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Abstract. This paper presents an improvised version of Manta-Ray Foraging Optimization 

(MRFO) by using components in Genetic Algorithm (GA). MRFO is a recent proposed 

algorithm which based on the behaviour of manta rays. The algorithm imitates three foraging 
strategies of this cartilaginous fish, which are chain foraging, cyclone foraging and somersault 

foraging to find foods. However, this optimization algorithm can be improved in its strategy 

which increases its accuracy. Thus, in this proposed improvement, mutation and crossover 

strategy from GA were adopted into MRFO. Crossover operation is a convergence action 

which is purposely to pull the agents towards an optimum point. At the meanwhile, mutation 

operation is a divergence action which purposely to spread out the agents throughout wider 

feasible region. Later, the algorithms were performed on several benchmark functions and 

statically tested by using Wilcoxon signed-rank test to know their performances. To test the 

algorithm with a real application, the algorithms were applied to an interval type 2 fuzzy logic 

controller (IT2FLC) of an inverted pendulum system. Result of the test on benchmark 

functions shows that GMRFO outperformed MRFO and GA and it shows that it provides a 

better parameter of the control system for a better response. 

1. Introduction 
Manta Ray Foraging Optimization (MRFO) is a recently population-based optimization algorithm [1]. 

It based on the strategy of a species in cartilaginous fishes called Manta Ray to find foods. Manta rays 

are among the largest marine creatures [2]. They have a large flat body from top to bottom with a pair 
of pectoral fins and swims as birds that freely fly. They also have a cephalic lobe that extend in front 

of their giant terminal mouth. Manta rays feed on plankton of microscopic organisms from the water. 

By using their cephalic lobe, their preys were funnelled into their mouths. Later, they filter the prey 
from the water by using their gill. There are two distinct species, one is reef manta ray, second is giant 

manta ray. First species can be found mainly in Indian ocean, western and south Pacific while second 

species can be found in tropical, subtropical and warm temperate oceans. A matured manta ray eats up 

to 5kg plankton in a single day [2]. On the far side, the plankton, however are not evenly dispersed or 
grouping at a certain area but formed according to the flow of the tides or changes of the seasons. 

Fascinatingly, manta rays always superb in finding those plankton in large quantity using their unique 

behaviour of foraging strategy. The strategy includes chain foraging, cyclone foraging and somersault 
foraging. Chain foraging is an action of a group of manta rays which are lining up, one behind another 

[1]. They will scoop the plankton in their ways, in which the plankton missed by previous manta ray 
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will be scooped by one who is following behind. Cyclone foraging is a gathering of manta rays when 
they found a high concentration of plankton [1]. In this strategy, their tails link up with heads in spiral 

to produce a spiralling tide to moves plankton towards the water surfaces. In this strategy, while move 

in spiral, they open their mouth to funnel and eat the plankton. Apart from that, somersault foraging is 
a behaviour in which the manta ray will do a sequence of backwards somersault, circling around to 

draw the plankton that found towards them [1]. This is a random, frequent, local and cyclical 

movement which aid manta rays in food intake.  
Genetic algorithm (GA) on the other hand is one of the well-known optimizers. It is a derivative-free 

and stochastic optimization methods based on the concept of evolution. To find optimum solution, GA 

adopts strategies inspired by evolutionary biology like mutation, crossover, selection and inheritance 

[3]. From the theory, evolution begins from a population of randomly created individuals and take 
places in generations. For each generation, the fitness of every individuals was measured. Based on 

their fitness, a number of individuals were selected and modified by mutation and crossover to create a 

new population. Mutation is an operation to modify individual’s genetic information. Mutation is 
important to create a diverged population. It is designed to sometimes break one or more individuals 

out of local optima which lead to global optima [3]. In parallel, crossover take place when a pair of 

chromosomes break and then reconnect but to the distinct end piece. Crossover is significant to pull 

the individuals towards optimum point which lead to accuracy of the solution [4].  
In this paper, a new variant called GMRFO is proposed. Mutation operation are interspersed into 

MRFO to improve the dispersion of agents in the feasible region and crossover to improves 

convergence rate of the individuals toward the optimum point. Thus, exploration and exploitation of 
MFRO will be well improved. GMRFO will used to optimize an IT2FLC of an Inverted Pendulum 

System (IPS) for controlling the angle of the pendulum and its cart position. The paper is organized as 

follows. Section 2 unveils the IPS and its parameters. Section 3 unveils the MRFO, GA and GMRFO. 
Section 4 describes two separated result section: 1) The experimental setup for benchmark test and 2) 

Performance analysis on IT2FLC. Section 5 discussed the results and Section VI concludes the 

proposed algorithm.  

2. Inverted Pendulum System 
Inverted pendulum system (IPS) is a classic control challenge and widely used in control study. It is a 

high non-linearity and lack of stability and make it adequate to examine new prototype controllers [5]. 

IPS composes of an inverted pole with specific mass hinged at certain angle from vertical axis on a 
cart with mass and free to move horizontally. The pole hinged on the cart moves linearly while the cart 

in movement and simultaneously another end of the pole rotates 360 degrees around the hinged pole. 

During static, the pole is pointing downward. IPS is a single-input multi-output system and usually a 
voltage is considered as the input, whereas position of the cart and the angle of pole are considered as 

the output of the system. Ordinarily, controller used to maintain the pole at upwards position while the 

cart is moving or remaining static. Several real-world applications like two-wheel chairs and two-

wheel Segway transporter are the example of the application of IPS. IPS was managed to be controlled 
using PD-controller by proposing different proportional and derivatives gains. A root locus also drew 

to verify the stability. Nevertheless, there are limitation in this technique which are the vibration and 

insufficient current. 
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Figure 1. Inverted Pendulum System.  
Table 1.  Parameters For IPS. 

Parameter Values 

Mass of cart,      0.1kg 

Mass of pendulum,      0.05kg 

Friction or cart,       0.1        

Length of pendulum,   0.3m 

Inertia of the pendulum,   0.006       

Motor torque constant,                

Motor back     constant,                      

Motor armature resistant,        

 

Based on the Fig. 1 and Table 1, reflecting both mechanical and electrical components of IPS, 
derivation for equation of motion based on Newton 2nd Law can be represented as follow. 

 ( )
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where, b is friction coefficient of the cart, r is transfer distance per one rotation of the ball screw,    is 

motor torque,    is back emf constant and R is motor armature resistance. The equation of motion 

then converted into state space equation.  
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In Equation 5, u portrays as input, which is voltage into the system. At the meanwhile, in Equation 6, 

two outputs were gauged which is angle of the pole,   and cart position,    

3. Genetic-Manta Ray Foraging Optimization (GMRFO) 
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3.1. Manta Ray Foraging Optimization (MRFO)  
MRFO is stimulated by three foraging behaviours of manta rays which are chain foraging, cyclone 

foraging and somersault foraging. This section explained the mathematical expression for these 

behaviours [1]. Denote that in this algorithm, the best solution is assumed as the plankton with high 
concentration manta rays want to approach and eat. 

3.1.1. Chain Foraging. Chain foraging is the first behavior of manta ray in hunting for foods. They 

link in a line, where the manta in front scoop the plankton on their ways while the missed plankton 
will be scoop by the manta ray who follows behind. Equation (7) and (8) explained the mathematical 

expression for these behaviors [1].  
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where, 

 1
2 | log( ) |r r   (8) 

where      +    is new position of individuals,        is the current position of     individuals at time 

 ,     is a random number within [0,1],   is a weight coefficient,       is the plankton with high 

concentration. 

3.1.2. Cyclone Foraging. When the manta rays found a high concentration of plankton, they will move 

towards the food in spiral path and in chain simultaneously. This spiral model is mathematical 

expressed as follows. For initial state, manta rays move in random position using equation: 
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At latter phase, manta rays will move towards the best individuals using equation [1]: 
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where 
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where β is the weight coefficient, kmax is the maximum iterations and r2 is the random number between 
[0,1]. 

3.1.3. Somersault Foraging. In this strategy, location of food is seen as a pivot. Manta rays will swim 

towards and backwards around the pivot and somersault to a new location. Thus, the manta ray will 
update their new location around xbest so far. The mathematical expression of somersault is followed 

[1],  

  
3 4

( 1) ( ) ( )
i i best i

x k x k S r x r x k     (12) 

where    and    are random number between [0,1] and   is the somersault range of manta rays. 

3.2. Genetic Algorithm  
GA was developed to simulate biological process inspired by theory of evolution [3,4,5]. The strategy 

is adopting the survivals of the fittest. Later, the fittest individual will tend reproduce and improvised 
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by each generation. However, some of the inferior are allowed to survive by a little chance to 
reproduce. GA uses mutation and crossover to reproduce offspring. Mutation a genetic operator used 

to maintain genetic diversity from one generation of population of GA chromosomes to the next [3]. In 

GA, mutation operator alters the positions randomly between upper and lower bound. In the 
meanwhile, crossover is a genetic operator to combine genetic information of two individuals to 

generate new offspring. In GA, two individuals are selected stochastically to produce two new 

offspring. Mutation is an operation to diverse the individuals within feasible region and proved to be 
efficient to make sure all region was explored. Crossover is significant to converge the solution 

towards accuracy [3]. Synergy of these operators are the factor that make GA is well-known as 

reliable optimization algorithm to solve many applications. 

3.3. Genetic-Manta Ray Foraging Optimization (GMRFO)  
Genetic-Manta Ray Foraging Optimization (GMRFO) is an extended version of MRFO. GMRFO is 

modified by adding GA components, which are mutation and crossover operations. GMRFO requires 

no setup parameters as all of the constants used in GMRFO originally from GA like mutation and 
crossover rate were set adapted to the iteration number. Then, this proposed algorithm was run based 

on number of function evaluation (NFE) of 10000 times. This is important to provide a fair 

comparison against MRFO and GA.  

 
Step 0: Preparation 

Select a number of manta rays in a population,     , maximum number of iterations,      and function 

evaluation (NFE). 

 

Step 1: Initialization  

Initialize the location points of manta rays in random position      , between feasible region.  

     =   +             

where    is lower bound and    is upper bound. 

 

Step 2: Evaluate Fitness. 

Evaluate fitness,    of manta rays for each location and acquire best solution so far as      . 

  =          
 

Step 3: Apply Foraging Model Equation. 

Choose a random number,     If    smaller then       , then do cyclone foraging. Otherwise, do chain 

foraging.  
 

a) Cyclone foraging 

Choose a random number,  . If         , then move individuals by using Equation (9). 

Else if         , then use Equation (10).  

b) Chain foraging 

Move individuals by using Equation (7).  

 

Evaluate   =         . Choose a new best manta ray,      . 

 

If  (    +   )          , then,      =     +    
 

Then apply somersault foraging using Equation (12).  

Apply Mutation. 

Apply Crossover. 

 

Evaluate   =         . Choose a new best manta ray,      . 

 

Step 4: Checking Termination Criterion 

Check if termination criterion,      is met, then stop. Otherwise, return to Step 2.  

Figure 2. Pseudocode of the proposed GMRFO.`  
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4. Experimental Setup 

4.1. Benchmark Function  

To test the performance of accuracy of the proposed algorithm, four different benchmark functions 

were used. They are function F1, F2, F3, and F4 which are Shifted and Rotated Weierstrass Function, 
Shifted and Rotated Katsuura Function, Shifted and Rotated Happy-Cat Function and Hybrid Function 

4 respectively [7]. F1, F2, F3, are multimodal, non-separable problems. In the meanwhile, F4 is a 

hybrid of several functions. All of these functions are defined in the Table 2. To test its performance, 
these functions were defined as 10 dimensions (D) with search ranges between [-100,100]. Each 

function was run for 51 times by 10,000 times function of evaluations [7].  

 

Table 2. Benchmark function used. 

Function 

Number 
Mathematical Expression 
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  = 4  

  = [0.2, 0.2, 0.3, 0.3] 

  : HG-Bat Function  

  : Discus Function   

  : Expanded Griewank’s plus Rosenbrock’s Function 

  : Rastrigin’s Function 

4.2. Interval Type 2 Fuzzy Logic Control (IT2FLC) of The Inverted Pendulum System 

 

Figure 3. Structure of IT2FLC. 

 

Figure 3 shows the structure of IT2FLC. Type-2 fuzzy sets membership function are fuzzy and consist 

footprint of uncertainties (FOU) that examines and represent the uncertainties, non-linearities and 
syntactical related to the input and output of the FLC. Denotes that, FOU is the area between lower 
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and upper membership function. FOU allows each input to obtain a pair of membership grade: Upper 
Membership Function (UMF) and Lower MF (LMF). In this study, two closed-form representations of 

IT2FLC were used. They are based on approximating a method called Coupland and John’s Geometric 

Centroid (GC) method. GC method is defuzzification that provides a good approximation to the type-
reduced output. GC by-passes type-reduced centroid by directly finding the x-coordinate of the 

geometric centroid of the FOU of the output of the IT2FLS. Other than that, GC performed to find 

upper and lower bound independently and concurrently, while Type-1 operation can be utilized at the 
background.  

 

4.2.1 Computation of IT2FLC [12] 

To explain computation, consider a two-input single-output IT2FLC. In this study, there are possible 

 =    rules and its     rule (denoted as    ) has following form :   :       is  ̃ 
  and        ̃ 

 
, then 

  is  ̃  ;   ,  =  , , ,  ,   , where  =       +  ,   [ , ]  The     rule also present as the      

rule and can be presented as the centroid of the a consequent. The consequences also,  ̃   can be 
intervals or Type-1 fuzzy sets.  

1. Set firing level of    by Equation (13). Denotes that,     and   ̅   are the firing level degrees for 

both lower and upper,   ̃ 
  and  ̅

 ̃ 
  are the lower and upper membership grades of  ̃    . 
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2. Calculate the overall output IT2 FS by aggregation the implied set from the fired rules. Denotes 

that,   is the aggregation operation, * is the utilized t-norm operator, usually minimum or 

product operator. The mathematical expression stated in Equation (14).  
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3. Find the centre of area between lower and upper bound,     which represent the crisp output of 

IT2FLS using Equation (15).  
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Figure 4 shows the close-loop block diagram of the IT2FLC of the inverted pendulum system (IPS). 

The IT2FLC has 9 rules, 2 sigma and 2 footprint of uncertainties (FOU). To control both angle and 

position, two sets of IT2FLC were include in the test. Therefore, there are total of 26 parameters that 
optimized in this study [8,9,10]. In this study, there are two output of interest which are angle and 

position. Emphasized that, output response will be compared to input. The different will be fitness 

value that applied to MRFO, GA and GMRFO. Both of them will search the correct parameters of 
IT2FLCs in order to optimize the error. The mathematical expression of the cost function of the 

MRFO and GMRFO is express in Equation (16)-(18). 

 

Figure 4. Close-loop IT2FLC of the Inverted Pendulum System. 
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5. Result and Discussion 

5.1. Benchmark Function Analysis 

In this section, performance of MRFO, GA and GMRFO in solving benchmark functions are 
compared. The convergence curves of for all algorithms were plotted in Figure (5)-(8). From the 

figures, all algorithms have almost same convergence speed at the initial state of searching. However, 

MRFO and GA stuck in local optima and stop to converge which lead to produce low accuracy 

solution. In contrast, GMRFO converge further and produce more accurate solution as the iteration 
increases. As conclusion, GMRFO can produce better solutions in term of accuracy for these 

problems. 

   

Figure 5. Convergence Curve for F1.  Figure 6. Convergence Curve for F2. 

   

Figure 7. Convergence Curve for F3.  Figure 8. Convergence Curve for F4. 
 

The numerical result of accuracy performance of the MRFO, GA and GMRFO is described in Table 3. 

The tables show the average value of the accuracy based on 51 times run. From the table, GMRFO 

obviously outperforms MRFO and GA.  
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The result then tested using Friedman and Wilcoxon Sign-rank test [11,13]. The Friedman test was 
used to rank all performance of the algorithms. The best and the worst are shown by the lowest value 

and vice-versa. At the meanwhile, Wilcoxon test was used to determine the significant improvement 

of the algorithms. The confidence level is set with 5% of p-value, in which if the test give value below 
than the confidence value, the result is considered as significantly improved. All the statistical results, 

mean rank from the Friedman test, and p-values from the Wilcoxon Signed Rank test are reported in 

Table 3. 
 

Table 3. Statistical results, Friedman test, and Wilcoxon Signed Rank test. 

No 

Statistical Result Friedman Test Wilcoxon Signed Rank Test 

Mean Mean Rank MRFO vs GMRFO GA vs MRFO 

MRFO GA GMRFO MRFO GA GMRFO Sign Rank p Sign Rank p 

1 6.0363E+02 6.0516E+02 6.0229E+02 1.84 2.65 1.51 904 0.024 1256 0.000 

2 1.2017E+03 1.3217E+03 1.2017E+03 2.02 2.96 1.02 1326 0.020 1326 0.001 

3 1.3004E+03 1.3005E+03 1.3004E+03 1.96 2.57 1.47 1074 0.000 1257 0.000 

4 6.3779E+03 6.6277E+03 3.7687E+03 2.22 2.10 1.69 1020 0.001 973 0.004 

 

Table 3 shows the solution provided by GMRFO has higher accuracy compared to MRFO and GA all 

test case. From the table, GMRFO also ranked first (lowest value among others) for all the benchmark 

function by Friedman test with significant improvement which were proved by Wilcoxon test. These 
statistical analyses were tally with the Figures 5-8.  

5.2. Performance Analysis of tuned-IT2FLC on Inverted Pendulum System  

This section present results for the application of MRFO, GA and GMRFO for their application on 
IPS. In this test, IPS were simulated to be at 10 cm away from its original position with the pendulum 

swung-up and stay at 0-radian. The MRFO, GA and the proposed GMRFO were applied to optimized 

the IT2FLC of 26 parameters including 18 rules, 4 sigma and 4 FOU. All of these constants were 
found in the feasible region between [-1,1]. This range was taken due to longer period of time is 

required if the feasible region is wider. All algorithms searched for the optimized values for those 

constants. This application was run for only three times due to it requires long period to finish a run.  

 

Figure 9. Convergence Curve for IT2FLC Tuning. 
 

Figure 9 shows the convergence curve produced by all three algorithms. From the convergence curve, 

MRFO and GA trapped in local optima earlier than GMRFO. GMRFO produced more accurate 

solution which produce better step response for the system. The accuracy’s mean for the three number 
of runs are 1.83, 1.99 and 1.77 for MRFO, GA and GMRFO respectively. Even thought these numbers 

have small different, however they produced a very significant different to their performance on the 

IPS.  
Figure 10 shows graphical representation of the position and angle response. It is noticeable that, the 

rise time of step-response for all tuned controllers were almost the same. However, the position tuning 
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from GMFRO is more accurate and stable while the pendulum angle settled at 0-radian. In contrast, 
MRFO and GA tuned controller did not settle at the correct position as well as the pendulum swung-

up at 0-radian.  

 

Figure 10. Step-response for cart position and pendulum angle for 30 seconds of simulation.  

 
Table 4. Step response analysis.  

Algorithm MRFO GA GMRFO 

Settling time,    (secs) 8.7  8.4 8.1 

Rise time,    (secs) 1.9 2.4 2.0 

Percent Overshoot, % OS 17.3 24.1 28.1 

Steady state error,      -0.272 -0.399 0.04 

 

Table 4 shows the step response analysis of the tuned-controller. From the table, GMRFO can provide 
fastest settling time (8.1seconds) at the desired position. GA and MFRO came second and third 

respectively. At the meanwhile, MRFO still can provide fastest rise time (1.9seconds) and lowest 

percent overshoot (17.3%). However, MRFO (9.728cm) and GA (9.601cm) cannot be at the desired 
position as well as the pendulum stood-up at 0-radian. GMRFO, the most important outcome in this 

study, can provide the most accurate position (10.04cm) and stable for 30 seconds of simulation time. 

Therefore, it can be concluded that, GMRFO outperformed these MRFO and GA to provide desired 

cart position and 0-radian at the same time.  

6. Conclusion 

A new variant of MRFO called Hybrid-Genetic Manta Ray Foraging Optimization (GMRFO) 

algorithm has been presented in this paper. Components of Genetic Algorithm (GA) which are 
mutation and crossover operator were incorporated into MRFO to maximize the ability of searching 

strategy of the algorithm. Mutation and crossover were used to create more randomness in the 

algorithm by modifying location information of random agents. Mutation has improved the 
distribution of the searching agents of algorithm while crossover has improved the convergence rate of 

the algorithm. Thus, the chance to get a higher accuracy solution is increasing. To validate the 

performance, this proposed algorithm alongside with its parent MRFO and GA were used on 4 

different benchmark functions. The averages were calculated alongside using Friedman and Wilcoxon 
sign rank test to determine the significant improvement of the algorithm. All algorithms also then 

furthered applied to optimize IT2FLC to control an Inverted Pendulum System (IPS). From the results, 

it can conclude that accuracy of solution produced by GMRFO outperformed MRFO and GA 
significantly. About the IT2FLC tuned by all algorithms, the result has shown that the GMRFO 

provided better tuned parameters. This can be observed by looking control response produced by the 

IPS. In the future, some variants of GMRFO can be developed. This proposed algorithm shown that it 

has potential to be improved further and can be used to solve a neural network model of robot system. 
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