
Acta Univ. Sapientiae, Informatica 8, 1 (2016) 5–15

DOI: 10.1515/ausi-2016-0001

Distance-constrained grid colouring

László ASZALÓS
Faculty of Informatics
University of Debrecen

email: aszalos.laszlo@inf.unideb.hu

Mária BAKÓ
Faculty of Economics
University of Debrecen

email: bakom@unideb.hu

Abstract. Distance-constrained colouring is a mathematical model of
the frequency assignment problem. This colouring can be treated as an
optimization problem so we can use the toolbar of the optimization to
solve concrete problems. In this paper, we show performance of distance-
constrained grid colouring for two methods which are good in map colour-
ing.

1 Introduction

The problem of graph colouring is a very active research field nowadays, with
very long history. There are different research directions. Some are interested
in the theory, namely what the chromatic number of a particular type graph is,
i.e. finding the minimum number of colours to colour the nodes of the graph,
such that no edge connects nodes of the same colour. Others are interested in
practical things, hence invent algorithms that generate colouring with minimal
numbers of colours for any, given type of graphs. As the three-colouring is NP-
hard problem, we cannot require any algorithm to give a quick solution for
every graph.

Computing Classification System 1998: G.1.6

Mathematics Subject Classification 2010: 05C15

Key words and phrases: min-conflicts method, constraint logic programming

5

6 L. Aszalós, M. Bakó

Figure 1: Triangular, square and hexagonal grids of size 4× 4

If the graph is fixed, then its colouring with minimal number of colours can
be treated as an optimization problem. It is not surprising that almost all of
the optimization method have a variant to solve colouring problems [2].
The most elementary method is the exhaustive search for a colouring. This

does not mean, that we need to try all the assignment of colours to nodes. If
a partial colouring violates any constraint, there is no reason to continue, we
can backtrack and start another colouring. Fifth chapter of [6] contains several
heuristics to speed up this search by eliminating cases which cannot lead to
solutions. This chapter contains an example where the 4-colouring of the map
of USA uses around 60 steps instead of 450, by applying most of the heuristics.
The method of minimal conflicts was introduced in [4]. To solve the 4-

colouring of USA map, this method needs about 60 steps too.
Both methods work well for colouring real world maps, but what about

colouring other type of graphs? Previously we examined random graphs, so for
us their colouring is interesting, but for the sake of reproduction and scalability
we will examine very simple graphs: grids (Fig. 1). Although the degrees of
the nodes are much smaller than in an ordinary random graph, we hope to get
interesting results.
If the number of colours is big, then we use numbers instead of colours.

Hence a k-colouring of a graph G = 〈V, E〉 mathematically is a function c :

V → {1, . . . , k}.
The original graph colouring problem has many variants, which are actively

researched. One of them is the distance-constrained colouring problem raised
from the frequency assignment [3]. In this case given an n-tuple of integers, let
say 〈x1, x2, . . . , xn〉 and if d(u, v) = i then |c(u) − c(v)| ≥ xi, where 1 ≤ i ≤ n,
xj > xj+1 for 1 ≤ j < n, u and v ∈ V , and d is the graph-distance of the nodes.
This distance constrain is denoted by Lx1...xn in the literature. Namely at L21
colouring the nodes at distance 2 need to be different; and at adjacent nodes
the difference of the colour codes is at least 2. Figure 2 shows L1, L21 and

Distance-constrained grid colouring 7

Figure 2: L1, L21 and L321 colourings

L321 colourings of the 3× 3 square grid. On the left, two colours were enough,
because only the adjacency counts. At the centre we used seven colours, such
that the L21 constraints would be satisfied. One could think that less colours
might be enough, but no. As we shall see in the following, it is a reasonable
step to colour the central node to 1. The central node is adjacent to four nodes,
so all of them is 3, or more. These four nodes are second neighbours to each
other, so they need to be different. Therefore we need to use at least 6 colours.
The nodes in the corner are second neighbours of the central node, so none of
them could be 1. As some of them are second neighbour of each others, they
cannot be equal. We left to the reader to check the cases and prove, that 6

colour is not enough in this case. Finally on the right there is a 10-colouring,
which satisfies L321 constraints.
The theoretical results about distant-constrained colouring are surveyed in

[5, 1]. In this article we use practical view-point. In the next two section we
present the methods we use, and next we discuss our experimental results.
Finally we propose new directions.

2 Constraint satisfaction problems

Many problems can be expressed as a constraint satisfaction problem (CSP).
Here given an n-tuple of variables: 〈X1, . . . , Xn〉, the tuple of domains of the
variables 〈D1, . . . , Dn〉, and a set of constraints which are predicates—boolean
valued function of these variables.
Our task is to select values of the variables from the corresponding domains

in a such way that all the predicates become true. As the problem SAT could
be transformed into CSP, the solution of CSP is NP-hard.
The simplest solution may be gained by using the backtrack method. It

8 L. Aszalós, M. Bakó

does not use the information given in the problem, so it is usually slow. The
4-colouring of USA map takes more than 106 steps. By using variable and
value ordering heuristics (minimum remaining values, degree heuristic, least
constraining value, forward checking) we can dramatically reduce the number
of steps [6].
Many software were built for solving CSP, some of them are stand-alone,

while others are modules or libraries and enable us to include the solver in our
programs. For its simplicity we have chosen the SWI-Prolog system, and its
CLPFD library. Figure 3 contains the source of L21 constraints for the coloring
of the 3× 3 square grid.
Here in the first line we signal the system that we want to use the CLPFD

library. Next we define a new predicate (grid) which is the counterpart of the
function in Prolog. This predicate takes a number as an input and returns a
colouring L, which is a list of natural numbers. The third line denotes, that
the colouring is a 9 long list. The members of this list are our variables (from
X0 to X8). The forth line states, that these variables can have N different
values, the natural numbers from 1 to N. The last line of the source starts the
systematic search, which determines the values in the list L. The word inside
the brackets in this line (ffc) is a search strategy. The CLPFD library has five
different strategies, and this one fits our needs and aims the best. The other
lines not mentioned yet contains the constraints. As we need an L21 colouring,
in the case of adjacent variables (e.g. X0 and X1) the difference of the values
is at least 2, so we need to use the absolute value function. Moreover, as the
variables have no value at the beginning, instead of relation ≥ we need to use
the corresponding constraint #>=. In case of second neighbours we could use
constraint #\= (not equal), but for the sake of easier generation of problems,
and for the more general Lpq constraints we have used #>=, again.
Now we are ready to run this code. After loading this file we need to ask the

system: grid(6,L). The answer arrives immediately: false, denoting that
there is no solution using six colours. If we ask a 7-colouring with grid(7,L).

then the answer is one solution. If the solution is too long, the system shows
only its beginning. We can ask for the whole solution with a print statement:
grid(7,L), write(L).

We believe this example shows that in case of constraint logic programming
we only need to precisely state the problem, and the solver produces the solu-
tion. Moreover, it searches for solutions in a clever way—using the heuristics.
If there exists at least one solution, then it determines it; and if not, then after
an exhaustive search the system indicates this.

Distance-constrained grid colouring 9

:- use_module(library(clpfd)).

grid(N,L) :-

L = [X0, X1, X2, X3, X4, X5, X6, X7, X8],

L ins 1..N,

abs(X0-X1) #>= 2, abs(X0-X2) #>= 1, abs(X0-X3) #>= 2,

abs(X0-X4) #>= 1, abs(X0-X6) #>= 1, abs(X1-X2) #>= 2,

abs(X1-X3) #>= 1, abs(X1-X4) #>= 2, abs(X1-X5) #>= 1,

abs(X1-X7) #>= 1, abs(X2-X4) #>= 1, abs(X2-X5) #>= 2,

abs(X2-X8) #>= 1, abs(X3-X4) #>= 2, abs(X3-X5) #>= 1,

abs(X3-X6) #>= 2, abs(X3-X7) #>= 1, abs(X4-X5) #>= 2,

abs(X4-X6) #>= 1, abs(X4-X7) #>= 2, abs(X4-X8) #>= 1,

abs(X5-X7) #>= 1, abs(X5-X8) #>= 2, abs(X6-X7) #>= 2,

abs(X6-X8) #>= 1, abs(X7-X8) #>= 2,

labeling([ffc],L).

Figure 3: Prolog program to solve the L21-colouring of 3× 3 square grid.

3 Min-conflicts

The n-queens problem is well-known: we need to arrange n queens on a n×n

board, that no one queen can attack any of the others. This problem was a
benchmark for a long time, because it was hard to solve, since it contained
many constraints: the figures cannot be in the same row, nor in the same
column, and neither in the same diagonal. Suddenly, this problem became
easy, a 106-queens problem could be solved within seconds with the method
of minimal conflicts [4].
This method counts the violations of the constraints (conflict), and selects

randomly chosen variables with such values for which the number of conflict
is minimal. If the solutions are distributed uniformly within the search space,
then this method quickly finds a solution, where the number of conflicts is
zero.
We wrote in the introduction, that at map colouring problems this method

works well. At the usual implementation the starting state is random, i.e. all
nodes are assigned a colour randomly and independently from the colours of
the other nodes. Next the program randomly select nodes and tries to reduce
the number of conflict by recolouring the selected node.
The following question arises: does it works for distance-constrained colour-

ing problems? The first column—with head random/node—of Table 1 shows,

10 L. Aszalós, M. Bakó

that this method works poorly except for a few cases. In most of the cases it
cannot solve the problem during hundreds of tests. The numbers in the rubrics
denote the rate of the cases when the starting-state and the final-state—after
the optimization—satisfied all the constraints.
Naturally the probability of randomly generating a solution is negligible. But

the recolouring of the nodes according to the conflicts does not give solution, by
our experiments. So it is worth to change the method of recolouring. Originally
we recoloured only one node. At the variant we could recolour the whole
neighbourhood. For this, at first we uncolour the selected node, and next we
check all of its neighbours—if we have Lx1...xk colourings, then all nodes whose
distance is k or less from the selected node—, and if the colour of this neighbour
can be decreased (without introducing conflicts), then we decrease. Finally we
choose a colour for the selected node, for which the number of conflicts is
minimal. If this whole step increases the number of conflicts, we restore the
previous state.
[4] uses the 3-colouring of graphs as an example, and presents a method

(Brelaz algorithm) which gives a good starting state. This method uses several
considerations, which could be known from solving CSP.
The method begins with an uncoloured graph, and chooses a central node

(with the most neighbour), and assigns the minimal colour to it. Next, the
method repeatedly chooses an uncoloured node which has the minimum num-
ber of conflict-free (possible) colours. In case of a tie the maximal number
of uncoloured neighbours determines the winner, or if this gives a tie again,
then we can choose randomly from the best nodes. The selected node gets its
minimal conflict-free colour.
The last columns in Table 1 denotes the minimal number of colours needed

with this method without any constraint on number of colours and hence
without conflicts. We typeset with bold the cases when it gives the chromatic
number. As in this method a tie is very common, randomness has an important
effect. The last columns show the rate of achieving this colouring.

4 Discussion

The second column (with head random/neighbour) of Table 1 contains bigger
numbers than the preceding column. Hence the neighbour recolouring is ad-
vanced according to node recolouring. Unfortunately these numbers are small,
even at bigger grids.
The Brelaz algorithm provides a compact colouring, i.e. the colours are very

Distance-constrained grid colouring 11

random random Brelaz
size dist. node neighbour neighbour c. r.

square grid
3× 3 L21 0.00→0.51 0.00→0.64 1.00→1.00 7 1.00

L321 0.00→0.19 0.00→0.64 0.70→0.80 11 0.31
4× 4 L21 0.00→0.04 0.00→0.07 0.81→0.81 7 0.67

L321 0.00→0.01 0.00→0.06 0.18→0.18 13 0.15
5× 5 L21 0.00→0.00 0.00→0.002 0.00→0.00 8 0.21

L321 0.00→0.00 0.00→0.002 0.00→0.00 14 0.32

triangular grid
3× 3 L21 0.00→0.00 0.00→0.011 0.00→0.00 9 0.47

L321 0.00→0.00 0.00→0.002 0.00→0.18 17 0.05
4× 4 L21 0.00→0.00 0.00→0.017 0.00→0.00 11 1.00

L321 0.00→0.00 0.00→0.00 0.00→0.00 21 1.00

hexagon grid
3× 3 L21 0.00→0.06 0.00→0.13 0.00→0.00 6 1.00

L321 0.00→0.25 0.00→0.41 0.33→0.33 9 0.32
4× 4 L21 0.00→0.03 0.00→0.11 0.05→0.14 6 0.10

L321 0.00→0.02 0.00→0.11 0.39→0.43 10 0.35
5× 5 L21 0.00→0.00 0.00→0.01 0.32→0.32 6 0.26

L321 0.00→0.00 0.00→0.02 0.00→0.00 10 0.23

Table 1: Success rate of the different min-conflicts variants. The column-heads
denote the construction of the starting state (random/Brelaz) and the type of
recolouring (node/neighbour). The last columns show the number of colours
with Brelaz algorithm (c), and the rate of this colouring (r).

close to each other. There is some chance that the colouring will only use a
chromatic number of colours, but it makes it almost impossible to recolour
the nodes. Hence we can only see a few improvements in the third column of
Table 1.
The distance-constrained colouring is a typical combinatorial optimization

problem, at least in such sense that it has incredibly numerous local minima,
hence the local optimization methods do not perform well, as the table shows.
In case of optimization methods using crossover and mutation there is very
little chance that by combining two independent individuals we get better
individual with less conflicts. By our experiments the methods based on crowd
(particle swarm optimization, harmony search, etc.) gave acceptable solutions

12 L. Aszalós, M. Bakó

only for small grids, for bigger problem the crowd did not containe enough
individuals to cope with the huge number of different colourings.
The big drawback of the optimization methods is that at the best case sce-

nario it can only satisfy the existence of a k-colouring of the graph. Otherwise
if the optimization method does not give a k-colouring in a fixed time, we
cannot state, that for this k there does not exist a k-colouring.
The backtrack method gives more in this sense. It looks through the whole

state space of the problem systematically. If this search ends without a so-
lution, we can be sure, that the problem has no solution, i.e. the graph has
no suitable k-colouring for a given k. The backtrack search in a strict sense
is not an exhaustive search, because it does not check all the possible states.
But it does not omit any state that can be a solution. Of course the heuristics
are very important—because they can help to increase the number of states
omitted, even in several orders of magnitude—as they help to discover, that a
state is hopeless, i.e. cannot be a solution.
At finding the L21-colouring of the 10 × 10 hexagonal grid the SWI-Prolog

with the default setup found a solution in 311.2 seconds, and with the heuristics
ffc even 0.07 seconds were enough. Of course as the grid is bigger, the rate
of solving times becomes bigger, too.
The modern CPS systems contain many heuristics, so we can use them. If we

only have a few colours, then the minimum remaining values’ heuristic forces
the backtrack many times, because the actual state violates some constraint.
If we turn back from the blind alley early, then we perform faster, than if we
go up to the walls.
As the number of colours usable at colouring increases this heuristic becomes

weaker, it takes more steps and more hypotheses to determine unequivocally
the colour of a node, or realize the blind alley at searching. In case of a 5× 5

square grid we need to colour 25 nodes. To prove that 25 colours are not enough
for the L4321-colouring, the state space has 2525 nodes. By using heuristics we
can omit most of these states, but a huge number of them remain to be checked,
and this takes a lot of time.
We experimented with symmetry-breaking. As we are interested in the exis-

tence of the solution, and we need maximum one solution to present it, we can
omit the rotated and mirrored solutions. So we can add hypothesis that the
central node’s colour is a low number (less or equal to the half of the maximal
colour), among its neighbours the north one has the minimum value, etc. It
is surprising, that finding a solution usually takes more time with this type
of acceleration, than without it; the new constraints altered the direction of
the search. But the exhaustive search became faster as we reduced the state

Distance-constrained grid colouring 13

size L21 L321 L4321
3× 3 6:0.023 7:0.002 9: 0.040 10: 0.016 17: 1.574 18:0.544
4× 4 6:0.033 7:0.012 11: 0.443 12: 0.017 22:179.563 23:6.235
5× 5 6:0.051 7:0.023 11: 0.622 12: 0.036 25: ? 26:0.162
10× 10 6:0.081 7:0.048 11: 1.407 12: 0.090 31: ? 32:2.418
20× 20 6:0.183 7:0.187 11: 2.022 12: 0.354 35: ? 36:1.679
30× 30 6:0.357 7:0.468 11: 2.971 12: 0.885 38: ? 39:5.392
100× 100 6:3.398 7:8.009 11:21.673 12:11.819 -: - -: -

Table 2: Solving time: constraint logic programming for square grids

size L21 L321 L4321
3× 3 7:0.044 8:0.048 14: 1.147 15:0.461 21:9.544 22:3.179
4× 4 8:0.213 9:0.016 16:12.770 17:0.091 26: ? 27:0.167
5× 5 8:0.280 9:0.027 17:39.704 18:0.062 29: ? 30:2.511
10× 10 8:0.440 9:0.071 23: ? 24:0.169 41: ? 41:0.421
20× 20 8:0.727 9:0.282 23: ? 24:1.131 44: ? 45:2.763
30× 30 8:0.143 9:0.619 25: ? 26:4.685 46: ? 47:9.072

Table 3: Solving time: constraint logic programming for triangle grids

space to its one eighth in the case of square grids. For example 946 seconds
were enough to show that there is no L4321-colouring of 5× 5 square grid with
25 colours. This can extend our barriers, but the cases with many colours are
hopeless with this method.
The Tables 2–4 shows the time needed to prove that for number k there is

no k-colouring; and what the search time for a n-colouring is. One cell contains
k with proof-time, and n with search-time. If k+ 1 = n, then number n is the
chromatic number, because we proved that less colours are not enough.
At some cases—denoted with question mark—the time needed for the proof

is not known. If k is much smaller than the chromatic number of the graph,
then it is easier to violate the constraints, or with other words it is harder to
satisfy them. So we got into contradiction much earlier, and even the search
space is smaller, and we prove the uncolourability much faster. If n is slightly
bigger than the chromatic number, the search time increases as n increases.
As we have more and more opportunities to assign a colour to a node, it takes
more time to check more cases. If n is much larger than the chromatic number,

14 L. Aszalós, M. Bakó

size L21 L321 L4321
3× 3 4:0.009 5:0.009 8:0.022 9:0.009 13: 0.135 14:0.111
4× 4 5:0.013 6:0.011 9:0.126 10:0.012 17: 5.710 18:6.724
5× 5 5:0.015 6:0.010 9:0.114 10:0.014 19:71.029 20:1.251
10× 10 5:0.034 6:0.046 9:1.185 10:0.226 24: ? 25:4.094
20× 20 5:0.152 6:0.080 9:2.349 10:1.335 29: ? 30:1.212
30× 30 5:0.162 6:0.335 9:2.603 10:4.440 31: ? 32:4.431

Table 4: Solving time: constraint logic programming for hexagon grids

we need less backtracking because more numbers allow satisfying constraints
easily, but in the case of backtracking we need to check more cases. By the
experiments these two effects compensate each other, and the search times are
similar.
For big grids the source with constrains can even take megabytes. Interest-

ing, that for grids with small chromatic number the solving of the problem
takes less time than loading into memory and compiling. In the case of L4321-
colouring of the 100× 100 we did not have enough memory to run the search.

5 Conclusion and future work

In this article we have examined two methods for solving distance-constrained
colouring. As colouring in general is a hard task, it was expected that there
would be no royal road. The performance of constraint (logic) programming
is good for graphs with a small chromatic number. If the chromatic number is
high, we could get a solution within a short period of time for a nearby num-
ber, but we cannot be sure whether this number is equal with the chromatic
number, or not. If there are too many constraints, then the solver cannot solve
the problem, due to the shortage of the memory.
Although the method of minimal conflicts has many nice results for solv-

ing optimization problems, we were not able to apply it for the distance-
constrained colouring. The method needs more fine-tuning, to make bigger
realignment of colours in one optimization step.
We are planning to test other optimization methods on this type of problems,

in hope of finding a more effective method.
The results of our experiments raise some questions. As Table 2 and 4 shows

in case of square and hexagon grids the chromatic number for colouring L21 and

Distance-constrained grid colouring 15

L321 is constant over a minimal size. Table 3 shows constant chromatic numbers
for L21-colourings. Does there exist a constant value in this case for L321 or
not? Moreover are there constant values for L4321-colourings for these kind of
grids? The tables in this column contain many question marks, denoting that
the exhaustive search needs a long time (and we had no patience, to wait for
the exact time). Our experiments are not enough to answer this question now.
It is obvious, that if we have a colouring of an n × m grid then we can

truncate from it a colouring of a k × l grid, where k ≤ n and l ≤ m. Can
we repeat the first row and column of a 608 different L21-colouring of the
3× 3 square grid to get the L21-colouring of the 4× 4 square grid? Or in more
general: can we rotate, mirror or translate one colouring of a small grid, or
combine several colourings of the same small grid to produce colouring of a
bigger grid?
Does there exist a circular colouring of the square grids (by treating them

as a torus), which can be extended into a colouring of an infinite grid? In this
case are the chromatic numbers different, or not?

Acknowledgements

Many thanks for Gábor Halász for valuable questions and remarks.

References

[1] T. Calamoneri, The L(h, k)-labelling problem: A survey and annotated bibliog-
raphy, The Computer Journal 49, 5 (2006) 585–608. ⇒7

[2] P. Galinier, J. K. Hao, Hybrid evolutionary algorithms for graph coloring,
J. Comb. Optim., 3, 4 (1998) 379–397. ⇒6

[3] W. K. Hale, Frequency assignment: Theory and applications, Proc. of the IEEE
68, 12 (1980) 1497–1514. ⇒6

[4] S. Minton, et al. Minimizing conflicts: a heuristic repair method for constraint
satisfaction and scheduling problems, Artificial Intelligence 58, 1, (1992) 161–
205. ⇒6, 9, 10

[5] P. Panigrahi, A survey on radio k-colorings of graphs, AKCE Int. J. Graphs Comb.
6, 1 (2009) 161. ⇒7

[6] S. J. Russel, P. Norvig, Artificial intelligence: a modern approach, Pearson 2002.
⇒6, 8

Received: January 31, 2016 • Revised: March 8, 2016

Acta Univ. Sapientiae, Informatica 8, 1 (2016) 16–40

DOI: 10.1515/ausi-2016-0002

A survey of the all-pairs shortest paths

problem and its variants in graphs

K. R. UDAYA KUMAR REDDY
Department of Computer Science and Engineering

NMAM Institute of Technology
Nitte–574 110, India.

email: krudaykumar@nitte.edu.in

Abstract. There has been a great deal of interest in the computation
of distances and shortest paths problem in graphs which is one of the
central, and most studied, problems in (algorithmic) graph theory. In this
paper, we survey the exact results of the static version of the all-pairs
shortest paths problem and its variants namely, the Wiener index, the
average distance, and the minimum average distance spanning tree (MAD
tree in short) in graphs (focusing mainly on algorithmic results for such
problems). Along the way we also mention some important open issues
and further research directions in these areas.

1 Introduction

1.1 Motivation

The problem of finding the shortest distance between two vertices of a graph
and finding a path that causes it are classic problems in graph algorithms.
It appears in countless practical applications and is an important concept
in transportation (and communication) engineering, computer science, net-
work routing, network analysis [63], image processing [37, 61], operation re-
search [19, pages 657], VLSI design [66], DNA analysis [70], bio-informatics

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 68R10

Key words and phrases: algorithms, all-pairs shortest paths, average distance, graph

algorithms, MAD tree, spanning tree, Wiener index.

16

A survey of the APSP problem and its variants in graphs 17

[39], chemical compounds [6, 31], computational geometry and robotics [33],
to mention few central areas of interest. Because of its rich in applications,
the work on such problems are deep and vast (in all kinds of classic graphs,
directed or undirected, weighted or unweighted), in both the scientific com-
munity and engineering community. In addition, shortest path algorithms also
have applications as a subroutine in other combinatorial optimization algo-
rithms such as network flows [19, pages 708–709]. One of the basic and key
problem in transportation and network analysis is the computation of the
shortest paths between any two locations on a network. In computer network,
the transportation could be routing messages. For instance, given a road map
(or network) on which the distance is marked between every pair of adjacent
cities (or nodes), find the shortest possible route between every such pair of
cities (or nodes). For such a road map, we can model the graph by representing
cities as vertices, road segments between cities as edges, and road distances as
edge weights.

1.2 Preliminaries and notations

Let G = (V(G), E(G)) be a connected and simple (i.e., without loops and
multiple edges) graph on |V(G)| = n and |E(G)| = m. The graph G may be
directed or undirected, and edges of G may be weighted or unweighted.
If G is weighted, then the edge weights may be real-valued or integers, of
either negative or nonnegative. For a weighted graph, the weight of a path
is the sum of the weights of its edges on that path. For an unweighted graph,
the weight of an edge is taken to be one. A shortest path between two vertices
u and v is a path of minimum weight. For u, v ∈ V(G), the distance between
two vertices u and v, denoted by d(u, v) is defined as follows. (i) Graph G is
unweighted: The distance d(u, v) = 1, if uv ∈ E(G), and d(u, v) = the length
of a shortest path joining u and v (or smallest number of edges connecting u

and v), otherwise. (ii) Graph G is weighted: Here the distance d(u, v) = the
sum of the weights of the edges along the shortest path joining u and v.
The single-source shortest distance (SSSD) problem is to compute d(s, v)

from a given source vertex s to all other vertices v in the graph. The single-sou-
rce shortest path (SSSP) problem is to compute the shortest paths from a
given source vertex s to all other vertices in the graph. The all-pairs shortest
distance (APSD) problem is to compute d(u, v) between all pairs of vertices
u, v in the graph. The all-pairs shortest path (APSP) problem is to com-
pute the shortest paths between all pairs of vertices in the graph.
Given an unweighted undirected graph G, the Wiener index W(G) of G is

18 K.R. UK Reddy

defined as

W(G) =
1

2

∑

u∈V(G)

∑

v∈V(G)

d(u, v). (1)

The Wiener index comes under various names such as transmission, total
status, gross status, graph distance, and sum of all distances.
For an unweighted undirected graph G, the average distance µ(G) of G is

defined by

µ(G) =
1

n(n− 1)

∑

u∈V(G)

∑

v∈V(G)

d(u, v) =
2W(G)

n(n− 1)
. (2)

From (2), we see that the quantity µ(G) is closely related to W(G). For a con-
nected undirected graph G, with a nonnegative edge weight, the Minimum

Average Distance (MAD) spanning tree of G (MAD tree in short) is a span-
ning tree of G with minimum average distance.
The Wiener index of vertex-weighted graphs was introduced in [54]. If G is

a graph with weight function w : V(G) → N
+, then the Wiener index W(G,w)

of a vertex-weighted graph (G,w) is defined as

W(G,w) =
1

2

∑

u∈V(G)

∑

v∈V(G)

w(u)w(v)d(u, v). (3)

Notice that if all weights of vertices in the graph are unit (or one), then
W(G,w) = W(G).
It is well known that there are many variants of shortest paths problem.

Typically it is categorized into the SSSP problem and the APSP problem. In
this short survey we consider only the APSP problem and their related prob-
lems in graphs.
A survey by Zwick [90], the exact and approximate distances in graphs are

considered. In particular, the paper gives a survey on both SSSP and APSP
algorithms and the related distances such as spanners (a sparse subgraph that
approximates all the distances between every pair of vertices) and approximate
distance oracles (concise representation of approximate distances together with
quick means of extracting these approximations). Although [90] gives a survey
on the APSP problem and mentions some open problems, we revisit this prob-
lem in detail and in addition we survey the recent results on general graphs as
well as on restricted family of graphs. Furthermore we also give the survey on
the variants of APSP problem defined above mostly focussing on the results
of algorithmic computation.
We begin with the all-pairs shortest paths problem.

A survey of the APSP problem and its variants in graphs 19

2 All-pairs shortest paths problem

2.1 Background

The APSP problem is undoubtedly one of the most fundamental and classical
problem in graph algorithms and is well known in the research community,
yet, the complexity of this problem has remained open to date even though it
runs in polynomial time. Recall that the significance of the APSP problem and
each of its variants defined above are rich in applications. Almost all known
shortest path algorithms are computed based on the following two types of
computational models:

• Comparison-addition model: The shortest path algorithms in this
model assumes the input to be real-weighted graphs, where the only op-
erations allowed on reals are comparisons and additions and no other
operations are allowed. These operations are assumed to take O(1) time.
The comparison operation finds the larger of two real numbers, whereas
the addition operation generates a new real number from the existing
two real numbers. Clearly, in this model, based on the outcome of pre-
vious comparisons, the algorithm chooses the next operation. Moreover,
since this model fits with the assumption of real numbers which are ar-
bitrary values, it cannot distinguish between reals and integers–hence no
integer can be produced from a real variable.

• Random Access Machine (RAM) model: Here the shortest path algo-
rithms assume the input to be integer-weighted graphs, where integers
are manipulated by additions, subtractions, comparisons, shifts, and var-
ious logical bit operations on machine words (see [1]). These operations
take O(1) time. In this model, each word of memory is assumed to be
w-bit wide, capable of holding an integer in the range {−2w−1, . . . ,
2w−1−1}. Usually, it is assumed that w = Θ(logn), which is the stan-
dard realistic assumption, where n is the input size.

Note that most of the intricate algorithms solving shortest paths problem,
work in RAM model. Given the APSP problem, it is important for us to
consider the implementation of this algorithm in practice. But unfortunately,
some of the algorithms are far from being practical. So, there is a great deal of
interest in obtaining faster algorithms in solving the APSP problem on general
graphs in practice. The progress on the APSP problem have focused mostly
on the following two approaches:

20 K.R. UK Reddy

• Combinatorial approach: Combinatorial algorithms are good in prac-
tice because they rely on the efficient computation of small subproblems,
but unfortunately these algorithms are typically worse in theoretical
bounds. However these algorithms can give better asymptotic bounds
for sparse graphs.

• Algebraic approach: Algebraic algorithms are far from being practical
because they suffer from large hidden constants in the running time
bound and large overhead of fast matrix multiplication since they rely
on matrix multiplication over a ring, but fortunately these algorithms
achieve good theoretical bounds. Hence these algorithms may be viewed
of only theoretical interests.

Finding the APSP problem in a graph has received a considerable attention
from the research community and have been studied extensively in both theory
and practice. Although the APSP problem is solvable by repeated applications
of SSSP algorithms, the APSP problem can be solved efficiently for arbitrary
graphs as well as for other classes of problems. The various class of problems in-
clude: algorithms for restricted families of graphs, such as interval graphs (see
[3, 57, 68, 75]), circular arc graphs (see [3, 75]), strongly chordal graphs (see
[5, 20, 44]) etc.; algorithms for dynamic versions of the problems (see [28, 53]);
parallel algorithms (see [16, 17]). For certain applications, computing exact
distances (respectively shortest paths) over all pairs of vertices of a graph
may be quite expensive. Also the algorithms computing exact distances using
fast matrix multiplication technique are impractical since it suffers from large
hidden constants. In the last decade many researchers considered all-pairs
approximate shortest paths (APASP) problem [74] where a number of sub-
cubic algorithms have been designed using a simple and novel combinatorial
ideas, and also designing an optimal (quadratic) algorithms for some restricted
graph classes using simple and efficient approach. Optimal algorithms for some
restricted graph classes are discussed in Section 2.4. Often in practice, instead
of computing exact distance (respectively shortest paths) between any pair
of vertices of a graph, computing near distance (respectively shortest paths)
is good enough. An algorithm computing approximate distance (or shortest
path) for any given pair of vertices may have some kind of error associated with
the distance (or shortest path) and this error can be additive (also known as
surplus) or multiplicative (also known as stretch). That is, approximate
distances (or shortest paths) are longer than the actual distances (or shortest
paths). The all-pairs surplus-a length, a ≥ 0, is to compute the length of
at least d(u, v) and at most d(u, v) + a for all pairs of vertices u, v ∈ V(G).

A survey of the APSP problem and its variants in graphs 21

The all-pairs stretch-t length, t ≥ 1, is to compute the length of at least
d(u, v) and at most t · d(u, v) for all pairs of vertices u, v ∈ V(G).

Statement of the APSP problem: Given an input graph G= (V(G), E(G)),
the goal is to compute the distances, and construct their corresponding short-
est paths between all pairs of vertices in the graph. The output is thus a
distance matrix and the shortest paths that causes it.

In the following subsections, only the exact results of the static version
of the APSP problem are considered.

2.2 Arbitrary weighted graph

Suppose the problem needs to report the distances (respectively shortest paths)
between all pairs of vertices of the graph. Then the time complexity for such a
problem must be at leastΩ(n2) since there are

(

n
2

)

= Θ(n2) pairs of vertices. It
is well known that the straightforward approach to solve the APSP problem is
to run the SSSP problem for each vertex (as source) of the graph. The classical
results of SSSP problems are Bellman-Ford and Dijkstra’s algorithms. Using
Bellman-Ford SSSP algorithm n times [19, 651–654], the APSP problem for
arbitrary graphs with real-edge weights can be solved in time O(n2m). Using
Dijkstra’s SSSP algorithm n times [27], and using a Fibonacci-heap imple-
mentation Fredman and Tarjan [40] (with Johnson’s [51] preprocessing step
if negative weights are allowed), the APSP problem (on nonnegative edge
weights) can be solved in time O(n2 logn+mn). Then Pettie [64] has shown
that the first term can be reduced to O(n2 log logn) time. As m can be as high
as Ω(n2), the running time of the above algorithms can be as bad as Ω(n3).
However, the APSP problem can be solved efficiently without the application
of SSSP algorithms. It may be noted that all of the algorithms aforementioned
in this subsection work in comparison-addition model.

2.2.1 Dense real-weighted graphs

The classical Floyd-Warshall algorithm [19, 693–697] solves the APSP problem
using dynamic programming technique in time O(n3). It is one the notable
algorithms that is too short, simple to implement, well understood, and works
better on adjacency matrices than adjacency lists. Also note that this algo-
rithm work in comparison-addition model. Let A = (aij) and B = (bij) be two
n×n matrices. Then the distance matrix multiplication (DMM) C = AB

22 K.R. UK Reddy

is an n × n matrix C = (cij) with cij = minn
k=1{aik + bkj} for 1 ≤ i, j ≤ n.

The distance matrix multiplication (also known as the min-plus matrix

multiplication) can be naively computed using O(n3) additions and compar-
isons. It is well known that the APSP problem is closely related to the prob-
lem of computing distance product of matrices. That is, the time complexity of
DMM is asymptotically equal to that of the APSP problem for a graph with n

vertices (see [1]). Fredman [41] was the first to find the possibility of obtaining
a subcubic algorithm for computing the distance product of two n×n matrices
using only O(n2.5) comparisons and additions. But there is no clear specifica-
tion about as to which comparisons should be made nor how to infer the result
from the outcome of these comparisons; however, Fredman was able, to use his
observation to obtain an explicit subcubic algorithm for the distance product,
and hence for the APSP problem. His approach was based on the construction
of decision tree whose depth is O(n2.5) to solve certain small-sized subprob-
lems. However there is no known polynomial-time implementation of his algo-
rithm. Fredman [41] somehow was able to show that the APSP problem can be
solved in O(n3 log1/3 logn/ log1/3 n) time. Takaoka [77] presented much sim-
pler and efficient algorithm in O(n3 log1/2 logn/ log1/2 n) time based on simi-
lar ideas but using table look-up. Dobosiewiczs [30] obtained O(n3/ log1/2 n)
time algorithm by exploiting a different approach bit-level parallelism (i.e.,
simultaneous operations on logn bits contained in a single machine word). Han
[46], Takaoka [78], and Zwick [92] obtained, respectively, O(n3 log5/7 logn /

log5/7 n),O(n3 log2 logn / logn) andO(n3 log1/2 logn / logn) time algorithms
and they all involved even more complicated combinations of approaches. Chan
[10] obtained O(n3/ logn) time algorithm by using somewhat different ap-
proach. The speedup of his algorithm is obtained by using a simple geometric

approach. Han [47] obtained O(n3 log5/4 logn/ log5/4 n) by using a more so-
phisticated word-packing tricks. Chan [12] obtained O(n3 log3 logn/ log2 n)
time algorithm using the approaches from the previous algorithms by Chan
[10] and by Han [47]. That is, his algorithm combines the geometric approach
by Chan [10] and more sophisticated word-packing tricks by Han [47]. The pa-
per also gives the results for APSP problem on a large class of geometrically

weighted graphs, where the weight of an edge is a function of the coordinates
of its vertices. His approach also extends to the case of small-integer-weighted
graphs which is not as good as Zwicks algorithm [91]. However, his approach
more generally extends to the case where weights are taken from small set of
real values yielding the first truly subcubic result (O(n2.844) time) for APSP
in real vertex-weighted graphs, as well as an improved result (O(n2.688) time)
for the all-pairs lightest shortest path (among all shortest paths connect-

A survey of the APSP problem and its variants in graphs 23

ing u and v, the lightest shortest path is a shortest path that uses smallest
number of edges) problem for small integer-weighted graphs. As Tong-Wook
Shinn and Tadao Takaoka mentions in [72], currently the best known upper
bound is O(n3 log logn/ log2 n) due to Han and Takaoka [48].

2.2.2 Dense integer-weighted graphs

Matrix multiplication is one of the most basic problems in mathematics and
computer science. For a long time, the fastest algorithm for multiplying two
n × n matrices was O(nω) time bound, where ω < 2.376 [18]. Recently,
Vassilevska Williams [84], improved this long-standing bound to O(nω) time
bound, where ω < 2.3727. Very recently, Le Gall [56] achieved a faster algo-
rithm which is better than all known algorithms for rectangular matrix multi-
plication. Thanks to Le Gall [56] for his achievement in rectangular matrix mul-
tiplication. The results obtained in [56] are a generalization of Coppersmith-
Winograds approach [18] to the rectangular setting. Moreover the algorithms
presented in [56] gives an improvement for computing the product of two sparse
square matrices but for the product of dense square matrices. Thus we assume
that the fastest algorithm for multiplying two n × n matrices in general is
O(n2.3727) time due to [84]. In the last decade, many researchers have shown
that matrix multiplication over rings [18, 76] can be used to obtain faster al-
gorithms (i.e., subcubic algorithms) for solving the APSP problem in dense
graphs with small integer edge weights, where the weights lie in the range
{1, . . . , M} for some constant M. In this case, Galil and Margalit [42] gave
an Õ(M(ω+1)/2nω) time algorithm for undirected graphs, and Alon et al. [2]
gave an Õ(n(3+ω)/2) = O(n2.688) time algorithm for directed graphs. Then a
series of subcubic algorithms [42, 71, 73, 91] have been developed. Currently,
the best known algorithm for the APSP problem over directed graphs with
small integer weights is in time O(n2.5302) due to [56] (since it relies on rect-
angular matrix multiplication), improving over O(n2.575) time by Zwick [91].
For undirected graphs, currently the best known APSP algorithm using fast
matrix multiplication technique is Õ(Mnω) time bound due to Shoshan and
Zwick [73].

2.2.3 Sparse graphs

Johnson [51] observed that the APSP problem can be solved efficiently on
sparse graphs. That is, if the graph has negative edge weights with no negative-
weight cycles, then the new set of nonnegative edge weights allows to pre-

24 K.R. UK Reddy

serve shortest paths by reweighting technique (see [19, pages 700–704]) in
time O(mn). Johnson’s algorithm uses the Bellman-Ford and Dijkstra’s al-
gorithms as subroutines yielding an APSP algorithm for arbitrary weighted
graphs in time O(mn+n2 logn). Later, Pettie [64] has shown that the second
term can be reduced to O(n2 log logn) time for directed graphs, and Pettie
and Ramachandran [65] has shown that the second term can be reduced to
O(n2α(m,n)) time for undirected graphs, where α is slow growing inverse-
Ackermann function.
There are also results for solving the APSP problem on integer-weighted

graphs. The existing implementations of Dijkstra’s algorithm on APSP [45,
81] for integer-weighted graphs run in time O(min{mn (log logn)1/2, mn +

n2 log logn}). Then Thorup [80] gave bounds on APSP problem using hierar-
chy-based approach for undirected graphs in time O(mn). Later Hagerup
[43] was able to show the bounds on APSP problem for directed graphs using
hierarchy-based approach in time O(mn + n2 log logn). The author general-
ized Thorup’s approach that gave a new approach to view the commonalities
between all hierarchy-type algorithms and in particular, it gives a one-line
characterization for all hierarchy-type algorithms. This characterization leads
to prove lower bounds on their complexities in the comparison-addition model.

2.3 Arbitrary unweighted graph

2.3.1 Dense graphs

For a weighted graph G, let the edge weights of G be a unit weight. Then,
the APSP problem can be solved by the simple Floyd-Warshall algorithm [19,
pages 693–697] in time O(n3). Improved results show that it runs in O(mn +
n2 logn) time (Dijkstra’s algorithm [19, pages 658–662], Johnson [51], Fred-
man and Tarjan [40]). Using Pettie algorithm [64] the APSP problem can be
solved in time O(n2 log logn + mn). Taking G to be an unweighted graph,
the algorithm for APSP can be solved by running breadth-first search (BFS)
[19, pages 594–601] once from each vertex (as source) of G. This takes a time
O(n2 + mn). As m can be as high as Ω(n2), the running time of the above
algorithms can be as bad as Ω(n3). Again all of the algorithms aforementioned
in this subsection work in comparison-addition model.
For unweighted undirected graphs, Galil and Margalit [42] and Seidel [71]

showed that fast matrix multiplication algorithms can be used to obtain im-
proved algorithms for the APSP problem for graphs with small integer weights.
The running time of their algorithms is Õ(nω) (it may be noted that Õ(n)

A survey of the APSP problem and its variants in graphs 25

= O(n logk n; that is, Õ(n) = O(n) with logarithmic factors ignored). The
Seidel’s algorithm is simple and elegant. However, there seems to be no simple
way of using Seidel’s elegant technique on weighted graphs. The algorithm
of Galil and Margalit [42], on the other hand, can be extended to handle on
weighted (small integer weights) graphs.
There are also results for unweighted directed graphs for solving the APSP

problem that use fast matrix multiplication algorithms when the edge weights
are small integers. In this case, Alon et al., [2] were the first to obtain a
O(n2.688) algorithm. The authors first give a simple version of the APSP prob-
lem for directed graphs with edge weights taken from the set {−1, 0, +1}. Then
they have extended their algorithm to the case of edge weights which are inte-
gers with a small absolute value. Later Zwick [91] obtained a running time of
O(n2.575). Recently, Le Gall [56] has improved the result to obtain a running
time of O(n2.5302).
By exploiting graph compression technique, a new combinatorial idea,

Feder and Motwani [38] obtained O(mn log (n
2

m)/ logn) time, an improved al-
gorithm that achieves log-factor speedups for solving APSP in the unweighted
undirected graphs. Generally, log-factor speedups may be possible when there
is some amount of redundancy or repetition in the input or computational
process. As mentioned in [38], the compressed graph G∗ of a graph G encodes
some aspects of the structure of G and has the following properties: (i) G∗

is a graph with m∗ edges, where m∗ < m. (ii) It is computationally easy to
convert G into G∗, and vice versa. Therefore, the compression may be viewed
as a data structure for representing the graph G.

2.3.2 Sparse graphs

Recall that the straightforward approach for solving APSP problem is to run
BFS once from each vertex (source) of G which takes a time O(n2 + mn).
The algorithms of Galil and Margalit [42], and Seidel [71] do not improve over
the naive approach O(n2+mn) algorithm when m = o(nω−1). As mentioned

above, Feder and Motwani [38] obtained O(mn log (n
2

m)/ logn) time algorithm
which is an improvement over O(mn). Then, Chan [11] gave bounds that
runs in o(mn) time for undirected graphs. This analysis is based on one cru-
cial parameter, m, the number of edges in the graph. That is, the results for
small values ofm. In [11] the time bounds of the algorithms improves over time
bounds including the naive bound, Seidel’s [71] algorithm, and Feder and Mot-
wani’s [38] algorithm, for all m ≪ n1.376. Later, Blelloch et al. [7] presented a
new combinatorial data structure method that beats Feder and Motwani’s and

26 K.R. UK Reddy

Chan’s result. The running time of their algorithm is O(mn log (n
2

m)/ log2 n).
The ability of this new data structure lies in computing sparse vector products
quickly and tolerate matrix updates. Using their data structure, the authors
give best running time bounds for four fundamental graph problems: transi-
tive closure, APSP on unweighted graphs, maximum weight triangle, and all
pairs least common ancestors. The authors also point out that by using the
data structure gives the first asymptotic improvement over O(mn) for all pairs
least common ancestors on directed acyclic graphs.

2.4 Restricted family of graphs

When dealing with special graph classes, it is well known that the algorithmic
computation of the given problem on such graph classes can be solved more effi-
ciently. These algorithms are good enough for many practical applications since
graph classes are more structured than just being general graphs. Computing
exact distances (respectively shortest paths) over all pairs of vertices of a graph
may be quite expensive on general graphs. So, many researchers started con-
sidering the APSP problem on special graph classes. The results on some of
the restricted classes of graphs are truly overwhelming because of some opti-
mal O(n2) algorithms are known for solving the APSP problem. These include:
interval graphs, circular arc graphs, planar graphs (see [49]), permutation

graphs, bipartite permutation graphs, strongly chordal graphs, chordal
bipartite graphs, distance-hereditary graphs, and dually chordal graphs.
The results of APSP problem for such graph classes [33] may be consulted.
The work by Han et al. [44], presents an optimal O(n2) time algorithm for

solving the APSP problem on chordal graph if G2 (G2 = (V, E
′

), where {u, v}
∈ E

′

if and only if 1 ≤ d(u, v) ≤ 2) is known. The authors claims that com-
puting G2 for chordal graphs is as hard as for general graphs. They also point
out that G2 can be computed more efficiently for special classes of chordal
graphs such as planar chordal, k-chordal, and strongly chordal giving rise to
optimal algorithms for the APSP problem on these classes of graphs in a more
natural way than the previous results. An optimal parallel algorithm for the
APSP problem on chordal graphs are also presented.
The author in [33], gives a simple and efficient approach to solve all-pairs

approximate shortest paths (APASP) problem on the class of weakly chordal
graphs and its subclasses. Moreover, the work in [33] presents a unified ap-
proach to solve APASP and APSP problems on graph classes including chordal,
strongly chordal, chordal bipartite, and distance-hereditary graphs. A few open
problems related to the distances are also suggested. Later, Mondal et al. [59]

A survey of the APSP problem and its variants in graphs 27

and Saha et al. [69] obtained optimal algorithms for solving APSP on the class
of trapezoid graphs and circular arc graphs respectively. For the definition
of various families of graphs [8, 33] may be consulted.
An important observation: For each of the graph classes aforementioned,

the APSP problem is solved using a simple and efficient approach which are
important from the practical point of view.

2.5 Concluding remarks and open issues of APSP problem

Based on the results aforementioned, we conclude this section with few open
issues and remarks on computing the APSP problem.

• Whether in general there exists a truly sub-cubic algorithm for the APSP
problem in the comparison-addition model that runs in time O(n3−ε),
for some constant ε > 0?

• On an arbitrary unweighted graphs, the fact that the fastest combina-
torial algorithm for APSP problem (despite aforementioned fast non-
combinatorial algorithms based on matrix multiplication) is by running
BFS [19, pages 594–601] once from each vertex (as source) of a graph.
Obtaining a faster combinatorial algorithm for APSP problem on such
graphs in fact will be a major breakthrough.

• Recall that the APSP problem is closely related to the problem of com-
puting distance product of matrices. Thus the most important open issue
in algebraic complexity, is finding the optimal value of the exponent of
square matrix multiplication. For further information on square matrix
multiplication we refer [56] and references therein.

• The author in [43] gave the bounds on APSP problem for directed graphs
in the word RAM model that runs in time O(mn+n2 log logn). It would
be desirable to obtain the bound O(mn).

• For undirected graphs, currently the best known APSP algorithm us-
ing fast matrix multiplication technique is Õ(Mnω) time bound due to
Shoshan and Zwick [73]. As mentioned in [90], the authors in [73] show
that the APSP problem for undirected graphs with edge weights taken
from {0, 1, . . . ,M} is harder than the problem of computing the distance
product of two n×n matrices with elements taken from the same range
by at most a logarithmic factor. Thus on undirected graphs a challenging
problem for the APSP problem could be, by considering larger values of
M, and obtaining truly sub-cubic algorithm for it.

28 K.R. UK Reddy

• A great variety of optimal (O(n2)) algorithms were developed for solving
the APSP problem on restricted family of graphs as mentioned in sec-
tion 2.4. It would be interesting to know for which other greater graph
classes the APSP problem can be solved in O(n2) time.

Next we consider the Wiener index or average distance problem.

3 Wiener index or average distance

3.1 Background

The Wiener index (or Wiener number) problem is a well-known distance
based graph invariant in mathematical chemistry. The work on the theory
of Wiener indices is deep and vast, in both the biochemical community and
mathematical community. In chemical graph theory, the structure of a chem-
ical compound is usually modeled as a polygonal shape–paths, trees, graphs,
etc., which is often called the molecular graph of this compound, where each
vertex represents an atom of the molecule, and covalent bonds between atoms
are represented by edges between the corresponding vertices (see [4, 67, 82]).
In chemistry, much of the problems have influenced the development of graph-
theory-based molecular structure-descriptors called the topological indices.
Among all the topological indices, Wiener index W(G) is the most important
one (from middle 1970s), thoroughly studied and frequently used (see [87]).
The Wiener index have been studied in both the mathematical and chemical
literature. The majority of chemical applications lie in the study of Wiener
index of acyclic (molecular) graphs. Most of the prior work on Wiener indices
deals with two types of problems: Wiener index problem for graphs and the
inverse Wiener index problem. The Wiener index problem deals with the ef-
ficient computation of the index, the upper and lower bounds on the index
values, and the relation of the Wiener index to other quantities of the graph.
The inverse Wiener index problem is: Given a positive integer k, does there
exist a graph whose Wiener index is k. If so, can we compute it efficiently?
For more information on the Wiener index especially for trees see [31] and
references therein.
The average distance is one of the important parameter in metric graph

theory. As mentioned in [55], it has numerous applications in many areas
including computer science, cheminformatics, mathematics, and recent ap-
plication in phylogenetics (see [88]). One of the fundamental parameter in
computer science is to measure the cost of communication in a computer net-

A survey of the APSP problem and its variants in graphs 29

work. In a network model, the time delay or signal disgradation in sending a
message between any two points is often proportional to the distance a mes-
sage must travel. When G represents a network, the average distance µ(G)

problem can be viewed as a tool in analyzing networks since it is a measure
on the time needed to traverse the messages between two randomly chosen
points in the average-case performance of a network as opposed to the di-
ameter (maximum of all shortest-path distances), which indicates the worst-
case performance time [23]. Therefore, the quantity µ(G) play a significant
role in analyzing communication networks and has been studied widely in
[9, 23, 24, 25, 26, 29, 62, 88]. For more information on the average distance
see [9, 62] and references therein.

3.2 Computation of Wiener index or average distance

The previous and ongoing work related to Wiener index or average distance
are: Wiener index problem for graphs and the Inverse Wiener index problem.
As a result, the research findings on such problems include obtaining upper
and lower bounds, determining relationships to other quantities, determining
inverse Wiener index problem, obtaining closed form expressions, and algorith-
mic determination of the Wiener index. In this short survey we discuss only
a few important closed form expressions and the algorithmic determination of
the Wiener index or the average distance.
One motivation comes from the following problem posed by F. R. K. Chung

[15]: Is there an asymptotically faster algorithm for computing average dis-
tance than computing all distances between vertices of the graph?
S. Klavžar at el. [55], mentions that the average distance can be studied

equivalently as the Wiener index (or the network distance)–hence the funda-
mental task would be the computation of the average distance or the Wiener
index efficiently. For a general graph G, one way of computing W(G) or µ(G)

algorithmically is to run the APSD problem; that is it can be computed in poly-
nomial time, [58]. Thus the results of APSP problem for unweighted undirected
graphs including arbitrary graphs and restricted classes of graphs follows for
computing W(G) or µ(G). Besides, more efficient algorithms (i.e., linear or
even sub-linear algorithms) have been developed for its computation on some
restricted classes of graphs. In [13] a linear algorithm were proposed for the
Wiener index of benzenoid graphs, while in [14] a sub-linear time algorithm
for the same problem were proposed. Some of the results on restricted classes
of graphs are mentioned below.
As Dobrynin et al. mentions in [31], the early work by Entringer et al.

30 K.R. UK Reddy

[34], closed form expressions for W(G) for large classes of trees are given.
Among all trees of order n, the best known are W(Pn) =

(

n+1
3

)

and W(Sn)

= (n − 1)2, where Pn and Sn denote the path and star of a graph of order
n respectively. It is easy to see that among all trees of order n, the Wiener
indices of Pn and Sn, respectively, are maximum and minimum. In [34] it has
been showed that for any tree T of order n that is different from Pn and Sn,
W(Sn) < W(Tn) < W(Pn). Dobrynin et al. [31], gives a detailed survey on the
results known for the Wiener index of different class of trees. For example, the
authors outlines computational methods of W(G), combinatorial expressions
for W(G), connections between W(G) and the center and centroid of a tree,
and connections between W(G) and the Laplacian eigenvalues. Results on the
Wiener indices of line graphs of trees, on trees extremal w.r.t. W(G), and on
integers which cannot be Wiener indices of trees are also given. The related
theory and applications are also mentioned.
Hexagonal systems (HS’s) are a special type of plane graphs in which all

interior regions (faces) are bounded by hexagons; that is, the two hexagons ei-
ther have one common edge or have no common vertex, and no three hexagons
share a common edge. HS’s have applications in chemistry since they provide a
graph representation of benzenoid hydrocarbons. In [32], the authors outlines
the results known for Wiener index W of the HS: method for computation of
W (W of a HS can be computed in time O(n) and a sublinear time algorithm
for simple HS’s), expressions relating W with the structure of the respective
HS, results on HS’s extremal with respect to W, and on integers that cannot
be the W-values of HS’s.
An interesting conjecture on Wiener index of trees: It states that except for

some finite set of integers, every integer n is the Wiener index of some tree.
Ban et al. [6], showed that enumerating all possible trees to verify this con-
jecture is not required. They show that searching in a small special family of
trees known as caterpillars (a tree is a caterpillar if the deletion of all its end
vertices produces a path) suffices and hence achieving the first polynomial time
algorithm up to integer n to verify the conjecture. They also provide many
efficient algorithms for computing trees with given Wiener indices, and imple-
mentation results show that their performance is asymptotically better than
their theoretical worst-case upper bound. The authors also point out that the
approaches in their paper can be used as general techniques for tree construc-
tion problems in combinatorial biology and chemistry when it is necessary to
deal with tree classes.
In [24], a sharp upper bound for µ(G) of a graph is given depending on the

order of a graph and the independence number (maximum size of an inde-

A survey of the APSP problem and its variants in graphs 31

pendent (pair-wise nonadjacent) set of vertices of G). The author answers the
question posed by Erdos asking for bounds on the independence number of a
graph with a given µ(G). The author also gives the upper and lower bounds on
µ(G) depending on the matching number (maximum size of an independent
(pair-wise nonadjacent) set of edges of G).
Dankelmann [23], gives an algorithm for computing µ(G) on an interval

graph of size o(n2) in time O(m) (recall that m denote the number of edges in
a graph). This implies that for such a graph and size, W(G) can be computed
in time O(m). In [23], apart from computing µ(G) of an interval graph, it is
also argued that when G is a tree instead of interval graphs, µ(G) of a tree of
order n can be computed in time O(n) which is optimal. Thus when G is a
tree, W(G) can be computed in time O(n).
Iyer and Reddy [85] obtained a closed-form expression for Wiener index of

binomial tree. They also provide efficient algorithms for computing the Wiener
indices of Fibonacci trees and binary Fibonacci trees with Fk (k-th Fibonacci
number) vertices in time O(log Fk). This bound is an improvement over the
bound obtained in [23]. That is, in [23] for any tree T with n vertices, W(T)

can be computed by an algorithm in time O(n).
Although algorithms are available for average distance on strongly chordal

graphs based on the APSP problem which runs in time O(n2), the author in
[83] obtained a new algorithm that is not dependent on the APSP problem for
average distance on strongly chordal graphs which runs in O(n2). Though the
time bound is same, but the algorithm in [83] runs better than the previous
algorithms on an average.
Very recently S. Klavžar at el. [55], proposed the average distance in in-

terconnection networks via reduction theorems for vertex-weighted graphs.
Their idea is to first shrink the original graph into smaller weighted graphs
called quotient graphs. Then shrink this quotient graphs further into smaller
weighted graphs called reduced graphs. During this shrinking process, a part
of the Wiener index of the bigger graph is added as a corresponding weight
to the smaller graph. Finally, the Wiener index of the original graph is calcu-
lated by the way of the Wiener index of the weighted reduced graphs. They
have also demonstrated the significance of this technique by computing the
average distance of butterfly and hypertree architectures. For other results on
the average distance see [55] and references therein.

32 K.R. UK Reddy

3.3 Concluding remarks and open issues of Wiener index or

average distance

The problem of finding Wiener index and average distance of a graph are stud-
ied extensively in the literature. For general graphs, obtaining asymptotically
faster algorithm for Wiener index (or average distance) directly without the
application of APSD problem of a graph was not so obvious. So, researchers
have explored on restricted family of graphs to obtain a better algorithm for
computing Wiener index (or average distance) than the APSD problem. Based
on the results aforementioned, we conclude this section with few open issues
and future research in algorithmic computation of Wiener index (or average
distance) of a graph:

• Is there a genuinely asymptotically faster algorithm for computing aver-
age distance in general than computing all distances between vertices of
the graph [15]?

• Dankelmann [23] gave an algorithm for computing µ(G) of an interval
graph G of size o(n2) in time O(m). Thus it would be interesting to
know for which other graph classes µ(G) can be computed in O(m)

time. One of the possible candidate could be strongly chordal graphs. In
[83], an algorithm for µ(G) on strongly chordal graphs obtained O(n2)

time bound. An interesting problem is, whether a similar technique can
be extended to obtain that runs in linear time in the size of input graph.

• In [85], the results on Fibonacci trees and binary Fibonacci trees with Fk
(k-th Fibonacci number) vertices, algorithms are obtained for comput-
ing their Wiener indices in time O(log Fk). For definitions of Fibonacci
trees and binary Fibonacci trees and their applications we refer [85].
It would be desirable to obtain a closed form expression for computing
their Wiener indices.

• Zmazek and Žerovnik [89] gave a linear time algorithm for weighted
Wiener index on weighted cactus graphs (a graph is cactus if every
edge lies on at most one cycle). The authors in [55], gave the result by
introducing a new technique for computing the weighted Wiener index
of butterfly networks and hypertree networks. But their method is ap-
plicable only to those families of graphs that partitions the edge set of a
network into components using transitive closure which in turn enables
their weighted Wiener index to compute efficiently. Thus it would be in-
teresting to determine a unified way that is applicable on different graph

A survey of the APSP problem and its variants in graphs 33

classes. In addition, using the newly introduced technique in [55], the
open issue is, the computation of other topological indices.

Finally we consider the minimum average distance spanning tree problem.

4 MAD trees

In addition to average distance of a network, suppose if one is interested
in designing a tree subnetwork of a given network such that the delay in
sending a message between any two nodes of the network is minimum on
the average, then such a tree can be modeled by finding the minimum

average distance spanning tree (MAD) trees (MAD trees are also known as
minimum routing cost spanning trees) [22]. Thus MAD trees also play an
important role in communication networks [52]. It is well known that finding a
minimum-cost spanning tree is one of the classic problem in algorithmic graph
theory. Also there is an interest in finding the best spanning tree with impor-
tant parameters such as minimum radius, minimum diameter, and minimum
average distance (see [21]). In this section the following problem is considered:
Statement of the problem: Given a connected, undirected graph G, the goal
is to simply find a spanning tree of G whose average distance is minimum.

4.1 Computation of MAD trees

The problem of finding a MAD tree in general is NP-hard [52]. So the natural
question that arises is, for which special graph classes a MAD tree can be found
in polynomial time. As mentioned in [21], Entringer et al. [36] showed that
there is a spanning tree whose average distance is less than twice the average
distance of the original, and that such a tree can be found in polynomial
time. Later, a polynomial time approximation scheme for minimum routing
cost spanning trees has been developed by Wu et al. [86]. For further results
on MAD trees can be found in [35, 36]. In [21], an linear time algorithm is
exhibited for computing a MAD tree of a given distance-hereditary graph. In
[22] the average distance µ(G,w) of vertex-weighted graph (G,w) is defined
as follows. If G is a graph with weight function w : V(G) → R

+, then

µ(G,w) =

(

w(V)

2

)−1 ∑

u∈V(G)

∑

v∈V(G)

w(u)w(v)d(u, v),

where w(V) is the total weight of the vertices in G. Dahlhaus et al. [22], show
that for a given interval graph G a MAD tree can be computed in time O(m).

34 K.R. UK Reddy

If an interval representation of an interval graph G with n vertices is given and
the left and the right boundaries of intervals are sorted, then a MAD tree of G
can be computed in O(n) time. Dobrynin et al. [31] conjectured the following
problem: the binomial tree is a MAD tree of the hypercube Hk. Tchuente at

el. [79] made a step towards the proof of this conjecture by showing that the
binomial tree Bk is a local optimum with respect to the 1-move heuristic (A
1-move consists of adding to a tree H, an edge e and removing an edge e

′

from
the unique cycle created by e).
Recently, Jana and Mondal [50], and Mondal [60], obtained efficient algo-

rithms for computing MAD tree on permutation graphs and trapezoid graphs
respectively in O(n2) time bound based on breadth-first tree.

4.2 Concluding remarks and open issues of MAD trees

Although the problem of finding a MAD tree is NP-hard in general, but for-
tunately there is a possibility of obtaining a polynomial time algorithm for
restricted family of graphs. Based on the results aforementioned, we conclude
this section with few open problems and future research in computing a MAD
tree:

• Is there a polynomial time algorithm to find a MAD tree of a vertex
weighted interval graph [21]? The authors in [21] point out that using
their existing technique, the possible candidates for future research could
be strongly chordal graphs.

• It would also be interesting to know for which other restricted graph
classes a MAD tree can be computed in polynomial time. Because the
result on distance-hereditary graphs is known in polynomial time, so
apart from the strongly chordal graphs, the other possible candidate
could also be chordal bipartite graphs.

• Hypercube is a well known and popular interconnection network for mul-
ticomputers. The question whether the binomial tree is a MAD tree of
the hypercube remains open (see [31]) even though Tchuente at el. [79]
made a step towards this open problem.

5 Conclusions

In this paper, we reviewed studies on the all-pairs shortest paths problem and
its variants namely, the Wiener index, the average distance, and the minimum

A survey of the APSP problem and its variants in graphs 35

average distance spanning tree (MAD tree) problem in graphs. Each of these
problems are undoubtedly fundamental and classical problems in graph algo-
rithms and is well known in the research community. The significance of such
problems are rich in applications. From the perspective of all-pairs shortest
paths problem, the discussions are focused on the exact results of the static
version. From the perspective of Wiener index, average distance, and MAD
trees, the discussions are focused mostly on the algorithmic computation of
such problems. Finally, under each section, some of the major open issues
and future research are discussed on algorithmic determination and obtaining
closed form expressions for each of such problems.

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesely, Reading, 1974. ⇒19, 22

[2] A. Alon, Z. Galil, O. Margalit, go , J. Comput. Sys. Sci 54, 2 (1997) 255–262.
⇒23, 25

[3] M. J. Atallah, D. Z. Chen, D. T. Lee, An optimal algorithm for shortest paths
on weighted interval and circular arc graphs, with applications, Proc. European
Sympos. on Algorithms, Lecture Notes in Computer Science 726 (1993) 13–24.
⇒20

[4] A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inf. Comput,
Sci. 25, 3 (1985) 334–343. ⇒28

[5] V. Balachandhran, C. Pandu Rangan, All-pairs-shortest length on strongly
chordal graphs, Discrete Appl. Math. 69, 1–2 (1996) 169–182. ⇒20

[6] Y. A. Ban, S. Bereg, N. H. Mustafa, A conjecture on Wiener indices in combi-
natorial chemistry, Algorithmica 40, 2 (2004) 99–117. ⇒17, 30

[7] G. E. Blelloch, V. Vassilevska, R. Williams, A new combinatorial approach for
sparse graph problems, Proc. International Colloquium on Automata, Languages
and Programming 35 (2008) 108–120. ⇒25

[8] A. Brandstädt, V. B. Le, J. P. Spinrad, Graph Classes: A Survey , SIAM Monogr.
Disc. Math. Appl. 1999. ⇒27

[9] R. M. Casablanca, Average distance in the strong product of graphs, Util. Math.
94 (2014) 31–48. ⇒29

[10] T. M. Chan, All-pairs shortest paths with real weights inO(n3/logn) time, Proc.
9th Workshop Algorithms Data Struct., Lecture Notes in Computer Science 3608
(2005) 318–324. Also available in Algorithmica 50, 2 (2008) 236–243. ⇒22

[11] T. M. Chan, All-pairs shortest paths for unweighted undirected graphs in o(mn)
time, Proc. ACM-SIAM Sympos. Discrete Algorithms 17 (2006) 514–523. ⇒25

[12] T. M. Chan, More algorithms for all-pairs shortest paths in weighted graphs, In
Proc. 39th ACM Symposium on Theory of Computing (STOC) (2007) 590–598.
⇒22

36 K.R. UK Reddy

[13] V. Chepoi, S. Klavžar, The Wiener index and the Szeged index of benzenoid
systems in linear time, J. Chem. Inf. Comput. Sci. 37, 4 (1997) 752–755. ⇒29

[14] V. Chepoi, S. Klavžar, Distances in benzenoid systems: further developments,
Discrete Math. 192, 1–3 (1998) 27–39. ⇒29

[15] F. R. K. Chung, The average distance and the independence number, J. Graph
Theory 12, 2 (1988) 229–235. ⇒29, 32

[16] E. Cohen, Using selective path-doubling for parallel shortest-path computations,
J. Algorithms 22, 1 (1997) 30–56. ⇒20

[17] E. Cohen, Polylog-time and near-linear work approximation scheme for undi-
rected shortest paths, J. ACM 47, 1 (2000) 132–166. ⇒20

[18] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions,
J. of Symb. Comput. 9, 3 (1990) 251–280. ⇒23

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. ⇒16, 17, 21, 24, 27

[20] E. Dahlhaus, Optimal (parallel) algorithms for the all-to-all vertices distance
problem for certain graph classes, Proc. of the International Workshop Graph-
Theoretic Concepts in Comput. Sci., Lecture Notes in Computer Science 657

(1992) 60–69. ⇒20
[21] E. Dahlhaus, P. Dankelmann, W. Goddard, H. C. Swart, MAD trees and

distance-hereditary graphs, Discrete Appl. Math. 131, 1 (2003) 151–167. ⇒
33, 34

[22] E. Dahlhaus, P. Dankelmann, R. Ravi, A linear-time algorithm to compute a
MAD tree of an interval graph, Inf. Process. Lett. 89, 5 (2004) 255–259. ⇒33

[23] P. Dankelmann, Computing the average distance of an interval graph, Inform.
Process. Lett. 48, 6 (1993) 311–314. ⇒29, 31, 32

[24] P. Dankelmann, Average distance and independence number, Discrete Appl.
Math. 51, 1–2 (1994) 75–83. ⇒29, 30

[25] P. Dankelmann, Average distance and domination number, Discrete Appl. Math.
80, 1 (1997) 21–35. ⇒29

[26] P. Dankelmann, Average distance in weighted graphs, Discrete Math. 312, 1
(2012) 12–20. ⇒29

[27] E. Dijkstra, A note on two problems in connexion with graphs, Numerische
mathematik 1, 1 (1959) 269–271. ⇒21

[28] C. Demetrescu, G. F. Italiano, Fully dynamic transitive closure: breaking
through the O(n2) barrier, Proc. IEEE Sympos. on Found. Comput. Sci. 41

(2000) 381–389. ⇒20
[29] J. K. Doyle, J. E. Graver, Mean distance in a graph, Discrete Math. 17, 2 (1977)

147–154. ⇒29
[30] W. Dobosiewicz, A more efficient algorithm for the min-plus multiplication, Int.

J. Comput. Math. 32, 1–2 (1990) 49–60. ⇒22

A survey of the APSP problem and its variants in graphs 37

[31] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and
applications, Acta Appl. Math. 66, 3 (2001) 211–249. ⇒17, 28, 29, 30, 34

[32] A. A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal
systems, Acta Appl. Math. 72, 3 (2002) 247–294. ⇒30

[33] F. F. Dragan. Estimating all pairs shortest paths in restricted graph families: a
unified approach. J. of Algorithms 57, 1 (2005) 1–21. ⇒17, 26, 27

[34] R. C.Entringer, D. E. Jackson, D. A. Synder, Distance in graphs, Czech. Math.
J. 26, 2 (1976) 283–296. ⇒30

[35] R. C. Entringer, Distance in graphs: trees, J. Combin. Math. Combin. Comput.
24 (1997) 65–84. ⇒33

[36] R. C. Entringer, D. J. Kleitman, L. A. Sžekely, A note on spanning trees with
minimum average distance, Bull. Inst. Combin. Appl. 17 (1996) 71–78. ⇒33

[37] A. X. Falcao, J. K. Udupa, S. Samarasekera, S. Sharma, B. E. Hirsch,
R. A. Lotufo, User-steered image segmentation paradigms: Live wire and live
lane, Graphical Models and Image Process. 60, 4 (1998) 233–260. ⇒16

[38] T. Feder, R. Motwani, Clique patritions, graph compression and speeding-up
algorithms, J. Comput. Sys. Sci . 51, 2 (1995) 261–272. ⇒25

[39] A. M. Fitch, and M. B. Jones, Shortest path analysis using partial correlations for
classifying gene functions from gene expression data, Bioinformatics 25 (2009)
42–47. ⇒17

[40] M. Fredman, R. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. ACM 34, 3 (1987) 596–615. ⇒21, 24

[41] M. L. Fredman, New bounds on the complexity of the shortest path problem,
SIAM J. Comput . 5, 1 (1976) 49–60. ⇒22

[42] Z. Galil, O. Margalit, All pairs shortest distances for graphs with small integer
length edges, Inform. Comput. 134, 2 (1997) 103–139. ⇒23, 24, 25

[43] T. Hagerup, Improved shortest paths on the word RAM, Proc. International
Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes
in Computer Science 1853 (2000) 61–72. ⇒24, 27

[44] K. Han, C. N. Sekharan, R. Sridhar, Unified all-pairs shortest path algorithms
in the chordal hierarchy, Discrete Appl. Math. 77, 1 (1997) 59–71. ⇒20, 26

[45] Y. Han, M. Thorup, Integer sorting in O(n
√
log logn) expected time and linear

space, Symp. on Found. of Comput. Sci. 43 (2002) 135–144. ⇒24
[46] Y. Han, Improved algorithm for all pairs shortest paths, Inform. Process. Lett.

91, 5 (2004) 245–250. ⇒22
[47] Y. Han, AnO(n3(loglogn/logn)5/4) time algorithm for all pairs shortest paths,

Proc. European Sympos. Algorithms, Lecture Notes in Computer Science 4168

(2006) 411–417. ⇒22
[48] Y. Han, T. Takaoka, AnO(n3 log logn/ log2 n) time algorithm for all pairs short-

est paths, Proc. 13th SWAT, Lecture Notes in Computer Science 7357 (2012)
131–141. ⇒23

[49] M. R. Henzinger, P. Klein, S. Rao, S. Subramanian, Faster shortest-path algo-
rithms for planar graphs, J. Comput. System Sci. 55, 1 (1997) 3–23. ⇒26

38 K.R. UK Reddy

[50] B. Jana, S. Mondal, Computation of a minimum average distance tree on per-
mutation graphs, Annals of Pure and Appl. Math. 2, 1 (2012) 74–85. ⇒34

[51] D. Johnson, Efficient algorithms for shortest paths in sparse graphs, J. ACM
24, 1 (1977) 1–13. ⇒21, 23, 24

[52] D. S. Johnson, J. K. Lenstra, A. H. G. Rinnooy-Kan, The complexity of the
network design problem, Networks 8, 4 (1978) 279–285. ⇒33

[53] V. King, Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs, Proc. IEEE Sympos. on Found. of Comput. Sci.
40 (1999) 81–89. ⇒20

[54] S. Klavžar, and I. Gutman, Wiener number of vertex-weighted graphs and a
chemical applications, Discrete Appl. Math. 80, 1 (1997) 73–81. ⇒18

[55] S. Klavžar, P. Manuel, M. J. Nadjafi-Arani, R. Sundara Rajan, C. Grigorious, S.
Stephen, Average distance in interconnection networks via reduction theorems
for vertex-weighted graphs, To appear ⇒28, 29, 31, 32, 33

[56] F. Le Gall, Faster algorithms for rectangular matrix multiplication, Proc. 53rd
FOCS (2012) 514–523. ⇒23, 25, 27

[57] P. Mirchandani, A simpleO(n2) algorithm for the all-pairs shortest path problem
on an interval graph, Networks 27, 3 (1996) 215–217. ⇒20

[58] B. Mohar, T. Pisanski, How to compute the Wiener index of a graph, J. Math.
Chem. 2 (1988) 267–277. ⇒29

[59] S. Mondal, M. Pal, T. K. Pal, An optimal algorithm for solving all-pairs shortest
paths on trapezoid graphs, Int. J. Comp. Eng. Sci. 3, 2 (2002) 103–116. ⇒26

[60] S. Mondal, An efficient algorithm for computation of a minimum average distance
tree on trapezoid graphs, J. Scientific Research and Reports 2, 2 (2013) 598–611.
⇒34

[61] E. N. Mortensen, W. A. Barrett, Interactive segmentation with intelligent scis-
sors, Graphical Models and Image Process. 60, 5 (1998) 349–384. ⇒16

[62] S. Mukwembi, Average distance, independence number, and spanning trees, J.
Graph Theory 76, 3 (2014) 194–199. ⇒29

[63] W. Peng, X. Hu, F. Zhao, J. Su, A fast algorithm to find all-pairs shortest paths
in complex networks, Procedia Comp. Sci. 9 (2012) 557–566. ⇒16

[64] S. Pettie, A new approach to all-pairs shortest paths on real-weighted graphs,
Theoret. Comput. Sci . 312, 1 (2004) 47–74. ⇒21, 24

[65] S. Pettie, V. Ramachandran, A shortest path algorithm for real-weighted undi-
rected graphs, SIAM J. Comput. 34, 6 (2005) 1398–1431. ⇒24

[66] S. Peyer, D. Rautenbach, J. Vygen, A generalization of Dijkstras shortest path
algorithm with applications to VLSI routing, J. Discrete Algorithms 7, 4 (2009)
377–390. ⇒16

[67] M. Randic, Chemical graph theory-facts and fiction, Ind. J. Chem. 42A (2003)
1207–1218. ⇒28

[68] R. Ravi, M. V. Marathe, C. Pandu Rangan, An optimal algorithm to solve the
all-pair shortest path problem on interval graphs, Networks 22, 1 (1992) 21–35.
⇒20

A survey of the APSP problem and its variants in graphs 39

[69] A. Saha, M. Pal, T. K. Pal, An optimal parallel algorithm for solving all-pairs
shortest paths problem on circular-arc graphs, J. Appl. Math. and Computing
17 1 (2005) 1–23. ⇒27

[70] J. P. Schmidt, All highest scoring paths in weighted grid graphs and their ap-
plication to finding all approximate repeats in strings, SIAM J. Comput. 27, 4
(1998) 972–992. ⇒16

[71] R. Seidel, On the all-pairs shortest path problem in unweighted undirected
graphs, J. Comput. Sys. Sci. 51, 3 (1995) 400–403. ⇒23, 24, 25

[72] T. Shinn, T. Takaoka, Combining all pairs shortest paths and all pairs bottleneck
paths problems, Lecture Notes in Computer Science 8392 (2014) 226–237. ⇒
23

[73] A. Shoshan, U. Zwick, All pairs shortest paths in undirected graphs with integer
weights, Proc. IEEE Sympos. on Found. of Comput. Sci. 40 (1999) 605–614. ⇒
23, 27

[74] C. Sommer, Approximate shortest path and distance queries in networks, PhD
thesis, The University of Tokyo, 2010. ⇒20

[75] R. Sridhar, D. Joshi, N. Chandrasekharan, Efficient algorithms for shortest dis-
tance queries on interval, directed path and circular arc graphs, Proc. Int’l. Conf.
on Comput. and Inf. 5 (1993) 31–35. ⇒20

[76] V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13, 4 (1969)
354–356. ⇒23

[77] T. Takaoka, A new upper bound on the complexity of the all pairs shortest path
problem, Inform. Process. Lett. 43, 4 (1992) 195–199. ⇒22

[78] T. Takaoka, A faster algorithm for the all-pairs shortest path problem and its
application, Proc. 10th Int. Conf. Comput. Comb., Lecture Notes in Computer
Science 3106 (2004) 278–289. ⇒22

[79] M. Tchuente, P. M. Yonta, J. Nlong II, Y. Denneulin, On the minimum average
distance spanning tree of the hypercube, Acta Appl. Math. 102, 2–3 (2008)
219–236. ⇒34

[80] M. Thorup, Undirected single-source shortest paths with positive integer weights
in linear time, J. ACM 46, 3 (1999) 362–394. ⇒24

[81] M. Thorup, Integer priority queues with decrease key in constant time and the
single source shortest paths problem, J. Comp. Sys. Sci. 69, 3 (2004) 330–353.
⇒24

[82] N. Trinajstic, Chemical Graph Theory , CRC Press, Boca raton, FL, 1992. ⇒28
[83] K. R. Udaya Kumar Reddy, Computing average distance on strongly chordal

graphs, National J. Tech. 8, 1 (2012) 26–35. ⇒31, 32
[84] V. Vassilevska Williams, Multiplying matrices faster than Coppersmith-

Winograd, Proc. 44th ACM Symposium on Theory of Computing (to appear,
2012). ⇒23

[85] K. V. Iyer, K. R. Udaya Kumar Reddy, Weiner index of binomial trees and
Fibonacci trees, Int. J. Math. Engg. with Comp. 1 (2010) 27–34. Also available
at http://arxiv.org/abs/0910.4432. ⇒31, 32

40 K.R. UK Reddy

[86] B. Y. Wu, G. Lancia, V. Bafna, K. M. Chao, R. Ravi, C. Y. Tang, A polynomial-
time approximation scheme for minimum routing cost spanning trees, SIAM J.
Comput. 29, 3 (2000) 761–778. ⇒33

[87] L. Xu, X. Guo, Catacondensed hexagonal systems with large Wiener numbers,
MATCH Commun. Math. Comput. Chem. 55, 1 (2006) 137–158. ⇒28

[88] S. J. Xu, R. Gysel, D. Gusfield, Minimum average distance clique trees, SIAM
J. Discrete Math. 29, 3 (2015) 1706–1734. ⇒28, 29

[89] B. Zmazek, J. Žerovnik, Computing the weighted Wiener and Szeged number on
weighted cactus graphs in linear time, Croat. Chem. Acta. 76, 2 (2003) 137–143.
⇒32

[90] U. Zwick, Exact and approximate distances in graphs: a survey, Proc. European
Symp. on Algorithms 9 (2001) 33–48. ⇒18, 27

[91] U. Zwick, All-pairs shortest paths using bridging sets and rectangular matrix
multiplication, J. ACM 49, 3 (2002) 289-317. ⇒22, 23, 25

[92] U. Zwick, A slightly improved sub-cubic algorithm for the all pairs shortest paths
problem with real edge lengths, Proc. Int. Sympos. Algorithms and Computation,
Lecture Notes in Computer Science 3341 (2004) 921–932. ⇒22

Received: February 13, 2016 • Revised: March 18, 2016

Acta Univ. Sapientiae, Informatica 8, 1 (2016) 41–62

DOI: 10.1515/ausi-2016-0003

Contralog: a Prolog conform

forward-chaining environment and its

application for dynamic programming and

natural language parsing

Imre KILIÁN
University of Dunaújváros
Dunaújváros, Hungary

email: kilian.imre@uniduna.hu

Abstract. The backward-chaining inference strategy of Prolog is ineffi-
cient for a number of problems. The article proposes Contralog: a Prolog-
conform, forward-chaining language and an inference engine that is imple-
mented as a preprocessor-compiler to Prolog. The target model is Prolog,
which ensures mutual switching from Contralog to Prolog and back. The
Contralog compiler is implemented using Prolog’s de facto standardized
macro expansion capability. The article goes into details regarding the
target model.

We introduce first a simple application example for Contralog. Then
the next section shows how a recursive definition of some problems is exe-
cuted by their Contralog definition automatically in a dynamic program-
ming way. Two examples, the well-known matrix chain multiplication
problem and the Warshall algorithm are shown here. After this, the in-
ferential target model of Prolog/Contralog programs is introduced, and
the possibility for implementing the ReALIS natural language parsing
technology is described relying heavily on Contralog’s forward chaining
inference engine. Finally the article also discusses some practical ques-
tions of Contralog program development.

Computing Classification System 1998: Computing methodologies–Logic programming

and answer set programming

Mathematics Subject Classification 2010: 68T27

Key words and phrases: logic programming, mechanical theorem proving, forward chain-

ing, dynamic programming, natural language parsing

41

42 Imre Kilián

1 Pro-Contra-Log: a two way street for inference

Robinson’s resolution principle proved to be strong enough to build a whole
language, and quite a programming school upon it. The backward chaining
resolution strategy, together with the left to right and top down rule firing
strategies have provided the Prolog language with well known, easily per-
ceivable operational semantics, which in addition, resemble the traditional
sequential languages, with the extra flavor of backtracking added [2] .
The other direction however, the forward chaining strategy has never opened

such a clear way to follow, though several attempts were made. Though their
motivations must have been quite different, spreadsheets, the event driven
working mechanism of modern graphical user interfaces, and some CASE tools
follow seemingly similar ways.
The most important reason for Prolog’s success, as a programming lan-

guage, could be that its resolution strategy is somehow an extension of the
old-fashioned and well-known procedure-call semantics. At the same time, as a
theorem prover, we consider it rather weak. Beside many factors, the deepest
reason of this might be, that its strategy to manage implications contradicts
common human sense. Instead of deducing new facts from existing facts in the
direct way, Prolog tries to prove certain facts by applying implications in the
inverse direction, i.e. from consequence to conditions.
On the other hand, similarly to the ”divide et impera” strategy of algorith-

mic thinking, Prolog’s strategy may also be inefficient. Proven facts are not
stored; therefore if a similar fact should be proved later, then the inferential
operations are performed again, sometimes causing thereby a significant loss
of performance.
Since Prolog, as a language appeared and has proven its strength to certain

problems, the need of integrating it with other programming languages and
other software tools, was always a burning issue. Similarily, the integration
with another logical programming language, i.e. with a language that imple-
ments another subset or another inference strategy for the same subset of logic,
remained only a theoretical possibility.
The present article proposes a programmer controlled tight integration of the

two approaches. Tight integration means that the two languages are syntacti-
cally conform, their target models are compatible, and their software packages
can be integrated with each other. The integration is called programmer con-
trolled, because by means of declarations and/or modularization the program-
mer is able and is supposed to influence and control the actual code generation
strategy for the different code segments.

Pro-Contra-Log 43

The programming languages in the present proposal are Prolog and its coun-
terpart: Contralog. They are syntactically compatible, and their declarative
semantics are the same. Their procedural semantics however, since they im-
plement different resolution strategies, are different, and they also implement
different non-logical controls. Since Contralog’s target model is Prolog, a trans-
lator program is implemented, which compiles Contralog modules to Prolog.
The connection between the two segments is implemented through exports
and imports, and it is triggered in a programmer defined way. The common
Prolog target model makes the transition between the two segments very easy,
and it also allows the easy use of Prolog built-in predicates from Contralog
clauses.
Contralog, as an extension of Prolog, maps Horn-clauses to a Prolog code

so, that an incremental compiler transforms Contralog rules to Prolog. The
resulting code thereby can be executed in a normal Prolog runtime environ-
ment. This also ensures that Contralog and Prolog codes can be mixed and
invoked from each other. This composite system is called Pro-Contra-Log, or
simply PC-Log.

2 The Contralog target model

In the Contralog runtime-model everything works in the inverse way than we
are familiar with:

• Inference starts not by goals, but by facts.

• If there is a rule with a condition matching the new fact, then the rest of
the condition literals are also checked. If we could already have proven
the conditions earlier, the rule is told to fire. In such case the conclusion-
fact is told to have been inferred.

• The term: recently proven conclusion means a new resolvent fact. This
is stored in the blackboard (in dynamic Prolog clauses), and we always
continue inferencing using this fact.

• Inference stops when goal statements are reached. These don’t have any
consequence side, thus inference operations need not be continued.

• Upon reaching a goal, or when by any reason, inference cannot be con-
tinued along the actual chain, the system backtracks and searches for an
earlier open alternative in the inference chain.

44 Imre Kilián

The Prolog-Contralog transition can be activated in the following ways:

• In the precondition side of Contralog rules, literal ”{}/1” results an
immediate call to a Prolog goal.

• Imports in Contralog are those facts which are taken from somewhere
else. Such facts start an inference chain, therefore Contralog imports are
mapped to Prolog exports of the corresponding firing rules.

• On the other hand, Contralog exports are mapped to firing predicates of
freshly deduced facts. Those predicates are either imported from another
Contralog module, thus they are defined there, or simply are imported
from another Prolog module of the runtime environment. Contralog ex-
ports become Prolog imports (even though Prolog standard does not
know this lingual construct).

The basic problem in forward chaining inference is that a rule might refer to
more than a single condition. In case when not all of them can be satisfied,
we must wait until the rest becomes true, and the rule can be fired only after-
wards. We are solving this by storing the inferred facts in dynamic predicates.
Furthermore, for each Contralog condition literal we construct a Prolog rule
that checks if the other preconditions are already satisfied.
Let us regard the following Contralog rule, as a simple example!

a:-b, c, d.

If b or c or d conditions have already been satisfied, then the resulting facts
are stored in the corresponding b/0, or c/0 or d/0 dynamic predicates. Besides
those, we map each precondition literal to a fire NAME and a test NAME Prolog
predicate.
The fire FACT Prolog calls test, whether the rest of conditions (each but

NAME) have already been inferred. If they have, the rule triggers the evalua-
tion of the consequence part.
The store FACT Prolog calls serve to store the recently inferred fact, and

finally they call the firing predicate. The actual implementation takes into
account the declarations for fact withdrawal, and performs the necessary ac-
tions. For predicates blocking the resolution chain, the call of firing the rule is
missing.

Pro-Contra-Log 45

In the case above, the following Prolog code is constructed:

fire_b:- assert(b), test_b.

fire_c:- assert(c), test_c.

fire_d:- assert(d), test_d.

test_b:- c, d, fire_a.

test_c:- b, d, fire_a.

test_d:- b, c, fire_a.

2.1 Backtracking

As it was already hinted, this target model uses backtracking strategy for
searching, like Prolog itself does. Upon entering a new Contralog fact, the
inference process produces newer and newer consequence facts. During this
process there are some choice-points. If the straight line of inference described
above cannot be followed further, we say, the evaluation has reached a dead
end. In case of a dead end, the inference engine looks back in the evalua-
tion stack, searches for the last open choice-point, takes the next alternative
solution, and continues the interpretation from this point.
The following cases may produce a choice-point:

• If a condition literal is referred to by more than a single Contralog rule,
then a Prolog definition is constructed consisting of the same number of
Prolog fire rules. Their ordering to follow is the textual ordering.

• If a condition literal is satisfied several times, we store the same number
of dynamic facts – provided they are not in the scope of the non logical
declarations described later.

Trying new open choice points is called backtracking. Finding dead-ends in
the inference chain may happen in several ways:

• If any condition does not hold in the given time. This may be either
the failure of a Contralog condition, or, using the {}/1 construct, any
immediate Prolog call.

• If, upon reaching a Contralog goal, we force the system to backtrack by
any Prolog means.

46 Imre Kilián

2.2 Facts and goals

Facts and goals play somewhat an opposite role in Contralog, than in Prolog.
Facts are basic information sources, which start the data driven resolution,
therefore they are compiled to goals.
fact. a Contralog fact.

:-fire fact. a Prolog goal.

Many Prolog systems do not handle the presence of several logical goals cor-
rectly, i.e. in case one of them fails, they do not call the next one. Because of
this the actual implementation constructs a single predicate (goal/0) that in-
vokes the firing predicate of each fact in the current module in an alternative se-
quence:

fact1. a Contralog fact1.

fact2. a Contralog fact2.

The example above generates the following predicate:

goal:-fire_fact1.

goal:-fire_fact2.

2.3 Interface elements

Similarly to the overall opposite nature of Contralog, interfaces in the compiled
Prolog code also play an opposite role. For the sake of explanation the interface
is predicate-based, and exports but also imports(!) are allowed.
A Contralog export means a consequence part of a clause, which is shared

with the outside world. Therefore the corresponding firing Prolog call must
be implemented outside of the module and is thus imported. For convenience
the generated predicate name is slightly different from the firing predicate.
Contralog imports mean some input of more basic data, which, seen from the
view of the target model, would be again considered to be calls from outside,
which transfer the information, and launch the corresponding forward chaining
inference process. This means, the corresponding fire auxiliary predicate is
implemented inside, and thus must be exported.

Pro-Contra-Log 47

2.4 Non-logical means to control inference

In order to control the overwhelming amount of consequence facts, the pure
logic language must be provided with means to control. Similarly to Prolog,
for the sake of practical programming, Contralog introduces some non-logical
means to influence the resolutional strategy. The language therefore imple-
ments certain declarational forms for this purpose.
In each target module a predicate (clean/0) is generated that cleans the

module-specific part of the blackboard (the dynamically generated facts) com-
pletely.
A predicate P is told to block the inference chain, if, whenever any successful

application of resolution steps yields a fact p, matching P, then the fact p does
not cause to search for matching conditions. That is, though its immediate
consequences are not evaluated, the new fact still remains available for further
resolution. In such a case the new fact is stored in the blackboard, but the
corresponding firing predicate is not invoked. Such an operation is performed
for predicates denoted by the :-lazy NAME/ARITY. declaration.
A predicate P is told to withdraw its earlier results, if, whenever any success-

ful application of resolution steps yields a fact p, matching P, then some, or
all of earlier resolved p1,...,pn facts, all matching P, are excluded from further
resolution. In Contralog the following withdrawal schemes are implemented.

• Full withdrawal. The predicate P withdraws all of its earlier results. The
behavior is similar to that of a normal global variable, that is upon infer-
ring certain facts, other facts with the same signature are deleted from
the blackboard. To reach such effect the declaration :-var NAME/ARITY

can be used.

• Key controlled withdrawal. Certain arguments of the predicate are told
keys. The predicate P withdraws only those earlier results, whose keys
are matching those of the recently inferred fact, p. (The behavior is
similar to that of a table in a relational database, where unique keys are
defined, i.e. elements with same keys are simply overwritten.) This can be
reached by the :-key(NAME(KEYVECTOR)) declaration, where NAME is
the name of the predicate, KEYVECTOR is a list of argument patterns.
Pattern ”+” in KEYVECTOR denotes that the argument belongs to a
(composite) key, pattern ”–” denotes the opposite.

48 Imre Kilián

3 Contralog programming examples

3.1 Pythagoras’ triads

Generating Pythagoras’ triads can be among the first examples of beginners’
Prolog courses. Let’s see, how it works with Contralog. Peano’s axiom is ex-
pressed by a predicate of two clauses, similarly to Prolog:

natural(1).

natural(X):- natural(X1), {X is X1+1}.

A Contralog recursion may also start an endless inference chain: stating
the first fact launches the rule application that launches it again and again.
This can be avoided by placing the recursive clause as the last among the
referring clauses. This means when natural/1 fires, each other firing procedure
attached to natural/1 is called before the rule above. Among these, those
procedures which generate Pythagoras’ triads are also fired. Firing natural/1

for its own recursive rule occurs only when the generated triads do not satisfy
Pythagoras’ condition, or, when upon finding a perfect triad, the user asks for
a new result, thus forcing the system to backtrack.
One feasible strategy to generate integer pairs of a quarter-plane is to visit

them in a diagonal way. For one diagonal, the sum of its x and y coordinates is
invariant. (For convenience we allow here the X=0 value too.) The Contralog
predicate, implementing this, is the following:

natural2(0,SUM,SUM):- natural(SUM).

natural2(X,Y,SUM):-

natural2(X1,Y1,SUM),

{X1<SUM, X is X1+1, Y is Y1-1, X<Y}.

Predicate natural/1 produces the invariant sum of both (X and Y) coor-
dinates. This, with X=0 value, also gives the first integer pair. The sum is
passed on through the third parameter of natural2/3. Given the actual pair,
the recursive second clause takes care to produce the next pair. Endless in-
ference is blocked by referring to natural2/3 in another predicate: it is also
a precondition in predicate natural3/4 that generates integer triads. On the
other hand the arithmetical tests in natural/2 ensure that numbers remain
not only in the given quarter-plane (X1<SUM), but also in an eighth-plane
(X<Y).
Visiting integer triads happens slightly differently. The last two (Y and

Z) coordinates are generated by natural2/3, but the first coordinate (X) is

Pro-Contra-Log 49

generated using the (0<X, X<Y) conditions, by a simple scanning of the (0;Y)
integer range. Conditions (X>0,Y>0,Z>0) allow to search only in an eighth
of the three-dimensional space, while (X<Y<Z) conditions part it to halves
twice further on. A 32-fold reduction of the total searching space is a significant
result in time, while we don’t lose any characteristic results.

natural3(X,Y,Z,SUMXZ):-

natural2(Y,Z,SUMXZ), {X is Y-1, X>0}.

natural3(X,Y,Z,SUMXZ):-

natural3(X1,Y,Z,SUMXZ), {X is X1-1, X>0}.

Once we can generate integer triads, checking for Pythagoras’ triads is an
easy job by the following clause:

pyth3(X,Y,Z):-

natural3(X,Y,Z,_),

{SUM2 is X*X+Y*Y, SUM2 is Z*Z}.

There are several possibilities to make this program run:

• The most suitable way to start the program is to call :-p3:goal., which
is an automatically generated procedure in module p3. But if we leave
the clause above in the present implicational form so, that no clause
refers to pyth3/3 in the condition side, then a reference is generated to
its firing predicate, which remains unsatisfied, thus we get an undefined
procedure Prolog error. If we declare :-export([pyth3/3])., then, in-
stead of a firing predicate, the Contralog translator generates a call to
the Contralog-exported predicate exp pyth3/3. For this we must pro-
vide a testing environment, a module to use our original module, and to
define the missing predicate somehow like the following:

exp_pyth3(X,Y,Z):-

write([X-Y-Z]), nl.

• If we call thereby a simple goal, then it will generate triads, but for the
first triad, matching Pythagoras’ condition, the inference will stop. The
generated results are displayed by the exp pyth3/3 predicate above. To
get subsequent results the system must be forced to backtrack by the
following way: :-p3:goal, fail., or simply by pressing ”;” in the SWI-
Prolog environment.

50 Imre Kilián

• If we declare :-lazy pyth/3., and we make the system backtrack, then
it will generate Pythagoras’ triads in and endless loop and it will collect
the results in dynamic predicate pyth3/3, until some system limit is
reached.

If we do all this, except the lazy declaration, then we get the first famil-
iar result, and if – in the SWI-Prolog environment – we force the system to
backtrack, than we may also get the rest of them.

?- p3:goal.

[3-4-5]

true ;

[6-8-10]

true ;

[5-12-13]

true ;

[9-12-15]

true

3.2 Dynamic programming: Optimization of matrix chain mul-

tiplication

Matrix chain multiplication is a typical example for dynamic programming
[1]. Matrix multiplication is an associative, but not commutative operation.
The actual parenthesization, however, influences the efficiency of the entire
operation considerably.
When trying to find the optimal parenthesization, the classical ”divide et

impera” approach leads to an exponential time complexity, while the data
driven dynamic solution remains polynomial. The reason of the combinatorial
explosion is that ”divide et impera” divides the problem two (or sometimes
more) parts, which are presumed to be independent from each other. That is,
a solution of one part cannot overlap with the solution of any other part. The
approach may work even so, but in such cases it forgets the corresponding
sub-results, and calculates them again and again multiple times. This causes
the loss of efficiency.
The dynamic solution uses a triangle-matrix to store the intermediate re-

sults. One element, m(i,j) stores the optimal number of scalar multiplications
necessary to compute the i to j (i<=j) subsection of the entire chain. For single
element subchains the following supposition holds obviously.
m(i, i) = 0

Pro-Contra-Log 51

For longer subchains (when j>i), the m(i, j) optimum value can be calcu-
lated by breaking the chain at index k (i<=k<=j), and reducing the problem
to the optimums of the left part (m(i,k)) and the right part (m(k+1,j)). Opti-
mizing means to find the k index when the derived sum is the cheapest. This
is described by the following equation:

m[i, j] = mini<=k<j(m[i, k] +m[k+ 1, j] + row(i) ∗ column(k) ∗ column(j))

Here rows and columns denote the horizontal and vertical size of the i-th
matrix in the chain. The algorithm uses another matrix c(i, j), to store the
index of optimal parenthesization in the i to j subchain. This is also called
cutting matrix.
If we try to program the recursive equation above by a recursive computer

program, then the solution will follow the ”divide et impera” principle. This is
also the case for Prolog predicates. We have already hinted that the Contralog
solution turns the original backward-chaining interpretation of Prolog to the
opposite: data items, as already proven facts, are stored in dynamic predicates,
and implications are interpreted in their natural way: from precondition to
conclusion. We expect Contralog to allow the programs to be as simple, as the
equation above, while it can also manage all the technical details of forward-
chaining and/or dynamic programming.
The m(i, j) and c(i, j) matrices are stored in a single Contralog predicate

matrix(I,J,M,C). Parameters I and J are matrix indices, while M and C are
the values of the optimum and cutting matrices.
At the start of the algorithm, the m(i, i) = 0 initializations are performed

by the following Contralog code.

size(6).

matrix(SIZE,SIZE,0,0):-

size(SIZ), {SIZE is SIZ-1}.

matrix(I,I,X,C):-

matrix(I0,I0,X,C), {I is I0-1, I>=0}.

The role of asserting the fact size(6) is to launch an inference burst out.
This, in the first step asserts only the matrix(0,0,0,0) fact, but in the follow-
ing steps all consecutive m(i, i) values are generated in a cycle. Filling up the
lowest and simplest layer (the m(i, i) = 0 values) itself is enough to start infer-
ence yielding the optimum for more complicated cases (longer matrix chains).

52 Imre Kilián

This is done by help of the following Contralog clause.

matrix(I,J,X,J1):-

matrix(I,J1,Y,_), matrix(I1,J,Z,_),

{I1 =:= J1+1, mxyz(I,I1,J,MULT),

X is Y+Z+MULT,

(matrix(I,J,X0,_)->X<X0;

true)}.

The curly bracketed part of the clause is a direct Prolog call. We use this to
perform simple arithmetic operations. The Prolog call mxyz(I,K,J,M) cal-
culates the number of scalar multiplications necessary to multiply the re-
sult of the optimized (i,k) and (k+1,c) matrix subchain products so, that
M = row(i) ∗ column(k) ∗ column(j) holds.
The predicate says: if there are two consecutive subchains, then a scalar

multiplication number can be calculated for their concatenated chain. Then,
according to the principle of gradual approximation, if we have found a value
for the concatenated chain that is cheaper than we stored until now, then the
more expensive value is replaced by the cheaper one.
The replacement of old optimum value with the new, cheaper one is solved

by Contralog’s :-key(matrix(+,+,-,-)). declaration. This declares the first
two parameters (matrix indices) as keys, i.e. for a given (i,j) index pair only a
single clause is allowed. The actual retracting of the old clause and asserting
of the new one is done by the generated Prolog code in the background.
The Contralog program can be started by calling :-goal. The program will

fail, which means there is no goal in the program, and there is no other, untried
way for inference either. The result is the generated content of the matrix/4

predicate. To display this, we must implement a simple cyclic procedure. Tak-
ing the example in [1], we get the following result. The first triangle is that of
optimums, the latter is the cutting matrix. For a (30x35, 35x15, 15x5, 5x10,
10x20, 20x25) matrix chain, the total number of necessary multiplications can
be read in the top-leftmost corner.

[15125,10500,5375,3500,5000,0]

[11875,7125,2500,1000,0]

[9375,4375,750,0]

[7875,2625,0]

[15750,0]

[0]

[2,2,2,4,4,0]

Pro-Contra-Log 53

[2,2,2,3,0]

[2,2,2,0]

[0,1,0]

[0,0]

[0]

When examining the actual order of matrix/4 facts, we can observe another
interesting feature of Contralog. Namely: the inference is eager, or depth-
first, like Prolog itself. An implication fires immediately as soon as the last
precondition item has arrived. Contralog implements therefore a bottom-up
(data-driven) and depth-first strategy for discovering the resolution graph of
the problem. In our case this means that the lowest layer (m(i, i) elements)
could not have been generated yet, when the first inference steps are already
done. This is because the first rule application to calculate the optimum for
a chain of two matrices, (the 3-rd matrix/4 clause) is performed as soon as
the first two consecutive matrix-subchains (m(5, 5) and m(4, 4)) are already
generated.

3.3 Dynamic programming: Floyd-Warshall algorithm

Similarly to matrix chain multiplication, the problem of shortest paths in
weighted graphs can also be solved quicker by dynamic programming approach
than by recoursive programming. According to this principle we first give the
recoursive definition of the problem, and then we create the sequential program
to deliver partial results in a bottom-up manner. In the following example we
shall show that if we transcribe the recoursive definition to Horn-clauses – or
to Contralog, then Contralog’s execution mechanism automatically generates
the results of dynamic programming.
In the recoursive definition of the problem dk

ij denotes the shortest path
between vertices i-j so, that intermediate vertices can be chosen only from
the first k vertices of the graph (the actual ordering of vertices is irrelevant).
The trivial alternative of the recoursion is case k = 0, when no intermediate
vertices may be used. In such a case the shortest path is equivalent to the
corresponding i-j item of the graph’s weight matrix. Otherwise the shortest
path using at longest the first k vertices, is equal to the shortest path using
k-1 vertices, or it contains vertex k.
d0
ij = wij

dk
ij = min(dk−1

ij , dk−1
ik + dk−1

kj)

54 Imre Kilián

The Horn-clause (Contralog) transcription of the definition above is the
following:

wm(0,I,J,W,SIZE):- w(LL),

{length(LL,SIZE),between(1,SIZE,I),

nth1(I,LL,L), between(1,SIZE,J),

nth1(J,L,W)}.

wm(K,I,J,W,S):- wm(K1,I,J,K1IJ,S),

wm(K1,I,K,K1IK,S),wm(K1,K,J,K1KJ,S),

{K is K1+1, K1=<S},

{W is min(K1IJ, K1IK+K1KJ)}.

Parameters K,I and J in definition wm/5 are obvious. Here, W means the
functions value dk

ij, while SIZE is the size of the graph (the number of its
vertices). This parameter is passed along in order not be calculated it again
and again at each step. Definition wm/5 is the three dimensional matrix itself
that consists of dynamic facts. Instead of a sequential cycle, the Contralog
execution it is built up by the forward chaining inference mechanism.
The clue of the algorithm lies in the second statement. The three wm/5

conditions refer to the three dk
ij values in the arguments of min function.

Subsequent Prolog calls are calculating the index-relations, they stop the cycle
or perform the actual calculation of minimal value.
The Contralog program, introduced above, implements the evaluation strat-

egy of dynamic programming perfectly with one difference. Namely: partial
results are not produced layer-by-layer, not in a breadth-first, but rather in a
depth-first way.
Definition wm/1 contains the weight matrix in a single fact. The first state-

ment of three wm/5 produces the first element of the 0-th layer first, and upon
backtracking it produces also the rest. After the production of each element
the second statement of three wm/5 also starts, and if there are elements in the
previous layer for which the preconditions are met, then it also produces an
element from the next layer. This may also produce an element of the second
next layer and so on
Depth-first execution means, that one corner of wm/5, the three dimensional

matrix is built up as high is possible, and only in case of no further steps, we
backtrack and try to build the lower layers forward. But any element is inserted
in a lower layer, building up the higher layers is immediately tried.

Pro-Contra-Log 55

4 Applying Contralog for ReALIS natural language

parsing

The basic principles of ReALIS (Reciprocal And Lifelong Interpretation Sys-
tem) research project, targeting natural language processing techniques, is
described in many conference articles, and even in a book [6, 4]. From the
aspect of a Contralog natural language parser, its most important principles
are the following:

• Total lexicality : each kind of lingual information is stored in the lexi-
con (in the vocabulary) [5]. Lexical items basically follow the feature
structured method, whereas each item may demand certain other lin-
gual context, and it also may offer certain services. Parsing, according
to this approach, means the exact discovering and unveiling the offer-
demand relationship. This also means: there is no special repository for
lingual rules; lexical items describe all relevant information to perform
parsing and/or generating natural language texts.

• Modal logical framework : interpreters are modelled in the world, and
worlds are modelled in the brain of interpreters. The world-model in
the background is a hierarchical structure of world-contexts. The root-
world corresponds to the objective, outside world, that contains objects,
and also contains subjects, i.e. agents, being able to interpret sentences
and to store their own world-model. The content of interpreters internal
world-model may also contradict the root world model. On the other
hand interpreters store an own internal world structure – different modal
contexts are stored in a different worldlets (for seen, heard, read, believed
information, etc.) The internal world model of interpreters is empty when
born, and the content of their world model gradually increases during
their life – not necessary monotonically, certain information pieces may
also be mistaken, and can later be corrected or even erased.

• Discourse representation theory, integrated in the interpreter’s world
model. Parsing is not restricted to a single sentence, but is extended to
all the sentences of a discourse (several sentences in the same thematic
or situational context). These sentences are usually also in a certain re-
lationship with each other (e.g. antecedent, consequent, argument, etc.).
These are called rhetoric relations. In addition to simply taking over
similar structures of earlier discourse-representation schools [7], we im-
prove them slightly. First, they are not necessarily independent, so we

56 Imre Kilián

are using a minimal/canonical set of rhetoric relations. Second they are
not necessarily objective hence they are not stored in the objective root
world, but in the interpreter’s subjective world model.

According to ReALIS, instead of calculating a parse tree, the primary goal
of parsing is to produce the following four mathematical relations:

• α: the entity anchoring relation is an equivalence relation that connects
equivalent entities in a discourse.

• κ: the cursor cluster that describes global contextual information (Here,
Now, Ego, There, Then, You, etc.). Some of its elements (place, time,
influence) act as cursors; i.e. in a real discourse they are automatically
advanced sentence by sentence.

• λ: the level relation that relates rhetorical contexts and/or modal logic
relationships [7]. The level structure shows a self-embedding nature, and
it also specifies the availability scope of discourse object references.

• σ: the eventuality relation, that maps lexical items to logical expression
fragments, and finally maps sentences and/or larger textual units to
complete logical expressions.

Total lexicality means that beyond mere textual elements (words and/or mor-
phemes), lexical items also contain their eventuality function (a logical ex-
pression), instructions for entity anchoring, and the rhetorical and/or modal
anchoring instructions. Furthermore a very important piece of a lexical item
is its offer-demand relationship. This is used to describe morphological and/or
syntactical bindings, along with the strength and the direction of the bind-
ings. According to these principles, parsing is nothing more than a sort of
domino-game; each syntactical element has certain offers, and may demand
certain other elements in the neighborhood. The calculation of the relations
mentioned above is done by the underlying unification-based means of finding
matching demands and offers.
The mentioned parsing strategy of ReALIS is suitable for any languages,

but in practice we recommend it especially for languages, like Hungarian, with
variable or free word order. The application of traditional parsing methods for
free word order languages produce inefficient results because of the frequent
need of backtracking.

Pro-Contra-Log 57

4.1 Prolog target models

The most obvious and usual target model for designing Prolog programs is
the relational target model. According to this, the program calculates the
<input,output> relation, which, if we program carefully, enables calculating
the relationship in both directions. That is, for a parsing project, the same
program can calculate the parse tree for a sentence, and may also calculate
the sentence for a given parse tree at the same time.
Relational target model, on the other hand, performs a depth-first search

on the resolution graph that depicts the inference process. The efficiency of
backtracking programs can be strongly reduced by the frequency and the depth
of backtracking, and we guess, natural language parsing may well involve deep
and frequent backtracking.
Instead of the relational target model we propose the inferentional target

model for natural language parsing. Instead of the <input,output> relation,
the inferentional model tries to calculate the input→ output implication. That
is, the program must be reformulated so that it can prove that output data in
some sense is the logical consequence of input data.
Both for relational and inferentional target models a key expression is non-

determinism. That means: Prolog programs in general may deliver more than
a single equivalent result. The set of results are propagating further on, while
other constraints in the calling programs may filter out certain non-applicable
results, and in a fortunate situation the end-result is already definite.
Prolog programs, in general, implement a deductive inference model. De-

ductive inference means that, for a given set of basic facts, the set of logical
consequences is calculated. From this point of view the direction of inference
(forward or backward chaining) is completely irrelevant.
The other strategy is called abductive inference model. For abductive infer-

ence we are aware of the consequences and the basic rules for inference, and
we are searching for the possible facts, based on which the consequences can
be inferred.
Though Prolog programs are basically implementing deduction, with a very

easy extension we can also apply them for abduction. In case of abduction
usually not the entire set, but only a subset of possible facts is unknown. To
implement abduction in Prolog, instead of programming fixed set of facts, an
implementation of backtrackable assert operation is to be programmed, that
asserts each possible value for a given fact in a backtrackable way, and at last it
retracts the fact completely. This, for the first run asserts certain facts. These
may be deleted (and/or reasserted with other values) upon backtracking. The

58 Imre Kilián

simplest implementation of backtrackable asserts is the following:

assertb(FACT):-

(assert(FACT);

retract(FACT), fail).

Speaking about inference, its strategy can be crucial. We have already men-
tioned: in a number of cases Prolog’s backward-chaining is not efficient enough.
In case of forward-chaining, inference rule application burst-outs (inference
chains) are started in a data-driven way, upon the arrival of certain facts.
They may however arrive at any time, in an asynchronous way; delayed or
even in a changed order. One inference step is performed when each precondi-
tion holds, and the corresponding facts are accessible. Although it is possible
to prune the branches of the inference tree, consequences are produced in their
entire richness, but if any of them matches any goal, then the program stops.
One obvious advantage of forward chaining is that already proven facts are

stored in the blackboard, and they may be referred later on, for any times.

4.2 Inferential target model for parsing

If we apply the inferential target model to lingual parsing, the input sentence
must be stored in a series of facts. Program clauses can be derived from the
offer-demand relation of lexical elements, and certain general goals are the
constructs to stop (or to start?) the inference.
As a drawback, the model cannot be used for generating text.
When performing ReALIS parsing, it is practical to define the following cuts

(layers) over the entire inference graph.

1. The layer of morphological analysis. The character stream on the input
channel is packed to words by the lexical parser. The stream of words
is parsed by a morphological parser. Although ReALIS also has a solu-
tion for morphology [5], for convenience we propose to use a commercial
solution. The result of morphological parsing is a Contralog sequence of
facts. To focus on syntactical parsing, in the following example we omit
to deal with the problem of morphological analysis. Let’s see the facts
resulting from the following Hungarian sentence: ”Petra vágyik arra a
magas német úszóbajnokra” (”Petra desires-3SG that the tall German

Pro-Contra-Log 59

swimming champion-SUB”) [6].

word(petra,1,1,noun(’Petra’,proper,nom,sing-3)).

word(petra,1,2,verb(’vágy’,[],decl, pres, sing-3)).

word(petra,1,3,noun(’az’,pro(point),sub,sing-3)).

word(petra,1,4,art(def,cons)).

word(petra,1,5,adj(’magas’)).

word(petra,1,6,adj(’német’)).

word(petra,1,7,adj(’úszó’)).

word(petra,1,7,noun(’bajnok’,common,sub,sing-3)).

The arguments of the facts above are the following: 1. a discourse iden-
tifier 2. sentence index in the discourse 3. word index in the sentence 4.
a Prolog structure describing the result of morphological analysis.

2. The layer of grammatical dependency relations. We are calculating the
regent-argument (bidirectional) and adjunct-argument- (one directional)
relations. The example below shows the regent-argument description of
verb ”vágyik” (desires). Hungarian verb ”vágyik” demands a nomina-
tive argument (the subject), and a sublative argument (the object). The
strength of the former binding is -7, of the latter is +7. The former an-
notation (-7) means, the subject may appear well before the verb in a
loose distance. The other means the opposite: the object may appear af-
ter the verb, and arbitrary other words may appear between them. Both
arguments should form a generalized quantifier determinant structure
(proper noun, determinate article, adjective, etc.).

regArg2(ID,S,XV,verb(’vágy’,[],MODE,VTIME,AGR),

XS,noun(SUBJ,SKIND,nom,AGR),-7,

XO,noun(OBJ,OKIND,sub,OAGR),7):-

verb(ID,S,XV,’vgy’,[],MODE,VTIME,AGR),

gqdet(ID,S,XS,SUBJ,SKIND,nom,AGR),order(XV,XS,-7,nei),

gqdet(ID,S,XO,OBJ,OKIND,sub,OAGR),order(XV,XO,7,nei).

3. The layer of eventuality relations. In this layer the logical form of regent-
adjunct structures is built up in a way, that their arguments logical form
is supposed to be built up before. In the example below the predicate
regArg2 builds up the grammatical structure (the regent-argument re-
lation), while sigma3 prepares the overall logical expression as a result.

60 Imre Kilián

(=../2 is a technical Prolog call that transforms time referent structure
to grammatical time notation.)

sigma3(ID,S,XV,TIME,SUB,OB,CLAUSE):-

regArg2(ID,S,XV,verb(’vágy’,[],MODE,VTIME,_AGR),

XS,SUBJ,_PRS,XO,OBJ,_PRO),

TIME =.. [VTIME,_],

sigma3(ID,S,XS,TIME,SUB,CLAUSE,

(desire(TIME,SUB,OB):-CONS)),

sigma3(ID,S,XO,TIME,OB,CONS).

As the logical form of the sentence above, we may get the following
clause. (The double implication can be transformed easily into a con-
junction on the precondition side)

CLAUSE=((desire(pres(T),SUB,OB) :- swim(T, OB),german(T, OB),

tall(T, OB),champion(T, OB)) :- name(T,SUB,’Petra’))

4. The layer of rhetorical and modal relations. In this layer, rhetorical and
modal logical relations are built up as described by the λ function. Al-
though there have been theoretical investigations completed [8], up to
the writing of the article we don’t have any concrete results to demon-
strate this.

5 Program development with Contralog

Contralog is available as a preprocessor for SWI-Prolog [9] that works on
the basis of its macro extension mechanism (term expansion/2) . This is
unfortunately only de facto standard, therefore the seamless operation with
other Prolog dialects is not guaranteed.
When developing Contralog programs, the Prolog module, defining the above

mentioned macro expansion predicate, must be consulted first. (clog.pl). It
is not enough only to load clog.pl in the application module, because in
the time of reading the first (module head) declaration of the module, the
Contralog pretranslator must already be active. The module declaration itself
is handled otherwise by Prolog, even its export list is understood as Prolog
exports.
To declare Contralog export, :- export(EXPLIST). declaration should be

used.

Pro-Contra-Log 61

In general, Contralog program clauses are to be placed in a Prolog program.
To switch between normal Prolog clauses, and preprocessed Contralog clauses,
the following two new directives can be used.
:- contra. that starts the processing of Contralog code

:- pro. that switches back to normal Prolog

Beside the Contralog to Prolog translator, at the moment there is no other
development tool available. It is a bit clumsy, for example, to debug Contralog
programs. Since there is no debugger, debugging is possible only by help of
the Prolog debugger, and it may work only for those, who are familiar with
the target model.

6 Summary and future work

We have defined Contralog, which is a Prolog-conform language, but instead
of backward chaining, it uses forward-chaining inference. The language itself
is built-up on the same syntax: Horn clauses, only its declaration forms are
different from those in Prolog.
For this end we have developed a Prolog target model to perform forward

chaining inference. This enables to translate Contralog clauses directly to Pro-
log, and execute them by the Prolog software environment.
The Contralog to Prolog translator has been implemented by using Prolog’s

macro extension mechanism. This approach, and the Prolog target model it-
self enables various possibilities to integrate forward and backward chaining
inference in a programmer-controlled way.
To demonstrate these, the article introduces several examples: after the

simplest examples two dynamic programming problem and ReALIS natural
language parsing mechanism is described.
Future work may include extended Contralog program development possi-

bilities and tools.
The natural language parsing mechanism has been tested only for a handful

of sentences by translating the lingual information to Prolog (Contralog) man-
ually. Any future work must aim to collect lingual information, the mechanical
translation of these to the Contralog target model, and the development of the
overall ReALIS parsing environment.

62 Imre Kilián

Acknowledgements

The author is grateful for the Hungarian Research Fund TÁMOP 4.2.2.C-
11/1/KONV-2012-0005 (Well-being in the informational society) for the sup-
port of his research activities regarding natural language technologies, and also
for the Hungarian Research Fund TÁMOP 4.2.2.D. to cover the Mathinfo2015
conference participation expenses. Special thanks to colleagues: Gábor Alberti
and Márton Károly for their kind remarks and contribution.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms
(3rd edition), The MIT Press, 2009. ⇒50, 52

[2] W. F. Clockshin, C. S. Mellish, Programming in Prolog, Springer Verlag Berlin,
Heiderlberg, New York, 1994. ⇒42

[3] G. Alberti, ReALIS: Interpretators in the world, worlds in the interpretator
(in Hungarian: ReALIS. Interpretálók a világban, világok az interpretálóban).
Akadémiai Kiadó, Budapest, 2011. ⇒55, 59

[4] G. Alberti, ReALIS. An interpretation system which is reciprocal and lifelong.
Akadémiai Kiadó, Budapest, 2011. ⇒55

[5] G. Alberti, K. Balogh, J. Kleiber, A. Viszket, Total lexicalism and GASGram-
mars: A direct way to semantics Proc. CICLing2003, NLCS 2588, pp. 37–48, (ed
Gelbukh, A.) Springer Verlag, Berlin 2003. ⇒55, 58

[6] G. Alberti, I. Kilián, Bipolar influence-chain families instead of lists of argu-
ment frames – the sigma function of ReALIS (In Hungarian: Vonzatkeretlisták
helyett polaritásos hatáslánccsaládok) Proc. MSzNyVII. Hungarian Conference
of Computer Linguistics, pp. 113–126, (ed: A. Tanács, V. Vincze) VII. Magyar
Számı́tógépes Nyelvészeti Konferencia, MSzNy pp. 113-126, SzTE Informatikai
Tanszékcsoport, Szeged. 2010. ⇒55, 59

[7] H. Kamp, J. van Genabith, U. Reyle, Discourse representation theory. Handbook
of Philosophical Logic, Vol. 15., 125394. Springer Verlag, Berlin, 2011. ⇒55, 56

[8] M. Károly, Interpretation and modality - towards the implementation of Re-
ALIS’ λ-function. (In Hungarian: Interpretáció és modalitás avagy a ReALIS
λ-fūggvényének implementációja felé.) (ed. V. Vincze, A. Tanács) VIII. Ma-
gyar Számı́tógépes Nyelvészeti Konferencia, MSzNy 284–296. SzTE Informatikai
Tanszékcsoport, Szeged. 2011. ⇒60

[9] J. Wielemaker: An overview of the SWI-Prolog programming environment, Proc.
13-th International Workshop on Logic Programming Environments, ed: F. Mes-
nard, A. Serebenik, Katholieke Universiteit Leuven, Belgium, 2003. 1–16 pp. ⇒

60

Received: February 9, 2016 • Revised: April 16, 2016

Acta Univ. Sapientiae, Informatica 8, 1 (2016) 63–81

DOI: 10.1515/ausi-2016-0004

Edge coloring of graphs, uses, limitation,

complexity

Sándor SZABÓ
University of Pécs

Institute of Mathematics and
Informatics, Ifjúság u. 6
7624 Pécs, HUNGARY

email: sszabo7@hotmail.com

Bogdán ZAVÁLNIJ
University of Pécs

Institute of Mathematics and
Informatics, Ifjúság u. 6
7624 Pécs, HUNGARY

email: bogdan@ttk.pte.hu

Abstract. The known fact that coloring of the nodes of a graph improves
the performance of practical clique search algorithm is the main motiva-
tion of this paper. We will describe a number of ways in which an edge
coloring scheme proposed in [8] can be used in clique search. The edge
coloring provides an upper bound for the clique number. This estimate
has a limitation. It will be shown that the gap between the clique number
and the upper bound can be arbitrarily large. Finally, it will be shown
that to determine the optimal number of colors in an edge coloring is
NP-hard.

1 Introduction

Let G = (V, E) be a graph. Here V is the set of nodes of the graph G and E

is the set of edges of the graph. In this paper we will be dealing exclusively
with finite graph, that is, it will be assumed that the sets V and E are finite.
We further narrow the class of graphs we consider throughout this paper by

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C15

Key words and phrases: clique, maximum clique, maximal clique, clique search algo-

rithms, vertex coloring, edge coloring.

63

64 S. Szabó, B. Zaválnij

excluding the graphs that have either loops or double edges. In other words
we will be working with finite simple graph.
Let k be a fixed positive integer. A subgraph ∆ of G is called a k-clique

in G if each two distinct nodes of ∆ are adjacent in G and ∆ has k nodes.
The number of edges in ∆ is equal to k(k − 1)/2. We refer to k as the size
of the clique ∆. Sometimes we call ∆ a clique of size k instead of a k-clique.
A k-clique ∆ in G is called a maximal clique if ∆ is not a subgraph of any
(k + 1)-clique in G. A k-clique ∆ in G is called a maximum clique if G does
not contain any (k + 1)-clique. A graph may have several maximum cliques.
All maximum cliques in G have a well defined common size. This well defined
number is referred as the clique number of G, and it is denoted by ω(G).
The expression “clique search problem” refers to a number of problems

related to finding cliques in a given graph. One may look for maximal cliques
or maximum cliques. One might be interested in listing all maximal cliques
or listing all maximum cliques. We maybe content with locating only one
maximum clique. Or we maybe satisfied with just learning the clique size of
G without exhibiting any maximum clique. We describe some relevant clique
search problems more formally.

Problem 1 Given a finite simple graph G and given a positive integer k.
Decide if G contains a k-clique.

Problem 1 is a decision problem and it is well-known that it belongs to the
NP-complete complexity class. (See [7].)

Problem 2 Given a finite simple graph G and a positive integer k. List all
k-cliques in G.

Problem 2 is not a decision problem. It is clear that Problem 2 cannot be
computationally less demanding than Problem 1.
Determining the clique number ω(G) of G is not a decision problem either.

It is an optimization problem. But again it must be clear that finding ω(G)

is computationally at least as challenging as Problem 1.
Clique search problems have many practical applications and there is a

considerable amount of research devoted to them. For details see for example
[1], [3], [4], [5]. Many practical clique search algorithms utilize the coloring the
nodes of a graph. We color the nodes of a given finite simple graph G with k

colors satisfying the following conditions.

(1) Each node receives exactly one of the colors.

Edge coloring of graphs 65

(2) Adjacent nodes never receive the same color.

This is the most commonly encountered coloring of the nodes of a graph. It is
referred as a legal or a well or a proper coloring of the nodes of G. In connection
with each finite simple graph G there is a number of colors k such that the
nodes of G have a legal coloring with k colors and the nodes of G do not have
any legal coloring with k − 1 colors. This well defined number k is called the
chromatic number of G and it is denoted by χ(G). Coloring of graphs is a vast
subject on its own. In this paper we take a rather narrow view of coloring.
We are interested in coloring only from one reason. Coloring provides upper
estimates for ω(G). Namely, ω(G) ≤ χ(G).
One can devise further coloring schemes to get new upper bounds for ω(G).

For example we may color the edges of a graph G with k colors in the following
way.

(1) Each edge receives exactly one color.

(2) If x, y, z are distinct nodes of a 3-clique in G, then the edges {x, y}, {y, z},
{x, z} must receive three distinct colors.

(3) If x, y, u, v are distinct nodes of a 4-clique in G, then the edges {x, y},
{x, u}, {x, v}, {y, u}, {y, v}, {u, v} must receive six distinct colors.

We call this type of coloring of the edges of G a legal or well or proper edge
coloring.
For a given finite simple graph G there is a number of colors k such that

the edges of G has a legal coloring with k colors and the edges of G does not
admit any legal coloring using k− 1 colors. This minimum number of colors is
called the edge chromatic number of G and it is denoted by χ(e)(G).
The reader can observe that the inequality

ω(G) (ω(G) − 1) /2 ≤ χ(e)(G)

must hold. So coloring the edges of a graph G can be used to establish an
upper bound for ω(G).
The edge coloring scheme described here was proposed in [8]. It was men-

tioned that a large scale numerical experiment indicates that typically edge
coloring provides better bounds for the clique number than the node coloring.
On the hand the edge coloring is computationally more expensive than the
node coloring. In Tables 1, 2, and 3 we presented some of the numerical re-
sults. These results were not reported earlier. The graphs we used are related

66 S. Szabó, B. Zaválnij

to the construction of certain codes. The captions of the tables simply refer to
the related codes.
In the tables the columns labeled by |V | and |E| contain the numbers of the

nodes and the edges of the graphs, respectively. Using the simplest sequential
node and edge coloring procedures give the number of colors listed in the
columns labeled by the words “node” and “edge”, respectively. Finally, the
column labeled by the word “estimate” lists the upper estimate of the clique
size computed from the number of colors of the edges.
Let G = (V, E) be a finite simple graph. Using G we construct a new auxiliary

graph Γ = (W,F). We set W = E and the distinct edges {u, v}, {x, y} of G will
be adjacent nodes of the graph Γ if each of the unordered pairs

{u, x}, {u, y}, {v, x}, {v, y}

is an edge of the graph G. The reader can verify that a legal coloring of the
nodes of the auxiliary graph Γ corresponds to a legal coloring of the edges of
the original graph G. We may refer to Γ as the derived graph of G.

2 Applications of edge coloring

In this section we discuss the relevance of edge coloring to clique search algo-
rithms.
The edge coloring can be used as a preconditioning technique.
Suppose that the edge coloring of the graph G = (V, E) is given by the

function f : E → {1, . . . , t}. Here f({x, y}) = c means that the edge {x, y}

receives color c. The function f can be stored conveniently as a matrix M.
The typical entry m(x, y) of M is defined by

m(x, y) =

{
f({x, y}), if {x, y} ∈ E,

0, if {x, y} /∈ E.

The number of the colors used for coloring the neighbors of the node x is equal
to the number of the distinct colors appearing in row x of the matrix M. We
may call this number the color degree of the node x in the graph G.
If x is a node of a k-clique ∆ in G, then the color degree of the node x must

be at least k−1. Therefore, if the color degree of the node x is less than k−1,
then node x can be deleted from the graph G without loosing the clique ∆. In
other words, when we are looking for a k-clique in the graph G we can delete
safely each node whose color degree is less than or equal to k− 2.

Edge coloring of graphs 67

There is further way to exploit the edge coloring for preconditioning. The
greedy sequential coloring of the edges of the given graph G as a side result
provides us with the adjacency matrix or the linked lists representation of the
derived graph Γ of G. An inspection can help to delete nodes or edges of Γ .
The edge coloring can be used as a pruning rule. One simply can add an

edge colored graph to the Carraghan-Pardalos [2] clique search algorithm.
The Carraghan-Pardalos algorithm at a particular stage of its execution

maintains two sets of nodes. The first one is the set of nodes U which consists
of the nodes of an r-clique ∆. The second one is the set of nodes L which
contains the nodes of G that have a chance to extend the clique ∆. We restrict
the graph G to the set L. Let H be the graph spanned by the set L in G. The
edges of H are colored as H inherits a coloring from G.
One can count the number of the distinct colors appearing as edge colors

in H. Let this number be s. Using s one can estimate the clique size of H.
Namely, if ω(H) = t, then t(t − 1)/2 ≤ s must hold. This means that t ≤
(

1+
√
1+ 8s

)

/2 must hold.
Suppose we are looking for a k-clique in the given graph G. It is clear that if

ω(∆)+ω(H) ≤ k− 1, then choosing nodes from the set L the clique ∆ cannot
be extended to a k-clique. Thus, if

r+
(

1+
√
1+ 8s

)

/2 ≤ k− 1,

then at this node of the search tree one can terminate the search. In other words
at this node we can prune the search tree. One can record the edge coloring
of G using the matrix M described earlier. One can easily store two different
edge colorings of G in the matrix M. Using two edge colorings enhances the
efficiency of the pruning.
When the largest color class is very large compared with the others, then

the edge coloring offers a new opportunity to estimate the clique size.
Let ∆ be a maximum clique in the given graph G. Suppose that the color

classes of the edges in G are C1, . . . , Ck and |C1| ≥ · · · ≥ |Ck| holds. If we
delete the edges appearing in C1, then we get a new graph G′ from G. If ∆
does not contain any edge from C1, then ∆ is a maximum clique in G′ too.
In this case ω(G) = ω(G′). If ∆ does contain an edge from C1, then it may
happen that ω(G) = ω(G′) + 1. In either case ω(G) ≤ ω(G′) + 1. Since G′

has fewer edges than G computing or estimating ω(G′) can be simpler than
computing or estimating ω(G). In this way we may collect some information
about the clique size of G.
The edge coloring can be used as a branching rule to devise a parallel clique

search algorithm.

68 S. Szabó, B. Zaválnij

Let us assume that we are interested in deciding if the given graphG contains
a k-clique. Here k is a given positive integer. Suppose that the edges of G are
legally colored with t colors. Let C1, . . . , Ct be the colors classes of the edges
such that |C1| ≥ · · · ≥ |Ct|. The edges of k-clique ∆ in G can be colored with
r = (k(k− 1)) /2 colors and cannot be colored with fewer colors. If t < r, then
clearly G cannot contain any k-clique. For the remaining part of the argument
we assume that t ≥ r. Let

e1 = {x1, y1}, . . . , es = {xs, ys} (1)

be all the edges in the color classes Cr, . . . , Ct. Let Gi be the subgraph of G
spanned by the set of nodes N(xi) ∩ N(yi) in G for each i, 1 ≤ i ≤ s. Here
N(x) denotes the set of neighbors of the node x in the graph G. If Gi contains
a (k− 2)-clique for some i, 1 ≤ i ≤ s, then G contains a k-clique. In this case
our problem is solved.
For the remaining part we may assume that Gi does not contain any k-

clique for each i, 1 ≤ i ≤ s. It means that we can delete the edge ei = {xi, yi}

form G without removing any k-clique from G. (When we delete the edge ei
we do not delete any of the nodes xi and yi.) Deleting the edges (1) from G

we end up with a graph G′ whose edges are legally colored with r − 1 colors.
Consequently, this graph G′ cannot contain any k-clique.
The summary of our consideration is that locating a k-clique in G can be

reduced to locating a (k − 2)-clique in the graphs G1, . . . , Gs. We replaced
the original clique search problem by a large number of smaller clique search
instances. These smaller problems can be attacked independently of each other
and we can solve them using a number of processors simultaneously. In this
sense the edge coloring can form the base of a parallel clique search algorithm.
When the number of the nodes is overly large, then we can divide the set of

nodes of the graph into two disjoint sets. The clique sizes of the smaller sub-
graphs induced by these sets provide lower and upper bounds for the clique size
of the original graph. Using edge coloring the upper bound can be improved.
Let G be a finite simple graph. We divide the set of nodes V into two disjoint

subsets U and W. Let H, K be the subgraphs of G induced by the subsets U
and W, respectively. We consider a bipartite subgraph L of G induced by the
subsets U and W. Note that

max{ω(H),ω(K)} ≤ ω(G) ≤ ω(H) +ω(K)

holds. Setting h = ω(H), k = ω(K) the upper estimate is ω(G) ≤ h + k.
Coloring the edges of the bipartite graph L provides a correction term r to
modify the estimate to ω(G) ≤ h+ k− r.

Edge coloring of graphs 69

Suppose G contains a (h + k)-clique. In this case ω(G) = h + k and the
bipartite graph L must contain a (h, k)-biclique. Note that this biclique has
hk edges and the colors of these edges are pair-wise distinct. In other words,
if the edges of L can be colored legally using less than hk colors, then the
equation ω(G) = h+ k cannot hold.
Suppose that the edges of L can be colored legally using s colors. If s is

small compared to hk, then the upper estimate for ω(G) can be lowered. For
the sake of definiteness let us assume that h ≥ k. Choose an integer r such
that

(k− r)h ≤ s < (k− r+ 1)h.

It follows that

k− (s/h) ≤ r < k− (s/h) + 1.

This r is the correction term to improve the estimate for ω(G).
The edge coloring can be used to construct cuts in the linear programming

reformulation of the maximum clique problem.
The maximum clique problem can be reformulated in terms of a 0-1 linear

program. Let G = (V, E) be a finite simple graph with V = {v1, . . . , vn} and let
∆ be a clique in G such that U is the set of nodes of ∆. To the clique ∆ we
assign an n-dimensional vector xT = [x1, . . . , xn] such that

xi =

{
1, if vi ∈ U,

0, if vi /∈ U.

We may call x the characteristic vector of the clique ∆.
We consider the following 0-1 linear program P. Maximize the objective

function x1+· · ·+xn subject to the constraints xi+xj ≤ 1, where the unordered
pair {vi, vj} is not an edge of G. Replacing the condition xi ∈ {0, 1} by 0 ≤ xi ≤ 1

for each i, 1 ≤ i ≤ n we get the real relaxation P′ of the 0-1 linear program P.
An optimum solution of P′ provides an upper bound for the clique size ω(G)

of G.
Feeding the program P′ into a linear program solver we typically get the

optimum solution [1/2, . . . , 1/2]T which leads to the estimate ω(G) ≤ n/2.
The polyhedron of the program P′ may have many vertices with non-integer

components. There are inequalities in the form a1x1 + · · · + anxn ≤ b that
slices down non-integer solutions from the polyhedron but not slicing down
any integer solutions. Such inequalities are called cuts and they can be added
to the constraints of the program P′ to improve the estimate for ω(G).

70 S. Szabó, B. Zaválnij

Suppose that the edges of G are legally colored using t colors and C1, . . . , Ct

are the color classes of the edges of G such that

e1 = {a1, b1}, . . . , es = {as, bs}

are the edges in the color class Ci. Let vi(1), . . . , vi(r) be all the distinct nodes
of G among a1, b1, . . . , as, bs. Note that the set {vi(1), . . . , vi(r)} cannot contain
the nodes of any 3-clique in the graph G. Consequently, the inequality

xi(1) + · · ·+ xi(r) ≤ 2

can be added, as a cut, to the linear program P′.

3 The gap phenomenon

In 1955 J. Mycielski [6] has proved the next result.

Theorem 3 For each positive integer k there is a graph G such that χ(G) = k

and G does not contain any 3-clique.

Since G does not contain any triangle, the edges of G have a proper coloring
with exactly 1 color. On the other hand, as χ(G) = k the nodes of this graph
do not have any legal coloring with k + 1 colors. In other words, the upper
estimates for the clique size ω(G) provided by the coloring of edges of G

coincides with ω(G) and the upper bound of the clique size provided by the
coloring of the nodes can be arbitrarily large. This makes the edge coloring
looking very good in comparison with the node coloring.
In this section we will construct a family of graphs for which the gap between

the clique number and the edge chromatic number can be arbitrarily large.

Theorem 4 Let us choose an integer k with k ≥ 3. There is a graph L(k) such
that ω(L(k)) ≤ 4 and χ(e)(L

(k)) ≥ k.

Proof. Let M(k) be the Mycielski graph with parameter k. Let u1, . . . , un be
the nodes of M(k). The graph L(k) will have 2n nodes x1, . . . , xn, y1, . . . , yn.
The unordered pair {xi, yi} is an edge of L(k) for each i, 1 ≤ i ≤ n. Further if
the unordered pair {ui, uj} is an edge of M(k), then we add the edges

{xi, xj}, {xi, yj}, {yi, xj}, {yi, yj}

to L(k). Figure 1 shows the construction in the special case k = 3.

Edge coloring of graphs 71

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳s s s s s

s s s s s

s s s s s

u1 u2 u3 u4 u5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 1: The construction in the proof of Theorem 4 when k = 3.

We claim that ω(L(k)) ≤ 4.
In order to prove this claim let us assume the contrary that ω(L(k)) ≥ 5. Let

∆ be a 5-clique in L(k). Note that a set {xi, yi} may contain at most 2 nodes of
the clique ∆. It follows that there must be at least 3 distinct values of i such
that the set {xi, yi} contains at least one node of the clique ∆. For the sake of
definiteness let us suppose that each of the sets

{xα, yα}, {xβ, yβ}, {xγ, yγ}

contains a node of the clique ∆ and zα, zβ, zγ are the nodes of the clique ∆

for which

zα ∈ {xα, yα}, zβ ∈ {xβ, yβ}, zγ ∈ {xγ, yγ}.

Here α, β, γ are pair-wise distinct elements of the set {1, . . . , n}.
The unordered pair {zα, zβ} can be an edge of the graph L(k) only if the

unordered pair {uα, uβ} is an edge of the graph M(k). From this observation it
follows that the nodes uα, uβ, uγ are the nodes of a 3-clique in M(k). But the
Mycielski graph M(k) does not contain any 3-clique since ω(M(k)) ≤ 2.
This contradiction completes the proof of the claim.
Next we claim that χ(e)(L

(k)) ≥ k.

In order to prove the claim let us assume on the contrary that χ(e)(L
(k)) ≤

k− 1. Let E be the set of edges of L(k). Further let f : E → {1, . . . , k− 1} be the

72 S. Szabó, B. Zaválnij

n |V | |E| node edge estimate

3 27 189 6 10 5

4 64 1296 12 37 9

5 125 5500 20 113 15

6 216 17550 30 273 23

7 343 46305 42 565 34

8 512 106624 56 1063 46

9 729 221616 72 1807 60

10 1000 425250 90 2922 76

11 1331 765325 110 4477 95

12 1728 1306800 132 6602 115

13 2197 2135484 156 9390 137

14 2744 3362086 182 12998 161

15 3375 5126625 210 17600 188

Table 1: Monotonic matrices. The 2nd and 3rd columns contain the number
of nodes and edges of the graphs. The estimates of the clique size are in the
4th and 6th columns.

map which defines a legal coloring of the edges of L(k) using at most k−1 colors.
Guided by the map f we construct a coloring of the nodes of the graph M(k).
Let us set U = {u1, . . . , un} and let us consider the map h : U → {1, . . . , k− 1}

defined by h(ui) = f({xi, yi}) for each i, 1 ≤ i ≤ n.
At this point we should observe that the map h defines a legal coloring of

the nodes of the graph M(k). The only thing which needs verification is that
if ui and uj are distinct adjacent nodes of the graph M(k), then the inequality
h(ui) 6= h(uj) must hold.
Since ui and uj are adjacent nodes in the graph M(k), the nodes xi, yi, xj,

yj are the nodes of a 4-clique in the graph L(k). As the map f defines a legal
coloring of the edges of the graph L(k), it follows that f({xi, yi}) 6= f({xj, yj}).
Using

h(ui) = f({xi, yi}) and h(uj) = f({xj, yj})

we get h(ui) 6= h(uj), as required.
Therefore the map h describes a legal coloring of the nodes of the graph

M(k). In this coloring at most k− 1 colors occur. But this is not possible since
χ(M(k)) ≥ k.
This contradiction completes the proof of the claim. �

Edge coloring of graphs 73

n |V | |E| node edge estimate

3 8 9 2 1 2

4 16 57 4 6 4

5 32 305 8 17 6

6 64 1473 14 60 11

7 128 6657 26 221 21

8 256 28801 50 875 42

9 512 121089 101 3406 83

10 1024 499713 199 13081 162

11 2048 2037761 395 49268 314

12 4096 8247297 782 186246 610

Table 2: Deletion error detecting codes. The 2nd and 3rd columns contain the
number of nodes and edges of the graphs. The estimates of the clique size are
in the 4th and 6th columns.

n |V | |E| node edge estimate

6 15 45 4 3 3

7 35 385 10 23 7

8 70 1855 20 107 15

9 126 6615 35 391 28

10 210 19425 56 1131 48

11 330 49665 84 2754 74

12 495 114345 120 5918 109

13 715 242385 165 11610 152

14 1001 480480 220 21172 206

15 1365 900900 286 36514 270

16 1820 1611610 364 60054 347

17 2380 2769130 455 95038 436

18 3060 4594590 560 145441 539

Table 3: Johnson codes. The 2nd and 3rd columns contain the number of nodes
and edges of the graphs. The estimates of the clique size are in the 4th and
6th columns.

74 S. Szabó, B. Zaválnij

4 A complexity result

In this section we will be interested in the computational complexity of the
following problem.

Problem 5 Given a finite simple graph G and given a positive integer k.
Decide if the edges of G admit a legal coloring using k colors.

We will show that for k ≥ 6 Problem 5 is NP hard. The intuitive meaning
of this result is that finding the optimal number of colors in the edge coloring
of a given graph is computationally hard. Thus in practical computations we
should approximate the edge chromatic number of a graph instead of exactly
computing it.
We will show that Problem 5 can be reduced to the following problem which

is known to be NP-complete. (See [7].)

Problem 6 Given a finite simple graph G and given a positive integer k.
Decide if the nodes of G have a legal coloring using k colors.

The reduction of Problem 5 to Problem 5 can be accomplished using an
algorithm which runs in polynomial time and uses polynomial size memory.
Let M(k) be the Mycielski graph with parameter k and let e = {x, y} be an

edge of M(k). We delete the edge e from M(k) but we do not delete any of the
end points of the edge e. We denote the resulting graph by N(k).

Lemma 7 For the graph N(k) defined above the following holds.

(1) The nodes of the graph N(k) can be colored legally using k− 1 colors.

(2) In each legal coloring of the nodes of the graph N(k) using k − 1 colors
the nodes x and y must receive the same color.

Proof. The Mycielski graph M(3) is a circle consisting of 5 nodes and 5 edges.
After deleting an edge from M(3) the nodes of the remaining graph can be
colored legally with 2 colors. The end points of the deleted edge must receive
the same colors since otherwise one puts back the deleted edge and the nodes
of the graph M(3) could be legally colored with 2 colors. Thus the special case
k = 3 is settled.
The Mycielski graph M(4) has 11 nodes v1, . . . , v5, u1, . . . , u5, w. The set of

nodes {v1, . . . , v5} induces a subgraph H in M(4) such that H is isomorphic to
M(3). Figures 2 and 3 illustrate this step of the proof.

Edge coloring of graphs 75

✟✟✟✟✟✟✟✟✟✟✟✟

�
�

�
�

�
�

❅
❅
❅

❅
❅
❅

❍❍❍❍❍❍❍❍❍❍❍❍

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳s s s s s

s s s s s

s

w

u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

Figure 2: The Mycielski graph M(4).

The node ui is adjacent to the neighbors of vi for each i, 1 ≤ i ≤ 5. The
node w is adjacent to ui for each i, 1 ≤ i ≤ 5. After deleting the edge {v1, v5}

from H the nodes of the resulting graph H′ can be legally colored with 3 colors.
To exhibit a legal coloring of the nodes let us color the nodes u1, . . . , u5 with
colors 1. The nodes v1, . . . , v5 can be colored with the colors 2, 3. Finally, we
color the node w with color 3. We have ended up with a legal coloring of the
nodes of the graph N(4) using 3 colors. This settles the case k = 4.
The Mycielski graph M(5) has 23 nodes v1, . . . , v11, u1, . . . , u11, w. The set

of nodes {v1, . . . , v11} induces a subgraph H in M(5) such that H is isomorphic
to M(4). The node ui is connected by an edge to each of the neighbors of the
node vi for each i, 1 ≤ i ≤ 11. Finally, we connect the node w to the node ui

by an edge for each i, 1 ≤ i ≤ 11. The graph H has an edge e such that after
deleting e from H the nodes of the resulting graph H′ can be colored legally
with 3 colors.
We assign color 1 to node ui for each i, 1 ≤ i ≤ 11. The nodes v1, . . . , v11

can be colored legally with 3 colors. We will use the colors 2, 3, 4. Finally, we
assign color 4 to node w. This provides a legal coloring of the nodes of the
graph N(5) using 4 colors. Therefore the case k = 5 has been settled.
After working out the k = 5 special case we are well prepared to settle the

general case using an induction on k.

76 S. Szabó, B. Zaválnij

✟✟✟✟✟✟✟✟✟✟✟✟

�
�

�
�

�
�

❅
❅
❅

❅
❅
❅

❍❍❍❍❍❍❍❍❍❍❍❍

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�❅

❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

❅
❅
❅
❅

❅
❅✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳s s s s s

s s s s s

s

3

1 1 1 1 1

3 2 3 2 3

Figure 3: The graph N(4) with colored nodes.

Set V = {v1, . . . , vn} and U = {u1, . . . , un}. Let U ∪ V ∪ {w} be the set of
nodes of the Mycielski graph M(k). The set of nodes V induces the subgraph H

which is isomorphic to M(k−1). Note that N(w) = U and N(ui)∩V = N(vi)∩V
for each i, 1 ≤ i ≤ n.
By the inductive assumption H has an edge e such that after deleting e from

H the nodes of the resulting graph H′ can be colored legally using k−2 colors.
We color each node in U with color 1. The nodes in V can be colored legally

using the colors 2, . . . , k − 1. The node w can be colored with color k − 1. In
this way we ended up with a legal coloring of the nodes of Nk using k − 1

colors.
Putting back the edge e gives back the graph M(k). The nodes of M(k) can

be colored legally with k colors but not with k − 1 colors. Consequently, the
end points of the edge e must receive the same colors in any legal coloring of
the nodes of Nk using k− 1 colors.
This completes the proof. �

Using the graph N(k) we construct a new graph L(k) by adding a new edge
{z, x} to N(k). Figure 4 depicts the graph L(k). The newly constructed graph
L(k) clearly has the following properties.

(1) The nodes of the graph L(k) can be colored legally using k− 1 colors.

(2) In each legal coloring of the nodes of the graph L(k) using k − 1 colors
the nodes z and y must receive distinct colors.

Edge coloring of graphs 77

r r r

z x y

N(k)

Figure 4: The graph L(k).

(3) If the nodes z and y are colored with distinct colors, then this partial
coloring of the nodes of L(k) can be extended to a legal coloring of the
nodes of L(k).

In order avoid notational difficulties first we will deal with the k coloring
problem in the special case when k = 6 and so we will use the graph L(7) as an
auxiliary graph. The reader can verify that the graph L(7) has 95 nodes and
640 edges.
Let G = (V, E) be a finite simple graph and let u1, . . . , un be the edges of

G. From the given graph G we construct a new graph G′.
Let Li,j be an isomorphic copy of the graph L(7). We assume thatwi,j,1, . . . , wi,j,95

are all the nodes of the graph Li,j and the node wi,j,1 of Li,j corresponds to
the node z of the graph L(7). Further we assume that the node wi,j,95 of Li,j
corresponds to the node y of the graph L(7).
From the given graph G = (U,E) we construct a new graph G′. Let the

unordered pair {ui, uj} be an edge of the graph G. We replace this edge of G
by Li,j. We identify the node ui of G with the node wi,j,1 of the graph Li,j
and we identify the node uj of G with the node wi,j,95 of the graph Li,j. In
the graph L(k) the roles of the nodes y and z are not symmetric. In order to
avoid ambiguity in the construction we assume that for the edge {ui, uj} the
condition i < j holds.
From the graphG′ we construct a new graph Γ . Let us suppose thatw1, . . . , wm

are all the nodes of G′. The graph G′ hasm nodes and the graph Γ will have 2m
nodes x1, . . . , xm, y1, . . . , ym. To the node wi of G

′ we assign an edge {xi, yi}

of the graph Γ for each i, 1 ≤ i ≤ m. Next if the unordered pair {wi, wj} is an
edge of G′, then we add the edges

{xi, xj}, {xi, yj}, {yi, xj}, {yi, yj}

to Γ .

78 S. Szabó, B. Zaválnij

The pivotal result of our consideration in pursuing the k = 6 particular case
is summarized in the following assertions.

Theorem 8 For the graph Γ defined above the following holds.

(1) If the edges of the graph Γ have a legal coloring using 6 colors, then the
nodes of the graph G have a legal coloring using 6 colors.

(2) If the nodes of the graph G admit a legal coloring with 6 colors, then the
edges of the graph Γ admit a legal coloring with 6 colors.

Proof. In order to prove claim (1) let us assume that the edges of the graph
Γ = (W,F) have a legal coloring using 6 colors. Let us suppose that the map
f : F → {1, . . . , 6} describes this coloring. Using this coloring of the edges of the
graph Γ we construct a coloring of the nodes of the graph G. To the node ui

of G we assign the colors of the edge {xi, yi} of Γ . In other words we define a
map g : U → {1, . . . , 6} by setting g(ui) to be equal to f({xi, yi}).
The map g describes a coloring of the nodes of the graph G using 6 colors.

We claim that g describes a legal coloring of the nodes of the graph G. In
order to verify the claim it is sufficient to show that if the unordered pair
{ui, uj} is an edge of the graph G, then g(ui) 6= g(uj) must hold. The node
ui of G corresponds to the node wi,j,1 of the graph G′ and the node uj of G
corresponds to the node wi,j,95 of the graph G′. The node wi,j,1 corresponds
to the edge {xi,j,1, yi,j,1} of the graph Γ . Similarly, the node wi,j,95 corresponds
to the edge {xi,j,95, yi,j,95} of the graph Γ .
We know that the edges {xi,j,1, yi,j,1} and {xi,j,95, yi,j,95} receive distinct col-

ors, that is, f({xi,j,1, yi,j,1}) 6= f({xi,j,95, yi,j,95}). Consequently g(ui) 6= g(uj), as
required.
In order to prove assertion (2) let us assume that the nodes of G have a legal

coloring with 6 colors. We assume that the map g : U → {1, . . . , 6} describes
this coloring. Suppose that the unordered pair {ui, uj} is an edge of the graph
G and i < j holds.
When we constructed the graph G′ from the graph G we replaced the edge

{ui, uj} of G by Li,j which is an isomorphic copy of the graph L(7). Let xi,j, yi,j,
zi,j be the nodes of the graph Li,j that correspond to the nodes x, y, z of the
graph L(7) at the isomorphism.
The node zi,j of the graph G′ gets the color of the edge ui of the graph G.

The node yi,j of the graph G′ gets the color of the edge uj of the graph G.
The node xi,j of the graph G′ gets the color of the edge x of the graph G. We
know that this partial coloring of the nodes of the graph Li,j can be extended
to the coloring of all nodes of the graph Li,j.

Edge coloring of graphs 79

�
�
�
�
�
�
�❅

❅
❅
❅
❅
❅
❅r r

r r

yi,j,α xi,j,α

yi,j,β xi,j,β

r

r

wi,j,α

wi,j,β

Figure 5: The 4-clique ∆ in the graph Li,j.

For the sake of a convenient notation we rename the nodes of the graph Li,j.
Let wi,j,1, . . . , wi,j,95 be the nodes of the graph Li,j. We will assume that

wi,j,1 = zi,j, wi,j,2 = xi,j, wi,j,95 = yi,j.

When we constructed the graph Γ from the graph G′ we have assigned an
edge {xi,j,α, yi,j,α} of Γ to the node wi,j,α of G′ for each i, j, α, 1 ≤ i < j ≤ m,
0 ≤ α ≤ 95. Now we assign the color of the node wi,j,α of the graph G′ to the
edge {xi,j,α, yi,j,α} of the graph Γ .
When the nodes wi,j,α and wi,j,β were adjacent in the graph G′, then we

added the edges

{xi,j,α, xi,j,β}, {xi,j,α, yi,j,β}, {yi,j,α, xi,j,β}, {yi,j,α, yi,j,β} (2)

to the graph Γ during the construction of the graph Γ from the graph G′. The
situation is shown by Figure 5. The edge {xi,j,α, yi,j,α} of the graph Γ receives
the color of the node wi,j,α of the graph G′ and the edge {xi,j,β, yi,j,β} of the
graph Γ receives the color of the node wi,j,β of the graph G′.
The nodes of G′ are colored using 6 colors. We intend to colors the edges

of Γ using these 6 colors. Out of the 6 colors we intend to use for the coloring
the edges of the graph Γ 4 colors are still available to color the edges (2). In
this way we get a legal coloring of the edges of the graph Γ . �

The main result of this section is the following theorem.

80 S. Szabó, B. Zaválnij

Theorem 9 Problem 5 is NP hard for each integer k ≥ 6.

Proof. Theorem 8 settles the special case k = 6. For the remaining part of
the proof we assume that k ≥ 7. We start with the graph N(k+1) and follow a
reasoning analogous to the proof of Theorem 8.
A few elementary estimates are still missing to complete the argument. Let

G = (V, E), G′ = (V ′, E′), Γ = (W,F). It is clear that there is a positive constant
c1 such that |V ′| ≤ c1|V |. One can choose c1 to be the number of nodes of the
auxiliary graph L(k+1). There is a positive constant c2 for which |E′| ≤ c2|V |

2.
Indeed,

|E′| ≤ (1/2)|V ′|2 ≤ (1/2)c21|V |
2 = c2|V |

2.

The computation

|W| ≤ 2|V ′| = 2c1|V | = c3|V |

shows that there is a positive constant c3 such that |W| ≤ c3|V |. Finally, there
is a positive constant c4 with the property that |F| ≤ c4|V |

2. This can be seen
from

|F| ≤ 6|E′| ≤ 6c2|V |
2 = c4|V |

2.

The essential point is that the quantities |E|, |W|, |F| can be over estimated
by a polynomial in terms of |V |. As we can see the degree of this polynomial
is two. The leading coefficient can be very large. As a matter of fact it is
an exponential function of k. But for each fixed k the leading coefficient is a
constant. �

Acknowledgements

We would like to express our thanks for the anonymous referee.

References

[1] I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The Maximum Clique
Problem, Handbook of Combinatorial Optimization Vol. 4, Kluwer Academic
Publisher, 1999. ⇒64

[2] R. Carraghan, P. M. Pardalos, An exact algorithm for the maximum clique
problem, Operation Research Letters 9 (1990) 375–382. ⇒67

[3] J. Hasselberg, P. M. Pardalos, and G. Vairaktarakis, Test case generators and
computational results for the maximum clique problem, Journal of Global Opti-
mization 3 (1993) 463–482. ⇒64

Edge coloring of graphs 81

[4] D. Kumlander, Some Practical Algorithms to Solve the Maximal Clique problem
PhD. Thesis, Tallin University of Technology, 2005. ⇒64

[5] C. Morgan, A Combinatorial Search with Dancing Links, PhD. Thesis, Univ. of
Warwick, 1999–2000. ⇒64

[6] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3 (1955) 161–162. ⇒
70

[7] C. H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing
Company, Inc., 1994. ⇒64, 74

[8] S. Szabó, Parallel algorithms for finding cliques in a graph, Journal of Physics:
Conference Series 268 (2011) 012030 ⇒63, 65

Received: February 16, 2016 • Revised: April 17, 2016

Acta Univ. Sapientiae, Informatica 8, 1 (2016) 82–95

DOI: 10.1515/ausi-2016-0005

Improving the effectiveness of FMEA

analysis in automotive – a case study

Gábor VÁNYI
Eötvös Loránd University, Budapest
email: vanyig@ceasar.elte.hu

Abstract. Many industries, for example automotive, have well defined
product development process definitions and risk evaluation methods.
The FMEA (Failure Mode and Effects Analysis) is a first line risk anal-
ysis method in design, which has been implemented in development and
production since decades. Although the first applications were focusing
on mechanical and electrical design and functionalities, today, software
components are implemented in many modern vehicle systems. However,
standards or industry specific associations do not specify any “best prac-
tice” how to design the interactions of multiple entities in one model.
This case study focuses on modelling interconnections and on the im-
provement of the FMEA modelling process in the automotive. Selecting
and grouping software components for the analysis is discussed, but soft-
ware architect design patterns are excluded from the study.

1 Introduction

Today, software working all over our vehicles, from sensors and cameras to
navigation to infotainment systems to diagnostics. In 2001, cars had a min-
imal amount of code in them, nowadays, a new car has about 100 million
lines of code. The increase of software parts reduces weight, involves cost op-
timization and decreases delivery time compared to similar complex mechanic

Computing Classification System 1998: G.2.2
Mathematics Subject Classification 2010: 46S99
Key words and phrases: FMEA, risk analysis, system modelling, automotive

82

Improving effectiveness of FMEA in automotive 83

or hardware changes in the development life-cycle. Complexity of hardware,
software and mechanical systems exponentially increase with the possibility of
harm and unwanted side effects. Hence, different standards implemented for
reliability analysis and risk estimation.
The FMEA method was introduced in the automotive industry based on

the results of the Apollo airspace program in 1970s [6]. It was the first time
when this method could show opportunity to find possible failures in big and
complex systems like a space shuttle. This method is widely used both in
development and manufacturing. For the automotive industry the QS 9000
standard and the SAE J1739 defines the implementation. Effective analysis of
software components remain a challenge, because it cannot be assessed like
hardware. During the analysis a possible question can be: ”what kind of harm
can the development environment, programming language, compiler, coding
method (pointer, timer or operator) cause?”. If the functionality of software
can be analysed by itself, it also generates questions like ”what part of the code
is a function?” and ”what are the inputs and outputs of the given block?”.
And finally, ”what kind of failures and causes can be considered during the
analysis?”. If a well-defined structure was used, then the effects of a failure
can be traced back through the whole system. This streamlined approach can
motivate technical risk analysis to handle each unwanted risk in full detail,
hence project managers will see the quality and value together in their product.

2 FMEA overview

The following FMEA types are used in automotive: (1) system, (2) design and
(3) process. These can be used in different logical levels. For example, system
FMEA should be used for a subsystem, design FMEA for a simple screw, and
process FMEA to evaluate risks in manufacturing. There is hierarchical rela-
tion between system, design and process FMEA (in this order). Two possible
additional levels can be used to collect failure effects from the top level and
one additional level on the lowest part (as cause level) which can be used as a
failure cause catalogue.
The risk ranking is based on risk priority number (RPN), which can be cal-

culated as the multiplication of parameters Severity (S), Occurrence (O) and
Detection (D). The ranking process can be formal, since evaluating catalogues
facilitates teams in finding the right risk evaluation values (see i.e. SAEJ1739,
VDA, etc.). Moreover, proper structuring of technical systems and traceability
of design changes is more challenging than risk evaluation. Former version of

84 G. Ványi

VDA (released in 2009) required that every risk have to be mitigated, where
RPN is larger than a certain threshold [9]. The newest version raises atten-
tion to S and O, thus, it defines a matrix of S and O for more detailed risk
ranking. Many FMEA expert states that these matrices may not show the real
practical risk. Multiplication of a high S value with a low O values means that
very critical failure may not happen very often, but when it happens, it can
cause high damage. Thus, some companies decided that they try to reduce
their potential risks to as low levels as possible with different actions by tests,
design changes or reviews together with their customers during development.
A very important rule of thumb is to evaluate severity values on a highest
level and inherit these to lower levels. This can ensure that a failure will have
the same meaning of seriousness in the whole system and will be encountered
and managed.
Beyond the effectiveness, sufficient level of technical content has significant

differences from the quality point of view, because these depend on human fac-
tors. The electric, mechanic and electro-pneumatic systems have to be analysed
by different methods of reliability and risk analysis in parallel. If these were
coordinated as an unified systematic method, it would reduce capacity and
time requirements. The FMEDA (Failure Mode and Effects and Diagnostic
Analysis [8]) principles and purposes can be used in general FMEA as well.
Many articles exist about software component analysis (see e.g. [4]), but these
do not tend to explain how to connect software components with electrical
hardware and mechanical interfaces.

3 Creating FMEAs

The “5 step method” is a well-known practice in the automotive industry.
It has been introduced in the VDA standard [10][5]. This method prefers to
start by creating hierarchical groups of system element networks, then con-
nect functions to each system element, define the effects of failure operations,
evaluate risks, and finally rank and mitigate risks. Although this method is
well-known, the resource capacity is very high because of the high number of
reviews for the newly developed product. Therefore ”best practices” and in-
ternal know-how have been used at many companies to quick start the process
as a kind of template, but even in this case many redundant steps cannot be
easily eliminated. Companies with many independent departments (or compe-
tent centres) usually use different strategies for system modelling and focuses
different points of analysis. These methods generate latent quality gaps and

Improving effectiveness of FMEA in automotive 85

risks. Another problem comes, when different products or components con-
necting each other into one large system, thus FMEAs shall be connected as
well. Fortunately, it is feasible to have a common consensus regarding which
processes will be used on quality side. On engineering side, the modelling is
supported by P-diagrams and boundary diagrams, which are introduced in QS
9000 standard [7]. Certain failures can be detected easier both by Fault Tree
Analysis (FTA) or Functional Hazard Analysis (FHA) methods for the first
step.
Hardware and mechanic elements can be analysed easier than software ele-

ments, because they can be bounded physically and standards support many
methods for analysing. Software parts modelled mainly in Unified Modelling
Language (UML) or flowcharts. Many tools support these forms but identi-
fying safety gaps or risks are not so easy in safety critical or safety related
modules and functions in the same way as estimating their effects in case of
harms. Interfaces, built-in parameters and data layer functions can cause many
exceptions if they have wrong values (programmed) or have been intentionally
modified. Customers usually want to see identified risks under consideration,
but it can be difficult to analyse and present thousands of combinations of
values. An optimization strategy can be when software module analyses in-
cludes functional or logical grouped evaluation of interfaces. These cases are
hard to find by tests of course, but FMEA should support identifying relevant
requirements and functions which must be examined later.
A complex automotive system should be divided into hardware, software

and mechanic components, since they cannot be analysed in the same time
due to the different scheduling of development. The highest level is common,
it is usually used for the effect level or system FMEA level. Using this common
effect level has an advantage, since each severity number can be discussed with
the customer, plus these failures can be guided easily through the system from
top (requirement) down to an element (i.e. screw or software module). Later
on, if an effect line of an identified risk was known, the failure network and
function network would show these effect lines. If separated effect level was
used only, it would cause quality gaps and shortcoming of risk evaluations on
lower levels in the system.
System FMEA is the first point in the analysis where full risk evaluation

is performed. There can be several system FMEA applied on the same level
in parallel. This level lists the functions of the system. They are connected
to one level higher to receive severity ranking for each failure as failure effect
from the effect level.
One level below the design FMEAs can be found, where mechanical, elec-

86 G. Ványi

trical elements and software components analysed in logical connection to the
higher levels system FMEAs. This makes a logical network to overview which
components participate in the given function. For example, the system level
analysis may show an increasing pressure in chamber, the design level may
connect a piston to a housing, etc., which are part of this function in the
compressing air. If a system specialist was able to answer the question ”what
happens if this rod causes a failure?” then a failure network would help to
see the points of possible failures and related functions up to the top-effect
level. The last level is the process FMEA, which is used to evaluate the risk
of components production.
Finally, the lowermost part is the cause level. It is not regularly used, but has

many advantage if design or process failure causes are handled in a common
failure catalogue.

3.1 Effect level

As it was discussed before, this is the top level in the FMEA, even if the three
level rule is applied. Groups of the agreed first level requirements are listed
in the function column. These are usually declarations of dimensions, some
important internal requirements including internal lessons learned knowledge,
specifications of standards, results of safety analysis (i.e. FHAs Top Effects)
and regulations from relevant important laws. Possible failures and harms of
requirement violation are evaluated in the next column. These are evaluated
by system experts, safety professionals and the moderator. Usually ranked and
evaluated the severity numbers together or at least reviewed with the customer
who shall approve them. These targets of safety goals and functions shall be
reached during the development. Safety is a killer criteria which shows how
the unwanted actions are handled, since severity values cannot be lower than
9, but usually 10. Lower level (system) FMEA is connected to causes, these
show the affected functions of each failure.

Functions Potential failure Ef-
fect

S Cause O P/D
action

D

Braking Speed is not reduced 10 ABS system
Steering Unintended maneuver 10 EPS system
Comfort Air conditioning fails 5 Cooling system

Table 1: Effect level example

Improving effectiveness of FMEA in automotive 87

3.2 System FMEA levels

This is the first level where full risk analysis has to be performed. The risk
assessment of system level shows weak points of system functionalities and
helps to eliminate these gaps. This level usually has only one FMEA in case of
less complicated systems with only a small number of functionalities and com-
ponents. If the system has more advanced electronic, mechanical and software
parts then various types of system FMEA have to be performed parallel in dif-
ferent content. This method will support sorting elements for a better system
overview and handling scheduled delays according to different development
life-cycles.
System level FMEA approach consists of two different contents. One of

them focuses on components instead of functionalities, because production
uses these information. Thus, the characteristics of strict suiting dimensions
and material definitions have more value in labelling special characteristics
(S/C or C/C) since these parts have more strict regulations for quality and
product security. This approach should be applied for mechanical/pneumatic
parts, in which case system level FMEA lists groups of mechanical functions
(i.e. linkage group – containing functionalities for coupling two parts). One
level below, the design FMEAs will list components which have different roles
in this functionality. A component can be connected to more system FMEA
if it is affected in that functionality.
Very significant difference from other mechanical FMEAs is declaring spe-

cial characteristics on system levels. Because change of material, component
or dimension will be traced easier on system level rather than design level, es-
pecially when design FMEA will be obsoleted or used in another production.

Figure 1: System FMEA connection to design FMEAs – mechanical and pneu-
matic components

88 G. Ványi

The other approach is more beneficial for electronic and software compo-
nents. This structure contains one system FMEA for electronic hardware and
another one for software. If software components are too complicated then
they should be divided into logical groups where each group has one common
system FMEA.
One level below design FMEA is listed. Each component of an electronic

circuit should be listed and connected to system level, showing which one par-
ticipates in a given function. Usually short-cut, opening or missing component
shall be examined. If these cases of failures examined, then they would have
good input for FMEDA as well.

Figure 2: System FMEA connection to design FMEAs – electronic hardware

Software elements shall be analysed similarly, but the author experienced
that three layers of software modelling will have more advantages. These free
layers are (1) system level functions (high level functionality), (2) data trans-
mission layer (communication arrays between modules) and (3) platform (low
level functions, directly connected to hardware level). These are on the same
level (design), but connected to each other via their interfaces.
Software modules are able to connect one element to more, thus the rule of

the mechanic parts or hardware parts can be applied here. However, special
characteristics (S/C, C/C) are not applicable because hardware components
are examined for many times during the production (i.e. End–of–Line–Testing,
testing each component at manufacturer, etc.), software parts are tested during
development life-cycle and will have similar functionalities as have before in
the production. Thus, final assembly test must validate that the assembled
product is valid and working according to the specifications.

Improving effectiveness of FMEA in automotive 89

Figure 3: System FMEA connection to design FMEAs – software components

3.3 Design FMEA levels

This level is used for analysing disciplinary designs of hardware, mechanic,
pneumatic or software components. Evaluation is made by technical experts,
test engineers and an FMEA moderator. The notion ”function” defines differ-
ent meaning in each disciplines, but the top effect level can be similar. Full
risk evaluation can be made on this levels as well.
In case of mechanical discipline for every element in the BOM (Bill of Mate-

rial) a separate design FMEA have to be created. These elements related to the
manufacturing process, thus data shall be assessable for production FMEA.
Special characteristics such as S/C (Significant Characteristic) or C/C (Criti-
cal Characteristic) are identified for handling important dimensions or material
definitions during manufacturing. The question is how special characteristics
can be defined correctly, because there are no feedbacks from production of
the given designs. A pre-defined a template with some technical points sup-
port this evaluation (see Table 2). The project team evaluates the template
forms severity and occurrence values, then special characteristics are defined
for the system level function, as it introduced earlier. This action makes easier
to transfer the given function into the new product and supports to re-use
them.
Hardware analysis is possible via the following the signal path from a single

pin to the controllers software. It requires additional resources from software
beside hardware developers. Analysis of electronic modules will have more ad-
vantage if FMEDCA (Failure Modes, Effects and Diagnostic Coverage Anal-
ysis) can be covered. PCB (Printed Circuit Board) contains many elements,
hence these will make many extra work during the FMEA design process. Pos-
sible solution would be grouping them according to their functions, like power
supply, etc. Short-cuts and cut in the circuit are usually analysed, failure cause

90 G. Ványi

Function Potential Failure

Ensure appropriate ma-
terial properties

Wrong dilatation coefficient defined
Wrong tribological properties defined
Wrong E-modulis defined
Wrong hardness defined
Wrong braking strain defined
Wrong Shore hardness defined
Wrong glass transition temperature defined
Wrong Poisson ratio defined
Wrong Shear modulus defined
Wrong property class defined
Wrong compression set defined
Wrong basic production technology defined
Wrong Yield stress defined

Ensure appropriate geo-
metrical properties

Wrong alignment relative to connecting components defined
Wrong length relative to connecting components defined
Wrong width relative to connecting components defined
Wrong depth relative to connecting components defined
Wrong thickness relative to connecting components defined
Wrong diameter relative to connecting components defined
Wrong greased area defined
Wrong spring parameters defined

Ensure appropriate sur-
face properties

Wrong surface coating defined
Wrong roughness depth defined
Wrong accuracy class for roughness
Wrong surface treatment defined
Wrong rill direction defined
Wrong percentage contact area defined

Ensure appropriate con-
nection of components

Wrong fastening element type selected
Wrong numbers of fastening element defined
Wrong fastening element distribution defined
Wrong fastening torque defined
Wrong fastening force defined
Wrong fastening order defined
Wrong connecting geometry defined

Table 2: Form sheet for mechanic design FMEA to support identification of
special characteristics

Improving effectiveness of FMEA in automotive 91

catalogue on one level below supports finding design or other kind of possible
failures.
Modelling the functionality of software modules is sometimes a kind of ad-

venture. Teams usually facing with difficulties while performing analysis on
pure software components, such as monitoring or continuously running rou-
tines. One of the lessons learned of FMEA moderation should be avoiding
to create pure software FMEAs, because failure causes usually lead to the
limits of programming language, edges of development environment or coding
errors. Better if the analysis focuses on functionality of software modules. Re-
quirements of the development level (RQ3 domain) are good starting points
but calculations, actuations or any larger functionality should be considered.
Causes of failures usually connected to other software modules, preventive ac-
tions usually refers violation of development processes or unintended failure
of monitoring routines.

3.4 Cause levels

This is the bottom-most level of the FMEAs. The forms are not evaluated
as design or system FMEAs, but they has been used for a kind of failure
catalogue. Although, it also happens that this level is not used, but FMEA
holds every necessary information and evaluation. We used this level to col-
lect common disciplinary failures, like causes of design failures for evaluation
support.

4 Increasing review efficiency

Motivating people to actively participate on FMEA review meetings is a big
challenge. Finding the right information for FMEA and deciding if it is really
the right one is also hard. The capacity usually limited and projects usually
facing with time pressure, thus, FMEAmeeting shall be optimized and speeded
up to an efficient level. Minimal capacity of a meeting requires at least two
experts of the given component for ensuring the right technical understanding
and review each other. An FMEA moderator is usually necessary inviting test
engineers for field experiences. Then, a thematic questionnaire and form sheets
can support optimizing time and efficiency.
Typical questions are collected for thought-provoking here in order to sup-

port (i.e. software) FMEAs. General experience shows that developers are
thinking usually in their modules inside, but has no idea what will they re-
ceive on input. Introducing or thinking over functionalities and newly devel-

92 G. Ványi

oped or modified modules is a first step for placing this module in the system
hierarchy. Then, the input and output of the given components can be exam-
ined, listening on keywords like ”default value” and ”NA” state. Afterwards
questions can be stated about safe state if it is relevant or about scheduling
operation. Thinking about these data the following questions will support you
finding your own questions. Some examples were enumerated:

1. Assess the interfaces:

• Which modules are using the output of this module and what are
the input?

• What are the default values, what happens if 0 or N/A occurs?

• Is there any declaration for combination of value pairs on input or
output?

• Are there any configuration parameters which have been used for
calculation?

2. Check the functionality of the module:

• What kind of calculations have been made?

• Is it possible that unintended overflow or underflow causing safety
critical event?

• Is it assured that unexpected values from other modules have been
handled?

• What thresholds have been examined or data comparison have been
used?

• What have been calculated and which functionality belongs to this
calculation?

3. Safety of the module:

• Are there any plausibility checks for calculated values?

• Are there any check or monitoring for communication lines?

• What kind of test or diagnostic function were implemented or used?

• What is the scheduling period?

These questions have another benefits. If somebody has been interviewed
about the development and requirement this person has to think what have
been done and why? The final result of this thinking is also booked in the
FMEA and assured that the right person has done the right development
(other experts support this walk-through as well).

Improving effectiveness of FMEA in automotive 93

5 Conclusion

Risk evaluation of the designed functions has an increasing importance in
automotive. Appropriate structuring brings better understanding of system
functionality, and risk evaluation gives more precise feedback for developers.
Re-using of earlier developed components can be supported by grouping the
appropriate elements. The very first feedback shows that the production could
connect their process FMEAs to design FMEAs easier due to the fact that
functional grouping helps in understanding the component identification. Sur-
veying other solutions, many articles just focus on the right risk evaluation [2]
[3] using e.g. fuzzy logic in order to support risk ranking and the evaluation
mechanism.
The presented system modelling method, particularly in software structur-

ing and mechanical design grouping, will support the daily work better. Soft-
ware FMEAs usually focus on evaluation of variables and equipment analysis
[1]. This case study focused on structuring software and examined the inter-
connections among these structured levels instead. The usage of form sheets
in mechanical design FMEA may reduce capacity demand due to answering
similar questions at each component part. Experiences show that the cumu-
lative meeting time frame of software FMEAs with questionnaires have been
reduced from two months to two weeks, using a twice-per-week scheduling.
On the other hand, the questionnaire supported the functionality review for
developers and testers focusing on communication failures between modules
and result of a calculation, scheduling interactions, safe states, etc. It is part
of the software review at module test level of course, but not only one module
have been inspected in this case. Re-using of former FMEA contents become
easier in the newer generations and variants if unified structure and content
were chosen.
Form sheets in design FMEA change the mindset for mechanical designers

because they have to focus more on design points instead of ranking the levels
of solutions. Hence, there is no need waiting for the feedback from production
failures. Evaluating the right characteristics in the beginning shall be paid
attention since it has influence on the cost of the product.
Designing mechanical connections is a baseline for production since pro-

cesses are connected to design’s result. Then, production is able to connect
their FMEAs easier while they are able to identify the sources of special char-
acteristics, such as material, mechanical connection, edges of the components
connection, etc. Later, these technical information will support investigations
in product modifications.

94 G. Ványi

Motivating participants for an FMEA meeting is not an easy task under
the pressure of deadlines. Making the evaluation time shorter and asking the
right questions in right time definitely is a dream. If quality and daily practice
meet in a well organized process and modelling method set then it can realize
better quality and less postpones of production start and product recalls.
The reader shall decide how will implement these ideas in his or

her FMEAs. Author just demonstrated a case study without any

responsibility of insufficient use of these points.

6 Acknowledgements

I should like to thank János György and Sándor Drienyovszky for their ideas
and experiences together with the result formed the concept of mechanical
design FMEA part. I thank the referee for providing constructive comments
and help in improving the contents of this paper. Finally, I should like to thank
to my supervisor, Attila Kovács for his suggestions preparing this article.

References

[1] J. H. Craig, A software reliability methodology using software sneak analysis,
SW FMEA and the integrated system analysis approach , in: Reliability and

Maintainability Symposium, 2003. Annual, IEEE, 2003, pp. 12–18. ⇒93
[2] L. Pokorádi, T. Fülep, Reliability in automotive engineering by fuzzy rule-based

FMEA, in: Proceedings of the FISITA 2012 World Automotive Congress, Vol-
ume 197 of the series Lecture Notes in Electrical Engineering, Springer Berlin
Heidelberg, 2012, pp. 793–800. ⇒93

[3] L. Pokorádi, B. Szamosi, Fuzzy Failure Modes and Effects Analysis with Summa-
rized Center of Gravity DeFuzzification, in: 16th IEEE International Symposium

on Computational Intelligence and Informatics, CINTI 2015 , IEEE, 2015, pp.
147–150. ⇒93

[4] K. H. Pries, Failure mode & effect analysis in software development, in: Auto-
motive Electronics Reliability, edited by Ronald K. Jurgen, SAE International,
PT-82, 1998, pp. 351–360. ⇒84

[5] P- Urban, DFMEA acc. to VDA - 5 steps approach, OALC Reliability Blog.
2011, http://www.opsalacarte.com. ⇒84

[6] Society for Automotive Engineers, Design Analysis Procedure For Failure Modes,
Effects and Criticality Analysis (FMECA) 1967. ARP926. ⇒83

[7] Quality System 9000 Handbook, Volume FMEA handbook 2006. ⇒85
[8] TüV NORD, Failure Modes Effects and Diagnostic Analysis (2013),

http://www.tuev-nord.de/. ⇒84

Improving effectiveness of FMEA in automotive 95

[9] Verband der Automobilindustrie, Qualitätsmanagement in der Automobilindus-
trie, Sicherung der Qalität vor Serieneinsatz, System FMEA VDA QMC 4 (2006)
124–139. ⇒84

[10] Verband der Automobilindustrie, Qualitätsmanagement in der Automobilindus-
trie, Produkt- und Prozess-FMEA, VDA QMC 4 (2006) 30–63. ⇒84

Received: March 4, 2016 • Revised: April 18, 2016

Acta Univ. Sapientiae, Informatica 8, 1 (2016) 96–107

DOI: 10.1515/ausi-2016-0006

On the nullity of a family of tripartite

graphs

Rashid FAROOQ
School of Natural Sciences,

National University of Sciences and
Technology, Islamabad, Pakistan
email: farook.ra@gmail.com

Mehar Ali MALIK
School of Natural Sciences,

National University of Sciences and
Technology, Islamabad, Pakistan
email: alies.camp@gmail.com

Qudsia NAUREEN
School of Natural Sciences,

National University of Sciences and
Technology, Islamabad, Pakistan

email: naureenqudsia@gmail.com

Shariefuddin PIRZADA
University of Kashmir, Srinagar, India

email:
pirzadasd@kashmiruniversity.ac.in

Abstract. The eigenvalues of the adjacency matrix of a graph form the
spectrum of the graph. The multiplicity of the eigenvalue zero in the
spectrum of a graph is called nullity of the graph. Fan and Qian (2009)
obtained the nullity set of n-vertex bipartite graphs and characterized
the bipartite graphs with nullity n−4 and the regular n-vertex bipartite
graphs with nullity n − 6. In this paper, we study similar problem for a
class of tripartite graphs. As observed the nullity problem in tripartite
graphs does not follow as an extension to that of the nullity of bipartite
graphs, this makes the study of nullity in tripartite graphs interesting. In
this direction, we obtain the nullity set of a class of n-vertex tripartite
graphs and characterize these tripartite graphs with nullity n − 4. We
also characterize some tripartite graphs with nullity n− 6 in this class.

Computing Classification System 1998: G.2.2

Mathematics Subject Classification 2010: 05C50

Key words and phrases: nullity, tripartite graph, expanded path

96

On the nullity of a family of tripartite graphs 97

1 Introduction

Let G be a simple graph with vertex set V(G) = {v1, . . . , vn} and edge set
E(G). An edge joining a vertex vi to a vertex vj is denoted by vivj (or vjvi).
The adjacency matrix of G is A(G) = [aij]n×n, where

aij =

{
1 if vivj ∈ E(G)

0 otherwise
(∀vi, vj ∈ V(G)).

The eigenvalues of the graph G are the eigenvalues of A(G) and the spectrum
of G is the multiset of eigenvalues of G. The nullity of graph G, denoted by
η(G), is the multiplicity of the eigenvalue zero in the spectrum of G. The graph
G is singular if η(G) > 0 and is non-singular if η(G) = 0. For graph theoretical
terminology, we refer [10].
Collatz and Sinogowitz [2] posed the problem of characterizing singular

graphs and since then, the theory of nullity of graphs has stimulated much
research because of its importance in mathematics and chemistry. In litera-
ture, we find characterization of trees, unicyclic graphs, bicyclic graphs and
bipartite graphs with their nullity.
Fiorini et al. [5] determined the greatest nullity among n-vertex trees in

which no vertex has degree greater than a fixed positive integer D and gave
a method of constructing the respective trees. Li and Chang [7] showed that
there are some other trees with maximum nullity which can not be constructed
by the method devised by Fiorini et al. [5] and modified the method of con-
structing the respective trees. Tan and Liu [11] found the nullity set of n-vertex
unicyclic graphs with n ≥ 5. They also characterized the unicyclic graphs with
maximal nullity. The unicyclic graphs with minimum nullity are characterized
by Li and Chang [8]. Li et al. [9] found the nullity set of n-vertex bicyclic
graphs and gave a characterization of the bicyclic graphs with maximum nul-
lity. Hu et al. [6] also found the nullity set of n-vertex bicyclic graphs, n ≥ 6.
Furthermore, the authors also characterized bicyclic graphs with extremal nul-
lity. In Fan et al. [3], the authors found the nullity of unicyclic signed graphs
and characterized n-vertex unicyclic signed graphs. Fan and Qian [4] intro-
duced nullity of n-vertex bipartite graphs and presented characterization of
bipartite graphs with nullity.
We find that the nullity of tripartite graphs does not follow as the extension

of that of bipartite graphs. Thus it became interesting to characterize family
of tripartite graphs with nullity. In this paper, we consider a class of n-vertex
tripartite graphs, n ≥ 3 and give nullity set of these tripartite graphs and
characterize them with nullity n − 4, n ≥ 4. Furthermore, we discuss some
tripartite graphs with nullity n− 6, n ≥ 6.

98 R. Farooq, M. A. Malik, Q. Naureen, S. Pirzada

2 Preliminaries

In this section, we give some definitions, terminologies and known results which
will be used later. Let G be an n-vertex graph with vertex set V(G) and edge
set E(G). For S ⊆ V(G), the neighbor set of S in G, denoted as N(S), is a set
containing those vertices of G that are adjacent to some vertex in S. If S = {v},
we write N(v) for N({v}). If S is nonempty, we denote by G[S] the induced

subgraph of G. The rank of the graph G, denoted by rank(G), is the rank
of its adjacency matrix A(G), that is, rank(G) = rank(A(G)). It is known
that η(G) = n− rank(G). The graph G is said to be an expanded graph if its
vertex set V(G) can be partitioned into V1, V2 . . . , Vk, k ≥ 2, such that G[Vi]

is an empty graph, for 1 ≤ i ≤ k. If G[Vi ∪ Vj] is a nonempty graph, it is a
complete bipartite graph for 1 ≤ i, j ≤ k, i 6= j. If G is an expanded graph
on V1, V2, . . . , Vk, each Vi, for 1 ≤ i ≤ k, is called an expanded vertex of order
|Vi|. We observe that each simple graph can be viewed as an expanded graph.
The n-vertex graph G is said to be an expanded path of length k if its vertex

set V(G) can be partitioned into V1, . . . , Vk, k ≥ 2, such that

(i) G[Vi] is an empty graph for 1 ≤ i ≤ k,

(ii) G[Vi ∪ Vi+1] is a complete bipartite graph for 1 ≤ i ≤ k− 1,

(iii) G[Vi ∪ Vj] is an empty graph for 1 ≤ i, j ≤ k with j 6= i+ 1.

We use the notation Pk(V1, . . . , Vk) to denote an expanded path on V1, . . . , Vk

of length k. Similarly, an expanded cycle of length k, denoted by Ck(V1, . . . , Vk),
is obtained from the expanded path Pk(V1, . . . , Vk) by adding edges between
each vertex of V1 and each of Vk. When there is no ambiguity, we simply write
Pk and Ck respectively to represent an expanded path and an expanded cycle
of length k. An expanded decomposition of the graph G is a list of expanded
subgraphs such that each edge of G appears in exactly one expanded subgraph
in the list.
The graph G is tripartite if its vertex set can be partitioned into three subsets

X, Y and Z such that G[X], G[Y] and G[Z] are empty graphs; such a partition
(X, Y, Z) is called a tripartition. For any S ⊆ V(G), we denote by NX(S) the
neighbors of S in X. Analogously, we can define NY(S) and NZ(S). We consider
a special class of tripartite graphs defined as follows. Let Tn be the family of
those n-vertex tripartite graphs G, n ≥ 5, whose tripartition (X, Y, Z) satisfies
the following:

NX(Y
′) 6= X and NZ(Y

′) 6= Z ∀ Y ′ ⊆ Y, (1)

G[X ∪ Z] is complete bipartite. (2)

On the nullity of a family of tripartite graphs 99

Lemma 1 (Fan [4]) An expanded path of length k ≥ 2 and order n has nul-

lity n− k, if k is even and n− k+ 1, if k is odd.

Let Kn1,n2
denote the complete bipartite graph, where n1 and n2 are the sizes

of its partite sets. Also, K1 denotes an isolated vertex and r K1 denotes r copies
of K1. Then the following result characterizes the graphs with nullity n− 2.

Lemma 2 (Cheng [1]) Let G be an n-vertex simple graph, n ≥ 2. Then

η(G) = n − 2 if and only if G ∼= Kn1,n2
∪ n3K1, where n = n1 + n2 + n3,

n1, n2 > 0 and n3 ≥ 0.

3 Main results

Let G ∈ Tn with tripartition (X, Y, Z). The adjacency matrix A(G) of G is
defined by

A(G) =

X Z Y

X 0 J C1

Z Jt 0 C2

Y Ct
1 Ct

2 0

,

where J and 0 respectively denote the matrices with all entries 1 and 0. Let C
and B denote the matrices defined as follows.

C =

[

C1

C2

]

and B =

[

0 J

Jt 0

]

.

The matrix A(G) can be viewed as

A(G) =

[

B C

Ct 0

]

. (3)

Let

U = [B C], L = [Ct 0]. (4)

Then A(G) can be written as A(G) =

[

U

L

]

.

For each v ∈ X ∪ Z, we denote by Uv the row of A(G) corresponding to
the vertex v. Similarly, for each v ∈ Y, the row of A(G) corresponding to the

100 R. Farooq, M. A. Malik, Q. Naureen, S. Pirzada

vertex v is denoted by Lv. Let S ⊆ X ∪ Z. Then from the matrix A(G), we see
that ∑

v∈S

kvUv = [b1 b2 c], (5)

where b1, b2 are constant row matrices respectively of dimension 1 × |X| and
1×|Z|, c is row vector of dimension 1×|Y|, and kv’s are real constants. Similarly,
for any Y ′ ⊆ Y, we can write

∑

v∈Y ′

k
′

vLv = [c1 c2 0], (6)

where c1, c2 and 0 are row vectors respectively of dimension 1 × |X|, 1 × |Z|

and 1× |Y|, and k
′

v’s are real constants.
The following result gives information about the rank of a tripartite graph

in Tn.

Lemma 3 Let G ∈ Tn with tripartition (X, Y, Z) and adjacency matrix defined

by (3). Then
rank(G) = rank(U) + rank(L), (7)

where U and L are defined by (4).

Proof. Let S and Y ′ be arbitrary subsets, respectively of X∪Z and Y. To prove
(7), it is enough to show that

∑
v∈S kvUv 6=

∑
v∈Y ′ k ′

vLv whenever
∑

v∈S kvUv 6=

0 and
∑

v∈Y ′ k ′

vLv 6= 0, and kv’s and k ′

v’s are real constants.
We can write

∑
v∈S kvUv = [b1 b2 c] and

∑
v∈Y ′ k ′

vLv = [c1 c2 0], where b1,
b2, c, c1, c2 and 0 are defined in (5) and (6). By condition (1), there exists a
vertex in X which is not adjacent to any vertex in Y. Similarly, there exists a
vertex in Z which is not adjacent to any vertex in Y. Thus there are at least two
zero columns in Ct corresponding to a vertex in X and to a vertex in Z. That
is, there are zero entries in vectors c1 and c2. Now, if

∑
v∈S kvUv =

∑
v∈Y ′ k ′

vLv
then [b1 b2 c] = [c1 c2 0]. As b1 and b2 are constant vectors, the vectors b1,
b2, c, c1, c2 are all zero vectors. This completes the proof. �

Corollary 4 Let G ∈ Tn with tripartition (X, Y, Z) and the adjacency matrix

A(G) defined by (3). Then rank(G) = 2(1+ rank(C)).

Proof. By the construction of the matrix A(G) and by the arguments used
in Lemma 3, we see that rank(U) = rank(B) + rank(C). Since rank(B) = 2

and rank(L) = rank(C) = rank(Ct), we get from (7) that rank(G) = 2(1 +

rank(C)). �

On the nullity of a family of tripartite graphs 101

Let Ck(e) denote an expanded cycle of length k with an expanded chord
e joining two non-adjacent expanded vertices of the cycle Ck. We have the
following observation.

Lemma 5 If G = C5(e)∪kK1 is a graph of order n shown in Figure 1, k ≥ 0,

then G ∈ Tn and η(G) = n− 4.

Proof. Let X = X1 ∪ X ′, Z = Z1 ∪ Z ′ and Y = Y1 ∪ Y ′, where Y ′ is possibly
empty. Then we see that the graph G is a tripartite graph with tripartition
(X, Y, Z). Moreover, G satisfies (1) because NX ′(Y) = ∅ and NZ ′(Y) = ∅. Also,
G[X ∪ Z] = P(X,Z), that is, G satisfies (2). Thus G ∈ Tn. Let A(G) be the
adjacency matrix of G defined by (3). By the construction of G, we see that
all rows of Ct are identical and therefore rank(C) = 1. By Corollary 4, we
conclude that η(G) = n− 4. �

X1 1

1

e

X

Z

Z

Y Y

' '

'

Figure 1: An expanded graph C5(e) ∪ kK1

The next result gives the nullity set of the graphs in Tn.

Theorem 6 Let m1,m2 and m3 be positive integers such that n = m1+m2+

m3. Then for each integer k ∈ {0, 1, . . . ,min{m1+m3−2,m2}}, there is a graph

G ∈ Tn with tripartition (X, Y, Z) such that |X| = m1, |Y| = m2, |Z| = m3 and

η(G) = n − 2(k + 1). Conversely, if G ∈ Tn with tripartition (X, Y, Z) then

η(G) = n− 2(1+ k), where k ∈ {0, 1, . . . ,min{|X|+ |Z|− 2, |Y|}}.

Proof. First, we prove that for each k ∈ {0, 1, . . . ,min{m1+m3−2,m2}}, there
is a graph G ∈ Tn with tripartition (X, Y, Z) such that |X| = m1, |Y| = m2, |Z| =
m3 and η(G) = n−2(k+1). We take three non-empty sets X = {x1, x2, . . . , xm1

},
Y = {y1, y2, . . . , ym2

} and Z = {z1, z2, . . . , zm3
}. If k = 0, we construct a graph

G = P(X,Z) ∪ m2K1. Clearly, G ∈ Tn. By using Lemma 2, η(G) = n − 2. If
k > 0, we consider following two cases.

102 R. Farooq, M. A. Malik, Q. Naureen, S. Pirzada

Case 1. When k ≤ m1 − 1. Since k ≤ m2, we construct a tripartite graph G

with tripartition (X, Y, Z) that satisfies the following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 and NZ(yi) = ∅ for 1 ≤ i ≤ k,

(iii) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ k,

(iv) d(yi) = 0 for k+ 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3), where

C =

[

Ik×k 0k×(m2−k)

0(m1+m3−k)×k 0(m1+m3−k)×(m2−k)

]

.

Then rank(C) = k. By Corollary 4, we get η(G) = n− 2(1+ k).
Case 2. When k > m1 − 1. Since k ≤ m2 and k − (m1 − 1) ≤ m3 − 1,
we construct a tripartite graph G with tripartition (X, Y, Z) that satisfies the
following.

(i) G[X ∪ Z] = P(X,Z),

(ii) |NX(yi)| = 1 for 1 ≤ i ≤ m1 − 1,

(iii) |NZ(yi)| = 1 for m1 ≤ i ≤ k,

(iv) NX(yi) ∩NX(yj) = ∅ for i 6= j and 1 ≤ i, j ≤ m1 − 1,

(v) NZ(yi) ∩NZ(yj) = ∅ for i 6= j and m1 ≤ i, j ≤ k,

(vi) d(yi) = 0 for k+ 1 ≤ i ≤ m2.

Then G ∈ Tn. Moreover, the adjacency matrix of G is given by (3), where

C =

I(m1−1)×(m1−1) 0(m1−1)×(k−m1+1) 0(m1−1)×(m2−k)

01×(m1−1) 01×(k−m1+1) 01×(m2−k)

0(k−m1+1)×(m1−1) I(k−m1+1)×(k−m1+1) 0(k−m1+1)×(m2−k)

0(m1+m2−1−k)×(m1−1) 0(m1+m2−1−k)×(k−m1+1) 0(m1+m2−1−k)×(m2−k)

.

Then rank(C) = k. Corollary 4 gives η(G) = n− 2(1+ k).

On the nullity of a family of tripartite graphs 103

Conversely, we show that if G ∈ Tn with tripartition (X, Y, Z), then η(G) =

n−2(1+k) where k ∈ {0, 1, . . . ,min{|X|+|Z|−2, |Y|}}. By Corollary 4, rank(G) =

2(1+rank(C)). By (1), there are at least two zero rows in C. This implies that
rank(C) ≤ min{|X|+ |Z|− 2, |Y|}. The result is true by setting rank(C) = k. �

From Corollary 4, for each graph G ∈ Tn with A(G) defined by (3), we can
write

η(G) = n− 2(1+ rank(C)). (8)

The next result is a direct consequence of Lemma 2.

Theorem 7 For a graph G ∈ Tn with tripartition (X, Y, Z), η(G) = n − 2 if

and only if G = P(X,Z) ∪ |Y|K1.

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n − 2. Then from
equation (8), we have rank(C) = 0. That is, d(y) = 0 for all y ∈ Y. Thus
G = P(X,Z) ∪ |Y|K1. Conversely, suppose that G = P(X,Z) ∪ |Y|K1. Using
Lemma 1, we see that η(G) = n− 2. �

Theorem 8 Let G ∈ Tn with tripartition (X, Y, Z) and n ≥ 4. Then η(G) =

n− 4 if and only if G is a graph H possibly with some isolated vertices, where

H is an expanded path of length 4 or the expanded graph C5(e).

Proof. Let G ∈ Tn with tripartition (X, Y, Z) and η(G) = n− 4. Let A(G) be
the adjacency matrix of G defined by (3). Then by (8), we have rank(C) = 1,
that is, rank(L) = 1. This means that there is only one independent row, say,
Ly0

in L, where y0 ∈ Y is the vertex corresponding to Ly0
. Then for each y ∈ Y,

either N(y) = N(y0) or N(y) = ∅. Let Y1 ⊆ Y is the set of all vertices of Y
with non-zero degree. We have the following three cases.
Case 1. When NZ(Y1) = ∅. In this case, N(Y1) ⊆ X. By condition (1), N(Y1) 6=

X. We partition X, Y and Z into Y1, N(Y1), Z and X \ N(Y1). Then G can
be drawn as an expanded path P(Y1, N(Y1), Z, X \N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 2. When NX(Y1) = ∅. In this case, N(Y1) ⊆ Z. By condition (1), N(Y1) 6=

Z. We partition X, Y and Z into Y1, N(Y1), X and Z \ N(Y1). Then G can
be drawn as an expanded path P(Y1, N(Y1), X, Z \N(Y1)) possibly with some
isolated vertices in Y \ Y1.
Case 3. When NX(Y1) 6= ∅ and NZ(Y1) 6= ∅. We can partition X into X1 and
X ′, such that X1 = NX(Y1) and X ′ = X \X1. Similarly, we can partition Z into
Z1 and Z ′, such that Z1 = NZ(Y1) and Z ′ = Z \Z1. Then, using condition (2),
one can draw the graph G as an expanded graph C5(e) (shown in Figure 1).

104 R. Farooq, M. A. Malik, Q. Naureen, S. Pirzada

There are possibly some isolated vertices in Y ′, where Y ′ = Y \ Y1.

Y Z X - N(Y) N(Y)

Y X Z - N(Y) N(Y)1 1

1

1

11

Figure 2: Two expanded paths P(Y1, N(Y1), Z, X\N(Y1)) and P(Y1, N(Y1), X, Z\

N(Y1)) of length 4

Conversely, let G be drawn as an expanded path of length 4 possibly with
some isolated vertices. Then Lemma 1 yields that η(G) = n− 4. Furthermore,
if G can be drawn as C5(e) with some isolated vertices, then using Lemma 5,
we get η(G) = n− 4. �

4 Some graphs in Tn with nullity n− 6

In this section, we consider some graphs in Tn, n ≥ 6, with nullity n− 6. Let
G ∈ Tn with tripartition (X, Y, Z) and let X ′ = X \NX(Y). Note that X

′ 6= ∅ by
(1). We assume that

G[NX(Y) ∪ Y] = P(NX(Y), Y). (9)

The following result gives a characterization of a graph G in Tn, n ≥ 6

satisfying (9) and η(G) = n− 6.

Theorem 9 Let G ∈ Tn with tripartition (X, Y, Z), n ≥ 6. Assume that G

satisfies (9) and η(G) = n − 6. Then G has one of the following expanded

decomposition.

(1) C5(e), P2,

(2) C5(e), C3, P2,

(3) 2C5(e), 2P2,

(4) C5(e), C3, 2P2.

On the nullity of a family of tripartite graphs 105

Proof. Let G ∈ Tn with tripartition (X, Y, Z) satisfying (9) and η(G) = n− 6,
n ≥ 6. Let X ′ = X \NX(Y) and Z ′ = Z \NZ(Y). From (1), we see that X ′ and
Z ′ are nonempty. Let A(G) be the adjacency matrix of G defined by (3). Since
η(G) = n − 6, using Corollary 4, we have rank(L) = 2. This implies that L

has two independent rows, say, Ly1
and Ly2

, where y1, y2 ∈ Y. Using (1) and
(9), the columns of L corresponding to the vertices of X are constant. Then
for each y ∈ Y, either Ly = Ly1

or Ly = Ly2
. Thus we partition Y into Y1 and

Y2, where

Y1 = {y ∈ Y | Ly = Ly1
}, Y2 = {y ∈ Y | Ly = Ly2

}.

Note that NZ(y) = NZ(Y1) for each y ∈ Y1, and NZ(y) = NZ(Y2) for each
y ∈ Y2. Since rank(L) = 2, either NZ(Y1) 6= ∅ or NZ(Y2) 6= ∅. Without loss
of generality, assume that NZ(Y1) 6= ∅ and NZ(Y1) 6⊆ NZ(Y2). The following
three cases are possible.

Case 1. When NZ(Y1) ∩NZ(Y2) = ∅.
If NZ(Y2) = ∅, then NZ(Y) = NZ(Y1). We draw the graph G as an expanded
graph on six expanded vertices X1 = NX(Y), X

′, Z1 = NZ(Y), Z
′, Y1 and Y2.

Here Y ′ is possibly empty. The graph is shown in Figure 3 (i). In this case, we
can decompose the graph G into C5(e) and P2.
If NZ(Y2) 6= ∅, we partition NZ(Y) into Z1 = NZ(Y1) and Z2 = NZ(Y2). We

draw the graph G as an expanded graph on seven expanded vertices X1 =

NX(Y), X
′, Z1 = NZ(Y1), Z2 = NZ(Y2), Z

′, Y1 and Y2. The graph is shown in
Figure 3 (ii). In this case, the graph can be decomposed into C5(e), C3 and
P2.

Case 2. When NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) 6⊆ NZ(Y1).
Let Z1 = NZ(Y1) ∩NZ(Y2), Z2 = NZ(Y1) \NZ(Y2) and Z3 = NZ(Y2) \NZ(Y1).
Then Z ′, Z1, Z2 and Z3 form a partition of Z. The graph can be drawn as an
expanded graph on eight expanded vertices X1 = NX(Y), X

′, Z1, Z2, Z3, Z
′,

Y1 and Y2. The graph is shown in Figure 4 (i). In this case, the graph G can
be decomposed into 2C5(e) and 2P2.

Case 3. When NZ(Y1) ∩NZ(Y2) 6= ∅ and NZ(Y2) ⊆ NZ(Y1).
We draw the graph G as an expanded graph on seven expanded vertices X1 =

NX(Y), X
′, Z1 = NZ(Y2), Z2 = NZ(Y1) \NZ(Y2), Z

′, Y1 and Y2. The graph is
shown in Figure 4 (ii). The graph G can be decomposed into C5(e), C3 and
2P2. �

106 R. Farooq, M. A. Malik, Q. Naureen, S. Pirzada

X1 1

1

Z

Y 2Y

Z X' '

X1

1

1

Z

Y 2Y

Z X' '

2Z

(i) (ii)

Figure 3: Graphs drawn in Case 1 with N(Y1) ∩N(Y2) = ∅

X1

1

1

Z

Y
2Y

Z X' '

2Z
3Z

X1

1

1

Z

Y 2
Y

Z X' '

2Z

(i) (ii)

Figure 4: Graphs drawn in Case 2 and Case 3 with N(Y1) ∩N(Y2) 6= ∅

5 Conclusion

We studied n-vertex tripartite graphs satisfying (1) and (2). We obtained
the nullity set of this class of n-vertex tripartite graphs and characterized
them with nullity n− 4. It will be interesting to consider a more general class
of n-vertex tripartite graphs and to characterize them with their nullity. In
Theorem 9, we characterized those n-vertex tripartite graphs whose nullity is
n− 6 and that satisfy (1), (2) and (9). We are not sure about the converse of
Theorem 9 and it is left as an open problem.

On the nullity of a family of tripartite graphs 107

References

[1] B. Cheng, B. Liu, On the nullity of graphs, El. J. Lin. Algebra 16 (2007) 60–67.
⇒99

[2] L. Collatz, U. Sinogowitz, Spektren endlicher grafen, Abh. Math. Sere. Univ.

Hamburg 21 (1957) 63–77. ⇒97
[3] Y.-Z. Fan, Yue Wang, Yi Wang, A note on the nullity of unicyclic signed graphs,

Linear Algebra Appl. 438 (2013) 1193-1200. ⇒97
[4] Y.-Z. Fan, K.-S. Qian, On the nullity of bipartite graphs, Linear Algebra Appl.

430 (2009) 2943–2949. ⇒97, 99
[5] S. Fiorini, I.Gutman, I. Sciriha, Trees with maximum nullity, Linear Algebra

Appl. 397 (2005) 245–251. ⇒97
[6] S. Hu, T. Xuezhong, B. Liu, On the nullity of bicyclic graphs, Linear Algebra

Appl. 429 (2008) 1387–1391. ⇒97
[7] W. Li, A. Chang, On the trees with maximum nullity, MATCH Commun. Math.

Comput. Chem. 56, 3 (2006) 501-508. ⇒97
[8] W. Li, A. Chang, Describing the nonsingular unicyclic graph, J. Math. Study 4

(2007) 442–445. ⇒97
[9] J. Li, A. Chang, W.C. Shiu, On the nullity of bicyclic graphs, MATCH Commun.

Math. Comput. Chem. 60, 1 (2008) 21–36. ⇒97
[10] S. Pirzada, An Introduction to Graph Theory, Universities Press, Orient Black-

Swan, Hyderabad, India, 2005. ⇒97
[11] T. Xuezhong, B. Liu, On the nullity of unicyclic graphs, Linear Algebra Appl.

408 (2005) 212–220. ⇒97

Received: April 12, 2016 • Revised: May 30, 2016

Acta Universitatis Sapientiae

Informatica
Volume 8, Number 1, 2016

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

László Aszalós, Mária Bakó

Distance-constrained grid colouring . 5

K. R. Udaya Kumar Reddy

A survey of the all-pairs shortest paths problem and its variants in

graphs .16

Imre Kilián

Contralog: a Prolog conform forward-chaining environment and its

application for dynamic programming and natural language parsing

. 41

Sándor Szabó, Bogdán Zaválnij

Edge coloring of graphs, uses, limitation, complexity 63

Gábor Ványi

Improving the effectiveness of FMEA analysis in automotive – a

case study . 82

Rashid Farooq, Mehar Ali Malik, Qudsia Naureen, Shariefuddin Pirzada

On the nullity of a family of tripartite graphs 96

3

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief

László DÁVID

Main Editorial Board

Zoltán KÁSA András KELEMEN Laura NISTOR
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica
Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board

Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Zoltán KÁTAI (Sapientia University, Romania)
Attila KISS (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Shariefudddin PIRZADA (University of Kashmir, India)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086

http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:

Acta Universitatis Sapientiae, Informatica
RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Idea Printing House
Director: Péter Nagy

ISSN 1844-6086

http://www.acta.sapientia.ro

	1 Introduction
	2 Constraint satisfaction problems
	3 Min-conflicts
	4 Discussion
	5 Conclusion and future work
	1 Introduction
	1.1 Motivation
	1.2 Preliminaries and notations

	2 All-pairs shortest paths problem
	2.1 Background
	2.2 Arbitrary weighted graph
	2.2.1 Dense real-weighted graphs
	2.2.2 Dense integer-weighted graphs
	2.2.3 Sparse graphs

	2.3 Arbitrary unweighted graph
	2.3.1 Dense graphs
	2.3.2 Sparse graphs

	2.4 Restricted family of graphs
	2.5 Concluding remarks and open issues of APSP problem

	3 Wiener index or average distance
	3.1 Background
	3.2 Computation of Wiener index or average distance
	3.3 Concluding remarks and open issues of Wiener index or average distance

	4 MAD trees
	4.1 Computation of MAD trees
	4.2 Concluding remarks and open issues of MAD trees

	5 Conclusions
	1 Pro-Contra-Log: a two way street for inference
	2 The Contralog target model
	2.1 Backtracking
	2.2 Facts and goals
	2.3 Interface elements
	2.4 Non-logical means to control inference

	3 Contralog programming examples
	3.1 Pythagoras' triads
	3.2 Dynamic programming: Optimization of matrix chain multiplication
	3.3 Dynamic programming: Floyd-Warshall algorithm

	4 Applying Contralog for ReALIS natural language parsing
	4.1 Prolog target models
	4.2 Inferential target model for parsing

	5 Program development with Contralog
	6 Summary and future work
	1 Introduction
	2 Applications of edge coloring
	3 The gap phenomenon
	4 A complexity result
	1 Introduction
	2 FMEA overview
	3 Creating FMEAs
	3.1 Effect level
	3.2 System FMEA levels
	3.3 Design FMEA levels
	3.4 Cause levels

	4 Increasing review efficiency
	5 Conclusion
	6 Acknowledgements
	1 Introduction
	2 Preliminaries
	3 Main results
	4 Some graphs in Tn with nullity n-6
	5 Conclusion

