

Contents lists available at ScienceDirect

Microbial Pathogenesis

journal homepage: www.elsevier.com/locate/micpath

Expression of virulence factor genes in co-infections with *Trueperella pyogenes* isolates and other bacterial pathogens; an in vivo study

Iradj Ashrafi Tamai^a, Abdolmajid Mohammadzadeh^{a,*}, Taghi Zahraei Salehi^b, Pezhman Mahmoodi^a, Babak Pakbin^c

^a Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran

^b Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

^c Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

ARTICLE INFO

Keywords: Actinomycetes Virulence factors Gene expression Combined infections

ABSTRACT

Trueperella pyogenes is an opportunistic bacterial pathogen causing several infectious diseases, including metritis, mastitis and abscesses in domestic animals such as dairy cattle. Several virulence proteins are released by *T. pyogenes* strains contributing to the pathogenic and causing disease potential of this pathogen. So far, many aspects of *T. pyogenes* pathogenesis are unknown. In this study, expression levels of *plo*, *fimA*, *nanH* and *cbpA* genes encoding pyolysin, fimbriae, neuraminidase and collagen-binding protein, respectively in *T. pyogenes* isolated from totally 15 metritis, mastitis and cutaneous abscesses convenience samples in response to co-culture with other pathogens including *E. coli*, *St. dysgalactiae*, *S. aureus*, *F. necrophorum* and *L. plantarum* strains in mice study model have been investigated. We found that expression levels of *plo*, *fimA*, *nanH* and *cbpA* genes isolates in response to co-culture with *F. necrophorum* and *E. coli* were significantly increased; however, no significant changes was seen in the level of expression of these genes in the isolates in response to co-culture with *St. dysgalactiae* and *S. aureus*. Notably, expression of all virulence factor genes was suppressed in *T. pyogenes* in response to co-culture with *L. plantarum*. We observed that *L. plantarum* might be used to prevent infectious diseases caused by *T. pyogenes*.

1. Introduction

Trueperella pyogenes, formerly *Arcanobacterium pyogenes*, is a common inhabitant of skin and mucus membrane of respiratory and urinary tracts, as well as the gut microbiota of pigs and cattle [1]. These bacteria are opportunistic in nature causing mainly metritis, mastitis, abortion, abscesses, pneumonia and urine infections in different domestic and wild animals [2]. Reduced meat and milk production, reproductive failure and elimination of infected cattle from the herds are economic effects of *T. pyogenes* infections [3]. *T. pyogenes* has been seen co-infecting the host cells with other bacterial infectious agents such as *Escherichia coli, Streptococcus dysgalactiae* and *Fusobacterium* spp.; which could be improves pathogenesis and antimicrobial resistance of *T. pyogenes* isolates [4].

A set of virulence factors of *T. pyogenes* have been characterized. Pyolysin O (PLO, only hemolysin of *T. pyogenes*) protein is a cholesteroldependent exotoxin considered the main virulence and protective factor of this pathogen encoded by *plo* gene and been detected in all pathogenic *T. pyogenes* isolates. PLO has shown cytotoxic effect on polymorphonuclear neutrophils, erythrocytes, macrophages, endometrial stromal and epithelial cells; and mammalian red blood cells [5]. Four fimbrial proteins are related to adhesion, colonization and pathogenesis of this gram-positive pathogen, including *fimA*, *fimC*, *fimE* and *fimG* [6]. Neuraminidases, another virulence factor, promote adhesion of *T. pyogenes* to the receptors of cryptic host and mucosal epithelial cells, with an enzymatic role in the catabolism of sialic acid encode with *nanH* and *nanP* genes. These compounds are produced by both gram-positive and gram-negative pathogens, promote colonization, lead to reducing mucus viscosity and weakening the immune response as a protective virulence factor [7]. Collagen binding protein (which encoded by *cpbA*) an extracellular protein released by *T. pyogenes* mediated adherence and colonization of bacteria to collagen-rich tissue such as animal skin and udder [8].

The opportunistic nature of *T. pyogenes* has been related to different virulence factors, required to establish the acute disease, particularly in immunocompromised patients. Pathogenesis mechanisms of *T. pyogenes*

https://doi.org/10.1016/j.micpath.2022.105435

Received 11 August 2021; Received in revised form 25 January 2022; Accepted 30 January 2022 Available online 1 February 2022 0882-4010/© 2022 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Bu-Ali Sina University, Shahid Mostafa Ahmadi Roshan Street, Hamedan, Iran. *E-mail address:* Mohammadzadeh4@gmail.com (A. Mohammadzadeh).