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Abstract
The integrity of the innermost, pigment epithelial layer of the retina is crucial for the photoreceptor survival and for maintain-
ing the outer blood–retina barrier. In several ocular degenerations, such as diabetic retinopathy or macular edema, the stress 
caused by various harmful stimuli (hypoxia, oxidative stress, hyperosmosis) lead to severe molecular biological changes in 
this layer, promoting neovascularization of the retina. Pituitary adenylate cyclase activating polypeptide (PACAP) occurs 
throughout the whole body, including the eye. It has numerous functions in the retina, including the previously described 
anti-apoptotic and anti-angiogenic effects in retinal pigment epithelial cells. The aim of this present study was to investigate 
the influence of PACAP on different stress factors. In accordance with previous findings, PACAP significantly ameliorated 
the increased Hif1-α levels in hypoxic conditions. In H2O2-induced oxidative stress PACAP had an anti-apoptotic effect, it 
could decrease the expression of cytochrome-c and p53, while it upregulated the concentration of three antioxidants, namely 
SOD2, PON2 and thioredoxin. In conclusion, we provided new information on the molecular biological background of the 
retinoprotective effect of PACAP.
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Introduction

The retinal pigment epithelial (RPE) cells form the outer-
most single layer of the retina between the Bruch’s mem-
brane and the photoreceptor cells. The cells are intercon-
nected by tight junctions, thus they play a crucial role in 
forming the outer blood–retina barrier. With long micro-
villi on their apical surface interdigitating with the outer 
segments of rods and cones, RPE cells are also essential in 
maintaining the visual cycle (Bazan 2008). Moreover, these 
cells secrete different factors, such as vascular endothelial 
growth factor (VEGF), which, among others, regulates 
the neovascularization of the retina (Amoaku et al. 2020). 

Therefore, impairment of RPE cells stays in the background 
of many ocular degenerations, such as age-related macular 
degeneration (Kook et al. 2008), retinal detachment or dia-
betic retinopathy (DR). The latter is the most common cause 
of vision loss among working-age adults worldwide (Arfken 
et al. 1998; Leasher et al. 2016). The most important process 
in the pathogenesis of DR is the neovascularization occur-
ring after hyperglycemic conditions. In addition to hyper-
glycemia, hypoxia, oxidative and hyperosmotic stresses also 
play a critical role in the development of DR and diabetic 
macular edema (DME; Abdullah 2018). Among the earliest 
signs of DR is the loss of pericytes and endothelial cells, 
which results in ischemia/hypoxia, leading to VEGF upregu-
lation via activation of hypoxia inducible factors (Hif) (Ejaz 
et al. 2008; Huang et al. 2015). Elevated VEGF concentra-
tion leads not only to neovascularization, but also increases 
vasopermeability resulting in osmotic changes (Rodríguez 
et al. 2019). Retinal degeneration occurs already in the early 
stages of DR. Apoptosis of retinal cells causes mitochon-
drial dysfunction and increases the level of reactive oxygen 
species, resulting in oxidative stress (Joussen et al. 2007; 
Sasaki et al. 2010). These findings justify the search for 
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novel therapeutics focusing not only to VEGF inhibition, but 
prevention of hypoxia, oxidative and hyperosmotic stress.

Pituitary adenylate cyclase activating polypeptid 
(PACAP) is a neuropeptide with various functions through-
out the whole body and it seems to be an important neu-
rotrophic agent with a general cytoprotective effect (Gaal 
et al. 2008; Toth et al. 2020; Maugeri et al. 2020a; Szegeczki 
et al. 2019; Girard et al. 2020; Martínez-Rojas et al. 2020). 
PACAP is widely distributed not only in the central nerv-
ous system, but in the periphery as well, exerting several 
beneficial actions. Following nerve injury PACAP is able to 
enhance the remyelinization of the nerve fibers by activating 
Schwann cells and promoting cytokine release (Armstrong 
et al. 2008; Maugeri et al. 2020b). PACAP was found to be 
protective in numerous cancerous diseases, such as breast, 
prostate and colon tumors and in both glio- and neuroblasto-
mas as well (D’Amico et al. 2013; Maugeri et al. 2016, 2018; 
Moody et al. 2016). PACAP exerts diverse effects in vari-
ous parts of the eye (Wang et al. 1995; Atlasz et al. 2016). 
In the cornea PACAP could induce epidermal growth fac-
tor receptor activation and it was proved to be protective 
against ultraviolet-B radiation (Maugeri et al. 2019a, b, 
c, 2020a). The retinoprotective function was mostly stud-
ied on the inner layers of the retina (Kovacs et al. 2020; 
Atlasz et al. 2016), only a few research groups focused on 
the outermost, pigment epithelial layer. The first results 
concerning the effects of PACAP came from Zhang and co-
workers. Presence of mRNA for PAC1 and VPAC1 recep-
tors was confirmed in unstimulated ARPE-19 cells (Zhang 
et  al. 2013). We already showed the anti-apoptotic and 
anti-angiogenic effects of PACAP in human adult retinal 
pigment epithelial cell line-19 (ARPE-19) under the above 
mentioned circumstances (Mester et al. 2011; Fabian et al. 
2012, 2019; Maugeri et al. 2019a, b, c). In H2O2-induced 
oxidative stress, PACAP was found to be anti-apoptotic in a 
dose dependent manner (Mester et al. 2011). Subsequently, 
we proved that PACAP protected the cells via regulating 
the Akt and MAPK pathways (Szabo et al. 2012). The anti-
apoptotic effect was further investigated, and we found that 
PACAP ameliorated the overexpression of Bad, Bax, Hif1-α 
and heat shock proteins (Fabian et al. 2012). According to 
Maugeri et al. (2017) PACAP could also decrease the Hif1-α 
and Hif1-α-induced VEGF expression in hyperglycemic/
hypoxic conditions, which was also proved in vivo in a rat 
model (D’Amico et al. 2015). In the present paper, we fur-
ther examined the molecular mechanisms, through which 
PACAP exerts its cytoprotective functions under hypoxia, 
oxidative and hyperosmotic stress. Therefore, we studied the 
effect of PACAP on diverse stress factors in vitro and on the 
RPE cell numbers in vivo.

Materials and Methods

Animals and Histological Analysis of the Retina

We performed bilateral common carotid artery occlusion 
(BCCAO) on male Wistar rats (n = 32) weighing 250–300 g. 
Under isoflurane anesthesia, the arteries were exposed and 
ligated with a 3−0 filament. Immediately after the opera-
tion, PACAP (100 pmol/5 µl saline) was injected intravitre-
ally into the right eye with a Hamilton syringe. The left eye 
received the same volume of vehicle. A group of animals 
underwent anesthesia and all steps of the surgical procedure, 
except ligation of the carotid arteries. These animals served 
as sham-operated saline- or PACAP-treated animals. Experi-
mental procedures were performed following institutional 
ethical guidelines (BA02/2000-24/2011, University of Pécs). 
Eyes were removed after sacrificing the animals with an 
overdose of anesthetics 2 weeks later. Histological analysis 
was performed as described previously (Atlasz et al. 2007). 
Briefly, retinas were dissected in phosphate buffered saline 
(PBS), fixed in 4% paraformaldehyde dissolved in 0.1 M 
phosphate buffer, embedded in Durcupan ACM resin. Then 
2 µm thick sections were cut and stained with toluidine blue 
(Sigma, Budapest, Hungary). Four tissue blocks obtained 
from at least four rats were prepared and central retinal areas 
within 1 mm from the optic nerve were used (n = 5 meas-
urements from one tissue block). Number of cells/100 µm 
section length in the pigment epithelial layer was counted 
on digital photographs taken with a Nikon Eclipse camera, 
using the Spot program and were presented as mean ± SEM. 
Statistical analysis was performed using ANOVA followed 
by Bonferroni’s post hoc analysis.

Cell Culture

ARPE-19 cells, obtained from the American Type Culture 
Collection (ATCC, Manassas, VA), were grown in Dulbec-
co’s modified Eagle medium/F12 (DMEM/F12) with 10% 
fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml 
streptomycin in a humidified incubator at 37 °C in 5% CO2. 
Culture medium was changed every second day. We treated 
the cells in serum-free DMEM/F12 medium for 24 h. All 
cell culture reagents were from Sigma-Aldrich (St. Louis, 
MO). PACAP1-38 was synthesized as previously described 
(Jozsa et al. 2005).

Human Cell Stress Array

The cell stress array was performed from cell homogenates 
using Human Cell Stress Array Kit (R&D Systems; Bio-
medica Hungaria, Budapest, Hungary). The array is based 
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on the binding of sample proteins and carefully selected cap-
tured antibodies spotted on nitrocellulose membranes. The 
ARPE-19 cells were treated with 200 mM sucrose, 250 µM 
H2O2 and 200 µM CoCl2 with or without co-treatment with 
PACAP. Concentrations of these substances were based on 
earlier studies (Mester et al. 2011). The array kit contains 
all buffers, detection antibodies, and membranes necessary 
for the measurements. It was performed as described by 
the manufacturer, similarly to our previous studies (Fabian 
et al. 2019). Briefly, after blocking the array membranes for 
1 h, we added reconstituted detection antibody cocktail for 
another 1 h at room temperature. The membranes were then 
incubated with 1 ml of cellular extracts at 2–8 °C overnight 
on a rocking platform. After washing with buffer three times, 
we added horseradish-peroxidase conjugated streptavidin 
to each membrane. They were exposed to a chemilumines-
cent detection reagent, then developed on an X-ray film and 
scanned. Images were analyzed using the ImageJ software. 
For statistical analysis, we performed two-way ANOVA with 
Bonferroni’s post hoc test with GraphPad Prism 6.01. pro-
gram, p < 0.05 was considered significant.

Results

Histological Analysis

We counted the pigment epithelial cells in 100 µm of the 
retina of rats after BCCAO. We found 5.8 ± 0.374 cell bodies 
in 100 µm in average in control retinas. PACAP alone was 
injected into the right eye of the control animals, but it did 
not cause any changes in the number of pigment epithelial 
cells (5.4 ± 0.4 cell bodies in 100 µm). Though in the left 
eye of BCCAO operated animals (saline treated) the thick-
ness of the whole retina, the thickness of each individual 
layer, and the number of ganglion cells in 100 µm strongly 
decreased (Werling et al. 2014), the pigment epithelial cells 
did not suffer any changes in number (5.4 ± 0.245 cell bodies 
in average). The right eyes (PACAP treated) had 5.6 ± 0.51 
pigment cells in 100 µm (Fig. 1).

Cell Stress Array

By using cell stress array, we detected the changes in the 
expression of 26 different molecular biological markers 
(Fig. 2). Hif1-α levels were strongly elevated following 
sucrose, H2O2, and CoCl2 administration. In case of hypoxia 
a significant decrease could be observed with PACAP co-
administration, while only a slight decrease occurred in 
hyperosmotic conditions (Fig. 3c). The H2O2-induced oxi-
dative stress activated cytochrome-c and phosphorylated p53 
levels. PACAP significantly lowered the expression of both, 
thus proved to be anti-apoptotic in this model. Following 

H2O2 administration, the levels of three important anti-
oxidants, namely PON2, SOD2 and thioredoxin increased, 
PACAP further elevated the expression of the latter one 
(Fig. 3a). In hypoxia, the concentration of carbonic-anhy-
drase IX (CAIX) and SOD2 was significantly lower com-
pared to controls, while in hyperosmosis the level of HSP-60 
was decreased in addition to CAIX and SOD2. While CAIX 
concentration was attenuated by PACAP in both hypoxic 
and hyperosmotic conditions, the expression of SOD2 was 
decreased after PACAP treatment in hypoxia, but increased 
in hyperosmosis (Fig. 3b). In CoCl2-induced stress HSP-60 
was also significantly upregulated by PACAP.

Discussion

Several papers suggest that DR is not only a vascular dam-
age, but neurodegeneration also plays a pivotal role in its 
pathogenesis (Zhang et al. 2013; Simo and Hernandez 2015; 
Rossino et al. 2019). Various neuropeptides and their recep-
tors, including VIP and PACAP, were detected in the retina 
(Nakamachi et al. 2012) and proved to be neuroprotective 
against different harmful stimuli, thus they can be considered 
as potential therapeutic agents in DR (Atlasz et al. 2010a, b; 
Nakamachi et al. 2012; Lakk et al. 2015; Shioda et al. 2016; 
Ye et al. 2019). In vivo studies confirmed that intravitreal 
or topical administration of PACAP not only improves ERG 
responses, but attenuates inflammatory processes, protects 
neurons in the ganglion cell layer and diminishes the thin-
ning of the rat retina (Danyadi et al. 2014; Vaczy et al. 2016; 
Werling et al. 2017; Atlasz et al. 2018). In streptozotocin-
induced diabetes after intravitreal PACAP administration 
attenuated levels of IL-1β and VEGF were found (D’Amico 
et al. 2017). PACAP was also able to prevent the damage of 
the outer blood–retina barrier in diabetic rats (D’Amico et al. 
2019; Scuderi et al. 2013). In previous studies, we dem-
onstrated the anti-apoptotic and anti-angiogenic effects of 
PACAP (Mester et al. 2011; Szabo et al. 2012; Fabian et al. 
2012). We have recently suggested that PACAP administra-
tion might be a possible therapy against complications of 
DR by maintaining the cellular junctions between the retinal 
pigment epithelial cells and by inhibiting their VEGF secre-
tion (Fabian et al. 2019). In this present study, we confirmed 
further molecular mechanisms, through which PACAP could 
exert these functions. Hif1 is a major transcriptional regula-
tor, composed of α and β subunits (Semenza 2003; Ziello 
et al. 2007). Both are expressed at a constant rate in all cells, 
except for the cells of the peripheral blood, whereas the α 
subunit is promptly degraded by an oxygen-dependent mech-
anism. In hypoxic conditions, Hif1-α is stabilized, dimerizes 
with Hif1-β, and translocates to the nucleus, where, depend-
ing on the cell type, it induces the transcription of over 60 
different genes, including VEGF (Forsythe et  al. 1996; 
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Kurihara et al. 2014). Thus, downregulation of Hif1-α could 
be in the molecular background of the anti-VEGF function of 
PACAP. In a recent study, the protective function of PACAP 
was shown in a combined hyperglycemic/hypoxic environ-
ment in ARPE-19 cells (Maugeri et al. 2017). The RPE cells 
were kept in normal glucose medium (5.5 mM) for a week, 
then, half of the cells were switched in high glucose medium 
(25 mM) for another 7 days. On the second week, the cells 
were exposed to 100 µM deferoxamine mesylate salt alone, 
or in combination with 100 nM PACAP. The researchers 
found that PACAP reduced the elevated levels of Hif1-α, 
while it increased the expression of Hif3-α. In accordance 
with this, in the present study we also found the same effect 
of PACAP in two different harmful conditions (hypoxia and 
hyperosmotic stress), whereas we could not prove this ame-
liorating function of PACAP in oxidative stress.

CAIX is a transmembrane protein catalyzing the hydra-
tion of CO2. As it is another downstream target of Hif1-α, 

it has also been showed to be a cellular marker of hypoxia. 
In physiological conditions, especially in dark adaptation, 
the retina is proposed to be hypoxic (Lahdenranta et al. 
2001; Arden et al. 2005; de Gooyer et al. 2006; Hughes 
et al. 2010). This fact would suggest high control levels 
of both Hif1-α and its downstream molecules. In ARPE-
19 cells, we did not find elevated Hif1-α expression, but 
under control conditions, the concentration of CAIX was 
extremely high. PACAP alone, and in co-administration 
could diminish the effect of the harmful agents (CoCl2 and 
sucrose). Oxidative stress, a primary causative event in DR 
(Hernandez et al. 2016) is associated with increased levels 
of reactive oxygen species (ROS). In our present study, 
after H2O2 administration elevated expression of three 
antioxidants was detected, such as PON2, thioredoxin and 

Fig. 1   Retina sections stained with toluidine blue of control (a), 
PACAP (b), BCCAO (c), and BCCAO + PACAP (d) animals. 
Scale = 100 µm. Number of cells/100 µm section length in the retinal 
pigment epithelial layer (RPE) was measured. No significant differ-
ence was observed. Arrows show pigment epithelial cells. e Average 

number of RPE cells/100 µm section length. CH choroidea, RPE pig-
ment epithelium, ONL outer nuclear layer, OPL outer plexiform layer, 
INL inner nuclear layer, IPL inner plexiform layer, GCL ganglion cell 
layer
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SOD2. PACAP was able to further induce the thioredoxin 
synthesis, creating an antioxidant rich environment, which 
is essential against ROS.

In accordance with our previous findings PACAP could 
attenuate the elevated concentrations of cytochrome-c and 
p53 (Atlasz et al. 2010b; Szabadfi et al. 2010; Fabian et al. 
2012). In contrast, analysis of the histological structure 
of the retina did not reveal any numerical changes in the 
pigment epithelial layer, while the thickness of the entire 
retina, especially the outer plexiform layer, was significantly 

reduced (Werling et al. 2014). It is characteristic for several 
retinal injuries that the inner retinal layers suffer a more 
severe morphological lesion, while the pigment epithelial 
layer is seemingly not damaged (Werling et al. 2014). How-
ever, the several biochemical changes indicate the severe 
functional damage in these cells, probably leading to further 
damage in the inner layers. In summary, we found that, in 
accordance with previous studies, PACAP could counteract 
some of the negative changes in the pigment epithelial layer 
further confirming the retinoprotective effects of the retina.

Fig. 2   Representative picture and the table of detectable markers of the cells stress array
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Fig. 3   a Graph of the cell 
stress array in oxidative stress. 
ARPE-19 cells were treated 
with PACAP,  H2O2 and 
H2O2 + PACAP, vs. control 
*P < 0.5, **P < 0.001, vs. H2O2 
treated #P < 0.5, ##P < 0.001. 
b Graph of the cells stress 
array in hyperosmotic stress. 
ARPE-19 cells were treated 
with PACAP, sucrose and 
sucrose + PACAP, vs. control 
*P < 0.5; **P < 0.001, vs. 
sucrose treated #P < 0.5, 
##P < 0.001. c Graph of the 
cells stress array in hypoxic 
stress. ARPE-19 cells were 
treated with PACAP, CoCl2 and 
CoCl2 + PACAP, vs. control 
*P < 0.5, **P < 0.001, vs. CoCl2 
treated #P < 0.5, ##P < 0.001
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