DONS: Dynamic Optimized Neighbor Selection for Smart Blockchain

Networks*

Hamza Baniata®*, Ahmad Anaqreh” and Attila Kertesz¢

“Department of Software Engineering, University of Szeged, Szeged 6720, Hungary

b Department of Computational Optimization, University of Szeged, Szeged 6720, Hungary

ARTICLE INFO

Keywords:

Smart Networking

Blockchain

Optimized Neighbor Selection
Minimum Spanning Tree
Anonymized Leader Election

ABSTRACT

Blockchain (BC) systems mainly depend on the consistent state of the Distributed Ledger (DL) at
different logical and physical places of the network. The majority of network nodes need to be enforced
to use one or both of the following approaches to remain consistent: i) to wait for certain delays (i.e. by
requesting a hard puzzle solution as in PoW and PoUW, or to wait for random delays as in PoET, etc.)
ii) to propagate shared data through shortest possible paths within the network. The first approach
may cause higher energy consumption and/or lower throughput rates if not optimized, and in many
cases these features are conventionally fixed. Therefore, it is preferred to enhance the second approach
with some optimization. Previous works for this approach have the following drawbacks: they may
violate the identity privacy of miners, only locally optimize the Neighbor Selection method (NS),
do not consider the dynamicity of the network, or require the nodes to know the precise size of the
network at all times. In this paper, we address these issues by proposing a Dynamic and Optimized
NS protocol called DONS, using a novel privacy-aware leader election within the public BC called
AnoLE, where the leader anonymously solves the The Minimum Spanning Tree problem (MST) of
the network in polynomial time. Consequently, miners are informed about the optimum NS according
to the current state of network topology. We analytically evaluate the complexity, the security and
the privacy of the proposed protocols against state-of-the-art MST solutions for DLs and well known
attacks. Additionally, we experimentally show that the proposed protocols outperforms state-of-the-
art NS solutions for public BCs. Our evaluation shows that the proposed DONS and AnoLE protocols
are secure, private, and acutely outperform all current NS solutions in terms of block finality and

fidelity.

1. Introduction

Blockchain (BC) [1] is the backbone of the famous, ro-
bust and reliable P2P Bitcoin network, which proposes many
simple solutions for different problems that faced a success-
ful distributed digital currency system for years. One of
those problems was the consistency of the Distributed Ledger
(DL) at any given time [2]. A system is consistent, when it
ensures that every reading is the same on any node, i.e., the
nodes have a global view of the system state [3, 4]. Differ-
ent criteria imposes different readings, e.g. the fluctuating
transmission delay between nodes and the continuous alter-
ation of data [5]. Although BC did not directly solve this
open problem, it founded an approach assuring data saved
on the DL would be synchronized soon enough, so that the
DL is consistent [6]. Previous studies show that in a BC-
based DL, more neighbors per miner and higher delivery
time rates between neighbors, both lead to lower levels of
DL consistency [7, 8]. These results served as a motivation
to our research for designing an optimized BC networking

*This research work was supported by the Hungarian Scientific Re-
search Fund under the grant number OTKA FK 131793, and by the TruBlo
project of the European Union’s Horizon 2020 research and innovation pro-
gram under grant agreement No. 957228, and by the National Research, De-
velopment and Innovation Office within the framework of the Artificial In-
telligence National Laboratory Programme, and by the University of Szeged
Open Access Fund under the grant number 5544.

*Corresponding author

4 baniatah@inf.u-szeged.hu (H. Baniata)
ORCID(S): 0000-0001-7511-2910 (H. Baniata); 0000-0002-3971-2684
(A. Anagreh); 0000-0002-9457-2928 (A. Kertesz)

and gossiping protocol. Such a protocol shall require min-
imum number of neighbors per miner, directing the miners
to communicate with globally-optimized selection of neigh-
bors.

A scalable system is one that maintains constant, or slowly
degrading, overheads and performance as its size increases
[9]. The dynamicity in P2P networks, which are the phys-
ical infrastructure of BCs, imposes even more complicated
problems than the DL inconsistency as it directly affects its
scalability. That is, the constantly changing topology of the
network leads to non-consistent propagation delays between
its entities. BC peers are connected to several neighbor-
ing peers, and adopt a Random Neighbor Selection (RNS)
with which they share data [10]. Generally, shared data be-
tween peers include new blocks or information regarding
the state of the sender’s ledger (i.e. gossiping). Gossiping
also includes sharing the best DL version between peers,
which is defined according to certain criteria (e.g. longest
chain). The RNS method implies randomized paths, walked
by shared data [11], leading to an inefficient data propagation
scheme. This is due to several redundant exchanged mes-
sages caused by the probability of cycle appearance on the
randomly selected path of data, leading to higher average fi-
nality time and lower consistency levels.

Although itis not an optimized method, RNS is currently
adopted by most BC systems. Those BCs compensate the
high finality time by enforcing miners to spend more time
solving the puzzle. This compensation technique does in-
deed achieve its goal, yet it leads to both lower overall sys-

Baniata et al.: Preprint submitted to Elsevier

Page 1 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

tem throughput (due to delayed new block generation), and
higher energy consumption (in case the puzzle solution con-
sumes energy. e.g. the PoW and the PoOUW consensus mod-
els). Few other methods were proposed to locally optimize
Neighbor Selection (NS), and indeed addressed the dynam-
icity issue (e.g. [12]). However, none of these solutions pro-
posed optimum NS.

We envision a better solution to allow peers to communi-
cate with selected neighbors according to globally optimized
criterion. This criterion has to fulfil mainly three conditions:

1. Tt decreases the number of cycles within a path, that
shared data walks, from any peer to any other peer
(i.e. no cycles, hence a Spanning Tree is an optimal
solution [13]).

2. It decreases the maximum time spent from generating
data, by any peer, till it reaches all the peers of the
network.

3. It addresses the scalability issues of the network, lead-
ing to adaptive optimization of NS in spite of contin-
uous change in network topology.

The optimum selection of paths within a connected net-
work, such as the discussed P2P BC network, is in fact find-
ing the Minimum Spanning Tree (MST) of the network. Uti-
lizing the MST of a given BC network shall lead to increased
number of peers receiving a shared piece of data in mini-
mum time, which results in both enhanced data finality and
enhanced DL consistency.

In this paper, we propose a Dynamic and Optimized Neigh-

bor Selection protocol called DONS that computes the MST
of a public BC network, while preserving the privacy of the
participating peers. DONS is also able to dynamically up-
date the MST as peers join and leave the network. This pro-
tocol includes a privacy-preserving leader election method,
allowing one of the peers within the BC network to com-
pute the MST without previous knowledge of network peers
identities (e.g. IP address). The leader nominates itself and
becomes active once the majority of voters accepted it as
a leader within a predefined round-time. Once active, the
leader builds a global demonstration of the BC network topol-
ogy. The local views sent by voters contain no private data
of the senders and, thus, these views can only be used to de-
termine an anonymized topology of the network. Using one
of the famous MST algorithms (e.g. Prim’s or Kruskal’s),
the leader computes the MST and broadcasts it to all the net-
work. Every recipient of the MST then can read only its
identity and its neighbors’ identities, leading to each peer of
the network communicating with the optimized selection of
neighbors. As a result, our current research work addresses
the Neighbor Selection Problem (NSP) of public BCs.

Although the recipient peers can then know the anonymized

MST, they cannot, by any means, know the identities of peers
other than themselves and their neighbors. We evaluate the
proposed DONS protocol against other approaches, utiliz-
ing two randomized network models, namely Erdds-Rényi
(ER) model [14] and Barabasi-Albert (BA) model [15]. The
DONS protocol is analytically evaluated in terms of security

and privacy [16], and is experimentally evaluated in terms
of propagation time and message overhead against the cur-
rently used RNS and local RTT-based NS methods. The
leader election method is theoretically and experimentally
evaluated, in terms of time and message complexity [17],
against a recent solution proposed in [18]. The results of
our evaluation shows that our proposed protocols are secure,
private, efficient and significantly outperform the current re-
lated methods.

As will be discussed in later sections, we found no pre-
vious work that specifically proposed a privacy-aware leader
election method, within the frame of public permissionless
BCs, and deployed it to dynamically solve the NSP by find-
ing the network MST. To the best of our knowledge, this is
the first research paper that proposes such a protocol.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the state-of-the-art regarding the NSP of
public BC networks, MSTP, and the leader election prob-
lem. Section 3 defines the basic preliminaries and notations
on which we build our methods. Section 4 presents the pro-
posed DONS and AnoLE protocols. Section 5 presents our
evaluation of the proposed protocols in terms of privacy, se-
curity, time and message complexity, finality and fidelity.
Section 6 discusses the proposed protocol in terms of future
potential and open issues. Finally, Section 7 concludes our
work.

2. Related work

Finding the MST of general distributed systems by dif-
ferent means, for example by building a binary tree in dis-
tributed fashion within the network and select the root node
to search for shortest paths, have already been proposed in
the literature [19, 20]. Additionally, many leader election
algorithms have been proposed within other contexts, e.g.
general distributed systems, or even BC networks, that do
not consider the identity privacy as a constraint [21], or ad-
hoc wireless sensor networks that have gateway controllers
[22, 23]. In those methods, the leader is utilized to admin-
istrate the network, mine new blocks, select next miners,
or perform specific computations for specific slave nodes
[24, 9].

2.1. NSP in public BC networks

It has been shown in several previous works how opti-
mizing the NS decreases the probability of DL forking [25].
In this subsection, we investigate approaches other than RNS
[26], as it is the most used in BC networks while it is the least
optimized. Examples of such networks include Bitcoin [1]
and Hyberledger Fabric [27].

Bietal. [12] proposed a latency-based NS protocol where
miners measure the Round Trip Time (RTT) to their neigh-
bors. Accordingly, miners favor neighbors with lowest RTT,
when they need to perform NS. Similarly, a bandwidth in-
formed NS protocol was proposed by Wang and Kim [28],
where BC miners favor communications with neighbors that
offer higher bandwidth transmission. Accordingly, more data

Baniata et al.: Preprint submitted to Elsevier

Page 2 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

may flow through the network as links with relatively lim-
ited bandwidth are ignored, leading to decreased congestion
and enhanced overall throughput. Aoki and Shudo [29] pro-
posed a score-based NS protocol where each miner scores its
neighbors according to difference between block generation
time (which is typically consisted as a timestamp within a
shared block), and block receiving time at the receiver side.
That is, a neighbor that usually delivers new blocks faster
than other neighbors shall have better communications with
the network, thus is given higher score. Consequently, min-
ers favor neighbors with higher scores when they need to
perform NS. Notably, this method suggests that miners se-
lect neighbors to communicate with depending on the his-
tory of the neighbors, which implies that it may take much
time to arrive to optimal NS in dense and dynamic networks.

Jin et al. [30] proposed clustering the Bitcoin network
and sharing the Transaction (TX) IDs instead of the TXs
themselves. That is, TXs to be shared with neighboring clus-
ters are only shared with them if they have not been yet re-
ceived. Exchanged messages are, then, shared with targeted
destinations rather than in a randomized fashion. The pro-
posal was found efficient in terms of network traffic, yet it
deviates the network model from distributed towards cen-
tralized, as each cluster has its own leader. Additionally, se-
curity and privacy analysis were not conducted, although the
leader election protocol, performed within each cluster, re-
quired private information to be shared among the cluster
(e.g. number of Bitcoins obtained by each miner, length of
online time, miners’ IDs, etc.).

Yu et al. [31] proposed that a shared block within a BC
network shall include the IDs of miners who have already re-
ceived it. Each recipient adds its ID to each received block,
and forwards it to all neighbors who haven’t yet received it.
Apparently, such approach requires a tree topology of the
network, which is not guaranteed in public BCs, and im-
plies that shared blocks are constantly modified. To solve
the first issue, a method to divide the network into subareas
was proposed. The second issue, however, may raise con-
cerns regarding the credibility of shared data as some nodes
may behave dishonestly. Similar approaches were proposed
in Li [32] and He et al. [33], where multi-link concurrent
communication schemes were utilized. The adoption of tree
structures was recommended so that a failure node shall only
isolate a sub-tree compared to a whole component in case
the network topology was mesh. Obviously, such proposal
includes several conditions that do not necessarily apply in
current public BCs. On the other hand, He et al. [33] pro-
posed that each miner maintains a locally saved historical
log of peers’ IDs. Referring to this log, miners may select
peers to gossip with if they are not in the historical log.

To summarize our survey, all of the presented approaches
indeed perform better than the currently adopted RNS ap-
proach. However, all of these approaches address the NSP
depending on local views of the network, leading to local
NS optimization. Additionally, a group of those approaches
requires modifying the underlying network topology and/or
violates the identity privacy constraints usually present in

public BCs.

We argue that a protocol that solves the NSP can be as-
sumed comprehensive if it fulfils three main criteria: 1) It
optimizes the NS depending on a global view of the network
topology in a timely manner 2) It requires no modification
of the underlying network topology and 3) It preserves the
Identity privacy of all peers within the network. As none
of the current protocols has fulfilled these requirements, one
can state that the NSP has not yet been solved for public BCs.

2.2. Semi-Distributed Minimum Spanning Tree
(Semi-DMST)

To fulfil the first criterion of a comprehensive protocol
that addresses the NSP, one needs to utilize the global view
of the BC network using Graph Theory. Using this repre-
sentation, one can notice that solving its NSP is a central
optimization problem, namely the Minimum Spanning Tree
Problem (MSTP) [13]. That s, finding the MST of the graph
that represents the BC network is, in fact, finding the global
solution of the NSP. This approach also fulfils the second cri-
terion above, as no new edges are enforced into the graph.

It is trivial to find the MST of a given network in poly-
nomial time, if its topology is known, using famous algo-
rithms such as Prim’s [34] or Kruskal’s [35]. Accordingly,
BC networks that consist of a Trusted Third Party (TTP,
which tracks system entities and is trusted to build a global
view relation graphs demonstrating the network) can calcu-
late the MST using one of the well known algorithms. How-
ever, public and permissionless BCs don’t usually consist
of a TTP, which implies that no entity within the network
can build a graph that demonstrates the network. Accord-
ingly, Prim’s, Kruskal’s, or any other algorithm that requires
a global view of the network, cannot be used in fully dis-
tributed BCs.

Since fully-distributed BC networks are actually distributed
systems, the NSP in those BC networks can be formalized
using the Distributed Minimum Spanning Tree (DMST) prob-
lem [36]. This problem aims at computing the MST of a dis-
tributed system without prior knowledge of network topol-
ogy. This problem has a long line of research dating back to
1926 [37], until 2018 when the problem could finally enjoy a
singular optimality state with the protocol proposed by Pan-
durangan et al. [18]. That is, the proposed algorithm solved
the DMST problem with, simultaneously, optimal time and
optimal message complexity.

Although DMST problem has been solved in [18], and
can theoretically be deployed in public BCs, it actually can-
not be adopted by current public BCs. That is, the algorithm
requires its participants to share their identities, along with
other (perhaps considered private) data. Such requirement
imposes a privacy issue that will mostly forbid public BCs
from utilizing the solution of [18].

According to this brief description of MST and DMST
problems and their solutions, the former can be easily uti-
lized in any BC that consists a TTP, a network administrator
who has a global view of the network, or a gateway through
which new miners shall be confirmed. Specifically, the TTP

Baniata et al.: Preprint submitted to Elsevier

Page 3 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

periodically finds the MST of the network using one of the
previously mentioned methods. Accordingly, the TTP sug-
gests to miners the Optimum Neighbour Selection (ONS) to
enhance overall system efficiency. As the condition of a TTP
does not apply to public permissionless BCs, such approach
does not fulfil the first criterion of a comprehensive NS so-
lution.

The DMST problem, and its solution, can be used to opti-
mize NS in public-permissionless BCs as long as peers trust
all other peers with their private identities. That is, each node
can deduce the ONS according to data aggregated to it from
all nodes of the network, and it can communicate with all
nodes in return. However, such approach does not fulfil the
third criterion of a comprehensive NS solution.

Following these analysis, this paper attempts to solve
Semi-Distributed MST problem, which formalizes the NSP
in public-permissionless BCs. In such problem model, peers
do not trust each other with their private IDs (except for their
neighboring peers), while the network is dynamic and does
not have a TTP. The solution we propose for this problem is
detailed in Section 4.

2.3. Leader election problem

A leader node in a distributed system might be needed
to perform one or more centralized tasks. In static networks,
a leader node might be statically configured, or periodically
re-selected according to a predefined criteria. Leaders are,
then, similar in their properties to all other nodes. Selecting
aleader node in dynamic networks, however, is a well known
problem for distributed, P2P systems, namely the Leader
Election Problem [38]. Depending on the various aspects
of the studied distributed system, such as network topology,
type of nodes, system architecture, communication channels
etc., many leader election algorithms have been proposed.
Examples of such solutions include Abraham et al. [39], Al Re-
fai [40, 41] and Biswas et al. [42].

Mapping the Leader Election Problem to a public and
permissionless BC, the number of nodes and the upper limit
of nodes cannot be specified. Such problem projection re-
quires a solution with more restrictions and higher levels
of uncertainty. Nevertheless, previously proposed solutions
addressed such challenging settings even with mobile dis-
tributed systems and wireless communications (which is not
the case in the vast majority of BC-based networks, yet even
if it was, it is solved). Examples for single leader election al-
gorithms that can be deployed in a public permissionless BC
include the TORA algorithm [43], Malpani algorithm [44]
and SEFA algorithm [45]. Examples for multi-leader elec-
tion algorithms proper for such BC model settings include
Kelea [46] and [47]. Nonetheless, those algorithms are of
general usability and were not specifically proposed for BC
systems. The most famous leader election method, specif-
ically implemented for different BC network models is the
RAFT election [48]. RAFT is, basically, one step among
many in the RAFT consensus protocol. This step can be uti-
lized within different scenarios. The RAFT leader election
process fulfills the three main requirements of a successful

leader election, namely safety, liveness and fairness [49].

Overall, most of these leader election algorithms are im-
plementable in public BCs, if sharing the IDs and domains
(e.g. IP-addresses) of network peers have no privacy impli-
cations. That is, if peers of the network trust all other peers
with their identity information. However, this is generally
not the case in public BCs, where each peer is only aware of
its neighbors’ identities.

For such requirements, a deterministic and privacy-aware
leader election protocol, namely the Right-of-Stake (RoS),
was recently proposed by Tan et al. [5S0]. The RoS protocol
suggests that a peer elects itself according to local informa-
tion, namely its stake and its counter. Accordingly, if the
peer fulfilled a given condition, it starts behaving as a leader.
Consequently, other peers receiving data from the elected
peer confirm it is sent by a leader once the leader reveals
its ID. Thus, only when the leader is elected, it will give up
its private ID and stake value to other peers. Although this
is indeed a privacy aware leader election suitable for public
BCs, the authors assumed that the BC network is distributed
among pools for necessity. Additionally, the RoS protocol
is suitable for synchronous BC networks. Those two con-
ditions limit the utilization of this leader election protocol
in case of asynchronous networks or non-pooled BCs. Note
that nodes of the network shall be eventually aware of the
real identity of the leader, which violates the third criterion
of a comprehensive protocol that solves the NSP in public-
permissionless BCs. This issue was addressed in [51], yet
the proposed algorithms assumed that network nodes are ini-
tially aware of the network size. Such information is not nec-
essarily available for miner nodes of public- permessionless
BCs, thus, the proposed algorithms are irrelevant for our ap-
plication.

According to the presented literature review of leader
election protocols, we found no previous work that is appli-
cable to the problem of our current research. Thus, we pro-
pose a novel protocol, namely AnoLE to address the leader
election requirements we seek. We formally define our re-
search problem in Section 3 and detail the proposed solutions
in Section 4.

3. Preliminaries and problem statement

Referring to [52], we define a public-permissionless BC
network as a connected, undirected, and weighted graph G =
(V, E,w), where V is the set of nodes in G representing
miner nodes, E is the set of edges in G, representing the
communication lines between the miners, where each ¢; ; €
E, connecting exactly two nodes i, j € V/, can be traveled in
both directions. The nodes of G communicate by message
passing via (strictly) the edges of G. Each e € E is as-
sociated with a distinct non-negative value, namely weight
(w; j or w,), which represents the transmission time needed
to deliver 1 bit of data from node i to node j or vice versa,
computed in ys.

The weight of any given graph is the sum of the weights
of all its edges. We define the set of neighbors of a node
i € Vasm = (my,..m;;). We assume that every node

Baniata et al.: Preprint submitted to Elsevier

Page 4 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

DONS Protocol

~

~

ﬂhase-z: Computing anh

ﬂhase-& Process MSR

Phase-1: Leader Election
(1 ()) Broadcasting MST and obtain ONS
~) — — S ——)
5 5 3 5 ®
.‘g g S g‘ B c S = "7) 5) 2
N = = k) = (2} 3 2} s O
= = o 3 ® 9 0 2 = L= S =z z o
© = O = = N) - T o N O »
] w 3 > -4)) IR : : <9
= > - > s > &3 > .. © (S} %:——)»%8 %—' %g——)»m_'_
-_— oo v e .. = f
= - L & 18 59 hE| |BF »E 7 &%
d - & = 20 o o < g (=] £
& o -5 7] 77) (3] o4 n 3
& (7] o (77} |
o | || | %
® ° ° ® | o] Sal NGl I e &5 &5
. J . A - AJ J A : |A

@ : Performed by Probable_Leader 3¢ Performed by Leader @ : Performed by Normal_Peer

----»: Dependent on..

Figure 1: Phases and steps of the proposed DONS protocol. Each step is performed by one (or more) system entity(s). A step
may depend on the result of a preceding step of the current round, or on the result of a subsequent step of the previous round

i € G is initially aware of its m;, and is aware of the weight
associated with each edge e; ; connecting it with any of its
neighbors. To mathematically represent a graph, we use the
adjacency matrix, which is a matrix of size IV x VI. The
elements of the matrix are the weights w; ; if there is ¢; ; and
the maximum size of an integer provided by the interpreter
otherwise.

A sub-graph of G’ is any graph G'(V', E’, w'"), such that
V' CV and E' C E. G’ is also connected, undirected, and
weighted as it inherits the properties of the original graph.
A Spanning Tree (ST) of G is a connected acyclic sub-graph
of G where V! =V and E’ = V — 1. A Minimum Spanning
Tree (MST) of G (with distinct w, Ve € E’) is a unique ST
where the weight of MST is minimum compared to all STs
of G.

A hashing function, or a one-way encryption function,
h(.) is a mathematical function that takes a variable-length
input string and converts it into a fixed-length binary se-
quence that is computationally difficult to invert [53]. A
hashing function enables the determination of a message’s
integrity: any change to the message will, with a very high
probability, result in a different message digest[54].

Our research problem s to find the subset k; = (kq, ..k,) €
m;, Vi € V, such thate;;, € MST; Vk € k;. We call the
solution of our problem the Optimum Neighbor Selection of
node i € V' (ONS;) of a public-permissionless BC network.
We aim at solving this problem using a protocol that fulfills
the following privacy condition:

VieV =0 =0, +ONS, (1

where o; is the total knowledge of miner i before starting the
protocol and 61.’ is the total knowledge of miner i after the
protocol is terminated.

4. The Proposed DONS Protocol

In this section, we describe the phases of the proposed
DONS protocol and the proposed algorithms and methods
for each phase. The generalized framework addresses a pub-
lic permissionless BC with no TTP, and initially assumes all
network entities are honest. However, we discuss counter
assumptions where applicable. The phases and steps of the
DONS protocol are demonstrated in Figure 1.

4.1. Phase-1: Leader Election

First of all, the DONS protocol requires a global view of
the underlying BC network, so that the MST can be com-
puted. Additionally, miners joining and leaving the network
implies that this global view, and accordingly the computed
MST, shall be regularly updated. In a public and permission-
less BC model, all BC miners have the same access permis-
sions and the same level of abstraction. However, one (or a
committee) of these miners may perform the MST compu-
tations for all other miners. This way, the network decides
best practices regarding networking and gossiping without
administrative interference, which leads to Smart Network-
ing [55].

In this section, we propose the Anonymous Leader Elec-
tion (AnoLE) protocol which shall not violate any of the
comprehensive NS solution criteria discussed in Section 2.1.
The elected leader (single leader in our current work) shall
collect non-private local views from all peers, construct a
network demonstration, solve the MST problem of the net-

work graph, and finally broadcast the anonymized MST through-

out the network. The recipient nodes shall only be able to
read their own, and their neighbors’ IDs. Thus, neither the
leader nor any other network entity can deduce miners’ pri-
vate data throughout the run of the protocol. Note that this
condition implies that a miner does not know the identity of
the leader, unless the miner itself (or one of its neighbors)

Baniata et al.: Preprint submitted to Elsevier

Page 5 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

every

eighbor in m; become
Probable

Leader (PL)

a Normal_ Peer
1)
Failed/Joined

Broadcast AnoLE-1
message

Normal
Peer (NP) received
AnoLE Message

PL received
AnoLE Message

Time is
valid?

Run Alg.5:
-save votes
-save LVs

Run Alg.6:
-Random select Leader (L) -Become Leader or NP
-Generate Local View (LV)
-Broadcast AnoLE-2 message
-self _Voted = True

‘f -Broadcast AnoLE] P
1 Message N

Figure 2: Workflow of the proposed Anonymous Leader Elec-
tion (AnoLE) protocol

was the leader.

The challenge of this phase is to dynamically select the
leader(s). Specifically, selected leader(s) has similar proper-
ties to all other nodes, such as failure/unavailability proba-
bility (with different failure rates), and nodes being aware of
minimum propagation delays only with their adjacent neigh-
bors. The generalized workflow of the proposed AnoLE pro-
tocol is depicted in Figure 2. Different system entities utilize
the AnoLE protocol as follows:

e Step-0 (Initialization): All nodes know their neigh-
bors identities and the corresponding Round-Trip-Time
(RTT) expected when communicating with each of
them. All nodes use this protocol honestly, with de-
fault status ’Normal_Peer’, Default Required Confir-
mations (DRCs) equals the average number of neigh-
bors per peer, ’Current_Leader’ = null, default round

time T', and MST set to empty array.

Step-1 (LE trigger): Once a node i fails/joins the net-
work, its neighbors, denoted m; = {mi’l, ..m[’j}, are
triggered to start the AnoLE protocol. Each neighbor
m; Nk € 1,..j sets its status to ’Probable_Leader’,
sleeps for an arbitrary time (default setting: waiting
time is randomly selected between 0 and 7/2), and
sends ’AnoLE-1" message to all neighbors. The ’AnoLE-
1’ message contains h(i) and h(m; ;), along with times-
tamp ¢. votes = Dict{} and LVs = list[] are initiated
to later save the responses of the AnoLE-1 message.

Step-2 (Failure check): all nodes that receive ’AnoLE’
messages, run Algorithm1. Accordingly, Normal_Peers
(NPs) run Algorithms 2, 3 and 4, sequentially, in or-
der to obtain the Required Confirmations (RCs), a list
of hashes of nodes in the set m;, and the Local View
(LV), respectively. These recipient nodes wait until
they receive a number of distinct AnoLE messages
equal to RCs (if T time units passed with no sufficient
AnoLE messages, the node does not vote). The recip-
ient checks three conditions to consider the node fail-
ure/joining reports correct: 1) Every distinct AnoLE
message shall contain similar A(i) and different A(m; ;).
These messages represent failure/joining proofs 2) Each
h(m; ;) should belong to the list of Neighbors returned
by Algorithm 3, which assures that reports are only
sent by genuine neighbors and 3) All neighbors in this
list shall send an AnoLE-1 message. This represents
a consensus among neighbors on the honesty of the
AnoLE protocol trigger (i.e. those neighbors do not
know or trust each other by assumption).

In the special case of an empty MST (which happens
only at the first time the protocol is run), recipients
ignore conditions 2 and 3. When i is joining the net-
work, the DRCs is used instead of the RCs.

Step-3 (Voting): Once a recipient node receives a suf-
ficient number of ’AnoLE’ messages that fulfill the
conditions in Step-2, the recipient can be sure that i
has indeed failed/joined as all its neighbors witnessed.
The NP then selects one of the received h(m; ;)s ac-
cording to a predefined criteria (e.g. randomized, first
sender, highest hash value, etc.) and modifies its *Cur-
rent_Leader’ to the selected h(m; ;). After that, NPs
broadcast ’AnoLE-2’ messages to all its neighbors, which
contain their hashed IDs along with the contents of
’AnoLE-1". AnoLE-2 messages, then, declare that NPs
who generated them vote for, specifically, the candi-
date leader whose hash is included in their AnoLE-2
message. In the context of the DONS protocol, NPs
also deposit their current LVs of the network into their
generated AnoLE-2 messages. LV is obtained by run-
ning Algorithm 4. NPs who have a previous version of
the MST (i.e. obtained from previous AnoLE proto-
col run), may utilize it to share their AnoLE messages
with their ONSs. A condition to be fulfilled in order

Baniata et al.: Preprint submitted to Elsevier

Page 6 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

to utilize the previous ONS, however, is that non of
the ONS members has an ID whose hash is equal to
h(i).

e Step-4 (Leader Declaration): Whenever a message of
type ’AnoLE-2’ is received by a ’Probable_Leader’,
it runs Algorithm 5, which saves new votes and LVs.
Once a 'Probable_Leader’ finds that: current_time - t
> T, it runs Algorithm 6, which counts the votes re-
ceived so far and converts the node’s status into either
’Leader’ or ’Normal_Peer’.

Algorithm 1: Message handler

1 Input AnoLE_msg;
2 Function Share_msg_with_neighbors(msg)

3 if ONS and AnoLE_msg[h(i)] not in ONS then
4 ‘ neighbors = ONS
5 else
6 ‘ neighbors = self.neighbors
7 end
8 for neighbor in neighbors do
9 ‘ send(msg, neighbor)
10 end
11 end

12 if AnoLE_msg[type’] == ’AnoLE-3’ and
current_leader == AnoLE_msg[’leader’ | then
13 ‘ run Algorithm 8

14 else

15 if self.status == ’Normal_Peer’ then

16 if current_time - AnoLE_msg[t] < T then

17 run Algorithm 2;

18 Share_msg_with_neighbors(AnoLE_msg)
19 end

20 end

21 if self.status == ’Probable_Leader’ then

2 if current_time - AnoLE_msg[t] < T then

23 Share_msg_with_neighbors(AnoLE_msg)
24 if AnoLE_msg.type == 2 then

25 ‘ run Algorithm 5

26 end

27 else

28 ‘ run Algorithm 6

29 end

30 end

31 end

The identification criteria of nodes can be selected upon
system design. That is, in a public permissionless BC, such
as Bitcoin, pseudonyms are used to preserve the privacy of
end-users [1]. However, true identities in a private or per-
missioned BC may be used. We believe the distinction be-
tween identity management schemes, and thus the adoption
of one over the other, is beyond the scope of our work. That
is, the selection of an identity management scheme is depen-
dant on/related to the application definition and the required

Algorithm 2: Check local records

1 Input AnoLE_msg;

2 if AnoLE_msg[h(i)] in self.AnoLE_records then

3 if AnoLE_msg[h(m; ;)] NOT in
self.AnoLE_records[h(i)]['Ks’] then

4 ‘ self. AnoLE_records[A(i)]['Ks’].append(h(m; ;))

5 end

6 else

7 self. AnoLE_records[A(i)] = Dict{}

8 self. AnoLE_records[A(i)]['Ks’] = h(m; ;)

9 self. AnoLE_records[A(i)]['voted’] = False

10 end

11 M_K, RC = RFC(AnoLE_msg) (Algorithm 3)

12 if M_K is NOT empty then

13 Cl= AnoLE_msg[h(mi,k)] inM_K

14 C_2 =M_K € self. AnoLE_records[2(i)]['Ks’]
15 else

16 | C_1=C_2=True

17 end

18 C_3 =len(self.AnoLE_records[A(i)]['Ks’]) > RC
19 C_4 = NOT self.AnoLE_records[A(i)][voted’]

20 if C_1 AND C_2 AND C_3 AND C_4 then

21 self.Current_Leader =
self.AnoLE_records[A(i)]['Ks’][0]

22 my_LV = LV_Computation() (Algorithm 4)
23 my_AnoLE-2 = [AnoLE_msg[?], h(self.ID),
AnoLE_msg[hA(i)], self.Current_Leader,
my_LV]

24 self. AnoLE_records[A(i)]['voted’] = True

25 Share_msg_with_neighbors(my_AnoLE-2)

26 end

Algorithm 3: RFC

1 Input AnoLE[A(i), h(m;), t];
2 Function FIND_neighbors(entity)

3 Neighbors = List[]
4 for row, column in MST do
5 if row[0] == entity and MST[row][column]
< infinity then
6 ‘ Neighbors.append(MST[0][column])
7 end
8 end
9 return Neighbors
10 end

11 list_of_m = List[];

12 if MST is NOT empty then

13 | list_of_m = FIND_neighbors(h(i))
14 end

15 RC = len(list_of_m);

16 if RC == 0 then

17 | RC=DRC

18 end

19 return list_of m, RC

Baniata et al.: Preprint submitted to Elsevier

Page 7 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

Algorithm 4: Local View (LV;) Computation

Anonymized_LV = List[];
Hashed_IDs = List[];
Weights = List[];
for k in m; do
Hashed_IDs.append(h(k));
Weights.append(RTT(k)/2)
end
8 Anonymized_LV.append(Hashed_IDs);
9 Anonymized_LV.append(Weights);
10 return Anonymized_ LV

N SN R W N =

Algorithm 5: Voting

1 Input AnoLE-2[t, h(voter), h(i), h(m; ;), LV];
2 if NOT votes[h(i)] then

3 votes[h(i)] = Dict{timestamp,

4 info:{’voters’: [Ah(voter)],

5 votes’: 1}}
6
7
8
9

self.LVs.append([A(i), h(voter), AnoLE-2[LV]])
end
if NOT votes[h(i)][h(m, ;)] then
votes[A()][’info’ [[A(m; ;)] = Dict{ voters’:

[A(voter)];’ votes’: 1}
10 self.LVs.append([A(i), voter, AnoLE-2[LV]])
11 end
12 if NOT h(voter) in

votes[h(i)][info’ J[h(m; ;.)][voters’] then

13 votes[A()][’info’ J[A(m; ,)][voters’].append(h(voter))
14 votes[A()][’info’][A(m; ;)] ['votes’] +=1
15 self.LVs.append([A(i), h(voter), AnoLE-2[LV]])
16 end

Algorithm 6: Leader Recognition

Input AnoLE[z, h(i)];
global_max_votes = 0;
Leader = null;
for PL in votes[h(i)] do
PL_votes = PL[’votes’]
if PL_votes > max_votes then
max_votes = PL_votes
Leader= PL
end
end
self.current_leader = PL
if Leader == h(self.ID) then
| self.status = "Leader’
else
‘ self.status = ’Normal_Peer’
end

RTINS BN R I R R

L T O e
A AW N =D

trust model. Our proposal, on the other hand, is specifi-
cally concerned with the optimization of neighbor selection,
which shall be related to both the Consensus and the Net-
work layers of any given BC. Consequently, no matter what
identity scheme is applied, our proposed AnoLE protocol
satisfies the condition described in relation 1. Detailed in-
formation regarding different BC layers can be found in [56].

Note that a generated/received AnoLE message might be
sent to all neighbors, which implies that all probable leaders
shall eventually know the winner leader if T was sufficient.
However, a subset of the network might not have enough
time to vote for a leader and receive its MST. This seems
OK as nodes use their ONS if available, and broadcast oth-
erwise. With several runs of the AnoLE protocol, and dy-
namic modification technique of T', T would become more
precisely adequate/sufficient. A simple modification tech-
nique of T can be defined according to application require-
ments. For example, nodes may assume that not receiving
the MST from the leader they voted for indicates insufficient
T. Thus, those nodes may double T for next rounds. On
the other hand, receiving the MST sooner than the end of
T indicates that T is bigger than needed. Thus, nodes may
compute the average of T and the time elapsed from voting
till receiving the MST.

The AnoLE protocol utilizes the Epoch time which im-
plies that the location of miners, and distinct transmission
delays would not impose a synchronization problem. All
nodes thus use the same reference time and all nodes will
track T accurately. Hence, all nodes will initiate/terminate
the protocol according to unified timestamps.

4.2. Phase-2: Computing and Broadcasting MST

Assuming that T' was sufficient for all NPs to vote and
for all PLs to receive those votes, we anticipate that by the
end of Phase-1, the Leader (L) is recognized by all PLs and
by the majority of network miners. Each PL returns to the
state 'NP’ except for L. Consequently, Phase-2 is triggered
and is performed by L as follows:

e Step-1 (Construct NT): L uses its locally saved LVs
to construct the anonymized global network topology
(NT), represented by an adjacency matrix NT. Algo-
rithm 7 details how L computes NT.

e Step-2 (Compute MST): L utilizes Prim’s approach
[34] to find MST p 1. Note that any other (perhaps bet-
ter) approach can be utilized here, e.g. [57, 58].

e Step-3 (Broadcast MST): Lastly, the Leader derives
its own ONS from the MST it built, as described in
Step-2 of Phase-3, and uses it to send the MST to its
neighbors in its ONS. The MST is encapsulated in an
AnoLE-3 message, which also contains A(L) and the
time of MST generation.

4.3. Phase-3: Processing received MST to get ONS
e Step-1 (Verify L): Once a NP receives an AnoLE-
3 message, it checks whether this message was gen-

Baniata et al.: Preprint submitted to Elsevier

Page 8 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

Algorithm 7: Construct Network Topology e Step-2 (Derive ONS;): Every miner (including cur-

rent L and previous P Ls) that receives a verified MST
(within an AnoLE-3 message) derives its own ONS
by running Algorithm 8. The derived ONS is utilized
then to optimally select and share data.

1 Input A(i);
2 Network_topology = array[[0]];
3 Function ADD_node(node)

4 if NOT node in Network_topology[0] then
5 Network_topology([0].append(node) e Step-3 (Award L and utilize ONS;): In case the leader
6 Network_topology.append([node]) shall be incentivized for its work, the leader may in-
7 end clude its wallet id within its AnoLE-1 message. The
8 end leader then includes this piece of information within
9 for LV in self.LVs do its signature, which adds another layer of verification.
10 if LV[0] == h(i) then Miners which receive the AnoLE-3 message award the
11 ADD_node(LV[1]) leader by adding a predefined amount of digital as-
12 for neighbor in LV[2][0] do sets into the leader’s wallet. Note that in this case, the
13 ADD_node(neighbor) AnoLE-3 message also represents a TX that needs not
14 node_index NT = to contain the leader’s wallet ID nor its public key be-
Network_topology[0][LV[1]].index cause they have already been shared within the AnoLE-
15 neighbor_index_NT = 1 message.
Network_topology[0][neighbor].index
16 neighbor_index LV = .
LV[2][0][neighbor].index 5. Evaluation
17 weight = LV[2][1][neighbor_index_LV] In this section we perform a detailed evaluation of our
18 Network_topology[neighbor][node_index_NT] proposed DONS protocol in terms of security, privacy, time
= weight and message complexities, Finality and Fidelity. We com-
19 Network_topology[LV[1]][neighbor_index_NT] pare the AnoLE and the DONS protocols with current meth-
= weight ods, and we indicate the strengths, the weaknesses, and open
20 end issues of our proposed methods.
21 self.LVs.delete(LV") Our experiments were carried out on a DELL PC with an
2 end Intel i5-8265U CPU (8-Cores, 3.8 GHz) with 12 GB DDR4-
23 end SDRAM, 500 GB of SSD and Windows-10 OS.
24 if Network_topology is connected then . .
25 | return Network_topology 5.1. Security analysis . .
2 else Referring to Cachin et al. [59], the following security
27 ‘ return None properties must be guaranteed by a successful distributed
25 end protocol:

1. Strong validity: If all honest nodes propose the same
value v, then no honest node decides a value differ-
ent from v. This property is indeed guaranteed by the
AnoLE and DONS protocols. That is, if all NPs voted

2 for key in MST do for a probable leader k, all probable leaders will an-

3 if key == h(sel f.id) then nounce k as leader. Later, all nodes who voted for

4 return MST/[key] k will accept it’s proposed MST. The processes that

5

6

Algorithm 8: Derive ONS from MST
1 Input AnoLE-3;

end guarantee this property is detailed in Algorithm 1 (lines:
end 12-14) and Algorithm 6. Further, NPs only vote for a
PL who they heard from, which is guaranteed by Al-
gorithm 5.

erated by the leader it previously voted for. The as- 2. Agreement: No two honest nodes decide differently.
sumption of an adversary node impersonating the real This property is implicitly guaranteed by the AnoLE
leader is valid. However, such impersonation prob- and DONS protocols. That is, if " was not sufficient,
ability may be solved using asymmetric encryption different PLs may announce different leaders, and dif-

techniques, where the leader couples a public key with ferent NPs may vote for different PLs. However, only

its AnoLE-1 message. Later, the leader can sign the
AnoLE-3 message using its private key. This step also
implies that the recipient NP is expecting to be present
within the proposed MST. Otherwise, this NP will not
accept the MST despite it was sent by the leader the
NP elected.

one leader can obtain a majority of votes, leading later
to the ineffectiveness of other PLs announcements. The
MST computed by PL whom was voted for by the ma-
jority of NPs, will be the only MST adopted by this
majority. If incentivization was included, the PL. who
was voted for by the majority will be incentivized by

Baniata et al.: Preprint submitted to Elsevier

Page 9 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

the majority as well. Accordingly, the decisions of the
minority of NPs who voted for, adopted the MST of,
and incentivized other PLs, will not be adopted by the
network as the majority rule applies in BC systems.
Nevertheless, this property can be surely guaranteed
if T was sufficient, resulting in all votes arriving to
all PLs and, thus, all honest PLs announcing the same
leader. The processes that guarantee this property is
detailed in Algorithm 1 (lines:12—14) and Algorithm
6.

3. Termination: Every honest node eventually decides
some value. This property is guaranteed in the AnoLE
protocol as each PL changes its status to either L or
NP once T has passed. Consequently, any following
AnoLE messages received by the node after changing
its status shall be ignored. The leader also changes its
status to NP once it calculated the MST and shared it
with its neighbors. The termination point of the pro-
tocol is detailed in Algorithm 1 (lines: 16 and 22).
Additionally, all NPs decide which LP they want to
vote for, as declared in Algorithm 2 (line: 21). All
PLs decide what their next status is, who is the win-
ning PL, and who is their current leader, as declared
in Algorithm 6.

4. Integrity: No honest node decides twice. This prop-
erty is guaranteed in the AnoLE protocol for both PLs
and NPs, while leaders do not make any decisions.
The integrity of decisions made by PLs and NPs are
guaranteed using the processes detailed in Algorithm
6 (lines: 11 to 16) and Algorithm 2 (line: 19). Later,
every NP shall decide whether to accept or reject a re-
ceived MST for the current round, depending on the
generator. If the the leader who generated the MST
was voted for by this NP, the MST is adopted and the
leader may then be awarded. This process in declared
in Algorithm I (lines: 12-13).

A successful distributed ledger shall provide three prop-
erties, namely the Consistency, the Availability, and the
Partition Tolerance[60]. Mapping these properties onto
our DONS security discussion, we state that these issues are
not of a concern with the DONS protocol. That is, non con-
sistent MST distribution leads to some NPs performing NS
according to randomized selection rather than ONS, which
is declared in Algorithm 1 (lines: 2—11). This may nega-
tively affect the overall finality time, yet it has nothing to do
with the consistency of the distributed ledger. Furthermore,
in the case where leaders are to be incentivized, the original
majority rule applies, which implies that if the original BC
was consistent before adopting DONS, it will remain con-
sistent after. Similar argument can be stated regarding the
Availability issues.

Regarding the Partition tolerance issues, the BC network
could be partitioned into two networks if a failing node was
a bridge node, which should be solved by the original net-
work architecture, e.g., by requiring a minimum number of
neighbor connections upon joining the network. However,
it is not harmful to adopt different MSTs by different parts

of the network, as this would lead to higher finality time but
not a disconnected network (i.e. compared to finality time
with unified MST. However, even in such case, DONS shall
perform better than RNS and RTT-NS). Note that a discon-
nected network topology constructed by the leader would not
trigger the leader to compute and share the MST, as declared
in Algorithm 7 (lines: 24-28). Eventually, NPs who do not
receive the MST by the end of T, shall terminate the round
and continue using their original NS method (e.g. RNS or
RTT-NS). If a minority of NPs receives an MST from an-
other leader, they may use it and incentivize their leader, yet
the incentive would not be confirmed by the majority of min-
ers, leading to correct and consistent ledger even with parti-
tioned network.

From another point of view, it could be argued that the
utilization of our proposed protocols and the resulting pro-
vision of network topology may encourage an eclipse at-
tack [61] leading to DoS [62] or Double Spending [63]
attacks. However, Wiist and Gervais [64] described sev-
eral countermeasures that can be adopted to prevent eclips-
ing. To address this issue in DONS, we emphasize that each
peer in the network maintains its own set of connections, out
of which a subset is used to communicate. This is, a peer
is not practically isolated from the network and can simply
adopt a checker mechanism to secure itself against a logical
isolation. Note also that the subset derived from the MST
(i.e. ONS) could include more than one, randomly selected
neighbor according to the structure of the MST.

A checker mechanism aims at regularly validating the
peer’s local BC version against neighbors’ versions. This
way, peers can be sure that they have not been eclipsed by
an adversary leader or neighbor. ONS can be simply with-
drawn by a peer that has been eclipsed, and it can get back
to using its original NS method until a new AnoLE round is
triggered. Furthermore, a reputation mechanism, similar to
the one adopted by the Proof-of-Stake protocol [65], can be
developed.

Next, we discuss the security issues provided by DONS
and AnoLE protocols in probable situations that may appear
in real-life scenarios:

1. Problem: Leader provides an MST that provides the
ONS of only a minority (or none) of the network.
Solution: The puzzle that the leader needs to solve is
to find the networks” MST that includes as many net-
work nodes as possible. Accordingly, the proposed
MST would be accepted by the majority upon verifi-
cation. As the puzzle solution is hard to find, the so-
lution is easy to be verified on the NP side by check-
ing if it was included in the proposed MST. Every NP
checks whether the MST is proposed by the leader the
NP voted for, and whether it is included in the MST.
Thus, the MST can be rejected even if it was generated
by the leader the NP voted for. Consequently, the more
nodes included in the MST, the higher the probability
for the MST to be accepted by the majority. This is
declared in Algorithm 8 (line: 3).

2. Problem: No Leader was announced, which means

Baniata et al.: Preprint submitted to Elsevier

Page 10 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

each PL announced other PL due to inconsistency in
voting distribution.

Solution: Network nodes would keep running using
their previous ONS or, in case they had no ONS, a
randomized/RTT -based NS. This is declared in Al-
gorithm 1 (lines: 2—-11).

. Problem: Multiple Leaders were announced.
Solution: Only one MST will be adopted by the ma-
jority of network nodes, as each node only adopts the
MST proposed by the Leader it already voted for. If in-
centives to be granted upon proposing a new MST, the
Leader with actual majority number of voters will be
incentivized by the majority. Thus, only one Leader
will be eventually incentivized by the network. This is
declared in Algorithm 1 (lines: 12—14) and Algorithm
2 (line: 21). As PLs know this, no PL node shall dis-
honestly claim to be a leader node as the work spent to
find the MST would not be recognized by the majority.
This is declared in Algorithm 1.

. Problem: Round-time T is not sufficient to deliver all
votes to leaders.

Solution: Round-time T shall be dynamically mod-
ified as would be discussed in Section 6. Further-
more, this would lead to MST proposal that is not in-
clusive. Accordingly, the leader would not be incen-
tivized. when a node receives an MST that does not
include its ONS, it shall automatically increase its de-
fault Round-Time T as it would assume that its LV did
not have sufficient time to arrive to the leader. Never-
theless, this should not imply a problem as discussed
regarding the partition tolerance above.

. Problem: A dishonest PL claimed there was a fail-
ing/joining node in order to get incentivized, but the
truth is there was no failing/joining node.

Solution: NPs require a minimum number of RCs, as
declared in Algorithm 3. These could only be gener-
ated randomly and it is unlikely that all neighbors are
adversaries and that they collaborate with each other.
In any public-permissionless BC, a node is connected,
upon joining, to a group of randomly selected neigh-
bors. Accordingly, it is nearly impossible to get all
neighbors to agree on the failure of a node that did not
fail. However, a dishonest PL. may generate several
fake AnoLE-1 messages claiming that a node has just
joined the network. In this case, NPs assume that the
RC:s they receive are from nodes that are already exis-
tent in the network and they are not just joining. Ac-
cordingly, a NP checks the validity of each received
RC, by looking for the RC’s generator in its previous
MST (i.e. the NP’s MST). Consequently, RCs are only
accepted by nodes who are already proven as nodes of
the network. This is declared in Algorithm 3 (lines:
2-10).

. Problem: A dishonest NP provided a faulty LV.
Solution: if hashes of neighbors of this NP are faulty,
this NP will not be connected to the network in the pro-
posed MST and will not be able to obtain its ONS. As

Number of Nodes

Figure 3: Required time (seconds) for running the AnoLE pro-
tocol until delivering a connected MST to nodes of a Barabasi-
Albert random network with different sizes

Number of Nodes

Figure 4: Required time (seconds) for running the AnoLE pro-
tocol until delivering a connected MST to nodes of an Erdés-

Rényi

random network with different sizes

described in Algorithm 7: lines 12-20. Nevertheless,
neighbors of the faulty NP will provide correct LVs as
it is unlikely that neighbors collaborate. Accordingly,
the ONS the faulty NP would eventually get would be
correct. As the fake neighbors claimed by the faulty
NP have only been claimed to be connected to by this
NP, then these fake neighbors would be leafs in the
produced MST and would not affect ONSs of other
honest NPs. If hashes were correct but the weights
are non-correct, non of the neighbors of this NP will
provide similar faulty information, unless the neigh-
bors are collaborating in this. Such collaboration is
not possible as described above. The purpose of Al-
gorithm 7 is to solve such problem on the leader side,
and for this reason it has the highest time complexity,
as will be detailed later.

Problem: PL cheated and did not wait for randomly
selected time after AnoLE trigger.

Solution: This might lead to one or more of the previ-
ously discussed problems (specifically 1-4). Accord-
ingly, a cheating PL. would not benefit from such be-
haviour as discussed earlier. However, to guarantee
that PLs accurately wait for the selected random wait-
ing time, Trusted Execution Environments (TEE) [66]
can be used. Note that this is not mandatory for secu-
rity reasons but for efficiency guarantees reasons.

Baniata et al.: Preprint submitted to Elsevier

Page 11 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

Table 1

Time complexity of each algorithm utilized during the first two phases of the DONS
protocol (the AnoLE protocol)

algorithms Time complexity
worst-case(dense graph) ‘ best-case (sparse graph)
algorithm-1 oV QD)
algorithm-2 oV Q(1)
algorithm-3 0114k Q1)
algorithm-4 oV Q(1)
algorithm-5 o) Q(1)
algorithm-6 o(v) Q1)
algorithm-7 o(vP) Q)
DONS time complexity oV |® QV)
DMST o ++/1V)) -

Table 2
Message complexity of each
AnoLE protocol)

step during the first two phases of the DONS protocol (the

phases steps message complexity
worst-case(dense graph) \ best-case (sparse graph)
step-1 o(v) QUVD
step-2 - -
phase-1 step-3 oV v
step-4 - -
step-1 - -
phase-2 step-2 - -
step-3 oqv VD
DONS message complexity oV Qv
DMST o(v|?» Qv

5.2. Privacy analysis

Next, we discuss the identity privacy preservation [67]
provided by our proposed AnoLE and DONS protocols. As
detailed in Sections 2.1 and 2.3, our proposed methods must
guarantee the privacy condition (1) proposed in Section 3.
Following the description of the proposed protocols in the
previous sections, one can notice that data shared between
network nodes are exchanged in the form of AnoLE mes-
sages. For any given node a, it can receive the three types
of AnoLE messages generated by all, or a subset of, network
nodes.

The AnoLE-1 message includes the hash of the node i

Table 3

id that left/joined the network, the hash of its neighbor j id,
and the timestamp of the message. According to the defini-
tion of a hash function provided in Section 3, node a cannot
obtain any private information about i or j from AnoLE-1
messages.

The AnoLE-2 message is similar to the AnoLE-1 mes-
sage, with the addition of the hash of a’s id, the hash of the
elected leader id, and the Local View of a (LV,). LV, con-
sists of the hashes of ids belonging to the neighbors of a, in
addition to the RTT a has measured between itself and its
neighbors. Thus, any other node b can see that a node with
id hash A(a) is connected to a number of neighbors with id

Results of the AnoLE protocol simulation experiments on two random network models with

different sizes

Network model
BA ER

number of nodes 100 200 300 500 100 200 300 500
avg.no.neighbors 2 2 2 5 - - - -
connection probability - - - - 0.05 0.02 0.015 0.01
default round-time 30 40 60 60 30 40 50 60
DRC 2 2 1 2 2 2 2 2
time(s) 15.9 25.84 33.6 55.44 16.05 23.18 29.6 56.38
no.of exchanged messages | 676,071 3,237,133 5,871,463 16,380,174 | 788,139 3,321,310 7,054,606 13,617,211

Baniata et al.: Preprint submitted to Elsevier

Page 12 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

x10°

A A oo
© N » O

100 200 300 500
Number of Nodes

Number of Exchanged Messages
N A O @

Figure 5: Total number of exchanged messages for running the
AnoLE protocol until delivering a connected MST to nodes of
a Barabasi-Albert random network with different sizes

200 300 500

100

x10°

a2 A o
A © ® © N »

Number of Exchanged Messages
N

Number of Nodes

Figure 6: Total number of exchanged messages for running the
AnoLE protocol until delivering a connected MST to nodes of
a Erd8s-Rényi random network with different sizes

hashes A(1), ..h(n) with links of some given weights. How-
ever, b cannot determine the true identities of a nor its neigh-
bors, which makes the knowledge of weights on the links
useless. In the case where a, or any of its neighbors, is a
neighbor to b, b can only determine the true identity of its
neighbors.

The last type of exchanged messages is the AnoLE-3
message, which includes the hash of the leader id A(L) and
the MST. Note that the MST is a collection of reduced LVs
and, thus, what applies to the LV knowledge deduction ap-
plies to the MST. Note also, that network nodes accept the
anonymized MST and deduce their ONSs by comparison
and not by decryption. That is, each node constructs a list
of hashes of its neighbors and compares these hashes with
hashes in the MST. Additionally, nodes compare the hash of
the leader they voted for, with the hash of the AnoLE-3 mes-
sage generator. If the two were compatible, the MST within
the AnoLE-3 message is accepted.

As can be noted from this description, by the end of the
protocol run, network nodes can only read the true identities
of their neighbors. Additionally, even the leader cannot read
any true identity in the MST it builds unless it was for itself
or for one of its neighbors. Network nodes further vote for
leaders, and accept leaders” MSTs without any knowledge of
true identities of leaders.

5.3. Time and message complexity for generating
the MST

Next, we evaluate the time and message complexity of
the DONS protocol, from the moment when the AnoLE pro-
tocol is triggered, until all network nodes are aware of the
network’s MST (i.e. until the end of Phase-2). Table 1 pre-
sents the time complexity of each algorithm utilized in Phase-
1 and Phase-2. Table 2 presents the message complexity of
each step of the two phases. We compare the final complexi-
ties of the first two phases of DONS with the complexities of
the method proposed in [18] (notated as DMST). This is be-
cause the first two phases of the DONS protocol, which con-
sists of the AnoLE algorithms, aim at providing each node in
the network with knowledge about the MST. This objective
is similar to the objective of the method proposed in [18].
Following this notation, both the AnoLE protocol and the
DMST protocol can be effectively deployed into the DONS
protocol. The distinction between the outperformance of the
AnoLE protocol compared with the DMST protocol in terms
of privacy as discussed in the previous subsection. Higher
AnoLE complexities, however, are the cost of a privacy pre-
serving protocol to obtain MST in a our semi-distributed
model.

We have implemented the AnoLE protocol using Python
3.8 with utilization of popular packages such as multipro-
cessing, threading, networkx, hashlib, among others. Our
implemented code is publicly available at GitHub'. To vali-
date our implementation, we performed several experiments
utilizing two random network models, namely Erd6s-Rényi
(ER) model and Barabasi-Albert (BA) model. We oscillated
the number of nodes to capture the protocol behaviour within
different network sizes. The configuration we used for run-
ning our experiments, along with the simulation results, are
presented in Table 3 and depicted in Figures 3, 4, 5 and 6.

5.4. Comparison with current methods

In this subsection, we experimentally evaluate the per-
formance of DONS-based BC networks, in terms of block
finality time [5] and Fidelity [68]. We compare our results
to two NS approaches, discussed previously in Section 2.1,
namely randomized NS (RNS) and RTT-based NS (RTT-
NS). We utilize two random network models to perform our
experiments, namely Erd&s-Rényi (ER) model [14] and Bara-
basi-Albert (BA) model [15]. For both models, we oscil-
late the configuration of network size and average number
of neighbors per miner, to demonstrate the consistency of
our previous analysis with real-life scenarios.

Specifically, we developed a (Python v:3.8) network sim-
ulator, where a random BC network is built and a randomly
selected miner represents the source node of a block of data.
The generated block is then shared by the source node with
a group of neighbors, each of the neighbors shares the block
similarly with a group of its neighbors, etc. The simula-
tion terminates once the block reaches all nodes of the net-
work, mimicking the push-based gossiping approach gener-
ally adopted by all BC applications. The compared three NS

Thttps://github.com/HamzaBaniata/AnoLE_Protocol

Baniata et al.: Preprint submitted to Elsevier

Page 13 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

> Compute MST
Randomly select
source node

Build random BC > Each miner computes:
network its ONS from MST

Receiver sends msg
to neighbor with least
RTT and who | did not|
send msg to before

Receiver sends msg
to randomly selected
neighbor

>

Receiver sends msg
to its ONS

All nodes
received the
message?,

Already
sent to all

received the
message?,

received the
message?,

Figure 7: Simulation workflow for push-based gossiping in BCs
utilizing DONS, RNS and RTT-NS protocols

methods are utilized consequently using the same network
for the same block being generated by the same source node.
At the termination of each simulated scenario, total finality
time and number of redundant messages are calculated. As
miners in public-permissionless BC networks are randomly
connected, analyzing the results obtained from running our
developed simulator indicates the best NS approach in terms
of fidelity and finality. Consequently, we could experimen-
tally prove that the adoption of such NS approach leads to
enhanced DL consistency. Our implementation workflow is
demonstrated in Figure 7.

Finality is the assurance or guarantee that data cannot be
altered, reversed, or canceled after they are completed [69].
To achieve optimal finality in a given BC, shared data needs
to be spread as soon as possible through the BC network, so
that miners can adopt this data before a new piece of data
is generated. The latency level of a BC shall, then, ulti-
mately affect its finality rate. Fidelity, on the other hand,
is the degree to which a technique can provide consistency
guarantees [68]. To evaluate DONS in terms of fidelity, we
count the number of cycles a generated data walks, in a BC
network, when utilizing DONS, RNS and RTT-NS. That is,
more cycles indicate the overhead on network connection
links, overhead in computation at the node level and, ac-
cordingly, higher overall finality time. To count the number
of cycles a shared data walks, nodes are instructed to count
the number of replicated messages they receive. Simulta-
neously with running the simulation scenarios, a finality-
checker process is implemented that regularly checks whether
all nodes have yet received the shared data. Once returned
a True value, all nodes are shut down and the main Analysis
function is triggered.

We made our simulator code publicly available at a GitHub

repository’. We run several simulation scenarios, as de-
scribed in Table 4. The results of our experiments are pre-
sented in Table 4 and Figures 8, 9, 10 and 11.

Zhttps://github.com/HamzaBaniata/DONS_simulator

4
5 10
boNs
RTT-NS
[TIRNS

N w »

Finality Time (us.)

-

100 T as0 T 200
Network Size

. —H
50

Figure 8: Total Finality time of a randomly generated block
by a randomly selected miner, in a Erdés-Rényi (ER) network
model (with connection probability = 0.1)

N
o
o
I=]

ElbONS
IRTT-NS
[TIRNS [

-
o
o
=]

1000

500
50

100 150 200
Network Size

Number of Exchanged Messages

Figure 9: Total number of exchanged messages until a ran-
domly generated block, by a randomly selected miner, is de-
livered to all network nodes, in a Erdés-Rényi (ER) network
model (with connection probability = 0.1)

7 104
ElDbONS

EERTT-NS

[IRNS

w A~ o o

Finality Time (us.)
N

100 150 200
Network Size

1
o —mlll
50

Figure 10: Total Finality time of a randomly generated block
by a randomly selected miner, in a Barabasi-Albert (BA) net-
work model (with avg. no. of neighbors per miner =5, 5, 7,
10, respectively)

6. Discussion

In the previous sections, we presented our proposed al-
gorithms and techniques in detail for both DONS and AnoLE
protocols, and shared their open-source implementations. We
further discussed how our proposed protocols address differ-
ent misbehaviour situations of system entities in Section 5.1,
in order to validate the security of our proposal. In Section
5.3 we compared the AnoLE protocol with a recently pro-
posed method for solving the distributed MSTP, in terms of
time and message complexities. Furthermore, we compared
the performance of different network models in terms of Fi-

Baniata et al.: Preprint submitted to Elsevier

Page 14 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

Table 4
Performance of the DONS protocol against RTT-NS and RNS protocols, on two random
network models with different sizes

| model [number of nodes [Network parameter | Finality time (us) | Number of exchanged messages |

50 100 150 200
Network Size

Figure 11: Total number of exchanged messages until a ran-
domly generated block, by a randomly selected miner, is deliv-
ered to all network nodes, in a Barabasi-Albert (BA) network
model (with avg. no. of neighbors per miner = 5, 5, 7, 10,
respectively)

nality and Fidelity in Section 5.4, by validating our proposed
protocols against earlier methods. Based on the results we
can state that our proposed protocols significantly enhance
the levels of Finality and Fidelity in the studied networks,
due to the provision of globally optimal NS techniques.

Although the time and message complexities for the first
two phases of the DONS protocol are higher than those of
the recently proposed DMST method, we argue that this shall
not be problematic in real-life scenarios. That is, the first two
phases of the DONS protocol (represented by the AnoLE
protocol) are only triggered, when a node joins or leaves
the network. With average miner active time extending to
weeks, and even months for many cases, average complex-
ities of the DONS protocol, through long periods of time,
shall be decreased. That is, the significant enhancement in
terms of Finality and Fidelity once the network nodes uti-
lize the MST, shall positively compensate for the rarely per-
formed high complexities of the AnoLE protocol. Note that
in public-permissionless BCs, a new block is generated ev-
ery few seconds (e.g. Ethereum) or minutes (e.g. Bitcoin),
while a node is probably staying online for weeks or months
[70]. Furthermore, many miners cooperate in mining pools
and warehouses that never leave the network [71].

The adoption of the proposed protocols, then, shall con-

avg.no.neighbors/node | DONS RTT-NS RNS DONS RTT-NS RNS
50 5 204 2,343 8,463 50 74 253
BA 100 5 367 5,139 24,667 100 142 751
150 7 310 5,008 40,870 150 182 1,514
200 10 176 6,927 61,429 200 251 2,241
\ connection probability \ \ ‘
50 0.1 629 4,176 14,510 50 79 371
ER 100 0.1 450 3,558 14,533 100 123 496
150 0.1 257 5,795 26,932 150 199 851
200 0.1 260 4,363 45,656 200 236 1,676
g 2500 moors sider the average active time of nodes in the network. That
gmo RN is, relatively rare node failure (e.g. an average active time
= of nodes equals to a month) implies that the AnoLE proto-
51500 col is rarely triggered. Accordingly, triggering this protocol
gmoo may indeed cost much exchanged messages, yet the MST
= proposed afterwards would definitely enhance data propa-
§ 500 gation through the network for a long period of time, until
§ . e —— mE mB a new trigger appears. As a result, adopting our proposed

protocols enhances the overall propagation time although it
occasionally costs much to find the MST of the new network
topology.

Taking as an example, a BA network with size 200 nodes,
where the average active time of nodes equals to one week
(i.e. 168 hours), and a new block is generated every minute
(i.e. 1440 block per 24 hours), we can clarify our last argu-
ment. It can be seen in Table 3 that triggering the AnoLE
protocol in such network would cost nearly 3.2 x 10° ex-
changed messages. Once the MST is available to network
nodes, they will be able to share their data with a total num-
ber of exchanged messages equals to 200 per block of data
(Table 4). As aresult, the network would exchange a total of
200 % 1440x 7 ~ 2 x 10° messages per week. Adding this to
the 3.2 x 10 exchanged messages to obtain the MST gives a
total of almost 5.2 X 10% messages per week. If this network
uses the RNS method to share data, the total number of ex-
changed messages per week would be 1440 X 2,241 X 7 =
22.6 x 10° messages per week. Apparently, even with the
high rates of exchanged messages by the AnoLE protocol,
utilizing it would still be more efficient compared to the cur-
rently used methods. The following additional arguments
can further be highlighted:

e The AnoLE protocol is one component within the DONS
protocol and can be optimized as well as replaced with
a better protocol whenever available, leading to even
better results.

e As indicated previously, the DMST method can be
adopted in BC networks where sharing real identities
of nodes is not considered an issue. Such deployment
would produce an enhanced DONS protocol in terms
of time and message complexities, in addition to being

Baniata et al.: Preprint submitted to Elsevier

Page 15 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

optimized in terms of finality and fidelity.

e The experimental results presented in Section 5.3 rep-
resent the complexities of the AnoLE protocol utilized
for the first time. This means that nodes broadcast the
messages they receive from their neighbors. How-
ever, with multiple leader election rounds run con-
sequently, resulting in larger number of nodes find-
ing their ONSs, total round-time and number of ex-
changed messages will be significantly decreased as
discussed in Section 5.4. Simply put, the results pre-
sented in Section 5.3 are the upper bound complexities
of the AnoLE protocol.

The potential behind our proposed protocols is apparent
for possible extension of current Proof-of-Work (PoW) al-
gorithms into Proof-of-Useful-Work (PoUW) [72]. That is,
redefining the puzzle to require finding the MST of the net-
work, instead of solving a mathematical puzzle with no ben-
eficial utility. Such redefinition would maintain the puzzle
to be random, fair, verifiable, with an unpredictable solution.
Meanwhile, it would definitely enhance the overall through-
put and energy consumption of the system. However, more
investigations must be carried out for such utilization.

The initial configuration of Round-Time T is highly crit-
ical. Very high T value may result in longer times to obtain
the needed votes, leading to higher overall time. On the other
hand, very low T value may result in limited arrival of LV s
leading to exclusive MST, or worse non-connected NT. In
such cases, our implementation directs the leader to just not
construct the MST. Accordingly, NPs keep using their orig-
inal NS method (i.e. either a previous ONS or randomized
NS). A method to modify the default round time, at the node
level, upon the receipt of an MST might be practical. For
example, NPs who voted for a leader and have not received
the expected MST after T passed, may assume that their cur-
rent T" was not sufficient to perform all steps of the protocol.
Accordingly, they double their T value and use the updated
value in the next time the AnoLE protocol is triggered. Sim-
ilarly, NPs that received the expected MST before T passes,
may compute the average of: T and time elapsed from the
trigger appeared until the MST was received. This way, T
is constantly updated according to the size of the network,
without NPs being actually aware of the network size. The
most recent value of T is used afterwards when the NP is
triggered to be a PL (i.e. by a joining or leaving event of
one of its neighbors).

The DRC value is only effective while the node has no
previous ONS. Once the node obtained its ONS, it can de-
duce the exact RC value from its previously received MST.
We also noted, during the experiments we performed, that
higher average number of neighbors initial configuration re-
sults in increased latency of AnoLE messages. This is in fact
a trivial observation, as broadcasting in random networks
leads to more cycles a shared data walks through the net-
work until it is delivered to all nodes. After several rounds of
AnoLE and DONS, the number of walked cycles is reduced
until it reaches O cycles, leading to 0 redundant exchanged

messages and 0% fidelity.

We have not provided the detailed algorithm to find the
MST as many such algorithms had been proposed in the lit-
erature. The algorithm we deployed, i.e. Prim’s, has a com-
plexity of O(V2). This is consistent with the AnoLE protocol
complexities as presented in Table 1. Using a more efficient
algorithm to find MST, then, does not enhance the overall
time efficiency of the AnoLE protocol. However, it shall de-
crease the energy consumption on the leader side and, con-
sequently, produce the MST faster which affects 7.

Although not mentioned in Algorithm 1 for short, we
partially adopted a message passing approach inspired by the
one proposed by He et al. [33]. A message is not passed
to system entities if it has been historically passed to them
according to a local log. We use this approach within DONS
if the set of selected neighbors was built according to the
ONS of the sender. We found this approach not practical
when the set of selected neighbors is built according to RNS
or RTT-NS methods. For identity privacy reasons, miners in
DONS only save messages passed to/from their neighbors,
rather than from any other miner in the network as suggested
in [33].

7. Conclusion and Future Work

In this paper, we addressed the Neighbor Selection Prob-
lem (NSP) for public-permissionless BCs by proposing a

Dynamic Optimized Neighbor Selection protocol called DONS.

As a first step of the DONS protocol, a leader needs to be
elected in order to perform additional computations. To this
end, we proposed an Anonymized Leader Election protocol
called AnoLE, that aims at electing a leader in a distributed
fashion, without any previous knowledge of the network size
or nodes private identities. By the end of the AnoLE proto-
col, a leader is announced to perform the following compu-
tations. Meanwhile, neither the elected leader nor the nodes
know the identities of each other (except for their original
knowledge about their neighbors). The elected leader con-
structs an anonymized network topology, from which it com-
putes the Minimum Spanning Tree (MST) of the network.
An Optimized Neighbor Selection (ONS) is then derived
from the MST by the leader and the rest of network nodes,
in a private manner. Each node utilizes its derived ONS to
communicate with the least number of neighbors, but with
optimized communications paths. We analyzed the secu-
rity and privacy of our proposed protocols, and we provided
the time and message complexities of their algorithms. Ad-
ditionally, we provided publicly available implementations
of both protocols, which we used to experimentally validate
our approach. Our experiments showed significant enhance-
ment of message propagation for different network models
and sizes, in terms of finality and fidelity, compared to sim-
ilar networks utilizing state-of-the-art methods.

In the future, we plan to investigate the multi-leader sce-
nario and its implications on the security and the efficiency
of the DONS protocol. As our current proposal of the AnoLE

Baniata et al.: Preprint submitted to Elsevier

Page 16 of 19

DONS: Dynamic Optimized Neighbor Selection for Blockchains

protocol does not utilize a compatible privacy-aware leader
incentivization mechanism, we plan to investigate and de-
ploy a suitable mechanism, and evaluate the trade-offs that
need to be tuned. We will focus on some interesting previous
works solving similar challenges, e.g. [73, 74, 75, 76, 77].
We also plan to investigate and implement a suitable repu-
tation mechanism compliant with the conditions discussed
in Section 5.1. The deployed mechanism shall, of course,
adhere to the security measures expected from DONS and
AnoLE protocols, e.g. as described in [78]. Finally, we
will research the possibility of upgrading the purpose of the
DONS and AnoLE protocols into a comprehensive consen-
sus protocol for public-permissionless BCs, turning a PoW-
based BC into a PoUW-based BC.

References

(1]

[2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

(14]
[15]

[16]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, Manubot, 2019.

M Sadek Ferdous, M Jabed Morshed Chowdhury, Mohammad A
Hoque, and Alan Colman. Blockchain consensus algorithms: A sur-
vey. 2020.

Gabriel R Carrara, Leonardo M Burle, Dianne SV Medeiros, Célio
Vinicius N de Albuquerque, and Diogo MF Mattos. Consistency,
availability, and partition tolerance in blockchain: a survey on the con-
sensus mechanism over peer-to-peer networking. Annals of Telecom-
munications, pages 1-12, 2020.

Furqan Jameel, Muhammad Nabeel, Muhammad Ali Jamshed, and
Riku Jéntti. Minimizing forking in blockchain-based iot networks. In
2020 IEEE International Conference on Communications Workshops
(ICC Workshops), pages 1-6. IEEE, 2020.

Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. Consensus
in the age of blockchains. arXiv preprint arXiv:1711.03936, 2017.
George Suciu, Carmen Nédrag, Cristiana Istrate, Alexandru Vulpe,
Maria-Cristina Ditu, and Oana Subea. Comparative analysis of dis-
tributed ledger technologies. In 2018 Global Wireless Summit (GWS),
pages 370-373. IEEE, 2018.

Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. A theo-
retical model for fork analysis in the bitcoin network. In 2019 IEEE In-
ternational Conference on Blockchain (Blockchain), pages 237-244.
IEEE, 2019.

Minghong Fang and Jia Liu. Toward low-cost and stable blockchain
networks. In ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020.

Robbert Van Renesse, Kenneth P Birman, and Werner Vogels. Astro-
labe: A robust and scalable technology for distributed system moni-
toring, management, and data mining. ACM transactions on computer
systems (TOCS), 21(2):164-206, 2003.

Jon Foss Mikalsen. Firechain: An efficient blockchain protocol using
secure gossip. Master’s thesis, UiT Norges arktiske universitet, 2018.
Calvin Newport and Alex Weaver. Random gossip processes in smart-
phone peer-to-peer networks. In 2019 15th International Conference
on Distributed Computing in Sensor Systems (DCOSS), pages 139—
146. IEEE, 2019.

Wei Bi, Huawei Yang, and Maolin Zheng. An accelerated method
for message propagation in blockchain networks. arXiv preprint
arXiv:1809.00455, 2018.

Petricd C Pop. The generalized minimum spanning tree problem: An
overview of formulations, solution procedures and latest advances.
European Journal of Operational Research, 283(1):1-15, 2020.
Rényi A. Erd6s, P. On random graphs,. Publicationes Mathematicae,
6:290-297, 1959.

Barabasi A.L Albert, R. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47-97, 2002.

Bharat Bhushan, Preeti Sinha, K Martin Sagayam, and J Andrew. Un-

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

tangling blockchain technology: A survey on state of the art, security
threats, privacy services, applications and future research directions.
Computers & Electrical Engineering, 90:106897, 2021.

AKM Bahalul Haque and Bharat Bhushan. Blockchain in a nut-
shell: State-of-the-art applications and future research directions. In
Blockchain and Al Technology in the Industrial Internet of Things,
pages 124-143. IGI Global, 2021.

Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A
time-and message-optimal distributed algorithm for minimum span-
ning trees. ACM Transactions on Algorithms, 16(1), 2019.

Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

Jia Kan, Lingyi Zou, Bella Liu, and Xin Huang. Boost blockchain
broadcast propagation with tree routing. In International Conference
on Smart Blockchain, pages 77-85. Springer, 2018.

Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):
18-25, 2001.

Huakun Liu, Xin Wei, Ruliang Xiao, Lifei Chen, Xin Du, and Shi
Zhang. Oprcp: approximate nearest neighbor binary search algorithm
for hybrid data over wmsn blockchain. EURASIP Journal on Wireless
Communications and Networking, 2018(1):1-14, 2018.

Maleq Khan, Gopal Pandurangan, and VS Anil Kumar. Distributed
algorithms for constructing approximate minimum spanning trees in
wireless sensor networks. IEEE Transactions on Parallel and Dis-
tributed Systems, 20(1):124-139, 2008.

Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei
Hong. Tag: A tiny aggregation service for ad-hoc sensor networks.
ACM SIGOPS Operating Systems Review, 36(SI):131-146, 2002.
Kaushik Ayinala, Baek-Young Choi, and Sejun Song. Pichu: Ac-
celerating block broadcasting in blockchain networks with pipelining
and chunking. In 2020 IEEE International Conference on Blockchain
(Blockchain), pages 221-228. IEEE, 2020.

Robbert van Renesse. A blockchain based on gossip?-a position paper.
Cornell University, 2016.

Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger fab-
ric: a distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference, pages 1-15, 2018.
Ke Wang and Hyong S Kim. Fastchain: Scaling blockchain system
with informed neighbor selection. In 2019 IEEE International Con-
ference on Blockchain (Blockchain), pages 376-383. IEEE, 2019.
Yusuke Aoki and Kazuyuki Shudo. Proximity neighbor selection
in blockchain networks. In 2019 IEEE International Conference on
Blockchain (Blockchain), pages 52-58. IEEE, 2019.

Ming Jin, Xiaojiao Chen, and Sian-Jheng Lin. Reducing the band-
width of block propagation in bitcoin network with erasure coding.
IEEE Access, 7:175606-175613, 2019.

Bin Yu, Xiaofeng Li, He Zhao, and Tong Zhou. A scalable blockchain
network model with transmission paths and neighbor node subareas.
Computing, pages 1-25, 2021.

Jiao Li. Data transmission scheme considering node failure for
blockchain. Wireless Personal Communications, 103(1):179-194,
2018.

Xiaowei He, Yiju Cui, and Yunchao Jiang. An improved gossip algo-
rithm based on semi-distributed blockchain network. In 2019 Inter-
national Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pages 24-27. IEEE, 2019.

Robert Clay Prim. Shortest connection networks and some general-
izations. The Bell System Technical Journal, 36(6):1389-1401, 1957.
Joseph B Kruskal. On the shortest spanning subtree of a graph and
the traveling salesman problem. Proceedings of the American Math-
ematical society, 7(1):48-50, 1956.

Gopal Pandurangan, Peter Robinson, Michele Scquizzato, et al. The
distributed minimum spanning tree problem. Bulletin of EATCS, 2
(125), 2018.

Otakar Borvka. O jistém problému minimédlnim. 1926.

Farhad Soleimanian Gharehchopogh and Hassan Arjang. A survey
and taxonomy of leader election algorithms in distributed systems.

Baniata et al.: Preprint submitted to Elsevier

Page 17 of 19

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

(51]

[52]
[53]
[54]

[55]

[56]

(571

(58]

[59]

DONS: Dynamic Optimized Neighbor

Indian Journal of Science and Technology, 7(6):815, 2014.

Ittai Abraham, Danny Dolev, and Joseph Y Halpern. Distributed pro-
tocols for leader election: A game-theoretic perspective. In Interna-
tional Symposium on Distributed Computing, pages 61-75. Springer,
2013.

Mohammed Al Refai. A new leader election algorithm in hypercube
networks. In Symposium Proceedings, volume 2, 2006.

Mohammed Al Refai. Leader election algorithm in hypercube netwok
when the id number is not distinguished. Information & Communica-
tion Systems, pages 229-237, 2011.

Amit Biswas, Ashish Kumar Maurya, Anil Kumar Tripathi, and Samir
Aknine. Frlle: a failure rate and load-based leader election algorithm
for a bidirectional ring in distributed systems. The Journal of Super-
computing, 77(1):751-779, 2021.

Koji Nakano and Stephan Olariu. A randomized leader election pro-
tocol for ad-hoc networks. In SIROCCO, pages 253-267, 2000.
Navneet Malpani, Jennifer L Welch, and Nitin Vaidya. Leader elec-
tion algorithms for mobile ad hoc networks. In Proceedings of the
4th international workshop on Discrete algorithms and methods for
mobile computing and communications, pages 96—103, 2000.

Gang Zhang, Jing Chen, Yu Zhang, and Chungui Liu. Research of
asynchronous leader election algorithm on hierarchy ad hoc network.
In 2009 5th International Conference on Wireless Communications,
Networking and Mobile Computing, pages 1-4. IEEE, 2009.

Alaa N Alslaity and Sanaa A Alwidian. A k-neighbor-based, energy
aware leader election algorithm (kelea) for mobile ad hoc networks.
International Journal of Computer Applications, 975:8887, 2012.
Vaskar Raychoudhury, Jiannong Cao, and Weigang Wu. Top k-leader
election in wireless ad hoc networks. In 2008 Proceedings of 17th In-
ternational Conference on Computer Communications and Networks,
pages 1-6. IEEE, 2008.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 14), pages 305-319, 2014.

David Yakira, Avi Asayag, Gad Cohen, Ido Grayevsky, Maya
Leshkowitz, Ori Rottenstreich, and Ronen Tamari. Helix: A fair
blockchain consensus protocol resistant to ordering manipulation.
IEEE Transactions on Network and Service Management, 2021.
Teik Guan Tan, Vishal Sharma, and Jianying Zhou. Right-of-stake:
Deterministic and fair blockchain leader election with hidden leader.
In 2020 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pages 1-9. IEEE, 2020.

Dariusz Dereniowski and Andrzej Pelc. Leader election for anony-
mous asynchronous agents in arbitrary networks. Distributed Com-
puting, 27(1):21-38, 2014.

Daniel A Marcus. Graph theory, volume 53. American Mathematical
Soc., 2020.

CISSP Thomas Porter, CCDA CCNP, Michael Gough, et al. How to
cheat at VoIP security. Syngress, 2011.

Leighton Johnson. Security controls evaluation, testing, and assess-
ment handbook. Academic Press, 2019.

Anichur Rahman, Md Jahidul Islam, Antonio Montieri, Mostofa Ka-
mal Nasir, Md Mahfuz Reza, Shahab S Band, Antonio Pescape, Ma-
hedi Hasan, Mehdi Sookhak, and Amir Mosavi. Smartblock-sdn: An
optimized blockchain-sdn framework for resource management in iot.
IEEE Access, 9:28361-28376, 2021.

Yong Yuan and Fei-Yue Wang. Blockchain and cryptocurrencies:
Model, techniques, and applications. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 48(9):1421-1428, 2018.

Bernard ME Moret and Henry D Shapiro. An empirical analysis of
algorithms for constructing a minimum spanning tree. In Workshop
on Algorithms and Data Structures, pages 400—-411. Springer, 1991.
Michael L Fredman, Robert Sedgewick, Daniel D Sleator, and
Robert E Tarjan. The pairing heap: A new form of self-adjusting
heap. Algorithmica, 1(1-4):111-129, 1986.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduc-
tion to reliable and secure distributed programming. Springer Science
& Business Media, 2011.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Selection for Blockchains

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Acm Sigact
News, 33(2):51-59, 2002.

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. In 24th { USENIX}
Security Symposium ({USENIX} Security 15), pages 129-144, 2015.
Michael Mirkin, Yan Ji, Jonathan Pang, Ariah Klages-Mundt, Ittay
Eyal, and Ari Juels. Bdos: Blockchain denial-of-service. In Proceed-
ings of the 2020 ACM SIGSAC conference on Computer and Commu-
nications Security, pages 601-619, 2020.

A Begum, AH Tareq, M Sultana, MK Sohel, T Rahman, and AH Sar-
war. Blockchain attacks, analysis and a model to solve double spend-
ing attack. International Journal of Machine Learning and Comput-
ing, 10(2):352-357, 2020.

Karl Wiist and Arthur Gervais. Ethereum eclipse attacks. Technical
report, ETH Zurich, 2016.

Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review
of financial studies, 34(3):1156-1190, 2021.

Yubin Xia, Zhichao Hua, Yang Yu, Jinyu Gu, Haibo Chen, Binyu
Zang, and Haibing Guan. Colony: A privileged trusted execution
environment with extensibility. [EEE Transactions on Computers,
2021.

Dev Arora, Siddharth Gautham, Harshit Gupta, and Bharat Bhushan.
Blockchain-based security solutions to preserve data privacy and in-
tegrity. In 2019 International Conference on Computing, Commu-
nication, and Intelligent Systems (ICCCIS), pages 468—472. 1EEE,
2019.

Jiang Lan, Xiaotao Liu, Prashant Shenoy, and Krithi Ramamritham.
Consistency maintenance in peer-to-peer file sharing networks. In
Proceedings the Third IEEE Workshop on Internet Applications.
WIAPP 2003, pages 90-94. IEEE, 2003.

Emmanuelle Anceaume, Antonella Pozzo, Thibault Rieutord, and
Sara Tucci-Piergiovanni. On finality in blockchains. arXiv preprint
arXiv:2012.10172, 2020.

Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein.
Timing analysis for inferring the topology of the bitcoin peer-
to-peer network. In 2016 Intl IEEE Conferences on Ubiquitous
Intelligence & Computing, Advanced and Trusted Comput-
ing, Scalable Computing and Communications, Cloud and Big
Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/loP/SmartWorld), pages 358-367.

IEEE, 2016.
Behavioral mining: Blockchain’s new rocket fuel (part 1),
Sep 2018. URL https://medium.com/the-notice-board/

behavioral-mining-blockchains-new-rocket-fuel-part-1-ca65a7d82d22.

Hjalmar K Turesson, Henry Kim, Marek Laskowski, and Alexandra
Roatis. Privacy preserving data mining as proof of useful work: Ex-
ploring an ai/blockchain design. Journal of Database Management
(JDM), 32(1):69-85, 2021.

Huiying Xu, Xiaoyu Qiu, Weikun Zhang, Kang Liu, Shuo Liu, and
Wuhui Chen. Privacy-preserving incentive mechanism for multi-
leader multi-follower iot-edge computing market: A reinforcement
learning approach. Journal of Systems Architecture, 114:101932,
2021.

Xin Wang, Jianping He, Peng Cheng, and Jiming Chen. Privacy pre-
serving collaborative computing: Heterogeneous privacy guarantee
and efficient incentive mechanism. /EEE Transactions on Signal Pro-
cessing, 67(1):221-233, 2018.

G Suriya Praba Devi and JC Miraclin Joyce Pamila. Accident alert
system application using a privacy-preserving blockchain-based in-
centive mechanism. In 2019 5th International Conference on Ad-
vanced Computing & Communication Systems (ICACCS), pages 390—
394. 1IEEE, 2019.

Jiejun Hu, Kun Yang, Kezhi Wang, and Kai Zhang. A blockchain-
based reward mechanism for mobile crowdsensing. [EEE Transac-
tions on Computational Social Systems, 7(1):178-191, 2020.
Osamah Ibrahim Khalaf and Ghaida Muttashar Abdulsahib. Opti-
mized dynamic storage of data (odsd) in iot based on blockchain for

Baniata et al.: Preprint submitted to Elsevier

Page 18 of 19

https://medium.com/the-notice-board/behavioral-mining-blockchains-new-rocket-fuel-part-1-ca65a7d82d22
https://medium.com/the-notice-board/behavioral-mining-blockchains-new-rocket-fuel-part-1-ca65a7d82d22

DONS: Dynamic Optimized Neighbor Selection for Blockchains

wireless sensor networks. Peer-to-Peer Networking and Applications,
pages 1-16, 2021.

[78] Shivam Saxena, Bharat Bhushan, and Mohd Abdul Ahad. Blockchain
based solutions to secure iot: background, integration trends and a
way forward. Journal of Network and Computer Applications, page
103050, 2021.

Baniata et al.: Preprint submitted to Elsevier Page 19 of 19

