ICSIIT²⁰¹⁷

2017 International Conference on Soft Computing, Intelligent System and Information Technology

26-29 September 2017 • Denpasar, Bali, Indonesia

BUILDING INTELLIGENCE THROUGH IOT AND BIG DATA

Organized by

CONTINUING EDUCATION CENTRE

Supported by

PT. Catalyst Solusi Integrasi

In Collaboration with

INDUSTRIAL ENGINEERING Petra Christian University

Program Committee ICSIIT 2017

A.V. Senthil Kumar, Hindusthan College of Arts and Science, India Achmad Nizar Hidayanto, University of Indonesia, Indonesia Alexander Fridman, Institute for Informatics and Mathematical Modelling, Russia Ashraf Elnagar, University of Sharjah, United Arab Emirates Bernardo Nugroho Yahya, Hankuk University of Foreign Studies, Korea Bor-Shen Lin, National Taiwan University of Science and Technology, Taiwan Budi Bambang, Indonesia Bruce Spencer, University of New Brunswick, Canada Can Wang, CSIRO, Australia Chen Ding, Rverson University, Canada Cherry G. Ballangan, Australia Chuan-Kai Yang, National Taiwan University of Science and Technology, Taiwan Edwin Lughofer, Johannes Kepler University Linz, Austria Eric Holloway, Baylor University, USA Erma Suryani, Sepuluh Nopember Institute of Technology, Indonesia Felix Pasila, Petra Christian University, Indonesia Han-You Jeong, Pusan National University, Korea Hans Dulimarta, Grand Valley State University, USA Hong Xie, Murdoch University, Australia Ilung Pranata, SAP, Australia Jantima Polpinij, Mahasarakham University, Thailand Kassim S. Mwitondi, Sheffield Hallam University, United Kingdom K.V. Krishna Kishore, Vignan University, India Lee Chien Sing, Sunway University, Malaysia Mahmoud Farfoura, Royal Scientific Society, Jordan Masashi Emoto, Meiji University, Japan Moeljono Widjaja, Agency for the Assessment and Application of Technology, Indonesia Nai-Wei Lo, National Taiwan University of Science and Technology, Taiwan Prantosh Kumar Paul, Raiganj University, India Pujianto Yugopuspito, Pelita Harapan University, Indonesia Raymond Kosala, Binus University, Indonesia Rudy Setiono, National University of Singapore, Singapore Sankar Kumar Pal, Indian Statistical Institute, India Selpi, Chalmers University of Technology, Sweden Sergio Camorlinga, University of Winnipeg, Canada Shafiq Alam Burki, University of Auckland, New Zealand Shan-Ling Pan, University of New South Wales, Australia Simon Fong, University of Macau, Macau Smarajit Bose, Indian Statistical Institute, India Son Kuswadi, Electronic Engineering Polytechnic Institute of Surabaya, Indonesia Suphamit Chittayasothorn, King Mongkut's Institute of Technology Ladkrabang, Thailand Todorka Alexandrova, Waseda University, Japan Tohari Ahmad, Sepuluh Nopember Institute of Technology, Indonesia Vijay Varadharajan, Macquarie University, Australia Wei Zhou, CSIRO, Australia Wichian Chutimaskul, King Mongkut's University of Technology Thonburi, Thailand

Xiaojun Ye, Tsinghua University, China Xiao Wu, Southeast University, China Yanqing Liu, Jiangxi University of Finance and Economics, China Yung-Chen Hung, Soochow University, Taiwan Yunwei Zhao, Tsinghua University, China

2017 International Conference on Soft Computing, Intelligent System and Information Technology

ICSIIT 2017

Table of Contents

Preface	xi
Conference Organization	xii
Program Committee	xiii
Reviewers	xv

Classification and Correlation Techniques

Gesture Recognition for Indonesian Sign Language Systems (ISLS) Using Multimodal Sensor Leap Motion and Myo Armband Controllers Based on Naïve Bayes Classifier
Khamid, Adhi Dharma Wibawa, and Surya Sumpeno
Waah: Infants Cry Classification of Physiological State Based on Audio Features
Ramon L. Rodriguez and Susan S. Caluya
Fuzzy Clustering and Bidirectional Long Short-Term Memory for Sleep Stages Classification
Intan Nurma Yulita, Mohamad Ivan Fanany, and Aniati Murni Arymurthy
MFCC Feature Classification from Culex and Aedes Aegypti Mosquitoes Noise Using Support Vector Machine
Achmad Lukman, Agus Harjoko, and Chuan-Kay Yang
Automatic Chord Arrangement with Key Detection for Monophonic Music
Credit Scoring Refinement Using Optimized Logistic Regression
Anomaly Detection System Based on Classifier Fusion in ICS Environment

Efficient Object Recognition with Multi-directional Features in Urban Scenes	39
Ryo Kawanami and Kousuke Matsushima	

Feature Extraction and Image Recognition Methods

The Model and Implementation of Javanese Script Image Transliteration
Anastasia Rita Widiarti, Agus Harjoko, Marsono, and Sri Hartati
Human Activity Recognition by Using Nearest Neighbor Algorithm from Digital Image
Muhammad Ihsan Zul, Istianah Muslim, and Luqman Hakim Night to Day Algorithm for Video Camera
Arca Detection and Matching Using Scale Invariant Feature Transform (SIFT) Method of Stereo Camera Aviv Yuniar Rahman, Surya Sumpeno, and Mauridhi Hery Purnomo
The Application of Deep Convolutional Denoising Autoencoder for Optical Character Recognition Preprocessing
Acne Segmentation and Classification Using Region Growing and Self-Organizing Map

Algorithms for Intelligent Computation

Extended Concept of Generalized Fuzzy Rough Sets on Asymmetric Fuzzy	
Coverings	84
The Proposal of the Software for the Soft Targets Assessment	00
Lucia Duricova, Martin Hromada, and Jan Mrazek	
Application of Artificial Intelligence (AI) in Search Engine Optimization (SEO) Yodhi Yuniarthe	96
Spatial Model Design of Landslide Vulnerability Early Detection	
with Exponential Smoothing Method Using Google API Kristoko Dwi Hartomo, Sri Yulianto, and Joko Ma'ruf	102
Measures of Dependency in Metric Decision Systems and Databases Anh Duy Tran, Somjit Arch-int, and Ngamnij Arch-int	107
Multiple Scattered Local Search for Course Scheduling Problem	114

The Software Proposes for Management and Decision Making at Process Transportation Jan Mrazek, Lucia Duricova, and Martin Hromada	.120
Distributed Systems and Computer Networks	
A Self-Adaptive Architecture with Energy Management in Virtualized Environments	.124
l Made Murwantara, Behzad Bordbar, and João Bosco Ferreira Filho	
Nanoservices as Generalization Services in Service-Oriented Architecture	.131
Automated Concurrency Testing for Cloud-Based Polling Systems	.138
Low-Overhead Multihop Device-to-Device Communications in Software Defined Wireless Networks <i>Riyanto Jayadi and Yuan-Cheng Lai</i>	.144
A Secure Anonymous Authentication Scheme for Roaming Service in Global Mobility Network	.150
Linux PAM to LDAP Authentication Migration Justinus Andjarwirawan, Henry Novianus Palit, and Julio Christian Salim	.155
Exploratory Research on Developing Hadoop-Based Data Analytics Tools Henry Novianus Palit, Lily Puspa Dewi, Andreas Handojo, Kenny Basuki, and Mikiavonty Endrawati Mirabel	.160

Mobile and Pervasive IoT Applications

Human Heart Rate Detection Application Semuil Tjiharjadi and Aufar Fajar	167
Near Field Communication Technology in Delivering Information in Museums Djoni Haryadi Setiabudi, Ryan Christian Wiguno, and Henry Novianus Palit	173
Android Application for Monitoring Soil Moisture Using Raspberry Pi Lily Puspa Dewi, Justinus Andjarwirawan, and Robin Putra Wardojo	178
Development of Mobile Indoor Positioning System Application Using Android and Bluetooth Low Energy with Trilateration Method <i>Agustinus Noertjahyana, Ignatius Alex Wijayanto, and Justinus Andjarwirawan</i>	185

Assessments of Integrated IS/IT

The Proposal of United Crisis Management Information Systems of the Czech Republic1	90
Katerina Vichova, Martin Hromada, and Ludek Lukas	
The Analysis of Academic Information System Success: A Case Study at Instituto Profissional De Canossa (IPDC) Dili Timor-Leste1 Apolinario Dos Santos, Albertus Joko Santoso, and Djoko Budiyanto Setyohadi	96
Identification of Factors Influencing the Success of Hospital Information System (SIRS) by Hot-Fit Model 2006: A Case Study of RSUD Dr Samratulangi Tondano, Minahasa Regency, North Sulawesi2	202
Frendy Rocky Rumambi, Albertus Joko Santoso, and Djoko Budyanto Setyohadi	
The Alignment of IT and Business Strategy at ROC Leeuwenborgh2 Frederick Wonges, Jack Zijlmans, and Leo Willyanto Santoso	208
Development of Capability Assessment Model of IT Operation Management Process with Organizational Behavior2 Luh Made Wisnu Satyaninggrat and Kridanto Surendro	214
Exploring Critical Success Factors of Mobile Learning as Perceived by Students of the College of Computer Studies – National University	20
Identifying Characteristics and Configurations in Open Source ERP in Accounting Using ASAP: A Case Study on SME2 Agung Terminanto and Achmad Nizar Hidayanto	27

Simulation and Virtual Reality Applications

The Real Time Training System with Kinect: Trainer Approach Ivana Valentine Masala and Apriandy Angdresey	.233
3D LIDAR City Model Application and Marketing Plan Development Kevin Sanjaya, Frank Henning, and Kristo Radion Purba	238
Periodic Review Inventory Model Simulations for Imperfect Quality Items and Stochastic Demand Gede A. Widyadana, Audrey T. Widjaja, and Irena Liong	.243
Simulation on Crowd Mobility of Moving Objects Using Multi-agent and ClearPath Baihaqi Siregar, Agnes Irene Silitonga, Erna Budhiarti Nababan, Ulfi Andayani, and Fahmi Fahmi	.250
Truck Management Integrated Information System in a Shipping Line Company Arnold Samuel Chan and I Nyoman Sutapa	.257

Simulation of Atmosphere in Trowulan during the Golden Era of Majapahit Using Virtual Reality	263
Daniel Kusuma, Rudi Adipranata, and Erandaru	203
Development of Interactive Learning Media for Simulating Human Digestive System	270
Kristo Radion Purba, Liliana, and Daniel Runtulalu	
Development of Interactive Learning Media for Simulating Human Blood Circulatory System	275
Kristo Radion Purba, Liliana, and Yohanes Nicolas Paulo Kwarrie	

Smart Assistive Technologies

Fall Detection Application Using Kinect	279
Driver Drowsiness Detection Using Visual Information on Android Device Aldila Riztiane, David Habsara Hareva, Dina Stefani, and Samuel Lukas	283
Epileptic Alert System on Smartphone Aziis Yudha Adwitiya, David Habsara Hareva, and Irene Astuti Lazarusli	288
Elderly Healthcare Assistance Application Using Mobile Phone Andreas Handojo, Tioe Julio Adrian Sutiono, and Anita Nathania Purbowo	292
Socially-Enhanced Variants of Mobile Bingo Game: Towards Personalized Cognitive and Social Engagement among Seniors <i>Chien-Sing Lee, Shanice Wei-Ling Chan, and Sheng-Yee Guy</i>	297

Smart Mobile Applications

M-Guide: Hybrid Recommender System Tourism in East-Timor Jaime da Costa Lobo Soares, Suyoto, and Albertus Joko Santoso	303
M-Guide: Recommending Systems of Food Centre in Buleleng Regency Komang Ananta Wijaya, Suyoto, and Albertus Joko Santoso	310
Empowering Public Secondary Schools on Disaster Response and Recovery: A Framework for the Development of Helpline Mobile Application Odette Saavedra, Matthew C. Abrera, Mickaela Carla L. Waniwan, Curly Kale C. Dava, and Bernie S. Fabito	315
A Framework Mobile Game Application that Teaches Parts of Speech in Grade 3 in Filipino John Erasmus Correa, Jastine Gamboa, Mark Edison Lavapie, Edzel Uy, and Ramon L. Rodriguez	321
iSagip: A Crowdsource Disaster Relief and Monitoring Application Framework Auxesis Jacobi M. Schwab, John Eduard C. Omaña, Kent V. Roazol,	

Ted Anthony Y. Abe, and Bernie S. Fabito

Case Studies of Knowledge Discovery and Management

Executive Dashboard as a Tool for Knowledge Discovery Nyoman Karna	331
Data Mining Applications for Sales Information System Using Market Basket Analysis on Stationery Company Alexander Setiawan, Gregorius Satia Budhi, Djoni Haryadi Setiabudi, and Ricky Djunaidy	337
A Knowledge Management-Extended Gamified Customer Relationship Management System <i>Chien-Sing Lee, Jun-Jie Foo, Vinudha a/p Jeya Sangar, Pei-Yee Chan,</i> <i>Weng-Keen Hor, and Eng-Keong Chan</i>	341
Web Based Customer Relationship Management Application for Helping Sales Analysis on Bike Manufacturer Anita Nathania Purbowo, Yulia, and Agustinus Ivan Suryadi	347
Replenishment Strategy Based on Historical Data and Forecast of Safety Stock	353
On Estimation and Prediction of Simple Model and Spatial Hierarchical Model for Temperature Extremes Indriati Njoto Bisono	359
Author Index	

Timor Leste Tais Motif Recognition Using Wavelet and Backpropagation

Vasio Sarmento Soares, Albertus Joko Santoso, Djoko Budyanto Setyohadi Department of Informatics Atma Jaya University in Yogyakarta Yogyakarta, Indonesia vasio.soares@gmail.com, albjoko@staff.uajy.ac.id, djoko@mail.uajy.ac.id

Abstract—Timor Leste is a new country of the 21st century in Southeast Asia that has a diverse culture. Tais Timor Leste has a high historical value as well as cultural identity. It is also one of the cultural heritages of Timor Leste. Tais Timor has its own characteristics and meanings in every motif, but there are still many communities of Timor Leste as well as foreign tourists who do not know the variety of the motif. Therefore, this study aimed to establish the system recognition of Tais Timor motif through the image based on the type of motif. The wavelet transform is used in the process of feature extraction and image decomposition to obtain coefficient values of which the value of energy and entropy will then be calculated. For the recognition of Tais Timor motif, backpropagation algorithm was used. This application is built using MATLAB programming language. The analysis and testing of these studies show that the accuracy of recognition of Tais Timor motif with 4 testing parameters got recognition accuracy and presentation of 80%. Thus the motif used can be identified by using both wavelet transform and backpropagation algorithm.

Keywords—Tais Timor motif; wavelet; backpropagation; recognition; MATLAB

I. INTRODUCTION

Tais Timor Leste is a traditional form of weaving made by women of Timor Leste. It is an important part of the ancestral cultural heritage of the nation. The woven Tais Timor is used for ceremonial jewelry, home decor, and custom clothing. Tais Timo has its own designs or motifs and cultural associations. Some of the motifs and symbols that currently appear were designed before and during Portuguese times [1]. Today there are many people who are not familiar with Tais Timor motif. This Tais Timor motif which is diverse and which has a philosophical meaning and high historical value motivated the author to apply the artificial neural network technology in the form of image recognition to identify any motif that exists. The purpose of this study was that the expected method of neural networks and wavelets can be implemented to recognize each Tais Timor motif. Here are a few studies that have been conducted with the fabric research object that is "Pattern Classification of Yarn Interlacement of Fabrics Using Least Square Support Vector Machines" by Ghosh et al. [2] whose research discussed about how to read the fabric image in an attempt to interpret the pattern of interlacement thread. The subsequent research is "A New Method for the Classification of Woven Structures for Yarn Dyeing" by Zheng et al. [3] who in his research discussed the identification of structures in detecting the location of the yarn, and the yarn structure crossings in woven fabric. The other research is "Blind Wave Detection for Woven Fabrics" by Schneider and Merhof [4] whose research discussed how to ensure the quality assurance of fabrics textile. The next research is "Automatic Classification of Woven Fabric Structures Based on Texture of Features and Probabilistic Neural Network" performed by Jing et al. [5] in their research discussing how to perform a classification based on the characteristics of woven fabric textures. Different from previous research, in this study the authors built a prototype system using wavelet Haar and backpropagation to recognize Tais Timor Leste motif which is a local heritage rich with philosophical and historical values for the people of Timor Leste.

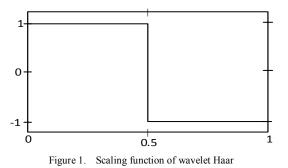
II. LITERATURE REVIEW

A. Wavelet

The wavelet transform is a process of converting data into another form in order to be more easily analyzed. This process is widely used in the process of decomposing, detection, recognition of images. Yang et al. [6] in their research, had been using wavelet energy and biogeographybased optimization in automatic classification of images of the brain. Orozco et al. [7] in research used wavelet descriptor and support of vector machines to classify modular system in the lungs. The further research by Yektaii et al. [8] showed that they could use wavelet compression in preserving classifiability for digital images. Another study conducted by Raja and Gangatharan [9] showed in their research how to use wavelet packet decomposition of correct corresponding sub-band in the decomposition of automated diagnosis of glaucoma. While the research conducted by Bozkurt et al. [10] used complex wavelet transform to classify letters and calligraphic style.

B. Backpropagation

Backpropagation algorithm has been successfully applied in various research fields such as pattern recognition, identification, classification, analysis, predictions and many more. There were some related studies like the one conducted by Wang and Ma [11] who used backpropagation neural network to predict the wheat stripe rust. Another study was conducted by Wu et al. [12] with their momentum backpropagation algorithm for the identification of low resistivity pay zones in the sandstone. Al-Abadi [13] was using backpropagation of imitated neural network on stagedischarge modeling relationship to the Gharraf River of Southern Iraq. Lahmiri [14] applied backpropagation algorithm in predicting finance. More intensive search was conducted by Kosbatwar and Pathan [15] who applied backpropagation algorithm with neural network approach in pattern association for character recognition. Mansour et al. [16] used a backpropagation algorithm in neural network for voice recognition. Other research by Chaturvedi [17] was using backpropagation feed forward network for rainfall prediction. Tikoo and Malik [18] deep in their journal used Viola Jones and backpropagation neural network for face recognition.


III. METHODS

A. Discrete Wavelet Transform

Transformation is the process of converting data into another form so it is easy to analyze. Wavelet is a small wave that has the ability to group and the image energy is concentrated on a small group of coefficients, while the other coefficients contain a small amount of energy that can be eliminated without reducing the value of the information. The wavelet transformation is one option to extract better features [19]. Haar wavelet is the oldest and simplest wavelet discovered in 1909. Wavelet type is known as mother wavelet or mother wavelet used since the first time intensive. Mother wavelet is defined as follows:

$$\psi(t) = egin{cases} 1 & 0 \leq t < rac{1}{2}, \ -1 & rac{1}{2} \leq t < 1, \ 0 & ext{otherwise.} \end{cases}$$
 $\phi(t) = egin{cases} 1 & 0 \leq t < 1, \ 0 & ext{otherwise.} \end{cases}$

Haar wavelet is included in the category of orthogonal because the Haar wavelet is equal to db1 wavelet (Daubechies order 1). Haar wavelet filter length is 2. The scaling function of Haar wavelet is shown in Fig. 1.

The results of this screening are four image subfields from the original image. The four subfields of this image are within the wavelet. The four image subfields are low pass low pass filter (LL), low pass - high pass filter (LH), high pass - low pass filter (HL), and high pass - high pass filter (HH). This process is called decomposition. Decomposition can be resumed with the image of low pass - low pass filter as input to get the next stage of decomposition. The image below shows an image of the decomposition of level 1 to level 3.

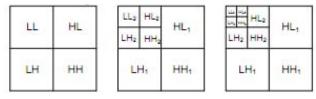
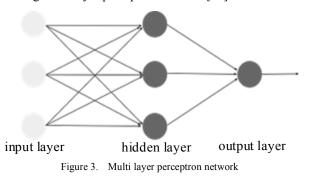


Figure 2. Decomposition of level 1-3

The algorithm used in the Haar wavelet is as follows:


- 1. Input: image that has been normalized
- 2. For each of the horizontal and vertical decomposition, determine the coefficient of Low-Pass Filter (LPF) and High-Pass Filter (HPF) with the following functions:

LPF:
$$f'_{k} = \frac{1}{\sqrt{2}}(f_{2k} + f_{2k-1})$$

HPF: $f^{*}_{k} = \frac{1}{\sqrt{2}}(f_{2k} - f_{2k-1})$

3. Perform repeatedly on approximation coefficients obtained prior to the desired level.

B. Backpropagation Algorithm

Backpropagation algorithm is the algorithm that works by calculating the error between the network output and the target value accordingly. This deployment is done by backwards calculation through the network to update the weights [13]. Backpropagation algorithm performs two first computing stages that are feed-forward computation and backward calculation, where on each of the iterations, the network will improve the values of the weights and biases on all neurons in the network. It is also one of the algorithms using supervised methods (supervised learning) and including multi layer perceptron network [20].

Backpropagation learning algorithm:

- 1. Initialize all inputs, targets, initial weights, initial bias and output targets.
- 2. Initialize Epoch.
- 3. Initialize the learning rate, maximum error.

Forward Propagation Stage

- 1. Each unit of input $(X_{i}, i = 1,2,3, ..., n)$ receives signals x_i and forwards the signal to all units in the hidden layer.
- 2. Each hidden unit $(Z_j, j = 1,2,3, ..., p)$ sums up the weighted input signal by the following equation:

$$z_{in_{j}} = bl_{j} + \sum_{i=1}^{n} x_{i} v_{ij}$$
(1)

and applies the activation function to calculate its output signals:

$$Z_j = f(z_i n_j) \tag{2}$$

where the activation function used is a sigmoid function, and then it sends the signal to all units of output.

3. Each unit of output $(Y_k, k = 1,2,3, ..., m)$ sums up the weighted input signal

$$y_{in_{k}} = b2_{k} + \sum_{i=1}^{m} x_{i}v_{ik}$$
(3)

and applies the activation function to compute its output signals:

$$Y_k = f(y_i n_k) \tag{4}$$

Backpropagation Stage

1. Each unit of output $(Y_k, k = 1,2,3, ..., m)$ receives a target pattern corresponding to the input pattern of training, then calculates the error with the following equation:

$$\delta_k = (t_k - Y_k) \cdot f'(y_i n_k) \tag{5}$$

f' is the derivative of the activation function then calculate correction weights by the following equation:

$$\Delta w_{jk} = \alpha \cdot \delta_k \cdot Z_j \tag{6}$$

Then, calculate the bias correction by the following equation:

$$\Delta w_{0k} = \alpha \cdot \delta_k \tag{7}$$

as well as submit value δ_k unit to unit in the right most layer.

2. Each hidden unit (Zj, j=1,2,3,...,p) sums up their input delta (from the units that are in the layer on the right side):

$$\delta_{in_{j}} = \sum_{k=1}^{p} \delta_{k} w_{jk} \tag{8}$$

To calculate the error information, multiply this value by the derivative of the activation function:

$$\delta_j = \delta_{in_j} \cdot f'(z_{in_j}) \tag{9}$$

After that, calculate the weighted correction with the following equation:

$$\Delta v_{ij} = \alpha \cdot \delta_j \cdot x_i \tag{10}$$

After that, calculate the biased correction with the following equation:

$$\Delta v_{0j} = \alpha \cdot \delta_j \tag{11}$$

Weight and Bias Change Stage

1. Each unit of output $(Y_k, k = 1,2,3, ..., m)$ is to amend the weights and biases change (j = 0,1,2, ..., p) by the following equation:

$$w_{ik}(\text{new}) = w_{ik}(\text{old}) + \Delta w_{ik} \tag{12}$$

Each hidden unit $(Z_j, j = 1,2,3, ..., p)$ to amend the weights and biases (i = 0,1,2, ..., n) by the following equation:

$$v_{ii}(\text{new}) = v_{ii}(\text{old}) + \Delta v_{ii}$$
(13)

2. Testing the stopped condition.

IV. DISCUSSION AND RESULT

The process of Tais Timor Leste motif recognition uses wavelet transformation and backpropagation algorithms and the ordering process can be seen in Fig. 4.

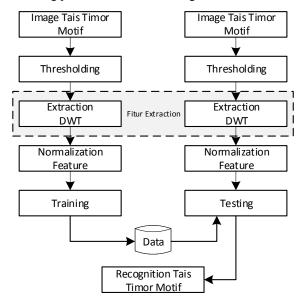


Figure 4. A flow diagram of Tais Timor motif recognition

A. Dataset

Tais Timor Leste image motif used in this study was obtained from the office of secretary of state for arts and cultural affairs of Timor Leste. Here are a few samples of Tais Timor Leste motif images before processing, as seen on Fig. 5.

Figure 5. Motif image before processing

B. Image Processing Stages

Image type motif used in this study is jpg and bmp extension, which has been cropped out of the image manually by the researchers of Tais Timor Leste. Color image is converted to grayscale. Feature values are extracted from the image, and then normalized for training and testing processes with the backpropagation algorithm.

C. Wavelet Haar

Waveler Haar in this study is used to perform the decomposition of any imagery training and test images. The level of decomposition of each image training and test images is a decomposition of level 5. The results of Haar wavelet extraction will be used as an input value in the propagation algorithm.

D. Feature Extraction

At this stage feature extraction will be done to the image feature or a motif to obtain information of the object in the image of Tais Timor Leste motif that want to be recognized or distinguished by other objects. Stages of feature extraction in this study consist of pre-processing, Haar wavelet transformation for feature extraction in order to reduce the dimensions of the image of the motif and get the image features.

Stages of feature extraction process on the input image motif can be seen in Fig. 6.

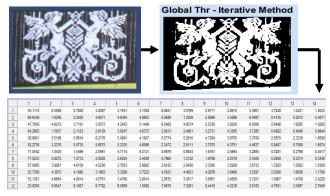


Figure 6. Process of feature extraction on the motif image

E. Training Stages

At this stage, training on 18 motif images was done. The stages on feature extraction of this motif image in order to obtain the values of features can be seen in Fig. 7.

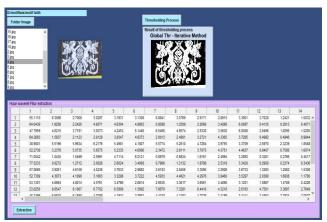


Figure 7. Stages menu of training process

F. Testing Stage

At this stage values of feature extraction result are used as input value in the backpropagation algorithm to perform the process of recognition of the Tais Timor Leste motif. The stages of the testing process and the recognition of Tais motif image can be seen in Fig. 8.

Open Image Etraction Process Image Image		RECOGNITION	TAIS TIN	IOR MO	TIF				
Addit Talls Timor 1 52.799 4.3073 4.1690 3.1663 3.222 2 38.9801 5.5198 5.9634 6.2176 5.4961 4.1007 3 37.310 10.5699 7.6816 5.3620 3.9142 2.2776 4.4007 3 37.3101 10.5699 7.6816 5.3620 3.9142 2.5704 4.2174 2.8174 2.5714 2.6814 5.71.0542 1.9435 1.5469 2.58914 4.7114 6.2121 2.6144 5.71.0542 1.9435 1.5499 2.5814 4.7114 6.2121 2.6145 3.2202 3.9142 2.5716 4.614 4.5761 3.7726 2.6141 4.7114 6.2121 2.7716 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121 4.7114 6.2121<	Open Image	Extractio	on Process						
Addit Taisi Timor 1 52.799 4.3873 4.1690 3.1663 3.222 2 30.8601 6.5198 5.9634 6.2178 5.4961 4.1607 3 37.010 10.5699 7.6816 5.3620 3.0142 2.2776 4.1607 3 37.3010 10.5699 7.6816 5.3620 3.0142 2.5776 4.1614 4.5761 3.4762 2.6814 5.0144 2.6814 5.0144 5.0144 6.216144 6.21614 6.216144		200							
1 52.709 4.3073 4.109 3.1063 3.226 3.7222 2 3.8901 5.5196 5.6944 6.2176 5.4981 4.107 3 373010 10.5898 7.6818 5.3026 3.0142 2.8776 4 53.3014 4.6864 4.6014 4.5761 3.4766 2.8814 5 71.0542 1.0435 1.5498 2.5994 4.7114 6.2121	NOT R	X	<u>(</u>	X					
2 3000 50	NGJR.	2	1	2	3	4	5	6	
4 53.1301 4.6664 4.8014 4.5761 3.4766 2.6814 5 71.0542 1.0435 1.5499 2.5991 4.7114 6.2121		.							
5 71.0542 1.0435 1.5499 2.5991 4.7114 6.2121			52.7309	4.3873	4.1090	3.1663	3.3296	3.7222	
	and the second	2	52.7309 38.9801	4.3873 5.5196	4.1090 5.9634	3.1663 6.2176	3.3298 5.4981	3.7222 4.1807	
6 71.0542 1.0435 1.5499 2.5991 4.7114 6.2121	and the second	2	52.7309 38.9801 37.3010	4.3873 5.5196 10.5989	4.1090 5.9634 7.6816	3.1663 6.2176 5.3026	3.3298 5.4981 3.0142	3.7222 4.1807 2.9708	
	and the second	2 3 4	52.7309 38.9801 37.3010 53.1301	4.3873 5.5196 10.5989 4.6664	4.1090 5.9634 7.6816 4.8014	3.1663 6.2176 5.3026 4.5761	3.3298 5.4981 3.0142 3.4766	3.7222 4.1807 2.9708 2.6814	

Figure 8. Stages menu of recognition process

In this study, we used 4 different parameter values of neural network with 5 hidden layers and Mean Squared Error (MSE) of 0.01, as can be seen on Table I.

TABLE I. TESTING PARAMETER

	Testing Parameter						
No.	Learning rate	Epho	Momentum	Hidden layer	MSE		
1.	0.1	5000	0.5	5	0.01		
2.	0.01	10000	0.6	5	0.01		
3.	0.001	15000	0.7	5	0.01		
4.	0.0001	20000	0.8	5	0.01		

This test has been carried out by testing 10 motifs of 18 training images. Tests were performed 40 times with a variety of different test parameters to test images.

TABLE II. RESULTS OF TESTS WITH TEST PARAMETERS: LEARNING RATE 0.1, MAXEPHO 5000, MOMENTUM 0.5

Tais	Learning rate	Max- epho	Momen -tum	MSE	Result
Motif 1	0.1	5000	0.50	0.12075	correct
Motif 2	0.1	5000	0.50	0.15149	correct
Motif 3	0.1	5000	0.50	0.071104	incorrect
Motif 4	0.1	5000	0.50	0.12861	incorrect
Motif 5	0.1	5000	0.50	0.13697	correct
Motif 6	0.1	5000	0.50	0.12878	incorrect
Motif 7	0.1	5000	0.50	0.14655	correct
Motif 8	0.1	5000	0.50	0.151459	correct
Motif 9	0.1	5000	0.50	0.073544	incorrect
Motif 10	0.1	5000	0.50	0.120275	correct

From Table II, it appears that the network is able to identify the motif trained with accuracy and recognition success rate of 60%.

 TABLE III.
 Results of Tests with Test Parameters: Learning rate 0.01, Maxepho 10000, Momentum 0.6

Tais	Learning rate	Max- epho	Momen -tum	MSE	Result
Motif 1	0.01	10000	0.60	0.0085515	correct
Motif 2	0.01	10000	0.60	0.0099764	correct
Motif 3	0.01	10000	0.60	0.0099002	correct
Motif 4	0.01	10000	0.60	0.009969	correct
Motif 5	0.01	10000	0.60	0.0099875	incorrect
Motif 6	0.01	10000	0.60	0.0099772	correct
Motif 7	0.01	10000	0.60	0.0099885	incorrect
Motif 8	0.01	10000	0.60	0.0096516	correct
Motif 9	0.01	10000	0.60	0.0099856	correct
Motif 10	0.01	10000	0.60	0.0099435	correct

From Table III, it appears that the network is able to identify the motif trained with accuracy and recognition success rate of 80%.

TABLE IV.Results of Tests with Test Parameters:Learning rate 0.001, Maxepho 15000, Momentum 0.7

Tais	Learning rate	Max- epho	Momen -tum	MSE	Result
Motif 1	0.001	15000	0.70	0.0099996	correct
Motif 2	0.001	15000	0.70	0.0099955	incorrect
Motif 3	0.001	15000	0.70	0.0099989	correct
Motif 4	0.001	15000	0.70	0.009998	incorrect
Motif 5	0.001	15000	0.70	0.009993	correct
Motif 6	0.001	15000	0.70	0.0099985	correct
Motif 7	0.001	15000	0.70	0.0099998	incorrect
Motif 8	0.001	15000	0.70	0.0099939	correct
Motif 9	0.001	15000	0.70	0.0099986	correct
Motif 10	0.001	15000	0.70	0.0099945	incorrect

From Table IV, it can be seen that the trained network is able to recognize patterns with accuracy and recognition success rate of 60%.

From Table V, it appears that the network is able to identify the motif trained with accuracy and recognition success rate of 80%.

 TABLE V.
 Results of Tests with Test Parameters:

 Learning rate 0.0001, Maxepho 20000, Momentum 0.8

Tais	Learning rate	Max- epho	Momen -tum	MSE	Result
Motif 1	0.0001	20000	0.80	0.00999999	correct
Motif 2	0.0001	20000	0.80	0.0099979	incorrect
Motif 3	0.0001	20000	0.80	0.0099998	correct
Motif 4	0.0001	20000	0.80	0.0099996	correct
Motif 5	0.0001	20000	0.80	0.0099995	correct
Motif 6	0.0001	20000	0.80	0.0099997	correct
Motif 7	0.0001	20000	0.80	0.009998	correct
Motif 8	0.0001	20000	0.80	0.0099997	correct
Motif 9	0.0001	20000	0.80	0.0099998	correct
Motif 10	0.0001	20000	0.80	0.0099968	incorrect

From Table VI, the results show that different parameters of backpropagation network performance are able to identify the motif with the best accuracy of 80%, which was achieved

with learning rate 0.01, Maxepho 10000, and momentum 0.60.

TABLE VI. RESULTS OF TESTS WITH FOUR DIFFERENT PARAMETERS TESTING

Testing Paramater Result				
Learning rate	Epho	Momentum	Recognition	
0.1	5000	0.5	60%	
0.01	10000	0.6	80%	
0.001	15000	0.7	60%	
0.0001	20000	0.8	80%	

V. CONCLUSION

Based on the analysis and discussion, we can draw a number of conclusions, which are as follows:

- The recognition of motif image of Tais Timor based on wavelet transformation and back propagation algorithms give good results, which are proven by 80% of recognition success rate that is obtained in relatively short time of recognition.
- Haar wavelet transformation is best used as an initial process for extracting motif image features. The backpropagation algorithm is used as the recognition element in identifying Tais Timor Leste motif. So it can be developed for the recognition of motif data in real time.

REFERENCES

- H. Bürgel, "East Timor," Medicine and War, vol. 9, no. 2, pp. 116– 124, 1993, doi: 10.1080/07488009308409089.
- [2] A. Ghosh, T. Guha, and R.B. Bhar, "Classification of Yarn Interlacement Pattern in Fabrics Using Least Square Support Vector Machines," Fibers and Polymers, vol. 14, no. 7, pp. 1215–1219, Jul. 2013, doi: 10.1007/s12221-013-1215-z.
- [3] D. Zheng, Y. Han, and J.L. Hu, "A New Method for Classification of Woven Structure for Yarn-dyed Fabric," Textile Research J., vol. 84, no. 1, pp. 78–95, Jan. 2014, doi: 10.1177/0040517513483858.
- [4] D. Schneider and D. Merhof, "Blind Weave Detection for Woven Fabrics," Pattern Analysis and Applications, vol. 18, no. 3, pp. 725– 737, Aug. 2015, doi: 10.1007/s10044-014-0403-9.
- [5] J. Jing, M. Xu, P. Li, Q. Li, and S. Liu, "Automatic Classification of Woven Fabric Structure Based on Texture Feature and PNN," Fibers and Polymers, vol. 15, no. 5, pp. 1092–1098, May 2014, doi: 10.1007/s12221-014-1092-0.
- [6] G. Yang, Y. Zhang, J. Yang, G. Ji, Z. Dong, S. Wang, C. Feng, and Q. Wang, "Automated Classification of Brain Images Using Wavelet-Energy and Biogeography-based Optimization," Multimedia Tools and Applications, vol. 75, no. 23, pp. 15601–15617, Dec. 2016, doi: 10.1007/s11042-015-2649-7.
- [7] H.M. Orozco, O.O.V. Villegas, V.G.C Sánchez, H.D.J.O. Domínguez, and M.D.J.N. Alfaro, "Automated System for Lung Nodules Classification Based on Wavelet Feature Descriptor and Support Vector Machine," BioMedical Engineering OnLine, vol. 14, no. 9, Feb. 2015, doi: 10.1186/s12938-015-0003-y.
- [8] M. Yektaii, M.O. Ahmad, and P. Bhattacharya, "A Method for Preserving the Classifiability of Digital Images After Performing a Wavelet-based Compression," Signal, Image and Video Processing, vol. 8, no. 1, pp. 169–180, Jan. 2014, doi: 10.1007/s11760-013-0509-3.

- [9] C. Raja and N. Gangatharan, "Appropriate Sub-band Selection in Wavelet Packet Decomposition for Automated Glaucoma Diagnoses," Int. J. Automation and Computing, vol. 12, no. 4, pp. 393–401, Aug. 2015, doi: 10.1007/s11633-014-0858-6.
- [10] A. Bozkurt, P. Duygulu, and A.E. Cetin, "Classifying Fonts and Calligraphy Styles Using Complex Wavelet Transform," Signal, Image and Video Processing, vol. 9, supl. 1, pp. 225–234, Dec. 2015, 10.1007/s11760-015-0795-z.
- [11] H. Wang and Z. Ma, "Prediction of Wheat Stripe Rust Based on Neural Networks," Proc. 5th Int. Conf. on Computer and Computing Technologies in Agriculture (CCTA), Part II, Beijing (China), Oct. 2011, IFIP AICT, vol. 369, D. Li and Y. Chen, Eds., pp. 504–515, doi: 10.1007/978-3-642-27278-3_52.
- [12] Y. Wu, Z. Bao, Y. Yuan, L. Zhang, and Y. Feng, "Application of Momentum Backpropagation Algorithm (MOBP) in Identification of Low-Resistivity Pay Zones in Sandstones," J. Petroleum Exploration and Production Technology, vol. 7, no. 1, pp. 23–32, Mar. 2017, doi: 10.1007/s13202-016-0253-7.
- [13] A.M. Al-Abadi, "Modeling of Stage-Discharge Relationship for Gharraf River, Southern Iraq Using Backpropagation Artificial Neural Networks, M5 Decision Trees, and Takagi–Sugeno Inference System Technique: A Comparative Study," Applied Water Science, vol. 6, no. 4, pp. 407–420, Nov. 2016, doi: 10.1007/s13201-014-0258-7.
- [14] S. Lahmiri, "A Comparative Study of Backpropagation Algorithms in Financial Prediction," Int. J. Computer Science, Engineering and

Applications (IJCSEA), vol. 1, no. 4, pp. 15–21, Aug. 2011, doi: 10.5121/ijcsea.2011.1402.

- [15] S.P. Kosbatwar and S.K. Pathan, "Pattern Association for Character Recognition by Back-Propagation Algorithm Using Neural Network Approach," Int. J. Computer Science & Engineering Survey (IJCSES), vol. 3, no. 1, pp. 127–134, Feb. 2012, doi: 10.5121/ijcses. 2012.3112.
- [16] A.H. Mansour, G.Z.A. Salh, and H.H.Z. Alabdeen, "Voice Recognition Using Back Propagation Algorithm in Neural Networks," Int. J. Computer Trends and Technology (IJCTT), vol. 23, no. 3, pp. 132–139, May 2015, doi: 10.14445/22312803/IJCTT-V23P128.
- [17] A. Chaturvedi, "Rainfall Prediction Using Back-Propagation Feed Forward Network," Int. J. Computer Applications (IJCA), vol. 119, no. 4, pp. 1–5, Jun. 2015, doi: 10.5120/21052-3693.
- [18] S. Tikoo and N. Malik, "Detection of Face Using Viola Jones and Recognition Using Back Propagation Neural Network," Int. J. Computer Science and Mobile Computing (IJCSMC), vol. 5, no. 5, pp. 288–295, May 2016.
- [19] H. Rajaguru and V. Thangavel, "Wavelets and Morphological Operators Based Classification of Epilepsy Risk Levels," Mathematical Problems in Engineering, vol. 2014, article ID 813197, 2014, doi: 10.1155/2014/813197.
- [20] H.A.K. Rady, "Shannon Entropy and Mean Square Errors for Speeding the Convergence of Multilayer Neural Networks: A Comparative Approach," Egyptian Informatics J., vol. 12, no. 3, pp. 197–209, nov. 2011, doi: 10.1016/j.eij.2011.09.002.