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Abstract: Mobile social networks suffer from an unbalanced traffic load distribution due to the
heterogeneity in mobility of nodes (humans) in the network. A few nodes in these networks are
highly mobile, and the proposed social-based routing algorithms are likely to choose these most
“social” nodes as the best message relays. Finally, this could lead to inequitable traffic load distribution
and resource utilisation, such as faster battery drain and/or storage consumption of the most (socially)
popular nodes. We propose a framework called Traffic Load Distribution Aware (TraLDA) to improve
traffic load balancing across network nodes. We present a novel method for calculating node
popularity which takes into account both node inherent and social-relations popularity. The former is
purely determined by the node’s sociability level in the network, and in TraLDA is computed using
the Kalman prediction which considers the node’s periodicity behaviour. However, the latter takes
the benefit of interactions with more popular neighbours (acquaintances) to boost the popularity of
lower (social) level nodes. Using extensive simulations in the Opportunistic Network Environment
(ONE) driven by real human mobility scenarios, we show that our proposed strategy enhances
the traffic load distribution fairness of the classical, yet popular social-aware routing algorithms
BubbleRap and SimBet without negatively impacting the overall delivery performance.

Keywords: fair traffic distribution; human mobility; node popularity; mobile social networks

1. Introduction

As a particular case of mobile ad-hoc networks (MANETs), opportunistic mobile
networks [1] are unique dynamic wireless mobile networks. Unlike MANETs, in such
networks persistent connectivity is not a necessity, and end-to-end paths from sources to
destinations are not assumed to exist at all times. A link between a pair of nodes is estab-
lished whenever they come into contact. In opportunistic mobile networks, pairwise node
contacts occur randomly in time, and the duration of each contact is also random. Owing
to the omnipresence of mobile devices nowadays, e.g., mobile phones and tablets, human
can exploit contact opportunities to exchange information by means of short radio range
connections. This leads to human-centric opportunistic mobile networks, also referred to
mobile social networks (MSNs) in [2,3]. These networks have mainly been introduced by
combining social networks and mobile communication networks. MSNs take a human-
centric approach to networking, closing the gap between networks and human behaviour.
Moreover, studies in [4–6] revealed that social interactions influence human mobility. As a
result, MSNs are closely linked to social networks, and knowledge about social ties can be
used to improve routing algorithms in such human-based networks.

Researchers currently focus on studying social relation patterns, e.g., node popularity
and social similarity, as the choice parameters of relay nodes. Furthermore, the proposed
social-based routing algorithms [7–9] typically favour nodes with many social ties as
optimal carriers for message transfers. This might end up in heavy traffic load in the
(socially) popular nodes, quickly draining the nodes’ constraint resources, such as power
and storage, and this unbalanced traffic load eventually deteriorates the network’s delivery
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performance [10]. In addition, the poor traffic load balancing also results in unfair delivery
success rate among individuals, where messages from popular individuals can reach the
destinations with a high probability, but individuals with few social connections will
experience in low delivery success [11]. This variance of the delivery rate becomes a
deterrent for nodes to participate in the message forwarding. Ultimately, the unfairness of
traffic load makes popular nodes easy target of attacks [12].

Unbalanced traffic distribution across network nodes leading to traffic congestion in
social networks has been extensively studied in several areas [13–15]. In [13], (data) traffic
congestion during crowd disaster was thoroughly discussed. In that crowd management
scenario, mobile devices carried by individuals is used to detect and inform to the crowd
managers about the crowd density. However, in crowded areas traffic can increase dramati-
cally within a short period of time, and, in turn, traffic congestion starts to occur, making
the crowd managers fail to handle the crowd. In [14], traffic in social networks was investi-
gated in various applications, ranging from vehicular traffic in urban environments to data
traffic in Internet of Things and human–machine networks. In these settings, local failures
such as traffic congestion in some parts of networks might provoke a cascade of failures
throughout systems. Machine learning approaches were therefore nominated to address
such issues. In [15], pocket switched networks were proposed to transfer data between
users’ mobile devices. Such opportunistic networks exploit human mobility to enable a
store-carry-forward mechanism to deliver messages from sources to destinations. In each
contact, social-based routing algorithms [7–9] typically select popular nodes (individuals)
as the best relays in the network, resulting in unbalanced traffic distribution across nodes
and traffic congestion in the most central nodes.

Social-based routing algorithms are a class of utility-based routing algorithms. In such
schemes, heuristic methods are used to determine the “quality” (utility) of a node as a
relay. Each node i retains Ui(j), a utility function that denotes the likelihood of i delivering
a message to j. The utility function can be based on some different parameters, such as
contact history, mobility model, social relations, etc. Spyropoulos et al. [16] categorised
utility functions into two types: destination-dependent (DD) and destination-independent
(DI). In DD, node utility is dependent of the destination; i.e., node i is an optimal relay
for one destination d1, yet node j is the best one for another d2, or Ui(d1) > Uj(d1), but
Ui(d2) < Uj(d2) for d1 6= d2. DD functions could be based on last-contact, social similarity,
or correlated mobility pattern, with the given destination. However, destination-dependent
(DD) imposes a large overhead on nodes, since the nodes should keep a single entry for
each peer in the network. As opposed to DD, node utility in DI is independent of any
destination, for example, a single node may be the best carrier for most/all destinations in
the network, or in general it holds that Ui(d1) > Uj(d1) then Ui(d) > Uj(d) for most/all
j, d. Instances of nodes which are better relays for all destinations would be those with
many connections to others (e.g., hub nodes in scale-free networks), nodes with many
acquaintances (e.g., popular nodes in social networks), or nodes with high mobility (e.g.,
cars or buses in vehicular delay-tolerant networks). Nevertheless, destination-independent
(DI) imposes a higher forwarding overhead on better relays, leading to poorer fairness in
both traffic load distribution and utilisation of the nodes’ resources.

This paper proposes a framework called Traffic Load Distribution Aware (hereafter,
TraLDA), aiming to improve fairness in forwarding of social-based routing algorithms.
Here, we introduce a novel computation of node (global) popularity in the entire net-
work. This utility metric is obviously independent of the message destination, and it may
contribute to a traffic load imbalance across nodes, as mentioned in [16]. In TraLDA, we
consider two different popularities in the calculation of node popularity, namely inherent
popularity and social-relations popularity. Inherent popularity is based solely on the node’s
sociability level, and in TraLDA it is computed using the Kalman prediction [17] which
considers the periodicity in human behaviour. The works in [18,19] confirmed that human
activities typically exhibit some periodicity. Consequently, the calculation of node popular-
ity in mobile social networks should consider this property. Social-relations popularity, on
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the other hand, reflects the social benefit of connections with popular nodes, and spreads
the popularity of these nodes to their lower ranking acquaintances. Finally, we apply the
TraLDA’s node popularity computation on the classical, yet prominent social-based routing
algorithms SimBet [20] and BubbleRap [21], and next investigate the performance improve-
ments of these routing schemes, particularly in the trade-off between forwarding fairness
and efficiency. SimBet and BubbleRap basically combine two different utility metrics to
decide node fitness as relay to a given destination: the one which is dependent of the
destination (i.e., similarity and social community in SimBet and BubbleRap, respectively),
and the other one which is independent of the destination (i.e., betweeness centrality and
global popularity in SimBet and BubbleRap, respectively). In the present case, TraLDA
focuses on improving the calculation of global popularity and betweeness centrality in
BubbleRap and SimBet, respectively.

The followings are the main contributions we made in this paper:

1. To increase fairness in forwarding of social-based routing algorithms in mobile social
networks, we propose TraLDA, a framework of traffic load distribution aware. We
offer a new method for calculating node global popularity, a function of both node
inherent and social-relations popularity.

2. The inherent popularity of a node is solely determined by the node’s own mobility
pattern or sociability level in the network, and in TraLDA it is computed using the
Kalman prediction which accounts for the regularity (periodicity) of human behaviour.

3. Node social-relation popularity, on the other hand, represents the advantages of
connections with more popular or central nodes (individuals). It shares the popularity
of more popular nodes to their less popular counterparts.

4. Finally, we apply TraLDA on the calculation of node global popularity and centrality
in BubbleRap and SimBet, respectively, in order to improve the traffic load balancing
among network nodes. Using extensive simulations in the Opportunistic Network
Environment (ONE) [22] driven by realistic human mobility scenarios, we show that
TraLDA enhances fairness in forwarding of both schemes, without negatively affecting
the overall delivery performances.

We proceed in this paper as follows. Related literature is given in Section 2, research
background is described in Section 3, detailed design strategy of TraLDA is discussed in
Section 4, simulation and discussion are presented in Section 5, and lastly conclusion and
future work are presented in Section 6.

2. Related Literature

Fairness is important in many areas of human lives, e.g., sociology, economics and
politics, and it is also true in technologies. In computer engineering, distinct computer
resources should be shared equally amongst all processes and threads. In computer
networking, all nodes require to attain the bandwidth and quality of service (QoS) equitably.
In [23], fairness challenges and issues in wireless networks are thoroughly discussed, and
some trade-offs between fairness and performance are reviewed. Mtibaa and Harras [10]
studied the trade-offs between fairness and efficiency of social-based routing algorithms
in mobile social networks. They found that excluding popular nodes on the message
forwarding significantly degrades the delivery efficiency. We [24] also showed that absolute
traffic load fairness leads to the deterrent of delivery efficiency; yet, high delivery efficiency
results in unfairness of traffic load.

To overcome the problem, fair routing algorithms have been proposed for mobile
social networks [11,25–27]. Fan et al. [11] introduced a fair routing strategy based on
packet priority to improve fairness in success rate among nodes. Ying et al. [25] proposed
FSMF, a fair social aware message forwarding to solve the issues of imbalanced traffic
load distribution as well as unfair delivery rate. Pujol et al. [26] proposed FairRoute that
combines social strength and buffer queue length as the routing metrics to fairly distribute
the traffic load among nodes. Milena and Grundy [27] presented CafRep, an adaptive
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congestion aware forwarding strategy that diverts the traffic from congested nodes (popular
nodes) to less congested nodes (unpopular nodes).

Indeed, fair routing algorithms in distributed, intermittently connected wireless net-
works such as mobile social networks are more complex than those in conventional net-
works, such as the Internet, since: (i) negotiation and compromise amongst autonomous
nodes is more complicated, for example non-cooperative nodes may be reluctant to help
other nodes in forwarding; and (ii) due to the lack of knowledge about the global states,
routing decisions are made solely based on nodes’ local information. For the first issue,
the impact of selfish nodes on delivery performance and resource consumption fairness
has been investigated in [28]. In addition, to increase fairness in forwarding an incentive
or a credit was applied on the routing decisions in [25]. Finally, in [29] a game theoretic
approach is used to support fair cooperation among nodes in opportunistic networks. For
the second issue, current works of fair routing schemes searched for proper nodes’ locally
available information to ensure a better fairness and efficiency trade-off. Furthermore, there
are two sorts of node local knowledge which are commonly used to improve traffic fairness
and reduce congestion: (i) buffer statistics and (ii) social measures. For the former case,
some algorithms consider node burden, inferred from the node’s buffer queue length, as
the forwarding metric to achieve a balanced traffic distribution. For example, FOG [10]
and GreBurD [30] prioritise nodes with higher residual buffer space as suitable relays to
distribute load away from the congested nodes; CafRep [27] defines node retentiveness,
calculated as an expected weighted moving average of the node’s remaining storage, as the
congestion heuristic to detect storage congestion in popular nodes. For the latter case, on
the other hand, researchers search for better social network measures for improving fairness
in forwarding of social-based routing schemes. For example, FairRoute [26] improves the
calculation of pairwise tie strength based on the short-term and long-term relationships;
SimBet [20] adds connection strength information to the routing metrics to offload traffic
from popular nodes; Socially-Aware Prediction (SAP) [31] estimates future contacts based
on the node (social) similarity, and forwards messages to nodes with a higher similarity
with the destinations, thus reducing messages forwarded to globally popular nodes.

As opposed to [20,26,31], which focus on improving the calculation of destination-
dependent (DD) utility metrics, our proposed scheme TraLDA chooses to improve the
computation of node popularity in the network, since as noted in [16], this destination-
independent (DI) utility metric primarily contribute to the traffic imbalance among nodes
in mobile social networks. In social network analysis, Freeman [32] proposed three distinct
centrality measures to identify the importance of nodes (individuals) in social networks,
namely degree centrality, betweeness centrality and closeness centrality. Degree centrality
is the number of direct neighbours or friends a node has; betweeness centrality is the
number of shortest paths connecting any two nodes that pass through a given node; and
closeness centrality is the average distance (proximity) between a node and all other nodes
in the network. Freeman’s centrality metrics have been widely used to detect nodes
which are capable of disseminating information in mobile social networks; for example,
BubbleRap [21] and SimBet [20] consider degree centrality and betweeness centrality,
respectively, computed in a distributed, ad-hoc fashion to determine node popularity.
In BubbleRap, node degree is calculated as the cumulative average of total number of
distinct peers encountered by the node in all previous time windows. In SimBet, node
betweeness centrality is computed based on a binary model of a social relation, i.e., a value
of “1” means two nodes know each other and “0” otherwise. However, we argue that
the node popularity or centrality calculations in BubbleRap and SimBet do not cope with
the dynamics of a social network. Furthermore, as confirmed in [18,19] human activity
typically exhibits a regularity (periodicity) pattern. Considering this matter, as our first
contribution in this paper, we propose a novel method to calculate node inherent popularity
at a given time interval based on the Kalman prediction [17] which takes into account the
node’s periodicity behaviour.
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Nevertheless, Freeman’s centrality measures typically disregard the influence of the
neighbours. The authors of [33] argued that a node’s importance in the social network
should also be determined by the importance of its neighbours. In [34], the authors studied
a strategy to find persons that are able to spread advertisements as far as possible in a
social network. They showed that a person that receives high respects from her friends,
her advertisements will be highly probable to spread over the social network quickly.
In addition, Ursino and Virgili [35] integrated the concept of social networks and IoT to
determine the reputation of IoT objects. They proposed a formula to calculate reputation of
an object in a social Internet of Things based on the well-known Google PageRank. In that
technique, the reputation of an object is determined by the level of trust it obtains from other
IoT objects. Almost similar, Cauteruccio et al. [36] attempted to introduce concepts and
behaviours of social networks into the IoT settings. In that work, to measure the reputation
of an IoT object, the authors defined Impact Degree, calculated as the average trust degree
that the object receives from the other objects in its scope (neighbourhood). Meanwhile,
from the social network theory, there exist centrality measures that consider a richer range
of direct and indirect influence of neighbours, such as the Katz’s prestige measure [37].
This centrality metric is developed based on the premise that a node’s importance in the
network is influenced by its neighbours’ importance. Thus, this prestige measure considers
a node’s connectedness to other nodes as well as its proximity to other important nodes. In
this regard, node popularity calculation in TraLDA should take into account the influence
of more popular neighbours when determining the popularity of a node. Therefore, as our
second contribution in this paper, we propose a method to calculate node social-relations
popularity based on the Katz’s prestige measure [37]. We perform some modifications
on the calculation of this centrality metric to make it appropriate for distributed, ad hoc
environments, such as mobile social networks.

3. Research Background

In this section, we discuss the topology structure of mobile social networks and the
forwarding strategy of social-based routing algorithms. We initially consider an oppor-
tunistic network with N nodes as a graph G (V, E), where V and E are the sets of nodes and
links, respectively. In this graph, a link between two nodes represents the physical contact
between them, and the link weight is defined as the probability of their pairwise contact.
We assume graph G is connected, that is, between any pair of nodes at least a single path
exists. Further, the message dissemination in the graph G under a utility-based routing
is formulated as a discrete-time Markov chain. Suppose that a message m is transferred
hop-by-hop in this graph. Initially, a message m is in state i if it is carried by node i, and
when a contact occurs between node i and j and suppose that i transfers the message m to j,
then the state of m changes from i to j. Therefore, the forwarding procedure of a message in
an opportunistic network can be modelled as a state transition process in a discrete-time
Markov chain. Next, we develop a transition probability matrix P, where pij denotes the
probability that the message m is transferred from node i to j, and is expressed as follows

pij = pc
ij · p f

ij (1)

where pc
ij is the probability of encounter between i and j, and p f

ij is the likelihood that i
transfers the message m to j during the contact. Node contact probability in mobile social
networks is directly related with the human mobility pattern, and in some papers, such
as [5,38], it was characterised based on the structural properties of node contacts. Yet,
forwarding probability fully depends on the forwarding rules used in message routing. In
the following, we analyse the topology characteristics of mobile social networks as well as
the forwarding features of social-based routing schemes, and discuss how the combination
of them may result in the unfairness in forwarding among network nodes.
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3.1. Topology Structures of Mobile Social Networks

When analysing the delivery performance of a routing algorithm, information of
network topology is typically needed. The movement patterns of nodes in mobile networks
have a direct impact on the networks’ topologies. Mobile social networks, in particular,
are human-based networks, and node encounters in such networks represent the ways
in which people interact. Yoneki et al. [38] and Hossmann et al. [5] studied the topology
characteristic of mobile social networks using some realistic human mobility scenarios.
They first aggregated the contact data to establish weighted contact graphs, where the link
weights express the duration of contact of pairs of nodes. These graphs in turn exhibit
the characteristics of social networks (a social network is a graph of human relationships
formed by one or more types of interdependencies, such as mutual interests, kinship, or
friendship). By applying a complex network analysis on the derived graphs, they concluded
that the networks have a non-random (heterogeneous) connectivity structure, exhibiting a
power-law degree distribution in which some nodes have a relatively large connectivity
degree to other nodes, whereas the majority of nodes in the network have a few. The
large degree nodes (so-called hub nodes) are the most popular (central) nodes in the social
graph, and therefore they can act as information brokers which are capable of disseminating
messages to all nodes within a relatively short delay. In Figure 1 we show the structural
topology of a mobile social network: a virtual social network exists on top of a mobile
social network, which is less volatile than the physical network, and this network guides
humans to move.
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Figure 1. A mobile social network’s structural topology. On the top layer, the social network drives
human to move, and this human mobility creates opportunistic contacts in the physical network.

Additionally, we conduct an online analysis in the ONE simulator [22] to investigate
the node popularity distribution in mobile social networks. A node in self-organizing
networks such as mobile social networks should be able to sense its own popularity
throughout the network. Here, node popularity is defined as the number of different nodes
contacted in a certain time window. In an aggregated contact graph, this corresponds to
node degree (centrality) [21]. In this study, we consider the Reality contact traces [39] as
the mobility scenario. In Figure 2 (left) we show the node degree distribution in Reality,
where the degree of a node is computed in a 6-h-time-window basis. It is evident that some
nodes have a degree value that is significantly larger than the network’s average degree
(i.e., ≈2.2). Furthermore, in Figure 2 (right) we show the node degree distribution in the
Reality scenario on a log-log scale. The graphic shows that the node degree distribution
follows a power-law distribution, with a low probability of finding nodes with a high degree
because most network nodes have a low one. Moreover, the authors of [40] established the
potential of coupling between mobile social networks and scale-free networks, which have
a power-law degree distribution as their main characteristic. In other words, the degree
distribution in real human-based networks differs from the Gaussian (normal) degree
distribution commonly assumed in random networks.
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Figure 2. (left) the node degree distribution in the Reality mobility scenario, and (right) when it is
plotted in a log-log scale. The almost linear of the plot of the node degree in the log-log scale verifies
that the node degree is power-law distributed.

3.2. Social-Based Routing Algorithms

Social-based routing schemes typically define a utility metric for each node when
making routing choices. Clearly, a higher utility reflects a higher chance of the node to
deliver a message. The method forwards the message to the contacted node with a higher
utility in each contact. This best next-hop heuristic forwarding p f

ij can be described as

p f
ij =

{
1, Ui < Uj

0, Ui > Uj
(2)

Nevertheless, the utility-based routing algorithms in mobile social networks have
some drawbacks as follows:

• Hill-climbing heuristic forwarding is a pure greedy approach that sends the message
to the nodes with the highest utility at each contact (hop). Fan et al. [11] used a
Markov model to show that under this forwarding technique, the probability of a
message reaching the greatest utility node(s) is one, implying that messages will
always find the highest utility nodes in mobile social networks. Furthermore, in the
following we show mathematically that the forwarding heuristic, which is biased
towards higher value nodes, guides the routing algorithm to send the bulk of network
traffic through the highest utility node(s) as follows. We first assume a routing strategy
that determines the next-hop nodes in a random manner. The message forwarding is
therefore a random walk over the graph G(V, E) mentioned above, with the transition
probability matrix P, where its element pij is defined in (1). Under this random
forwarding, pij is equal to the inverse of node i’s degree di, or pij = 1/di. In a steady
state traffic flow, the chance to find a message m in node j, which also equals to j’s
traffic load, can be computed as the first eigenvector of the distribution matrix ΠT ,
with πij = pij · (∑j pij)

−1. Then, it is easy to see that the eigenvector for distribution
matrices of networks with a non-random (heterogeneous) connectivity distribution
such as mobile social networks will be skewed towards the highly connected nodes
(hub nodes) under this random scheme. Eventually, this confirms the natural traffic
load imbalance in the social networks. Further, if the forwarding strategy is not
random, but biased towards connectivity (i.e., favouring nodes with a higher degree),
the probability of hub nodes receiving relay traffic increases and the traffic load
distribution becomes more unbalanced. Furthermore, using simulation in the Reality
mobility scenario [39] we illustrate in Figure 3 (left) the node degree vs. node traffic
load when the hill-climbing heuristic forwarding is applied on the network (here, node
traffic load is defined as the total relay messages carried by a node). The graphic depicts
a few the highest degree nodes handle a big portion of traffic, yet most of network
nodes only process a small one. This quickly depletes the hub nodes’ constrained
resources such as power and storage. For instance, we show in Figure 3 (right) the
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buffer occupancy changes of illustrative hub node and non-hub node in Reality. Clearly,
the buffer occupancy in the hub node is regularly saturated, whereas the buffer queue
on the non-hub node is normally low during the experiment.

• In mobile social networks, node utility can change over time, and a low utility node at
the present time could become a good relay in the future. Most conventional utility-
based forwarding algorithms, however, often ignores this. Furthermore, the studies
in [18,19] showed that node popularity in human-based networks varies over time
and has a periodic pattern. Considering this, when TraLDA calculates node popularity,
these features will be taken into account.
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Figure 3. (left) Node degree vs. node traffic load, and (right) the buffer queue growths of illustrative
hub node and non-hub node, when the hill-climbing heuristic forwarding is used in the mobile
social network. This describes an imbalanced traffic load among nodes, with the highest degree
nodes handling the bulk of network traffic, resulting in significant buffer occupancy throughout
the simulation.

4. TraLDA Design

In TraLDA, we improve the computation of node (global) popularity in mobile social
networks. To determine a node’s popularity, two popularity metrics are calculated: inherent
popularity and social-relations popularity. We hypothesise that inherent popularity is
purely determined by the node’s own mobility pattern or sociability level, whereas social-
relation popularity is derived as an advantage from relationships with more popular nodes.
Finally, TraLDA uses both popularity indicators to choose optimal relays during contacts.
In the following, the computations for both measures are described in detailed.

4.1. Inherent Popularity Calculation

The inherent popularity of a node is determined by its own sociability degree or
movement pattern. In practice, this metric is defined based on a particular metric, such
as the total contacts with different nodes in a time interval [21] or the neighbour change
rate [38,41]. In the literature, the former is denoted as the node degree in an aggregated
encounter graph. In TraLDA, we use node degree to quantify a node’s inherent popularity.
Moreover, our investigation below shows that node degree in mobile social networks
fluctuates significantly over time and exhibits some periodicity. Thus, it is important to
take into account these features when calculating node degree at a given time. Finally,
we introduce a novel calculation of node degree using the Kalman prediction [17] which
consider the periodicity of human behaviour.

We begin by looking into the node degree change characteristics in mobile social
networks using real human movement cases. The Reality trace dataset [39] is used in this
study because it consists of a large number of nodes and spans a lengthy period of time.
Furthermore, an instantaneous node degree is estimated by the number of distinct nodes
contacted in a given time window. In the case of Reality, we chose a time window of 6 h as
the basis for node degree calculation based on a study in [21] that found that individuals’
daily life is typically separated into four main periods of 6 h each: morning, afternoon,
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evening, and night (however, for a detailed discussion of the impact of time window scale
choices on the node degree calculation, see [42]).

We now depict changes in node degree in the Reality scenario; for instance, in Figure 4
(left), we present the node degree variations of an illustrative hub node in Reality. We
notice that the node’s degree changes dramatically and rapidly over time. Subsequently,
we use a periodogram analysis [43] to find the main periods (frequencies) within the
node’s degree data series. We display the discovered periodicities of the hub node’s
degree in Figure 4 (right). The figure clearly shows that the degree of the hub node firmly
demonstrates a 7-days (weekly) period (moreover, our investigation on all the nodes in
Reality finds that majority of the nodes possess a weekly cycle of their popularities as
well). Indeed, the Reality dataset logged MIT staff and student activities on campus,
which are higher during the weekdays but lower on weekends due to less interactions.
Nevertheless, depending on the experimental setting, distinct human encounter datasets
may have different periodicities.
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Figure 4. (left) The changes of degree of an illustrative hub node in Reality (measured by node degree
in a 6-h time window), and (right) the detected periodicities of the node’s degree. This describes that
the node popularity in the mobile social network fluctuates over time and has a weekly period.

The structural component of the node degree data series in Figure 4 (left) is then
observed using a discrete time series analysis. A discrete time series is a set of observations
yt logged regularly at a specific time interval. In the traditional decomposition model [44],
yt can be broken down into a trend component, a seasonal (periodic) component with
period d, and a random noise component. We apply a seasonal filter [45] to the given
data series to get estimated periodic data: In Figure 5 (upper), we present the long-term
seasonal data of the data series; finally, by removing the periodic data from the original
data, deseasonalized data are obtained (shown in Figure 5 (lower)), consisting of a random
noise element and a less obvious trend element.

Based on the previous analysis, we now use the Kalman-filter theory [17] to develop an
estimation model of the time series data to compute a node’s inherent popularity in a time
interval. The Kalman filter is widely used in control system design to estimate unmeasured
process conditions. It can calculate the best estimates of the current states of a dynamic
system defined in a state vector. The state is updated based on periodic observations of
the system. We use a typical state space model [46] to express the problem in our model.
Furthermore, we only investigate the case when a seasonal component dominates the
time series (see [47] for the discussion of Kalman prediction for a complete model). The
state space model is constituted by two scalar equations, namely the observation equation
and the state equation. For our model with (only) a seasonal component, the observation
equation is given as follows

yt = St + Wt , t = 1, 2, . . . (3)

where St is a state variable and Wt is an additive white noise with zero mean and variance σ2
w

(Wt = WN(0, σ2
w)). Furthermore, when we consider St representing a seasonal component
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with a period d such that St+d = St and ∑d
t=1 St = 0, it is therefore possible to determine

St+1 as

St+1 = −St − St−1 . . .− St−d+2 (4)

For a more general expression of St allowing random deviations to exist in the pe-
riodicity, a white noise term Vt (Vt = WN

(
0, σ2

w
)
) is added in the right hand side of (4).

Afterwards, regarding only the seasonal effect on the series, in order to obtain the state
equation for our model, we introduce (d− 1) dimensional state vector Xt defined as

Xt = [ St St−1 . . . St−d+2]
T (5)

and the series St is determined as

St = [1 0 0 0 . . . 0] Xt (6)

For the purpose of the derivation of Kalman prediction, the observation equation in (3)
is now rewritten in a general form as follows

Yt = GtXt + Wt (7)

with Gt = [1 0 0 0 . . . 0], and Xt satisfies the state equation

Xt+1 = FtXt + Vt (8)

with Vt =
[
σ2

v 0 0 . . . 0
]T , and Ft =


−1− 1 . . .− 1− 1

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0
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Figure 5. (upper) Long-term seasonal data, and (lower) deseasonalized data of the hub node’ degree
in Figure 4. These figures show that node popularity in mobile social networks typically comprises a
periodic (seasonal) component along with a random noise component.

Given the observation equation in (7) and the state equation in (8), the recursive
equations of Kalman-filter for the estimation of the values of the series are defined as
follows. Considering the initial settings as

X̂1 = P(X1|Y0) (9)
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Ω1 = E(X1 − X̂1)(X1 − X̂1)
T (10)

the Kalman recursive equations are then given as

X̂t+1 = FtX̂t + Θt∆−1
t (Yt − GtX̂t) (11)

Ωt+1 = FtΩtFT
t + Qt −Θt∆−1

t ΘT
t (12)

where ∆t = GtΩtGT
t + Rt, Θt = FtΩtGT

t , Qt =


σ2

v 0 . . . 0
0 σ2

v . . . 0
...
0

...
0

. . .
0

...
σ2

v

, and Rt = σ2
w.

As an example of node popularity estimation using the Kalman prediction, we discuss
in Section 5.2 the Kalman estimates of the hub node’s degree compared with the actual
values of the node degree in the Reality mobility scenario (for the detail implementation of
the Kalman prediction on the node degree calculation in the ONE simulator, please refer
to https://github.com/soelistijanto/TraLDA/routing/community/KalmanDegree.java
(accessed on 14 June 2022).

4.2. Social-Relations Popularity Calculation

An individual can gain (social) benefits from relationships with her more central or
popular acquaintances in a social network. Depending on the substance of the relations,
measures of node centrality can be classified as undirected (symmetric) relations, such as
friendship and kinship, or directed (asymmetric) relations, such as choice and influence.
Moreover, in directed graphs centrality is known as “prestige” [48], where the direction of
the interaction is a key attribute for this metric. For instance, individuals who are picked
as friends by many others have a special status–prestige in the group. In the literature,
there exist metrics of prestige which consider both direct and indirect social influences. For
instance, the centrality measures in [37,49] are based on the assumption that the importance
of a node in the network is determined by the importance of its neighbours. Thus, these
metrics take into account both a node’s connectivity to other nodes and its proximity to
other important nodes.

We now mention one of the widely used centrality measures, the Katz’s prestige
measure [37]. This defines the prestige of node i in the graph G, denoted by CKatz(i), as the
sum of the prestige of all i’s neighbours divided by their degrees. Node i therefore gains
its prestige from having a neighbour j with higher prestige. This i’s prestige is however
corrected by the number of neighbours of j, so if j has more relations, then i gains less
prestige from friendship with j. This adjustment might be thought of correcting for i’s time
spent with or relative access to j. As a result, node i’s Katz centrality in the graph G is
determined as follows:

CKatz(i) = ∑
j 6=i

gij
CKatz(j)

dj
(13)

where gij = 1 if there is a relation between i and j, or “0” otherwise, and dj is the degree of j
representing the number of j’s neighbours.

Inspired by the Katz’s centrality measure, we introduce social-relations popularity, the
node’s popularity derived from relationships with more popular nodes. This distributes
the popularity of more (socially) important nodes to their less important neighbours, and
thus takes neighbours’ popularity into account when calculating a node’s popularity. We
employ (13) to compute a node’s social-relations popularity in a given time window as
follows. To begin, we suppose that social influence occurs in only one direction, with nodes
with lower popularity can only receive social benefits from their more popular neighbours;
for instance, from (13) we can deduce influence from j towards i, denoted by

→
gji = 1, exists

when CKatz(j) > CKatz(i) or “0” otherwise, and therefore
→
gji 6=

→
gij. Second, we assume that

https://github.com/soelistijanto/TraLDA/routing/community/KalmanDegree.java
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the popularity of a more important node is shared by its less important neighbours and is
weighted by the strength of their interactions with the given node. As a result, the higher
(social) level node gives more effect on the closer neighbours. Finally, the social-relations
popularity of node i in time window t is defined as follows

Pt
soc(i) = ∑

j∈F(i)

→
gji · wji

∑k∈F(j)
→
gjk · wjk

· Pt
global (j) (14)

where
→
gji denotes the presence of a (social) influence of j towards i:

→
gji = 1 for

Pt
global(j) > Pt

global(i), or =0 otherwise, F(i) represents the set of i’s friends, wji is the

connection strength of i and j, and Pt
global(j) is the cumulative mean of global popularity in

time window t calculated as follows

Pt
global(j) = ∑t−1

t=1 Pt
global(j)/(t− 1) (15)

where Pt
global(j) is the instantaneous global popularity of j in time window t computed

using (16) below.
To present an example of the calculation of node social-relations popularity, we con-

sider a simple neighbourhood of node A in Figure 6, comprising four neighbours with
different levels of global popularity at a time t. Between a pair of nodes A and B, a black
line indicates the social connection between them, with wAB representing their connection
strength (e.g., measured in total contact duration (seconds)). A red dotted vector, on the
other hand, denotes the influence of node B to A:

→
gBA = 1 if Pt

global(B) > Pt
global(A), and =0

otherwise. Finally, the social-relations popularity of node A at time t is calculated as:

Pt
soc(A) =

→
gBA · wBA ·P

t
global (B)

→
gBA · wBA+

→
gBC · wBC

+
→

gCA · wCA ·P
t
global (C)

→
gCA · wCA+

→
gCB · wCB

+
→

gDA · wDA ·P
t
global (D)

→
gDA · wDA+

→
gDE · wDE

+
→

gEA · wEA ·P
t
global (E)

→
gEA · wEA+

→
gED · wED

Pt
soc(A) = 1 · 2000 · 7

1 · 2000+0 · 1200 + 1 · 800 · 10
1 · 800+1 · 1200 + 0 · 3000 · 3

0 · 3000+0 · 700 + 1 · 2500 · 8
1 · 2500+1 · 700

Pt
soc(A) = 7 + 4 + 0 + 6.25 = 17.25
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4.3. TraLDA Distributed Algorithm

In TraLDA, we combine a node’s inherent popularity and social-relations popularity to
assess its global popularity. The instantaneous global popularity of node I in time window t,
denoted by Pt

global(i), is represented by

Pt
global(i) = Pt

inhr(i) + ξ · Pt
soc(i) (16)

where Pt
inhr(i) and Pt

soc(i) are node i’s inherent and social-relations popularity, respectively,
in time window t, and ξ is a social influence factor which controls the impact of neighbours’
influences on the overall i’s popularity and is defined between 0 ≤ ξ ≤ 1. When ξ = 0,
neighbours’ influences disappear, and the node’s global popularity is solely dependent of
its own behaviour. The metric Pt

global(i) is further used by TraLDA to select optimal relays
during node contacts.

We now discuss how TraLDA is implemented in a distributed environment. In self-
organizing networks such as mobile social networks, a node should be able to perceive its
immediate neighbours autonomously. In TraLDA, we use the terminology “familiar set”
in [50] to refer to a node’s group of friends (direct neighbours) (hereafter, called a friendship
set F). Every node stores a map of the contacted nodes together with their total encounter
times. When the pairwise total contact time surpasses a given friendship threshold Fth,
the contacted node is added in the given node’s friendship set. This implies that the two
nodes now have a link, and in turn, we apply a direction and a weight on this connection to
indicate the direction of social impact and the strength of the tie between them, respectively.
Finally, in Algorithm 1 we describe how to calculate node popularity in mobile social
networks using the TraLDA distributed algorithm. When a contact occurs in time window
t and the contacted node is in the current node’s friendship set, the two nodes exchange
two items of data to compute their social-relations popularities: Pt−1

global(·) the mean of
global popularity in time window t− 1, and tslower(·) the total strength of connections to
the less popular neighbours. The latter is computed as ∑k∈F(j)

→
gjk · wjk, where k is the

direct neighbours of j, wjk is the connection strength of j and k, and
→
gjk is the existence

of influence of j towards k. The current node modifies its social-relation popularity and
then recalculates both its instantaneous global popularity and cumulative average global
popularity based on this peer’s data. When the contact ends, if the contacted node is not
in the friendship set yet, then the current node updates a map (peer, ts(peer)). Finally,
the peer will be added to the friendship set when ts(peer) exceeds the threshold Fth (the
implementation of the TraLDA distributed algorithm in the ONE simulator is available
online at https://github.com/soelistijanto/TraLDA (accessed on 14 June 2022).

https://github.com/soelistijanto/TraLDA
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Algorithm 1: TraLDA node global popularity calculation (i).

require : P0
soc(i)← 0 , P0

global(i)← 0
while i encounters j in time window t do
/*update current node’s global popularity based on the peer’s information*/
if j ∈ F(i) then
send (Pt−1

global(i) , tslower(i))

receive (Pt−1
global(j) , tslower(j))

calculate Pt
soc(i) (14)

calculate Pt
inhr(i) (9)–(12)

calculate Pt
global(i) (16)

calculate Pt
global(i) (15)

end if

/* exchange instantaneous node global popularity */
send Pt

global(i)

receive Pt
global(j)

/*when the contact ends*/
if j /∈ F(i) then
update map (j, ts(j))
if ts(j) > Fth then F(i)← j
end if
end if
end while

5. Simulation and Discussion
5.1. Simulation Setup

The scenarios of simulations and evaluation metrics considered in the TraLDA’s
investigation are now discussed. We implement TraLDA and the algorithm benchmarks in
the Opportunistic Network Environment (ONE) simulator [22]. For the simulations, we
vary the total number of nodes and simulation time dependent of the mobility scenarios.
A warm-up phase of 30% of the simulation duration is used to enable nodes to gather
information about the network’s states. We set the node buffer to 20 MB, while the message
size and its TTL are set to 10 kB and 7 days, respectively. A new message is generated at
a rate of 12 messages per hour at a random node, and is directed to a randomly selected
destination. For each algorithm, the simulations are run five times with distinct random
number seeds.

For mobility scenarios, we use two realistic, long period of human encounter datasets,
Reality [39] and Sassy [51]. In Reality, 100 mobile phones were carried by MIT staffs and
students for nine months. The phones were running software that performed Bluetooth
device discovery every 5 min, logging contacts with nearby Bluetooth-enabled devices.
The dataset gathered device contacts in the campus over the given period. The traces
were acquired in Sassy, however, utilising tMote invent devices carried by academics of
University of St. Andrews. The invent devices were designed to broadcast beacons every
6.67 s to detect other devices within a 10-m radius. The experiment was conducted for
74 days, where they were asked to bring the devices at all times, whether in or out the town.

For performance evaluation, we utilise the following evaluation metrics:

1. Delivery ratio: the ratio of the number of messages delivered to the number of new
messages created.

2. Delivery latency: the time it takes for a message to be created and forwarded to the
intended recipient.

3. Message overhead ratio: the fraction between total overhead messages and total
delivered messages. The total overhead messages is computed as the number of
forwarded messages minus the number of messages successfully delivered
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4. GINI index: this statistical dispersion measure [52] computes the disparity between
values of a frequency distribution. Here, the GINI index is used to quantify the
fairness level of traffic load distribution in the network: a value of “0” indicates that
traffic is divided equally among network nodes, while a value of “1” indicates that all
network traffic is processed by a single node.

5.2. Simulation Results and Discussions

We now present the simulation results and discussions of the delivery performances
of conventional BubbleRap [21] (hereafter, called BubbleRap) and conventional SimBet [20]
(hereafter, called SimBet) compared with their improved versions within the TraLDA
framework (hereafter, called Bubble-TLDA and SimBet-TLDA, respectively) in the given
mobility scenarios, Reality and Sassy.

5.2.1. BubbleRap vs. Bubble-TLDA

BubbleRap bases its routing on both node global popularity and the community
to which the destination belongs to. When either the current node or the encountered
node is in the destination’s community, routing decisions are performed based on local
popularity, which is the popularity of the node within the given community; otherwise,
global popularity is considered. In BubbleRap, the C-Window method is used to compute
node global popularity. This method calculates a node’s degree value in the current time
window by simply taking the average of all the node’s degree values in prior time windows.
TraLDA, on the other hand, estimates node inherent popularity in a time window (also
measured in node degree) based on the Kalman prediction which considers the periodicity
of human activities. For a performance comparison between two schemes, in Figure 7 we
show the time series of an illustrative hub node’s degree values in Reality. In each time
window, the node’s degree value is determined based on real measurement (yt), C-Window
(yt) and Kalman prediction (ŷt) (we show these values in a daily basis to make them easily
observed). For Kalman prediction, we assume (from Section 3.1) that the seasonality St
is known with the period of 7 days. Figure 7 shows that Kalman prediction captures
fluctuations in the node degree values, and thus delivers more accurate estimations of the
instantaneous node’s popularity compared to BubbleRap’s C-Window. C-Window reacts
slowly to variations in node popularity and ignores the regularity of human activity.
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Figure 7. Node degree values of an illustrative Reality hub node in a certain time window, comparing
the actual value, the Kalman prediction, and the C-Window estimate. Kalman prediction clearly
outperforms C-Window when estimating the actual node’s degree level in each time window, and it
captures the periodic pattern of the node degree quite well.

We next discuss the delivery performance of BubbleRap compared with that of Bubble-
TLDA in the Reality and Sassy scenarios based on the given evaluation metrics. As we
noted above, BubbleRap considers node global popularity, and the community of the
destination belongs to when making forwarding decisions. To determine the community
of a node, we exploit the k-clique community detection in [50]. For the parameters of the
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k-clique scheme used by both BubbleRap and Bubble-TLDA, we choose k = 5 and familiar
threshold Tth = 250 k seconds for Reality, and for Sassy k = 3 and Tth = 3 k seconds. Moreover,
for the TraLDA’s parameters in Bubble-TLDA, we use two distinct values of friendship
thresholds for each mobility scenario: Fth = 150 k seconds and 300 k seconds for Reality,
and Fth = 2 k seconds and 3 k seconds for Sassy. In addition, for both mobility scenarios, we
use a social impact factor (ξ) of 0.8, which determines the weight of neighbours’ influences
on the overall node’s popularity.

As previously mentioned in the node social-relations popularity (Section 4.2), the
neighbourhood of a node is defined in terms of a friendship set, with another node being
involved in the node’s friendship set if their pairwise total encounter time surpasses a
given friendship threshold (Fth). Indeed, this threshold is critical for TraLDA’s performance
as it dictates the size of a node’s friendship set, which in turn impacts the node’s social
influence in its neighbourhood. For instance, in Table 1 we show the comparison of the
friendship sets of hub node and non-hub node in the Reality scenario for various values
of friendship threshold (Fth) (in seconds). In the hub node, we notice that increasing the
friendship threshold Fth makes the friendship set shrinking (Table 1a). This implies that as
Fth increases, the spread of social influences of the hub node to its neighbours diminishes.
Since a hub node, in general, is the most active node in the network, it consequently has
weaker ties with its neighbours. Furthermore, Granovetter [53] underlined the relevance
of weak relationships in information dissemination in social networks. A non-hub node,
on the other hand, has stronger relationships to its direct neighbours, and as indicated
in Table 1b the friendship threshold (Fth) in this case has a small influence on the node’s
friendship set size.

Table 1. The friendship sets of hub node and non-hub node in Reality for different values of Fth.

(a) Node 80 (Hub Node) (b) Node 3 (Non-Hub Node)

Fth (s) Friendship Set (Node ID) Fth (s) Friendship Set (Node ID)

150 k [5, 7, 13, 15, 17, 20, 22, 32, 82, 84, 85, 95] 150 k [45, 63, 82, 95, 96]
200 k [5, 7, 13, 17, 20, 22, 32, 82, 84, 95] 200 k [45, 63, 82, 95, 96]
250 k [5, 7, 13, 17, 20, 22, 82, 84, 95] 250 k [45, 63, 82, 95, 96]
300 k [5, 13, 17, 22, 82, 84, 95] 300 k [45, 63, 82, 95, 96]

Finally, we depict the delivery performances of BubbleRap and Bubble-TLDA in
Reality and Sassy in Figures 8 and 9, respectively, based on the four performance metrics
mentioned before. For Bubble-TLDA, we consider two distinct friendship thresholds
for each scenario: for Reality Fth = 150 ks and 300 ks, and for Sassy Fth = 2 ks and 3 ks.
Since the primary purpose of TraLDA is to enhance fairness in forwarding across network
nodes, we notice in these figures that this is achieved: Bubble-TLDA can improve the
traffic distribution fairness in both scenarios, indicated by the reduced of GINI index.
The improved traffic fairness of Bubble-TLDA has a little impact on the delivery rate, i.e.,
Bubble-TLDA keeps the delivery success rate as high as that of BubbleRap. In addition,
Bubble-TLDA with a lower friendship threshold (Fth) can give a more significant impact
on reducing the GINI index. As mentioned in Table 1, the lower friendship threshold
(Fth) means the wider influences of hub nodes on their neighbourhoods, resulting in more
non-hub nodes that can increase their popularity and, in turn, may become better relays.
For example, in Figure 10 we show the distribution of traffic load among nodes in Reality
for BubbleRap and Bubble-TLDA (ξ = 0.8, Fth = 150 ks). Bubble-TLDA is clearly capable of
significantly reducing the relay traffic managed by the most popular nodes (hub nodes),
while, on the other hand, simultaneously increasing the total relay traffic on a large number
of non-hub nodes, and thereby improving traffic load balancing across network nodes.

The reduction in load in the most popular nodes in the case of Bubble-TLDA, on
the other hand, negatively impacts on the delivery latency. In both Reality and Sassy, as
illustrated in Figures 8 and 9 (upper-right), Bubble-TLDA increases delivery time beyond
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that of BubbleRap. Reducing traffic on the hub nodes implies that most of the network
traffic is diverted away from the shortest-paths through these nodes, and now traverses on
the suboptimal-paths via non-hub nodes which is typically longer than the shortest-paths,
resulting in a longer delivery time.
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Figure 10. (left) The traffic load distribution among nodes in Reality for BubbleRap, and (right) for
Bubble-TLDA (ξ = 0.8, Fth = 150 ks). Clearly, the improved node popularity calculation of TraLDA
on BubbleRap significantly reduces the traffic load in the hub nodes, while increasing the relay traffic
in majority of non-hub nodes.

Subsequently, we investigate the effect of a social impact factor (ξ) on Bubble-TLDA’
performance, particularly delivery latency and GINI index. In TraLDA, a social impact
factor (ξ) determines the weight of neighbours’ influences on the node’s global popularity.
From (16), when the social impact factor (ξ) decreases, the effect of neighbours’ importance
on the node’s popularity weakens, and thus the node’s popularity merely relies on its
own mobility pattern or sociability level in the social network. In Figure 11, we depict
the impact of varying social impact factor (ξ) on the GINI index and average delivery
latency in Reality and Sassy. As illustrated in Figure 11 (left), when the social impact
factor (ξ) increases, the GINI index in both scenarios decreases, with the reduction is more
obvious in Reality. This demonstrated that considering neighbours’ popularity influences
on the node’s global popularity computation indeed improves fairness in forwarding of
BubbleRap. However, increasing the social impact factor (ξ) lengthens the delivery time
in both scenarios. The greater the value of the social impact factor (ξ), the more traffic
is redirected from optimal paths (via hub nodes) to sub-optimal paths (through non-hub
nodes), which are often longer than the shortest routes (via hub nodes) to the destination.
Finally, for the case of message overhead ratio, Bubble-TLDA marginally rises BubbleRap’s
delivery cost in both mobility scenarios (Figures 8 and 9 (lower-right)). This implies that
reducing traffic in hub nodes, while increasing traffic in non-hub nodes shows a less impact
on the delivery overhead, i.e., Bubble-TLDA is able to maintain the total message copies as
high as BubbleRap.
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Figure 11. (left) Social impact factor (ξ) vs. GINI index, and (right) social impact factor (ξ) vs.
delivery latency of Bubble-TLDA for Reality (Fth = 150 ks) and Sassy (Fth = 2 ks). A social impact
factor represents the contribution of neighbours’ influence on the node popularity. A higher ξ leads
to a lower GINI index, but somewhat increases the delivery delay.

5.2.2. SimBet vs. SimBet-TLDA

For the last TraLDA’s analysis, we now consider SimBet routing [20]. SimBet uses two
distinct social properties, namely betweeness centrality and social similarity, to calculate
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node utility to a given destination. Both the SimBet’s utility metrics are calculated based on
a binary model of a social connection, where a value of “1” denotes that a pair of nodes
have known each other, and “0” otherwise. The binary social relationships may create
a substantial issue in forwarding fairness, since a node having large contacts with other
nodes will always be considered as the popular nodes regardless of time. Using the graph
with binary links, SimBet computes node betweeness centrality based on an ego-centric
network approach, since the global network topology information is unavailable for nodes
in MSNs. Node social similarity, on the other hand, is calculated as the number of common
encountered nodes between a pair of nodes. In the end, the SimBet utility of a node is
computed as the weighted combination of betweeness centrality and similarity, with a
parameter α which balances the two metrics’ respective relevance. However, for SimBet-
TLDA, we modify the calculation of node betweeness of SimBet with the calculation of
node global popularity of TraLDA using (16). Eventually, in Figures 12 and 13 we depict
the delivery performances of SimBet and SimBet-TLDA for Reality and Sassy, respectively.
For TraLDA’s social-relations parameters, namely friendship threshold (Fth) and social
impact factor (ξ), we again consider the similar settings used in the previous investigation
of Bubble-TLDA. Moreover, for both SimBet and SimBet-TLDA we choose a weighting
parameter α = 0.5, assigning an equal importance to the global popularity and social
similarity utilities in both Reality and Sassy.
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The major purpose of SimBet-TLDA is to enhance traffic load balancing across network
nodes, and as seen in Figures 12 and 13 (lower-left), the GINI index performance of SimBet-
TLDA can outperform that of SimBet. As previously stated, using binary relationships
to calculate node centrality makes a node’s utility relatively constant over time, ignoring
the dynamics of human behaviour. As a result, majority of network traffic is directed to
the most central nodes (hub nodes), creating a traffic imbalance in the network. A node’s
centrality in SimBet-TLDA, however, is determined by considering both the periodicity
of human activities as well as the centrality of the neighbours of the nodes. This can
reduce the traffic in the most central nodes and distributes the traffic more equitably across
the network nodes, indicated by the reduce of GINI index in both mobility scenarios.
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Furthermore, the GINI index reduction in SimBet-TLDA is more obvious in the case of
lower friendship thresholds (Fth). As described in Table 1, a lower friendship threshold
means the influence of more central nodes is wider in their neighbourhood, and hence,
many more less central neighbour nodes can increase their popularity and afterwards can
become good relays. Moreover, the reduction in GINI index slightly impacts the delivery
ratio, and SimBet-TLDA delivers messages to the destinations with a success rate as high
as that of SimBet. However, as in Bubble-TLDA, the GINI index reduction in SimBet-TLDA
increases the delivery time in both mobility cases. The explanation of this is similar to that
given in the Bubble-TLDA before, as follows: when SimBet-TLDA successfully reduces the
GINI index, some of traffic is diverted away from the shortest-paths (through hub nodes)
on to the sub-optimal paths (via non-hub nodes); in turn, increasing the average delivery
time. Finally, in terms of delivery cost performance, SimBet-TLDA performs as well as
SimBet in both scenarios, i.e., SimBet-TLDA creates (redundant) message copies as many
as SimBet in the network.
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Figure 13. Performance evaluation of SimBet and SimBet-TLDA (ξ = 0.8) for the Sassy mobility
scenario. Similar with the case in Reality, here SimBet-TLDA also improves the traffic fairness in the
network (indicated by the reduced GINI index), while keeping other delivery performances as high
as those of SimBet.

6. Conclusions

We presented TraLDA, a distributed framework aimed primarily at improving fairness
in forwarding among nodes in mobile social networks. In TraLDA, we introduce a novel
calculation of node popularity, a function of inherent and social-relations popularity. We
have demonstrated that TraLDA achieves this fairness, reducing the GINI index of Bub-
bleRap and SimBet, but at the expense of a slight increase of delivery delay of these routing
schemes. Given that mobile social networks are assumed to be delay-tolerant, the increased
delivery latency is a reasonable trade-off given the enhanced network traffic fairness and
lower resource use in the most popular nodes.

For future work, we believe that TraLDA can be incorporated with buffer congestion
control to further improve traffic load balancing across network nodes and simultaneously
avoid congestion mainly in the most popular nodes.
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