
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 26, No. 2, May 2022, pp. 1036~1049

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v26.i2.pp1036-1049 1036

Journal homepage: http://ijeecs.iaescore.com

Guided genetic algorithm for solving unrelated parallel machine

scheduling problem with additional resources

Munther H. Abed, Mohd Nizam Mohmad Kahar

Faculty of Computing, College of Computing and Applied Sciences, University Malaysia Pahang, Pahang, Malaysia

Article Info ABSTRACT

Article history:

Received Sep 21, 2021

Revised Mar 5, 2022

Accepted Mar 15, 2022

 This paper solved the unrelated parallel machine scheduling with additional

resources (UPMR) problem. The processing time and the number of required

resources for each job rely on the machine that does the processing. Each job

j needed units of resources (rjm) during its time of processing on a machine

m. These additional resources are limited, and this made the UPMR a

difficult problem to solve. In this study, the maximum completion time of

jobs makespan must be minimized. Here, we proposed genetic algorithm

(GA) to solve the UPMR problem because of the robustness and the success

of GA in solving many optimization problems. An enhancement of GA was

also proposed in this work. Generally, the experiment involves tuning the

parameters of GA. Additionally, an appropriate selection of GA operators

was also experimented. The guide genetic algorithm (GGA) is not used to

solve the unspecified dynamic UPMR. Besides, the utilization of parameters

tuning and operators gave a balance between exploration and exploitation

and thus help the search escape the local optimum. Results show that the

GGA outperforms the simple genetic algorithm (SGA), but it still didn't

match the results in the literature. On the other hand, GGA significantly

outperforms all methods in terms of CPU time.

Keywords:

Genetic algorithm

Makespan

Metaheuristics

Resource constraints

Unrelated parallel machine

scheduling problem

This is an open access article under the CC BY-SA license.

Corresponding Author:

Munther H. Abed

Faculty of Computing, College of Computing and Applied Sciences, University Malaysia Pahang

Pahang, Malaysia

Email: munt1979@yahoo.com

1. INTRODUCTION

Technological advancements have influenced the integration of artificial intelligence (AI) into

manufacturing industries operations such as robotics, production scheduling. These integrations help to

minimize the manufacturing production operational cost and increase the revenue without reducing the

product quality for customer satisfaction. The production scheduling refers to a process of assigning jobs to

machines with the aim to optimize some performance measures. An example of production scheduling is the

unrelated parallel machine scheduling problem (UPM). UPM aims to schedule all jobs with a minimum

completion time (also known as makespan, Cmax).

The UPM problem has several variants with differences in its constraints [1], [2]. An example

includes an unrelated parallel machine with sequence dependent setup time (UPMSP) [3]-[5] and an

unrelated parallel machine scheduling problem with additional resources (UPMR) [1], [6]-[8]. In UPMSP,

each machine has its own specific matrix of setup times for all jobs. While, in UPMR, the additional

resources (i.e., constraints) must be taken into account when scheduling jobs to machine. The additional

resources in UPMR refer to materials, human labor, tools, fixtures, and industrial robots. UPMR problem can

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1037

be considered as one of the most important combinatorial optimization problems as it closely resembles the

real-world problem. This research work focuses on solving UPMR problems.

Various researchers have reported solving the UPMR problem using different approaches. Some of

them had used exact method, heuristic and approximate approaches [1], [9]-[11]. The exact methods are

suitable for small size problems, since they seek all possible solutions in the entire search space [12].

However, for large size problems, an exact method is impractical due to requiring a tremendous amount of

computational time. Hence, an exact method is not suitable to solve such optimization problems [13], [14].

Over the years, metaheuristic algorithms have shown the ability to solve wide optimization problems [15]-

[19]. According to [20], genetic algorithm (GA) is able to solve several continuous optimization problems,

such as exam timetabling problem [21], face recognition system [22], [23], travelling salesman problem [24],

medical robot [25] and many others. GA ability to solve a variety of problems and to produce good quality

solution attracts us to explore it into solving UPMR problems. In [26], they implemented GA into solving

static and specified UMPR problems. However, in this work, dynamic and unspecified problems in UPMR

are considered. Many works on UPMR have been reported in the literature to minimize the makespan (see

Table 1).

Table 1. A summary of methods applied for UPMR problem
Method Reference Description

A heuristic approach [27] Specified dynamic

Two-phased LP rounding technique (4 + 2√2) and (3 + 2√2) [28] Unspecified static

Deterministic 3/2-approximation, 2-approximation and 4-approximation method [29] Unspecified dynamic

A heuristic approach [30] Specified dynamic
A 3.75-approximation algorithm [30] Unspecified dynamic

A Lagrangian-based CP method [31] Unspecified dynamic

CP model, IP model, and integrated IP/CP [32] Specified dynamic
IP model, a relaxed IP based CP model and IP/CP model [33] Unspecified static & dynamic

IP/IP model and IP/CP model [34] Specified dynamic

An ILP program and a two-phase approach [11] Unspecified dynamic
Matheuristic strategies [1] Unspecified dynamic

Genetic algorithm and hybrid genetic algorithm [26] Specified static

MILP model and CP model [35] Unspecified dynamic

Local search methods and multi-pass heuristics [8] Unspecified dynamic

CP model [36] Unspecified dynamic

Enriched scatter search and enriched iterated greedy [37] Unspecified dynamic

As seen in the literature, GA shows the ability to solve numerous problems and produce quality

solution and it has many novel characteristic [38]-[40]. Hence, it is clear that GA is a robust algorithm.

However, it appears that there is a lack of work in GA that is projected into solving the UPMR problem. In

this work, we will investigate GA into solving the unspecified dynamic UPMR problem. Detailed description

of the UPMR problem follows in the next section. The rest of the paper is organized as shown in: Section 2

describes the UMPR problem in detail. The standard GA algorithm (referred to as SGA) and the

enhancement of GA (referred to as GGA) are discussed in section 3. The experimental result and the

discussion are described in section 4. Finally, the conclusion and future work are discussed in section 5.

2. PROBLEM DESCRIPTION

UPMR problem requires scheduling a set of jobs J without interruption (preemption is forbidden),

into unrelated machines, M [35]. Indeed, the required number of resources need to be fulfilled. These

resources are limited and it is important to take into consideration when assigning jobs for processing at the

machines. The allocation of resources to machines can be divided into two types [36] that includes static [9],

[26] and dynamic [1], [8], [28], [31], [37]. In static, the allocation of resources to machines is fixed during the

whole-time horizon and vice versa in the dynamic. The additional resources are divided into: renewable, non-

renewable and doubly constrained [6], [41]. In the renewable resources, the resource may be used again for

another job after being released [1]. The resource once used by some jobs, cannot be assigned to any other

job in the non-renewable [42]. While in the doubly constrained resource, both classes are used at the same

time [43]. The additional resources are also divided into discrete resources in which the number of resources

needed via a job is a positive integer [6], [11], [41] and continuous resources where the number of resources

required for the job is priori unknown in given intervals [6], [41], [44]. The additional resources that involve

the processing of jobs can be classified into processing resources where the resources are required exactly at

the time of the job processing, and input-output resources where the resource is required either before the job

processing or after [45]. Assigning jobs to machines can be categorized into unspecified and specified (i.e.,

pre-specified) [33] whereby the jobs are not preassigned to any machine and vice versa for specified.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1038

In general, this research work only deals with unspecified unrelated parallel machine scheduling

problems with additional recourse. Four resources are selected in the present study. These resources are

processing resources, dynamic, discrete, and renewable. These resources are selected as they are the most

frequently used and they reflect the real-world scheduling problems [1], [8], [11], [29], [31], [33], [35]-[37].

2.1. Notations and decision variables

The UPMR problem treats with several types of input data. These include a list of m available

machines; a list of j jobs to be processed; Rmax units of a certain resource; rjm units of the resource and pjm

units of time, which needed to process job j at machine m. Notations:

− M: number of machines (indexed as m), where m=1,…., M.

− J: number of jobs that need to be processed (indexed as j), where j=1,...., J.

− T: the number of time periods appearing in the scheduling horizon (indexed as t), where t = 1,...., T.

− Rmax: maximum allowed number of resources

− pjm: processing time of job j on machine m.

− rjm: resources needed to process job j on machine m.

Decision variables:

− 𝑥𝑗𝑚𝑡: 1 if job j ends its processing on machine m at time t, 0 otherwise.

− Cmax: the maximum completion time of all jobs (makespan).

2.2. UPMR formal mathematical model

UPMR aim is to minimize the maximum completion time of the job makespan, Cmax. This is referred

to as the objective function.

 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗=1,…,𝐽 ∑ ∑ 𝑡𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

𝑀
𝑚=1 , ∀𝑗 = 1, … , 𝐽 (1)

The following hard constraints must be satisfied:

H1. One machine must process exactly one job and the processing ends just at one time.

∑ ∑ 𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

= 1 𝑀
𝑚=1 , ∀ 𝑗 = 1, … , 𝐽 (2)

H2. Jobs are not processed together at the same time in the same machine.

∑ ∑ 𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝐽
𝑗=1 ≤ 1 , ∀𝑚 = 1, . , 𝑀; ∀𝑡 = 1, … , 𝑇 (3)

H3. Do not exceed the Rmax units of resource at any time.

∑ ∑ ∑ 𝑟𝑗𝑚𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝑀
𝑚=1

𝐽
𝑗=1 ≤ 𝑅𝑚𝑎𝑥 , ∀𝑡 = 1, … , 𝑇 (4)

For the sake of understanding the UPMR problem, an explanatory example has been applied on

dataset 12×6 (1_JobCorre_R_inter). Table 2 embodies the processing time (pjm) and resource consumption

(rjm) for that dataset. Each dataset contains its own specific matrix of pjm and rjm that are different from those

existing in dataset 12×6. Table 3 and Figure 1 represent the result of makespan Cmax that was obtained based

on (1) and taking into account the application of the constraints indicated in (2), (3) and (4).

Table 2. pjm and rjm (in brackets) of the dataset 12×6

Jobs
Machines

1 2 3 4 5 6

1 16 (2) 13 (4) 23 (1) 15 (1) 21 (3) 11 (1)

2 57 (2) 73 (6) 63 (7) 72 (4) 56 (5) 59 (2)

3 21 (5) 19 (1) 15 (2) 4 (4) 6 (3) 19 (2)

4 74 (9) 73 (9) 60 (6) 57 (2) 68 (8) 68 (4)

5 113 (9) 99 (9) 106 (9) 99 (9) 105 (9) 101 (9)

6 61 (3) 64 (3) 65 (6) 56 (5) 65 (3) 56 (8)

7 72 (3) 62 (3) 63 (8) 79 (7) 69 (7) 70 (4)

8 31 (2) 22 (4) 25 (4) 20 (5) 35 (4) 26 (2)

9 97 (8) 100 (8) 99 (9) 99 (8) 100 (7) 86 (8)

10 61 (6) 62 (7) 56 (3) 56 (5) 52 (7) 67 (7)

11 94 (5) 99 (9) 89 (9) 93 (9) 92 (8) 90 (5)

12 83 (5) 85 (5) 90 (9) 73 (5) 87 (9) 74 (3)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1039

Table 3. The result obtained (cmax) = 145 on the dataset 12×6
Job Start time Finish time

11 0 94

6 0 64

3 0 15

4 0 57

8 0 35

9 0 86

10 15 71

5 35 140

1 57 72

7 64 126

12 72 145

2 86 145

Figure 1. Makespan of dataset 12×6

3. PROPOSED ALGORITHM

GA has been implemented to solve many optimization problems and show the ability to produce

quality solutions [46], [47]. It imitates the biological evolution process of chromosomes through the use of

selection, crossover, and mutation operators. Chromosomes represent the solutions to problems and these

solutions are evaluated in terms of their fitness value. Basically, GA begins from a group of solutions

represented by chromosomes called population as shown in Figure 2, which may be a stochastic generator

[40]. A chromosome is defined as a group of genes. Each gene, in any group, is characterized by having a

unit of information on the problem solution. The generation of the new solution is carried out in eight steps

as:

Step 1: The parameters are initialized.

Step 2: The chromosome representation is encoded for a problem.

Step 3: The initial population is produced randomly.

Step 4: The objective function is applied to evaluate the fitness value of each chromosome in the population.

Step 5: The selection process of chromosomes in the population is applied according to the type of selection,

where each chromosome has a fitness value.

Step 6: The crossover process is carried out to create new population chromosomes by selecting parents and

offspring based on the crossover probability rate.

Step 7: Mutation process were implemented on the new chromosomes based on the mutation probability rate.

Step 8: Feasibility of all chromosomes were checked based on the compliance of the constraints, otherwise

the repair mechanism is executed.

Step 9: Step 4 is repeated until an optimal solution is achieved or until the stop criterion is satisfied.

3.1. Chromosome representation

A chromosome is a group of genes that contains an information on solution to the problem to be

solved as indicated in Figure 3. As illustrated in the problem formulation, two important pieces of

information are provided for UPMR problem: the first information is the machines and jobs, and the second

information is the time periods and resource allocation that are needed for processing the jobs in any possible

assignment. In this problem, the permutation encoding is utilized as it processes numbers only.

j11

j6

j3

j4

j8

j9

j7

j10

j1

j5

j2

j12

0 25 50 75 100 125 150

m1

m2

m3

m4

m5

m6

Pjm

Machines

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1040

Chromosome 1 Chromosome 2

Chromosome 3 Chromosome 4

Figure 2. Population of solutions

Job sequence J j2 j1 j3 j4 j5

Machine assignment M m1 m2 m1 m2 m1

Figure 3. Chromosome representation

3.2. Initial population

It is defined as the starting GA population that contains feasible solutions. In general, the initial

population is generated randomly and must satisfy all constraints. Figure 4 shows the pseudocode to generate

the initial population. Though a large number of researchers used the single population, quite a few

researchers use the multi-population recently [48], [49]. Multi-population makes the genetic algorithm allow

the search space of the problem to be explored by one or more populations, while others can also perform

exploitation in the same space (see Figure 5). It is expected that, by incorporating both exploitation and

exploration, the quality of the solution would increase.

Figure 4. Initial population initialization

3.3. Selection operator

In the selection process, the appropriate chromosomes are chosen from the population to create a

new population for the next iteration (until the stopping condition is met). In this study, the roulette wheel

selection and K-tournament selection will be used to select the chromosomes because they are the most

common and used in genetic algorithm [50], [51].

3.3.1. Roulette wheel selection

In roulette wheel selection, the chromosomes with the highest fitness value have a greater

opportunity to be selected [52], [53]. The probability for each chromosome is calculated using (5):

𝑝𝑐 =
𝑓𝑐

∑ 𝑓𝑐
𝑛
𝑐=1

 (5)

fc indicates the fitness value of each chromosome. Fitness value means that the chromosome, which has less

value of Cmax, considering the best solution and its fitness value, is higher. As for the chromosomes, the

Gene1 Gene1

Gene1 Gene1

Gene2 Gene3 Gene4 Gene3 Gene4 Gene2

Gene3 Gene4 Gene2 Gene2 Gene4
Gene3

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1041

higher Cmax value is, the lower fitness value is. While n is the number of chromosomes in the population.
∑ 𝑓𝑐

𝑛
𝑐=1 is the total fitness of all chromosomes in the population. Figure 6 shows the fitness value and the

fitness probability for each chromosome existing in population. Then, a random number is generated between

0 and 1. This number is spun like a roulette wheel to selected the chromosome.

Figure 5. Flowchart of multi-population

Chromosome, cn c1 c2 c3 c4 c5

Fitness value 1.5 1 2.5 2 3

Fitness probability, pn 0.15 0.10 0.25 0.20 0.30

Figure 6. Fitness value and probability in a chromosome

3.3.2. K-tournament selection

The chromosomes are selected based on selecting the best solution among K chosen solutions from

the population. In this approach, there is a possibility of selecting no-good solutions, however, it has more

capability of avoiding local optima. The selection of value K is optional (for example: K=0.3 N) and refers to

the competing chromosomes that will be randomly selected out of their total number. For instance, if the

population have 30 solutions, then the K is 9. After that, the solution that has the best fitness value (less Cmax)

is selected among those 9.

…..

Generates population of solutions

Divide the population into subpopulations

Stopping
criterion

satisfied?
Combine the subpopulations End

Yes

U
p

d
at

e
th

e

p
o

p
u
la

ti
o

n

Subpopulation

2

Selection

Crossover

Mutation

 Update?

Yes

NO

U
p

d
at

e
th

e

p
o

p
u
la

ti
o

n

Subpopulation

n

Selection

Crossover

Mutation

Yes

NO

Subpopulation

1

Selection

Crossover

Mutation

 Update?

U
p

d
at

e
th

e

p
o

p
u

la
ti

o
n

Yes

NO

NO

 Start

Update?

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1042

3.4. Crossover operator

GA combines two chromosomes (parents) to generate new chromosomes (referred to as offspring’s).

The major goal of crossover is to produce a new chromosome, hoping it to be higher in status and rank than

their parents (take the good features and attributes of each parent). In this study, one-point and uniform

crossover will be used to combine two chromosomes [51], [54]. These two types were used because they are

the most common and because they are completely different. The crossover point is generated randomly to

involve the range of values from 0.2 to 0.8 and these values change for each iteration.

3.4.1. One-point crossover

One choice only is available at the crossover point (randomly). Genes to the right (or left) of that

point are swapped between the two parent chromosomes to produce two offspring chromosomes (children) as

illustrates in Figure 7. Basically, the offspring is created by combining chromosome1 (i.e., parent) starting

from the 1st gene until the crossover point. Next, the remaining genes were taken from chromosome2.

Figure 7. One-point crossover pseudocode

3.4.2. Uniform crossover

Uniform crossover produces offspring in a different method to point crossover methods. Crossover

points are not selected but rather uniform crossover simply considers each bit position of the two parents. In

contrast to one-point crossover the chromosomes are combined at the gene level in a uniform crossover. The

genes taken from both chromosomes (parents) are selected randomly to generate chromosomes (offspring)

based on crossover point as shown in Figure 8.

Figure 8. Uniform crossover pseudocode

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1043

3.5. Mutation operator

Producing an offspring through the use of the crossover operator alone makes the GA stuck in the

local optima, causing, thus, the survival of the good parts of the parents in each generation (i.e., the frequent

transferring of the same genes from one generation to another). This problem is mitigated using the mutation

operator through proving new offspring that is different from parents, and encouraging and motivating

diversity in the population [55]. The insertion and inversion mutation will be applied in this study. Insertion

mutation selects a gene at random and inserts it in a random position as listed in Figure 9. Whereas in

inversion mutation, two positions within the same chromosome are randomly selected and then the sub-genes

between these two positions are inverted as illustrated in Figure 10.

Figure 9. Insertion mutation pseudocode

Figure 10. Inversion mutation pseudocode

3.6. Repair mechanism

A repetition error in the job sequence (i.e., chromosome list) after the crossover or mutation

operation might occur. The error includes assigning jobs to more than one machine (i.e., duplicate job), or job

not being assigned to any machine (lost job). This causes a violation to the hard constraint (i.e., H1 – H3).

Hence, a repair mechanism is used to guarantee that all constraints are being satisfied. The repair mechanism

pseudocode is shown in Figure 11. Besides, this mechanism is used to reorder one or more genes, and to

reallocate a job to another machine to avoid the conflict.

Figure 11. Repair mechanism pseudocode

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1044

3.7. Parameters tuning and operators to solve UPMR

This section describes the proposed algorithms in solving UPMR. SGA begins with the parameter

initialization based on the findings of the parameter tuning experiments and the initial population generation

as shown in Figure 12. Then, the chromosomes in the population are evaluated to determine their fitness

value. The next step involves creating a new chromosome (i.e., offspring).

The importance of GA parameters has been neglected and unexploited for an optimal solution [56].

The GA parameters very much influence and give a considerable impact on the solution quality [57].

Choosing the appropriate parameters value for GA is a significant task. Mainly, there are four essential

parameters for the GA operation: crossover rate, mutation rate, population size, and number of iterations

[14], [58], [59]. According to [14], [59], [60] the crossover and mutation rate is defined as the number of

occurrences of crossover and mutation operation in an iteration respectively. A careful selection of crossover

and/or mutation rates has been known to be significant to the success of genetic algorithms. In fact, it is also

crucial to the success of the earlier problems, and even for different stages of the genetic process in a problem

[61], [62]. The population size determines the total number of chromosomes. The population size is very

sensitive in which a small population size would discourage exploration and easily trap in the local optima.

However, for a large population size, it encourages exploration but GA would suffer from a high

computational load [63]. Finally, the number of iterations is defined as the number of cycles before the

algorithm stops (or terminated). The number of iterations depends on the problem complexity in which it

may require a large number of iterations compared to less complex problems. According to the discussion

above, this work investigates the suitable parameter values for GA in solving UPMR as shown in Table 3. In

this investigation, the best parameter values for SGA in solving UPMR problem based on an experimental

test are illustrated in Table 4.

Table 3. The parameter value of the GA
Crossover rate Mutation rate Population size Iteration no.

0.3 0.01 20 500
0.5 0.05 40 1000

0.7 0.1 60 2000

0.9 0.5 100 4000

6000

Table 4. Exact values of parameters in GGA
Parameter Value

Population size
Crossover rate

Mutation rate

Iteration no.

40
0.7

0.1

4000

Although that the parameters values are very impotent for the GA performance, the appropriate

selection of the GA operators is also very essential to make balance between exploration and exploitation,

escape from the local optima and get good quality solutions [14], [64]. Moreover, investigations on the best

SGA operator were also conducted by experimenting with different combinations of operators tested. These

operators are single vs multi population, roulette wheel vs k-tournament selection, one-point vs uniform

crossover and insertion vs inversion mutation. The experiment also reveals that the combination of multi-

population, k-tournament selection, uniform crossover and insertion mutation produces the best result.

All the metaheuristic algorithms are designed to search for the optimal solutions by following a

specific procedure. Most of them uses the classic procedure which is inspired either from the natural

phenomena such as the Hill climbing algorithm or inspired from evolutionary procedures such as GA. For

some optimization problems, the solver algorithms must consider the problem information in order to

improve the search capabilities. One of the recent procedures is the guided procedure which depends a prior

knowledge about the undertaken problem. In this paper, guided approach applied in the crossover operator to

improve the SGA performance. The same operators and parameters, that were used in SGA, are used in GGA

except for the crossover process. In the uniform crossover, the swap between genes (job/machine) for the two

parent's chromosomes is randomly carried out. Therefore, the result may lead to infeasible solutions that

require repair mechanism to obtain feasible solutions. While the crossover in GGA, the swap between genes

is heuristically carried out. As such, this swap will be carried out if there is no chromosome conflict (the

constraints are satisfied). Consequently, this type of swap will not need the repair mechanism.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1045

Figure 12. Pseudocode for the SGA

4. RESULTS AND DISCUSSION

The result of each benchmark instance reported by SGA and GGA is presented using the dataset as

in [1], [8]. These instances can be found at http://soa.iti.es. The performances of the two variants of the

proposed algorithm are evaluated in terms of the relative percentage deviation (RPD), average relative

percentage deviation (ARPD), and in terms of average computational time (AvTime). The results derived

from the SGA and GGA are compared to each other as well as to the work presented by [1]. RPD is

computed using (6):

 𝑅𝑃𝐷 =
𝐻𝑒𝑢𝑠𝑜𝑙− 𝐿𝐵

𝐿𝐵
× 100 (7)

Heusol is the objective function value (i.e., Makespan) from the experiment and LB is the maximum lower

bound based on [1]. LB is also called the best-known solution (BKS). The proposed algorithms were coded in

C# 2012.5 and run on a PC with the components CPU Intel(R), Core (TM) i5, speed 2.20 GHz, and RAM

8.00 GB.

Table 5, Table 6 and Table 7 show the result of the investigation and comparison with other result

found in the literature. The first column listed the dataset instances and the first row is the methods to

compare (i.e., UPMR-P, JMR-P, M4, M5, ESS, EIG, SGA, and GGA indicated in columns show the results

found as RPD). The penultimate row shows the ARPD and the last row illustrates the AvTime for each

algorithm.

In general, the results indicate that GGA is able to produce better solutions in all instances when

compared to SGA in terms of solution quality (RPD) and computational time (AvTime). In the small dataset

(see Table 5), it is clear that the UPMR-P and JMR-P produce the best solution followed by EIG, ESS, M4,

M5, GGA and SGA in terms of RPD. Here, GGA is able to produce solutions better than SGA which shows

that the selected GA operators and parameters tuning give a significant improvement. Further, Table 5 shows

that GGA outperforms other methods in terms of AvTime even though being a population-based algorithm.

As for the medium dataset (see Table 6), it becomes apparent that the best solution is produced, in

terms of RPD, by the EIG and then by ESS, M4, M5, GGA, SGA, JMR-P and UPMR-P. The GGA indicates

that it produces better solutions than the UPMR-P, JMR-P as well as SGA. Table 6 also shows that GGA

outperforms other methods in terms of AvTime even though being a population-based algorithm.

In the large dataset, the UPMR-P and JMR-P were not used to solve the UPMR problem because it

takes a large amount of time to solve this problem due to the complexity of this problem. Similarly, the EIG,

ESS, M5 and M4 algorithm overcome GGA but they also underperform in terms of AvTime as shown in

Table 7. On the other hand, the GGA outperforms SGA in all instances. Besides, GGA, as seen in Table 7,

also outperforms other methods in terms of AvTime even though being a population-based algorithm.

http://soa.iti.es/

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1046

Table 5. RPD, ARPD and AvTime for small instances
Instances UPMR-P [1] JMR-P [1] M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA

8x2 0 0 0.10 0.24 0 0 2.21 1.40
8x4 0 1.94 0.73 1.17 0.66 0.53 2.72 1.54

8x6 0 1.88 1.06 0.96 0.13 0.04 2.63 1.98

12x2 0 0 0.59 0.67 0.35 0.40 2.58 1.46
12x4 1.14 2.48 1.87 2.16 1.47 1.14 3.25 2.42

12x6 1.44 1.05 1.14 1.18 0.75 0.48 1.50 1.38

16x2 0.21 0.21 0.56 0.63 0.23 0.14 1.78 1.45
16x4 6.46 4.25 1.39 1.71 1.19 1.00 4.04 2.02

16x6 8.71 5.99 1.40 1.61 1.22 0.77 5.00 2.42

ARPD 2.00 1.98 0.98 1.15 0.67 0.50 2.86 1.79
AvTime 2208.34 1969.92 0.0449 0.03522 5.5 5.5 0.02915 0.02305

Table 6. RPD, ARPD and AvTime for medium instances
Instances UPMR-P [1] JMR-P [1] M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA

20x2 0.81 0.81 0.97 1.18 0.49 0.43 2.81 2.07
20x4 12.54 9.60 1.27 1.11 0.80 0.70 3.67 2.19

20x6 14.38 9.44 1.10 1.05 0.50 0.56 3.22 1.95

25x2 3.65 3.65 0.56 0.60 0.26 0.15 2.74 2.25
25x4 18.82 13.30 0.89 0.95 0.60 0.59 4.23 2.37

25x6 23.77 18.24 1.10 1.13 0.48 0.53 6.07 2.36

30x2 10.29 10.29 0.84 1.00 0.49 0.28 3.50 1.15
30x4 27.26 20.59 0.50 0.64 0.28 0.17 4.27 2.00

30x6 59.60 28.99 0.92 0.64 0.32 0.24 4.93 2.26

ARPD 19.01 12.77 0.91 0.92 0.47 0.41 3.94 2.07
AvTime 3600 3600 0.1965 0.14656 14.5 14.5 0.10279 0.08749

Table 7. RPD, ARPD and AvTime for large instances
Instances M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA

50x10 1.03 1.07 0.36 0.27 5.04 2.45
50x20 1.78 1.37 0.50 0.40 4.66 3.01

50x30 1.47 1.51 0.35 0.34 3.91 2.50

150x10 0.10 0.73 0.30 0.28 2.56 1.36
150x20 1.37 1.43 0.55 0.28 4.73 2.45

150x30 1.41 1.24 0.46 0.26 6.06 3.73

250x10 0.87 0.65 0.25 0.15 3.34 1.57
250x20 1.01 0.82 0.40 0.23 4.60 2.96

250x30 1.00 0.77 0.36 0.18 4.76 2.36

350x10 0.63 0.48 0.23 0.12 2.84 2.01
350x20 0.68 0.47 0.30 0.15 5.05 2.98

350x30 0.78 0.65 0.24 0.10 4.67 3.15

ARPD 1.01 0.93 0.36 0.23 4.35 2.54
AvTime 184.93 102.25 73.1 60.5 19.5388 18.6273

5. CONCLUSION AND FUTURE WORK

This work investigates the significance of GA in solving the UPMR problem. Here, a guided genetic

algorithm based on a specific GA operator is proposed to manipulate GA into producing a quality solution

(refer to GGA). To measure the performance of GGA, the results are compared with other reported results

from the literature. The comparisons revealed that the GGA shows better performance against SGA for

solving the UPMR problem. An accurate selection of GA operators and parameters help in producing quality

results. Comparison with other related work revealed that the GGA is outperformed by some these methods.

Without doubt, it is able to give a competitive result and even better result than some of the methods. It is

worth noting that the GGA outperformed, in terms of computational time, all the methods addressed in this

research, especially the exact methods (i.e., UPMR-P and JMR-P) which require an extensive computation

time to solve the problems. For future research, a hybridization of GGA with other metaheuristics methods

can be applied to increase the performance of GGA in solving the UPMR problem. A metaheuristic that is

good in exploitation (single-based metaheuristic) is highly recommended. This would greatly complement

GGA (i.e., GGA is excellent in terms of exploration).

ACKNOWLEDGEMENTS

We are grateful to Universiti Malaysia Pahang (UMP) for supporting the research project through

University Postgraduate Research Grant Scheme (PGRS1903187).

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1047

REFERENCES
[1] L. F.-Peyro, F. Perea, and R. Ruiz, “Models and matheuristics for the unrelated parallel machine scheduling problem with

additional resources,” European Journal of Operational Research, vol. 260, no. 2, pp. 482–493, Jul. 2017, doi:

10.1016/j.ejor.2017.01.002.

[2] Salem and A. Hassan, Unrelated parallel machine scheduling with sequence-dependent setup times and machine eligibility
restrictions for minimizing the makespan. University of Central Florida, 1999.

[3] C. M. Joo and B. S. Kim, “Parallel machine scheduling problem with ready times, due times and sequence-dependent setup times

using meta-heuristic algorithms,” Engineering Optimization, vol. 44, no. 9, pp. 1021–1034, Sep. 2012, doi:
10.1080/0305215X.2011.628388.

[4] J. P. Arnaout, R. Musa, and G. Rabadi, “A two-stage ant colony optimization algorithm to minimize the makespan on unrelated

parallel machines - Part II: Enhancements and experimentations,” Journal of Intelligent Manufacturing, vol. 25, no. 1, pp. 43–53,
Feb. 2014, doi: 10.1007/s10845-012-0672-3.

[5] R. Gedik, C. Rainwater, H. Nachtmann, and E. A. Pohl, “Analysis of a parallel machine scheduling problem with sequence

dependent setup times and job availability intervals,” European Journal of Operational Research, vol. 251, no. 2, pp. 640–650,
Jun. 2016, doi: 10.1016/j.ejor.2015.11.020.

[6] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Węglarz, “Scheduling under resource constraints,” in Handbook on

scheduling: from theory to applications, New York: Springer: Verlag Berlin Heidelberg, 2007, pp. 425–475.
[7] A. Bitar, S. D.-Pérès, C. Yugma, and R. Roussel, “A memetic algorithm to solve an unrelated parallel machine scheduling

problem with auxiliary resources in semiconductor manufacturing,” Journal of Scheduling, vol. 19, no. 4, pp. 367–376, Aug.

2016, doi: 10.1007/s10951-014-0397-6.
[8] F. Villa, E. Vallada, and L. F.-Peyro, “Heuristic algorithms for the unrelated parallel machine scheduling problem with one scarce

additional resource,” Expert Systems with Applications, vol. 93, pp. 28–38, Mar. 2018, doi: 10.1016/j.eswa.2017.09.054.
[9] R. L. Daniels, S. Y. Hua, and S. Webster, “Heuristics for parallel-machine flexible-resource scheduling problems with unspecified

job assignment,” Computers and Operations Research, vol. 26, no. 2, pp. 143–155, 1999, doi: 10.1016/S0305-0548(98)00054-9.

[10] H. Kellerer, “An approximation algorithm for identical parallel machine scheduling with resource dependent processing times,”
Operations Research Letters, vol. 36, no. 2, pp. 157–159, Mar. 2008, doi: 10.1016/j.orl.2007.08.001.

[11] L. Fanjul, F. Perea, and R. Ruiz, “Algorithms for the unspecified unrelated parallel machine scheduling problem with additional

resources,” in Proceedings of 2015 International Conference on Industrial Engineering and Systems Management, IEEE IESM
2015, Oct. 2016, pp. 69–73, doi: 10.1109/IESM.2015.7380139.

[12] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: overview and conceptual comparison,” ACM Computing

Surveys, vol. 35, no. 3, pp. 268–308, Sep. 2003, doi: 10.1145/937503.937505.
[13] Z. Michalewicz and D. B. Fogel, “Constraint-handling techniques,” in How to Solve It: Modern Heuristics, Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004, pp. 231–270.

[14] E. G. Talbi, Metaheuristics: From Design to Implementation. Chichester: John Wiley & Sons and Sons Inc, 2009.
[15] G. Tian, Y. Ren, Y. Feng, M. C. Zhou, H. Zhang, and J. Tan, “Modeling and planning for dual-objective selective disassembly

using and/or graph and discrete artificial bee colony,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2456–2468,

Apr. 2019, doi: 10.1109/TII.2018.2884845.
[16] W. Wang et al., “Dual-objective program and improved artificial bee colony for the optimization of energy-conscious milling

parameters subject to multiple constraints,” Journal of Cleaner Production, vol. 245, p. 118714, Feb. 2020, doi:

10.1016/j.jclepro.2019.118714.
[17] F. Misni and L. S. Lee, “Harmony search for multi-depot vehicle routing problem,” Malaysian Journal of Mathematical Sciences,

vol. 13, no. 3, pp. 311–328, 2019.

[18] F. Wang, H. Zhang, and A. Zhou, “A particle swarm optimization algorithm for mixed-variable optimization problems,” Swarm
and Evolutionary Computation, vol. 60, p. 100808, Feb. 2021, doi: 10.1016/j.swevo.2020.100808.

[19] J. Liu, J. Yang, H. Liu, X. Tian, and M. Gao, “An improved ant colony algorithm for robot path planning,” Soft Computing, vol.

21, no. 19, pp. 5829–5839, Oct. 2017, doi: 10.1007/s00500-016-2161-7.
[20] S. S. Chaudhry and W. Luo, “Application of genetic algorithms in production and operations management: A review,”

International Journal of Production Research, vol. 43, no. 19, pp. 4083–4101, Oct. 2005, doi: 10.1080/00207540500143199.

[21] M. H. Abed and A. Y. C. Tang, “Hybridizing genetic algorithm and record-to-record travel algorithm for solving uncapacitated
examination timetabling problem,” Electronic Journal of Compuer Science and Information Technology (eJCSIT), vol. 4, no. 1,

pp. 25–31, 2013.

[22] P. Sukhija, S. Behal, and P. Singh, “Face recognition system using genetic algorithm,” Procedia Computer Science, vol. 85, pp.
410–417, 2016, doi: 10.1016/j.procs.2016.05.183.

[23] Y. Pratama, L. M. Ginting, E. H. L. Nainggolan, and A. E. Rismanda, “Face recognition for presence system by using residual

networks-50 architecture,” International Journal of Electrical and Computer Engineering, vol. 11, no. 6, pp. 5488–5496, 2021,
doi: 10.11591/ijece.v11i6.

[24] J. Xu, L. Pei, and R. Z. Zhu, “Application of a genetic algorithm with random crossover and dynamic mutation on the travelling

salesman problem,” Procedia Computer Science, vol. 131, pp. 937–945, 2018, doi: 10.1016/j.procs.2018.04.230.
[25] G. Ilewicz and A. Harlecki, “Multi-objective optimization and linear buckling of serial chain of a medical robot tool for soft tissue

surgery,” IAES International Journal of Robotics and Automation (IJRA), vol. 9, no. 1, p. 17, Mar. 2020, doi: 10.11591/ijra.v9i1.

[26] M. Afzalirad and M. Shafipour, “Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine
scheduling problem with machine eligibility restrictions,” Journal of Intelligent Manufacturing, vol. 29, no. 2, pp. 423–437, Feb.

2018, doi: 10.1007/s10845-015-1117-6.

[27] J. F. Chen, “Unrelated parallel machine scheduling with secondary resource constraints,” International Journal of Advanced
Manufacturing Technology, vol. 26, no. 3, pp. 285–292, Aug. 2005, doi: 10.1007/s00170-003-1622-1.

[28] A. Grigoriev, M. Sviridenko, and M. Uetz, “Unrelated parallel machine scheduling with resource dependent processing times,” in

Lecture Notes in Computer Science, vol. 3509, 2005, pp. 182–195.
[29] V. S. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan, “Approximation algorithms for scheduling on multiple

machines,” in Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2005, vol. 2005, pp. 254–

263, doi: 10.1109/SFCS.2005.21.
[30] J. F. Chen and T. H. Wu, “Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment

constraints,” Omega, vol. 34, no. 1, pp. 81–89, Jan. 2006, doi: 10.1016/j.omega.2004.07.023.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 26, No. 2, May 2022: 1036-1049

1048

[31] E. B. Edis and C. Oguz, “Parallel machine scheduling with additional resources: A lagrangian-based constraint programming

approach,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 6697 LNCS, 2011, pp. 92–98.

[32] E. B. Edis and I. Ozkarahan, “A combined integer/constraint programming approach to a resource-constrained parallel machine

scheduling problem with machine eligibility restrictions,” Engineering Optimization, vol. 43, no. 2, pp. 135–157, Feb. 2011, doi:
10.1080/03052151003759117.

[33] E. B. Edis and C. Oguz, “Parallel machine scheduling with flexible resources,” Computers and Industrial Engineering, vol. 63,

no. 2, pp. 433–447, Sep. 2012, doi: 10.1016/j.cie.2012.03.018.
[34] E. B. Edis and I. Ozkarahan, “Solution approaches for a real-life resource-constrained parallel machine scheduling problem,”

International Journal of Advanced Manufacturing Technology, vol. 58, no. 9–12, pp. 1141–1153, Feb. 2012, doi:

10.1007/s00170-011-3454-8.
[35] K. Fleszar and K. S. Hindi, “Algorithms for the unrelated parallel machine scheduling problem with a resource constraint,”

European Journal of Operational Research, vol. 271, no. 3, pp. 839–848, Dec. 2018, doi: 10.1016/j.ejor.2018.05.056.

[36] T. Arbaoui and F. Yalaoui, “Solving the unrelated parallel machine scheduling problem with additional resources using constraint
programming,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 10752 LNAI, 2018, pp. 716–725.

[37] E. Vallada, F. Villa, and L. F.-Peyro, “Enriched metaheuristics for the resource constrained unrelated parallel machine scheduling
problem,” Computers and Operations Research, vol. 111, pp. 415–424, Nov. 2019, doi: 10.1016/j.cor.2019.07.016.

[38] G. Moslemipour, T. S. Lee, and D. Rilling, “A review of intelligent approaches for designing dynamic and robust layouts in

flexible manufacturing systems,” International Journal of Advanced Manufacturing Technology, vol. 60, no. 1–4, pp. 11–27, Apr.
2012, doi: 10.1007/s00170-011-3614-x.

[39] A. S. Kholimi, A. Hamdani, and L. Husniah, “Automatic game world generation for platformer games using genetic algorithm,”

in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Oct. 2018, pp. 495–498, doi:
10.1109/EECSI.2018.8752741.

[40] J. H. Holland, “Adaptation in Natural and Artificial Systems,” Ann Arbor: University of Michigan Press, 1992, doi:
10.7551/mitpress/1090.001.0001.

[41] R. Slowinski, “Two approaches to problems of resource allocation among project activities- a comparative study,” Journal of the

Operational Research Society, vol. 31, no. 8, pp. 711–723, Aug. 1980, doi: 10.1057/jors.1980.134.
[42] D. Shabtay and M. Kaspi, “Parallel machine scheduling with a convex resource consumption function,” European Journal of

Operational Research, vol. 173, no. 1, pp. 92–107, Aug. 2006, doi: 10.1016/j.ejor.2004.12.008.

[43] L. Özdamar and G. Ulusoy, “A local constraint-based analysis approach to project scheduling under general resource constraints,”
European Journal of Operational Research, vol. 79, no. 2, pp. 287–298, Dec. 1994, doi: 10.1016/0377-2217(94)90359-X.

[44] J. Y. T. Leung, Handbook of scheduling: Algorithms, models, and performance analysis. CRC press, 2004.

[45] J. Błażewicz, N. Brauner, and G. Finke, “Scheduling with discrete resource constraints,” in Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, E. J. Y-T., CRC press, 2004, pp. 23-1-23–18.

[46] L. Ma, J. Li, Q. Lin, M. Gong, C. A. Coello, and Z. Ming, “Cost-aware robust control of signed networks by using a memetic

algorithm,” IEEE Transactions on Cybernetics, vol. 50, no. 10, pp. 4430–4443, Oct. 2020, doi: 10.1109/TCYB.2019.2932996.
[47] G. Rivera, L. Cisneros, P. Sánchez-Solís, N. R.-Valdez, and J. R.-Osollo, “Genetic algorithm for scheduling optimization

considering heterogeneous containers: A real-world case study,” Axioms, vol. 9, no. 1, 2020, doi: 10.3390/axioms9010027.

[48] J. K. Cochran, S. M. Horng, and J. W. Fowler, “A multi-population genetic algorithm to solve multi-objective scheduling
problems for parallel machines,” Computers and Operations Research, vol. 30, no. 7, pp. 1087–1102, 2003, doi: 10.1016/S0305-

0548(02)00059-X.

[49] N. R. Sabar, A. Turky, M. Leenders, and A. Song, “Multi-population genetic algorithm for cardinality constrained portfolio
selection problems,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 10860 LNCS, 2018, pp. 129–140.

[50] K. Hingee and M. Hutter, “Equivalence of probabilistic tournament and polynomial ranking selection,” 2008 IEEE Congress on
Evolutionary Computation, CEC 2008, 2008, pp. 564–571, doi: 10.1109/CEC.2008.4630852.

[51] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimedia Tools and

Applications, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.
[52] N. Nuntasen and S. Innet, “Application of genetic algorithm for solving university timetabling problems: a case study of Thai

universities,” UTCC Engineering Research Papers, pp. 128–133, 2007, [Online]. Available: http://eprints.utcc.ac.th/990/

[53] A. Lipowski and D. Lipowska, “Roulette-wheel selection via stochastic acceptance,” Physica A: Statistical Mechanics and its
Applications, vol. 391, no. 6, pp. 2193–2196, Mar. 2012, doi: 10.1016/j.physa.2011.12.004.

[54] G. K. Soon, T. T. Guan, C. K. On, R. Alfred, and P. Anthony, “A comparison on the performance of crossover techniques in

video game,” in Proceedings - 2013 IEEE International Conference on Control System, Computing and Engineering, ICCSCE
2013, Nov. 2013, pp. 493–498, doi: 10.1109/ICCSCE.2013.6720015.

[55] I. Korejo, S. Yang, K. Brohi, and K. Z.U.A, “Multi-population methods with adaptive mutation for multi-modal optimization

problems,” International Journal on Soft Computing, Artificial Intelligence and Applications, vol. 2, no. 2, pp. 1–19, 2013, doi:
10.5121/ijscai.2013.2201.

[56] Y. Zhang, J. Guo, and J. Zhou, “Dynamic mutation genetic algorithm,” in Dianzi Keji Daxue Xuebao/Journal of the University of

Electronic Science and Technology of China, 2002, vol. 31, no. 3, p. 234, doi: 10.1109/icsmc.1996.565436.
[57] A. L. Tuson and P. Ross, “Adapting operator probabilities in genetic algorithms,” Univeristy of Edinburgh, 1995.

[58] A. Rexhepi, A. Maxhuni, and A. Dika, “Analysis of the impact of parameters values on the genetic algorithm for TSP,”

International Journal of Computer Science Issues, vol. 10, no. 1, pp. 158–164, 2013.
[59] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, and V. B. S. Prasath, “Choosing mutation and

crossover ratios for genetic algorithms-a review with a new dynamic approach,” Information (Switzerland), vol. 10, no. 12, p.

390, Dec. 2019, doi: 10.3390/info10120390.
[60] K. A. De Jong and W. M. Spears, “A formal analysis of the role of multi-point crossover in genetic algorithms,” Annals of

Mathematics and Artificial Intelligence, vol. 5, no. 1, pp. 1–26, Mar. 1992, doi: 10.1007/BF01530777.

[61] W. Y. Lin, W. Y. Lee, and T. P. Hong, “Adapting crossover and mutation rates in genetic algorithms,” Journal of Information
Science and Engineering, vol. 19, no. 5, pp. 889–903, 2003.

[62] Y. A. Zhang, M. Sakamoto, and H. Furutani, “Effects of population size and mutation rate on results of genetic algorithm,” in

Proceedings - 4th International Conference on Natural Computation, ICNC 2008, vol. 1, 2008, pp. 70–75, doi:

10.1109/ICNC.2008.345.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed)

1049

[63] O. Roeva, S. Fidanova, and M. Paprzycki, “Influence of the population size on the genetic algorithm performance in case of
cultivation process modelling,” 2013 Federated Conference on Computer Science and Information Systems, FedCSIS 2013, 2013,

pp. 371–376

[64] E. Vallada and R. Ruiz, “A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent
setup times,” European Journal of Operational Research, vol. 211, no. 3, pp. 612–622, Jun. 2011, doi:

10.1016/j.ejor.2011.01.011.

BIOGRAPHIES OF AUTHORS

Munther H. Abed received a B.S. degree in Computer engineering and

information technology from University of Technology, Iraq in 2002, and an M.Sc. degree in

Information technology from University Tenaga National, Malaysia in 2013. He is currently

pursuing the Ph.D. degree in Information Technology, Faculty of Computing, College of

Computing and Applied Sciences, UMP, Malaysia. He mainly interested in Metaheuristics,

Hybrid algorithm, Timetabling, Scheduling, and Robotics. He can be contacted at email:

munt1979@yahoo.com.

Mohd Nizam Mohmad Kahar received a PhD degree in Computer Science from

the University of Nottingham, United Kingdom. He has been with Universiti Malaysia Pahang

(UMP), Malaysia, where he is currently an Associate Professor in the Faculty of Computing.

His research interests include solving real-world optimization problems such as the timetabling

and routing problems using metaheuristics or nature-inspired algorithm. He can be contacted at

email: mnizam@ump.edu.my.

https://orcid.org/0000-0002-0010-9765
https://publons.com/researcher/4747121/munther-abed/
https://orcid.org/0000-0003-0811-0856
https://scholar.google.com/citations?hl=en&user=5OvbBFwAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=56986590400
https://publons.com/researcher/1495167/mohd-nizam-mohmad-kahar/

