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Abstract. This paper proposed meshless  Radial Point Interpolation Meshless Methods (RPIM) method for numerical 
solution of natural convection in Darcy porous square cavity. It is assumed that Boussinesq approximation is valid to 
characteristic  the buoyancy effect as the driving force of the fluid flow. The Galerkin global weak form is used to 
discretize the system equations. The multiquadratic radial basis function (RBF) is chosen as the shape and test function. 
Comparing the numerical results obtained using the proposed method with those obtained using the conventional 
methods shows very good agreement. 
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INTRODUCTION  

Natural convection in porous media plays an important role in industrial engineering, such as: industrial 
insulation, solar power collector, chemical reactor, geothermal energy system, etc. The phenomenon of natural 
convection is characterized by fluid flow due to differences in fluid density caused by heating or cooling. The fluid 
density will be reduced if it gets warmed up so that it will float and the area left behind will be filled by a relatively 
cold fluid. The relatively hot fluid as it approaches the colder wall increases its density so that it will flow down due 
to the gravitational pull. Thus the difference in density is the driving force of fluid circulation. 

With the reasons mentioned above, natural convection attracted many researchers to research. Natural 
convection research is growing rapidly, especially numerical research. This is driven by the rapid development of 
high-speed digital computers. The results of numerical research turned out to show results close to the experimental 
results [1]. Thus, numerical calculations can be used to design tools, which are then validated by experimental 
results. 

A large amount of research on natural convection heat transfer modeling in porous media has been done. Most of 
the numerical methods used are mesh or grid based methods, such as: Finite Difference Method (FDM) [2] [3] [4], 
Finite Element Method (FEM) [5] [6] [7] and Finite Volume Method (FVM) [8] [9]. Methods of such methods have 
proven their superiority for numerical modeling, especially with regard to accuracy and flexibility. The first step of 
the method makes mesh by dividing the domain of space into a number of elements and in each element there are a 
number of nodes connected to each other so as to form a kind of topology map. Nodes. The process of dividing the 
element along with its topology is not an easy task, so this process is often regarded as a weakness of the method.  

Recently, the meshless methods have been proposed to circumvent the problem of mesh generation in the FDM 
FEM and FEV methods. In meshless methods, numerical solution is constructed entirely in a set of nodes and nodes 
connectivity is not needed. Prax, Sadat, and Salagnac [10] pioneered the use of meshless method, called Diffuse 
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Approximation Method (DAM), for solving the natural convection in porous medium problem. This method 
replaced the FEM interpolation within an element by Moving Least Square (MLS) local interpolation, which is 
defined on nodes [11].   Singh and Bhargava [12] studied natural convection within a wave enclosure using element 
free Galerkin method. They demonstrated that the wavy surface enhanced the heat transfer rate and the obtained 
results have a good agreement with available benchmark data. Samimi and Pak [13] claimed that EFG method is 
rarely used in the field of fluid flow in porous media. They developed 3-dimensional EFG code to study the 
efficiency and the applicability of EFG method. The numerical results indicate that EFG method have a good 
performance. As the DAM, the EFG method uses MLS local interpolation as the shape function. The disadvantage 
of this approach is Dirichlet boundary condition cannot imposed exactly, since the MLS function does not have 
Kronecker delta property. 

Liu and Gu [14] developed Radial Point Interpolation Meshless Methods (RPIM). The RPIM method solved the 
problem in global weak form similar to EFG method, but the field variable expanded in nodes using Radial Basis 
Function (RBF). The use of RBF made the Dirichlet boundary condition can be imposed exactly. It is observed that 
the development of RPIM for numerical solution of natural convection in Darcy porous square cavity problem has 
not been undertaken yet. Therefore, the purpose of this paper is to develop RPIM for solving the problem. 

 

Governing Equations 

The governing equations in terms of non-dimensional stream function ( ) and temperature variables ( ) for the 
Darcian model may be written as follows [6]: 
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where t is time, (x,y) are spatial coordinates, (u,v) are velocity components and Ra is Rayleigh number. 

 

Numerical Solution Procedure 

The RPIM solution procedure for unsteady the natural convection problem in the Darcy medium is described as 
follows:  

Interpolation using RBF on a function xu can be expressed as follows:  
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If it is written in matrix form, the above equation becomes: 
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The  vector x is spatial coordinates, N  is the number of points present in the compact support domain  (Fig. 1), Us is 
the vector containing the value u at the node point and R is the Matrix containing the RBF interpolation, whereas φ  
is the shape function.  The multiquadratic RBF function is selected as interpolation function: 
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Constants C, q,   are the shape parameters. Variables in the model equations can be expressed in the same way: 
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The Galerkin integration uses the same weight function as the shape function, equation (1c) is taken as 
Galerkin integration example: 
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Substitute equation (4) into equation (5): 
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Numerical integration is done using Gauss quadrature method in quadrature domain. In this paper, the quadrature 
domains are rectangular in shape so that numerical integration is performed using the 1-dimensional Gauss 
quadrature tensor product. Background mesh is still needed to determine the division and size of the quadrature 
domain. Temporal integration is done implicitly.  
 

 
 

FIGURE 1. Support domain and quadrature domain  
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The stream function and velocity components are discretized in the same way:  
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The RPIM algorithm is described as follows: 
1. Determine the maximum time limit for the calculation and time step t, specify the initial condition (t = 0) 

for all variables (u, v, ), coordinates of the nodes, basis function parameters, background mesh, Support 
domain and quadrature domain. 

2. Find the derived matrix in Eq. (7a) - (7c) and (8). 
3. The numerical calculation according to the time step begins. 
4. Solve equation (8) to obtain the temperature  for level (n+1).  
5. Solve equation (9) and (10a) - (10b) to obtain the stream function and velocity components ( , u, and v) for 

level (n + 1). 
6. Update time. 
7. Check if it has reached the maximum time limit or not, if not back to step 2. If it is to step 7. 
8. Write the data and finish 

RESULTS AND DISCUSSION 
 

The domain, distribution of the nodes and boundary condition of natural convection in a porous square cavity is 
depicted in Fig. 2. The left vertical wall are heated and the right wall is cooled. The top and bottom horizontal walls 
are adiabatic walls. Due to Darcy’s law the slip boundary condition are applied to the walls, so the stream function is 
set to be zero at the walls.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
FIGURE 2. Nodes and boundary conditions 

050002-4



Numerical calculation is carried out by using 2 kinds of Rayleigh Number value, that is: Ra = 100 and Ra = 
1000. All calculations use the same 61x61 nodes. At low Ra value heat transfer is dominated by conduction and if 
Ra value increases then conduction dominance weakens and convection becomes more dominant. This is evidenced 
by the increase of gradient temperature in the left and right wall as shown in Figure 3a and 3b. The increase in Ra 
value also causes the fluid flow velocity to increase so that the value of the stream function also increases, see 
Figure (4a) and (4b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 3a. Isotherm Ra = 100 

 
 

FIGURE 3b. Stream function at Ra = 100 

 
 

FIGURE 3b. Isotherm Ra = 1000 

 
FIGURE 1. Stream function at Ra = 1000 
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Variations of Nusselt Number values are shown by Figure 4a and 4b, initially the Nu number values are high, 
and this is due to impulsive heating and cooling of the vertical wall. The Nu values then gradually decrease with 
time and finally reach the steady state. The increasing of the Ra number value causes the steady state to be achieved 
faster. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

FIGURE 4a. Nu History at Ra = 100 

 
 

FIGURE 4b. Nu History at Ra = 1000 
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To test the accuracy of RPIM method, the results of numerical calculation are compared with the results of 
calculation of numerical method obtained in some journal literature. The results can be seen in Table 1, the 
comparison shows a very good agreement.  

 
 

TABLE 1. Comparison of Nu 
 

Author Nu 
Ra = 100 Ra = 1000 

Walker and Homsy [15] 3.097 12.960 
Manole and Lage [16] 3.118 13.637 
Baytas [2] 3.160 14.060 
Saeid and Pop [8] 3.002 13.726 
Kumari and  Nath [17] 3.114  13.675 
Present results 3.181  13.703 

 
 
 
 

CONCLUSION  
 

A Radial Point Interpolation Meshless Methods (RPIM) is proposed to solve numerically natural convection in 
Darcy porous square cavity problem. Multiquadratic Radial base function is used as a shape and test function. The 
phenomenon of heat transfer and fluid flow due to the buoyant force can be simulated well. Comparison of RPIM 
numerical calculations with other methods shows that the suitability is very good. So it can be concluded that RIPM 
method has good accuracy for numerical solution of natural convection solution in Darcy porous square cavity. 
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