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 This paper solved the unrelated parallel machine scheduling with additional 

resources (UPMR) problem. The processing time and the number of required 

resources for each job rely on the machine that does the processing. Each job 

j needed units of resources (rjm) during its time of processing on a machine 

m. These additional resources are limited, and this made the UPMR a 

difficult problem to solve. In this study, the maximum completion time of 

jobs makespan must be minimized. Here, we proposed genetic algorithm 

(GA) to solve the UPMR problem because of the robustness and the success 

of GA in solving many optimization problems. An enhancement of GA was 

also proposed in this work. Generally, the experiment involves tuning the 

parameters of GA. Additionally, an appropriate selection of GA operators 

was also experimented. The guide genetic algorithm (GGA) is not used to 

solve the unspecified dynamic UPMR. Besides, the utilization of parameters 

tuning and operators gave a balance between exploration and exploitation 

and thus help the search escape the local optimum. Results show that the 

GGA outperforms the simple genetic algorithm (SGA), but it still didn't 

match the results in the literature. On the other hand, GGA significantly 

outperforms all methods in terms of CPU time. 
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1. INTRODUCTION  

Technological advancements have influenced the integration of artificial intelligence (AI) into 

manufacturing industries operations such as robotics, production scheduling. These integrations help to 

minimize the manufacturing production operational cost and increase the revenue without reducing the 

product quality for customer satisfaction. The production scheduling refers to a process of assigning jobs to 

machines with the aim to optimize some performance measures. An example of production scheduling is the 

unrelated parallel machine scheduling problem (UPM). UPM aims to schedule all jobs with a minimum 

completion time (also known as makespan, Cmax).  

The UPM problem has several variants with differences in its constraints [1], [2]. An example 

includes an unrelated parallel machine with sequence dependent setup time (UPMSP) [3]-[5] and an 

unrelated parallel machine scheduling problem with additional resources (UPMR) [1], [6]-[8]. In UPMSP, 

each machine has its own specific matrix of setup times for all jobs. While, in UPMR, the additional 

resources (i.e., constraints) must be taken into account when scheduling jobs to machine. The additional 

resources in UPMR refer to materials, human labor, tools, fixtures, and industrial robots. UPMR problem can 

https://creativecommons.org/licenses/by-sa/4.0/
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be considered as one of the most important combinatorial optimization problems as it closely resembles the 

real-world problem. This research work focuses on solving UPMR problems.  

Various researchers have reported solving the UPMR problem using different approaches. Some of 

them had used exact method, heuristic and approximate approaches [1], [9]-[11]. The exact methods are 

suitable for small size problems, since they seek all possible solutions in the entire search space [12]. 

However, for large size problems, an exact method is impractical due to requiring a tremendous amount of 

computational time. Hence, an exact method is not suitable to solve such optimization problems [13], [14]. 

Over the years, metaheuristic algorithms have shown the ability to solve wide optimization problems [15]-

[19]. According to [20], genetic algorithm (GA) is able to solve several continuous optimization problems, 

such as exam timetabling problem [21], face recognition system [22], [23], travelling salesman problem [24], 

medical robot [25] and many others. GA ability to solve a variety of problems and to produce good quality 

solution attracts us to explore it into solving UPMR problems. In [26], they implemented GA into solving 

static and specified UMPR problems. However, in this work, dynamic and unspecified problems in UPMR 

are considered. Many works on UPMR have been reported in the literature to minimize the makespan (see 

Table 1). 
 

 

Table 1. A summary of methods applied for UPMR problem 
Method Reference Description  

A heuristic approach [27] Specified dynamic 

Two-phased LP rounding technique (4 + 2√2) and (3 + 2√2) [28] Unspecified static 

Deterministic 3/2-approximation, 2-approximation and 4-approximation method [29] Unspecified dynamic 

A heuristic approach [30] Specified dynamic 
A 3.75-approximation algorithm [30] Unspecified dynamic 

A Lagrangian-based CP method [31] Unspecified dynamic 

CP model, IP model, and integrated IP/CP [32] Specified dynamic 
IP model, a relaxed IP based CP model and IP/CP model [33] Unspecified static & dynamic 

IP/IP model and IP/CP model [34] Specified dynamic 

An ILP program and a two-phase approach [11] Unspecified dynamic 
Matheuristic strategies [1] Unspecified dynamic 

Genetic algorithm and hybrid genetic algorithm [26] Specified static  

MILP model and CP model [35] Unspecified dynamic 

Local search methods and multi-pass heuristics [8] Unspecified dynamic 

CP model [36] Unspecified dynamic 

Enriched scatter search and enriched iterated greedy [37] Unspecified dynamic 

 

 

As seen in the literature, GA shows the ability to solve numerous problems and produce quality 

solution and it has many novel characteristic [38]-[40]. Hence, it is clear that GA is a robust algorithm. 

However, it appears that there is a lack of work in GA that is projected into solving the UPMR problem. In 

this work, we will investigate GA into solving the unspecified dynamic UPMR problem. Detailed description 

of the UPMR problem follows in the next section. The rest of the paper is organized as shown in: Section 2 

describes the UMPR problem in detail. The standard GA algorithm (referred to as SGA) and the 

enhancement of GA (referred to as GGA) are discussed in section 3. The experimental result and the 

discussion are described in section 4. Finally, the conclusion and future work are discussed in section 5.  
 
 

2. PROBLEM DESCRIPTION  

UPMR problem requires scheduling a set of jobs J without interruption (preemption is forbidden), 

into unrelated machines, M [35]. Indeed, the required number of resources need to be fulfilled. These 

resources are limited and it is important to take into consideration when assigning jobs for processing at the 

machines. The allocation of resources to machines can be divided into two types [36] that includes static [9], 

[26] and dynamic [1], [8], [28], [31], [37]. In static, the allocation of resources to machines is fixed during the 

whole-time horizon and vice versa in the dynamic. The additional resources are divided into: renewable, non-

renewable and doubly constrained [6], [41]. In the renewable resources, the resource may be used again for 

another job after being released [1]. The resource once used by some jobs, cannot be assigned to any other 

job in the non-renewable [42]. While in the doubly constrained resource, both classes are used at the same 

time [43]. The additional resources are also divided into discrete resources in which the number of resources 

needed via a job is a positive integer [6], [11], [41] and continuous resources where the number of resources 

required for the job is priori unknown in given intervals [6], [41], [44]. The additional resources that involve 

the processing of jobs can be classified into processing resources where the resources are required exactly at 

the time of the job processing, and input-output resources where the resource is required either before the job 

processing or after [45]. Assigning jobs to machines can be categorized into unspecified and specified (i.e., 

pre-specified) [33] whereby the jobs are not preassigned to any machine and vice versa for specified. 
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In general, this research work only deals with unspecified unrelated parallel machine scheduling 

problems with additional recourse. Four resources are selected in the present study. These resources are 

processing resources, dynamic, discrete, and renewable. These resources are selected as they are the most 

frequently used and they reflect the real-world scheduling problems [1], [8], [11], [29], [31], [33], [35]-[37].  

 

2.1.  Notations and decision variables 

The UPMR problem treats with several types of input data. These include a list of m available 

machines; a list of j jobs to be processed; Rmax units of a certain resource; rjm units of the resource and pjm 

units of time, which needed to process job j at machine m. Notations: 

− M: number of machines (indexed as m), where m=1,…., M. 

− J: number of jobs that need to be processed (indexed as j), where j=1,...., J. 

− T: the number of time periods appearing in the scheduling horizon (indexed as t), where t = 1,...., T. 

− Rmax: maximum allowed number of resources 

− pjm: processing time of job j on machine m. 

− rjm: resources needed to process job j on machine m. 

Decision variables: 

− 𝑥𝑗𝑚𝑡: 1 if job j ends its processing on machine m at time t, 0 otherwise.  

− Cmax: the maximum completion time of all jobs (makespan). 

 

2.2.  UPMR formal mathematical model 

UPMR aim is to minimize the maximum completion time of the job makespan, Cmax. This is referred 

to as the objective function.  
 

 𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑗=1,…,𝐽 ∑ ∑ 𝑡𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

𝑀
𝑚=1 , ∀𝑗 = 1, … , 𝐽 (1) 

 

The following hard constraints must be satisfied:  

H1. One machine must process exactly one job and the processing ends just at one time. 
 

∑ ∑ 𝑥𝑗𝑚𝑡
𝑇
𝑡=𝑝𝑗𝑚

= 1 𝑀
𝑚=1  , ∀ 𝑗 = 1, … , 𝐽 (2) 

 

H2. Jobs are not processed together at the same time in the same machine.  
 

∑ ∑ 𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝐽
𝑗=1 ≤ 1 , ∀𝑚 = 1, . , 𝑀; ∀𝑡 = 1, … , 𝑇 (3) 

 

H3. Do not exceed the Rmax units of resource at any time. 

 

∑ ∑ ∑ 𝑟𝑗𝑚𝑥𝑗𝑚𝑠

𝑡+𝑝𝑗𝑚−1

𝑠=𝑡
𝑀
𝑚=1

𝐽
𝑗=1 ≤  𝑅𝑚𝑎𝑥 , ∀𝑡 = 1, … , 𝑇 (4) 

 

For the sake of understanding the UPMR problem, an explanatory example has been applied on 

dataset 12×6 (1_JobCorre_R_inter). Table 2 embodies the processing time (pjm) and resource consumption 

(rjm) for that dataset. Each dataset contains its own specific matrix of pjm and rjm that are different from those 

existing in dataset 12×6. Table 3 and Figure 1 represent the result of makespan Cmax that was obtained based 

on (1) and taking into account the application of the constraints indicated in (2), (3) and (4). 
 
 

Table 2. pjm and rjm (in brackets) of the dataset 12×6 

Jobs 
Machines 

1 2 3 4 5 6 

1 16 (2) 13 (4) 23 (1) 15 (1) 21 (3) 11 (1) 

2 57 (2) 73 (6) 63 (7) 72 (4) 56 (5) 59 (2) 

3 21 (5) 19 (1) 15 (2) 4 (4) 6 (3) 19 (2) 

4 74 (9) 73 (9) 60 (6) 57 (2) 68 (8) 68 (4) 

5 113 (9) 99 (9) 106 (9) 99 (9) 105 (9) 101 (9) 

6 61 (3) 64 (3) 65 (6) 56 (5) 65 (3) 56 (8) 

7 72 (3) 62 (3) 63 (8) 79 (7) 69 (7) 70 (4) 

8 31 (2) 22 (4) 25 (4) 20 (5) 35 (4) 26 (2) 

9 97 (8) 100 (8) 99 (9) 99 (8) 100 (7) 86 (8) 

10 61 (6) 62 (7) 56 (3) 56 (5) 52 (7) 67 (7) 

11 94 (5) 99 (9) 89 (9) 93 (9) 92 (8) 90 (5) 

12 83 (5) 85 (5) 90 (9) 73 (5) 87 (9) 74 (3) 
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Table 3. The result obtained (cmax) = 145 on the dataset 12×6 
Job Start time Finish time 

11 0 94 

6 0 64 

3 0 15 

4 0 57 

8 0 35 

9 0 86 

10 15 71 

5 35 140 

1 57 72 

7 64 126 

12 72 145 

2 86 145 

 

 

 
 

Figure 1. Makespan of dataset 12×6 

 

 

3. PROPOSED ALGORITHM  

GA has been implemented to solve many optimization problems and show the ability to produce 

quality solutions [46], [47]. It imitates the biological evolution process of chromosomes through the use of 

selection, crossover, and mutation operators. Chromosomes represent the solutions to problems and these 

solutions are evaluated in terms of their fitness value. Basically, GA begins from a group of solutions 

represented by chromosomes called population as shown in Figure 2, which may be a stochastic generator 

[40]. A chromosome is defined as a group of genes. Each gene, in any group, is characterized by having a 

unit of information on the problem solution. The generation of the new solution is carried out in eight steps 

as: 

Step 1: The parameters are initialized. 

Step 2: The chromosome representation is encoded for a problem. 

Step 3: The initial population is produced randomly. 

Step 4: The objective function is applied to evaluate the fitness value of each chromosome in the population. 

Step 5: The selection process of chromosomes in the population is applied according to the type of selection, 

where each chromosome has a fitness value. 

Step 6: The crossover process is carried out to create new population chromosomes by selecting parents and 

offspring based on the crossover probability rate. 

Step 7: Mutation process were implemented on the new chromosomes based on the mutation probability rate. 

Step 8: Feasibility of all chromosomes were checked based on the compliance of the constraints, otherwise 

the repair mechanism is executed. 

Step 9: Step 4 is repeated until an optimal solution is achieved or until the stop criterion is satisfied. 

 

3.1.  Chromosome representation 

A chromosome is a group of genes that contains an information on solution to the problem to be 

solved as indicated in Figure 3. As illustrated in the problem formulation, two important pieces of 

information are provided for UPMR problem: the first information is the machines and jobs, and the second 

information is the time periods and resource allocation that are needed for processing the jobs in any possible 

assignment. In this problem, the permutation encoding is utilized as it processes numbers only.  
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Chromosome 1 Chromosome 2 

  
Chromosome 3 Chromosome 4 

 

Figure 2. Population of solutions 

 

 
Job sequence J j2 j1 j3 j4 j5 

Machine assignment M m1 m2 m1 m2 m1 

 

Figure 3. Chromosome representation 

 

 

3.2.  Initial population 

It is defined as the starting GA population that contains feasible solutions. In general, the initial 

population is generated randomly and must satisfy all constraints. Figure 4 shows the pseudocode to generate 

the initial population. Though a large number of researchers used the single population, quite a few 

researchers use the multi-population recently [48], [49]. Multi-population makes the genetic algorithm allow 

the search space of the problem to be explored by one or more populations, while others can also perform 

exploitation in the same space (see Figure 5). It is expected that, by incorporating both exploitation and 

exploration, the quality of the solution would increase.  

 

 

 
 

Figure 4. Initial population initialization  

 
 

3.3.  Selection operator 

In the selection process, the appropriate chromosomes are chosen from the population to create a 

new population for the next iteration (until the stopping condition is met). In this study, the roulette wheel 

selection and K-tournament selection will be used to select the chromosomes because they are the most 

common and used in genetic algorithm [50], [51].  

 

3.3.1. Roulette wheel selection 

In roulette wheel selection, the chromosomes with the highest fitness value have a greater 

opportunity to be selected [52], [53]. The probability for each chromosome is calculated using (5):  

 

𝑝𝑐 =  
𝑓𝑐

∑ 𝑓𝑐
𝑛
𝑐=1

 (5) 

 

fc indicates the fitness value of each chromosome. Fitness value means that the chromosome, which has less 

value of Cmax, considering the best solution and its fitness value, is higher. As for the chromosomes, the 

Gene1 Gene1 

Gene1 Gene1 

Gene2 Gene3 Gene4 Gene3 Gene4 Gene2 

Gene3 Gene4 Gene2 Gene2 Gene4 
Gene3 
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higher Cmax value is, the lower fitness value is. While n is the number of chromosomes in the population. 
∑ 𝑓𝑐

𝑛
𝑐=1  is the total fitness of all chromosomes in the population. Figure 6 shows the fitness value and the 

fitness probability for each chromosome existing in population. Then, a random number is generated between 

0 and 1. This number is spun like a roulette wheel to selected the chromosome. 

 

 

 
 

Figure 5. Flowchart of multi-population 

 

 

Chromosome, cn c1 c2 c3 c4 c5 

Fitness value 1.5 1 2.5 2 3 

Fitness probability, pn 0.15 0.10 0.25 0.20 0.30 

 

Figure 6. Fitness value and probability in a chromosome 

 

 

3.3.2. K-tournament selection  

The chromosomes are selected based on selecting the best solution among K chosen solutions from 

the population. In this approach, there is a possibility of selecting no-good solutions, however, it has more 

capability of avoiding local optima. The selection of value K is optional (for example: K=0.3 N) and refers to 

the competing chromosomes that will be randomly selected out of their total number. For instance, if the 

population have 30 solutions, then the K is 9. After that, the solution that has the best fitness value (less Cmax) 

is selected among those 9. 
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3.4.  Crossover operator 

GA combines two chromosomes (parents) to generate new chromosomes (referred to as offspring’s). 

The major goal of crossover is to produce a new chromosome, hoping it to be higher in status and rank than 

their parents (take the good features and attributes of each parent). In this study, one-point and uniform 

crossover will be used to combine two chromosomes [51], [54]. These two types were used because they are 

the most common and because they are completely different. The crossover point is generated randomly to 

involve the range of values from 0.2 to 0.8 and these values change for each iteration. 

 

3.4.1. One-point crossover 

One choice only is available at the crossover point (randomly). Genes to the right (or left) of that 

point are swapped between the two parent chromosomes to produce two offspring chromosomes (children) as 

illustrates in Figure 7. Basically, the offspring is created by combining chromosome1 (i.e., parent) starting 

from the 1st gene until the crossover point. Next, the remaining genes were taken from chromosome2. 

 

 

 
 

Figure 7. One-point crossover pseudocode 

 

 

3.4.2. Uniform crossover 

Uniform crossover produces offspring in a different method to point crossover methods. Crossover 

points are not selected but rather uniform crossover simply considers each bit position of the two parents. In 

contrast to one-point crossover the chromosomes are combined at the gene level in a uniform crossover. The 

genes taken from both chromosomes (parents) are selected randomly to generate chromosomes (offspring) 

based on crossover point as shown in Figure 8.  

 

 

 
 

Figure 8. Uniform crossover pseudocode 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Guided genetic algorithm for solving unrelated parallel machine scheduling … (Munther H. Abed) 

1043 

3.5.  Mutation operator 

Producing an offspring through the use of the crossover operator alone makes the GA stuck in the 

local optima, causing, thus, the survival of the good parts of the parents in each generation (i.e., the frequent 

transferring of the same genes from one generation to another). This problem is mitigated using the mutation 

operator through proving new offspring that is different from parents, and encouraging and motivating 

diversity in the population [55]. The insertion and inversion mutation will be applied in this study. Insertion 

mutation selects a gene at random and inserts it in a random position as listed in Figure 9. Whereas in 

inversion mutation, two positions within the same chromosome are randomly selected and then the sub-genes 

between these two positions are inverted as illustrated in Figure 10. 

 

 

 
 

Figure 9. Insertion mutation pseudocode  

 

 

 
 

Figure 10. Inversion mutation pseudocode  
 

 

3.6.  Repair mechanism 

A repetition error in the job sequence (i.e., chromosome list) after the crossover or mutation 

operation might occur. The error includes assigning jobs to more than one machine (i.e., duplicate job), or job 

not being assigned to any machine (lost job). This causes a violation to the hard constraint (i.e., H1 – H3). 

Hence, a repair mechanism is used to guarantee that all constraints are being satisfied. The repair mechanism 

pseudocode is shown in Figure 11. Besides, this mechanism is used to reorder one or more genes, and to 

reallocate a job to another machine to avoid the conflict. 

 

 

 
 

Figure 11. Repair mechanism pseudocode 
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3.7.  Parameters tuning and operators to solve UPMR 

This section describes the proposed algorithms in solving UPMR. SGA begins with the parameter 

initialization based on the findings of the parameter tuning experiments and the initial population generation 

as shown in Figure 12. Then, the chromosomes in the population are evaluated to determine their fitness 

value. The next step involves creating a new chromosome (i.e., offspring). 

The importance of GA parameters has been neglected and unexploited for an optimal solution [56]. 

The GA parameters very much influence and give a considerable impact on the solution quality [57]. 

Choosing the appropriate parameters value for GA is a significant task. Mainly, there are four essential 

parameters for the GA operation: crossover rate, mutation rate, population size, and number of iterations 

[14], [58], [59]. According to [14], [59], [60] the crossover and mutation rate is defined as the number of 

occurrences of crossover and mutation operation in an iteration respectively. A careful selection of crossover 

and/or mutation rates has been known to be significant to the success of genetic algorithms. In fact, it is also 

crucial to the success of the earlier problems, and even for different stages of the genetic process in a problem 

[61], [62]. The population size determines the total number of chromosomes. The population size is very 

sensitive in which a small population size would discourage exploration and easily trap in the local optima. 

However, for a large population size, it encourages exploration but GA would suffer from a high 

computational load [63]. Finally, the number of iterations is defined as the number of cycles before the 

algorithm stops (or terminated). The number of iterations depends on the problem complexity in which it 

may require a large number of iterations compared to less complex problems. According to the discussion 

above, this work investigates the suitable parameter values for GA in solving UPMR as shown in Table 3. In 

this investigation, the best parameter values for SGA in solving UPMR problem based on an experimental 

test are illustrated in Table 4. 

 

 

Table 3. The parameter value of the GA 
Crossover rate Mutation rate Population size Iteration no. 

0.3 0.01 20 500 
0.5 0.05 40 1000 

0.7 0.1 60 2000 

0.9 0.5 100 4000 

6000 

 

 

Table 4. Exact values of parameters in GGA 
Parameter Value 

Population size 
Crossover rate 

Mutation rate 

Iteration no. 

40 
0.7 

0.1 

4000 

 

 

Although that the parameters values are very impotent for the GA performance, the appropriate 

selection of the GA operators is also very essential to make balance between exploration and exploitation, 

escape from the local optima and get good quality solutions [14], [64]. Moreover, investigations on the best 

SGA operator were also conducted by experimenting with different combinations of operators tested. These 

operators are single vs multi population, roulette wheel vs k-tournament selection, one-point vs uniform 

crossover and insertion vs inversion mutation. The experiment also reveals that the combination of multi-

population, k-tournament selection, uniform crossover and insertion mutation produces the best result. 

All the metaheuristic algorithms are designed to search for the optimal solutions by following a 

specific procedure. Most of them uses the classic procedure which is inspired either from the natural 

phenomena such as the Hill climbing algorithm or inspired from evolutionary procedures such as GA. For 

some optimization problems, the solver algorithms must consider the problem information in order to 

improve the search capabilities. One of the recent procedures is the guided procedure which depends a prior 

knowledge about the undertaken problem. In this paper, guided approach applied in the crossover operator to 

improve the SGA performance. The same operators and parameters, that were used in SGA, are used in GGA 

except for the crossover process. In the uniform crossover, the swap between genes (job/machine) for the two 

parent's chromosomes is randomly carried out. Therefore, the result may lead to infeasible solutions that 

require repair mechanism to obtain feasible solutions. While the crossover in GGA, the swap between genes 

is heuristically carried out. As such, this swap will be carried out if there is no chromosome conflict (the 

constraints are satisfied). Consequently, this type of swap will not need the repair mechanism. 
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Figure 12. Pseudocode for the SGA 

 

 

4. RESULTS AND DISCUSSION 

The result of each benchmark instance reported by SGA and GGA is presented using the dataset as 

in [1], [8]. These instances can be found at http://soa.iti.es. The performances of the two variants of the 

proposed algorithm are evaluated in terms of the relative percentage deviation (RPD), average relative 

percentage deviation (ARPD), and in terms of average computational time (AvTime). The results derived 

from the SGA and GGA are compared to each other as well as to the work presented by [1]. RPD is 

computed using (6): 

 

 𝑅𝑃𝐷 =  
𝐻𝑒𝑢𝑠𝑜𝑙− 𝐿𝐵

𝐿𝐵
× 100 (7) 

 

Heusol is the objective function value (i.e., Makespan) from the experiment and LB is the maximum lower 

bound based on [1]. LB is also called the best-known solution (BKS). The proposed algorithms were coded in 

C# 2012.5 and run on a PC with the components CPU Intel(R), Core (TM) i5, speed 2.20 GHz, and RAM 

8.00 GB.  

Table 5, Table 6 and Table 7 show the result of the investigation and comparison with other result 

found in the literature. The first column listed the dataset instances and the first row is the methods to 

compare (i.e., UPMR-P, JMR-P, M4, M5, ESS, EIG, SGA, and GGA indicated in columns show the results 

found as RPD). The penultimate row shows the ARPD and the last row illustrates the AvTime for each 

algorithm. 

In general, the results indicate that GGA is able to produce better solutions in all instances when 

compared to SGA in terms of solution quality (RPD) and computational time (AvTime). In the small dataset 

(see Table 5), it is clear that the UPMR-P and JMR-P produce the best solution followed by EIG, ESS, M4, 

M5, GGA and SGA in terms of RPD. Here, GGA is able to produce solutions better than SGA which shows 

that the selected GA operators and parameters tuning give a significant improvement. Further, Table 5 shows 

that GGA outperforms other methods in terms of AvTime even though being a population-based algorithm. 

As for the medium dataset (see Table 6), it becomes apparent that the best solution is produced, in 

terms of RPD, by the EIG and then by ESS, M4, M5, GGA, SGA, JMR-P and UPMR-P. The GGA indicates 

that it produces better solutions than the UPMR-P, JMR-P as well as SGA. Table 6 also shows that GGA 

outperforms other methods in terms of AvTime even though being a population-based algorithm. 

In the large dataset, the UPMR-P and JMR-P were not used to solve the UPMR problem because it 

takes a large amount of time to solve this problem due to the complexity of this problem. Similarly, the EIG, 

ESS, M5 and M4 algorithm overcome GGA but they also underperform in terms of AvTime as shown in 

Table 7. On the other hand, the GGA outperforms SGA in all instances. Besides, GGA, as seen in Table 7, 

also outperforms other methods in terms of AvTime even though being a population-based algorithm. 
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Table 5. RPD, ARPD and AvTime for small instances 
Instances UPMR-P [1] JMR-P [1] M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA 

8x2 0 0 0.10 0.24 0 0 2.21 1.40 
8x4 0 1.94 0.73 1.17 0.66 0.53 2.72 1.54 

8x6 0 1.88 1.06 0.96 0.13 0.04 2.63 1.98 

12x2 0 0 0.59 0.67 0.35 0.40 2.58 1.46 
12x4 1.14 2.48 1.87 2.16 1.47 1.14 3.25 2.42 

12x6 1.44 1.05 1.14 1.18 0.75 0.48 1.50 1.38 

16x2 0.21 0.21 0.56 0.63 0.23 0.14 1.78 1.45 
16x4 6.46 4.25 1.39 1.71 1.19 1.00 4.04 2.02 

16x6 8.71 5.99 1.40 1.61 1.22 0.77 5.00 2.42 

ARPD 2.00 1.98 0.98 1.15 0.67 0.50 2.86 1.79 
AvTime 2208.34 1969.92 0.0449 0.03522 5.5 5.5 0.02915 0.02305 

 

 

Table 6. RPD, ARPD and AvTime for medium instances 
Instances UPMR-P [1] JMR-P [1] M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA 

20x2 0.81 0.81 0.97 1.18 0.49 0.43 2.81 2.07 
20x4 12.54 9.60 1.27 1.11 0.80 0.70 3.67 2.19 

20x6 14.38 9.44 1.10 1.05 0.50 0.56 3.22 1.95 

25x2 3.65 3.65 0.56 0.60 0.26 0.15 2.74 2.25 
25x4 18.82 13.30 0.89 0.95 0.60 0.59 4.23 2.37 

25x6 23.77 18.24 1.10 1.13 0.48 0.53 6.07 2.36 

30x2 10.29 10.29 0.84 1.00 0.49 0.28 3.50 1.15 
30x4 27.26 20.59 0.50 0.64 0.28 0.17 4.27 2.00 

30x6 59.60 28.99 0.92 0.64 0.32 0.24 4.93 2.26 

ARPD 19.01 12.77 0.91 0.92 0.47 0.41 3.94 2.07 
AvTime 3600 3600 0.1965 0.14656 14.5 14.5 0.10279 0.08749 

 

 

Table 7. RPD, ARPD and AvTime for large instances 
Instances M4 [8] M5 [8] ESS [37] EIG [37] SGA GGA 

50x10 1.03 1.07 0.36 0.27 5.04 2.45 
50x20 1.78 1.37 0.50 0.40 4.66 3.01 

50x30 1.47 1.51 0.35 0.34 3.91 2.50 

150x10 0.10 0.73 0.30 0.28 2.56 1.36 
150x20 1.37 1.43 0.55 0.28 4.73 2.45 

150x30 1.41 1.24 0.46 0.26 6.06 3.73 

250x10 0.87 0.65 0.25 0.15 3.34 1.57 
250x20 1.01 0.82 0.40 0.23 4.60 2.96 

250x30 1.00 0.77 0.36 0.18 4.76 2.36 

350x10 0.63 0.48 0.23 0.12 2.84 2.01 
350x20 0.68 0.47 0.30 0.15 5.05 2.98 

350x30 0.78 0.65 0.24 0.10 4.67 3.15 

ARPD 1.01 0.93 0.36 0.23 4.35 2.54 
AvTime 184.93 102.25 73.1 60.5 19.5388 18.6273 

 

 

5. CONCLUSION AND FUTURE WORK 

This work investigates the significance of GA in solving the UPMR problem. Here, a guided genetic 

algorithm based on a specific GA operator is proposed to manipulate GA into producing a quality solution 

(refer to GGA). To measure the performance of GGA, the results are compared with other reported results 

from the literature. The comparisons revealed that the GGA shows better performance against SGA for 

solving the UPMR problem. An accurate selection of GA operators and parameters help in producing quality 

results. Comparison with other related work revealed that the GGA is outperformed by some these methods. 

Without doubt, it is able to give a competitive result and even better result than some of the methods. It is 

worth noting that the GGA outperformed, in terms of computational time, all the methods addressed in this 

research, especially the exact methods (i.e., UPMR-P and JMR-P) which require an extensive computation 

time to solve the problems. For future research, a hybridization of GGA with other metaheuristics methods 

can be applied to increase the performance of GGA in solving the UPMR problem. A metaheuristic that is 

good in exploitation (single-based metaheuristic) is highly recommended. This would greatly complement 

GGA (i.e., GGA is excellent in terms of exploration). 
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