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Key messages: 

1. While anti-Ro60 autoantibodies are among the most frequently detected extractable nuclear 
antigen autoantibodies, a signature common to all patients expressing anti-Ro60 autoantibodies 
has not yet been established.  
 

2. Machine learning identifies features from RNA-Seq, GWAS and DNA methylation datasets that 
discriminate anti-Ro60+ patients regardless of the autoimmune disease, remain stable over time 
and are not influenced by treatment. 

3. Three genes (ATP10A, PARP14 and MX1) are overexpressed, hypomethylated and mutated in 
anti-Ro60+ patients and are remarkably associated with the IFN signature regardless of the 
autoimmune disease. 

4. Targeting Ro60-associated RNAs and Ro60-specific autoantibodies will reduce interferon 
signature in systemic autoimmune diseases. 
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Abstract  

Objectives: Anti-Ro autoantibodies are among the most frequently detected extractable nuclear 

antigen autoantibodies, mainly associated with primary Sjögren’s syndrome (pSS), systemic lupus 

erythematosus (SLE) and undifferentiated connective tissue disease (UCTD). Is there a common 

signature to all patients expressing anti-Ro60 autoantibodies regardless of their disease phenotype?  

Methods: Using high-throughput multi-omics data collected within the cross-sectional cohort from the 

PRECISESADS IMI project (genetic, epigenomic, transcriptomic, combined with flow cytometric data, 

multiplexed cytokines, classical serology and clinical data), we assessed by machine learning the 

integrated molecular profiling of 520 anti-Ro60-positive (anti-Ro60+) compared to 511 anti-Ro60-

negative (anti-Ro60-) patients with pSS, SLE and UCTD, and 279 healthy controls (HCs). 

Results: The selected features for RNA-Seq, DNA methylation and GWAS data allowed a clear 

separation between anti-Ro60+ and anti-Ro60- patients. The different features selected by machine 

learning from the anti-Ro60+ patients constitute specific signatures when compared to anti-Ro60- 

patients and HCs. Remarkably, the transcript z-score of three genes (ATP10A, MX1 and PARP14), 

presenting an overexpression associated with a hypomethylation and genetic variation, and 

independently identified by the Boruta algorithm, was clearly higher in anti-Ro60+ patients compared 

to anti-Ro60- patients in all the diseases. We demonstrate that these signatures, enriched in interferon 

stimulated genes, were also found in anti-Ro60+ patients with rheumatoid arthritis and systemic sclerosis 

and remained stable over time and not influenced by treatment. 

Conclusion: Anti-Ro60+ patients present a specific inflammatory signature regardless of their disease 

suggesting that a dual therapeutic approach targeting both Ro-associated RNAs and anti-Ro60 

autoantibodies should be considered. 

  



 
 

 

1. Introduction 

Anti-Ro autoantibodies are among the most frequently detected extractable nuclear antigen (ENA) 

autoantibodies and have mainly been associated with primary Sjögren’s syndrome (pSS). These 

autoantibodies are also frequently observed in systemic lupus erythematosus (SLE) and undifferentiated 

connective tissue disease (UCTD) (1,2). Additionally, anti-Ro autoantibodies have been reported in 

other autoimmune diseases such as systemic sclerosis (SSc), mixed connective tissue diseases (MCTD), 

rheumatoid arthritis (RA) and myositis (3).  

Anti-Ro autoantibodies comprise reactivity against two autoantigens (Ro52 and Ro60) encoded by 

separate genes and found in distinct cellular compartments (4). Ro52 is a type I and type II interferon 

(IFN)-inducible protein (5,6) and is a negative regulator for proinflammatory cytokine production (7). 

Ro60 antigen binds to ~100 nt noncoding RNAs called hY-RNA (8) and acts as a quality checkpoint for 

RNA misfolding with molecular chaperones for defective RNA (9).  

Variation in clinical manifestations or outcome based on presence or absence of anti-Ro autoantibodies 

has been highlighted in previous studies. Thus, SLE subjects with anti-Ro60 antibodies have an 

increased prevalence of skin disease, photosensitivity, and nephritis, along with elevated expression of 

IFN-inducible genes in immune cells and tissues (10). In pSS, patients with both anti-Ro60 and Ro52 

antibodies were distinguished by a higher prevalence of markers of B cell hyperactivity and glandular 

inflammation (11). Those patients also had earlier disease onset and presented more systemic 

extraglandular manifestations such as leukopenia, hypergammaglobulinaemia and major salivary gland 

swelling (12). Recently, two subgroups of pSS patients were defined based on HLA association, 

Ro60/SSB antibodies and clinical manifestations. The Ro60/SSB antibody-positive subgroup was 

younger at disease onset and diagnosis and more frequently presented anaemia, leukopenia, 

hypergammaglobulinaemia, purpura, major salivary gland swelling, lymphadenopathy and lymphoma. 

These results confirmed an overall more severe disease phenotype compared with patients negative for 

both anti-Ro60 and anti-SSB antibodies (13). Solo anti-Ro60 reactivity correlated strongly with oral 

ulcers, a characteristic manifestation of SLE, while the combination of anti-Ro60 and anti-Ro52 was 

significantly more prevalent in patients demonstrating interstitial kidney disease and sicca symptoms 

(14). 

Due to the presence of anti-Ro60 antibodies in different autoimmune diseases and the reported clinical 

manifestations which characterize this expression, a question remains. Is there a signature common to 

all patients expressing anti-Ro60 autoantibodies that would allow us to consider a suitable therapy 

regardless of their disease phenotype?  

With algorithms derived from machine learning, the present study was undertaken to establish a precise 

signature of anti-Ro60-positive (anti-Ro60+) patients in the diseases where this autoantibody is the most 



 
 

frequently observed (pSS, SLE and UCTD) using high-throughput multi-omics data collected within the 

PRECISESADS IMI JU project (genetic, epigenomic, transcriptomic, combined with flow cytometric 

data, multiplexed cytokines, as well as classical serology and clinical data). Here we report on the 

integrated molecular profiling of 520 anti-Ro60+ patients compared to 511 anti-Ro60-negative (anti-

Ro60-) patients and 279 healthy controls (HCs). We then observe whether this signature was also present 

in the 41/725 anti-Ro60+ patients with other autoimmune diseases such as MCTD, RA and SSc all from 

the same PRECISESADS cohort. 

2. Methods 

2.1. Patient population  

The present study was conducted in 1755 patients (367 pSS, 508 SLE, 156 UCTD, 307 RA, 327 SSc, 

and 90 MCTD) and 279 HCs included in the European multi-centre cross-sectional study of the 

PRECISESADS IMI consortium (15). The classification criteria were: for RA on the 2010 

ACR/EULAR classification criteria (16), for SLE on the 1997 update of 1982 ACR criteria (17), for 

SSc on ACR/EULAR 2013 classification criteria (18), for pSS on AECG pSS classification criteria (19) 

with at least the presence of anti-Ro and/or a positive focus on a minor salivary gland biopsy, for MCTD 

on Alarcon-Segovia criteria (20), and for UCTD on patients with clinical features of systemic 

autoimmune diseases (SADs) not fulfilling any of the above or any other SADs criteria for at least 2 

years with the presence of unspecific antibodies, antinuclear antibodies (ANA) ≥ 1:160. Patients 

fulfilling 3 out of 4 SLE classification criteria and patients with early systemic sclerosis (21) were not 

classified as UCTD. Recruitment was performed between December 2014 and October 2017 involving 

19 institutions in 9 countries (Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain and 

Switzerland). The PRECISESADS study adhered to the standards set by International Conference on 

Harmonization and Good Clinical Practice (ICH-GCP), and to the ethical principles that have their 

origin in the declaration of Helsinki (2013). Each patient signed an informed consent prior to study 

inclusion. The Ethical Review Boards of the 19 participating institutions approved the protocol of the 

study. The protection of the confidentiality of records that could identify the included subjects is ensured 

as defined by the EU Directive 2001/20/EC and the applicable national and international requirements 

relating to data protection in each participating country. The study is registered in ClinicalTrials.com 

with numbers NCT02890121 (cross-sectional cohort) and NCT02890134 (inception cohort). The anti-

Ro60+ signature identified by machine learning was validated using the transcriptome of 106 patients 

recruited in the PRECISESADS inception study (NCT02890134), followed up and sampled at the time 

of recruitment and at 6 and/or 14 months. Of note, patients in the inception cohort were diagnosed as 

above within less than a year since diagnosis and had not had high doses of immuno-suppressants, 

cyclophosphamide or Belimumab at least 3 months prior to recruitment. For time points at 6 and 14 

months, patients could have any standard of care therapy indicated by their physician. HCs were 

individuals without chronic medication who do not suffering from any inflammatory autoimmune, 



 
 

allergic or infectious condition, and without a history of autoimmune disease, particularly thyroid 

disease or other diseases that may modify cellular profiles in blood. 
 

2.2. Determination of autoantibodies, antinuclear antibodies, free light chains and complement 

fractions 

All autoantibodies were determined in a single center (Brest) for all samples between March 2016 and 

June 2019. Anti-ENA (comprising Sm, U1-RNP, Scl70, Ro52, Ro60 and SSB) and specific 

autoantibodies anti-Ro52 and anti-Ro60, anti-CCP2, IgG and IgM anti-β2GPI, IgG and IgM anti-

cardiolipin, anti-dsDNA, and anti-centromere autoantibodies were determined using the 

chemiluminescent immunoanalyser IDS-ISYS (Immunodiagnostic, Boldon, UK). Rheumatoid factor 

(RF) was determined regardless of the isotypes by turbidimetry with the SPA plus (The Binding Site), 

as well as C3 and C4 complement fractions and κ and λ free light chains. All patients and HCs were 

tested. For more technical details on sample and data collection, please refer to Supplementary methods 

section 2. Autoantibodies and RF distribution have been described by concentration level 

(Negative/Low/Medium/Elevated/High) and a Fisher’s exact test was applied to compare the proportion 

and the concentration across the anti-Ro60+ and anti-Ro60- patients in each disease. Complements C3 

and C4 and circulating free light chains have been described in continued concentration expressed in 

g/L and mg/L respectively and a Kruskal–Wallis test was applied to compare the concentration level 

across the anti-Ro60+ and anti-Ro60- patients in each disease. Positive samples for anti-Ro60 

autoantibodies were also classified according to their degree of positivity. Positive samples with 

concentrations between 10 and 640 arbitrary unit (AU)/ml were considered as anti-Ro60low whereas 

samples with concentration > 640 AU/ml were considered as anti-Ro60high patients. 

ANA detection was performed by an in-house technique on HEp-2 cells (ATCC strain: CCL23). Each 

sample was systematically tested on 5 successive dilutions (1:80; 1:160; 1:320; 1:640; 1:1280) and the 

threshold of positivity was set at 1:160, according to international recommendations (22). Information 

on current or past presence of hypergammaglobulinemia was collected in each center at the time of 

inclusion and defined as the presence within 12 weeks of serum IgG > upper limit of normal and/or 

gammaglobulin > 20%. 

 

2.3. Clinical data. 

Clinical data obtained from 520 anti-Ro60+ (306 pSS, 175 SLE and 39 UCTD) patients, 511 anti-Ro60- 

(61 pSS, 333 SLE and 117 UCTD) patients and 279 HCs, were collected using an electronic case report 

form (eCRF). Clinical data included patient’s age, sex, ethnicity, disease duration, the physician global 

assessment of disease activity (PGA), SLEDAI for SLE, ESSDAI for pSS, and current use of treatments.  

 



 
 

2.4. Other Available data.  

High-dimensional omics genotype, RNA-seq, DNA methylation and proportions of relevant cell types 

using flow cytometry custom marker panels were analysed from whole blood samples. Additional 

information, such as cytokines, chemokines and inflammatory mediator expression levels were obtained 

from serum samples. All these parameters are detailed in Supplementary methods. Repartition of 

patients with a full dataset per omic type and across disease is available in Supplementary Table 1. 

2.7. Dimension reduction 

Our strategy of dimensionality reduction was driven by artificial intelligence approaches involving 

machine learning. Patients were first split according to their disease (pSS, SLE or UCTD). We then 

separately considered each of the datasets describing these patients (RNA-Seq, DNA methylation, 

GWAS and flow cytometry associated with cytokine expression). For each of these datasets, we 

performed a Boruta (23) analysis to discriminate anti-Ro60+ and anti-Ro60- patients in order to extract, 

within each dataset, features that significantly contributed to distinguish the two groups. The Boruta 

algorithm creates an extended dataset by adding copies of each feature in the original dataset. Values of 

the duplicated features are then shuffled and the resulting features are called “shadow features”. The 

random permutation of the modality within these features leads to the removal of any pre-existing 

correlation with the target variable, in our case, anti-Ro60 positivity. Once shadow features were crafted, 

a random forest classifier was run on the whole dataset and z-scores were computed for all features (real 

and shadow). Shadow features were then sorted according to their z-score and the maximum score was 

kept in memory as a threshold. The algorithm assigned a hit to each real feature that had a z-score above 

this threshold. Finally, Boruta marked the features which had a z-score significantly lower than the 

shadow with maximum z-score as “unimportant” and removed them from the dataset, before removing 

all shadow features and returning a clean dataset.  

We ran the Boruta algorithm on 300 iterations with a max depth set to 5. Extracted features were run on 

a linear discriminant analysis (LDA), only used to visually assess the separation between anti-Ro60+, 

anti-Ro60- patients and HCs. No classification metrics were computed with LDA. 

3. Results 

3.1. Anti-Ro60-positive patients present specific biological and clinical features  

The characteristics of the 279 anti-Ro60- HCs and the 520 anti-Ro60+ patients (306 pSS, 175 SLE and 

39 UCTD) compared to the 511 anti-Ro60- patients (61 pSS, 333 SLE and 117 UCTD) patients are 

presented in Table 1. Regarding the antibody profile, compared to anti-Ro60-, anti-Ro60+ patients from 

the three diseases had significantly increased levels of ANA, kappa and lambda free light chains, 

rheumatoid factor, anti-Ro52 and anti-SSB antibodies (Supplementary Table 2 and Figure 1). Anti-Ro52 

and anti-SSB autoantibodies were also significantly increased in anti-Ro60high patients compared to anti-

Ro60low patients. Past and/or present hypergammaglobulinemia was increased in anti-Ro60+ patients 



 
 

regardless of the disease (Supplementary Figure 1A). No difference in disease activity score (ESSDAI, 

SLEDAI, PGA) was observed between anti-Ro60- and anti-Ro60+ patients (Supplementary Figure 1B). 

However, in pSS, anti-Ro60+ patients had a lower ESSPRI, and the higher is the anti-Ro60 scale, the 

lower are the ESSPRI and its components (dryness, fatigue and pain) (Supplementary Figure 1C). 

 

3.2. Machine learning identifies specific signature common to anti-Ro60+ patients in the different 

omics datasets 

We used the Boruta algorithm (23) on all datasets to extract features that significantly contributed to the 

prediction of patients who were anti-Ro60+ according to the different omics (RNA-Seq, DNA 

methylation, GWAS and cytokine expression associated with cell subset distribution). A total of 923 

features were selected from RNA-Seq variables, 64 from DNA methylation, 5749 from GWAS 

(Supplementary Tables 3, 4 and 5 respectively) and 8 from the association of cytokine expression levels 

and cell subset distribution. An LDA for each omics is presented in Figure 2. We have considered the 

combined analysis of pSS, SLE and UCTD patients within the framework of the Boruta approach. 

Features were selected on disease dataset to capture a maximum of discriminating information. We then 

considered the union of Boruta results for pSS, SLE and UCTD to constitute the final signature. Of note, 

the selected features for RNA-Seq and GWAS data allowed a clear separation between anti-Ro60+ and 

anti-Ro60- patients. Remarkably, even if data from HCs were not used for feature selection, their 

integration into the different LDA, based on the features identified as discriminating between anti-Ro60+ 

and anti-Ro60- patients using the Boruta algorithm resulted in a separation from the patients. These 

results demonstrate that the different features selected by machine learning from the anti-Ro60+ patients 

constitute specific signatures when compared to anti-Ro60- patients and HCs. 

 

3.3. Characterisation and pathway analysis of the transcriptomic signature found in anti-Ro60+ 

patients  

The 923 transcripts identified by machine learning to discriminate anti-Ro60+ patients (Figure 2A) were 

analysed with Reactome (24). The 25 most relevant pathways are presented in Supplementary Table 6. 

Anti-Ro60+ patients were enriched in genes involved in IFN signaling (type I and II), cytokine signaling, 

activation of C3 and C5, antiviral mechanism by IFN-stimulated genes and IL-10 signaling. 

To go further in the IFN signature, we analysed IFN-annotated modules previously described as strongly 

up-regulated in SLE (25,26). The different type I and type II IFN z-scores were increased in anti-Ro60+ 

patients regardless of the disease (Figure 3). 

 

3.4. Characterisation and pathway analysis of the DNA methylation signature found in anti-Ro60+ 

patients  



 
 

The 37 genes associated with the 64 CpG identified by machine learning to discriminate anti-Ro60+ 

patients (Figure 2B) were analysed with Reactome. Interestingly, the most relevant pathways were the 

same as those previously found in the transcriptome analysis such as IFN signaling (Type I and II), 

cytokine signaling in the immune system and antiviral mechanism by IFN-stimulated genes 

(Supplementary Table 7). 

Among these 37 differentially methylated genes, 33 were also found by the Boruta algorithm in the 

RNA-Seq analysis. Interaction network of these 33 common genes, determined by STRING analysis 

with a confidence cut-off of 0.4, revealed and confirmed the common IFN signature (Supplementary 

Figure 2) (27). Of note, all transcripts were overexpressed in anti-Ro60+ patients regardless of the 

disease, and a global hypomethylation of CpG was observed for all but one gene (ISG15). For one gene 

(IFITM1), up to eight hypomethylated CpGs were assessed (Supplementary Figure 3). 

 

3.5. Genome-wide association study analysis of anti-Ro60+ patients  

Our machine learning approach identified 5749 SNPs able to differentiate anti-Ro60+ from anti-Ro60- 

patients (Figure 2C). Interestingly, three of these SNPs were located on genes previously selected by the 

algorithm from the previous RNA-Seq and DNA methylation analyses (Figure 4A). The three 

corresponding genes were ATP10A, MX1, and PARP14. Remarkably, the transcript z-score of these three 

genes was clearly higher in anti-Ro60+ patients compared to anti-Ro60- patients, but also in anti-Ro60high 

versus anti-Ro60low patients, when all diseases were merged (Figure 4B). The same was true in all the 

diseases and constituted a clear signature (Figure 4C). Given the strong association of anti-Ro60 with 

anti-Ro52/TRIM21 antibodies, we considered that the positivity for anti-Ro52/TRIM21 could define 

the signature. We have then divided pSS, SLE, and UCTD patients into three groups (anti-Ro60-/anti-

Ro52-, anti-Ro60+/anti-Ro52- and anti-Ro60+/anti-Ro52+) and assessed the identified anti-Ro60 

signature defined by the transcript z-score of the three genes (ATP10A, MX1, and PARP14). The z-score 

was higher in anti-Ro60+/Ro52- patients compared to anti-Ro60-/anti-Ro52- patients in pSS and SLE. In 

contrast, the z-score was only higher in anti-Ro60+/anti-Ro52+ pSS patients compared to anti-

Ro60+/anti-Ro52- pSS patients and no significant difference was observed in SLE and UCTD 

(Supplementary Figure 4A).  

We also considered that anti-Ro60 positivity could just be a marker of B cell reactivity given that the 

majority of anti-Ro60- patients are ENA negative. We then assessed the transcript z-score of the three 

genes (ATP10A, MX1, and PARP14) in five groups of patients regardless of their disease: patients 

without any autoantibody, anti-Ro60-/anti-Ro52+ patients negative for any of the autoantibodies 

analyzed (anti-RNP, anti-Sm, anti-SSB, anti-Scl70, anti-CCP, anti-dsDNA, anti-MPO, anti-PR3, anti-

CentB), anti-Ro60-/anti-Ro52+ patients positive for any other autoantibodies, anti-Ro60-/anti-Ro52- 

patients positive for any of the autoantibodies, and anti-Ro60+ patients. The z-score was clearly higher 



 
 

in anti-Ro60+ patients compared to all the other groups (Supplementary Figure 4B). All these data 

confirm that the determined signature is specific to anti-Ro60+ patients and is not just a marker of B cell 

activation or due to the presence of any other autoantibody. 

3.6. Characterisation of the flow cytometry signature and cytokine expression found in anti-Ro60+ 

patients  

Machine learning identified six parameters among flow cytometry and two parameters among cytokine 

expression (assessed by Luminex-based quantitative assay) data able to differentiate anti-Ro60+ from 

anti-Ro60- patients (Figure 2D). The robustness of the six flow cytometry features was poor and only 

associated to one disease (Supplementary Figure 5). Interestingly, however, cytokine expression in 

serum showed an increase of IFNγ-induced protein (CXCL10/IP-10) and a down regulation of IL-1 RII, 

the decoy receptor for cytokine belonging to the IL-1 family, in anti-Ro60+ patients regardless of the 

disease (Supplementary Figure 5). 

 

3.7. The established common signature of anti-Ro60+ patients with pSS, SLE and UCTD is also 

common to patients with RA, SSc or MCTD expressing anti-Ro60 antibodies and is stable over time  

To confirm the robustness of the identified signature, we observed whether this signature was also 

present in an independent cohort of 106 newly diagnosed patients with pSS, SLE or UCTD, from the 

inception cohort of the PRECISESADS study, which provided an additional validation set to test the 

generalization of our signature on patients that were not used for the feature selection process. At 

inclusion (first time point), we had 46 anti-Ro60+ and 60 anti-Ro60- patients. Again, using the 923 

transcripts of the RNA-Seq signature, the LDA showed a clear separation between anti-Ro60+ and anti-

Ro60- patients regardless of the disease (Supplementary Figure 6A). Furthermore, the z-score for the 33 

genes identified by the Boruta algorithm and common to RNA-Seq and DNA methylation data were 

significantly increased in anti-Ro60+patients (Supplementary Figure 6B). This was also true with the z-

score for the three genes (ATP10A, MX1 and PARP14) previously selected by the algorithm from the 

RNA-Seq, GWAS and DNA methylation analyses (Supplementary Figure 6C). 

Finally, the signature's robustness was also assessed in 724 patients with other autoimmune diseases 

such as MCTD, RA and SSc all from the PRECISESADS cross-sectional cohort. A clear separation 

between anti-Ro60+ (n=40) and anti-Ro60- (n=684) patients using the representation space generated by 

the LDA is shown in Figure 5A. In all diseases but MCTD, anti-Ro60+ patients had significantly 

increased z-scores for the 33 common genes (Figure 5B) and the three genes constituting the clear 

signature (Figure 5C). We can therefore conclude that anti-Ro60+ patients have a specific signature 

regardless of their disease. 

Finally, we have assessed the transcript z-score of the three genes (ATP10A, MX1, and PARP14) in the 

inception cohort restricted to 86 patients (pSS, SLE, UCTD, RA, SSc and MCTD) followed up and 



 
 

sampled at three time points (recruitment, at 6 and/or 14 months). For time points at 6 and 14 months, 

patients could have any standard of care therapy indicated by their physician (Supplementary Table 8). 

Anti-Ro60+ patients remained positive and anti-Ro60- patients remained negative over time (data not 

shown). We confirm that the z-score remained stable in anti-Ro60+ and anti-Ro60- patients over time 

(Figure 5D). Overall, the identified signature for anti-Ro60+ patients does not depend on treatment and 

is stable over time. 

 

4. Discussion 

Our study demonstrates that anti-Ro60+ patients have a specific signature regardless of their disease. 

Anti-Ro60+ compared to anti-Ro60- patients presented the same clinical and biological characteristics 

as those previously described in the literature such as hypergammaglobulinemia (12,13) and association 

with other autoantibodies (Anti-Ro52, anti-SSB and RF) (14). Anti-Ro60 positivity was reported to be 

higher in the low symptom burden subgroups of pSS patients (28) in accordance with our observation 

that anti-Ro60+ patients had a lower ESSPRI. 

Our study has some limitations. First, it could be argued that this is a cross-sectional study and it is 

assumed that single samples (cells and sera) were collected at an arbitrary time during the disease course 

of the different autoimmune diseases. However, we demonstrated in our inception cohort with a follow-

up of 14 months, that the identified signature for anti-Ro60+ patients was stable over time and was not 

influenced by treatment. Second, virtually all subjects were Caucasian and although common variants 

are expected to be evolutionarily old and shared across ethnicities, some risk loci show considerable 

ethnic differences in frequency and/or effect size. 

The novelty of our study was to use machine learning to conduct a robust signature extraction specific 

to anti-Ro60+ patients through dimensionality reduction approaches, using high-throughput multi-omics 

data. Assessment of the signature's robustness occurred in three steps. First, we used discriminant 

features extracted from the different omics data sets to perform LDA. The new representation spaces 

crafted from the selected features through this analysis allowed a sufficient separation of anti-Ro60+ and 

anti-Ro60- patients in each of the three diseases studied (SLE, pSS and UCTD). Second, we considered 

the intersection of the selected features between RNA-Seq and DNA methylation and the intersection 

of the selected features between RNA-Seq, DNA methylation and GWAS, narrowing down the original 

selection to two signatures composed of 33 and three genes, respectively. Both z-scores, generated by 

the 33 genes and the three genes, were significantly different between anti-Ro60+ and anti-Ro60- for 

SLE, pSS, and UCTD patients. Third, because we used a machine learning approach to extract the 

features, we assessed the possibility of overfitting by testing the validity of these signatures in patients 

who were not used in the training process of the algorithm. Generalization of the signature was then 

evaluated by computing RNA-Seq features from another cohort of pSS, SLE and UCTD patients and 



 
 

from RA, SSc and MCTD patients. The LDA consistently showed a clear separation among anti-Ro60+ 

and anti-Ro60- patients. Again, z-scores were significantly different between anti-Ro60+ and anti-Ro60- 

for RA and SSc patients but not for MCTD patients. Consequently, the discriminating properties of the 

representation space obtained through the computation of LDA, the statistical tests of distributions and 

the generalization to other diseases constituted strong indicators of the signature's robustness. 

Reactome pathway analysis of the 33 genes differentially expressed and methylated showed a link 

between anti-Ro60 antibodies and IFN signature, cytokines secretions and IRF7 which were associated 

with TLR signaling. The striking association between anti-Ro60 autoantibodies and inflammation in 

autoimmune diseases led to the hypothesis that the RNA-binding properties of Ro60 produce aberrant 

Toll-like receptor (TLR) signaling (29). Alu retroelements activate TLR7 and TLR8 as 

oligoribonucleotides and associate with Ro60 in cell lines (30); consequently, inflammatory and IFN 

signatures associated with anti-Ro60 autoantibodies could be due to the RNA-binding properties of 

Ro60. 

Remarkably, the transcript z-score of three genes (ATP10A, MX1 and PARP14) were clearly higher in 
anti-Ro60+ patients compared to anti-Ro60- patients in all the diseases and constituted a clear signature. 

The first gene, ATP10A, encoded one of the five P4 ATPase which requires interaction with TMEM30A 

(Transmembrane Protein 30A) to exit from the endoplasmic reticulum to the plasma membrane. ATP10A 

was recently linked to autoimmunity, as a study demonstrated that meQTLs regulated the methylation 

of the ATP10A gene in blood from pSS patients (31). Since this enzyme transports mainly two 

aminophospholipids: phosphatidylserine and phosphatidylethanolamine, which may be the target of 

minor autoantibodies in anti-phospholipid syndrome (APS) (32), it is legitimate to speculate on a link 

between the presence of antiphospholipid antibodies and the increase in ATP10A transcript. We re-ran 

the analysis excluding patients positive for the major autoantibodies found in the APS (i.e. anti-B2GPI 

and anti-CL IgG and IgM) to eliminate potential patients with secondary APS, and the signature found 

persists (p=4,2e-10, data not shown). Moreover, to our knowledge, no association with APS has yet 

been described in the literature. Thus, the signature carried by ATP10A seems to be specific to anti-

Ro60+ patients. Another GWAS study on cytokine responses found that genetic variants of ATP10A 

were associated with IFNα production (33). The second gene, PARP14 (Polyadenosine diphosphate 

ribose polymerase 14), encoded for a member of PARP family proteins which contain macrodomain 

binding proteins influencing many biological processes (34). PARP14 suppressed proinflammatory 

IFN-STAT1 signaling and activated the anti-inflammatory IL4-STAT6 pathway in primary human 

macrophages (35). PARP14 also enhanced histone activation to promote transcription of type 1 IFN 

genes such as IFNb1 after LPS stimulation in RAW264.7 cells (36). Interestingly, PARP-14 was 

identified as one of the five genes that can distinguish pSS from controls (37). The third gene, MX1, 

encoded the MX dynamic like GTPase 1 or MXA which participates in the cellular antiviral response 

by antagonizing the replication process of several different RNA or DNA viruses. MX1 gene expression 



 
 

is induced by IFN via Jak1/Tyk2 followed by activation of STAT1/STAT2 pathway (38). Furthermore, 

MX1 protein levels were recently reported as surrogate for the IFN-I gene scores in SLE (39). 

Consequently, these three overexpressed, hypomethylated and mutated genes in anti-Ro60+ patients are 

remarkably associated with the IFN signature regardless of the autoimmune disease. 

To control IFN signature in anti-Ro60+ patients with autoimmune diseases, a key challenge would be to 

break the continual turnover of Ro60-specific clones that seems to drive lifelong Ro60 humoral 

autoimmunity (40). This may entail a dual approach targeting both Ro60-associated RNAs 

(including Alu transcripts and Y RNAs) and Ro60-specific autoantibody clonotypes as elegantly 

suggested by Reed and Gordon (29). 
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Figure legends  

Figure 1: Serological distributions in pSS, SLE and UCTD patients. The presence of anti-Ro52, 

anti-Ro60, anti-SSB antibodies, rheumatoid factor (RF) and circulating free light chains (cFLc) were 

measured in the serum of 520 anti-Ro60+ (306 pSS, 175 SLE, 39 UCTD) and 511 anti-Ro60- (61 pSS, 

333 SLE, 117 UCTD) patients in the same center, using an automated chemiluminescent 

immunoanalyzer (IDS-iSYS). Turbidimetry was used for the detection of RF and cFLc (Kappa and 

Lambda). Anti-Ro60+ patients were divided in two groups: anti-Ro60low patients (samples with 

concentrations between 10 and 640 AU/ml), and anti-Ro60high patients (samples with concentrations > 

640 AU/ml). Statistical significance was determined by the two-tailed pairwise Wilcoxon-rank sum test. 

Plots show median, with error bars indicating ± interquartile range. (pSS: primary Sjögren’s syndrome, 

SLE: systemic lupus erythematosus, UCTD: undifferentiated connective tissue disease). 

Figure 2: Machine learning identifies specific signatures common to anti-Ro60+ patients in the 

different omics datasets. Linear discriminant analysis (LDA) representation of the systemic lupus 

erythematosus (SLE), undifferentiated connective tissue disease (UCTD) and primary Sjögren’s 

syndrome (pSS) patients using features selected by the Boruta algorithm. (A) A total of 923 features 

were selected from RNA-Seq data. (B) A total of 64 features were selected from methylation data. (C) 

A total of 5749 features were selected from GWAS data. (D) A total of eight features were selected 

among flow cytometry distribution and cytokine expression data. 

 

Figure 3: Ro60+ patients show a higher IFN signature regardless of the disease. IFN z-score 

analyses were performed for 411 anti-Ro60+ (249 pSS, 136 SLE and 26 UCTD) patients compared to 

392 anti-Ro60- (46 pSS, 267 SLE and 79 UCTD) patients and 254 HCs. The genes (IFI44, IFI44L, IFIT1 

and MX1) of the M1.2 module are induced by IFNα, while genes from both M1.2 and M3.4 (ZBP1, 

IFIH1, EIF2AK2, PARP9 and GBP4) are upregulated by IFNβ. The genes (PSMB9, NCOA7, TAP1, 

ISG20 and SP140) from the M5.12 module are poorly induced by IFNα and IFNβ alone while they are 

upregulated by IFNγ. Moreover, transcripts belonging to M3.4 and M5.12 were only fully induced by a 

combination of Type I and Type II IFNs (26). Other modules identified genes preferentially induced by 

IFNα (IFIT1, IFI44 and EIF2AK2) or IFNγ (IRF1, GBP1 and SERPING1) (25). Two-tailed pairwise 

Wilcoxon-rank sum test results are shown. Plots show median, with error bars indicating ± interquart ile 

range. (pSS: primary Sjögren’s syndrome, SLE: systemic lupus erythematosus, UCTD: undifferentiated 

connective tissue disease, HCs: healthy controls). 

Figure 4: Three genes common to RNA-Seq, DNA methylation and GWAS analysis characterize 
anti-Ro60+ patients. (A) Venn diagram showing the gene overlaps according to the different omics data 

analyses conducted by machine learning (RNA-Seq, DNA methylation and SNPs) to discriminate anti-

Ro60+ from anti-Ro60- patients. (B) ATP10/MX1/PARP14 z-score analyses were performed for 803 



 
 

patients and 254 HCs according to anti-Ro60 expression. (C) ATP10/MX1/PARP14 z-score analyses 

were performed for 295 pSS, 403 SLE and 105 UCTD patients and 254 HCs. Two-tailed pairwise 

Wilcoxon-rank sum test results are shown. Plots show median, with error bars indicating ± interquart ile 

range. (pSS: primary Sjögren’s syndrome, SLE: systemic lupus erythematosus, UCTD: undifferentiated 

connective tissue disease, HCs: healthy controls). 

Figure 5: The established signature of anti-Ro60+ patients is common to patients with rheumatoid 

arthritis (RA), systemic sclerosis (SSc) or mixed connective tissue disease (MCTD) expressing anti-
Ro60 antibodies. (A) Linear discriminant analysis (LDA) representation of the patients, using the 923 

features selected by the Boruta algorithm from RNA-Seq data in SLE, UCTD and pSS patients, 

discriminates anti-Ro60+ and anti-Ro60- patients in RA, SSc and MCTD. (B) z-score analyses of the 33 

genes, identified by the Boruta algorithm and common to RNA-Seq and methylome data, were 

performed for 295 pSS, 403 SLE, 105 UCTD, 307 RA, 327 SSc and 90 MCTD patients and 254 HCs. 

(C) ATP10/MX1/PARP14 z-score analyses were performed for 295 pSS, 403 SLE, 105 UCTD, 307 RA, 

327 SSc and 90 MCTD patients and 254 HCs. Two-tailed pairwise Wilcoxon-rank sum test results are 

shown. (D) ATP10/MX1/PARP14 z-score analyses were performed in 86 patients from the inception 

cohort followed up and sampled at the time of recruitment (M0) and at 6 (M6) and/or 14 months (M14). 

Patients were distributed as anti-Ro60+ (n=29) and anti-Ro60- (n=57) regardless of the disease (pSS, 

SLE, UCTD, RA, SSc and MCTD).  Pairwise t-tests are shown. Plots show individual values and 

median, with error bars indicating ± interquartile range. 
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Table 1: Characteristics of the healthy controls (HCs), primary Sjögren's syndrome (pSS), systemic lupus erythematosus (SLE) and 
undifferentiated connective tissue disease (UCTD) patients according to anti-Ro60 expression (anti-Ro60+ vs anti-Ro60-). 

HCs  pSS 
Characteristics N N = 279  Characteristics N anti-Ro60-, 

N = 61 
anti-Ro60+, 

N = 306 
p-value1 

Age 279    Age 367     0.3 

Mean (SD)   52 (9)  Mean (SD)   59 (13) 57 (13)   

MD   0  MD   0 0   

Gender 279    Gender 367     0.5 

Female   262 (94%)  Female   57 / 61 (93%) 293 / 306 (96%)   

Male   17 (6.1%)  Male   4 / 61 (6.6%) 13 / 306 (4.2%)   

MD   0  MD   0 0   

Ethnicity 279    Ethnicity 367     >0.9 

American Indian/Alaska 
native   0 (0%)  

American Indian/Alaska 
native   0 / 61 (0%) 0 / 306 (0%)   

Asian   2 (0.7%)  Asian   0 / 61 (0%) 2 / 306 (0.7%)   

Black/African American   0 (0%)  Black/African American   0 / 61 (0%) 1 / 306 (0.3%)   



Caucasian/White   277 (99%)  Caucasian/White   61 / 61 (100%) 299 / 306 (98%)   

Native Hawaiian/ Other 
Pacific Islander  0 (0%)  

Native Hawaiian/ Other 
Pacific Islander   0 / 61 (0%) 0 / 306 (0%)   

Other   0 (0%)  Other   0 / 61 (0%) 4 / 306 (1.3%)   

MD   0  MD   0 0   

Obesity 279 16 (5.8%)  Obesity 354 7 / 58 (12%) 37 / 296 (12%) >0.9 

MD   1  MD   3 10   

Cigarette smoking 279 38 (14%)  Cigarette smoking 348 7 / 57 (12%) 29 / 291 (10.0%) 0.6 

MD   10  MD   4 15   

MD: Missing data    Disease duration 365     0.2 

    Mean (SD)   9 (8) 10 (8)   

    MD   1 1   

    Steroids 367     0.3 

    No   45 / 61 (74%) 244 / 306 (80%)   

    Yes   16 / 61 (26%) 62 / 306 (20%)   



    MD   0 0   

    Antimalarials 367     0.7 

    No   37 / 61 (61%) 194 / 306 (63%)   

    Yes   24 / 61 (39%) 112 / 306 (37%)   

    MD   0 0   

    Immunosuppressants 367     0.067 

    No   47 / 61 (77%) 264 / 306 (86%)   

    Yes   14 / 61 (23%) 42 / 306 (14%)   

    MD   0 0   

    Biologicals 39     >0.9 

    No   10 / 10 (100%) 29 / 29 (100%)   

    Yes   0 / 10 (0%) 0 / 29 (0%)   

    MD   51 277   

    PGA 339     0.007 



    Mean (SD)   30 (18) 24 (19)   

    MD   2 26   

    ESSDAI 240 4 (6) 5 (5) 0.11 

    MD   15 112   

    ESSPRI 183 5.59 (2.29) 4.71 (2.33) 0.029 

    MD   17 167   

    

1 Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test, MD: 
Missing data, PGA: Physician global assessment 

 
 

SLE  UCTD 
Characteristics N anti-Ro60-, 

N = 333 
anti-Ro60+, 

N = 175 
p-value1  Characteristics N anti-Ro60-, 

N = 117 
anti-Ro60+, 

N = 39 
p-value1 

Age 508     0.6  Age 156     0.6 

Mean (SD)   46 (14) 45 (13)    Mean (SD)   47 (12) 46 (12)   

MD   0 0    MD   0 0   

Gender 508     0.3  Gender 156     >0.9 



Female   302 / 333 (91%) 163 / 175 (93%)    Female   108 / 117 (92%) 36 / 39 (92%)   

Male   31 / 333 (9.3%) 12 / 175 (6.9%)    Male   9 / 117 (7.7%) 3 / 39 (7.7%)   

MD   0 0    MD   0 0   

Ethnicity 508     0.010  Ethnicity 156     0.6 

American Indian/Alaska 
native   0 / 333 (0%) 0 / 175 (0%)    

American Indian/Alaska 
native   1 / 117 (0.9%) 0 / 39 (0%)   

Asian   3 / 333 (0.9%) 1 / 175 (0.6%)    Asian   0 / 117 (0%) 1 / 39 (2.6%)   

Black/African American   3 / 333 (0.9%) 9 / 175 (5.1%)    Black/African American   1 / 117 (0.9%) 0 / 39 (0%)   

Caucasian/White   318 / 333 (95%) 162 / 175 (93%)    Caucasian/White   113 / 117 (97%) 38 / 39 (97%)   

Native Hawaiian/ Other 
Pacific Islander   0 / 333 (0%) 1 / 175 (0.6%)    

Native Hawaiian/ Other 
Pacific Islander   0 / 117 (0%) 0 / 39 (0%)   

Other   9 / 333 (2.7%) 2 / 175 (1.1%)    Other   2 / 117 (1.7%) 0 / 39 (0%)   

MD   0 0    MD   0 0   

Obesity 491 23 / 321 (7.2%) 15 / 170 (8.8%) 0.5  Obesity 154 11 / 116 (9.5%) 5 / 38 (13%) 0.5 

MD   12 5    MD   1 1   

Cigarette smoking 476 60 / 312 (19%) 30 / 164 (18%) 0.8  Cigarette smoking 154 17 / 115 (15%) 6 / 39 (15%) >0.9 



MD   21 11    MD   2 0   

Disease duration 508     0.079  Disease duration 155     >0.9 

Mean (SD)   14 (10) 12 (9)    Mean (SD)   6 (6) 7 (8)   

MD   0 0    MD   1 0   

Steroids 508     0.037  Steroids 156     <0.001 

No   179 / 333 (54%) 77 / 175 (44%)    No   78 / 117 (67%) 38 / 39 (97%)   

Yes   154 / 333 (46%) 98 / 175 (56%)    Yes   39 / 117 (33%) 1 / 39 (2.6%)   

MD   0 0    MD   0 0   

Antimalarials 508     0.066  Antimalarials 156     0.5 

No   112 / 333 (34%) 45 / 175 (26%)    No   62 / 117 (53%) 23 / 39 (59%)   

Yes   221 / 333 (66%) 130 / 175 (74%)    Yes   55 / 117 (47%) 16 / 39 (41%)   

MD   0 0    MD   0 0   

Immunosuppressants 508     0.12  Immunosuppressants 156     0.045 

No   234 / 333 (70%) 111 / 175 (63%)    No   100 / 117 (85%) 38 / 39 (97%)   



Yes   99 / 333 (30%) 64 / 175 (37%)    Yes   17 / 117 (15%) 1 / 39 (2.6%)   

MD   0 0    MD   0 0   

Biologicals 44     >0.9  Biologicals 34     0.6 

No   27 / 27 (100%) 17 / 17 (100%)    No   23 / 27 (85%) 7 / 7 (100%)   

Yes   0 / 27 (0%) 0 / 17 (0%)    Yes   4 / 27 (15%) 0 / 7 (0%)   

MD   306 158    MD   90 32   

PGA 477     0.067  PGA 149     0.12 

Mean (SD)   19 (18) 21 (17)    Mean (SD)   26 (21) 18 (15)   

MD   16 15    MD   5 2   

SLEDAI 253 4(6) 5(5) 0.2  
1 Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test, MD: 
Missing data, PGA: Physician global assessment 

MD   159 96         

1 Wilcoxon rank sum test; Fisher's exact test; Pearson's Chi-squared test, MD: 
Missing data, PGA: Physician global assessment       

 




