42EP3 either in B-All
samples or T-All samples.

Figure 10 shows activated CDC42EP3 down-regulates
genes CCDC86, CRNDE, MDK, MTHFD2, RBM14,
and SNORA21. These genes have not been reported in
previous studies. This could be the reason that down-
regulation may be more challenging to detect than gene
induction [2]. However, with the fundamental Boolean
model’s facilitation, identifying down-regulation net-
works is straightforward as well as identifying up-reg-
ulation networks.

Figure 11 shows the genes that activate CDC42EP3:
RAB31, PPBP, LGALS3, and FGL2. LGALS3 and
FGL2 have been documented in B-ALL gene networks,
and PPBP has been documented on T-ALL gene
networks [41]. RAB31 was a new finding that has not
yet been reported to regulate CDC42EP3 in previous
studies. Thus, new gene regulations and potential side
effects could have been identified through types 1, 2 and
5 regulatory networks.
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Networks of the four genes induced across all
periods

Genes PFKFB2, BTNL9, FKBP5 and P2RY14 have
been reported in Table 2 that have been induced across
the three time spans of 0—6 h, 0-24 h and 6-24 h.

As discussed in the background section, GC induced
apoptosis by influencing hormone metabolism. BTNL9
(butyrophilin like 9), as shown in Fig. 12, was found to
be highly expressed in B-ALL samples, indicating that
its pathway could only affect B-All type patients.
BTNL9 activated EPPK1, and they were turned on by
the overexpression of gene BMF and the underexpres-
sion of BCL2L11. BMF and BCL2L11 both belonged to
the BCL2L11 family. As documented in [2], genes
LDHA, GPR65, MAP2K3, GZMA, MYC, NR3C1 and
BCL2L11 were the top candidate genes.

Figure 13 shows the backward regulatory networks of
PFKFB2. The gene PFKFB2 can be enhanced by the
gene TNFRSF21, which is in the clusters of signal and
immunity (Table 3), in two time steps (The unique
features of TFBN). PFKFB2 can be inhibited by IL6ST,
a transmembrane type of gene with multiple functions
such as signal (Table 3) in one time step. The function-
ality of LOC100996643, which is pseudogene, is not
clear, and hence it is not important in this study. We
conclude that the critical gene PFKFB2 could be
activated by the signal gene TNFRSF21 in two time
steps and inhibited by the other signal gene IL6ST in
one time step. Hence, the mechanism of how the gene
PFKFB2 to be regulated can be revealed by the novel
Boolean model networks TFBN.

Figure 14 shows the backward regulatory networks of
PFKFB2 under the original fundamental Boolean
modelling where the previous time step is fixed at one
time step. However, the genes TNFRSF21 and MYRIP,
shown in Fig. 13 that can regulate PFKFB2 in two time
steps, now disappeared under the original fundamental
Boolean modelling. Hence, with the same short time-
series data, the temporal fundamental Boolean network
modelling can uncover more genetic regulation rules
that might require more time steps to complete their
biological reactions than the original FBM.

As shown in Fig. 15, among the four induced genes,
only P2RY14 and BTNL9 were found to inhibit their
target genes when activated. The target inhibited genes
LOC100505650 (uncharacterized [Homo sapiens)),
CENPU (transcription regulation), SQLE (membrane and
transmembrane), BCAT1 (transferase), and PRPS2
(ATP-binding, transferase and metal-binding) may be
the target responsible genes to be suppressed, of the GC
treatment.

13
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Figure 9. Type 1 networks of CDC42EP3.

Networks of CDC45

As mentioned previously, the gene CDC45 is a con-
nector between signal and cell cycle groups. Figure 16
shows the network of CDC45 that contains forward and
backward regulations.

As shown in Fig. 16, CDC45 can be inhibited by
genes ASFIB (transcription regulation), CCDC34,
AURKA (cell cycle), BTG1 and APITDI1-CORT (cell
cycle), and activated by genes IFNGRI1 (receptor,
glycoprotein, membrane and signal), MDK (signal),
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CENPV (cell cycle), IL1B, BMF (BCL2L11) and E2F7
(cell cycle and transcription regulation). The
downstream of CDC45 is that CDC45 inhibits CDT1
(cell cycle), TTK (transferase), HELLS (cell cycle, cell
division and ATP-binding), CHEK1 (cell cycle, P53
pathway), TBXA2R (membrane), ZWINT (cell cycle),
METTL7A (membrane, signal), ID2 (transcription
regulation) and BRIP1 (ATP and metal-binding) and
activates DTL (Ubl conjugation pathway, membrane),
KNL1 (cell cycle and cell division), SQLE (membrane)
and BRIP1 if the gene P2RXS is inhibited.
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DISCUSSION

As shown in Fig. 9, five out of nine genes are associ-
ated with B-All samples, which meant that the gene
CDC42EP3 is mainly associated with B-ALL type of
patients. F13A1 encoded a protein (glycoprotein) for
coagulation Factor XIII A chain, the last zymogen to
become activated in the blood coagulation cascade [79].
Diseases associated with F13A1 included Factor Xiii
(8), a subunit deficiency of Factor Xiii (8) [79];
NPCDRI1, nasopharyngeal carcinoma, RNA gene and
the diseases associated with NPCDRI, including
nasopharyngeal carcinoma [79]; RAB31, a member of
RAS oncogene family, was associated with diseases
including estrogen-receptor-positive breast cancer [79].
Hence, we suspected that the up-regulation of the three
genes F13A1, NPCDR1 and RAB31 could cause side
effects under GC induced apoptosis. To inhibit them, we
may consider disabling their conditional genes, such as
turning on RHOBTB3 and turning off FGD2, to prevent
F13A1 from being activated.

As discussed in Fig.12, the BCL2L11 and Bcl-2
rheostat were proven to induce GC that led to cell death.
The target gene of the activated BTNL9 was EPPK1 (its
related pathway was cytoskeleton remodelling neurofila-
ments). EPPK1 could be associated with leukaemia
healing because EPPK1 can accelerate keratinocyte
migration during wound healing. Gene FKBP5 activated
KCNK12 while the GC essential gene SLA was
inhibited. The stimulated purinergic receptor (P2RY 14)
activated TUBA4A, which was connected to the
diseases of amyotrophic lateral sclerosis 22 with or
without frontotemporal dementia, robinow syndrome
and autosomal dominant 3 [80]. The activated TUBA4A
could be the side effect of GC-related treatment, but
under two conditions, gene TENM4 must be inhibited,
and gene GBP4 must be activated.

Moreover, the GCrelated gene PFKFB2[2,67] activated
the critical gene, DDIT4 (DNA damage-inducible
transcript 4), an essential candidate for GC-induced
apoptosis. With the inhibition of MYRIP, PFKFB?2 is
self-activated, indicating that the GC treatment turned
PFKFB2 on by inhibiting gene MYRIP, which coded
the myosin VIIA and Rab interacting proteins. The
MYRIP-related pathway was through peptide hormone
metabolism. Hence, we disagree with the suggestion of
Carlet et al. [67] that the PFKFB2 is not a critical
upstream regulator of the anti-leukaemic effects of GCs
and suggest that PFKFB?2 is a critical upstream regulator
of GC.

As illustrated in Fig. 16, BMF and BCL2L11 belong
to the BCI-2 family and perform as a central regulator of
the intrinsic apoptotic cascade and mediates cell
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apoptosis [81]. Hence the inhibition of BMF may trigger
the GC related apoptosis. The TFBN of CDCA45, as
shown in Fig. 16, then provides insights into how the
mechanism of BMF works. When BMF is inhibited, it
will activate the key gene CDC45 and then kick off the
intrinsic apoptotic cascade by activating DTL, KNLI1,
SQLE and BRIPI1, to mediate cell apoptosis. Notably,
the three genes KNL1 [82], SQLE [83] and BRIP1 [84]
are associated with the apoptosis of the cancer cell.
However, the activation of DTL could be a serious side
effect of GC related treatment because the overexpres-
sion of DTL is significantly up-regulated in cancer
tissues than in normal tissues [85]. Furthermore, Cui et al.
[85] pointed out that higher DTL expression owned a
lower survival rate.

In summary, we pointed out some potential side
effects and discussed some new findings. These could
be useful for pharmaceutical agents as well. New
hypotheses could be identified by analysing the extracted
fundamental Boolean networks and analysing their up-
regulatory and down-regulatory pathways. The
subnetwork types show that the fundamental Boolean
networks could easily split the up-regulation systems
and down-regulation without applying other tools or
previous knowledge about networks. We can also find
what causes the genes (induced and repressed) to be
activated or inhibited by finding their backward
regulation. For example, we pointed out three genes,
F13A1, NPCDR1 and RAB31, which could be side
effects of GC introduced apoptosis, as activated by
CDC42EP3. Besides, we disagreed with the suggestion
of Carlet et al. [67] that the PFKFB2 is not a critical
upstream regulator of the anti-leukaemic effects of GCs
and concluded that PFKFB?2 is still a critical upstream
regulator of GC based on this study. Moreover, we
discovered insight into the role of CDC45 and found
that if it is activated, it will trigger cell apoptosis by
activating the three apoptosis-related genes KNLI,
SQLE and BRIP1. However, the activation of CDC45
also activates the gene DTL that could be a serious side
effect of GC related treatment because higher DTL
expression owned a lower survival rate.

CONCLUSIONS

The previous study [1] investigated the physiognomies
of enzyme activation, enzyme inhibition and protein
decay, then proposed a novel data-driven Boolean
modelling, namely, the FBM and FBN, to draw insights
into gene regulatory networks. The FBM separates the
activation and inhibition functions from conventional
Boolean functions, and this separation could facilitate
scientists in seeking answers in such as how an
amendment of one gene distresses other genes at the
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expression level. The previous study also proposed a
new data-driven method to infer FBNs. The novel
method comprises two different parts: the first part was
to construct an orchard cube to persist all pre-computed
measures for all potential fundamental Boolean func-
tions; the second part was to infer FBNs from the
orchard cube constructed by filtering each tree’s under-
ground part, based on different criteria [1].

This paper extended the FBM to temporal fundamen-
tal Boolean modelling (TFBM) to address dependencies
among the state transition of genes that could span more

© The Author(s) 2021. Published by Higher Education Press
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Networks of CDC45.

than one unit of time. During the study, we produced the
temporal fundamental Boolean networks (TFBNs) based
on TFBM, as shown in Appendix D, on the childhood
acute lymphoblastic leukaemia data, which were pro-
duced in clinic settings. The networks may be useful for
pharmaceutical agents to identify any side effects when
applying GC induced apoptosis on children. For example,
the genes ABHD17B, BCL10, CPM, EGRI1, ELL2,
KCNK12, PFKFB2, RASSF4, SNTB2, ZFP36L2 have
been identified by the TFBNs that have rules of two
time steps. These genes confirmed that some genes
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require more time steps to complete their biochemical
reactions, and the proposed TFBM did extract these
regulations. Hence, the proposed TFBM unlocks their
predecessor’s limitation, i.e., FBM.

The traditional Boolean attractor study is not included
in this paper because searching attractors in the 285
common genes are not feasible. The current version of
the R package FBNNet cannot handle searching attrac-
tors with a large gene set under TFBM and hence
reserved for future improvement. The findings reported
in this paper are experimental hypotheses only due to
the limitation of time series data availability, i.e., short
time series data. Any insight gained from the modelling
effort must be proved experimentally before any medi-
cal applications. This study demonstrates the availability
of constructing large GRNs from clinic data of short
time series using fundamental Boolean modelling [1].

The proposed concept of fundamental Boolean model-
ling (FBM and TFBM) and related networks (FBNs and
TFBNs) are novel, and hence, they do need further
research on how to apply them to clinic data. In this
paper, we only discuss a small set of critical genes for
leukaemia, and hence it requires further analysis of the
networks attached in Appendix D. Moreover, the
unpublished R package FBNNet (1.0 and 2.0) are
developed as a prototype specifically for this study, and
hence, it requires further work to make it publishable.

MATERIALS AND METHODS

Before the experiment conducted by Schmidt et al. (2006),
the investigations had led to some conflicting hypoth-
eses, which have not yet been tested in a clinical setting
[2]. Hereafter, Schmidt et al. generated 13 comparative
wholegenome expression profiles (purified at three time
points) using lymphoblasts from 13 GC-sensitive
children under therapy for ALL [2]. Consequently, a
substantially complete list of GC-regulated candidate
genes in clinical settings and experimental systems has
been generated to immediately analyse any gene for its
potential significance to GC-induced apoptosis [2].
Schmidt’s study identified a small number of novel
candidate genes (22 genes); however, this study was
inconsistent with most model-based hypotheses [2].

The data generated by Schmidt et al. (2006) are short
time series, but they were still valuable. Researchers
have continually analysed the data and proposed novel
hypotheses or questions, such as the study in [41,86,87],
in which more novel glucocorticoid-regulated genes
were identified through inferred GC-regulation networks.
The newly identified genes may pave the way to
develop new chemotherapy drugs that have fewer side
effects. However, the models Chaiboonchoe et al. [86]
applied were based on emerging clustering methods,
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such as self-organising maps (SOMs), emergent self-
organising maps (ESOM), the short time series
expression miner (STEM) and fuzzy clustering by local
approximation of membership (FLAME).

Dataset and pre-processes

Raw data (GEO assession code: GSE2677), provided by
Schmidt er al. [2], had been downloaded from the
website of the NCBI (National Centre for Biotechnology
Information). The data contained gene expression
measurements for 13 samples, and each sample has
three time points: 0 hour (before GC treatment), 6/8
hours (after GC treatment) and 24 hours (after GC
treatment). Among the 13 samples, three samples from
T-ALL patients, and the rest were B-ALL patients.

The common pre-process of analysing gene expression
data involves data normalisation, selection of differen-
tially expressed genes, and data discretisation. In the
previous sections, we briefly discuss the methods of
normalisation. In general, gene expression has two main
basic patterns: underexpression (down-regulation) and
overexpression (up-regulation). Overexpressed genes
have higher expression values when two samples are
compared, for example, cancer (target) and healthy. On
the other hand, underexpressed genes have lower
expression values in the target than in reference samples
[88]. Commonly, a gene with more than twofold changes
is considered significant or differentially expressed.

Data discretisation is a process of converting
continuous data attribute values into a finite set of
intervals such as 0 or 1 in Boolean modelling, with
minimal loss of information [89]. Different emergent
discretisation methods have been developed to address
different needs [89]. Example of the traditional appro-
aches for data discretisation are equal-width [90], equal-
frequency [90,91], K-means [92,93], graph-theoretic
based discretisation [94] and decision trees [95].

Different methods have advantages and disadvantages
under different conditions, such as K-means performing
poorly when the clusters are of different shapes, sizes,
and density [93]. The well-developed R package BoolNet
[96] provides a function, namely binarizeTimeSeries,
to convert continual time series data into Boolean time
series data using K-means clustering, edge detection, or
scan statistics. K-means clustering is better and accurate
than edge detection [97]. Wheeler [98] compared
Kulldorff’s spatial scan statistic, K function, Cuzick and
Edward’s method and the kernel intensity function to
test for significant local clusters in childhood leukaemia
in Ohio and concluded the spatial scan statistic in
SaTScan found no significant clusters but others did.
Hence, in this study, we applied the function
binarizeTimeSeries with K-mean to discretise the

© The Author(s) 2021. Published by Higher Education Press
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extracted differentially expressed time series data.

This study selected R software as the leading platform
to analyse genetic networks. R (http://www.r-project.
org) is an open-source platform for statistical compu-
ting, developed by Ross Thaka and Robert Gentleman at
the University of Auckland in New Zealand. We applied
the following leading tools to conduct the computational
experiments described in this paper:

* FBNNET, unpublished R package [1], version 2.0.0.
A package implemented explicitly for the FBM and the
temporal fundamental Boolean model.

* BooINET, A R package for analysing conventional
Boolean networks [96].

* RMA (robust multi-array average) is a method that
converts probe level data (CEL files) into a gene
expression measure.

* GCRMA (GeneChip RMA) is an improvement from
RMA that uses the probe sequence information for
background correction and is bias-corrected (Wu &
Irizarry, 2004).

* Gene annotation via DAVID bioinformatic database
[99,100].

Inferring genetic networks from the whole genome is
usually very time consuming and very difficult to
achieve. The biologist or pharmacist needs a small
subgroup of differentially expressed genes for further
experiments. The original dataset contains more than
30, 000 genes/proteins; hence, we need to identify the
significantly expressed genes and use these genes to
construct FBN networks. Therefore, we only choose a
few critical genes from the inferred fundamental
Boolean networks to discuss.

Differentially genes

Differentially expressed genes are calculated based on
comparing two different time points (e.g., the gene
expression at 0 h and 6/8 h) as log-ratio (base two),
namely, fold change or cutoff threshold. The M-values
were denoted as regulation values, and the E-values
were indicated as normalised expression values. The
cutoff point represented the threshold for fold changes.
For example, a cutoff of 1 means M values of > 1,
representing a two-fold regulation; a cutoff of 0.7 means
a 1.4 fold regulation; a cutoff of 2 means a four-fold

regulation. The majority value means the fold regulation
happens in at least a specific number of samples out of
total samples, such as the fold regulation happens in at
least six out of 13 samples (6/13) documented in [2].

The data contain 39 CET files, created by Affymetrix
DNA microarray image analysis software, from the
GenBank. The original file names have been renamed
with the format of type-sample number-time such as B-
ALL-13-0Oh.cel. First, the data have been normalised
using RMA and GCRMA, respectively. GCRMA is a
method to convert background adjusted probe intensities
to expression measures using the same normalisation
and summarization approaches as RMA and is bias-
corrected [48]. It is straightforward to normalise the raw
data using affy.gcrma, provided by the Bioconductor
project (http://www.bioconductor.org) via R. Secondly,
we computed the differential expressed genes for the 13
samples (three T-All samples and 10 B-All samples)
with the criteria of the cutoff at 0.7; the majority were
six out of 13 samples, using three different methods:

* Re-analyse the M-values provided by Schmidt et al.
[2].
* Normalise the data using RMA.

* Normalise the data using GCRMA.

The original research focuses on a small gene set and
less significant (less than 2 fold changes). Although
calculating differentially expressed genes based on fold
changes has been criticised for its propensity to variation
or unreliability because the method does not consider
the variability of inter-experiment noise and outliers
[41], it is a common method to produce differentially
expressed genes such as applied in the study of Schmidt
et al. [2]. This study focuses on reanalysing the data
with TFBN modelling with differentially expressed
genes based on fold changes, and the reliability of any
insight gained from this study still requires further
research to verify the network result.

Table 1 presents the results of differentially expressed
genes that were identified by the three different
methods. Re-analysed M-values figures were identical
to the study conducted by [41] because we used the
same criteria to select the differentially expressed genes.

Interestingly, the results from RMA under R version

Table 1 GC-regulated differentially expressed genes, M>=0.7, 6/13 (6 out of 13 samples)

0-6/8 h 6/8-24 h 0-24h
Total (unique)
Activated Inhibited Activated  Inhibited Activated Inhibited
Re-analysis M-values 58 (44) 66 (52) 63 (24) 61 (49) 212 (105) 258 (193) 718 (348)
Analysis with R 3.6.2 affy::rma 59 (46) 78 (62) 61(22) 66 (52) 223 (115) 268 (202) 755 (378)
Analysis with R 3.6.2 affy::gcrma 117 (93) 153 (110) 156 (59) 121 (97) 427 (220) 446 (346) 1420 (665)

© The Author(s) 2021. Published by Higher Education Press
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3.6.2 were different from the re-analysis M-value. The
M-value was provided by [2], who also applied RMA
(supplied by an old version of R in 2006) to compute the
M-values. Thus, the results from GCRMA contained
more differentially expressed genes than the other two
methods. Figure 17 visualises the common and different
figures using a Venn diagram.

We were interested in the genes set in the intersections
of the results with the three methods. Hence, we con-
structed the FBM cube and extracted the fundamental
Boolean networks based on the most common genes,
i.e., 285 genes. Table 2 lists the common genes.

We applied the DAVID bioinformatics database
(https://david.ncifcrf.gov) to cluster the common genes
in a group of functional clusters to better interpret the
genes’ functionality, as shown in Table 3.

Affy.rma

26

M-value Affy.gcrma

Figure 17. Venn diagram of the unique glucocorticoid-
induced and differentially-expressed genes across all
time points.

Table2 Common genes

Common results

Genes

Common genes (285)

Common genes from B-ALL only
for 10/10 samples

Common genes from T-ALL
(23/285), for 3/3 samples

Common genes fromB-ALL (6/10)
and T-ALL (3/3)

Key GC regulate/response genes
reported in Schmidt’s research
Common genes for all-time span
induced in the majority of 6/13
Common genes for all-time span
repressed in the majority of 6/13

MS4A4A, CLN8, SNX10, RAB31, SERPINA1, LILRA1, LILRB2, PFKFB2, SOCS1, LGALS3, SIK1, SLA,
FCGR3B, FGL2, BTNL9, RBMS3, DPEP1, MNDA, FKBPS, DDIT4, WES1, S100A11, ZBTB16, P2RY 14,
GSN, EPPK 1, ZFP36L2, FCER1G, FGR, IRAK3, PPBP, MYRIP, PIK3IP1, KIF26A, NUF2, ARPP21,
ABHD17B, ASPM, PBK, KIF20A, CEP55, PDE4B, HMMR, CDKN3, FUS, AURKA, CENPF, POU4F1,
PRRI11, KIF14, CENPE, CENPA, NEK2, TTK, KIF11, GIMAP4, DLGAP5, PTTG1, UBE2C, CDC20,
MKI67, CCNB2, BIRC5, FAM72C, GBP4, KIF23, NPCDR1, CCNL1, LOC728175, CLEC2B, BCL10,
TOP2A, TENM4, CCNB1, SNORA21, MDM2, DEPDC1, DEPDC1B, GIMAP7, TBXA2R, STABI,
MIR4683, SMIM3, SLC22A23, TMEM100, LOC100130872, SESN1, TMEM2, IFNGR1, BIRC3, P2RX5,
CDC42EP3, METTL7A, ILI8RAP, CCR1, SNX29P2, LOC100505650, RHOBTB3, BCL2L11, SNTB2,
MS4A1, SOS1, TNFSF8, RNASET2, CD53, LY96, SCML4, LOC285097, ITGAM, DEFA1, 1SG20,
DFNAS, MTSS1, IL6ST, MIR6845, NEAT1, KLF9, TXNIP, IL18R1, HBB, CELF2, HBG1, S100AS,
MPV17L, NEDD9, FGD2, BTG1, TUBA4A, RPS6KA2, DENND3, IL27RA, MS4A7, SMAP2, RASSF4,
BMF, ELL2, TARSL2, SEMA4D, ITGB2-AS1, PPP1R16B, CPM, ITPKB, IL1B, MCM10, CDCA3,
UBE2T, TCF19, BRIP1, KIF18A, KCNK12, HELLS, E2F8, NUSAP1, ECT2, CENPN, SHCBP1, POLQ,
KIF15, B3GNT2, TIPIN, DSCC1, CENPU, TNFRSF21, ATAD2, HJURP, NCAPG, DTL, KIF4A, CKAP2,
MSH6, MCM7, LEF1, AKAP12, SKP2, TPX2, CDT1, RRM2, BUB1, KIF2C, MDK, ANP32E, CDK1,
F13Al, BYSL, HIST4H4, CCNA2, MND1, EGR1, PRPS2, SNORD3B-1, HRK, CHEK 1, WDR76, IGLL1,
RAG1, RCC1, POLE2, MCM4, BCATI, STIL, PSPH, PCNA, RAD51, PLK4, TRIP13, MELK, FENI,
WDHDI1, BRCA1, SMC2, WASF1, CDC45, RFC3, ZWINT, CDC6, BUB1B, MAD2L1, CCDCS86,
TIMELESS, OIP5, TYMS, DHFR, FOXM1, KIAA0101, TK1, FABP5, TRIBI, CKAP2L, CKS1B, CENPH,
MTHFD2, NME1, PPIF, EMP1, GGH, PAICS, GINS1, AURKB, ASF1B, GINS2, CENPK, IQGAP3,
ZNF367, PTP4A1, ANLN, C5orf24, SUV39H2, SELENOI, RBM14, HSP90AB1, FH, RAD51AP1, DHXO,
TMEM97, NCAPH, FANCI, APITDI-CORT, RAG2, MCMS5, KIF18B, CDCAS5, ARRDC3, SQLE,
LOC100996643, CCDC34, RMI2, CENPV, CDCA2, CENPW, PHF19, E2F7, KNL1, C4orf46, CDK6,
CRNDE, SERPINBY, PRDMI, ID2, GVINP1, MIR8071-1, CCNE2, ID3, IGLC1, LYZ, IGH

CDC42EP3

FKBPS, PFKFB2, MPV17L, SCML4, BTG1, ZFP36L2, DDIT4, RHOBTB3, SLA, ISG20, TNFSF8,
SNX29P2, PIK3IP1, SMAP2, SNTB2, SEMA4D, CDKN3, BCL10, PTTG1, FEN1, MIR8071-1, MCM4,
IGLC1

SCML4, DDIT4, SLA, PFKFB2, CDKN3, ZFP36L2, FKBPS5, SNX29P2, PIK3IP1, TNFSF8, PTTG],
MCM4, MIR8071-1

PFKFB2, BTNL9, SNFILK, FKBP5, ZBTB16, KIF26A, SLA, SOCS1, DDIT4, GBP4, MGC17330,
ZFP36L2, EPPK1, P2RY 14, FGR, WFS1, ARPP-21, SERPINA1, GIMAP7, MYCPBP, LGALS3

PFKFB2, BTNL9, FKBP5, P2RY 14

CEP55, MKI67, CCNB2, BIRCS5, TOP2A
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Table 3 Common genes in functional clusters

Functional cluster

Related common genes

Cell cycle

Cell division

p53 signaling pathway

Membrane

Transmembrane

Cell membrane

Glycoprotein

Receptor

ATP-binding

Transferase

Transcription regulation

Ubl conjugation pathway

CDK6, ASPM, AURKA, MAD2L1, APITD1-CORT, BUB1, FOXMI1, TIPIN, SMC2, ZWINT, CDCA3, NUF2,
ECT2, KNL1, CDK1, CDCA2, CDC6, CKS1B, NEDD9, CENPV, MCM?7, TPX2, CCNBI1, PTP4A1, CDC20,
TXNIP, FANCI, BRCA1, CDT1, E2F7, NUSAP1, CENPA, NCAPG, DLGAPS, CKAP2, KIF2C, HELLS, BIRCS,
NCAPH, CENPE, KIF11, CDCAS, CHEK1, MCM4, CENPF, CCNA2, CEP55, SIK1, DSCC1, CCNB2, MKI67,
CCNE2, TIMELESS, UBE2C, NEK2, OIP5, RCC1, SUV39H2, MELK, CDKN3, RASSF4, HIURP, KIF18B,
BUBI1B, AURKB, CENPW, MCMS, PTTG1, KIF23, ANLN, CDC45, E2F8

CDK6, ASPM, AURKA, MAD2L1, APITD1-CORT, BUBI, TIPIN, SMC2, ZWINT, CDCA3, NUF2, ECT2, KNL1,
CDK1, CDCA2, CDC6, CKS1B, NEDD9, CENPV, TPX2, CCNB1, CDC20, NUSAP1, CENPA, NCAPG, KIF2C,
HELLS, BIRCS, NCAPH, CENPE, KIF11, CDCAS, CENPF, CCNA2, CEP55, CCNB2, CCNE2, TIMELESS,
UBE2C, NEK2, OIPS, RCC1, KIF18B, BUB1B, AURKB, CENPW, MCMS5, PTTGI, KIF23, ANLN

CDK6, MDM2, CDK1, SESN1, CCNBI1, RRM2, CHEK1, CCNB2, CCNE2

CPM, TNFSFS, FGD2, RAB31, STABI, IL6ST, BCL2L11, SLC22A23, MS4A1, TNFRSF21, GBP4, CLNS, HBB,
MS4A4A, FCGR3B, HRK, EMP1, ARRDC3, CLEC2B, TBXA2R, PTP4A1, SNTB2, BRCAI, LILRAI, SQLE,
B3GNT2, CD53, FCERI1G, BCL10, P2RXS, SELENOIL, BTNL9, AKAP12, MS4A7, RAG2, CDC42EP3, LILRB2,
SMIM3, SNX10, METTL7A, PIK3IP1, CCR1, SEMA4D, IL18R1, IL27RA, IFNGR1, MELK, DFNAS, TMEM97,
WES1, DTL, TYMS, PPP1IR16B, MPV17L, DPEP1, TMEM2, ITGAM, P2RY 14, TENM4, IL18RAP, KCNK12,
S100A8, FGR, TMEM100

CPM, TNFSF8, STABI, IL6ST, SLC22A23, MS4A1, TNFRSF21, CLNS, HBB, MS4A4A, FCGR3B, HRK, EMP1,
CLEC2B, TBXA2R, BRCAL, LILRAI, SQLE, B3GNT2, CD53, FCERIG, P2RX5, SELENOI, BTNL9, MS4A7,
RAG2, LILRB2, SMIM3, METTL7A, PIK3IP1, CCR1, SEMA4D, IL18R1, IL27RA, IFNGR1, TMEM97, WFS1,
MPV17L, TMEM2, ITGAM, P2RY 14, TENM4, IL18RAP, KCNK12, TMEM100

CPM, FGD2, IL6ST, MS4A1, TNFRSF21, FCGR3B, ARRDC3, TBXA2R, PTP4A1, CD53, FCERIG, PIK3IP1,
CCR1, SEMA4D, IFNGR1, MELK, DFNAS5, TMEM97, PPP1R16B, DPEP1, P2RY 14, TENM4, S100AS8, FGR,
TMEM100

CPM, TNFSF8, HSP90AB1, STABI, IL6ST, SLC22A23, FGL2, TNFRSF21, HBB, FCGR3B, EMP1, MCM?7,
CLEC2B, SERPINA1, TBXA2R, RNASET2, LILRA1, B3GNT2, CD53, P2RXS5, HMMR, BTNLY, GGH, LILRB2,
F13Al, PIK3IP1, CCR1, SEMA4D, IL18R1, IL27RA, IFNGR1, WFS1, DPEP1, TMEM2, ITGAM, KIFI8A,
P2RY14, LY96, TENM4, ILI8RAP, KCNK12

STABI, IL6ST, TNFRSF21, MS4A4A, FCGR3B, TBXA2R, LILRA1, FCERI1G, P2RX5, HMMR, MS4A7, LILRB2,
CCR1, SEMAA4D, IL18R1, IL27RA, IFNGRI1, ITGAM, P2RY 14, ILISRAP

CDK6, NME1, KIF14, PRPS2, AURKA, HSP90AB1, KIF20A, BUB1, RPS6KA2, PAICS, SMC2, RHOBTB3,
PFKFB2, BRIP1, CDK1, CDC6, MCM7, RAD51, MSH6, KIF2C, PBK, KIF26A, TRIP13, HELLS, CENPE, KIF11,
TTK, KIF4A, KIF15, ITPKB, TOP2A, CHEK 1, MCM4, SIK1, PLK4, MK167, UBE2C, TK1, POLQ, NEK2, MELK,
ATAD?2, KIF18B, BUB1B, TARSL2, AURKB, IRAK3, KIF18A, UBE2T, MCM5, KIF23, DHX9, FGR

CDKS6, BIRC3, NME1, PRPS2, AURKA, SKP2, BUBI, RPS6KA2, BCAT1, PFKFB2, CDK1, CKS1B, POLE2,
BRCA1, B3GNT2, PBK, PRDM1, SELENOI, TTK, ITPKB, CHEK1, F13A1, SIK1, PLK4, METTL7A, UBE2C,
TK1, POLQ, NEK2, SUV39H2, MELK, CDKN3, TYMS, BUB1B, AURKB, IRAK3, UBE2T, FGR

CCNLI1, CENPU, RBM14, KLF9, FOXM1, SCML4, LEF1, PHF19, ZBTB16, EGR1, ID2, POU4F1, MNDA,
DEPDC1, TXNIP, BRCA1, E2F7, TCF19, ID3, HELLS, PRDM1, BIRCS5, ELL2, TIMELESS, ZNF367, SUV39H2,
ATAD2, ASF1B, E2F8

BIRC3, SKP2, MDM2, CDCA3, ZBTB16, CDC20, BRCA1, RAGI1, UBE2C, SOCS1, DTL, UBE2T

PI3K-Akt signaling pathway CDK6, HSP90AB1, MDM2, BCL2L11, SOS1, BRCA1, DDIT4, CCNE2

SH3 domain
Metal-binding

Immunity

Signal

Transit peptide
Immunoregulation

Pseudogene

NEDD®9, SLA, FGR

CPM, FUS, FGD2, BIRC3, NMEI, KLF9, PRPS2, MCM10, MDM2, RPS6KA?2, HBB, GSN, ISG20, BRIP1, PSPH,
PHF19, ZBTB16, EGR1, BRCA1, TCF19, PRDM1, BIRCS, RAG1, SELENOI, ZFP36L2, SMAP2, RRM2, TOP2A,
RAG2, FENI, F13Al, SIK1, TK1, PDE4B, ZNF367, NEK2, OIPS, SUV39H2, HBG1, DPEP1, AURKB, ITGAM,
S100A11, MYRIP, SI00A8

TNFRSF21, ISG20, LILRA1, BCL10, LGALS3, PRDMI, LILRB2, LY96, SI00A8, FGR

CPM, STABI, IL6ST, FGL2, TNFRSF21, GSN, FCGR3B, SERPINA1, RNASET2, LILRA1, FCER1G, PPBP,
BTNL9, ABHD17B, IGLL1, GGH, LILRB2, METTL7A, PIK3IP1, DEFA1, SEMA4D, IL18R1, IL27RA, IFNGRI,
DFNAS, DPEP1, IRAK3, ITGAM, LYZ, LY96, MDK, IL18RAP, CDC45

FH, MTHFD2, PPIF
FKBP5
SNX29P2, LOC100996643
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Model construction

After the differentially expressed genes have been
extracted, we constructed the TFBM Orchard cube
based on the genes using the package FBNNet.
Constructing an Orchard cube based on the training data
was similar to the way discussed in [1] for the cell cycle
data. Only difference from the experiments conducted
on cell cycle data was maxK value, which was 4 for cell
cycle data, whereas we choose maxK = 3 for this study,
where maxK defined the maximum level of the
combinations of genes that could affect the target gene.
The main reason is that the actual number of combina-
tions of genes is very small, and in fact, only 0.396% of
rules have input genes of 3, identified in this experiment
result. Hence, to reduce the complexity of computation,
we adopted maxK = 3 in this study. The maximum
temporal value (m), which is a value that indicates how
many times the steps are required to complete the
regulation process of a fundamental Boolean function, is
2 in this study because the data we used is short time
series and only contains three time points.

APPENDIX

(A) General terminology abbreviations

APC Anaphase-promoting complex

BUC Bottom-up computation

Cdks Cyclin-dependent kinases (such as Cdk1, Cdk2)

CKI Cyclin-dependent kinase inhibitor

CycD Cdk4/6-Cyclin D complex

CycE Cdk2/Cyclin E complex

CycA Cdk2/Cyclin A complex

Cdc20 Cell-division cycle protein 20

Cdhl Epithelial cadherin (E-cadherin), a classical member of
the cadherin superfamily

CycB Cdk1/Cycline B complex

DNA Deoxyribonucleic acid

E2F A family of transcription factors (TF) that act as
transcriptional regulators of G1-S transcription

GRNs Genetic regulatory networks

GF Growth factor

NP Nondeterministic polynomial, a computational complexity
class

NP-hard A class of problems in computational complexity
(nondeterministic polynomial acceptable problems)

p27 A member of Kip/Cip family, a group of CKIs

R A statistical script programming language

RNA Ribonucleic acid

Rb Retinoblastoma protein

24

SI Supplementary information

UbcH10 Cancer-related E2 ubiquitin-conjugating enzymel
GCs Glucocorticoids

GC Glucocorticoid

GRs Glucocorticoid receptors

GR Glucocorticoid receptor

(B) Model terminology abbreviations

AR Accurate rate

ER Error rate

FBM Fundamental Boolean model

FBN Fundamental Boolean network

TFBN Temporal Fundamental Boolean network
MMR Mismatched rate

PMR Perfect matched rate

(C) Boolean function notations

& Logical And connector

| Logical Or connector

! Logical negation symbol
(D) Boolean model notations

- A negation operator that turns a Boolean function from
TRUE to FALSE or vice versa

X, N Logical And operator
+ Logical Or operator
T An incremental variable presenting the number of time

steps processed
) A decay period reflects the fact that the attenuation or

enhancement of the expression of mRNA requires time

; Boolean state of gene o; at time t

ot Boolean state of gene 07; at time t +1

1, (D) Total number of fundamental Boolean functions

1, (@) Total number of fundamental Boolean functions

f“"‘ A fundamental Boolean function of the activation

/ A fundamental Boolean function of inhibition

P[x] A Boolean function that takes a uniform distributed
random number, p, and an output of 1 if p < x and 0
otherwise.

Vi{x} Logical connective function of Or

T{ The best previous time step value for the activation
function f;

T The best previous time step value for the inhibition
function f},

A{ The set of required inputs for the gene state functions, ﬁ‘f/

D; The set of required inputs for the gene state functions, f; 2

(E) Fundamental Boolean network graphic types

FBNNet ALL A general FBN type that contains up-regulatory and
B down-regulatory pathways. It also refers to FBNNet

type 0.

© The Author(s) 2021. Published by Higher Education Press
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FBNNet FAA A forward FBN type that shows the up-regulatory
pathways of giving activated genes. It also refers to
FBNNet type 1.

FBNNet FAI A forward FBN type that shows the down-regulatory

pathways of giving activated genes. It also refers to

FBNNet type 2.

FBNNet FIA A forward FBN type that shows the up-regulatory

pathways of giving inhibited genes. It also refers to

FBNNet type 3.

FBNNet FII A forward FBN type that shows the down-regulatory

pathways of giving inhibited genes. It also refers to

FBNNet type 4.

FBNNet BA A backward FBN type shows the regulatory pathways

that drive a target gene to be activated. It also refers to

FBNNet type 5.

FBNNet BI A backward FBN type shows the regulatory pathways

that drive a target gene to be inhibited. It also refers to

FBNNet type 6.

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at
https://doi.org/10.15302/J-QB-021-0280.
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