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Z. Bodó, E. Szilágyi
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Estimating clique size by coloring the

nodes of auxiliary graphs
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University of Pécs, Pécs, Hungary
email: sszabo7@hotmail.com

Abstract. It is a common practice to find upper bound for clique number
via legal coloring of the nodes of the graph. We will point out that with a
little extra work we may lower this bound. Applying this procedure to a
suitably constructed auxiliary graph one may further improve the clique
size estimate of the original graph.

1 Introduction

A graph is called a finite simple graph if it has finitely many nodes and edges
and in addition it does not have any loop or double edge. Let G = (V, E) be a
finite simple graph. A subgraph ∆ of G is called a clique if each two distinct
nodes of ∆ are adjacent. If the clique ∆ has k nodes we call it a k-clique of G.
For each finite simple graph G there is a well defined integer k such that G

contains a k-clique but G does not contain any (k+ 1)-clique. This k is called
the clique number of G and it is denoted by ω(G). Each k-clique in G is called
a maximum clique of G. (For more background information and applications
of the clique problem the reader should consult with [2], [4], [6], [12].)
We color the nodes of G such that each node has exactly one color and

adjacent nodes cannot receive the same color. This type of coloring of the
nodes of G is called legal coloring. For each finite simple graph G there is a
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138 S. Szabó

well defined integer k such that the nodes of G can be legally colored using k

colors but the nodes of G cannot be legally colored using k− 1 colors. This k
is called the chromatic number of G and it is denoted by χ(G).
It is well-known that the problems of determining ω(G) or χ(G) belong to

the NP hard complexity class. (See [5].)
Many clique solver algorithms used in practice employ clique size upper

estimates to curtail the size of the search space. (See [1], [7], [8], [11], [13],
[15], [16].) Since ω(G) ≤ χ(G) holds it is a common practice to use a greedy
coloring procedure to locate a legal coloring of the nodes of G and use the
number of colors as an upper estimate for ω(G). We will point out that with
a little more extra work one can reduce this upper bound.
Using the given graph G we construct an auxiliary graph Γ such that an

upper estimate for ω(Γ) yields an upper estimate for ω(G). The new estimate
is typically better but it comes for a computationally higher price. We will
present two particular instances of such auxiliary graphs.

2 The basic procedure

In this section first we describe a procedure to estimate the clique size of a
finite simple graph G = (V, E). For the sake of easier reference we will call the
proposed procedure as the method of profiles. As a starting point we legally
color the nodes of G. We may use any coloring algorithm. (See [9], [3].) We
do not assume that the number of colors we use is optimal. Let C1, . . . , Cγ be
the color classes of the nodes. Set

U = C1 ∪ · · · ∪ Cp and W = Cp+1 ∪ · · · ∪ Cγ, (1)

where p = ⌊γ/2⌋. Let H and K be the subgraphs of G induced by the sets U
and W, respectively.
To a node u ∈ U we assign a quantity cdeg(u) called the clique degree of u.

We form the subgraph Lu induced in G by the subset N(u) ∩W of the nodes
of G. Here N(u) is the set of neighbors of u in G. We would prefer to set
cdeg(u) to be ω(Lu). But computing ω(Lu) maybe overly time consuming. So
we settle for an upper estimate of ω(Lu). We may use our favorite procedure
to find an upper estimate for ω(Lu).
Analogously, to a node w ∈ W we assign a clique degree cdeg(w). We

consider the subgraph Lw induced by the set N(w) ∩ U and cdeg(w) is an
upper estimate of ω(Lw).
For the remaining part of the description of the algorithm we assume that

the clique degrees of the nodes of G are at our disposal. We define a profile
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for the graph H which is a sequence of numbers α′

1, . . . , α
′

p. We set

αi = max{cdeg(v) : v ∈ Ci}, 1 ≤ i ≤ p.

Then we arrange the numbers α1, . . . , αp into a non-increasing order to get the
profile α′

1, . . . , α
′

p of H. In a similar fashion we construct a profile β′

1, . . . , β
′

q

for the graph K, where q = γ− p. We set

βi = max{cdeg(v) : v ∈ Ci}, p+ 1 ≤ i ≤ γ.

Finally we list the numbers βp+1, . . . , βγ in a non-increasing order to get the
profile β′

1, . . . , β
′

q of K.
After this phase of the algorithm the profiles of the graphs H and K are

available. We call an ordered pair

(r, s), 0 ≤ r ≤ p, 0 ≤ s ≤ q (2)

qualifying if each of the following inequalities

α′

1 ≥ s, . . . , α′

r ≥ s (3)

β′

1 ≥ r, . . . , β′

s ≥ r (4)

holds. We do not exclude the r = 0 possibility. In the r = 0 case the inequalities
(4) clearly hold and the condition (3) vacuously satisfied. Similarly, the s = 0

possibility is not excluded. When s = 0, the inequalities (4) obviously hold
and the requirement (4) vacuously satisfied.
We inspect the (p+ 1)(q+ 1) ordered pairs (r, s) in (2) in the order

(p− i, q), (p− i+ 1, q− 1), . . . , (p, q− i), 0 ≤ i ≤ p+ q

to find the quantity

t = max{r+ s : (r, s) is qualifying}. (5)

We claim that ω(G) ≤ t. We state and prove this result more formally.

Lemma 1 Let G = (V, E) be a finite simple graph having at least one node.
The quantity defined in (5) is an upper bound of the clique number of G.

Proof. Set k = ω(G). Clearly G must contain a k-clique ∆. Let U′ be the set
of nodes of ∆ that are in U and let W′ be the set of nodes of ∆ that are in
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W. Here U and W are the subsets of V defined in (1). Obviously, U′ ∩W′ = ∅
and |U′|+ |W′| = k. We distinguish four cases.

Case 1 U′ = ∅ W′ = ∅

Case 2 U′ = ∅ W′ 6= ∅

Case 3 U′ 6= ∅ W′ = ∅

Case 4 U′ 6= ∅ W′ 6= ∅

Since G has at least one node it must have a 1-clique. Thus k ≥ 1 holds and
so case 1 is not possible.
If U′ = ∅, then ∆ is a clique in the subgraph K of G induced by W. The

nodes of K are legally colored with q colors and so k ≤ q. Note that p = 0 and
the ordered pair (0, q) is a qualifying pair. It follows that q ≤ t. Thus k ≤ q

as required. This settles case 2. Case 3 can be sorted out in a similar way.
In case 4 the set of nodes of ∆ is equal to U′ ∪ W′. This means that the

unordered pair {u,w} is an edge of G for each u ∈ U′, w ∈ W′. Let r = |U′|

and s = |W′|. The subgraph Lu of G induced by N(u) ∩ W must contain an
s-clique. There are r choices for the node u ∈ U′. These choices show that the
inequalities (3) hold. Similarly, the subgraph Lw of G induced by N(w) ∩ U

must contain an r-clique. There are s choices for the node w ∈ W′. These
choices show that the inequalities (4) hold. Therefore the ordered pair (r, s) is
a qualifying pair. The inequality k ≤ r+ s holds for each qualifying pair (r, s).
Thus k ≤ t, as required. �

3 A small size example

In this section we work out a small example in details to illustrate the method
of profiles.

Example 2 Let us consider the finite simple graph G = (V, E) given by its
adjacency matrix in Table 1. A geometric representation of G is depicted in
Figure 1. The graph has 16 vertices and 39 edges.

Using the simplest greedy sequential coloring procedure we colored the nodes
of G legally. The procedure is presented in Table 2. The first column contains
the nodes of the graph G. The last column holds the colors of the nodes. A
column between the first and the last represents a partial coloring of the nodes
of G. The “←” symbol points to the pivot node. The node to which we are
assigning color at this phase. The “]” symbol after a color indicates that the
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Figure 1: A geometric representation of the graph G in Example 2.

pivot node is adjacent to this node and the marked color cannot be assigned
to the pivot node.
The color classes of the nodes are the following

C1 = {1, 5, 7, 10, 15}, C2 = {2, 3, 9, 11, 14}, C3 = {4, 6, 12, 16}, C4 = {8, 13}.

The coloring of the nodes gives that ω(G) ≤ 4. We try to reduce this upper
estimate. We set

U = C1 ∪ C2, W = C3 ∪ C4.

We computed the clique degrees of the nodes and the profiles of the graphs
H, K. The results are summarized in the first three arrays of Table 3. An
inspection of the qualifying pairs (r, s) reveals that ω(G) ≤ 3.
The inspection to decide if a given ordered pair (r, s) is qualifying or not is

summarized in the last array of Table 3. We assume that there is a complete
bipartite graph with independent sets A and B whose cardinalities are r and
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Figure 2: A graphical representation of the graph G in Examples 3 and 6.

s respectively and the graph of course has rs edges. Each of the r nodes of A
needs to have a clique degree at least r and each of the s nodes of B needs to
have clique degree at least r. These requirements are listed in a row labeled
by the word “needed”. The available clique degrees are listed in a row labeled
by the word “found”. Comparing these rows we can spot if the pair (r, s) is
not qualifying. We used a “+” sign to indicate when the needed and the found
clique degrees do not meet with the requirement.
We would like to emphasize that the method of profiles can produce an

upper estimate for ω(G) which is below χ(G). (Such an estimate is termed as
infra chromatic in the literature.) In order to exhibit such an example we note
that χ(G) = 4. Let us suppose on the contrary that χ(G) = 3. Let us order
the nodes of G as listed in the first column in the second array in Table 2. The
nodes 1, 3, 4 are the nodes of a 3-clique in G. We may color these nodes by
colors 1, 2, 3. After these choices the greedy coloring procedure will color the
nodes up to node 10 uniquely. For node 13 we must use an additional color.
The indirect assumption χ(G) = 3 leads to a contradiction.

4 The first auxiliary graph

Let G = (V, E) be a finite simple graph. Using G we construct a new graph
Γ1 = (W,F). We call Γ1 the first auxiliary graph associated with G. The nodes of
Γ1 are the ordered pairs (v, a), v ∈ V , 1 ≤ a ≤ 2. If the unordered pair {v1, v2}
is an edge of G, then the four pair-wise distinct distinct nodes (v1, 1), (v1, 2),
(v2, 1), (v2, 2) of Γ1 are the nodes of a 4-clique in Γ1. In other words if {v1, v2} ∈
E, then {w1, w2} ∈ F for each distinct w1, w2 ∈ {(v1, 1), (v1, 2), (v2, 1), (v2, 2)}.
We illustrate the construction of the auxiliary graph in connection with a

very small size toy example.
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1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 × • • • •
2 • × • • •
3 • × • • •
4 • • × • • • •
5 • • × • • • •
6 • • × • •
7 • • × • •
8 • • • × • • • •
9 • • • • × • • •
10 • • × • •
11 • • × • •
12 • • • • × • •
13 • • • • × • •
14 • • • × •
15 • • • × •
16 • • • • ×

Table 1: The adjacency matrix of the graph G in Example 2.

Example 3 Let us consider the finite simple graph G = (V, E) given by its
adjacency matrix in Table 4. A geometric representation of G is depicted in
Figure 2. The graph has 6 vertices and 8 edges.

A geometric representation of the auxiliary graph Γ1 can be seen in Figure
3. The adjacency matrix of Γ1 is given in Table 5. In fact two versions of the
adjacency matrix are given. The nodes of Γ1 are listed in different ways.
The clique numbers of the graphs G and Γ1 are related. This is the content

of the next lemma.

Lemma 4 Let G be a finite simple graph and let Γ1 be the associated auxiliary
graph. Then 2ω(G) ≤ ω(Γ1).

Proof. Set k = ω(G). The graph G contains a k-clique ∆. Let U be the set
of nodes of ∆. Let T = {(u, a) : u ∈ U, 1 ≤ a ≤ 2}. Clearly |T | = 2|U| = 2k.
Note that two distinct nodes (u1, a1), (u2, a2) in T are always adjacent nodes
in Γ1. �

Lemma 4 tells us that if t is an upper bound for ω(Γ1), then t/2 is an upper
bound for ω(G).
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1 1] 1] 1] 1 1 1 1 1] 1 1 1 1 1 1 1 1

2 ← 2 2 2] 2] 2 2] 2 2 2 2 2 2 2 2 2

3 ← 2] 2 2 2] 2 2 2 2 2] 2 2 2 2 2

4 ← 3] 3 3] 3] 3 3 3 3 3] 3 3 3 3

5 ← 1] 1 1 1] 1 1 1] 1 1] 1 1 1

6 ← 3 3 3] 3] 3 3 3 3 3 3 3

7 ← 1] 1 1 1] 1 1 1 1 1 1

8 ← 4] 4 4] 4] 4 4 4 4] 4

9 ← 2] 2 2 2] 2 2] 2 2

10 ← 1 1 1] 1] 1 1 1

11 ← 2] 2 2 2] 2 2

12 ← 3] 3 3] 3 3

13 ← 4] 4 4] 4

14 ← 2 2] 2

15 ← 1] 1

16 ← 3

1 1 1 1 1 1 1] 1] 1 1 1 1 1

3 2] 2 2 2] 2 2 2 2 2 2 2 2

4 3] 3] 3 3 3 3 3 3] 3 3 3] 3

7 ← 1] 1] 1 1 1 1 1 1 1 1 1

8 ← 2] 2] 2 2] 2] 2 2 2 2 2

11 ← 3] 3] 3 3 3 3 3 3 3

12 ← 1] 1 1 1] 1 1 1] 1

15 ← 2 2] 2 2 2 2 2

2 ← 3 3] 3] 3 3 3

9 ← 3] 3] 3] 3] 3

5 ← 2] 2 2 2

6 ← 1] 1 1

10 ← 2] 2

13 ← 4

14

16

Table 2: The greedy coloring of the nodes in Example 2.
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C1 C2

node 1 5 7 10 15 2 3 9 11 14
clique degree 1 1 1 1 1 1 1 1 2 2
maximum 1 2

C3 C4

node 4 6 12 16 8 13
clique degree 2 2 2 1 2 2
maximum 2 2

profile of H 2 1
profile of K 2 2

r = 2, s = 2

needed 2 2 2 2
found 2 1 2 2

+
r = 1, s = 2

needed 2 1 1
found 2 2 2

Table 3: The nodes with clique degrees and the profiles of H and K in Example
2.

1 2 3 4 5 6

1 × • • •
2 • × • •
3 • × • •
4 • • • × •
5 • • ×
6 • ×

Table 4: The adjacency matrix of the graph G in Examples 3 and 6.
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1 2 3 4 5 6 1 2 3 4 5 6

1 1 1 1 1 1 2 2 2 2 2 2

1,1 × • • • • • • •
2,1 • × • • • • • •
3,1 • × • • • • • •
4,1 • • • × • • • • • •
5,1 • • × • • •
6,1 • × • •
1,2 • • • • × • • •
2,2 • • • • • × • •
3,2 • • • • • × • •
4,2 • • • • • • • • × •
5,2 • • • • • ×
6,2 • • • ×

1 1 2 2 3 3 4 4 5 5 6 6

1 2 1 2 1 2 1 2 1 2 1 2

1,1 × • • • • • • •
1,2 • × • • • • • •
2,1 • • × • • • • •
2,2 • • • × • • • •
3,1 • • × • • • • •
3,2 • • • × • • • •
4,1 • • • • • • × • • •
4,2 • • • • • • • × • •
5,1 • • • • × •
5,2 • • • • • ×
6,1 • • × •
6,2 • • • ×

Table 5: The adjacency matrix of the auxiliary graph Γ1 in Example 3.

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

PPPPPPPPPPPPPPPPPPPPP

PPPPPPPPPPPPPPPPPPPPP

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

r r

r r

r r

r r

r r

r r

(6, 1)

(3, 1)

(2, 1)

(4, 1)

(5, 1)

(1, 1)

(6, 2)

(3, 2)

(2, 2)

(4, 2)

(5, 2)

(1, 2)

Figure 3: A graphical representation of the auxiliary graph Γ1 in Example 3.
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The chromatic numbers of the graphs G and Γ1 are not independent of each
other. This is the content of the next lemma.

Lemma 5 Let G be a finite simple graph and let Γ1 be the associated auxiliary
graph. Then χ(Γ1) ≤ 2χ(G).

Proof. Set k = χ(G). The nodes of G have a legal coloring using k colors.
The coloring of the nodes of G can be given by a function f : V → {1, 2, . . . , k},
where f(v) is the color of node v of G. Let

D = {(x, y) : 1 ≤ x ≤ k, 1 ≤ y ≤ 2}.

Clearly D has 2k elements. Using f we construct a function g : W → D by
setting g((v, a)) = (f(v), a) for each v ∈ V , a ∈ {1, 2}. We would like to verify
that g defines a legal coloring of the nodes of Γ1.
Let w1 = (v1, a1) and w2 = (v2, a2) be two distinct nodes of Γ1. Assume on

the contrary that w1, w2 are adjacent nodes in Γ1 and g(w1) = g(w2). Note
that g(w1) = g(w2) implies f(v1) = f(v2) and a1 = a2. As a1 = a2 it follows
that v1 and v2 are adjacent nodes in G. In this situation f(v1) = f(v2) cannot
hold. This contradiction shows that g defines a legal coloring of the nodes of
Γ1. Thus χ(Γ1) ≤ 2k, as required. �

Combining the results of Lemmas 4 and 5 gives that

2ω(G) ≤ ω(Γ1) ≤ χ(Γ1) ≤ 2χ(G)

and so
ω(G) ≤ [χ(Γ1)]/2 ≤ χ(G).

Thus [χ(Γ1)]/2 gives a better estimate for the clique number of G than χ(G)

does.
When G is a cycle of odd length, then χ(G) = 3 and χ(Γ1) = 5. There

are infinitely many cases with χ(Γ1)/2 < χ(G). In a typical application we do
not compute chromatic numbers instead using a greedy coloring procedure we
locate legal colorings for the nodes of G and Γ1. The number of colors we find
in this way are only upper estimates of the corresponding chromatic numbers.
Lemma 5 says nothing about the relation of these upper bounds. On the other
hand from the proof of Lemma 5 we can read off that if the nodes of G can
be legally colored using k colors, then this coloring can be extended to a legal
coloring of the nodes of Γ1 using 2k colors.
When we use a computationally not demanding greedy coloring algorithm

we may locate a legal coloring of the nodes of G and Γ1. Then using the number
of colors we establish two upper bounds for ω(G) and we can use the better
one.
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1 1 1 2 2 3 3 4

2 4 5 3 4 4 6 5

1,2 × • •
1,4 • × • • •
1,5 • × •
2,3 × • •
2,4 • • • × •
3,4 • • ×
3,6 ×
4,5 • • ×

Table 6: The adjacency matrix of the auxiliary graph Γ2 in Example 6.

5 The second auxiliary graph

Let G = (V, E) be a finite simple graph. Using G we construct a new graph
Γ2 = (W,F). We call this new graph the second auxiliary graph associated
with G. The nodes of Γ2 are the edges of G. Let w1 = {u1, v1}, w2 = {u2, v2}

be two distinct nodes of Γ2. Set U = {u1, v1, u2, v2}. Note that as w1 and w2

are distinct edges in G, the cardinality of U is either 3 or 4. If the subgraph
induced by the set U in G is a clique in G, then we connect the nodes w1 and
w2 by an edge in Γ2.
We work out the details of the construction of the auxiliary graph in con-

nection with a small size graph.

Example 6 Let us consider the finite simple graph G = (V, E) given in Ex-
ample 3.

A geometric representation of the auxiliary graph Γ2 is depicted in Figure 4
and Table 6 contains the adjacency matrix of Γ2.
The clique numbers of the graphs G and Γ2 are related. This is the content

of the next lemma.

Lemma 7 Let G be a finite simple graph and let Γ2 be the associated auxiliary
graph. Then [ω(G)][ω(G) − 1] ≤ 2ω(Γ2).

Proof. Set k = ω(G). The graph G contains a k-clique ∆. Let U be the set
of nodes of ∆. Let T = {{u, v} : u, v ∈ U,u 6= v}. Clearly |T | = |U|(|U|− 1)/2 =

k(k − 1)/2. Note that any two distinct nodes {u1, v1}, {u2, v2} in T are always
adjacent in Γ2. �
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Figure 4: A graphical representation of the auxiliary graph Γ2 in Example 6.

Using the method of profiles described in Section 2 we may establish that t
is an upper bound of ω(Γ2). By Lemma 7, [ω(G)][ω(G) − 1] ≤ 2t. Therefore
if t′ is the largest integer for which t′(t′ − 1) ≤ 2t, then t′ is an upper bound
for ω(G).
The chromatic numbers of the graphs G and Γ2 are not independent of each

other. This is the content of the next lemma.

Lemma 8 Let G be a finite simple graph and let Γ2 be the associated auxiliary
graph. Then 2χ(Γ2) ≤ [χ(G)][χ(G) − 1].

Proof. Set k = χ(G). The nodes of G can be colored legally using k colors.
The coloring can be given by a function f : V → {1, 2, . . . , k}, where f(v) is the
color of the node v of G. Set

D = {{x, y} : 1 ≤ x, y ≤ k, x 6= y}.

Obviously the cardinality of D is equal to k(k− 1)/2. Using f we construct a
function g : W → D defined by g({u, v}) = {f(u), f(v)}.
We would like to show that g defines a legal coloring of the nodes of Γ2.

Let w1 = {u1, v1}, w2 = {u2, v2} be two distinct adjacent nodes of Γ2. Let
U = {u1, v1, u2, v2}. Assume on the contrary that g(w1) = g(w2).
Let us consider the case when the cardinality of the set U is four. In this

case the nodes u1, v1, u2, v2 are pairwise distinct and they are nodes of a
4-clique in G. As {u1, v1} is an edge of G and f is a legal coloring of the nodes
of G it follows that f(u1) 6= f(v1). Similarly f(u2) 6= f(v2) must hold. From the
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assumption

g(w1) = {f(u1), f(v1)} = {f(u2), f(v2)} = g(w2)

we get that either
f(u1) = f(u2), f(v1) = f(v2)

or
f(u1) = f(v2), f(v1) = f(u2).

The unordered pairs

{u1, u2}, {u1, v2}, {v1, u2}, {v1, v2}

are edges of G. This violates the fact that f is a legal coloring.
Let us turn to the case when U has three elements. In this case we may

assume that u1 = u2 and v1 6= v2 since this is only a matter of renaming the
nodes. In this situation {v1, v2} is an edge of G. The g(w1) = g(w2) assumption
reduces to {f(v1)} = {f(v2)} and we get the contradiction that the end nodes of
the edge {v1, v2} are not legally colored. �

Let t be the largest integer for which t(t − 1) ≤ 2χ(Γ2). Combining the
results of Lemmas 7 and 8 we get

[ω(G)][ω(G) − 1] ≤ 2ω(Γ2) ≤ 2χ(Γ2) ≤ [χ(G)][χ(G) − 1]

and so ω(G) ≤ t ≤ χ(G). This means that using χ(Γ2) one gets a better
estimate for ω(G) than using χ(G).
J. Mycielski [10] proved the following result. For each positive integer n

there is a graph Mn such that ω(Mn) = 2 and χ(Mn) = n. Let G be Mn.
In this case the auxiliary graph Γ2 consists of isolated nodes. Thus χ(Γ2) = 1.
Now χ(Γ2) and the inequality [ω(G)][ω(G)−1] ≤ 2χ(Γ2) provide ω(G) ≤ 2. In
other words using χ(Γ2) we get the upper bound 2 for ω(G) while using χ(G)

we get n as an upper bound for ω(G).

6 Numerical experiments

In order to test the practical utility and feasibility of the method of profiles we
have carried out numerical experiments. In this section we describe the results
of these experiments.
The graphs we used are belonging to three families. However all test graphs

are coming from coding theory. Monotonic matrices are related to certain one
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 27 189 6 6 6 5 6 5

4 64 1 296 12 10 12 10 12 10

5 125 5 500 20 18 20 17 20 18

6 216 17 550 30 27 30 26 30 27

7 343 46 305 42 37 42 38 42 39

8 512 106 624 56 50 56 51 56 52

9 729 221 616 72 66 72 67 72 68

10 1 000 425 250 90 83 90 84 90 85

11 1 331 765 325 110 103 110 103 110 105

12 1 728 1 306 800 132 124 132 124 132 126

13 2 197 2 135 484 156 145 156 147 156 150

Table 7: Monotonic matrices, simple greedy coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 8 9 2 2 2 2 2 2

4 16 57 4 4 4 4 4 4

5 32 305 8 8 7 7 6 6

6 64 1 473 14 14 13 12 12 11

7 128 6 657 26 26 23 22 22 20

8 256 28 801 50 50 45 44 40 39

9 512 121 089 101 98 88 86 79 75

10 1 024 499 713 199 194 170 165 146 143

11 2 048 2 037 761 395 386 329 325 278 274

Table 8: Deletion error detecting codes, simple greedy coloring, first auxiliary
graph.
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

6 15 45 4 4 4 3 4 3

7 35 385 10 9 10 8 10 8

8 70 1 855 20 19 20 17 20 18

9 126 6 615 35 33 35 31 35 32

10 210 19 425 56 53 56 52 56 52

11 330 49 665 84 81 84 78 84 79

12 495 114 345 120 116 120 114 120 114

13 715 242 385 165 162 165 159 165 158

14 1 001 480 480 220 216 220 214 220 212

15 1 365 900 900 286 282 286 277 286 278

16 1 820 1 611 610 364 358 364 355 364 354

Table 9: Johnson codes, simple greedy coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 27 189 6 6 5 5 5 5

4 64 1 296 11 11 10 9 10 8

5 125 5 500 17 17 16 15 16 14

6 216 17 550 26 26 22 21 24 21

7 343 46 305 36 34 34 32 32 30

8 512 106 624 47 46 43 41 43 41

9 729 221 616 58 58 56 55 53 51

10 1 000 425 250 74 74 69 67 67 65

11 1 331 765 325 90 90 85 84 86 84

Table 10: Monotonic matrices, dsatur coloring, first auxiliary graph.
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n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

3 8 9 2 2 2 2 2 2

4 16 57 4 4 4 4 4 4

5 32 305 7 7 6 6 6 6

6 64 1 473 13 13 12 12 11 11

7 128 6 657 23 23 22 21 22 20

8 256 28 801 43 43 40 40 43 40

9 512 121 089 79 79 80 77 79 77

10 1 024 499 713 156 156 154 154 153 151

Table 11: Deletion error detecting codes, dsatur coloring, first auxiliary graph.

n |V | |E| ω1 ω̂1 ω2 ω̂2 ω4 ω̂4

6 15 45 4 4 4 3 3 3

7 35 385 9 9 8 8 9 8

8 70 1 855 17 17 16 15 15 14

9 126 6 615 29 27 28 26 28 28

10 210 19 425 46 46 44 43 43 42

11 330 49 665 67 67 63 63 62 62

12 495 114 345 99 99 90 89 87 85

13 715 242 385 132 132 121 120 122 121

14 1 001 480 480 172 172 153 153 160 160

15 1 365 900 900 221 221 201 201 206 205

Table 12: Johnson codes, dsatur coloring, first auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 27 189 10 5 10 5

4 64 1 296 37 9 32 8

5 125 5 500 113 15 103 14

6 216 17 550 273 23 257 23

7 343 46 305 565 34 542 33

Table 13: Monotonic matrices, simple greedy coloring, second auxiliary graph.
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n |V | |E| χ ω χ̂ ω̂

3 8 9 1 2 1 2

4 16 57 6 4 6 4

5 32 305 17 6 16 6

6 64 1 473 60 11 53 10

7 128 6 657 221 21 207 20

8 256 28 801 875 42 846 41

Table 14: Deletion error detecting codes, simple greedy coloring, second aux-
iliary graph.

n |V | |E| χ ω χ̂ ω̂

6 15 45 3 3 3 3

7 35 385 23 7 23 7

8 70 1 855 107 15 98 14

9 126 6 615 391 28 372 27

10 210 19 425 1 131 48 1 098 48

11 330 49 665 2 754 74 2 703 73

Table 15: Johnson codes, simple greedy coloring, second auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 27 189 10 5 10 5

4 64 1 296 31 8 31 8

5 125 5 500 83 13 75 12

Table 16: Monotonic matrices, dsatur coloring, second auxiliary graph.

n |V | |E| χ ω χ̂ ω̂

3 8 9 1 2 1 2

4 16 57 6 4 6 4

5 32 305 15 6 15 6

6 64 1 473 50 9 50 9

7 128 6 657 196 20 183 19

Table 17: Deletion error detecting codes, dsatur coloring, second auxiliary
graph.
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n |V | |E| χ ω χ̂ ω̂

6 15 45 3 3 3 3

7 35 385 23 7 22 7

8 70 1 855 111 15 101 14

9 126 6 615 340 25 323 24

Table 18: Johnson codes, dsatur coloring, second auxiliary graph.

error correcting codes. (The reader can find further details in [14].) A dele-
tion error occurs when a fixed length code word is loosing one letter during
transmission. The deletion error correcting codes are connected to this phe-
nomenon. Binary codes with fixed length code words with a specified number
of zeros are the Johnson codes. The graphs associated with these codes are
commonly used for testing clique search algorithm. (See for instance [6].)
The method of profiles is flexible in the sense that we are free to choose

any node coloring algorithm to construct a legal coloring of the nodes of the
original graph or the auxiliary graphs. In the numerical experiments we carried
out only two greedy coloring algorithms were employed. One of them is the
most commonly used simple greedy sequential coloring. The other one is the
dsatur coloring algorithm described in [3].
In Table 7 the first column contains the parameter n of the graph. This

parameter is related to the size of the alphabet over which the code is defined.
The columns labeled by |V | and |E| hold the numbers of the nodes and the
edges of the graph, respectively. The column headed by ω1 holds the clique
size estimate we get coloring the nodes of the original graph using the simple
greedy coloring algorithm. Here the number of the colors is the upper estimate
of the clique size. The column headed by ω̂1 holds the clique size estimate we
get coloring the nodes of the original graph using the simple greedy coloring
algorithm. This time the estimate of the clique size is the result of the method
of profiles.
The column labeled by ω2 refers to the clique size estimate we get coloring

the nodes of the first auxiliary graph using the simple greedy coloring algo-
rithm. Here half of the number of the colors is the upper estimate of the clique
size. The column labeled by ω̂2 refers to the clique size estimate we get col-
oring the nodes of the first auxiliary graph using the simple greedy coloring
algorithm. This time the estimate of the clique size is the result of the method
of profiles.
The column labeled by ω4 gives the clique size estimate we get coloring
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the nodes of the first auxiliary graph of the first auxiliary using the simple
greedy coloring algorithm. Here quarter of the number of the colors is the
upper estimate of the clique size. The column labeled by ω̂4 gives the clique
size estimate we get coloring the nodes of the first auxiliary graph of the
first auxiliary graph using the simple greedy coloring algorithm. This time the
estimate of the clique size is the result of the method of profiles.
Note that the number of the nodes of the first auxiliary graph is the double of

the number of the nodes of the original graph. We adopt the terminology that
the original graph is a 1-fold version of itself, the first auxiliary graph is a 2-fold
version of the original graph, and the first auxiliary graph of the first auxiliary
graph is a 4-fold version of the original graph. Using this terminology we may
say that the column labeled by ωb contains the clique size estimate based
on the b-fold version of the original graph not using the proposed procedure.
Further the column labeled by ω̂b contain the clique size estimate based on
the b-fold version of the original graph using the method of profiles.
Tables 8 and 9 exhibit analogous information as Table 7. In these tables the

graphs associated with monotonic matrices are replaced by graphs associated
with deletion error correcting and Johnson codes, respectively.
Tables 10, 11, 12 summarize similar results that are in Tables 7, 8, 9. The

only difference is that at these occasions the simple greedy coloring algorithm
is replaced by the dsatur coloring algorithm.
The first three columns in Table 13 are labeled by n, |V |, |E| record the

parameter, the number of the nodes, the number of the edges of the graph
associated with a monotonic matrix. The columns labeled by χ and ω contain
the number of colors produced by simple greedy coloring procedure applied
to the second auxiliary graph and the clique size estimate derived from this
number of colors, respectively. The last two columns labeled by χ̂ and ω̂ show
the reduced number of colors the method of profiles gives and the derived
clique size estimate, respectively.
Tables 14 and 15 present similar results as Table 13 the only thing which

has changed is that the graph associated with monotonic matrices are replaced
by graphs associated with deletion error correcting and Johnson codes.
Finally Tables 16, 17, 18 exhibit similar results as Tables 13, 14, 15 but this

time the simple greedy coloring procedure is replaced by the dsatur coloring
algorithm.



Estimating clique size by coloring the nodes of auxiliary graphs 157

References

[1] E. Balas, J. Xue, Weighted and unweighted maximum clique algorithms with
upper bounds from fractional coloring, Algorithmica 15 (1996), 397–412. ⇒138

[2] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The Maximum Clique
Problem, Handbook of Combinatorial Optimization Vol. 4, Kluwer Academic
Publisher, 1999. ⇒137

[3] D. Brélaz, New methods to color the vertices of a graph, Communications of the
ACM 22 (1979), 251–256. ⇒138, 155

[4] R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum clique
problem, Operation Research Letters 9 (1990), 375–382. ⇒137

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman, New York, 2003. ⇒138

[6] J. Hasselberg, P. M. Pardalos, and G. Vairaktarakis, Test case generators and
computational results for the maximum clique problem, Journal of Global Opti-
mization 3 (1993), 463–482. ⇒137, 155
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Cluj-Napoca, Romania
email: bordieszter@gmail.com

Abstract. Music information retrieval has lately become an important
field of information retrieval, because by profound analysis of music pieces
important information can be collected: genre labels, mood prediction,
artist identification, just to name a few. The lack of large-scale music
datasets containing audio features and metadata has lead to the con-
struction and publication of the Million Song Dataset (MSD) and its
satellite datasets. Nonetheless, mainly because of licensing limitations,
no freely available lyrics datasets have been published for research.

In this paper we describe the construction of an English lyrics dataset
based on the Last.fm Dataset, connected to LyricWiki’s database and
MusicBrainz’s encyclopedia. To avoid copyright issues, only the URLs to
the lyrics are stored in the database. In order to demonstrate the eligi-
bility of the compiled dataset, in the second part of the paper we present
genre classification experiments with lyrics-based features, including bag-
of-n-grams, as well as higher-level features such as rhyme-based and sta-
tistical text features. We obtained results similar to the experimental
outcomes presented in other works, showing that more sophisticated tex-
tual features can improve genre classification performance, and indicating
the superiority of the binary weighting scheme compared to tf–idf.
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1 Introduction

A central problem of music information retrieval (MIR) is the similarity search
of music tracks. Since in the last two decades online music streaming services
and music stores have become exceedingly popular, to facilitate the search
for similar music, recommender systems became vitally important too. Auto-
matic genre classification is considered an equally important problem, since
classification arises in simply browsing music by genre information as well as
in music recommendation.
The lack of large-scale music datasets containing audio features and meta-

data has lead to the construction and publication of the Million Song Dataset1

(MSD) [3] and its satellite datasets. However, as pointed out in [37] or [17], no
freely available large-scale lyrics dataset has yet been published for research,
mainly due to copyright problems. Although the musiXmatch dataset2 offers
hundreds of thousands of music tracks with lyrics given as bag-of-words vectors
[50], this representation narrows down its applicability.
In this paper we describe the compilation of an English lyrics dataset based

on the Last.fm Dataset, connected to LyricWiki’s database and MusicBrainz’s
encyclopedia. Because of the copyright issues mentioned earlier, the dataset
does not explicitly contain song lyrics, but LyricWiki page URLs pointing to
the lyrics. Beside the URL we also included the MusicBrainz ID of the track, if
found, together with album and release year information. In order to demon-
strate the eligibility of the compiled dataset we conducted genre classification
experiments with lyrics-based features, including bag-of-n-grams as well as
higher-level features such as rhyme-based and statistical text features. We ob-
tained results similar to the experimental outcomes presented in other works,
showing that sophisticated textual features can improve genre classification
performance, and indicating the superiority of the binary weighting scheme
compared to tf–idf (term frequency × inverse document frequency).
The remainder of this paper is structured as follows. In Section 2—without

striving for completeness—we review the works related to our research: MIR
datasets, lyrics collections and classification experiments performed using
these sets. Section 3 describes the process underlying the construction of the
dataset: the databases involved in the compilation procedure, the scheme of
the dataset, as well as some statistics. In Section 4 we present genre classifica-
tion experiments based on the lyrics of the music tracks, using bag-of-words,
n-grams, rhyme-based and statistical text features. Section 5 presents the con-

1http://labrosa.ee.columbia.edu/millionsong/
2http://labrosa.ee.columbia.edu/millionsong/musixmatch
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crete experimental settings and results, while Section 6 discusses the results
and concludes the paper.

2 Related work

Although the need for large-scale music information databases is of increasing
concern, only a few such resources are accessible for research or commercial
applications. One of the largest collection made available for MIR is the Mil-
lion Song Dataset [3] and its numerous complementary datasets. The work
[20] surveys the state-of-the-art problems in music analysis, and thus, it is
a thorough collection of related bibliographical references and datasets. An-
other recent and comprehensive work on MIR is [25], likewise containing a
large bibliography and references to associated datasets.
The authors of [4] have demonstrated by EEG experiments that the lyrics

and tunes of a song are processed independently in the brain, therefore one
can deduce that using textual features from the lyrics may improve the perfor-
mance of a genre classification system. Song lyrics evidently contain valuable
information—even the absence of the lyrics is an important clue when guess-
ing music genre. All the information we obtain from the lyrics as textual data
are inherently present in the audio signal. However, extracting lyrics directly
from the audio data is still a very difficult task [15]. Therefore, we rely on the
different versions that can be found in specific databases or on the Internet,
the results of independent voluntary transcription procedures undertaken by
different persons, in most cases. Thus, it is not uncommon to find a few differ-
ences because of different spellings, marking of chorus or verses, annotation of
background voices, abbreviations, censored words, etc. In [26] the alignment
of song lyrics is accomplished by multiple sequence alignment in order to elim-
inate typographical errors. These and related problems, however, can be over-
come by community maintenance [48]. Hence, using a community-maintained
lyrics database such as LyricWiki might prove to be more accurate.
It is important to mention the seminal work of [59] on genre recognition

based on audio features. The paper introduces the famous GTZAN dataset3,
which despite of its inaccuracies [55] it is widely accepted and used. Other
prevalent collections are the ISMIR 20044 and the CAL5005 datasets. We also
mention here some of the recent works on audio feature based music genre

3http://marsyasweb.appspot.com/download/data_sets/
4http://ismir2004.ismir.net/genre_contest
5http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets
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recognition using convolutional neural networks [30, 12, 14, 47, 8], deep neural
networks [53], deep belief networks [21] and multiscale approaches [13]. For an
excellent presentation of these and similar approaches we direct the reader to
[24].
In [38] the problems of music genre classifications are studied and analyzed:

ambiguities and subjectivity inherent to genre, album rather than individual
recording labeling, relatively frequent emergence of new genres, etc. It is also
emphasized the importance of assigning multiple genre labels to music tracks,
as this would result in a more realistic evaluation of classification systems.
Bag-of-words features are combined with rhyme, part-of-speech (POS) and
statistical text features in [36] for genre classification. The experiments are
performed on a collection of 397 randomly sampled songs distributed among
ten genres. The source of the lyrics data was not revealed in the paper. In
[31] genre classification in the MSD is performed based on various feature
types: audio (timbre, loudness and tempo), textual (bag-of-words, emotional
valence) and combined features. Learning is accomplished via regularized mul-
ticlass logistic regression. The work [17] presents genre and best vs. worst
music classification and release date prediction experiments using n-gram fea-
tures extended with other higher-level features, including POS tags, rhymes,
echoisms, semantic fields, etc. The experiments are carried out on a dataset
built by the authors specifically for the targeted classification tasks, in which
lyrics, genre information, album ratings and release dates were obtained from
different online databases. The F1 scores obtained in our experiments are very
similar to their results.
The differences between poetry, song lyrics and other articles are studied

in [54] using the adjectives extracted from the text. The presented method
is also able to differentiate between poetic lyricists and non-poetic ones. The
source for the lyrics data is not specified in the article. The authors of [10]
perform lyrics-based mood prediction in the MSD using various term weight-
ing schemes and find no statistically significant differences in the accuracy
results. In [9] music subject classification based on lyrics and user interpreta-
tions are compared. The data was obtained from songmeanings.com and song-
facts.com. Mood classification is studied in [33] using the lyrics of music tracks.
The authors also study the relation between features and emotions to identify
the most discriminative features for each quadrants. The lyrics data used in
the experiments was collected using lyrics.com, ChartLyrics and MaxiLyrics,
the tracks being annotated manually. The work [56] discusses evaluation ap-
proaches in music genre recognition, but also contains a useful list of existing
datasets.
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As the number of recent publications show, the lyrics collection provided
by LyricFind6—through a signed research agreement—is becoming more and
more popular. This is usually used together with the iTunes Search API7

to obtain genre and other meta-information about the songs. It also has a
bag-of-words version similar to musiXmatch, containing the bag-of-words rep-
resentation of 275 905 lyrics.8 In [16] lexical novelty of song lyrics is studied,
and the authors find the already suspected fact that top-100 music is less lex-
ically innovative than less popular music. A lyrics-based network is built to
analyze musical relationships over time in [2]. It is observed that self-reference
correlates highly with influence, the most central genres being jazz, pop and
rock. LyricFind’s collection is used in [58] as well, and a hierarchical attention
network is applied to classify genre based on song lyrics in two scenarios, us-
ing 117 and 20 classes, respectively. The learning model allows to inspect the
importance of words, lines and segments in lyrics.
The recent work [60] presents the construction of the ALF-200k dataset

including 176 audio and lyrics features of more than 200 000 music tracks,
together with their occurrence statistics in user playlists. Using the different
sets of features the authors perform playlist membership prediction by adding
random tracks originally not belonging to the playlist. Connecting with other
databases it would be intriguing to perform genre classification experiments
using these features too.
As related work shows, since no standard lyrics dataset can be found to

work with, almost every study uses its own data, comparison between different
methods being utterly complicated. This was the main reason behind building
the collection connecting the Last.fm Dataset to LyricWiki and MusicBrainz.
LyricWiki was chosen over other similar databases because of the advantages
of community maintenance. To avoid copyright issues, instead of the actual
verses only the LyricWiki URLs of the lyrics were included. We also publish
unigram, bigram and trigram versions of this dataset, i.e. containing the n-
gram representation of the lyrics. In order to validate the usage of the compiled
dataset, genre classification experiments are presented in the second part of
the present paper.

6http://lyricfind.com/
7http://apple.co/1qHOryr
8https://www.smcnus.org/lyrics/
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3 Construction of the lyrics dataset

3.1 The Million Song and the Last.fm Dataset

The Million Song Dataset is a free collection of audio features and metadata for
one million contemporary music tracks. It was released for research purposes
in 2011 by the Laboratory for the Recognition and Organization of Speech
and Audio (LabROSA) department of the Columbia University9 in collabo-
ration with The Echo Nest10. MSD is more than a single dataset, it is also a
cluster of many spin-off datasets11: SecondHandSongs (cover songs), musiX-
match (lyrics), Last.fm (song-level tags and similarity), Taste Profile (user
data), thisismyjam-to-MSD mapping (user data), tagtraum genre annotations
(genre labels), Top MAGD dataset (genre labels).
The Last.fm Dataset12 is a complementary set of MSD, containing song tags

and similarity information, built in collaboration with Last.fm13, an online
music database and music recommendation system. Last.fm also provides an
API for metadata retrieval14, also used by us to connect and extend the Last.fm
Dataset.
Last.fm data (i.e. tags, musical samples, etc.) has been used in numerous

experiments. An interesting work we mention is [35], in which the authors
analyze the evolution of popular music and musical revolutions identifiable
in the collected data, using data mining techniques such as latent Dirichlet
allocation and novelty detection.

3.2 LyricWiki

LyricWiki15 is a community-maintained lyrics database, offering music meta-
data services, released in 2006.
In March 2013 it was the seventh largest MediaWiki installation16, and as

of August 2018 contains over two million pages. LyricWiki also provided a web
API for searching songs and lyrics, however, due to licensing restrictions, in

9http://labrosa.ee.columbia.edu/
10http://the.echonest.com/
11http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets
12http://labrosa.ee.columbia.edu/millionsong/lastfm
13http://www.last.fm
14http://www.last.fm/api
15http://lyrics.wikia.com/wiki/LyricWik
16https://en.wikipedia.org/wiki/LyricWiki
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2016 the API has been discontinued.17 Interestingly, as of December 2018, the
API18 is again functional.

3.3 MusicBrainz

MusicBrainz19 is an open online music encyclopedia of music metadata
launched in 2000 [57]. As of 2018, the database, more precisely its recording
index, contains over 19 million entries, being one of the largest such databases.
MusicBrainz provides a web service20 for metadata retrieval too.
The web API was used by us to obtain additional release information about

a song.

3.4 Building the dataset

The Last.fm Dataset contains 839 122 training and 104 212 test records.21 We
succeeded in using 224 762 (199 217 training and 25 545 test) data, i.e. we
managed to find the lyrics of that many songs in LyricWiki’s database.
The dataset consists of tracks, where every track is identified by a unique

Echo Nest ID. Beside the ID, every track has the following fields: artist, title,
timestamp, similars, tags. The timestamp stores the date of creation. Similar
tracks are enumerated as a list of tuples, containing the ID of the proximal
track along with a similarity, a scalar value between 0 and 1. Similarly, the
assigned tags are given as a list of tuples, consisting of a tag name, e.g. “rock”,
and a relevance value, an integer between 0 and 100.22

The timestamp and similars fields were removed from the tracks, however,
if needed, one can easily retrieve this information by connecting our dataset
to the Last.fm Dataset using the track ID. Only tags having a relevance value
greater than or equal to 50 have been kept. Such a step is motivated by the
fact that tracks have been tagged quite freely by the Last.fm users, therefore,
one can also find some strange ones, as shown in Table 1. Thus, we considered
a tag relevant only if at least 50% of the time it was assigned to the track.

17In 2015, using the API, we managed to connect the Last.fm Dataset to LyricWiki pages,
using the artist’s name and the title of the song.

18http://lyrics.wikia.com/api.php
19http://musicbrainz.org/
20http://musicbrainz.org/doc/Development/XML_Web_Service/Version_2
21The dataset had been downloaded on 12.05.2016 and had contained a total of 943 334

files, 13 tracks less than the value published on the official site of the dataset.
22A value of r means that in r% of the cases the respective tag was assigned to the track

by the users.
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what I want to hear at my funeral super happy feel good
vagany one of the best solos

amaaazzzinnnggg songs to fall asleep to in a good way
banging the head on the wall betterfriend
soooooo beautiful I died again holy riffs

Table 1: Some random tags from the Last.fm Dataset with frequency 1.

Artist queried: Queen & David Bowie
Song queried: Under Pressure (Rah Mix)

(Radio Edit) (1999 Digital Remaster)
Artist returned: Queen
Song returned: Under Pressure

Table 2: Answer returned by LyricWiki for track TRTTPMY128F4258EAC.

We encountered only one case where the relevance value did not exceed this
threshold and it happened for track TRQXIYJ128F930A292 from the training
set—we left this record in the dataset with its maximum-valued tag.23

3.4.1 The lyrics

The url field contains the LyricWiki link of the lyrics. This LyricWiki page
URL was obtained by using the LyricWiki API. LyricWiki returns the artist
name, the song title, a short snippet of the lyrics and the link to the page
containing the full lyrics and song information. There were three cases when
the respective track was omitted from the dataset: not found, instrumental
or not English. The language of the lyrics and the release information can be
deduced from the page of the full lyrics.
Because lyrics of musical tracks are proprietary work, in most of the cases its

publication are forbidden, therefore, we only offer the LyricWiki page where
the lyrics can be extracted from, and n-gram datasets (up to trigrams) from
which the lyrics cannot be reconstructed.
The artist name and song title returned by LyricWiki API can differ from

the queried data, probably because of the preprocessing steps built into the
search engine. Though we have not found any documentation regarding the

23The track in question is Bobby Brown’s song, ‘Pretty Little Girl’, and is assigned only
two tags, namely ‘killer shredding’ with a relevance score 2 and ‘mod psych’ along with a
value of 0.
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indexing/search operations, we have found evidence of text normalization.24

An example is shown in Table 2. Because of these differences we decided to
also store the returned data in the artist new and title new fields, respectively.

3.4.2 Release information and MusicBrainz IDs

We decided to extend the dataset by including release information (album and
release year) for each song, and also to store the MusicBrainz IDs25 (MBIDs)
of the tracks.
The MSD comes with additional databases including a metadata SQLite

database26, containing metadata information such as song title, release, year,
etc. Our album and year fields correspond to the release and year fields of
this database. Sometimes release information occurred on LyricWiki pages,
suggesting also that the respective track appeared on multiple releases. If
found, using the first release mentioned on the page, this forms the content
of the album new field. In case this information was not to be found on the
LyricWiki page, we made additional efforts to obtain it from the MusicBrainz
encyclopedia. In order to connect MusicBrainz, we first performed a search
with the Last.fm API using the artist name and song title from the Last.fm
dataset, and then another search using the retrieved song and artist informa-
tion by LyricWiki. In this way we obtained two MusicBrainz identifiers for
each track, and stored it in the mbid and mbid new fields, respectively. Know-
ing the MBID of a music track it is simple to query its releases, from which
we stored the title of the first one in the album new field.
For getting the release year of the track we acted similarly: if the year

was found on the LyricWiki page, that one was stored in the year new field,
otherwise it was queried from MusicBrainz.
In some cases differences in artist names, song and album titles are due

to slight spelling discrepancies. However, of course, incomplete information—
on either side—can also cause it. The differences may also arise from multiple
releases of the same song: original song/original album, live edition/concert al-
bum, remixed version of the song, compilation album, etc. Errors, mismatches
can also appear in such databases. The used databases, however, were not

24For example, searching for ‘Déjà Vu’ by ‘The Tear Garden’, ‘Deja Vu’ is found
and returned—of which, surprisingly, the returned form without diacritical marks is the
correct song title (https://www.discogs.com/Tear-Garden-Tired-Eyes-Slowly-Burning/
master/7843).

25https://musicbrainz.org/doc/MusicBrainz_Identifier
26http://labrosa.ee.columbia.edu/millionsong/pages/getting-dataset
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"TRFDMMO128F424D545 ": {

"mbid": "ed3dccc3 -e47b -4c81 -90be -fdd7e820647a",

"mbid_new ": "ed3dccc3 -e47b -4c81 -90be -fdd7e820647a",

"title ": "6:00" ,

"title_new ": "6:00" ,

"artist ": "Dream Theater",

"artist_new ": "Dream Theater",

"album ": "Awake",

"album_new ": "Awake",

"year": "1994" ,

"year_new ": "1994" ,

"url": "http :// lyrics.wikia.com/Dream_Theater :6:00" ,

"tags": [[" Progressive metal", "100"]]

}

Figure 1: Sample data from our dataset.

checked against a ground-truth dataset, therefore, no such information can be
reported by us.
Summing it up, the Echo Nest ID being the key, the fields of a record in the

dataset are the following:

• mbid – MusicBrainz ID returned by the Last.fm API for the artist and
track name as given in the Last.fm Dataset (or MSD)

• mbid new – MusicBrainz ID from the Last.fm API for the artist and
track name as returned by LyricWiki

• title – title of the song according to MSD

• title new – title of the song returned by LyricWiki

• artist – artist according to MSD

• artist new – artist returned by LyricWiki

• album – album/release name according to MSD

• album new – album/release name extracted from LyricWiki/using the
Last.fm and MusicBrainz API

• year – release year according to MSD

• year new – release year extracted from LyricWiki/using the Last.fm and
MusicBrainz API

• url – LyricWiki URL of the song’s lyrics

• tags – list of the tags assigned to the track filtered by the relevance value
(≥ 50)

A sample data is shown in Figure 1.
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Training data Test data

album 0 0

album new 6858 1088

year 31 452 4323

year new 34 363 4787

mbid 27 254 3446

mbid new 14 070 2137

Table 3: Counts of missing fields in the dataset.

(a) (b)

Figure 2: Word clouds of the (a) 100 most frequent tags and (b) 100 most
popular artists.

3.5 Removal of duplicates and some statistics

As mentioned at the beginning of Section 3.4, linking the Last.fm dataset with
LyricWiki pages we obtained 224 762 track records. According to millionsong’s
blog entry “The 921,810 song dataset – duplicates”27, duplicate songs have
been found in the MSD, which also affects the Last.fm Dataset. Using the of-
ficial duplicate list of the MSD28, we removed 27 529 records from the training
and 3164 records from the test dataset. Therefore, our final dataset contains
171 688 and 22 381 (a total of 194 069) records.29

Table 3 shows the statistics of missing fields in the dataset.
In Figure 2 the most frequent tags and artists are shown, while the his-

tograms of Figure 3 show the distribution of lyrics over years—as expected, a

27http://labrosa.ee.columbia.edu/millionsong/blog/11-3-15-921810-song-dataset-

duplicates
28http://labrosa.ee.columbia.edu/millionsong/sites/default/files/

AdditionalFiles/msd_duplicates.txt
29The dataset, under research-only, non-commercial license, is available for download at

http://www.cs.ubbcluj.ro/~zbodo/lastfm.html.
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Figure 3: Distribution of lyrics over years in: (a) training data using year,
(b) test data using year, (c) training data using year new, (d) test data using
year new.

steep increase can be observed in the amount of available lyrics over time.

4 Lyrics-based genre classification

Determining the genre of a music track is considered to be an important task
in MIR, which can be viewed as a special case of the music similarity problem.
To assign genre labels to a song is a difficult task even for human annotators,
because there are no clear and precise definitions of genres, thus often yield-
ing subjective classifications. However, we mention that genre information is
usually assigned to an artist or an album, rather than to a musical piece,
which would be preferable. As pointed out in [38], musical genre classifica-
tion should be based on numerous, complex features, including low-level, e.g.
timbre-based features, but also high-level, e.g. cultural features. In [4] the au-
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thors conducted experiments to demonstrate whether the lyrics and tunes of a
song are processed independently in the brain. The analyzed electroencephalo-
gram recordings showed that semantic and musical incongruities indeed do not
affect each other. Hence, assuming that the lyrics can contain genre-related
information, using lyrics-based textual features may have beneficial effects on
classification.
For a general and also detailed discussion of music genre classification see

[38].
In this section we describe a lyrics-based genre classification approach sim-

ilar to [36, 31, 17]. The main goal of this experiment is to demonstrate the
utility of the compiled dataset.

4.1 Choosing the genres

In order to use the dataset in some experiments the problem of musical genre
classification, or more generally thematic categorization of lyrics was chosen
[32, 38, 36, 17]. As it was already shown in Tables 1 and 2(a), the dataset
contains a large variety of tags, ranging from genre related to other diverse
descriptive labels. More precisely, the 194 069 records are assigned a number
of 76 746 different tags, using the reduced tag lists. To perform a supervised
learning task, we decided to choose only a subset of these, possibly denoting
musical genres.
Determining a good taxonomy of musical genres is itself a difficult problem,

and almost all online music stores and retailers use a different genre hierarchy.
Thus, we were not able to find a suitable taxonomy consisting of a smaller
number of meta genres, and decided to randomly select some of the most
popular tags from our dataset (see Figure 2(a)). On how to derive better,
objective genre taxonomies see the works [43] and [51].
Because of the almost limitless freedom given for the users in tagging, not

all tags convey genre information about a song in the Last.fm Dataset. But,
as described in Section 3.4, we used a threshold of 50 when deciding whether
to keep a tag for a track. Thus, we expect that most of the time the remaining
tags are valid, consisting of genre annotations and not deliberately misleading
labels as described in [6].
The chosen tags—and the corresponding data counts—are the following:30

• rap: 2972 training, 451 test data (28th most popular tag)

30In order for the experiments to be reproducible, we mention that for each tag we required
an exact match with case insensitivity.
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• reggae: 1608 training, 178 test data (56th most popular tag)

• jazz : 3300 training, 339 test data (26th most popular tag)

• punk : 6760 training, 551 test data (8th most popular tag)

• country : 6360 training, 866 test data (9th most popular tag)

• folk : 6074 training, 831 test data (11th most popular tag)

• pop: 14267 training, 1855 test data (3rd most popular tag)

• classic rock : 6413 training, 482 test data (12th most popular tag)

• electronic: 5851 training, 851 test data (13th most popular tag)

The genres were chosen quite randomly, but some extra care was taken not
to produce an extremely skewed distribution among the classes. This is the
reason, for example, behind choosing classic rock instead of the rock label.
Thus, we are given a total of 60 009, i.e. 53 605 training and 6404 test data

distributed unevenly among the 9 classes. The only non-overlapping class pairs
are reggae and country, whilst the largest overlap of 643 (training and test)
records happens between classes pop and electronic.

4.2 Choosing the features

4.2.1 N-grams

The bag-of-words model is a successful representation in information retrieval,
which, despite its simplicity, yields surprisingly good results in categorizing
text documents [50, 1]. The main drawback of the model is the assumption of
independence between the words, but its effectiveness indicates that most of
the time one can determine the category based on specific keywords, or more
precisely by the distribution of these keywords. A somewhat better model
that takes into account the word order is the n-gram representation [18]. In
the experiments we successively extended the bag-of-words representation—
i.e. the unigram model—with bigrams and trigrams.

4.2.2 Rhyme features

Can rhyme schemes be used to discriminate between musical genres? This is
the question we wanted to answer by including rhyme features into the lyrics
representation.
The Merriam-Webster dictionary gives us the definition of rhyme as the “cor-

respondence in terminal sounds of units of composition or utterance (as two or
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i i+ 1 i+ 2 i i+ 1 i+ 2 i+ 3

(a)

i i+ 1 i i+ 2 i i+ 3 i+1 i+ 2 i+1 i+ 3 i+2 i+ 3

(b)

Figure 4: Rhyme features: (a) n-gram rhymes (ns = 3, ne = 4), (b) pairwise
rhymes (nm = 4).

more words or lines of verse)”31, while the authors of [49] define rhyming as fol-
lows: “two words rhyme if their final stressed vowels and all following phonemes
are identical”. In our more primitive interpretation, two words rhyme if their
last syllables are similar, and we will use this definition in building the rhyme
features. The last two definitions, however, are incomplete: to find the rhyme
scheme of a stanza one should also consider that a rhyme may span more words
or syllables in line [22, 49]. Nonetheless, because of the relatively rare occur-
rences we decided not to consider these cases. Internal rhymes can also appear
in song lyrics [22, 17], however, these do not influence the rhyme scheme. The
authors of [17] used these kind of rhymes too to build lyrics-based features,
calling them echoisms.
To find rhyming words in lyrics using our definition from above three com-

ponents and a threshold are needed:

(a) hyphenator,

(b) phonetic algorithm,

(b) string similarity,

and a threshold for considering two syllables sufficiently similar. For deter-
mining the syllables the hyphenation method of OpenOffice and LibreOffice
was used [42], representing the pronunciation of the last syllable was real-
ized using the phonetic algorithm of Soundex [27], and for comparing these
pronunciations we selected the Levenshtein distance [29, 19].
Two rhyme feature sets were used: an n-gram rhyme set, parametrized by ns

and ne, and a pairwise rhyme set parametrized by nm.
32 The n-gram rhyme

set starts with rhyme schemes of length ns and continues to build features

31Full definition of rhyme (2a), http://www.merriam-webster.com/dictionary/rhyme.
32The denomination n-gram is not the best here, since it does not fully reflect the nature

of this feature, but hopefully the example given will clarify the vagueness.
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number
of verses

number
of rows

average no.
of words
in rows

rap (9.5918, 72.7481, 8.7017)
classic rock (7.1029, 33.0973, 6.6492)

Table 4: Example of statistical text feature vectors.

until length ne, as shown in Figure 4(a). A feature is thus described by k

binary values, k = ns− 1, ns, . . . , ne− 1, each value indicating the presence or
absence of a rhyme. For example, from the alternating rhyme scheme ABAB—
assuming it was correctly recognized—we obtain the following features with
ns = 3, ne = 4: (0, 1) (this will appear twice, because of ABA and BAB show
the same pattern), (0, 1, 0). The other rhyme feature set checks for pairwise
rhymes between the i-th and (i + k)-th row of the lyrics independently, k =

1, 2, . . . , nm − 1, for all i. In contrast to the previous rhyme feature set, these
features are encoded by pairs describing the distance between the row indices
and the binary value showing whether or not a rhyme was found. Thus, using
the same example as before, we get the following pairwise rhyme features using
nm = 4: (1, 0) (three times, for indices (0, 1), (1, 2), (2, 3)), (2, 1) (twice, for
indices (0, 2) and (1, 3)), and (3, 0) (for the pair (0, 3)).

4.2.3 Statistical text features

Statistical text features—number of verses, average number of words in a row,
etc.—are useful characteristics when classifying lyrics [36]. One could expect
for example that the lyrics of a rap song is longer in average than the lyrics of a
rock or pop song, which indeed turns out to be true. Comparing the averages
of number of verses, number of rows and average number of words in rows
between tracks of rap and classic rock we get the results shown in Table 4.
In our experiments we used the following 14 statistical text features: number

of verses, number of rows, average number of words in rows, average word
length, number of special characters (!, ., ?, :, ;, -, ,, ’, "), average frequency
of numbers in the rows of the lyrics.

5 Experimental results

By performing the experiments we wanted to show the following: (i) n-gram
features alone can yield good results, (ii) using rhyme and statistical text
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Features Micro F1 Macro F1
Unigrams, TF–IDF 48.47% 46.47%
Unigrams, frequency 50.02% 46.83%
Unigrams, binary 52.24% 50.30%
Unigrams (1000/class), binary 52.11% 49.44%

Uni + bigrams, TF–IDF 49.32% 48.03%
Uni + bigrams, frequency 50.26% 48.41%
Uni + bigrams, binary 54.50% 52.77%

Uni + bi + trigrams, TF–IDF 50.69% 48.56%
Uni + bi + trigrams, frequency 51.77% 49.42%
Uni + bi + trigrams, binary 56.61% 54.53%

Table 5: Micro and macro F1 scores obtained using logistic regression.

Features Micro F1 Macro F1
Rhyme + statistical text features 37.19% 22.44%
+ uni+bi+trigrams (binary) 57.59% 54.99%

Table 6: Micro and macro F1 scores obtained using logistic regression with the
new feature set alone and by augmenting the unigram, bigram and trigram
feature set with it.

features can improve on the performance of the classifier. The goal was to
approximately reproduce the experiments described in [36] and [17], and show
the usefulness of the newly compiled dataset.
We applied a single-label classifier for learning [52], namely logistic regres-

sion [11, 5], using the scikit-learn Python library33. As mentioned in the pre-
vious section, we had slightly overlapping categories, which means that better
results could have probably been achieved by using a ranking classifier and
finding good thresholds for the categorization status values [52]. As for prov-
ing the above-mentioned two claims we needed no multilabel classifier. In our
experiments, for every track the most frequent tag was used as its label. Thus,
we are given 50 622 and 6113 test data.
To evaluate the models, micro- and macro-averaged F1 scores were calculated

[34].
Table 5 shows the results obtained using only n-gram features. We ex-

perimented with three weighting schemes: term frequency, tf–idf and binary
weights [52, 34]. With unigrams we obtained 171 207 features, with unigrams

33http://scikit-learn.org/
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Genre Uni+bi+trigram Uni+bi+trigram+rhyme

and stat. text features

1 rap 87.83% 88.36%
2 reggae 45.45% 42.67%
3 jazz 53.47% 54.07%
4 punk 48.33% 49.60%
5 country 65.26% 65.41%
6 folk 47.74% 47.61%
7 pop 61.79% 63.22%
8 classic rock 39.41% 40.63%
9 electronic 41.52% 43.34%

Micro-averaged 56.61% 57.59%
Macro-averaged 54.53% 54.99%

Table 7: F1 scores for each genre for the unigram, bigram and trigram model
and the same representation augmented with the rhyme and statistical text
features.

and bigrams 3 845 117, while using unigrams, bigrams and trigrams together
a total of 16 433 472 features were obtained.34

Table 6 shows the results obtained first by using the rhyme and statistical
text features only, and in its second row the scores achieved by augmenting the
n-gram document vectors with the rhyme and statistical text features. Table
7 lists the F1 results for each genre separately.
The parameters of generating the features described in Section 4.2.2 were

ns = 4, ne = 5, nm = 7. Together with the statistical text features the new
feature set has a cardinality of 36 + 14. Finding the rhymes was performed
using the Soundex algorithm.35 The outputs of this algorithm, the phonetic
representations of the input words—more precisely, of the last syllable of the
input words—have to be used as inputs of a similarity or distance function with
a predetermined threshold. For this we used normalized Levenshtein distance
with threshold 0.7.36 We mention that none of the parameters used in the
experiments were selected using cross-validation or a similar procedure, there-
fore it is highly probable that by tuning the parameters better performance
can be achieved.

34The unigrams training data has a sparsity of 5.68×10−4%, the uni+bigrams 6.62×10−5%,
while using uni+bi+trigrams a sparsity of 2.59× 10−5% is observed.

35Fuzzy, https://pypi.python.org/pypi/Fuzzy.
36py stringmatching, https://pypi.org/project/py_stringmatching/.
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Figure 5: Confusion matrix for the uni+bi+trigram model augmented with
rhyme and statistical text features. For the categories see Table 7.

6 Discussion and conclusions

We presented the compilation of a lyrics dataset linking the Last.fm Dataset,
LyricWiki and MusicBrainz. The dataset contains the lyrics, i.e. LyricWiki
URLs of English songs of the Last.fm Dataset (or MSD) found in LyricWiki’s
database, extended with additional release information. Knowing the MBID of
a music track the dataset can be further extended with ease. After linking the
Last.fm Dataset with LyricWiki and removing the duplicates—as described
in Section 3.5—the final set contains 171 688 training and 22 381 test records.
The tags of the music tracks were copied from the Last.fm Dataset without
any text normalization, but the lists were thresholded at a relevance score
≥ 50. For the complete description of the database fields see Section 3.4.2.
In the second part of the paper we described the genre classification ex-

periments conducted using the new dataset and considering some of the most
frequent tags as genres. From previous research we already knew that using
higher-level lyrics-based features improves on the performance of the genre
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Figure 6: (a) Occurrences of 1970, 1980, 1990 and 2000 and (b) the occurrence
of god in lyrics from 1950 to 2010. The counts are normalized by the number
of tracks per year.

prediction system, but we found a rather interesting fact regarding word fea-
tures. Namely, that the best representation happens to be the binary weight-
ing (see Table 5). These results suggest that the presence or absence of a term
or n-gram is most likely a better indicator of the genre than the importance
weighted distribution. This is similar to sentiment analysis, where binary word
counts usually induce a better performance [23].
From the confusion matrix shown in Figure 5, we can see which genres are

problematic to predict: reggae and pop, rock and pop, and electronic and pop
are the most easily confusable in our system, while falsely predicting a track
as being of pop genre is moderately high for every genre (see column 7 of the
confusion matrix). One possible explanation of this phenomenon could be that
indeed, analyzing the lyrics of these music genres, no significant differences can
be found between them. Another explanation of the above is the proximity of
the genres in question, for example in case of rock and pop. The Wikipedia
article about rock music37 says the following: “Like pop music, lyrics often
stress romantic love but also address a wide variety of other themes that are
frequently social or political.” Also, in the article of pop music38 we can find
the following: “ ‘Pop’ and ‘rock’ were roughly synonymous terms until the late
1960s, when they became increasingly differentiated from each other.” This
might imply joining together some of the above categories and studying the
labels of the misclassified tracks.

37https://en.wikipedia.org/wiki/Rock_music
38https://en.wikipedia.org/wiki/Pop_music
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The constructed dataset can also be used in culturomics [39]. Figure 6 com-
pares the occurrences of 1970, ’80, ’90 and 2000, as well as the occurrence of
god in lyrics from 1950 to 2010.
The compiled dataset was made publicly available to stay at the disposal

of possible future MIR, psychological, linguistics, etc. research.39 We publish
the following datasets: (a) the dataset as described in Section 3.4.2 and (b)
bag-of-n-grams representations of the lyrics, n ∈ {1, 2, 3}.
Though the primary goal of this paper was the description of the newly

compiled LyricWiki-based dataset, lyrics-based genre classification can also be
further studied in detail. A good starting point would be the more precise de-
termination of rhymes, studying other phonetic algorithms like Metaphone and
Double Metaphone [45, 46], or applying automatic rhyme detection methods
as in [22]. Another direction would be the application of word and document
embedding methods for lyrics representation [40, 41, 28, 44]. Since the param-
eters of our system were selected arbitrarily, a compulsory next step would
be tuning these using cross-validation. Applying large-scale semi-supervised
methods for learning [7] is also a possible future direction one can investigate.
Finally, but not less important, we mention the assessment of the importance
of different rhyme and statistical text features in predictions.
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realizations of A. The running time of both algorithms is O(m), where
m = 1

2

∑n

i=1
a

i
.

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C07, 65C05

Key words and phrases: Degree sequence, contraction of a degree sequence, degree se-

quence bipartition, contraction of a graph, deletion of a graph, ecological occurrence matrix

183



184 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

1 Introduction

A k-partite graph G is a graph whose vertex set, denoted by V(G), can be
partitioned into k parts, V

1
(G), V

2
(G), ..., V

k
(G), such that two vertices in the

same part are not adjacent. That is, if E(G) denotes the edge set of G and
e = (v

i
, v

j
) ∈ E(G), then v

i
∈ Vs(G) and v

j
∈ Vr(G) such that s 6= r. An edge

e ∈ E(G) is said to be a multiple edge if there is another edge f incident to the
same vertices. Following Matroid Theory terminology, we say that e and f are
parallel. A simple k-partite graph is a k-partite graph with no multiple edges
and loops. The degree of a vertex v

i
, denoted by a

i
, is defined as the number

of edges incident to v
i
with a loop contributing twice to the degree of v

i
. The

degree sequence of a graph G is formed by listing the degrees of vertices of
G. If A = (a

1
, a

2
, ..., an) is a sequence of integers and G is a k-partite graph

that has A as its degree sequence, we say that G is a realization of A, and
such a sequence of integers is called a k-partite degree sequence. Thus entries of
A can be partitioned as A

1
, A

2
, ..., A

k
, where A

i
denotes the degree sequence

of the part V
i
(G). In the sequel, we denote a k-partite degree sequence A as

(A
1
: A

2
: ... : A

k
) and the sequence (A

1
: A

2
: ... : A

k
) is called a k-partition

of A.

Observation 1 An easy observation used in the sequel is that, if A = (A
1
:

A
2
: ... : A

k
) is a k-partite degree sequence having n entries, and A

i
has n

i

entries, then the following is true.
1. n

1
+ n

2
+ ...+ n

k
= n

2. For every i such that 1 ≤ i ≤ k, the maximal entry of A
i
is less or equal

to
∑

j 6=i
n

j
.

The Degree Sequence Problem is to find some or all graphs with a given
degree sequence [20]. More detailed analysis of the Degree Sequence Prob-
lem and its relevance can be found in [18]. Several algorithms are known
to construct random realizations of degree sequences and each one of them
has its strengths and limitations. Most of these algorithms can be fitted in
two categories: MonteCarlo Markov chains methods based on edge-swappings
[5, 8, 9, 10, 11, 13, 14, 16, 17] and random matching methods [1, 2, 3, 4, 21].
In particular, algorithms proposed in [1, 3, 7] are based on inserting edges
sequentially according to some probability scheme. The basic ideas of the al-
gorithm presented in the present paper have already been used successfully
to sample uniformly all the simple realizations of a bipartite degree sequence
in [15]. Those basic ideas may be seen as implementing a ”dual sequential



Sampling k-partite graphs with a given degree sequence 185

method”, as it inserts sequentially vertices instead of edges. For other unde-
fined notations and terminology in graph theory, the readers are referred to
[19].
Indeed, in the theory of the Tutte polynomial, there are two operations,

deletion and contraction, that are dual of each other, see [6] for more details
on this topic. Let G be a graph having n vertices and m edges. The operation
of deleting the edge e = (v

i
, v

j
) from G consists of removing the edge e and

leaving anything else unchanged. The graph thus obtained, denoted by G\e,
is a graph on n vertices and m − 1 edges where h the degrees of both the
vertices v

i
and v

j
go down by 1. The operation of contracting the graph G by

e = (v
i
, v

j
) consists of deleting the edge e and identifying the vertex v

i
and

v
j
. The graph thus obtained, denoted by G/e, is a graph on n − 1 vertices

and m− 1 edges, where the new vertex obtained by identifying v
i
and v

j
has

degree a
i
+a

j
−2. Deletion is said to be the dual of contraction as the incidence

matrix of G\e is orthogonal to the incidence matrix of G∗/e, where G∗ is the
dual of G if G is planar.
IfA is a degree sequence having n entries, it can be easily shown that random

matching methods used in [1, 2, 3, 4, 21] are equivalent to starting from a
known realization G of A, delete all the edges one by one, and keeping track of
the degrees of vertices after each deletion, until one reaches the empty graph
having n vertices. Then, reconstructing a random realization of A consists of
taking the reverse of the deletion. That is, starting from the empty graph on n

vertices, re-insert edges one by one by choosing which edge to insert according
to the degrees of the vertices and some probability scheme depending of the
stage where the algorithm is at, and subject to not getting double edges if
one would like to get simple graphs or not linking two vertices on the same
part if one wants to get bipartite graphs. The algorithm presented in this
paper is based on the dual operation of contraction that is slightly modified
to suit our purpose. It is equivalent to starting from a known realization G

of A, contract all the edges one by one, and keeping track of the vertices
after each contraction, until one reaches the graph on one vertex and 1

2

∑n

1
a

i

loops. Then, reconstructing a random realization of A consists of reversing
the process of contraction. That is, starting from the graph on one vertex
and 1

2

∑n

1
a

i
loops, the algorithm re-inserts vertices one by one by choosing

which vertex to connect to which according to degrees of the vertices and some
probability that depends on the stage of the algorithm.
While algorithms that are based on Markov chains [14, 17] or on reversing

the deletion operation [1, 3] are easy to implement, our algorithm seems more
complex as one has to satisfy not only the degrees of the vertices, but also
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some added graphical structures imposed by the contraction. But this is more
of a bonus than an inconvenience, as apart from the fact the the running time
is even better, the extra structure allows an easier analysis of the algorithm.
Moreover, the internal structure imposed by the contraction operation allows
the algorithm to avoid most of the shortcomings of the previous algorithms.
Indeed, not only the algorithm never restarts, but the algorithm also allows to
sample all bipartite realizations with equal probability, making their approx-
imate counting much easier than by the importance sampling used in [1, 3].
Better still, this technique can be extended, as we do it in the present paper,
to construct k-partite realizations of a k-partite degree sequence A, for k ≥ 3,
where a k-partite degree sequence is defined in a natural way by extending the
definition of a bipartite degree sequence.
This paper is organized as follows. First we define a recursion chain of a

degree sequence, then we present routines for constructing all k-partite real-
izations. These basic routines are then modified to get a uniform distribution
on the set of all k-partite realizations. Then comes the section that presents
criteria to generate simple realizations graphs only. We modify our routines
to new routines that generate all simple k-partite realizations uniformly at
random.

2 Construction of all k-partite realizations of given
degrees

2.1 Recursion chain of degree sequences

Let G be a graph with n vertices and m edges. Throughout we assume that
the vertices of G are labelled v

1
, v

2
, . . . , vn . Let A = (a

1
, . . . , an) be the de-

gree sequence of G, where a
i
denotes the degree of the vertex v

i
. Define an

arithmetic operation on A, called contraction as follows. For an ordered pair
(a

i
, a

j
) of entries a

i
and a

j
of A with i 6= j, the operation of contraction by

(a
i
, a

j
) means changing a

i
to a

i
+ a

j
and deleting the entry a

j
from A. We

write A/(i, j) to denote the new sequence thus obtained. The sequence A/(i, j)

is called the (i, j)-minor or simply a minor of A. The following example illus-
trates the definition given above for a tripartite degree sequence.

Example 2 Let A = (5, 5 : 4, 2 : 3, 3, 2) where a
1
= 5, a

2
= 5, a

3
= 4

and a
4
= 2, a

5
= 3, a

6
= 3, a

7
= 2. We have A/(1, 2) = (10, 4, 2, 3, 3, 2) and

A/(4, 2) = (5, 4, 7, 3, 3, 2).
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Let A be sequence of integers. Then A is said to be graphic if there is
a graph G, not necessarily simple nor k-partite, such that G has A as its
degree sequence. Moreover, it is trivial to observe that a sequence of integers
is graphic if and only if the sum of its entries is even. Further, we have the
following observation.

Theorem 3 A sequence A is graphic if and only if all its minors are graphic.

Proof. Obviously, if A is graphic, then A/(a
i
, a

j
) is graphic as, by definition

of contraction, the sum of its entries is even. Now suppose that A/(a
i
, a

j
) is

graphic and G ′′ is a realization of A/(a
i
, a

j
). To prove that A is also graphic,

we present an algorithm, much used in the sequel, that constructs a realization
of A, denoted by G, from G ′′.

Algorithm AddVertex()
Step 1. To G ′′ add an isolated vertex labelled v

j
(as in Figure 1).

Step 2 If the degree of v
j
is a

j
, stop, output G. Else

Step 3. Amongst the a ′

i
edges incident to v

i
, counting loops twice, choose one

edge
e = (v

i
, v

k
) with probability π(e) and connect e to v

j
so that e becomes

(v
j
, v

k
). Go to Step 2.

Now, in G the degree of v
j
is a

j
, by Step 2 of algorithm AddVertex().

Moreover, by the definition of contraction, the degree of v
i
is equal to a

i
+ a

j

in G ′′. Since AddVertex() takes a
j
edges away from v

i
, the degree of v

i
is a

i

in G. Moreover all the other vertices are left unchanged by AddVertex(). Thus
G is a realization of A. �

vi vj
vi’

G’ G

Figure 1: Construction of a graph G from its minor G ′′
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If AddVertex() chooses the edge e = (v
i
, v

k
) and connects e to v

j
so that

e becomes (v
j
, v

k
), we say that AddVertex() (or v

i
, or v

k
) concedes e to v

j
.

To help intuition, observe that if G ′′ is a realization of A/(a
i
, a

j
) and G is

a realization of A constructed by AddVertex(), then G ′′ is obtained from G

by contraction of the edge (v
i
, v

j
). Now, mimicking the process of recursive

contraction of matroid as used in the theory of the Tutte polynomial, we de-
fine a process of recursive contraction for a degree sequence. A recursion chain
of a degree sequence A is a unary tree rooted at A, where nodes are integer
sequences and every node, except for the root, is a minor of the preceding one.
The recursive procedure of contraction is carried on from the root A until a
node with a single entry is reached. As for the Tutte polynomial, the amazing
fact, which is then used to construct all the realizations of A, is that the order
of contraction is immaterial. Despite this basic fact, we still impose a partic-
ular order to ease many proofs in the sequel.

Notes on notations: For the sake of convenience, we refer to a node of a
recursion chain of a degree sequence A by A(i), where i is the number of entries
in the node. Thus we denote the root A by A(n), the next node by A(n−1), and
so on until the last node A(1). Similarly, we denote by G(i) the realization
of A(i). The n entries of A are labelled from 1 to n. To keep tract of the
vertices, we preserve the labelling of entries of A into its minors so that when
a contraction by the pair (a

i
, a

j
) is performed, the new vertex is labelled a

i
,

the label a
j
is deleted, and all the other entries keep the labelling they have

before the contraction.
In this paper, we consider the recursion chain, called the k-partiteaccumulating

recursion chain, constructed as follows. Let A = (A
1
: A

2
: ... : A

k
) be a k-

partite degree sequence. We label each entry as as,r , where s ranges from 1 to
n and r ranges from 1 to k, so that the entry as,r belongs to Ar .

Example 4 Let A = (5, 5 : 4, 2 : 3, 3, 2). We order entries of A as a
1,1

=

5, a
2,1

= 5, a
3,2

= 4, a
4,3

= 3, a
5,3

= 3, a
6,2

= 2, a
7,3

= 2. Thus ~A =

(5, 5, 4, 3, 3, 2, 2).

Note. The vertex having degree as,r is denoted by vs,r . But, to avoid clustering
the notation, we sometimes just right as or vs , when we deem not necessary
to specify the part Ar corresponding to the degree as,r .
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Algorithm ConstructKpartiteRecursionChain()
Given an ordered k-partite degree ~A . Let i = n.

Step 1 If i = 1, stop, return {A
(1)
, A

(2)
, ..., A

(n)
}. Else

Step 2 Let A
(i−1)

= A
(i)
/(1, i). That is, get the (i− 1)th recursive minor of A

by contracting the (i)th recursive minor by its first entry and the last entry.
Step 3 Decrement i by 1 and go back to Step 1.

We denote the accumulation recursion chain of ~A byW = (A(1), A(2), ..., A(n)).

( a  , a   )
51

( a  , a   )
21

( a  , a   )
71

( a  , a   )
61

( a  , a   )
41

( a  , a   )
31

(5,5: 4,2:3,3,2)

(7,5,4,2,3,3)

(10,5,4,2,3)

(13,5,4,2)

(15,5,4)

(19,5)

(24)

Figure 2: The accumulating recursion chain of the tripartition [5, 5 : 4, 2 :

3, 3, 2].

The following is an algorithm for constructing a k-partite realization if A
is a k-partite degree sequence. The graph constructed below is not necessarily
simple. Loosely speaking, this algorithm consists of reversing the recursive
process of contraction as implemented by ConstructKpartiteRecursionChain().

The algorithm starts from G
(1)

the sole realization of A
(1)
, and by calling
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AddVertex() recursively, it constructs G
(2)
, then G

(3)
, and so on until G

(n)
,

that is a realization of A
(n)

= A. The only condition imposed on the choice
to built edges is that if the vertex to insert has degree as,r , then we label the
vertex as vs,r . Then AddVertex links a vertex vx,y to vs,r only if j 6= r, unless
x = 1. Recall that δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise.

Algorithm ConstructKpartiteRealization()
Given W = (A(1), A(2), ..., A(n)), the Kpartite accumulating recursion chain

of A, we do the following.
Step 1. Let i = 1 and build the realization of the node A(1), denoted by G(1),
which is the graph consisting of one vertex and m loops, where m = 1

2

∑n

i=1
a

i
.

Step 2. Let G = G(i). If G has n vertices, stop, return G. Else,
Step 3. Using G(i) and A(i+1) as input, Call Algorithm AddVertex() to con-
struct G(i+1) as a realization of A(i+1). If vs,r is the vertex being inserted, then
AddVertex only constructs edges (vx,y , vs,r) where δ(y, r) = 0 and δ(x, s) = 0,
unless x = 1. Increment i by 1, go back to Step 2.

See Figure 3 for an illustration of Algorithm ConstructBipartiteRealiza-
tion().
The following definitions are needed in the sequel. In the process of con-

traction implemented by the accumulating recursion chain, we observe that
the degrees are accumulating on a

1,1
. This is equivalent to say that edges are

accumulating on v
1,1

as v
1,1

seems to ’swallow’ the other vertices one by one.
Hence, when reversing the contraction operation in ConstructKpartiteReal-
ization(), vertex v

1,1
plays the role of the ’mother that spawns’ all the other

vertices one by one and concedes some edges to them according to their de-
grees. Thus, AddVertex() can attach an edge e to a new vertex vs,r only if e is
incident to v

1,1
. This observation prompts the following formal definitions. Let

A be a k-partite degree sequence where A
i
has n

i
entries such that

∑
i
n

i
= n.

The (s, t)th stage of ConstructKpartiteRealization() is the iteration where the
algorithm inserts the tth edge of the vertex vs,r . At the (s, t)

th stage an edge is
available if it is a loop incident to v

1,1
or e = (v

1,1
, vx,y) where y 6= r and x < s.

An edge e is lost otherwise. Let Eav denote the set of all available edges and
Ev

j
the set of edges (v

1
, v

j
). We recall that an edge e = (v

1,1
, vx,y) is conceded

if AddVertex() disconnects it from v
1,1

so that e becomes e = (vx,y , vs,r) for
some vertex vs,r 6= v

1,1
. We then say that v

1,1
(or sometimes Ev

j
or just v

j
)

concedes the edge e. A vertex vs having degree as is fully inserted if as edges
are conceded to it. A graph G is said to be (re)constructed if it is an output of
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( a  , a   )
71

( a  , a   )
61

v2v1

v3

w1

3

v2v1

v3

4

v2v1

7

v1

10

( a  , a   )
41

( a  , a   )
21

( a  , a   )
31

( a  , a   )
51

(4,3,3: 3,3,2,2)

(6,3,3, 3,3,2)

(8,3,3, 3,3)

(11,3,3, 3)

(20)

(17,3)

(14,3,3)

Figure 3: Random reconstruction tree of (4, 3, 3 : 3, 3, 2, 2). The level of T on the
same height as the degree sequence A(i) corresponds to all the graphs having A(i) as
their degree sequence.
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ConstructKpartiteRealization(). Now we state and prove a paramount result
of this paper.

Theorem 5 Let A = (a
1
, a

2
, ..., an) = (A

1
: A

2
: ... : A

k
) be a k-partite

degree sequence having n entries where A
i
has n

i
entries, such that

∑
n

i
= n

and m =
a
i
+a

2
+...+an

2 . Let W be the k-partite recursion chain of A. Then
Algorithm ConstructKpartiteRealization() constructs in time linear on m a k-
partite graph G having n vertices and m edges such that G is a realization of
A. Moreover, every k-partite realization of A can be constructed in this way.

Proof. By Algorithm AddVertex(), the graph G(n) output by Algorithm Con-
structKpartiteRealization() is assured to be a realization of A. We need only
to prove that G(n) is k-partite. Now, the routine AddVertex() constructs edges
(v

s,x)
, vr,y only if δ(s, r) = δ(x, y) = 0, unless s = x = 1. Thus vertices corre-

sponding to degrees in different parts Ax and Ay are never adjacent. Thus, we
only have to show that in G

n
, v

1,1
is not adjacent to any vertex v

j,1
. We need

the following fact.

Observation 6 Suppose that A is a k-partite degree sequence. From the νth
1

iteration of ConstructKpartiteRealization(), the number of available edges is
equal to the number of edges left to be inserted until ConstructKpartiteReal-
ization() terminates.

This is because the number of available edges at the end of (ν
1
)th is equal

to half the sum of degrees a
i
∈ A

1
. By the definition of the bipartite degree

sequence, this number is equal to half the sum of degrees a
j
∈ A

2

Now, to prove that G = Gn is k-partite, in the proof of Theorem 5, suppose
for a contradiction, G contains an edge e = (v

1,1
, v

j,1
). Consider the graph

H obtained from G by contracting all the edges not incident to any vertex
v
j,1
. It is easy to see that the degree sequence of H, denoted by B, is the

degree sequence obtained from A by contracting the entries corresponding to
vertices contracted in G. Thus B is a k-partite degree sequence. Now, suppose
that ConstructKpartiteRealization() outputs a realization K of B with en edge
(v

1,1
, v

j,1
). Then by Observation 6 one vertex of K is not fully inserted which is

a contradiction. Thus ConstructKpartiteRealization() reconstructs H has no
edge (v

1,1
, v

j,1
). This is the final contradiction we are looking for.

It remains to prove that any k-partite realization of A can be constructed
this way. We recall that v

i
(a

i
) denotes the ith vertex (degree) in the ordering,

regardless of the second index. So, let G be a realization ofA and let e = (v
i
, v

j
)

be any edge of G such that vertex v
i
has degree a

i
and vertex v

j
has degree
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a
j
. Also, suppose that the vertcies v

i
and v

j
were inserted at the ith and

jth iteration of ConstructKpartiteRealization() respectively. We need to show
that at the jth iteration, there is a positive probability to have an edge e

which is incident to v
i
and e is available. If not, that is, at the jth iteration

all the edges incident to v
i
are lost. Now all the edges incident to v

i
are

lost before the jth iteration only if, at some stage of the running of Algorithm
ConstructKpartiteRealization(), there are only the edges that are available and
they are exhausted before reaching the jth iteration. Thus, at the jth iteration
there are no more available edges. Especially, there are no loops incident to
v
1
. But this means that a

1
+ a

2
+ ... + a

j
≥ 2m, contradicting the definition

of accumulating recursion chain.
As for the running time, Algorithm ConstructKpartiteRealization() calls Al-

gorithm AddVertex() once for every new vertex v
k
to insert. If v

k
has degree

a
k
, then Algorithm AddVertex() has to go through a

k
iterations to insert the

a
k
edges of v

k
. Hence the total number of iterations to terminate Construc-

tKpartiteRealization() is a
1
+ a

2
+ ...+ an = 2m. �

2.2 Sampling all k-partite realizations uniformly

Although Theorem 5 shows that the routine ConstructKpartiteRealization()
can construct a realization of A in linear time, we need the next result to show
that it can construct any k-partite realization of A with equal probability,
provided we define the probability π(e) with which AddVertex() has to insert
the edge e.
We recall that if at its sth iteration ConstructKpartiteRealization() is to

insert the vertex vs that has degree as , (regardless of the second index of vs),
then ConstructKpartiteRealization() has to call AddVertex() that has to go
through as iterations. Let the (s, t)th stage of ConstructKpartiteRealization()
be the iteration, where AddVertex() inserts the tth edge of the sth vertex and

let G
(s,t)

denote the graph obtained at that (s, t)th stage. With this notation,

let G
(s)

be the graph G
(s,as ) .

The random reconstruction tree, denoted by T , is a directed rooted tree,
where the root is the sole realization of the degree sequence A(1), and the
(s, t)th level contains all those possible graphs obtainable after inserting the
tth edge of the sth vertex, and there is an arc from a graph H at level i to the
graph G at level i+ 1 if it is possible to move from H to G by the concession
of a single available edge. Realizations of A are thus the leaves of the tree T .
With this formalism, sampling a random k-partite realization of the degree
sequence A is equivalent to performing a random walk from the root until a
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leaf is reached, and every step of the random walk consists of walking along a
random arc of T . See Figure 3 for an illustration.

Observations about uniform sampling

(1) Let G1 denote the root of T and G1 be the graph on a single vertex and m

loops. So the stage (2, 1) of ConstructKpartiteRealization consists of inserting
the first edge of second vertex v

2
. Suppose at some stage (s, t) of Construc-

tKpartiteRealization(), the random walk along T is at the graph G
(s,t)

with

probability π(G
(s,t)

) and that AddVertex() is to concede an edge e to vs . Sup-

pose also that the vertex v
j
of G

(s,t)
has |Ev

j
| available edges. That is, v

j
is

connected to v
1
by |Ev

j
| parallel edges. Thus, the next level of T would con-

tain |Ev
j
| identical graphs whose edge sets will contain the edge (v

j
, vs). Hence,

if Algorithm AddVertex() chooses every available edge uniformly at random,

the random walk will reach such a graph with probabibility
|Ev

j
|

|Eav |
. Thus, if

this graph is a leaf of T , ConstructBipartiteRealization() will be biased to-

ward it with a probability proportional to
|Ev

j
|

|Eav |
. So, if the random walk has

to reach each different child of G
(s,t)

with the same probability, we have to
move from G

(s,t)
to its child obtained by adding the edge e ∈ Ev

j
with prob-

ability
|Ev

j
|

|Eav |
1

|Ev
j
|
= 1

|Eav |
. Equivalently, let |V(G

(s)
)| be the number of vertices

already inserted up to the sth iteration of ConstructKpartiteRealization() and

let |V ′(G
(s)
)| be the number of vertices in V(G

(s)
) which are adjacent to v

1
.

Obviously v
1
∈ V ′(G

(s)
), if there is a loop incident to v

1
. We may choose any

vertex v
j
∈ V ′(G

(s)
) uniformly at random. If e ∈ Ev

j
, then we concede e with

probability |V ′(G
(s)

)|

|V(G
(s)

)|
.

(2) Suppose that G(s,t+1) is obtained from G(s,t) by the concession of edge
e to vertex vs . If in G(s,t) the vertex vs is adjacent to bs (with bs ≤ as) dif-
ferent vertices, then it is obvious that the random walk on T reaches G(s,t) in
bs different paths. Thus there is a bias proportional to bs towards G(s,t). To
remove this bias, the random walk would rather move away from G(s,t) with
a reducing factor of 1

bs
. Similarly G(s+1,1) is obtained from G(s,as ) by the con-

cession of edge e to vertex v
s+1

. These two observations prompt the following
extension of the routines Addvertex() and ConstructKpartiteRealization() to
sample uniformly.
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Algorithm BiasedAddvertex()

(A modification of Algorithm Addvertex() to get a uniform distribution, di-
viding by the number of vertices inserted up to the sth iteration ).
Step 1 To the graph G

s
, add an isolated vertex called v

s+1
. Let a

s+1
be the

number of edges to concede to v
s+1

and let j = 0.
Step 2 If v

s+1
is incident to a

s+1
edges, return Gs+1. Else,

Step 3 Let bi
s+1

be the number of different vertices v
l
which are incident to

v
s+1

after the insertion of its jth edge, with j ≥ 1. If j = 0, let bj
s+1

be the
number of different vertices adjacent to vs .
Step 4 Choose vertex vq uniformly at random amongst all the vertices adjacent
to v

1
.

Step 5 If e ∈ Evq
, then concede e to v

s+1
with probability |V ′(G

(s)
)|

|V(G
(s)

)|.b
j
s+1

, where

V(G
(s)
) and V ′(G

(s)
) are respectively the set of vertices inserted up to the sth

iteration and the set of vertices in V(G
(s)
) that are adjacent to v

1
. Increment

j by 1 and go back to Step 2.
Accordingly, we modify the routine ConstructBipartiteRealization() as fol-

lows.

Algorithm BiasedConstructKpartiteRealization()

Given the k-partite recursion chain of A = (A
1
: A

2
: ... : A

k
), where A

i
has

n
i
entries such that n

1
+ n

2
+ ...+ n

k
= n, do the following.

Step 1. Let s = 1 and build the realization of the node A(1), denoted by G(1),
that is the graph consisting of one vertex and m loops.
Step 2. Let G = G(s). If G has n vertices, stop, return G. Else,
Step 3. Using G(s) and A(s+1) as input, call Algorithm BiasedAddVertex() to
construct G(s+1) as a realization of A(s+1). If vs = vs,y BiasedAddvertex only
concedes loops or edges (v

1,1
, vr,x) such that δ(x, y) = 0. Increment s by 1, go

back to Step 2.

Theorem 7 (1) For the degree sequence A = (A
1
: A

2
: ... : A

k
), where A

i

has respectively n
i
vertices such that n

1
+n

2
+n

k
= n, BiasedConstructKpar-

titeRealization() reaches every leaf of T uniformly at random with probability
1∏n

s=1
s
a
s+1

.

(2) The set of leaves of T is the set of realizations of A

Proof. (1) Suppose that BiasedConstructKpartiteRealization() calls BiasedAd-
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dVertex() to insert vertex vs that has degree as , where s > n
i
, and that Bi-

asedAddvertex() is conceding the jth edge of vs . We know there are |V(G
(s)
)|

vertices inserted up to the sth iteration. Now, if e ∈ Evt
, then the routine

BiasedAddVertex() will choose e with probability 1

|V ′(G
(s)

)|
and would concede

it with probability |V ′(G
(s)

)|

|V(G
(s)

)|.b
j−1
s

. But the graph G(s,j−1) is reached through bj−1
s

different paths. Hence the graph G(s,j) obtained by conceding e to vs will be
sampled with probability given as

bj−1
s

|V ′(G
(s)
)|
.

|V ′(G
(s)
)|

|V(G
(s)
)|.bj−1

s

=
1

|V(G
(s)
)|
=

1

s− 1
.

Finally, we know that vertex vs needs as iterations of BiasedAddVertex to
be fully inserted. Hence, it takes altogether

∑n

i=1
a

i
= 2m iterations before

BiasedConstructBipartiteRealization() terminates. Thus multiplying all the
probabilities to move from one level to the next from the root to a leaf yields
probability 1

1
a
1 2

a
2 ...nan

.
(2) Obviously, by construction, every leaf of T is a realization of A. The

proof that every realization of A is a leaf of T is given in the proof of Theorem
5. �

3 Construction of simple k-partite graphs

Up to now, BiasedConstructKpartiteRealization() generates all the k-partite
realizations of the k-partite degree sequence A. But, it is easy to modify Bi-
asedAddVertex() so that the output of BiasedConstructKpartiteRealization()
is always a simple graph. One obvious condition is stated as follows.
(a) If the Algorithm is inserting the jth edge of vertex vs with j > 1 and

s > n
i
with 1 ≤ i ≤ k and v

l
is already adjacent to vs , then no more available

edge incident to v
l
should be chosen. This will prevent BiasedConstructK-

partiteRealization() from outputting graphs with multiple edges (vs , vl
). Thus

this condition is necessary but is not sufficient. Indeed, it is easy to see that
the following must also apply.
(b) While inserting vertex vs and avoiding choosing edges incident to v

l
so

as not to construct multiple edges (vs , vl
), BiasedConstructKpartiteRealiza-

tion() may fall into a stage where there are more edges incident to v
l
than

there are vertices left to be inserted, and G, the graph output by BiasedCon-
structBipartiteRealization() will then have a multiple edge (v

1
, v

l
).
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Although (a) and (b) seem to contradict each other, this section defines
all these conditions in a formal settings and proves that they can be satisfied
simultaneously. Although the analysis seems long, this set of conditions are just
inequalities involving the number of edges and vertices already inserted and
the number of edges and vertices left to insert at each stage of the Algorithm.
Moreover, checking these conditions at each iteration of BiasedAddVertex()
requires checking O(n2) inequalities altogether. Thus it does not add crucially
to the running time.
Let A = (A

1
: A

2
: ... : A

k
) be a k-partite degree sequence of a simple graph,

where A
i
has n

i
vertices such that

∑
n

i
= n. Suppose that BiasedConstruc-

tKpartiteRealization() is at the iteration of inserting vertex vs . We recall that
Eav represents the set of available edges at the (s, t)th stage. That is, edges
that are incident to v

1
and vertices inserted before the iteration inserting the

tth edge of the sth vertex. We also recall that Ev
j
are the edges (v

1
, v

j
) at that

stage. In particular, Ev
1
is the set of loops incident to v

1
. The set of excess

edges of v
j
, denoted by Eev

j
, is the same as the set Ev

j
if v

j
= v

j,1
. In partic-

ular, a loop is an excess edge incident on v
1
. If v

j
= v

j,r
for r 6= 1, the set of

excess edges of v
j
is the set Ev

j
except one edge. That is |Eev

j
| = |Ev

j
|− 1.

The aim of this section is to show that it is possible to choose edges so that
the algorithm never stalls after choosing a ’wrong’ edge. If at its sth itera-
tion, Algorithm BiasedConstructKpartiteRealization() is inserting the vertex
vs that has degree as , then BiasedConstructKpartiteRealization() has to call
the routine BiasedAddVertex() which has to go through as iterations. We
recall that the (s, t)th stage of BiasedConstructKpartiteRealization() is the
iteration, where BiasedAddVertex() inserts the tth edge of the sth vertex. Let
Xs,t and |X|s,t respectively denote a set and its cardinality at the (s, t)th stage
of BiasedConstructKpartiteRealization().
To help the reader, we first introduce the motivation behind every defini-

tion. Obviously, if at some stage, the number of excess edges is greater than
the number of edges left to be inserted, then BiasedConstructKpartiteRealiza-
tion() can never produce a simple graph as the left-over of excess edges would
result in a multiple edge or a loop in the final graph. Thus the choice of edges
by BiasedAddvertex() must be such that this contingency never happens. This
prompts the following definitions.
The (s, t)th stage of Algorithm BiasedConstructKpartiteRealization() is crit-

ical if

|Ee|st = as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (1)
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That is, the number of excess edges equals the number of edges left to insert
until the end of BiasedConstructRealization(). The (s, t)th stage is spoilt if

|Ee|st > as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (2)

That is, there are too many excess edges and whatever the future choices
might be, a simple graph can never be output. A stage is normal if it is neither
critical nor spoilt.
Now, at each stage of constructing a simple k-partite graph, every vertex

vr,x must be connected to any other vs,y , with δ(x, y) = 0 unless r = x = 1, by
at most one common edge. So, if some vertex vr,x , with r 6= 1, has more excess
edges than the number of vertices vs,y , with δ(x, y) = 0, left to be inserted,
BiasedConstructKpartiteRealization() would never be able to get rid of all
these multiple edges, which will then appear in the final graph. This prompts
the following definition. Let N(x̄)st be the the set of vertices vq,y with q < s

and y 6= x. At the (s, t)th stage, the vertex vr,x with r ≤ s and r 6= 1 is due if

|Eevr,x
|st = |N(x̄)|st , (3)

that is, Eevr,x
has got as many excess edges as there are vertices left to be

inserted to which it can concede an edge. The vertex vr,x is overdue if

|Eevr,x
|st > |N(x̄)|st , (4)

that is, there are too many excess edges incident to vr,x and whatever the
future choices might be, the Algorithm will never output a simple graph. The
vertex vr,x is undue if it is neither due or overdue.
Now, although v

1
may concede many edges to a vertex vs , there is also a

limit, other than as , to the number of edges it can concede to vs if the end result
is to be a simple graph. For example, BiasedAddvertex() can construct at most
1 edge (v

1
, vn), by conceding a loop incident to v

1
to the vertex vn . Similarly

BiasedAddvertex() can construct at most 2 edges (v
1
, v

n−1
) . Otherwise, these

vertices will be overdue. More generally, BiasedAddvertex() can construct at
most q edges (v

1
, v

n−q+1
). This requirement prompts the following definitions.

The vertex v
1
is due if

|Eev
1
|st = 1+ 2+ ...+ (n− s) + (as − t),

that is, Eev
1
has got just enough loops to make each of the remaining vertices

due.
The vertex v

1
is overdue if
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|Eev
1
|st > 1+ 2+ ...+ (n− s) + (as − t).

Similarly to other vertices, v
1
is undue if it is neither due nor overdue.

Moreover, if the degree sequence A has no entry a
i
= 1, then the vertex v

1

is ripe if

|Eev
1
|s,t =

∑

j6=1

|Eev
j
|s,t . (5)

It is overipe if

|Eev
1
|s,t >

∑

j6=1

|Eev
j
|s,t . (6)

If the degree sequence A has an entry a
i
= 1, then the vertex v

1
is ripe if

|Eev
1
|s,t =

∑

j 6=1

|Eev
j
|s,t − 1. (7)

It is overipe if

|Eev
1
|s,t >

∑

j 6=1

|Eev
j
|s,t − 1. (8)

In both cases, this means that there are more loops than all the other excess
edges put together, and so, if the stage is also critical, whatever the future
choices might be, the Algorithm will never produce a simple graph, as there
will be at least one loop left incident to v

1
. The vertex v

1
is unripe if it is

neither ripe nor overipe. We also say that a stage is due (overdue, undue,
ripe, overipe, unripe) if it contains a vertex that is due (overdue, undue, ripe,
overipe, unripe). It should be understood that saying that Ev

i
is due (overdue,

undue, ripe, overipe, unripe) only means that v
i
is due (overdue, undue, ripe,

overipe, unripe).
The next lemma only means that once BiasedConstructKpartiteRealiza-

tion() has taken a ’wrong path’, it is impossible to mend the situation.

Lemma 8 Suppose that BiasedConstructKpartiteRealization() is inserting the
vertex vs,y and suppose that BiasedAddvertex() satisfies the following condi-
tion.
Condition (1) For each vertex vr,x with δ(x, y) = 0 and r 6= 1, BiasedAddver-

tex() must choose at most one edge from Evr
so that there is never a double

edge (vr , vs).



200 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

Then the following hold.
(a) If the (s, t)th stage is critical, then the next stage is critical or some

future stage is spoilt.
(b) If the (s, t)th stage is spoilt, then any future stage is spoilt.
(c) If the vertex vr,x is due, it is due or overdue at the next stage. If it is

overdue, it is overdue at any future stage.
(d) If the (s, t)th is critical and v

1
is overripe, then the last stage is spoilt.

(e) If the (s, t)th stage is spoilt, then the previous stage (the stage inserting
the previous edge) is either spoilt or critical.
(f) If the (s, t)th stage is overipe, then the previous stage (the stage inserting

the previous edge) is either overipe or ripe.
(g) If the (s, t)th stage is overdue, then the previous stage (the stage inserting

the previous edge) is either due or overdue.

Proof. At the (s, t)th stage, where the tth edge of the vertex vs,y the following
types of edges are available.
(1) A loop incident to v

1
and, if conceded, the resulting edge (v

1
, vs) is

single,
(2) a loop incident to v

1
and, if conceded, the resulting edge (v

1
, vs) is a

multiple edge,
(3) a single edge (v

1
, vr,x) for some r < s and δ(x, y) = 0 or

(4) a multiple edge (v
1
, vr,x) for r < s and δ(x, y) = 0.

(a) In case of choice (1), both the right side and the left side of Equation 1
go down by one. Thus the next stage is still critical. In case of choice (2), the
resulting edge (v

1
, vs) forms a multiple edge with a previously inserted edge.

Thus, the next stage is spoilt as the left hand side stays the same while the right
hand side goes down by 1. If Algorithm BiasedAddvertex() chose an edge of
type (3) then the left side of Equation 1 will stay the same while the right side
goes down by 1, hence the next stage would be spoilt. If BiasedAddvertex()
chose an edge of type (4), then both the right side and the left side of Equation
1 will go down by one. Thus the next stage will still be critical. Thus, whatever
the choice, the next stage is either critical or spoilt.
(b) Using the same arithmetic arguments as above, it is easy to see that if

a stage is spoilt, the next stage is spoilt.
(c) Suppose that j 6= 1, the vertex v

j
is due and v

j
= v

j,x
. If vs 6∈ N(x̄)st , then

the next step is due. So, suppose that vs ∈ N(x̄)st . If BiasedAddvertex() makes
the choice (3) or (4) from Evr

with r 6= j, then since no edge of Ev
j
is chosen,

the left side of Equation 3 stays the same while the right hand side either goes
down by one if BiasedConstructKpartiteRealization() moves to a new vertex



Sampling k-partite graphs with a given degree sequence 201

v
s+1

or stays the same if the algorithm moves to another edge t+1 of the same
vertex vs . Hence the next stage is due or overdue. If BiasedAddvertex() makes
the choice (4) by choosing an edge from Ev

j
, then both sides go down by 1

and the next stage is due. Obviously, if BiasedAddvertex() makes the choice
(1) or (2), v

j
stays due or becomes overdue since in any case the left side of

Equation 3 stays the same while the right side either goes down by one if the
algorithm moves to a new vertex v

s+1
or stays the same if the algorithm moves

to a new edge of the same vertex vs .
If v

j
is overdue, it stays overdue since, for any choice, Condition (1) makes

the right side of Equation 4 to go down by 1 while the left side may go down
by 1 or stays the same.
A similar argument, replacing loop by edge of type (3) or (4), and vice versa,

holds for the case where v
1
is due.

Suppose the vertex vs to be inserted, is due. If BiasedAddvertex() chose a
loop, the left hand goes up by 1 while the right hand side of Equation 3 stays
the same. Thus vs is overdue at the next stage. If an edge of type (3) or (4)
is chosen, then both the left and the right hand sides of Equation 3 stay the
same. Thus vs is due at the next stage.
(d) By (a), the future stages will be either critical or spoilt. Suppose that

there are more loops than other excess edges. If two loops are conceded to the
same vertex, then the next stage is spoilt. So suppose v

1
concedes at most one

loop to each of the remaining vertices. BiasedAddvertex() is then forced to
pick edges from other vertices. If it picks an edge of type (3), the next stage is
spoilt. So it must pick edges of type (4) only. But then edges of type (4) will
be exhausted before the loops. Hence there will be at least one vertex that
must conceded two loops. Thus the last stage will be spoilt.
(e) Suppose that the (s, t)th stage is spoilt but the previous stage (the stage

inserting the previous edge) is normal. Then at the previous stage we have

|Ee|st < as − (t− 1) + a
s+1

+ a
s+2

+ ...+ an . (9)

The insertion of one edge always lowers the right hand side of Equation 9
by 1 while the left hand side is the same if BiasedAddvertex() chooses an edge
of type (2) or (3) or is lowered by 1 if an edge of type (1) or (4) is chosen.
Hence the (s, t)th stage is either critical or normal. This is a contradiction.
(f) Suppose that A has no entry a

i
= 1 and suppose that v

1
is overipe at

the (s, t)th stage but is unripe at the stage inserting the previous edge. That
is, at that previous stage we have
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|Ev
1
| <

∑

j

|Eev
j
|. (10)

Now, the last edge inserted is of type (1), (2), (3) or (4). If the chosen
edge is of type (1) or (2) or (3), then Equation 10 is unchanged. Hence v

1
is

unripe at the (s, t)th stage. This is a contradiction. If the chosen edge is of
type (4), then the right hand side of Equation 10 goes down by 1 while the
left hand side is unchanged. Hence v

1
is ripe at the (s, t)th stage and this is

also a contradiction. The argument is similar if A has an entry a
i
= 1

(g) Suppose v
j,x

is overdue at the (s, t)th stage but is undue at the stage
inserting the previous edge. Then at the previous stage, we have

|Eev
j,x
| < |Nx̄ |. (11)

Now, the last edge inserted is of type (1) or (2) or (3) or (4). Moreover, in
either case, BiasedConstructKpartiteRealization() moves to a new vertex or
not. If it stays on the same vertex and the chosen edge of type (1) or (2) or
(3), then the right and the left hand sides of Equation 11 are both unchanged.
Hence v

j
is undue at the (s, t)th stage. This is a contradiction. If the chosen

edge is of type (4) from Eev
j
, then the left hand side of Equation 11 goes

down by 1 while the right hand side is unchanged. Hence v
j
is also undue at

the (s, t)th stage and this is also a contradiction. If the chosen edge is of type
(4) from Eev

i
with i 6= j, then both the left hand side and the right hand side

of Equation 11 are unchanged. Hence v
j
is also undue at the (s, t)th stage and

this is also a contradiction.
Suppose that the algorithm moves to a new vertex. Now either v

s−1
∈

N(x̄)
s−1,t

or not. If v
s−1

6∈ N(x̄)
s−1,t

, then the previous stage was overdue.
This is a contradiction. So suppose that v

s−1
∈ N(x̄)

s−1,t
. If the chosen edge is

of type (1) or (2) or (3), then the right hand side of Equation 10 goes down by
1 while the right hand side is unchanged. Hence v

j
is due at the (s, t)th stage

and this is a contradiction. If the chosen edge is of type (4) from Eev
j
, then

both left hand and right hand sides of Equation 10 goes down by 1. Hence v
j

is normal at the (s, t)th stage and this is a contradiction. If the chosen edge is
of type (4) from Eev

i
with i 6= j, then left hand stays the same and right hand

side of Equation 10 goes down by 1. Hence v
j
is normal at the (s, t)th stage

and this is a contradiction. The same argument holds if v
1
is overdue. �

Edges of types (1) and (4) are safe edges while edges of types (2) and (3)
are risky edges. Thus, the basic intuition is that our Algorithm aims at con-
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structing a simple k-partite graph has to avoid risky edges as much as possible.
Now, let N̂(x̄)s be the set of vertices vq,x̄ where q < s and whose second index
is not x. Observe that if the degree of the vs,x , the vertex being inserted, is
2 units greater than |N̂(x̄)s | − 2, then BiasedConstructKpartiteRealization()
must take preventive measures so that the stage inserting the first edge of vs

is not critical. Otherwise, it will be impossible to insert all the edges of vs

without conceding too many risky edges of type (2). This intuition prompts
the following definitions.
A vertex vr is the red vertex of BiasedConstructKpartiteRealization() if vr

is the first vertex during the insertion of which BiasedConstructKpartiteReal-
ization() can reach a critical stage. That is, if BiasedAddvertex() can choose
as many risky edges of type (2) as possible, without making previously in-
serted vertex overdue, then the first critical stage occurs during the insertion
of vertex vr . A vertex v

f
is a fat vertex if a

f
≥ N̂(x̄)

f
+ 2. That is, the degree

of v
f
is greater by at least 2 than the number of vertices v

j
with j < f and that

can concede an edge to v
f
. If this is the case, then since by Condition (1) v

f

can be conceded only N̂(x̄)
f
edges of types (3) or (4), BiasedAddvertex() will

be forced to conceded a
f
− N̂(x̄)

f
≥ 2 loops. Thus, the insertion of v

f
is likely

to lead to a spoilt stage if a critical stage is reached before inserting all the
edges of v

f
. The sequence of vertices (vr , vr+1

, . . . , vz) is the red-fat sequence
of BiasedConstructKpartiteRealization() if vr is red and vz is fat. Now, given
a red-fat sequence, BiasedConstructKpartiteRealization() has to take preven-
tive measures so that a critical stage is not reached before the last fat vertex
is inserted.
Another observation is that if BiasedConstructKpartiteRealization() is in-

serting vertex vs that is fat, then as above, Condition (1) imposes that the
vertex vs,x can be connected to at most N̂(x̄)s vertices vj,x

with j < s and j 6= 1.
Thus, it is easy to see that the maximal number edges of type (4), denoted
by |E4|st , which BiasedAddvertex() may concede, from the insertion of the tth

edge of vertex vs until the insertion of the last edge of the last fat vertex vz is

|E4|st = N̂(x̄)s + N̂(x̄)
s+1

+ ...+ N̂(x̄)z .

These observations prompt the following definitions. Suppose there is a red-
fat sequence RF = (vr , vr+1

, ..., vz), vs ∈ RF and Evs
= as − N̂(x̄)s . Then vs is

fat-critical if

|Ee|st − |E4|st − (z− s) = a
z+1

+ ....+ an . (12)

The (s, t)th stage is fat-spoilt if



204 K. Kayibi, U. Samee, S. Pirzada, M. A. Khan

|Ee|st − |E4|st − (z− s) > a
z+1

+ ....+ an . (13)

To make sense of Equation 12, observe that its left hand side is equal to
|Ee|z,az if BiasedAddvertex() chose the maximal possible number of edges of
type (4) (and, conversely, the minimal number of loops). Indeed, an edge
e ∈ Eez,az

only if e ∈ Ees,t . Now, starting from e ∈ Ees,t , to get the number of

edges that are still in the set of excess edges at the (z, az)
th stage, one has to

remove the edges of type (4) which are conceded and thus become unavailable,
and there are at most |E4|st of them. Moreover, since as ≥ a

s+1
≥ · · · ≥ az , all

these vertices are fat. Thus to each such vertex v
j,x
, v

1
must concede a

j
−N̂(x̄)

j

loops. But, if p loops are conceded to v
j
, then p − 1 excess-edges (v

1
, v

j
) are

constructed. Hence for every vertex v
j
inserted between vs and vz , there is one

excess edge lost. Hence the term z − s has to be subtracted. Hence the left
hand side of Equation 12 is indeed equal to |Ee|z,az if the maximal possible
number of edges of type (4) is conceded. Using this fact, it is easy to observe
that Equation 12 means that the (s, t)th stage is not critical, but if Algorithm
BiasedAddvertex() chooses the maximal number of edges of type (4), then
the first critical stage would occur after inserting the last edge of the last fat
vertex vz .

Lemma 9 (i) If the (s, t)th stage is fat-critical, then the next stage is fat-
critical or fat-spoilt.
(ii) If the (s, t)th stage is fat-spoilt, then some future stage is spoilt.

Proof. (i) First, observe that whatever the choice of edge, the right hand side
of Equation 12 stays the same. If BiasedAddvertex() chose an edge of type
(4), then on the left hand side, |Ee|st will go down by 1 and |E4|st will also go
down by 1, while z− s will stay the same. Hence the next stage is fat-critical.
Suppose a loop is chosen, then |Ee|st will stay the same as one loop is lost
but an edge of type (4) is created, |E4|st will go down by 1 as vs can not be
connected to the maximal number of edges of type (4) while z − s will stay
the same. Hence the next stage is also fat-spoilt.
(ii) The left hand side of Equation 13 is equal to |Ee|z,az . Hence, if the (st)

th

stage is fat-spoilt, the (z, az)
th stage is spoilt. �

While Lemmas 8 and 9 say that once the random walk on T takes a wrong
path, it is impossible to mend it. The next routine gives the preventive measure
to avoid getting into that wrong path in the first place. If the algorithm is
inserting the tth edge of vertex vs,y , then an edge e is available when e is a
loop (incident on v

1
) or e ∈ Evr,x

with r < s and δ(x, y) = 0.
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Routine ChooseCorrectEdge()[Routine choosing edges that lead to a sim-
ple graph]
Suppose that BiasedConstructKpartiteRealization() is at its (s, t)th stage.

That is, it is inserting the tth edge of vertex vs,y . Then
(1) For each vertex vr,x with r < s and δ(x, y) = 0, choose at most one edge

from Evr
.

(2) If the stage is normal but not due, choose any available edge uniformly
at random.
(3) If the stage is critical but not due nor ripe, choose any available edge of

type (1) or (4) uniformly at random.
(4) For j > s, if the vertex v

j
is due, pick an edge from Ev

j
. If many such

vertices are due, pick an edge uniformly at random from the vertices that are
due.
(5) If the stage is critical and ripe, pick a loop.
(6) If vs , the vertex being inserted, is due, then pick any available edge of

type (3) or (4) uniformly at random.
(7) If the stage is fat-critical, then pick any available edge of type (4) uni-

formly at random.

We illustrate the Routine ChooseCorrectEdge() in Figure 4. Before proving
that this algorithm is necessary and sufficient to sample a simple k-partite
graph at random, we observe that it runs in O(n2) steps, where n is the
number of vertices in any realizations of A. Indeed, BiasedConstructKpartite-
Realization() calls BiasedAddVertex() n times and BiasedAddVertex() calls
ChooseCorrectEdge() a

i
times to insert all the edges of vertex v

i
. At the

ith iteration of BiasedConstructKpartiteRealization(), ChooseCorrectEdge()
has to check Equations 1, 7 and 12 once each. Moreover, it has to check
Equation 3 for at most i − 1 vertices. Hence throughout the running of Bi-
asedConstructKpartiteRealization(), ChooseCorrectEdge() has to perform at

most 3n+
(n−1)(n−2)

2 checks.

Theorem 10 Algorithm BiasedConstructKpartiteRealization() reconstructs a
simple k-partite graph if and only if BiasedAddVertex() calls the routine ChooseC-
orrectEdge(). In other words, BiasedConstructKpartiteRealization() outputs a
simple k-partite graph if and only if the choice of edges satisfies conditions
(1)–(7).

The following lemma is required in the proof of Theorem 10.
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(3,3,2,2)

(5,3,2)

(7,3)

(10)

Figure 4: Random reconstruction tree of (3, 3, 2, 2) for simple graph. It is similar to
that in Figure 3, but some choice of edges are forbidden. Forbidden moves are marked
by a cross and the condition that they fail to satisfy. For example, c1 means condition
1 of the Routine ChooseCorrectEdge()

Lemma 11 If A is a degree sequence of a simple k-partite graph having n

vertices, then the (2, 1)the stage of Algorithm BiasedConstructKpartiteRealiza-
tion() is neither critical nor spoilt nor overdue nor overipe.

Proof. Before the insertion of vertex v
2
, there are m loops incident to v

1

where m =

∑n

i=1
a
i

2 . That is,
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|Ee|
2,1

=

∑n

i=1
a

i

2
. (14)

To prove the result, we only need to show that |Ee|
2,1

≤
∑n

i=2
a

i
. That is, the

number of excess edges is not greater than the number of edges left to insert.
But by Erdos-Gallai criterion, we have

a
1
≤

n∑

i=2

a
i
. (15)

Rearranging Equation 14 and plugging Equation 15 into it, we get that

2|Ee|
2,1

=

n∑

i=1

a
i
≤ 2(

n∑

i=2

a
i
). (16)

Hence the first stage is not spoilt and vacuously it is not overdue. �

Proof.[Proof of Theorem 10] Suppose for a contradiction that conditions (1)–
(7) hold at all the stages but BiasedConstructKpartiteRealization() outputs a
k-partite graph G with multiple edges or loops. By condition (1) there can not
be a multiple edge connecting two vertices vr,x and vs,y with r < s. Moreover,
the algorithm would prevent any edge vr,x and vs,x with r < s unless r = 1.
Hence if G fails to be a simple graph, it must have either a loop or a multiple
edge incident to v

1
.

So, suppose that in G the vertex v
1
is incident to either a loop e or a

multiple edge. Thus, the stage inserting the last edge of the last vertex vn is
either spoilt, or critical and overipe or overdue.
If the last stage is spoilt (overdue), then by Lemma 8 (e, f, g), the previous

stage was either spoilt (overdue) or critical (due). If it were spoilt (overdue),
then the one prior to it was spoilt (overdue) or critical (due), and so on. Thus
by induction, the first stage of BiasedConstructKpartiteRealization() was ei-
ther spoilt (overdue) or critical (due). This contradicts Lemma 11. Hence some
stage later than the (3, 1)th must have been critical (due). Thus BiasedCon-
structKpartiteRealization() must have gone through a series of normal (undue)
stages, then a series of critical (due), then a (possible) series of spoilt (overdue)
stages prior to the stage inserting the last edge.
So, let the first spoilt (overdue) stage be the (q, p)th stage. So the stage

preceding it was critical (due). But, by condition (4), (condition (5)) Algorithm
BiasedAddvertex() must have chosen a safe edge so that the (q, p)th stage
should be critical (due) by Lemma 8. This is a contradiction.
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Suppose that the last stage is critical and overipe. Then using an argument
similar to the case where the last stage is spoilt, we also get a contradiction.
Conversely, suppose that some condition (1)–(7) is not satisfied at the (s, t)th

stage and let G be the realization output at the end of BiasedConstructKpar-
titeRealization(). If condition (1) is not satisfied at the (s, t)th stage, then this
would create a double edge (v

j
, vs) with j, s 6= 1. In that case, the edge stops

to be available, and since Algorithm BiasedAddvertex() can not concede it
anymore, the double edge would appear in G. Hence G would not be simple.
If condition (3) is not satisfied at the (s, t)th, then by Lemma 8(a) and (b)

any future stage is spoilt. Hence G is not a simple graph. Suppose that condi-
tion (4) is not satisfied. That is, there is a vertex v

j
that is due at the (s, t)th

stage but Algorithm BiasedAddvertex() does not pick any of the elements of
Eev

j
for all the remaining edges conceded to vs . Then v

j
is overdue at the

insertion of vertex v
s+1

, and by Lemma 8(c) it remains overdue until the end
of the Algorihm. Hence G is not simple.
Suppose that condition (5) is not satisfied at the (s, t)th stage that is critical.

That is, Eev
1
, the set of loops incident to v

1
is ripe but Algorithm BiasedAd-

dvertex() does not pick a loop. Then, by Lemma 8(d), any future stage is
spoilt. Hence G is not simple.
Suppose that condition (6) is not satisfied at the (s, t)th stage, that is, the

vertex vs is due and Algorithm BiasedAddvertex() picks a loop. Then vs will
become overdue and G will exhibit a multiple edge (v

1
, vs). If condition (7) is

not satisfied, then by Lemma 9 (2) Algorithm ConstructRealization() reaches
a spoilt stage. �

Let a correct edge be an edge chosen by Algorithm ChooseCorrectEdge.
So, if BiasedConstructKpartiteRealization() terminates, we have shown that
it always outputs a simple graph. It remains to show that it always terminates
by showing that there is always a correct edge so that conditions (4)–(7) can
be satisfied.

Theorem 12 Algorithm ChooseCorrectEdge() always terminates. That is, con-
ditions (4)–(7) can always be satisfied.

The proof that is quite involved is left to the end of the paper. Still, we
have to show that every simple realization can be reached. The next result is
instrumental in showing that every simple realization ofA can be reconstructed
by BiasedConstructKpartiteRealization() if conditions (1)–(7) are satisfied.
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Lemma 13 Let G = Gn
1
,n

2
,...,n

k
be the n

1
, n

2
, ..., n

k
- complete k-partite graph.

That is, the k-partite graph where the ith part contains n
i
vertices each having

degree
∑

j 6=i
n

j
. Then BiasedConstructKpartiteRealization() satisfying condi-

tions (1)–(7) can reconstruct G as a realization of A = (A
1
: A

2
: ... : A

k
),

where A
i
has n

i
entries equal to

∑
j 6=i

n
j
.

Proof. At the second iteration, the algorithm inserts the vertex v
2,x

by conced-
ing

∑
j 6=i

n
j
. It is routine to check that v

2,x
is due. Now suppose that v

3
= v

3,y
.

If δ(x, y) = 1, then v
1
will concede

∑
j 6=i

n
j
loops to v

3
. If δ(x, y) = 0, then

by Condition (4), v
2
will concede one edge to v

3
and v

1
will have to concede∑

j 6=i
n

j
− 1 loops to v

3
. In both cases v

3
is due and by Lemma 8 v

2
is also

due. Now, for an induction, suppose that the algorithm is inserting the ver-
tex vs,z and all the preceding vertices are due. Recall that N̂(z̄)

i
is the set of

vertices inserted before v
i,z

and whose second index in not z. Then v
i
will be

conceded |N̂(z̄)
i
| edges from vertices in N̂(z̄)

i
and

∑
j 6=z

n
j
− |N̂(z̄)

i
| loops from

v
1
. Hence v

i
will also be due and all the vertices preceding it will be due by

Lemma 8. Now it is routine to check that at the nth every vertex is incident
to a single available edge. Thus, each of them will concede it and Algorithm
BiasedConstructBipartiteRealization() outputs the graph G. �

Let G be a graph, a delete-minor of G ′ = G\e is the graph obtained from G

by deleting the edge e. If A = (A
1
: A

2
: ... : A

k
) is a k-partite degree sequence,

let A ′ be the degree sequence obtained from A by subtracting 1 from two of
its entries ar and as , where ar ∈ A

i
and ar ∈ A

j
with i 6= j. Thus, if A is

the degree sequence of a k-partite graph G, then A ′ is the degree sequence of
some delete-minor of G.

Lemma 14 If BiasedConstructKpartiteRealization() satisfying conditions (1)–
(7) can reconstruct G as a realization of A, then it can reconstruct all the
delete-minors of G that are realizations of A ′.

Proof. Let G be a k-partite graph output by Algorithm BiasedConstructK-
partiteRealization() and let G\e be a delete-minor of G. Suppose in the graph
G, the edge e is incident to vertices vr,x and vs,y having respectively degrees ar

and as , and where r < s and δ(x, y) = 0. Thus in G\e, vertices vr and vs have
degrees ar − 1 and as − 1. Let f be any edge of G\e. Now, since G is output
by BiasedConstructKpartiteRealization(), then there is a series of choices of
correct edges such that f can be inserted. Now, in that series of choices either
e is inserted before f or after. If e is inserted after f, then the same series of
choices would insert f in G\e. If e is inserted before f, then the same series of
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choices, minus the insertion of e, will also lead to the insertion of f in G\e,
since Algorithm BiasedConstructKpartiteRealization() does not need to insert
any edge incident to vr and vs as their degrees are down by 1. �

Corollary 15 Let G be a simple k-partite realization of a degree sequence
A = (A

1
: A

2
: ... : A

k
), where A

i
has n

i
entries. Then there is a positive prob-

ability that G is output by Algorithm BiasedConstructKpartiteRealization() if
conditions (1)–(2) are satisfied.

Proof. Every simple k-partite graph whose jth part contains n
j
vertices can

be obtained from Gn
1
,n

2
,...,n

k
by a series of deletions. �

3.1 Sampling simple realizations uniformly

The calling of BiasedAddVertex() by BiasedConstructKpartiteRealization()
allows to sample all k-partite realizations of A with equal probability. But
to construct simple k-partite realizations only, the choice of edges is dictated
by the routine ChooseCorrectEdge(). We recall that correct edges are those
edges chosen by the routine ChooseCorrectEdge(). It is easy to check that
the number of correct edges is not constant across all the graphs on the same
level of T . This remark prompts to modify the routine BiasedAddVertex() as
follows. A vertex vr,x , where r < s and δ(x, y) = 0, is said to be correctly-
adjacent to v

1
at the (s, t)th stage if vr is connected to v

1
by a correct edge at

that stage.

SimpleBiasedAddvertex() (A modification of Algorithm Addvertex() to
get a uniform distribution on the set of simple k-partite realizations, dividing
by the number of vertices inserted up to the sth iteration )

Step 1 To the graph G
l
add an isolated vertex called v

l+1
. Let a

l+1
be the

number of edges to concede to v
l+1

and let t = 0.
Step 2 If v

l+1
is incident to a

l+1
edges, return Gl+1. Else,

Step 3 Let bt
l+1

be the number of different vertices incident to v
l+1

after the

insertion of its tth edge, with t ≥ 1. If t = 0, let bt
l+1

be the number of different
vertices adjacent to v

l
.

Step 4 Choose vertex vr uniformly at random amongst all the vertices that
are correctly-adjacent to v

1
.

Step 5 If e ∈ Evr
, then concede e to v

l+1
with probability |V ′(G

s
)

|V(G
s
)|.bt

l+1

, where

V(G
s
) and V ′(G

s
) are respectively the sets of vertices inserted up to the sth
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iteration and the set of vertices in V(G
s
) that are correctly-adjacent to v

1
.

Increment t by 1 and go back to Step 2.

Theorem 16 For the degree sequence A = (A
1
: A

2
: ... : A

k
), where A

i
has

n
i
entries such that n

1
+ n

2
+ ... + n

k
= n, BiasedConstructKpartiteRealiza-

tion() reaches every simple k-partite realization of A uniformly at random with
probability.

Proof. Corrolary 15 shows that all simple realizations can be reached by the
BiasedConstructKpartiteRealization() if the choice of edges is dictated by the
routine ChooseCorrectEdge(). The proof for uniformity is similar to that of
Theorem 7.

�

We now give the overall Algorithm and its running time.

Algorithm UniformGenerateSimpleKpartiteRealization()
Input: k-partite degree sequence A = (A

1
: A

2
: ... : A

k
) where A

i
has n

i

entries.
Output: A random k-partite realization of A.

Step 1 Put A in non increasing order.
Step 2 Construct the recursion chain of A by calling the routine ConstructK-
partiteRecursionChain().
Step 3 Construct a random k-partite realization of A by calling BiasedCon-
structSimpleKpartiteRealization().

Now, it is known that Step 1 takes log(n) iterations and as shown earlier

Step 2 takes n iterations. In Step 3, ChooseCorrectEdge() does n(n−1)
2 checks

altogether. Finally, BiasedAddVertex() needs 2m iterations to insert all the
vertices. Thus, the overall running time is at most

log(n) +
n(n− 1)

2
+ 2m ≤ n2 + 2m.

3.2 Proof that ChooseCorrectEdge() always terminates suc-
cessfully

Recall that an edge is correct at the (s, t)th stage if ChooseCorrectEdge() may
choose it at the (s, t)th stage. We have shown that if BiasedConstructKpar-
titeRealization() terminates, it always outputs a simple graph. It remains to
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show that it always terminates by showing that there is always a correct edge
so that conditions (4)–(7) can be satisfied.
Proof.[Proof of Theorem 12]
The proof is by induction on the stage where BiasedConstructKpartiteRe-

alization() is and consists of many lemmas, each dealing with one of the con-
ditions. Obviously all the conditions are satisfied at the (2, 1)th stage. Suppose
they hold up to the (s, t− 1)th stage and let BiasedConstructKpartiteRealiza-
tion() be at its (s, t)th stage, where the vertex vs,y is being inserted. The next
lemma shows that condition (4) is always met. Recall that a safe edge is an
edge of type (1) or type (4). �

Lemma 17 Let the Algorithm BiasedConstructKpartiteRealization() satisfy
conditions (1)–(7) and the (s, t)th stage is unripe, undue and critical. Then it
is always possible to concede a safe edge.

Proof. Suppose the (s, t)th is critical, but there is no edge of type (1) or type
(4). That is, vs,y is already adjacent to v

1
and all vertices vr,x , such that r < s

and δ(x, y) = 0, have no correct edge.
(a) Suppose v

1
and all the vertices vr,x such that r < s and δ(x, y) = 0 are

connected to vs . Then there is no safe edge if as > N̂(x̄)s . Thus the vertex vs is
fat. But by condition (7), BiasedConstructKpartiteRealization() can not reach
a critical stage before inserting all the edges of vs . This is a contradiction.
(b) Now suppose there is one vertex, vq,x with q < s and δ(x, y) = 0, that

is not connected to vs,y . If |Evq
| > 1, then there is a correct edge in Evq

. This

is a contradiction. So let |Evq
| ≤ 1. We need the following fact.

Fact 18 Let A = (a
1
, a

2
, . . . , as , . . . an) be a degree sequence, let G be a simple

realization of A and let Ĝ be the simple graph obtained from G by deleting the
vertex vq and all edges incident to vq. Then Ĝ is a simple realization of the

degree sequence Â obtained from A by removing the entry aq and subtracting

1 to all entries a
i
such that v

i
is adjacent to vq in G. Hence Â is the degree

sequence of a simple graph. We call Â a q-reduction of A.

Now, for the degree sequence A, let P
A

= (e
1
, e

2
, . . . , er) be the sequence

of correct edge choices leading the critical stage (s, t), where some preceding
vertices are not connected to vs and let vq be such a vertex. Then P

Â
obtained

from P
A
by removing all the edges incident to vq is obviously a sequence of

correct edge choices for Â and leading to a critical stage. They are correct,
since if e

i
is of type (4) or (1) in P

A
, it is still of type (4) or (1) in P

Â
as
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removing edges incident to vq will leave at least one other edge parallel to
it. They lead to a critical stage, since removing edges incident to vq does not
affect the number of excess edges, as vq is connected to v

1
by 1 edge at most.

But according to part (a) the sequence P
Â
leads to a critical stage satisfying

condition (4). That is, there is a edge e that is correct. Hence the same edge
e is correct for A. Thus, we have proved that condition (4) is satisfied in case
(b).

�

The next lemma shows that condition (5) is always met.

Lemma 19 Suppose that BiasedConstructKpartiteRealization() satisfies con-
ditions (1)–(7) and at the (s, t)th stage, the vertex vr,x is due. Then it is always
possible to concede an edge from Evr

.

Proof. Let ar denote the degree of the vertex vr . The proof uses induction
on s, the number of vertices already inserted. For a contradiction, we suppose
that vr is due but SimpleBiasedAddvertex() can not pick an edge from Evr

.
This is possible only if there are too many vertices that are due. For s = 1, this
is vacuously not possible. Now suppose for all the stages up to the (s − 1)th

stage, the result holds, so that none of these stages is spoilt or overdue. In
particular, at the insertion of vertex vq,y , where q is the greatest index less
than s whose second index is y, all the vertices that were due conceded one
edge. Suppose at the insertion of vertex vs , the number of sets that are due is
greater than as .
(i) Let νs = |N̂(ȳ)| be the number of vertices inserted before vs,y and whose

second index is not y. Suppose v
1
is not due and that there are νs − p ( for

p ≥ 2) vertices v
j
, with j 6= 1, that are due at the insertion of vertex vq . By

hypothesis, all the νs −p concede an edge to vertex vq and by Lemma 8(c) all
these νs−p vertices are due at the insertion of vertex vs . Hence, by hypothesis,
as < νs − p.
If the (s, t)th stage is normal or critical then we have

|Ee|st ≤ as − t+ a
s+1

+ ...+ an . (17)

But, at t = 1, that is, at the insertion of the first edge of vertex vs , there
are at least νs − p vertices v

j
that are due. Thus, on one hand, we have

as − t+ a
s+1

+ ...+ an < (νs − p)(n− s+ 1). (18)
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Equation 18 follows from the fact as < νs − p, as we assume that there are
too many due vertices, and au ≤ as for u > s, and there are n− s+ 1 vertices
left to insert.
On the other hand, recalling that Ev

1
denotes the set of loops incident to

v
1
, we have

|Ee|st = |Ev
1
|+ |Eev

2
|+ · · ·+ |Eev

s−1
|

= |Ev
1
|+ |Ee|

due
+ |Ee|

undue

= |Ev
1
|+ |Ee|

undue
+ (νs − p)(n− s+ 1),

where |Ee|
due

and |Ee|
undue

denote the set of excess-edges from vertices that
are due and from vertices that are not due respectively, and
|Ee|

due
= (νs − p)(n − s + 1), since there are at least νs − p vertices that are

due and each has n− s+ 1 excess-edges as there are n− s+ 1 vertices waiting
to be inserted.
Hence, if the stage is normal or critical, we have

|Ev
1
|+|Ee|

undue
+(νs−p)(n−s+1) ≤ as−t+a

s+1
+...+an < (νs−p)(n−s+1).

(19)
This is impossible. If the stage is spoilt, then SimpleBiasedAddvertex() chose

an edge of type (2) or (3) at the (s−1)th stage. This contradicts the inductive
hypothesis.
(ii) Suppose v

1
is due at the (s, t)th stage, so that there are too many vertices

that are due and one of them is v
1
. Thus, we have

|Ev
1
|+|Ee|

notdue
+(νs−p)(n−s+1) ≤ as−t+a

s+1
+...+an ≤ (νs−p)(n−s+1).

(20)
Here we have ≤ as as = (νs −p), where νs −p is the number of due vertices

other than v
1
. But this is possible only if |Ev

1
| = 0 and this is a contradiction.

�

The next lemma shows that Condition (6) is always met.

Lemma 20 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and the (s, t)th stage is critical and ripe. Then it is always
possible to concede a loop from Ev

1
.
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Proof. The proof uses induction on i, the number of vertices already inserted.
The lemma holds vacuously for i = 1. Suppose now it holds for all i < s. At
the insertion of the sth vertex, it may not hold only if there are also at least
νs − p > as other vertices that are due. Suppose the stage is normal. In that
case, as in the proof of Lemma 19, we have

|Ev
1
|+|Ee|

notdue
+(νs−p)(n−k+1) ≤ as−t+a

s+1
+...+an ≤ (νs−p)(n−s+1).

(21)
But this is possible only if |Ev

1
| = 0 and this is a contradiction. Similarly,

there is a contradiction if the stage is critical as |Ev
1
| must also be null. More-

over the inductive hypothesis is contradicted if the stage is spoilt.
�

The next lemma shows that condition (7) is always met.

Lemma 21 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and at its (s, t)th stage vs, the vertex being inserted, is due.
Then there is an available edge that is not a loop.

Proof. Suppose after the insertion of the (τ
1
+τ

2
)th edge of vertex vs , (where

τ
2
edges are of type (3) or (4)) the vertex vs is due, but τ

1
+ τ

2
< as . That

is, |Eevs
| = |N(x̄)|s but vs is not completely inserted. If for some r 6= 1 and

r < s the vertex vr,x , with δ(x, y) = 0, is not adjacent to vs and Evr
6= φ, then

SimpleBiasedAddvertex() picks an edge from Evr
.

If not, suppose all the vertices vr,x , with r < s and δ(x, y) = 0 and that are
not adjacent to vs , we have Ev

j
= φ. Now either (i) the stage is critical or (ii),

it is not.
If (i) and all the available edges are loops, then the stage is critical and

overipe and this contradicts the inductive hypothesis. Thus, some are loops
and some are multiple edges incident to vr,x with r 6 1, δ(x, y) = 0, and vr is
adjacent to vs . But, then there must be a vertex v

j
not incident to vs with

a
j
< as . Let there be p vertices adjacent to vs and q vertices v

j
not adjacent

to vs such that Ev
j
= φ. Then, as assumed above, we have t + p < as as

vs is not fully inserted. But v
j
must be adjacent to some of the vertices v

i

that are adjacent to vs . Thus a
j
≤ p < as . This contradicts the fact that

a
1
≥ a

2
≥ ... ≥ an .

Now, let all previously inserted vertices v
j
be connected to vs . It is easy

to see that there must be s − 2 such vertices which are not v
1
. Thus as =

n − s + 1 + (s − 2) = n − 1. But, by Erdös-Gallai criterion, we also have
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as ≤ n − 1. Hence the vertex vs is already completely inserted . This is a
contradiction. �

The next lemma shows that condition (7) is always met.

Lemma 22 Suppose that Algorithm BiasedConstructRealization() satisfies con-
ditions (1)–(7) and that the (s, t)th is fat-critical. Then there is an available
edge of type (4).

Proof. Suppose, for a contradiction, the (s, t)th is fat-critical, but there is
no edge of type (4). That is, all available edges are loops or type (3). That
is, for all vertices vr,x such that r < s and δ(x, y) = 0 we have that ar,x <

|N̂(x̄)|r + |N(x̄)|r . But we know, for all r with r < s, as ≤ ar and as,y > |N̂(ȳ)|s
as vs is fat. This is a contradiction. �

Thus, we have proved that conditions (4)–(7) are always satisfied at all
stages of the running of Algorithm BiasedConstructRealization(). Hence it
always terminates reaching a leaf of T that is a simple graph.
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Abstract. Let G be a simple connected graph. The reciprocal transmis-
sion Tr ′G(v) of a vertex v is defined as

Tr ′G(v) =
∑

u∈V(G)

1

dG(u, v)
, u 6= v.

The reciprocal distance signless Laplacian (briefly RDSL) matrix of a
connected graph G is defined as RQ(G) = diag(Tr ′(G)) + RD(G),
where RD(G) is the Harary matrix (reciprocal distance matrix) of G and
diag(Tr ′(G)) is the diagonal matrix of the vertex reciprocal transmis-
sions in G. In this paper, we investigate the RDSL spectrum of some
classes of graphs that are arisen from graph operations such as carte-
sian product, extended double cover product and InduBala product. We
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introduce minimum covering reciprocal distance signless Laplacian ma-
trix (or briefly MCRDSL matrix) of G as the square matrix of order n,
RQC(G) := (qi,j),

qi,j =






1+ Tr ′(vi) if i = j and vi ∈ C

Tr ′(vi) if i = j and vi /∈ C
1

d(vi, vj)
otherwise,

where C is a minimum vertex cover set of G. MCRDSL energy of a graph
G is defined as sum of eigenvalues of RQC. Extremal graphs with respect
to MCRDSL energy of graph are characterized. We also obtain some
bounds on MCRDSL energy of a graph and MCRDSL spectral radius of
G, which is the largest eigenvalue of the matrix RQC(G) of graphs.

1 Introduction

Throughout the paper, we consider G as a simple connected graph with vertex
set V(G) and edge set E(G). A graph G of order n and size m is called an
(n,m) graph. Distance between two vertices u and v is denoted by d(u, v).
The diameter of G is the maximum distance between any pair of vertices and
is denoted by diam(G).

For a vertex v, deg(v) denotes the degree of v. Energy of a graph introduced
by Ivan Gutman [12] as the sum of the absolute values of the eigenvalues of
adjacency matrix of G. The concept of energy of graph have been extensively
studied; for more information we refer to surveys [13, 23, 24]. Various kinds
of graph energy such as Laplacian energy [14], minimum covering energy [1],
minimum covering distance energy [21], and minimum covering Harary energy
[22] of a graph were proposed and some mathematical aspects of them were
investigated. A subset C of V(G) is called a vertex covering set of G if every
edge of G is incident to at least one vertex of C. A vertex covering set with
minimum cardinality is called minimum vertex covering set. The cardinality of
a minimum vertex covering set in a graph G is known as the vertex covering
number of G, denoted by τ(G). A set of vertices that no pair of which are
adjacent is called vertex independent set.
A vertex independent set with maximum cardinality is called maximum

vertex independent set.
The cardinality of maximum independent set in G is called independence

number of G, denoted by α(G). Clearly if C is a vertex covering set of G, the
V(G)−C make an independent set for G. This follows the well known relation
τ(G) + α(G) = n, where n is order of G. Two distinct edges in a graph G
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are independent if they do not share a common vertex in G. A matching of a
graph G is a set of pairwise independent edges in G. The matching number of
G, β(G) is the number of edges in the largest matching of G. The investigation
of matrices related to various graph structures is a very large and growing area
of research. In what follows, some of such matrices are introduced.
Let C be a minimum covering set of a graph G. The minimum covering

matrix [1] of G is defined as AC(G) = (aij), where

aij =






1 if vivj ∈ E(G)

1 if i = j and vi ∈ C

0 otherwise.

The Harary matrix of a graph G, RD(G) was introduced by Ivanciuc et al [17]
and successfully used in computer generation of acyclic graphs based on local
vertex invariants and topological indices. The Harary matrix RD(G) = (RDij)

is a square matrix of order n, where

RDij =






0 if i = j
1

d(vi, vj)
otherwise.

The Harary matrix can be used to derive a variant of the Balaban index,
Harary index and topological indices based on reciprocal distance in graphs.
The minimum covering energy of G is defined to be absolute values of the
eigenvalues of AC(G). The minimum covering Harary matrix [22] of G, is a
square matrix n× n defined as RDC(G) = (RDCij), where

RDCij =






1 if i = j and vi ∈ C

0 if i = j and vi /∈ C
1

d(vi, vj)
otherwise.

Analogously, minimum covering Harary energy of G is defined as HEC(G) =∑n
i=1 |λi|, where λ1, λ2, . . . , λn are eigenvalues of HC(G). The mathematical

aspects of the minimum covering Harary energy was reported in [22].
The reciprocal transmission Tr ′G(v) of a vertex v is defined as

Tr ′G(v) =
∑

u∈V(G)

1

dG(u, v)
, u 6= v
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and Tr ′(G) is the diagonal matrix whose main entries are the vertex reciprocal
transmissions inG. For 1 ≤ i ≤ n, one can easily see that Tr ′G(vi) is just the i-th
row sum of RD(G). The Harary index of a graph G, denoted by H(G), has been
introduced independently by Plavšić et al. [19] and by Ivanciuc et al. [17] in
1993. It has been named in honor of Professor Frank Harary on the occasion of

his 70th birthday. The Harary index is defined as: H(G) =
∑

{u,v}⊆V(G)

1

d(u, v)
.

Let α be a real number, we use notations Hα(G) σα(G) for
∑

{u,v}⊆V(G)

1

d(u, v)α

and
∑

v∈V(G) Tr
′(v)α, respectively. Note that if α 6= 1 then Hα(G) = H(G) if

and only if G is a complete graph. The first and the second Zagreb indices of
a graph G, denoted by M1(G) and M2(G) are defined as:

M1(G) =
∑

uv∈E(G)

deg(u) + deg(v),

M2(G) =
∑

uv∈E(G)

deg(u)deg(v).

The reciprocal distance signless Laplacian matrix (or briefly RDSL matrix) is
defined as RQ(G) = Tr ′(G) + RD(G). Since the matrix RQ(G) is irreducible,
non-negative, symmetric and positive semi-definite, all its eigenvalues are non-
negative [2]. The set of eigenvalue of RQ(G) is called RDSL spectrum of G.
Motivated by the concept of minimum covering distance matrix, we define

the minimum covering reciprocal distance signless Laplacian matrix (or briefly
MCRDSL matrix) of G as the square matrix of order n, RQC(G) := (qi,j),
where

qi,j =






1+ Tr ′(vi) if i = j and vi ∈ C

Tr ′(vi) if i = j and vi /∈ C
1

d(vi, vj)
otherwise.

Let ρ1 ≥ ρ2 ≥ · · · ≥ ρn be the eigenvalues of the RDSL matrix RQ(G). The
largest eigenvalue ρ1 = ρ(G) of RQ(G) is called the RDSL spectral radius of
G. By the Perron-Frobenius theorem, there is a unique normalized positive
eigenvector of RQ(G) corresponding to ρ1, which is called the (RDSL) princi-
pal eigenvector of G. Since the matrices RQC(G) is irreducible, non-negative,
symmetric and positive semi-definite, all their eigenvalues are non-negative.
For MCRDSL matrix, auxiliary energy (briefly MCRDSL energy) is defined

as sum of its eigenvalues and denoted by ERQC
(G).
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This paper is organized as follows. In the next section, RDSL spectrum of
some classes of graphs that are constructed by graph operations, is determined.
In section 3, MCRDSL spectrum of some standard graphs such as complete
graph, complete bipartite graph and cocktail party graph are computed. Ex-
tremal graphs with respect to MCRDSL energy of graph is obtained in section
4. Finally, in section 5, more bounds are given for MCRDSL energy of graph
and RDSL spectral radius in terms of the eigenvalues of RDSL matrix, Zagreb
indices and Harary index.

2 RDSL spectrum of some classes of graphs

It is a well known fact that almost all graphs are of diameter 2. Therefore in
this section, we get the RDSL spectrum of some classes of graphs of diameter 2
or 3 that are arisen from graph operations such as cartesian product, InduBala
product, extended double cover graph and complement of a graph.
The following lemma will be helpful in the sequel.

Lemma 1 [11] Let

A =

(

A0 A1

A1 A0

)

be a symmetric 2 × 2 block matrix. Then, the spectrum of A is the union of
the spectra of A0 +A1 and A0 −A1.

We begin first with cartesian product of K2 and a graph of diameter at most
2. The cartesian product of two graphs G and H, G × H is the graph with
vertex set V(G) × V(H) and two vertices (u1, u2) and (v1, v2) are adjacent if
and only if u1 = v1 and u2v2 ∈ E(H) or u2 = v2 and u1v1 ∈ E(G).

Theorem 2 Let G be an r-regular graph of diameter at most 2 with an ad-

jacency matrix A and Spec(G) =

(

r λi
1 ni

)

, i = 2, 3, . . . , k. Then, the RDSL

spectrum of H = G× K2 is as follows, Spec(RQ(G)) =







n+ r−
1

6

5n+ 4r+ 1

3

4λi + 5n+ 4r+ 2

6

2λi + 5n+ 4r− 1

6

1 1 ni ni







for i = 2, 3, . . . , k.
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Proof. Let V(G) = {v1, v2, . . . , vn}, V(K2) = {w1, w2}. Let A and Ā be the
adjacency matrix ofG and Ḡ respectively and J denotes the n×n square matrix
whose all entries are 1. From the fact dH((vi, wj), (vs, wt)) = dG(vi, vs) +

dK2
(wj, wt) = dG(vi, vs) + 1, one can see that all vertices of H have a same

reciprocal transmission and Tr ′H(vi, wj) =
1

6
(5n + 4r + 1). Then Tr ′(G) =

1

6
(5n + 4r + 1)I. Since G is a graph of diameter 1 or 2, diameter of H is 2 or

3 and H is r+ 1 regular. Thus the RD(H) is of the form

RD(H) =











A+
1

2
Ā J−

1

2
A−

2

3
Ā

J−
1

2
A−

2

3
Ā A+

1

2
Ā











and consequently the RDSL matrix of H is of the form

RQ(H) =











A+
1

2
Ā+ (

5

6
n+

2

3
r+

1

6
)I J−

1

2
A−

2

3
Ā

J−
1

2
A−

2

3
Ā A+

1

2
Ā+ (

5

6
n+

2

3
r+

1

6
)I











.

Now, by Lemma 1 and the fact Ā = J − I −A, the spectrum of RQ(H) is the
union of the spectra

1

6
(4A+ 5J+ (5n+ 4r+ 2)I)

and
1

6
(2A+ J+ (5n+ 4r− 1)I).

�

The next considered graph operation is extended double cover graph of
a graph that is introduced by N. Alon [3] to studying networks. Spectra of
extended double cover graphs was investigated in [7]. Let G be a graph on the
vertex set {v1, . . . , vn}. The extended double cover graph of G, denoted by G∗,
is the bipartite graph with partitions X and Y where X = {x1, x2, . . . xn} and
Y = {y1, y2, . . . , yn}, in which xi and yj are adjacent if and only if i = j or vi
and vj are adjacent in G. Now, we obtain the RDSL spectrum of the G∗ of a
regular graph G with diameter 2.
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Theorem 3 Let G be an r-regular graph on n vertices with diameter 2 and

let Spec(G) =

(

r λi
1 ni

)

, i = 2, 3, . . . , k. Then, the RDSL spectrum of G∗ is

Spec(RQ(G∗)) =







5n+ 4r+ 1

3
n− 1

4λi + 5n+ 4r+ 2

6

−4λi + 5n+ 4r− 6

6

1 1 ni ni






,

i = 2, 3, . . . , k.

Proof. First note that G∗ is r + 1 regular graph with diameter 3 and any

vertex v ∈ V(G∗) has reciprocal transmission
1

6
(5n+ 4r+ 1). It is not difficult

to see that RD(G∗) has the form

RD(G∗) =











1

2
(J− I) A+

1

3
Ā+ I

A+
1

3
Ā+ I

1

2
(J− I)











,

and then we have

RQ(G∗) =











1

6
(3J+ (5n+ 4r− 2)I) A+

1

3
Ā+ I

A+
1

3
Ā+ I

1

6
(3J+ (5n+ 4r− 2)I)











.

Then, by Lemma 1, the spectrum of RQ(G) is the union of the spectra

1

6
(4A+ 5J+ (5n+ 4r+ 2)I)

and
1

6
(−4A+ J+ (5n+ 4r− 6)I).

�

Next graph operation is InduBala product. InduBala product of graphs in-
troduced in [16], where the distance spectrum of InduBala product of graphs
is determined. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs on disjoint
sets of n1 and n2 vertices, respectively, then their union is the graph G1∪G2 =
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(V1 ∪ V2, E1 ∪ E2). Their join is denoted by G1∇G2 and consists of G1 ∪ G2

and all lines joining V1 and V2. The InduBala product of graphs is defined
as follows. Let V(G1) = {u1, u2, . . . , un1

} and V(G2) = {v1, v2, . . . , vn2
}. Take

a disjoint copy G′
1∇G′

2 of G1∇G2 with vertex sets V(G′
1) = {u′

1, u
′
2, . . . , u

′
n1
}

and V(G′
2) = {v′1, v

′
2, . . . , v

′
n2
}. Now make vi adjacent with v′i for each i =

1, 2, . . . , n2. Structure of InduBala product of two graphs P4 and K3 is illus-
trated in Figure 1. Occasionally, it so happens that for certain families of

Figure 1: The graph K3HP4.

graphs it is possible to identify a graph by looking at the spectrum. Now, we
describe the RDSL spectrum of the join of a regular graph with the union of
two regular graphs of distinct vertex degrees.

Theorem 4 For i = 0, 1, 2, let Gi be an ri-regular graph of order ni and
eigenvalues λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni

of the adjacency matrix A(Gi). Then
the RDSL spectrum of G0∇(G1 ∪G2) consists of eigenvalues

1

2
(2m− n0 + λ0,j + r0 − 2), j = 2, . . . , n0,

and
1

2
(m+ n0 + λi,j + ri − 2), i = 1, 2 and j = 2, 3, . . . , ni,

where m =
∑2

i=0 ni, and three more eigenvalues which are the eigenvalues of
the following matrix











m+ r0 − 1 n1 n2

n0 m−
1

2
n2 + r1 − 1

1

2
n2

n0
1

2
n1 m−

1

2
n1 + r2 − 1











. (1)
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Proof. The reciprocal distance signless Laplacian matrix F = G0∇(G1 ∪ G2)

has the form










S0 J J

J S1
1

2
J

J
1

2
J S2











,

where

S0 =
1

2
((2m− n0 + r0 − 2)I+ J+A(G0))

and for i = 1, 2

Si =
1

2
((m+ n0 + ri − 2)I+ J+A(Gi)) .

As a regular graph, G0 has the all-one vector 1 as an eigenvector corre-
sponding to the eigenvalue r0, while all the other eigenvectors are orthogonal
to 1. Let λ be an arbitrary eigenvalue of the adjacency matrix of G0 with
corresponding eigenvector X, such that 1TX = 0, then [XT 0 0]T is an eigen-

vector of RQ(F) corresponding to the eigenvalue
1

2
(2m−n0+ r0−2+λ). Now,

let µ, ξ be arbitrary eigenvalues of the adjacency matrix of G1 and G2 with
corresponding eigenvector Y and Z, respectively. In a similar way the vectors
[0 XT 0]T and [0 0 XT ]T are eigenvectors of RQ(F) with corresponding

eigenvalues
1

2
(m+ n0 + r1 − 2+ µ) and

1

2
(m+ n0 + r2 − 2+ ξ), respectively.

In this way we obtain eigenvectors of the form [XT 0 0]T , [0 XT 0]T

and [0 0 XT ]T and these account for a total of m− 3 eigenvectors. All these
eigenvectors are orthogonal to [1T 0 0]T , [0 1T 0]T and [0 0 1T ]T . Thus
the remaining three eigenvectors of RQ(F) are of the form [α1 β1 γ1]T for
some (α,β, γ) 6= (0, 0, 0).

If ν is an eigenvalue of RQ(F) with an corresponding eigenvector (α1, β1, γ1)T ,
then from RQ(F)(α1, β1, γ1)T = ν(α1, β1, γ1)T , and A(Gi)1 = ri1 for i =

0, 1, 2, we get the system of equations:

(m+ r0 − 1)α+ n1β+ n2γ = να,

n0α+ (m−
1

2
n2 + r1 − 1)β+

1

2
n2γ = νβ,

n0α+
1

2
n1β+ (m−

1

2
n1 + r2 − 1)γ = νγ,

which have a nontrivial solution if and only if ν is an eigenvalue of (1). Further,
it is obvious from above that any nontrivial solution of above system forms
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an eigenvector of RQ(F) corresponding to eigenvalue ν. Since all 3 remaining
eigenvectors of RQ(F) must be formed in this way, we conclude that each
eigenvalue of (1) is an eigenvalue of RQ(F) as well. �

Theorem 5 For i = 1, 2, let Gi be an ri-regular graph of order ni and let
λi,1 = ri ≥ λi,2 ≥ . . . ≥ λi,ni

be the eigenvalues of the adjacency matrix A(Gi).

Then the RDSL spectrum of G1HG2 is the set consisting of eigenvalues

1

2

(

5

3
n1 + 3n2 + λ1,j + r1 − 2

)

, j = 2, 3, . . . , n1 each with multiplicity 2,

and

1

2

(

3n1 +
5

3
n2 +

4

3
λ2,j +

4

3
r2 +

2

3

)

j = 2, 3, . . . , n2

and

1

2

(

3n1 +
5

3
n2 +

2

3
λ2,j +

4

3
r2 − 2

)

, j = 2, 3, . . . , n2,

also four more eigenvalues which are the eigenvalues of the matrix

































m1 n2
1

2
n2

1

3
n1

n1 m2
1

3
(n2 +

1

6
r2 +

2

3
)

1

2
n1

1

2
n1

1

3
(n2 +

1

6
r2 +

2

3
) m2 n1

1

3
n1

1

2
n2 n2 m1

































, (2)

where m1 =
1

2

(

8

3
n1 + 3n2 + 2r1 − 2

)

and m2 =
1

2

(

8

3
n2 + 3n1 +

7

3
r2 −

2

3

)

.
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Proof. The RDSL matrix H = G1HG2 has the form

RQ(H) =

































S1 J
1

2
J

1

3
J

J S2
1

3
J+

2

3
I+

1

6
A(G2)

1

2
J

1

2
J

1

3
J+

2

3
I+

1

6
A(G2) S3 J

1

3
J

1

2
J J S4

































,

where

Si =
1

2

(

J+A(G1) + (
5

3
n1 + 3n2 + r1 − 2)I

)

, i = 1, 4

and

Si =
1

2

(

J+A(G2) + (3n1 +
5

3
n2 +

4

3
r2 −

2

3
)I

)

, i = 2, 3.

By analogy to the proof of Theorem 4, let λ be an arbitrary eigenvalue
of the adjacency matrix of G1 with corresponding eigenvector X, such that
1TX = 0. Then [XT 0 0 0]T is an eigenvector of RQ(H) corresponding

to the eigenvalue
1

2
(
5

3
n1 + 3n2 + λ + r1 − 2). In a similar way the vector

[0 0 0 XT ]T is an eigenvector of RQ(H) corresponding to the eigenvalue
1

2
(
5

3
n1 + 3n2 + λ + r1 − 2). Now let µ be an arbitrary eigenvalue of the ad-

jacency matrix of G2 with corresponding eigenvector Y, such that 1TY = 0.

Then by a similar argument we see that the vectors [0 YT YT 0]T and
[0 − YT YT 0]T are eigenvectors of RQ(H) with corresponding eigenval-

ues
1

2

(

3n1 +
4

3
µ+

5

3
n2 +

4

3
r2 +

2

3

)

and
1

2

(

3n1 +
2

3
µ+

5

3
n2 +

4

3
r2 − 2

)

re-

spectively. In this way we obtain eigenvectors of the form [XT 0 0 0]T ,

[0 0 0 XT ]T , [0 YT YT 0]T and [0 − YT YT 0]T and these account
for a total of 2(n1 + n2) − 4 eigenvectors. All these eigenvectors are orthog-
onal to [1T 0 0 0]T , [0 1T 0 0]T , [0 0 1T 0]T and [0 0 0 1T ]T .

This means that these four vectors span the space spanned by the remaining
four eigenvectors of RQ(H). Thus the remaining four eigenvectors of RQ(H)

are of the form [α1 β1 γ1 δ1]T for some (α,β, γ, δ) 6= (0, 0, 0, 0). If ν

is an eigenvalue of RQ(H) with an eigenvector (α1 β1 γ1 δ1)T , from
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RQ(H)(α1 β1 γ1 δ1)T = ν(α1 β1 γ1 δ1)T , and A(Gi)1 = ri1 for
i = 1, 2, we get the system of equations:

1

2

(

8

3
n1 + 3n2 + 2r1 − 2

)

α+ n2β+
1

2
n2γ+

1

3
n1δ = να,

n1α+
1

2

(

8

3
n2 + 3n1 +

7

3
r2 −

2

3

)

β+
1

3
(n2 +

1

6
r2 +

2

3
)γ+

1

2
n1δ = νβ,

1

2
n1α+

1

3
(n2 +

1

6
r2 +

2

3
)β+

1

2

(

8

3
n2 + 3n1 +

7

3
r2 −

2

3

)

γ+ n1δ = νγ

1

3
n1α+

1

2
n2β+ n2γ+

1

2

(

8

3
n1 + 3n2 + 2r1 − 2

)

δ = νδ,

which have a nontrivial solution if and only if ν is an eigenvalue of (2). Further,
it is obvious from above that any nontrivial solution of above system forms an
eigenvector of RQ(H) corresponding to eigenvalue ν. Since all four remaining
eigenvectors of RQ(H) must be formed in this way, we conclude that each
eigenvalue of (2) is an eigenvalue of RQ(H) as well. �

3 MCRDSL energy of some standard graphs

In this section, ERQC
is computed for some standard graphs such as complete

graph, complete bipartite graph and cocktail party graph.

Example 6 Complete graph Kn.

For n ≥ 2, the eigenvalues of the minimum covering Harary matrix of complete
graph Kn was determined in [1, 22] as Spec(RDC(Kn)) =









0
n− 1+

√

(n+ 3)(n− 1)

2

n− 1−
√

(n+ 3)(n− 1)

2

n− 2 1 1









.

Easily one can see that for complete graph Kn with vertex set V(Kn) = {v1, v2, . . . , vn}

and minimum covering set C = {v1, v2, . . . , vn−1},

RQC(Kn) = (n− 1)I+AC(Kn).
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Therefore, the eigenvalues of the matrix RQC(Kn) are as Spec
(

RQC(Kn)
)

=









n− 1
3(n− 1) +

√

(n+ 3)(n− 1)

2

3(n− 1) −
√

(n+ 3)(n− 1)

2

n− 2 1 1









and consequently ERQC
(Kn) = n2 − 1. Another simpler way to compute the

ERQC
(Kn) is as follows

ERQC
(Kn) = trace(RQC(Kn)) = |C|+

n∑

i=1

Tr ′(vi) = n− 1+ n(n− 1) = n2 − 1.

Complete bipartite graph Km,n.

Let V(Km,n) = {v1, v2, . . . , vm}
⋃

{w1, w2, . . . , wn} and C = {v1, v2, . . . , vm} be
the minimum covering set of Km,n, (m ≤ n). Then,

ERQC
(Km,n) = |C|+

m∑

i=1

Tr ′(vi) +

n∑

i=1

Tr ′(wi) = 2mn+
1

2
(m2 + n2 +m− n).

Cocktail party graph.

The Cocktail party graph of order n, Kn×2 is formed from the complete graph
K2n by removing n disjoint edges. Note that all vertices of Kn×2 have a same

reciprocal transmission
3

2
(n−1) and a minimum covering set is of order 2n−2.

Therefore,

ERQC
(Kn×2) = 2n− 2+ 2n

(

3

2
(n− 1)

)

= 3n2 − n− 2.

4 Extremal graphs with respect to ERQC

In this section, we are concerned with the extremal graphs with respect to the
minimum covering reciprocal distance signless Laplacian energy.

Theorem 7 Let G be a simple graph with n vertices and m edges. If C is the
minimum covering set of G, then

ERQC(G) = τ(G) + 2H(G).
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Proof. Let ρ1, ρ2, . . . , ρn be the eigenvalues of the matrix RQC(G). The result
follows from the well known fact that

∑n
i=1 ρi = Trace(RQC(G)) and the

eigenvalues of RQC(G) are non-negative. �

Corollary 8 Let G be a graph of order n, then ERQC
(G) ≤ n2−1. The equality

holds if and only if G ∼= Kn.

Proof. It is a well known fact that adding any edge to graph G, increase
the Harary index of G and do not decrease the vertex covering number of G.
Consequently, Kn has the maximum Harary index among all graphs of order
n. Clearly, τ(G) ≤ n− 1. Therefore

ERQC
(G) = τ(G) + 2H(G) ≤ n− 1+ n(n− 1) = n2 − 1,

and the equality holds if and only if G ∼= Kn. �

Corollary 9 Let G 6= Kn be a graph of order n. Then

ERQC(G) ≤ n2 − 3,

with equality holds if and only if G ∼= Kn − e, where e is an edge of Kn.

Let G(n,β) denotes the constructed graph by join of Kβ and Kn−β. Note
that τ(G(n,β)) = β. Let T(n,β) be a tree obtained from K1,n−β by attaching
a pendant vertex to its β− 1 pendant vertices. In [15] and [9] lower and upper
bounds on Harary index were obtained in terms of independence number and
matching number. It was proved that graphs G(n,β) and T(n,β) have the
maximum value of Harary index among all graphs and trees of a same order
n and same independence number n− β, respectively. Consequently, G(n,β)

and T(n,β) get the maximum value of ERQC among graphs of order n and
vertex covering number β as well. Hence we conclude that:

Theorem 10 Let G be a graph of order n and vertex cover number β. Then,

ERQC(G) ≤ 2

(

β

2

)

+

(

n− β

2

)

+ β(2n− 2β+ 1).

The equality holds if and only if G ∼= G(n,β).

In [10], it is proved that of all trees of order n, star graph Sn is the unique
graph of maximum value of Harary index. But it is not true for ERQC. For
example, see the figure 2, two graphs S5 and T(5, 2) where ERQC(T(5, 2)) >

ERQC(S5).
In the following, an upper bound is given for trees of order n and vertex

cover β.
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Figure 2: Graphs S5 and T(5, 2), ERQC(T(5, 2)) > ERQC(S5)

Theorem 11 Let T be a tree of order n and vertex cover number β. Then,

ERQC(T) ≤
1

12

(

6n2 + (10− 4β)n+ β2 + 21β− 22
)

.

The equality holds if and only if T ∼= T(n,β).

It is a well known fact that for any bipartite graph G of order n, α(G) +

β(G) = n, (see [5]). Therefore, the following corollary is immediate.

Corollary 12 Let T be a tree of order n. If T has perfect matching, then

ERQC(T) ≤
1

48
(15n2 + 82n− 88),

with equality holding if and only if T ∼= T(n,
n

2
).

Lemma 13 Let T be a tree of order n and diameter d. Then ⌈d+ 1

2
⌉ ≤

α(T) ≤ ⌈n−
d

2
⌉.

Proof. Notice that T has Pd+1 as subgraph. The proof follows from the fact

that α(T) ≥ α(Pd+1) = ⌈d+ 1

2
⌉ and τ(T) ≥ τ(Pd+1) = ⌊d

2
⌋. �

A lower bound for Harary index among trees of diameter d and order n is
obtained by Xu et al. [9] as follow.

Lemma 14 Let T be a tree of order n and diameter d. Then

H(T) ≤ 1

24
(M1(G) + 2M2(G) + 3n2 + 11n− 24),

with equality holds if and only if T is of diameter at most 4.
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Now, an upper bound for ERQC of trees is obtained by using Lemmas 13
and 14 as:

Corollary 15 Let T be a tree of order n and diameter d. Then

ERQC(T) ≤
1

12
(M1 + 2M2 + 3n2 + 23n− 24) − ⌊d+ 1

2
⌋,

with equality holds if and only if T = Pn where 2 ≤ n ≤ 5 or T is a graph
constructed by P5 and attaching a vertex to the central vertex of P5.

Proof. From Lemma 13, we get τ(T) ≤ n− ⌊d+ 1

2
⌋. Among trees of diameter

d ≤ 4, trees Pn, 2 ≤ n ≤ 5 and a graph constructed by P5 and attaching a

vertex to the central vertex of P5, have vertex cover τ(T) = n− ⌊d+ 1

2
⌋. �

Let Γ(n, d) be the set of all graphs of order n and diameter d, obtained
from a path Pd+1 and a complete graph Kn−d−1 that each vertex of Kn−d−1 is
connected to a central vertex in Pd+1 and its two neighbors. In [10], some upper
and lower bounds were obtained for graphs of given diameter and number of
edges. In the following, we show that graphs of Γ(n, d) get the maximum value
of Harary index and ERQC among graphs of given order n and diameter d.

Let Hn =
∑n

k=1

1

k
denotes the n-th harmonic number. It is easy to see that

H(Pn) = nHn−1 − n+ 1.

Theorem 16 Let G be a graph on n vertices and diameter d. Then

H(G) ≤ (d+ 1)Hd − d+

(

n− d− 1

2

)

+ (n− d− 1)(H
⌊
d

2
⌋
+H

⌊
d+ 1

2
⌋
+ 1),

with equality holds if and only if G ∈ Γ(n, d).

Proof. Let Pd+1 be a path connecting two vertices of distance d. Let W1 =

V(Pd+1) and W2 = V(G) −V(Pd+1). Note that each vertex of W2 is connected
to at most 3 vertices of W1. It is not difficult to see that in a path Pm, a central
vertex x has maximum reciprocal transmission Tr ′(x) = H

⌊
m− 1

2
⌋
+ H

⌊
m

2
⌋
.

Let x be a central vertex of Pd+1. Then

H(G) = H(Pd+1) +
∑

{u,v}⊆W2

1

d(u, v)
+

∑

u∈W1

∑

v∈W2

1

d(u, v)

≤ H(Pd+1) +

(

n− d− 1

2

)

+ (n− d− 1)(Tr ′Pd+1
(x) + 1).
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The equality holds if and only if all vertices in W2 are adjacent and for each

vertex v ∈ W2, the equality
∑

u∈W1

1

d(u, v)
= Tr ′Pd+1

(x) + 1 holds if and only

if v is adjacent to x and its two neighbors in Pd+1. Thus G ∈ Γ(n, d). �

5 More bounds on ERQC and largest eigenvalue of

RQC matrix

The following lemmas refer to the real non-negative numbers, and will be
helpful in the sequel.

Lemma 17 [18] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers, then

n∑

i=1

a2
i

n∑

i=1

b2
i −

(

n∑

i=1

aibi

)2
≤ n2

4
(M1M2 −m1m2)

2,

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 =

min1≤i≤n bi.

Lemma 18 [20] If ai and bi, 1 ≤ i ≤ n, are positive real numbers, then

n∑

i=1

a2
i

n∑

i=1

b2
i ≤

1

4

(
√

M1M2

m1m2
+

√

m1m2

M1M2

)2(
n∑

i=1

aibi

)2

,

where M1 = max1≤i≤n ai, M2 = max1≤i≤n bi, m1 = min1≤i≤n ai and m2 =

min1≤i≤n bi.

Lemma 19 [8] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers for

which there exist real numbers r and R, so that r ≤ bi

ai
≤ R, ai 6= 0, for each

i = 1, 2, . . . , n. Then
n∑

i=1

b2
i + rR

n∑

i=1

a2
i ≤ (r+ R)

n∑

i=1

aibi.

Equality holds if and only if bi = air or bi = aiR for at least one i, where
1 ≤ i ≤ n.

Lemma 20 Let G be a graph of order n and C be a minimum vertex covering
set. If ρ1, ρ2, . . . , ρn are the eigenvalues of RQC(G), then

n∑

i=1

ρ2i = σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v).
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Proof. We have

n∑

i=1

ρ2i =

n∑

j=1

n∑

i=1

qijqji =

n∑

i=1

(qii)
2 + 2

∑

1≤i<j≤n

(qij)
2

=
∑

v/∈C

(Tr ′(v))2 +
∑

v∈C

(1+ Tr ′(v))2 + 2
∑

1≤i<j≤n

(qij)
2

= σ2(G) + τ(G) + 2H2(G) + 2
∑

v∈C

Tr ′(v).

�

Corollary 21 Let G be an (n,m) graph with diameter at most 2 and C be a
minimum covering set. If ρ1, ρ2, . . . , ρn are the eigenvalues of RQC(G), then

n∑

i=1

ρ2i =
1

2
(n+ 1)

(

n

2

)

+
1

4
M1(G) + nm+ nτ(G) +

∑

v∈C

deg(v),

where M1(G) =
∑n

i=1 deg(vi)
2 is known as the first Zagreb index.

Proof. Let V(G) = {v1, v2, . . . , vn}. Since diam(G) ≤ 2, hence we get Tr ′(v) =
1

2
(n+deg(v)−1). Let RQC(G) = (qij). From the fact

∑n
i=1 ρ

2
i = trace(RQC(G))2,

we get

n∑

i=1

ρ2i = σ2(G) + τ(G) + 2H2(G) + 2
∑

v∈C

Tr ′(v)

=
∑

v∈V(G)

(Tr ′(v))2 + τ(G) + 2
∑

v∈C

Tr ′(v) +m+

(

n

2

)

=
1

4

(

n(n− 1)2 +M1(G) + 4(n− 1)m

)

+ nτ(G)

+
∑

v∈C

deg(v) +m+

(

n

2

)

=
1

2
(n+ 1)

(

n

2

)

+
1

4
M1(G) + nm+ nτ(G) +

∑

v∈C

deg(v),

and the proof is complete. �

In the following, some bounds are presented for ERQC
(G).
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Theorem 22 Let G be a simple graph of order n. If C is the minimum vertex
covering set and ∆ = det(RQC(G)), then

√

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v) + n(n− 1)∆
2
n

≤ ERQC
(G)

≤

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

.

Proof. Let ρ1, ρ2, . . . , ρn be the eigenvalues of RQC(G). First, we show the
right-hand side inequality. Setting ai = 1 and bi = ρi in the Cauchy Schwarz
inequality, (

∑n
i=1 aibi)

2 ≤
(∑n

i=1 a
2
i

) (∑n
i=1 b

2
i

)

and using Lemma 20, we get
(

n∑

i=1

ρi

)2

≤
(

n∑

i=1

1

)(

n∑

i=1

ρ2i

)

(

ERQC
(G)

)2

≤ n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

.

For the left inequality, consider the AM-GM inequality (which says that arith-
metic mean of a set of non-negative real number is greater than or equal to
geometric mean of them), on the set of {ρiρj|1 ≤ i < j ≤ n}, then

1
(

n
2

)

∑

1≤i<j≤j

ρiρj ≥
( ∏

1≤i<j≤n

ρiρj

)

1
(

n
2

)

=

( n∏

i=1

ρi

)

n− 1
(

n
2

) =

( n∏

i=1

ρi

)

2

n

= ∆

2

n .

Now, we get

E2
RQC

(G) =

(

n∑

i=1

ρi

)2

=

n∑

i=1

ρ2i + 2
∑

1≤i<j≤n

ρiρj

≥ σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v) + n(n− 1)∆

2

n .
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Theorem 23 If ρ1 is the largest eigenvalue of RQC(G), then ρ1 ≥
4H(G) + τ(G)

n
.

Proof. Let X = (1, 1, . . . , 1)
︸ ︷︷ ︸

n

T be the all one vector. Then, by the Rayleigh

Principle (see [4]),

ρ1 ≥ XTRQC(G)X

XTX
=

∑n
i=1

∑n
j=1 qij

n

=

2
∑

1≤i<j≤n

1

d(vi, vj)
+

n∑

i=1,vi /∈C

Tr ′vi +

n∑

i=1,vi∈C

(1+ Tr ′i)

n

=
4H(G) + τ(G)

n
.

�

Using Lemmas 17, 18 and setting ai = 1 and bi = ρi, we get the following
two lower bounds for ERQC

of a graph G.

Theorem 24 Let G be a connected graph which ρ1 ≥ ρ2 ≥ . . . ≥ ρn are the
eigenvalues of MCRDSL matrix of G. Then

ERQC
(G) ≥

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

−
n2

4
(ρ1 − ρn)

2, (3)

and

ERQC
(G) ≥ 2

√
ρ1ρn

ρ1 + ρn

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

. (4)

Lemma 25 [6] If ai and bi, 1 ≤ i ≤ n, are non-negative real numbers for
which there exist real numbers a, b,A and B, so that for each i = 1, . . . , n, we
have a ≤ ai ≤ A and b ≤ bi ≤ B. Then

∣

∣

∣

∣

∣

n

n∑

i=1

aibi −

n∑

i=1

ai

n∑

i=1

bi

∣

∣

∣

∣

∣

≤ α(n)(A− a)(B− b),

where α(n) = n[
n

2
](1−

1

n
[
n

2
]), while [x] denotes integer part of a real number

x. Equality holds if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn.
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Another lower bound is obtained for ERQC
of a graph by applying Lemma

25 and setting ai = bi = ρi, a = b = ρn and A = B = ρ1.

Theorem 26 Let G be a connected graph and ρ1 ≥ ρ2 ≥ . . . ≥ ρn be the
eigenvalues of RQC(G). Then

ERQC
(G) ≥

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

− α(n)(ρ1 − ρn)2. (5)

Corollary 27 Since α(n) = n[
n

2
](1−

1

n
[
n

2
]) ≤ n2

4
, then according to (5), we

have that

ERQC
(G) ≥

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

− α(n)(ρ1 − ρn)2

≥

√

√

√

√n

(

σ2(G) + 2H2(G) + τ(G) + 2
∑

v∈C

Tr ′(v)

)

−
n2

4
(ρ1 − ρn)

2.

This means that inequality (5) is stronger than inequality (3).

Theorem 28 Let G be a connected graph and ρ1 ≥ ρ2 ≥ . . . ≥ ρn be the
eigenvalues of RQC(G). Then

ERQC
(G) ≥ nρ1ρn + σ2(G) + 2H2(G) + τ(G) + 2

∑
v∈C Tr ′(v)

ρ1 + ρn
. (6)

Proof. The result follows by setting ai = 1, bi = ρi R = ρ1 and r = ρn in the
Lemma 19. �
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Abstract. We consider the concept of statistical complexity to write the
quasiperiodical damped systems applying the snapshot attractors. This
allows us to understand the behaviour of these dynamical systems by the
probability distribution of the time series making a difference between
the regular, random and structural complexity on finite measurements.
We interpreted the statistical complexity on snapshot attractor and de-
termined it on the quasiperiodical forced pendulum.

1 Introduction

There is no universal definition of complexity in natural sciences. In the last
two decades several complexity measures have been introduced, which contain
various aspects of complex systems. We mention some ones as algorithmic com-
plexity (Kolmogorov) [17], amount of information about the optimal predict
the future corresponding to the expected past (Crutchfield, Young) [8], (Bof-
fetta, Cencini, Falconi, Vulpiani) [6], complexity of finite sequence (Lempel,
Ziv) [22].
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242 Á. Fülöp

An important contribution to this issue due to P. Grassberger [13], he stu-
died the pattern-generation by the dynamics of a system and introduced the
effective entropy considering the mixture of order and disorder, regularity and
randomness, because the most complex situation is neither the one with high-
est Shannon information S (random structure) nor the one with lowest S
(ordered structures).
We negotiate the statistical complexity in this article, which allows a de-

scription of a finite measured series to consider more complicated dynamical
structures which was published in the article [23] (1995). It was widely used
in the chaotic regim [9], biology [32], symbolic sequences [1], pseudorandom
bit generator [12], earthquake [24], the number system [11].
The entropy appoints the direction of flow. The complexity determines the

inner structure of the dynamical system. The statistical approaches are easier
to implement than solving equations of motion and they offer the only way of
dealing with otherwise intractable problems.
We study the complexity of the quasiperiodic driven dynamical systems con-

sidering the snapshot attractor [30] on the set of points, which are determined
by the Poencaré section. This object corresponds to a given time moment,
which contains the points of the trajectories ensemble. These orbits were ini-
tialized in the past and the time dependent behaviour was determined by the
same equation of motion.
We determined the numerical approximation of the aperiodic driven pen-

dulum, which reflects the behaviour of complexity on the snapshot attractor.
This system shows on-off intermittency [20] near to the axis (L=0), due to
the fluctuation of the maximal Lyapunov exponent. The maximal Lyapunov
exponent linearly intersects the axis, therefore it can be seen, that the system
has scaling behaviour [19].
The structure of the article contains the next parts: In the Section 2 we

introduce the idea of complexity accordingly the measure of entropy and dis-
equilibrium. We discuss the statistical complexity is extended to generalized
complexity considering the Tsallis, Wooters, Rényi entropy and the Kullbac-
Shannon, Kullbac-Tsallis, Kulback-Rényi divergency. We explained the quasi
periodical motion by snapshot attractor, which disposes the on-off intermit-
tency between chaotic and nonchaotic condition and this system provides the
scaling behaviour in the Section 3. A numerical approximation of the aperiodic
forced system is illustrated by the quasiperiodic driven pendulum comparing
the complexity and the dissipation rate, which due to the on-off intermittency
(Section 4).
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2 Complexity

We investigate the statistical complexity, which is based on the effective en-
tropy by P. Grassberger [13] and the main idea is published by R. López-Ruiz,
H.L. Manchini, X. Calbet (LMC) [23, 25, 3, 7].
The expanded definition of the statistical complexity so called generalized

statistical complexity measures were introduced by M.T. Martin, A. Plastino,
O.A. Rosso (2006) [26], which apply various kinds of entropy and disequilib-
rium measure [18].
We use the notation of a measured sequence by the article [10]. The time

series of the ensemble is denoted by y1,j, . . . , yn,j, where yi,j means the measure-
ment of the quantity y at time ti = t0+ i∆t, the time interval ∆t > 0 ∈ R and
j (1 ≤ j ≤ m) assigned a number of the trajectory in the ensemble. The unit of
the time interval ∆t equals to a constant in this description. The x(n) indicates
the trajectory of length n in R

d, which means a time series of the measure-

ment. The kth point of the orbit of length n in the manifold is written by x
(n)
k,j ,

where (k = 1, . . . , n), and j means the number of trajectory (j = 1, . . . ,m)

in the manifold. We will research the sequent of x
(n)
1,j , x

(n)
2,j , . . . , x

(n)
n,j as a time

series over the jth trajectory. Let us choose this time development quantity
of the ensemble at a given moment i = t ′, then we determine the probability

distribution of the x
(n)
t ′,j(j = 1, . . . ,m) over the points of the trajectories of the

manifold.
We rephrase this notation by the symbolic dynamics, because the concept of

complexity is much more universal idea than this question. We distinguish M

different value of the measurements. The points of the trajectories of length

n x
(n)
i,j (1 ≤ i ≤ n) (1 ≤ j ≤ m) are noted by the symbol oi,j, which is

chosen from the set {1, . . . ,M}. Then the jth path of length n in the ensemble

corresponds to O
(n)
j = (o1,j, o2,j, . . . , on,j). A series O

(n)
j (1 ≤ j ≤ m) occurs

with probability P(O
(n)
j ) along a sequent of length N (n ≤ N).

2.1 Statistical complexity

The statistical complexity is well applicable concept characterizing finite mea-
surement sequences with its probability distribution. This allows a statistical
approximation of the measured quantities. We apply the basic article [23] to
introduce this idea.
We suppose that there areN various symbol series of length n (o1,j, . . . , oN,j)

(j = 1, . . . ,m) in the ensemble, then these series dispose the set of discrete
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probability distribution P ≡ {p1,j, . . . , pN,j}, where pi,j := P(oi,j) (
∑N

i=1 pi,j = 1)

(1 ≤ j ≤ m) and pi,j > 0 for all i.
The statistical complexity measures contains two compositions: (i) entropy

H and (ii) disequilibrium D i.e. distances in probability-space. It is introduced
by the information theory, where the Shannon entropy assigns the gain of
the information storage and the disequilibrium features the distance from uni-
form distribution. So the LMC measure gives a simultaneous quantification of
randomness and correlation structures in the systems.

2.1.1 Measure of entropy and disequilibrium

Information measure Information measure I[P] i.e. the uncertainty can
be described by the probability distribution P = {pj, j = 1, . . . ,N}, with N

the number of possible states of the system (
∑N

j=1 pj = 1). In the information
theory we define the quantity of disorder H for a given probability distribution
P corresponding to the information measure I[P] in the next term:

S[P] = I[P]/Imax[Pe], (1)

where 0 ≤ H ≤ 1, Imax means the maximal value of I, and Pe is the uniform
probability distribution. Let us consider the Shannon-Kinchin paradigm then I
can be defined as a term of entropies. The statistical complexity was introduced
by the Shannon entropy [33], therefore we will investigate this form in a finite
system:

S = −

N∑

i=1

pi log pi. (2)

This quantity approximately equals to zero S ∼ 0, if the symbol sequence

O
(n)
jc

has a high probability (pc ∼ 1) and other O
(n)
j has very small probability

(pc ∼ 0). In the range of entropy the maximal values Smax corresponds to
the uniform probability distribution pe = {1/N, 1/N, . . . , 1/N}, which means

the the equal probability symbol sequence O
(n)
je

, which leads to the maximum
value of information. The normalized quantity H derives from H = S/Smax,
than 0 ≤ H ≤ 1, where Smax = logN.

Disequilibrium measure We introduce the function of disequilibrium D
on the probability distribution {pj : j = 1 . . . ,N}. The LMC uses some distance
D of a given P compared to the uniform distribution Pe in the states of the
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system [23]. Therefore we investigate the disequilibrium by a distance-form:

Q[P] = Q0 · D[P, Pe], (3)

where Q0 is a normalization constant (0 ≤ Q0 ≤ 1), which equals to the
inverse of the maximum possible value of the distance D[P, Pe]. The maximum
distance is obtained, when one of the components of P i.e. pl equals to one
and the remaining elements equal to zero. The disequilibrium Q differs from
zero, if there exist preferred states among the accessible ones, i.e. this quantity
features the systems’ architecture.
In the original definition of the statistical complexity the Euclidean norm

(RN) have been used i.e. the quadratic distances from the probability distri-

bution of each symbol sequences P(O
(n)
j ) (1 ≤ j ≤ m) to the equal probability

P(O
(n)
je

). This choice for the distance D is written:

D[P, Pe] =

N∑

i=1

(pi − pe)
2 , where pe =

1

N
. (4)

In the range of this quantity becomes maximum, when the disequilibrium

achieves prevalent symbol sequences O
(n)
jc

with pc ∼ 1 and Dc → 1 for N is
growing. Otherwise the disequilibrium equals to zero approximately D ∼ 0 for
pi ∼ 1/N. The value of the D changes between these extrema corresponding to
advanced probability distribution. The normalized factor equals to Q0 =

N
N−1 .

2.1.2 Measure of statistical complexity

The whole complexity concept includes the functional product of disorder H
and disequilibrium D, which based on the various probability distribution cor-
responding to sequent of the advanced quantity. This shows the transition
between the information stored in the system and its disequilibrium. The sta-
tistical complexity C is introduced by the published article of LMC [23]:

C = H · D = −

(

N∑

i=1

pi log pi

)(

N∑

i=1

(

pi −
1

N

)2
)

. (5)

The value C ∈ R
+. The normalized C can be described as follows C = H · D =

(H/ logN)(D · (N/(N − 1))). The range of complexity measure is finite and
limiting between Cmin and Cmax, but H is not necessarily a unique function.
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We applied finite system, therefore the statistical complexity disposes the

scaling behaviour. A new set of symbol sequences O
(n)
j turns out at each scale

of measurement, which provides an advanced probability distribution P(O
(n)
j )

so the value of complexity becomes different.
Three basic cases are distinguished of the statistical complexity: (a) this is

monotonous increasing in the function of entropy (b) it corresponds to a convex
function, which contains a maximal Cmax at the probability distribution pe and
the minimum Cmin appears, where the H = 0 i.e. total order and H = 1 and
third kind is (c) the monotonous decreasing with increasing entropy [26].
There are two extremist situations of complexity C depending on entropy

H. On the one hand each set of series assigned to each set of symbol sequence

O
(n)
j , which has the same probability distribution. All of them contribute to

the information stored in equal measure as the ideal gas [21]. On the other
hand, if we study an object, which features some symmetries properties and
distance, then this system can be written by minimal information as mineral
or symmetry in quantum mechanics.

2.1.3 Generalized statistical complexity

Generalized entropy We expend the concept of classical statistical com-
plexity to different measures of the entropy and disequilibrium. Tsallis in-
troduced a generalisation of the Shannon-Boltzmann-Gibbs entropic measure
[35]:

S(T)
q [P] =

1

(q− 1)

N∑

j=1

[pj − (pj)
q] , (6)

where q real number. Rényi suggested a definition of entropy for discrete
probability distribution in 1950s years [28]:

S(R)
q [P] =

1

(1− q)
ln






N∑

j=1

(pj)
q





. (7)

Then the generalized entropy S(κ)
q denotes κ = S, T, R Shannon,Tsallis and

Rényi entropy.

H(κ)
q [P] = S(κ)

q [P]/S(κ)
max, (8)

where S(κ)
max means the maximum value of the information measure, which cor-

responds the uniform probability distribution. The maximal value of Shannon
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and Rényi entropy correspond to S(S)
max = S(R)

max = lnN and Tsallis entropy

involves S(T)
max =

1−N1−q

q−1 for q ∈ (0, 1) ∪ (1,∞).

Generalized disequilibrium The Euclidean distances was investigated in
the LMC. We introduce the generalized disequilibrium D. The Wootters dis-
tance was applied for two probability distributions [36], which can be used in
the quantum mechanic:

DW [P1, p2] = cos−1






N∑

j=1

(p
(1)
j )1/2(p

(2)
j )1/2





. (9)

Consider two divergence-classes, which were published by Basseville [4]. The
first class contains the divergence which is defined by the relative entropies.
The second class consists of the divergence, which was introduced as the dif-
ference of the entropies. The Kullbac-Shannon expression following

DKS [P, Pe] = K(S)[P|Pe] = S(S)
1 [Pe] − S(S)

1 [P]. (10)

The Kullback-Tsallis entropy is introduced:

DKT
q
[P, Pe] = K(T)

q [P|Pe] = Nq−1(S(T)
q [Pe] − S(T)

q [P]). (11)

The Kulback-Rényi etropy following

DKR
q
[P, Pe] = K(R)

q [P|Pe] = (S(R)
q [Pe] − S(R)

q [P]). (12)

Then the generalized disequilibrium denoted by this form:

Q(ν)
q [P] = Q(ν)

0 Dν[P, Pe], (13)

where ν = E,W,K, Kq and Q(ν)
0 normalization constant (0 ≤ Q(ν)

q ≤ 1), and
these are:

Q(E)
0 = N

N−1 , Q(W)
0 = 1/ cos−1

{
(

1
N

)1/2
}
,

QKR
q

0 = 1
lnN QKT

q

0 = q−1

N(q−1)−1
.

Generalized statistical complexity This quantity is defined following

C(K)
ν,q[P] = Q(ν)

q [P] · H(K)
q [P], (14)
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where K = S, R, T for fixed q and the index ν = E,W,Kq means the disequilib-
rium with appropriated distance measures. This term (14) is a family of the
statistical complexity corresponding to functional product form C = H·Q. We
notice that the entropic difference S[P1] − S[P2] does not specify the informa-
tion gain or divergence, because this quantity is not necessary positive definit.
This lead to the Jensen divergence.
Shinner, Davidson and Landsberg (SDL) published a term for the statistical

complexity [34], this term is expressed for ν = K,Kq:

C(κ)
Kq

[P] = (1−H(κ)
q [P]) · H(κ)

q [P]. (15)

We get the LMC statistical complexity at κ = S, q = 1 so CLMC = C(S)
K,1.

2.2 Time evolution

In statistical physics we study the isolated systems, which are characterized
by initial, arbitrary and discrete probability distribution. The uniform distri-
bution Pe develops during the evolution towards equilibrium. Then we can
research the time evolution of the LMC i.e. C versus time t graph. Thanks to
the second law of thermodynamics the entropy grows monotonically with time
(dH/dt ≥ 0) in isolated system. Therefore H behaves as an arrow of time, so
we can study the figure of C versus H as the time evolution of the LMC, thus
the normalised entropy-axis can be substituted by the time-axis. This picture
H × C can be utilized to research the changes in the dynamics of a system,
which derives from the modulated parameters.

3 Driven system

In both experimental and theoretical physics, periodically excited nonlinear
systems play important role. A typical case of these systems is described by
this equation:

d2Θ

dt2
+ ν

dΘ

dt
+ sinΘ = f(t), (16)

where the damped forcing f(t) is periodic in time, for example:

f(t) = K+ V cos(ωt). (17)

Such equations are used in many cases of physical research, as forced damped
pendulum, the Stewart-McCumber model of the current-driven Josephson
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junction [2] and simple phenomenological model of sliding charge-density waves
[5]. The nonlinear dynamical model can be characterized by strange attrac-
tor, period doubling cascades, crises, intermittency, fractal basin boundaries
etc. These equations are intensively used in low dimensional chaotic dynamics
research.
Periodic excitation is extended to examine aperiodic cases, when f(t) is

quasiperiodic for example:

f(t) = K+ V [cos(ω1t) + cos(ω2t)], (18)

where ω1 and ω2 are the incommensurate frequencies. It appears in the
transition from quasiperiodic to chaos inside an electronic Josphson-junction
simulator driven by two independent sources [5]. It is applied on the experi-
ments inside an electron-hole plasma in germanium excited by two frequencies
quasiperiodic external perturbations they observed stable three frequencies
mode locking, and chaos [14, 15].
These are presented with quasiperiodic systems by two incommensurate fre-

quencies. We consider the following quasiperiodically forced damped pendulum
[29]:

d2Θ

dt2
+ ν

dΘ

dt
+ sinΘ = K+ V [cos(ω1t) + cos(ω2t)], (19)

where Θ is an angle of pendulum with the vertical axis, ν is the dissipation
rate, K is a constant, V is the forcing amplitude and ω1 and ω2 are the
incommensurate frequencies. Let us investigate new variables, t → νt and
φ = Θ+ π

2 . Then the equation (19) becomes:

1

p

d2φ

dt2
+

dφ

dt
− cosφ = K+ V [cos(ω1t) + cos(ω2t)], (20)

where p = ν2 is a new parameter, and ω1 and ω2 are rescaled as follows:
ω1 → ω1ν and ω2 → ω2ν. In the expressions of the dynamical variables
φ,v ≡ dφ

dt and z ≡ ω2t, then we have

dφ
dt = v,
dv
dt = p

{
K+ V

[

cos
(

ω1

ω2
z
)

+ cos z
]

+ cosφ− v
}
,

dz
dt = ω2.





(21)

The equation (21) contains rich dynamical behaviour [31]. This system shows
a special behaviour in some range of parameter space. Therefore we apply the
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snapshot attractor, because this structure reflects the properties of a dynam-
ical systems at a given moment.
The dynamic of the quasiperiodic damped pendulum is characterised by the

sign of maximal Lyapunov exponent which changes near to the axis (L=0),
because this system has finite fluctuation. The Lyapunov exponent becomes to
negative, then the system contracts on the nonchaotic side(L ≤ 0). Otherside
the Lypunov exponent turns into positive, then the expansion characterizes
the dynamical behaviour on the chaotic side (L ≥ 0). Therefore the collec-
tive properties of the orbits can be studied near to the transition. This is
a special behaviour of this model which is called on-off intermittency of the
snapshot attractor. The trajectories spend stretches of time expanding (lead-
ing to nonzero-size snapshot attractor), yet there are also long time during the
trajectories experience contraction, resulting extremely small-size of snapshot
attractor. Then the time dependent size of snapshot attractor can be written
by the dispersion rate [16]:

S(t) =

(

1

N

N∑

i=1

{
[φi(t)− < φ(t) >]2 + [vi(t)− < v(t) >]2

}
)1/2

, (22)

where N is the number of points on the snapshot attractor, [φ(t), v(t)] defines
the geometric center of these points at a given time: < φ(t) >= 1

N

∑N
i=1φi(t)

and < v(t) >= 1
N

∑N
i=1 vi(t).

The time averaged size of the snapshot attractor on the chaotic side near
to the transition is defined as < S(t) >= limT→∞

∫T
0
S(t)dt which obeys the

following scaling relation:

< S(t) >∼ L ∼ |p− pc|, (23)

where pc means the p ≥ pc (L ≤ 0) and p ≤ pc (L ≥ 0). This scaling behaviour
of the transition to chaos was published in quasiperiodically driven dynamical
systems [19] i.e. a route of chaos was investigated, where the largest Lyapunov
exponent passes through zero linearly near the transition to chaos. Because
the orbits burst out to separate from each others during the expansion time
intervals [27], and the trajectories merge all together during the contraction
time interval therefore the size of the chaotic snapshot attractor changes widely
in time near to the transition in an intermittent fashion. The average size
of the snapshot attractor scales linearly with a parameter similarly as the
average interval between the bursts also scales linearly with parameter during
transition (23).
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4 Numerical approximation

In this Section we consider the statistical complexity of the quasiperiodic
driven systems, which is represented by the aperiodic forced pendulum (19).
We calculated the Poencaré section (z = 0) of the time dependent model
(21), which contains a snapshot attractor (Figure 1) at the parameter values
V = 0.55, p = 0.6, K = 0.8 ω1 = (

√
5−1)/2, ω2 = 1.0. The initial values of the

orbits are chosen by uniform distribution in a small volume << 10−6 in the
phase space. We show the predictability of the intermittency between chaotic
and nonchaotic regions.

Statistical complexity We determined the statistical complexity of this
system which was introduced by the quantity of information theory, where the
entropy and the disequilibrium depend on the probability distribution (Section
2.1.2). The snapshot attractor is written by the ensemble of trajectories instead
of the long orbit N ′. Therefore we redefine the probability distribution of the
manifold at a time instant t ′.
The ensemble of the snapshot attractor contains the x

(n)
1,j , x

(n)
2,j , . . . , x

(n)
n,j points

of the trajectories of length n (1 ≤ j ≤ m). Therefore the x
(n)
t ′,1, x

(n)
t ′,2, . . . , x

(n)
t ′,m

series corresponds to {p1, p2 . . . , pm} probability distribution, where pj := P(x
(n)
t ′,j)

(j = 1, . . . ,m).
The entropy H, disequilibrium D and statistical complexity C can be deter-

mined by appropriate measures using the term of LMC complexity (5). The
structure of the complexity is plotted in the C×H×D space (Figure 4), where
parameter p changes between 0 and 1. The behaviour of complexity C mono-
tone decreasing, so this corresponds to class (c) over the parameter range [0,1].
In a small interval at p ≃ 0.8 the shape of complexity formed convex curve
(class (b)).

On-off intermittency The quasiperiodic damped pendulum provides on-
off intermittency in a special values of parameter, where Lyapunov exponent
has a finite fluctuation around axis of L = 0 as it was detailed in the Section
(3). The volume of the snapshot attractor is widely changing near to axis
(L = 0), therefore we applied the dispersion rate S(t) (22), which scales by
the maximal Lyapunov exponent (23). The structure of the complexity C(p)
shows local maximums (Figure 3) similarly as the average of the dispersion
< S(t) > over the parameter space p (Figure 2). The complexity reflects the
behaviour of the pendulum i.e. the on-off intermittency. Then the probability
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Figure 1: The snapshot attractor of the quasiperiodic driven pendulum at
parameters K = 0.8, V = 0.55, p = 0.6.

distribution of the snapshot attractor i.e. dispersion of the trajectories’ points
in the manifold at a given time instant t ′ shows similar behaviour as the affect
of the on-off intermittency.
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Figure 2: The < S(t) > depends on parameter p in logarithm scale.
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Figure 3: The complexity C depends on the entropy S and parameter p.
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Figure 4: The complexity C depends on the entropy H and disequilibrium D
for different parameter p (0 ≤ p ≤ 1).
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5 Conclusion

The inner structure of statistical complexity is determined in a quasiperiodical
driven system at a given scale. The effect of the on-off intermittency appears
in complexity of the aperiodic damped system, which allows the predictability
by the by the distribution probability of the snapshot attractor.
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Abstract. A tournament is an orientation of a complete simple graph.
The score of a vertex in a tournament is the outdegree of the vertex. In
this paper, we obtain various results on the scores in tournaments.

1 Introduction

A tournament is an orientation of a complete simple graph. Let T be a tourna-
ment with vertex set {v1, v2, . . . , vn} . The score of a vertex vi is defined as the
outdegree of vi and is denoted by svi(or simply by si). Clearly 0 ≤ si ≤ n−1 for
all i, 1 ≤ i ≤ n. The sequence [s1, s2, . . . , sn] in non-decreasing order is called
the score sequence of the tournament T. Several results on tournament scores
can be seen in [21, 23]. The concept of scores in tournaments was extended to
oriented graphs by Avery [1] and many results on oriented graph scores can
be found in [19, 21, 22]. Pirzada et al. generalized score structure to other
classes of digraphs and details can be seen in [17, 18]. Further score struc-
ture has been extended to hypertournaments, a generalization of tournaments
[4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 24].
The following result [6] gives necessary and sufficient conditions for a se-

quence of non-negative integers to be the score sequence of some tournament
and this result is also known as Landau’s theorem.
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Theorem 1 (Landau [6]) A sequence [s1, s2, . . . , sn] of non-negative inte-
gers in non-decreasing order is a score sequence of some tournament if and
only if

k∑

i=1

si ≥
k(k− 1)

2
, (1)

for 1 ≤ k ≤ n with equality when k = n.

More work for scores in tournaments can be found in [2, 3, 7, 16].
For any two distinct vertices u and v of a tournament T, we have one of the

following possibilities.
(i) An arc directed from u to v, denoted by u(1− 0)v.

(ii) An arc directed form v to u, denoted by u(0− 1)v.

2 Main Results

Now, we obtain the following results.

Theorem 2 Let [s1, s2, . . . , sn] be the score sequence of a tournament. Then

the lowest score of the tournament is zero if
n∑

i=1

s2i is maximum.

Proof. Let v1 be the vertex of the tournament with lowest score s1. We shall
show that s1 = 0.

Suppose on contrary s1 > 0. Then there exists a vertex vp with score sp such
that v1(1 − 0)vp. Since sp ≥ s1, therefore there exists another vertex vq with
score sq such that vp(1− 0)vq.

Now, by changing the arcs v1(1 − 0)vp and vp(1 − 0)vq to v1(0 − 1)vp and
vp(0 − 1)vq respectively we get a new score sequence [t1, t2, . . . , tn] where
t1 = s1 − 1, tq = sq + 1, tr = sr for all r, 2 ≤ r ≤ n with r 6= q. Then

n∑

i=1

t2i =

n∑

i=2,i 6=q

t2i + t21 + t2q =

n∑

i=2,i 6=q

s2i + (s1 − 1)2 + (sq + 1)2

=

n∑

i=2,i 6=q

s2i + s21 + 1− 2s1 + s2q + 1+ 2sq =

n∑

i=1

s2i + 2(sq − s1 + 1)

>

n∑

i=1

s2i ,
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since sq ≥ s1. This is a contradiction as
n∑

i=1

s2i was assumed to be maximum.

Hence the result follows. �

Theorem 3 Let [s1, s2, . . . , sn] be the score sequence of a tournament. Then

the highest score of the tournament is n− 1 if
n∑

i=1

s2i is maximum.

Proof. Let vn be the vertex of the tournament with highest score sn. We shall
show that sn = n − 1. Suppose on contrary sn < n − 1. Then there exits a
vertex vp with score sp such that vp(1 − 0)vn. Since sn ≥ sp, therefore there
exists another vertex vq with score sq such that vq(1− 0)vp and vq(0− 1)vn.

Now, by changing the arcs vp(1 − 0)vn and vq(1 − 0)vp to vp(0 − 1)vn and
vq(0 − 1)vn respectively we get a new score sequence [t1, t2, . . . , tn] where
tq = sq − 1, tn = sn + 1, tr = sr for all r, 1 ≤ r ≤ n− 1 with r 6= q. Then

n∑

i=1

t2i =

n−1∑

i=1,i 6=q

t2i + t2q + t2n =

n−1∑

i=1,i 6=q

s2i + (sq − 1)2 + (sn + 1)2

=

n−1∑

i=1,i 6=q

s2i + s2q + 1− 2sq + s2n + 1+ 2sn =

n∑

i=1

s2i + 2(sn − sq + 1)

>

n∑

i=1

s2i since sn ≥ sq,

which is a contradiction, since
n∑

i=1

s2i was assumed to be maximum. Hence the

result follows. �

Theorem 4 Let [s1, s2, · · · , sn] be the score sequence of a tournament with
vertex set V and let mi be the average of the scores of the vertices vj such that
vi(1− 0)vj. Then

max {sj +mj : vj ∈ V} ≤
3n− 4

2
, (2)

with equality if and only if si = n− 1 where i = n.

Proof. Let vi be the vertex of a tournament where si +mi is maximum and
let S be the sum of the scores of the vertices vj such that vi(1− 0)vj. Then

max {sj +mj : vj ∈ V} = si +mi = si +
S

si
.
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Again, let gi be the average of the scores of the vertices vk such that vk(1−0)vi.

Then

n(n− 1)

2
= si + S+ (n− si − 1)gi, (by (1))

or
n

2
+ n− 2 =

si + S+ (n− si − 1)gi

n− 1
+ n− 2,

or
3n− 4

2
=

si + S+ (n− si − 1)gi

n− 1
+ n− 2.

So, we have to prove that

si +
S

si
≤

si + S+ (n− si − 1)gi

n− 1
+ n− 2,

or (n− 1)

(

si +
S

si

)

≤ si + S+ (n− si − 1)gi + (n− 1)(n− 2),

or (n− 1)

(

n− 2− si −
S

si

)

+ si + S+ (n− si − 1)gi ≥ 0,

or (n− 1)

(

n− 2−
S

si

)

− (n− 1)si + si + S+ (n− si − 1)gi ≥ 0,

or (n− 1)

(

n− 2−
S

si

)

− si

(

n− 2−
S

si

)

+ (n− si − 1)gi ≥ 0,

or (n− 1− si)

(

n− 2−
S

si

)

+ (n− si − 1)gi ≥ 0,

or (n− si − 1)

(

n− 2+ gi −
S

si

)

≥ 0. (3)

If si = n − 1, then (3) holds. Now, if si ≤ n − 2, then there is at least one
vertex vk such that vk(1− 0)vi, so that gi ≥ 1. Also S

si
≤ n− 1. Therefore (3)

holds.
This completes the proof of first part.
Now assume that equality holds in (2). Then from (3), we have

(n− si − 1)

(

n− 2+ gi −
S

si

)

= 0,

which gives (a) si = n− 1 or (b) S
si
− gi = n− 2.

Case (a). si = n−1. This is possible only when i = n, that is, when sn = n−1.

Case (b).
S

si
− gi = n− 2. Since sn ≥

S

si
, therefore

sn ≥ n− 2+ gi. (4)
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Also gi ≥ 0 and sn ≤ n − 1. Then from (4), we have 0 ≤ gi ≤ 1. If gi = 0,

then sn = n − 1. Again if 0 < gi ≤ 1, then there is at least one vertex vk
such that vk(1− 0)vi. Therefore gi ≥ 1. Hence gi = 1. Thus from (4), we have
sn ≥ n− 1. Since sn ≤ n− 1, therefore sn = n− 1.

Conversely, let sn = n− 1. Then sk ≤ n− 2 for all k, 1 ≤ k < n. Now

sk +mk = sk +
1

sk

n∑

j=1

{sj : vk(1− 0)vj}

≤ sk +
1

sk

{
sk(sk − 1)

2
+ sk(n− 2− sk)

}

= sk +
sk − 1

2
+ n− 2− sk

≤
n− 2− 1

2
+ n− 2 =

3n− 7

2

and

sn +mn = sn +
1

sn

n∑

j=1

{sj : vn(1− 0)vj}

= n− 1+
1

n− 1

n−1∑

i=1

si

= n− 1+
1

n− 1

{
n∑

i=1

si − sn

}

= n− 1+
1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
.

Hence, max {sj +mj : vj ∈ V} =
3n− 4

2
, completing the proof. �

Theorem 5 Let [s1, s2, . . . , sn] be the score sequence of a tournament and let
mi be the average of the scores of the vertices vj such that vi(1− 0)vj. Then

si +mi ≤
n

2
+

n− 2

n− 1
si + (sn − s1)

(

1−
si

n− 1

)

, (5)

holds for each i. Further, the equality holds if and only of si = n − 1 where
i = n or the vertex vi is such that vi(1 − 0)vj for the sn score vertices vj and
vi(0− 1)vk for the s1 score vertices vk.
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Proof. Let vi be the vertex of score si in the tournament T. We consider two
cases: (a) si = n− 1 (b) si < n− 1.

Case (a). si = n− 1. Then i = n, so that sn = n− 1. Therefore

sn +mn = n− 1+
1

sn

n∑

j=1

{sj : vn(1− 0)vj} = n− 1+
1

n− 1

n−1∑

j=1

sj

= n− 1+
1

n− 1






n∑

j=1

sj − sn






= n− 1+
1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
.

Hence (5) holds.
Case (b). si < n−1. Change the orientation of the arcs vk(1−0)vi, if any, to
vi(1− 0)vk. Suppose this new tournament is T1 and let max {sj +mj : vj ∈ V}

occurs at the vertex vi and let it be s′i +m′
i.

Now for T1, we have

s′i +m′
i = n− 1+

1

s′i






n∑

j=1

s′j : vi(1− 0)vj






= n− 1+
1

n− 1






n∑

j=1

s′j − s′i






= n− 1+
1

n− 1

{
n(n− 1)

2
− (n− 1)

}
(by (1))

=
3n− 4

2
. (6)
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Let S be the sum of the scores of the vertices vj such that vi(1 − 0)vj in the

tournament T. Then si +mi = si +
S

si
. Now,

(s′i +m′
i) − (si +mi) = n− 1+

1

s′i

n∑

j=1

{
s′j : vi(1− 0)vj

}
−

(

si +
S

si

)

=n− si− 1+
1

n− 1
{S+ (n− si− 1)gi − (n− si − 1)}−

S

si

= n− si − 1+
1

n− 1
{S+ (n− si − 1)(gi − 1)}−

S

si,

(where gi is the average score of the vertices vk such that vk(1 − 0)vi in T),
that is,

si +mi = s′i +m′
i − (n− si − 1) −

1

n− 1
{S+ (n− si − 1)(gi − 1)}+

S

si

=
3n− 4

2
− (n− si − 1) −

1

n− 1
{S+ (n− si − 1)(gi − 1)}+

S

si
(by (6))

=
3n− 4

2
− (n− si − 1) −

S

n− 1
−

1

n− 1
{(n− si − 1)(gi − 1)}+

S

si

=
3n− 4

2
−

(n− si − 1)(n− 1+ gi − 1)

n− 1
+

S

si
−

S

n− 1

=
3n− 4

2
−

(

1−
si

n− 1

)

(n− 2+ gi) +
S

si

(

1−
si

n− 1

)

=
3n− 4

2
−

(

1−
si

n− 1

)(

n− 2+ gi −
S

si

)

=
3n− 4

2
−

(

1−
si

n− 1

)

(n− 2) −

(

1−
si

n− 1

)(

gi −
S

si

)

=
3n− 4

2
−

(

n− 2−
(n− 2)si

n− 1

)

−

(

1−
si

n− 1

)(

gi −
S

si

)

=
n

2
+

n− 2

n− 1
si −

(

1−
si

n− 1

)(

gi −
S

si

)

. (7)

Clearly
S

si
≤ sn, that is,

S

si
−sn ≤ 0 and gi ≥ s1, that is gi−s1 ≥ 0. Therefore

gi − s1 ≥
S

si
− sn, that is, gi −

S

si
≥ s1 − sn. Using this in (7), we have

si +mi ≥
n

2
+

n− 2

n− 1
si −

(

1−
si

n− 1

)

(s1 − sn),
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that is, si +mi ≥
n

2
+

n− 2

n− 1
si + (sn − s1)

(

1−
si

n− 1

)

. This completes the

proof of first part.

Now assume that equality holds in (5). Then si = n − 1 or −

(

gi −
S

si

)

=

sn−s1, that is, si = n−1 where i = n or −gisi+S = snsi−s1si. From −gisi+

S = snsi − s1si, we have
−P

n− si − 1
si + s1si = snsi − S, (where P is the sum of

the scores of the vertices vk such that vk(1 − 0)vi in T) or s1 −
P

n− si − 1
=

snsi − S

si
, or

snsi − S

si
=

(n− si − 1)s1 − P

n− si − 1
or s1 −

P

n− si − 1
=

snsi − S

si
, or

(n− si − 1)s1 − P

n− si − 1
=

snsi − S

si
≥ 0, since

S

si
≤ sn, that is, (n−si−1)s1−P ≥ 0,

or P ≤ (n − si − 1)s1. But P ≥ (n − si − 1)s1. Therefore P = (n − si − 1)s1.

This means that all those vertices vk with vk(1 − 0)vi are of score s1. Using
this fact in

(n− si − 1)s1 − P

n− si − 1
=

snsi − S

si
,

we have

(n− si − 1)s1 − (n− si − 1)s1

n− si − 1
=

snsi − S

si
,

or
snsi − S

si
= 0 or S = snsi or

S

si
= sn. This means that all those vertices vj

with vi(1− 0)vj are of score sn.

Conversely, let si = n−1, where i = n or vi(1−0)vj for the sn score vertices
vj and vi(0 − 1)vk for the s1 score vertices vk. For si = n − 1, where i = n,
the equality holds in (5) by using case (a). Now, if vi(1− 0)vj for the sn score
vertices vj and vi(0− 1)vk for the s1 score vertices vk, then

si +mi = si +
snsi

si
= si + sn

and
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n

2
+

n− 2

n− 1
si+(sn − s1)

(

1−
si

n− 1

)

=
n(n− 1)

2

1

n− 1
+

n− 2

n− 1
si +

(sn − s1)(n− 1− si)

n− 1

=
1

n− 1

{
n∑

i=1

si + (n− 2)si + (sn − s1)(n− 1− si)

}

by (1)

=
1

n− 1

{
si + snsi + s1(n− si − 1)

+ (n− 2)si + sn(n− 1− si) − s1(n− 1− si)
}

=
1

n− 1

{
si + snsi + nsi − 2si + nsn − sn − snsi

}

=
1

n− 1

{
(n− 1)si + (n− 1)sn

}
= si + sn.

Therefore, the equality holds in (5). �

Corollary 6 Let [s1, s2, . . . , sn] be the score sequence of a tournament and let
mi be the average of the scores of the vertices vj such that vi(1− 0)vj. Then

si +mi ≤
n

2
+

n− 2

n− 1
sn + (sn − s1)

(

1−
sn

n− 1

)

, (8)

holds for each i. Further, the equality holds if and only if si = n − 1 where
i = n or the vertex vi(score is sn) is such that vi(1 − 0)vj for the sn score
vertices vj and vi(0− 1)vk for the s1 score vertices vk.

Proof. Since (5) is true for each i and since si ≤ sn, therefore we get (8).
Using Theorem 5, we conclude that the equality holds if and only if si = n−1

where i = n or the vertex vi(score is sn) is such that vi(1 − 0)vj for the sn
score vertices vj and vi(0− 1)vk for the s1 score vertices vk. �
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