
Acta Universitatis Sapientiae

Informatica
Volume 5, Number 1, 2013

Sapientia Hungarian University of Transylvania

Scientia Publishing House

Contents

T. Németh, S. Nagy, Cs. Imreh

Online data clustering algorithms in an RTLS system 5

A. Kovács, N. Tihanyi

Efficient computing of n-dimensional simultaneous Diophantine

approximation problems . 16

A. Járai, G. Kiss

Finding suitable paths for the elliptic curve primality proving

algorithm .35

M. Bashov

Nonexistence of a Kruskal–Katona type theorem for double-sided

shadow minimization in the Boolean cube layer 53

É. Ádámkó, A. Pethő

Location-stamp for GPS coordinates . 63

A. Kovács, K. Szabados

Test software quality issues and connections to international stan-

dards . 77

Zs. Csizmadia, T. Illés, A. Nagy

The s-monotone index selection rule for criss-cross algorithms of

linear complementarity problems . 103

3

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 5–15

Online data clustering algorithms in an

RTLS system

Tamás NÉMETH
University of Szeged

Institute of Informatics
email: tnemeth@inf.u-szeged.hu

Sándor NAGY
Fraunhofer Institut for Integrated

Circuits, Locating and Communication
Systems Department

email:
sandor.nagy@iis.fraunhofer.de

Csanád IMREH
University of Szeged

Institute of Informatics
email: cimreh@inf.u-szeged.hu

Abstract. This paper proposes and evaluates solutions for an online
clustering problem and gives a mathematical model for it. The problem
at hand occurs often in the fusion of data streams for example in real time
locating systems. The goal is to gather as much incoming information
from several sources as possible but also minimize the delay before the
next processing step can be executed. The key characteristic is that the
data is available in a bursty fashion, in the special case of an RTLS
according to the locating cycles. After an introduction of the background
a general mathematical model for the problem is given, and then two
basic algorithms referred to as NWT and CWT are analyzed by the
method of competitive analysis. Each turning out to deliver an optimal
solution under different constraints. Then an experimental evaluation
follows based on a simulation involving the CWT and the algorithm
referred to as VWT. The later is giving a configuration free solution for
the problem.

Computing Classification System 1998: F.1.2

Mathematics Subject Classification 2010: 68W27

Key words and phrases: online algorithms, clustering, locating systems

5

6 T. Németh, S. Nagy, Cs. Imreh

1 Introduction

The problem for this paper emerged in the real time locating system developed
by the Fraunhofer IIS, but it can be generalized. We will do so in the second
section by giving a mathematical model for it. To draw a context around
the problem here we explain where it originates from, and why the specific
constraints are posed.
Real time location systems (RTLS) promise to deliver high precision posi-

tions of objects with manifold applications in transport and logistics, ambi-
ent assisted living, or emergency mission support and also in the entertain-
ment and sports like the Chip-in-the-Ball technologies. The mentioned locat-
ing system of the Fraunhofer IIS is a radio based system working with a local
locating infrastructure using Angle of Arrival (AoA) and Round-Trip-Time
(RTT) measurements to determine the position of objects (see [2] and [3] for
a more detailed description of this RTLS system). In this system the objects
are equipped with tags based on the in-house-developed Wireless Smart Item
platform (WISMIT). These tags periodically broadcast a radio signal to the
infrastructure nodes denoting the beginning of a locating cycle. We will re-
fer to this as a burst. The radio signal carries also user data, aside from tag
identification information: an incremental number identifying the burst, re-
ferred to as burst-id later on, is also included. A set of infrastructure nodes
in proximity of the tag consisting of WISMIT anchors capable of RTT mea-
surements and of Goniometers capable of both RTT and AoA measurements
receive this broadcast and initiate location data acquisition for this tag. The
measured parameters form a so called burst data set which is at first only avail-
able distributed on the infrastructure nodes. After the measurement is done
the individual parts of the burst data set, the data elements are sent over
an Ethernet connection to the central positioning server through the TCP/IP
network stack utilizing UDP as a transport protocol. UDP packets were chosen
in contrast to a TCP stream because of its lower overhead and characteristics:
if a datagram was lost, no additional time is spent for detecting the loss and
retransmitting it. There is also no guaranty for order-reserving delivery.
After receiving sufficiently enough data, ideally the whole burst data set,

the positioning server can determine the position of the object. For this the
raw location data is going through the following algorithmical steps in the
server:

1. Raw data filter

2. Clustering

Online data clustering algorithms in an RTLS system 7

3. Burst filter

4. Position calculation

5. Position filter

Most of the steps are meant for reducing measurement noise and errors.
The focus of this paper lies on the second step: the clustering component.

It is in charge for gathering as much of the burst data set as possible and
forward it as quickly as possible to the burst filtering and position calculation.
For this it has to work in an online manner by clustering the data collected by
the infrastructure nodes. It has also to deal with transmission errors or dis-
turbances like the temporary coverage of an infrastructure node, and network
packet losses and with variable network and processing delays as well. There-
fore the clustering algorithm can not simply wait for the arrival of all elements
of the burst data set, it needs a more sophisticated technique. Thus the goal
of the algorithm is to decide when to pass the collected data to the position
calculation. There are two contradicting objectives which should be satisfied.
First, the positioning server should receive all the available data from the in-
frastructure nodes. Moreover the system is not allowed to wait a long time for
the incoming data, since the delay decreases the relevance of the determined
position. A fairly-good position is better than a position too late. We present
an integrated objective function which considers these goals, and defines this
clustering problem as a maximization problem. Since collecting the data and
the position calculation can be done parallel and independently for several
tags, we suppose that there is only one tag present and the infrastructure
nodes collect data only from this tag. We note that this problem is similar to
the online data acknowledgment problem, where the goal is to determine the
sending time of the acknowledgments (see [1] and [4]). One of the presented
algorithms uses ideas used in the field of data acknowledgment problems.
As next we present the mathematical model of the problem, giving the

objective function and we define competitiveness. Typically, the quality of an
online algorithm is judged using competitive analysis. This method will be
used in Section 3 to analyze the efficiency of our algorithms. We will present
there two analyses: one without constraints on the data arrival times, and one
with constraints to better describe the system behavior and deliver stronger
results.

8 T. Németh, S. Nagy, Cs. Imreh

Figure 1: The clustering of the input signals

2 The mathematical model of the clustering prob-

lem

The input of this clustering problem is a list X: x1, . . . , xn of collected data
elements. We will use the following notation: Burst(xi) denotes the burst id
which identifies to which locating cycle the data belongs to. Node(xi) gives the
infrastructure node which collected the data. Rcpt(xi) is the reception time of
the data. The difference between the reception times of the last and the first
data elements of a burst is called the length of the burst.
We note that in the application the data has further attributes also (e.g.:

AoA values, RTT values) which are substantial for the position calculation,
but are not used in the clustering algorithm. Bj = {xi|Burst(xi) = j} is the
burst data set, B ′

j ⊆ Bj is the subset of the burst data set which is sent into
the positioning. The point of time when the algorithm decides to send B ′

j to
the positioning is denoted by pj (j = 1, . . . , b, where b is the number of bursts).
These sets are presented on Figure 1.
If the infrastructure nodes have different technical properties (position, ac-

curacy) then the collected data can have different importance. Therefore we
assign a weight wk > 0 to the infrastructure node k which describes the im-
portance of the data collected by the node. Without loosing generality we can
assume that w1 = minmk=1wk where m is the number of infrastructure nodes.
To evaluate the algorithms first we have to define an objective function

Online data clustering algorithms in an RTLS system 9

which measures their efficiency. We have to take into account both objectives
of the algorithm: loose minimal amount of data, minimize the delay of starting
the positioning part. To define the objective function we use the following
notations. For each positioning time pj and infrastructure node k let ejk = 1

if node k sends data into the positioning calculation, otherwise let ejk = 0.
Let

rj =
n

max
i=1

{Rcpt(xi)|xi ∈ B ′

j }.

Now we can define the following objective function, which we have to maxi-
mize:

f =

b∑

j=1

m∑

k=1

ejkwk − c

b∑

j=1

(pj − rj).

The first part considers the total importance of the data which are sent to
the positioning server, the second part is the sum of the unnecessary latencies
multiplied by c, the cost of the unity latency. We assume c > 0.
An online algorithm for a maximization problem is ρ-competitive if the

optimal gain is never more than ρ times the gain of the online algorithm.
In a more formal way: for an arbitrary online algorithm A and an input

sequence X the gain of the solution given byA is denoted byA(X). Moreover for
an input sequence X let OPT(X) denote the gain of the optimal offline solution.
Then an online algorithm A is called ρ-competitive if OPT(X) ≤ ρ · A(X) for
any input sequence X.
We note that it would also be possible to define the problem as a minimiza-

tion problem using an objective function which is the sum of the weighted
number of the lost data elements and the latencies. But in this case the opti-
mal offline algorithm has cost 0. This would make it impossible to use com-
petitive analysis to study our algorithm. Therefore we decided to develop the
maximization version of the objective function.

3 Competitive analysis

3.1 Analysis without constraints

First we do not introduce any further constraints on the input sequence X.
For this case we show that no constant competitive algorithm exists as the
following lower bound dictates.

10 T. Németh, S. Nagy, Cs. Imreh

Theorem 1 There exists no algorithm which has smaller competitive ratio

than
1

w1

m∑

k=1

wk ≥ m.

Proof. Consider the following sequence. Let the first data element with burst
id 1, and infrastructure node 1 arrive at time 0. If the online algorithm chooses
p1 ≥

w1

c , then the sequence is ended, and the online gain is non-positive, the

offline algorithm can use p
opt
1 = 0, and its gain is w1. Therefore in this case

the algorithm is not competitive. Now suppose that p1 < w1

c . Then m − 1

further data elements arrive each of them having burst id 1 and infrastructure
node ids 2, . . . ,m at time w1

c . In this case the online algorithm has a gain of at

most w1 and the optimal offline algorithm uses p
opt
1 = w1

c , and is
∑m

k=1wk.
�

3.1.1 No Waiting Time Algorithm

The previous lower bound shows that in the worst case data arrives after
sending the data to the positioning server. Therefore the online algorithm
has no reason to wait for further data after the arrival of the first. The No
Waiting Time Algorithm (NWT in short) follows this idea, it sends the first
data element for each burst id into the positioning server immediately after it
arrives. The competitive ratio of this algorithm is determined below.

Theorem 2 The competitive ratio of NWT is
1

w1

m∑

k=1

wk.

Proof. Consider an arbitrary sequence which contains b bursts. For each burst
the algorithm gains the value of the first data element, therefore its gain is
at least b · w1. On the other hand the optimal gain cannot be more than
b ·

∑m
k=1wk. �

Corollary 3 NWT achieves the smallest possible competitive ratio in the gen-
eral model.

3.2 Latency limited analysis

In this subsection we consider restricted inputs better modeling the system
functions. We suppose that the difference among the arrivals of the data ele-
ments with the same burst id (the length of the burst) cannot be greater than

Online data clustering algorithms in an RTLS system 11

a given value d. In this subsection we will assume that w1

c > d, otherwise the
lower bound proof of the general case also works in this case and we obtain
that NWT is an algorithm with the smallest possible competitive ratio.

Theorem 4 There exists no algorithm which has smaller competitive ratio

than min

{
w1

w1 − c · d
,

1

w1

n∑

k=1

wk

}

.

Proof. Consider the following sequence. Let the first data element with burst
id 1, and infrastructure node 1 arrive at time 0. If the online algorithm chooses
p1 ≥ d, then the sequence is ended, and the online gain is w1−c·p1 ≤ w1−c·d,
the offline algorithm can use p

opt
1 = 0, and its gain is w1. Therefore in this

case the algorithm is not better than w1

w1−c·d -competitive. Now suppose that
p1 < d. Then m − 1 further data elements arrive each having burst id 1 and
infrastructure node ids 2, . . . ,m at time d. In this case the online algorithm
has a total gain of at most w1 and the optimal offline algorithm uses popt

1 = d,
and its gain is

∑m
k=1wk. �

The Constant Waiting Time algorithm (CWT) waits time d after the arrival
of the first data element for each burst id before sending the data to the
location server.

Theorem 5 The competitive ratio of CWT is
w1

w1 − c · d
.

Proof. Consider an arbitrary sequence X which contains b bursts. By the
limited latency constraint it follows that for each burst id the algorithm collects
all data. Therefore its total gain is at least G− b · c · d, where G is the sum of
the gains of all the incoming data. On the other hand the optimal gain cannot
be more than G, and G ≥ b ·w1. Therefore the competitive ratio of CWT is
at most

G

G− b · c · d
≤

w1

w1 − c · d
.

�

Corollary 6 If
w1

w1 − c · d
≤

1

w1

m∑

k=1

wi then CWT achieves the smallest pos-

sible competitive ratio with the latency constraint, otherwise NWT achieves the
smallest possible competitive ratio.

12 T. Németh, S. Nagy, Cs. Imreh

4 Experimental evaluation

As it is shown in Section 3 some very simple algorithm can achieve the best
possible competitive ratio but its efficiency depends on the knowledge of the
parameter d. In this section we first introduce a more sophisticated algorithm
trying to get knowledge about d, and later present an empirical analysis which
compares the algorithms in the average case.

4.1 Variable Waiting Time Algorithm

In this algorithm each burst id j has a starting time denoted by S(j) which is
the reception time of the first data element having burst id j. Furthermore each
burst has a datasetDS(j) which contains the collected data for the burst. (This
will be the set B ′

j after releasing it.) The algorithm uses a waiting time variable
t which is the time while the algorithm waits data of burst j. The algorithm
tries to learn the best value of this variable. Algorithms which use similar
parameter learning idea are presented for the online data acknowledgment
problem and for the scheduling problem with rejection in [5] and [6]. The
algorithm also uses two other parameters DEC and INC, the first gives a lower
bound on the possible change of the variable W in the descending direction,
INC is a security distance which gets added additionally if the value of W
has to be increased. MEM is a parameter which determines how long the
algorithm should keep record about recent bursts.
Algorithm VWT uses the following rules to send data to the positioning

server:

• If the actual time is S(j)+W and DS(j) is not closed then the algorithm
closes set DS(j). It notes that its closing time is S(j) +W, and it sends
the data to the positioning server. Furthermore let

PD(j) = max{0,
MEM−1

min
a=0

{pj−a − rj−a}− INC}

be the minimal possible decrease amount for W, respecting also INC

security time, so that the data of the last MEM bursts would have been
left complete. So if PD(j) ≥ DEC, then W is decreased by PD(j).

• If DS(j) collects the data at time t from all of the infrastructure nodes
the algorithm closes set DS(j). It notes that its closing time is t, and it
sends the data to the positioning server. Note that this might happen

Online data clustering algorithms in an RTLS system 13

only in the case when t ≤ S(j) +W. A possible decrease of W can also
happen analogue to the first point.

The algorithm uses the following rules to handle the received data xi.

• If an xi which belongs to burst j arrives at time t and DS(j) is not closed,
then it extends it with the new data element, and checks whether it is
the last missing infrastructure node.

• IfDS(j) is already closed with closing time at rj thenW := t−S(j)+INC.

4.2 Empirical analysis

To analyse the algorithms in average case we used the simulation tool devel-
oped at the Fraunhofer Institute. In this simulation tool a virtual object with
a tag is moving on a configurable trajectory. It generates RTT and AoA data
for 3 Goniometers (collecting both RTT and AoA data) and 8 anchors (col-
lecting only RTT data). The following properties of the system are determined
randomly in our simulation:

• each data element sent by the virtual infrastructure nodes is lost with a
given probability (it is defined separately for the RTT and AoA data)

• the length of the time span between two bursts and between the data
elements of a burst are both normally distributed.

We generated the following 6 inputs. In tests A and B the number of bursts
was 68 and 262 and during these bursts 952 and 3668 data elements arrived,
the average length of the bursts was 2.04 and 2.6. In tests C and D we studied
slightly shorter bursts, the average length was 0.99 and 1.06. In test C we used
131 bursts with 1800 data elements, in test D 138 bursts was used with 1932
data elements. Finally in tests E and F much longer bursts were used with
average length 34.07 and 35.9. Test E was smaller it contained 127 bursts with
1742 incoming data elements, test F was large it contained 879 bursts with
12079 data elements.
We considered 3 constant waiting time algorithms for the solution of the

problem. CWT(1) used a smaller constant which is close to the average burst
lengths of C and D, CWT(2) used a larger constant which was still smaller
then the average length in tests E and F, and CWT(3) used a constant which
was close to the average lengths in tests E and F. In Table 1 we collected the
ratios which were received by dividing the gain of the algorithm by the optimal

14 T. Németh, S. Nagy, Cs. Imreh

gain. We used the values wi = 0.07 for each i and c = 0.01 in the objective
function.

Test A Test B Test C Test D Test E Test F

CWT(1) 0.930 0.883 0.967 0.964 0.142 0.194

CWT(2) 0.730 0.736 0.715 0.721 0.794 0.759

CWT(3) 0.660 0.666 0.643 0.651 0.976 0.936

VWT 0.976 0.985 0.978 0.984 0.985 0.914

Table 1: The test results

Based on the above results we can draw the following conclusions:

• It is clear that the efficiency of the CWT algorithms depends highly on
the average length of the bursts. CTW(1) gives good results for tests A,
B, C, D but has extremely poor performance on tests E and F. CWT(2)
and CWT(3) gave good results on tests E and F but their results were
weak on the other tests. This means that these algorithms can be used
only in the cases where we have some a priori information about the
data. But we note that in these cases they work well: their performance
is better than 0.9.

• The VWT algorithm performs also well with unknown average burst-
lengths, it delivers good results in each testcase. The minimal ratio of
the algorithms to the optimal gain is 0.914, the average ratio is 0.97.

5 Summary and open questions

In this paper we defined an online optimization model for the clustering prob-
lem which appears in real time location systems. We presented optimal online
algorithms in the sense that they achieve the smallest possible competitive ra-
tio and a more sophisticated algorithm which is designed to learn the average
length of the bursts. We showed by an empirical analysis that this learning
algorithm is useful if we have no a priori information about the data.
There are some further interesting questions related to our problem. It would

be interesting to study other, more difficult objective functions. Furthermore,
in this model we supposed that at the arrival of the data element we receive
the id of the burst where the data element was sent. In some application we
do not receive this information, it would be interesting to study this scenario
as well.

Online data clustering algorithms in an RTLS system 15

Acknowledgement

This research was partially supported by the TÁMOP-4.2.1/B-09/1/KONV-
2010-0005 program of the Hungarian National Development Agency. Cs. Imreh
was supported by the Alexander von Humboldt Foundation, completed most
of this work at the Humboldt University at Berlin, and is grateful to Professor
Suzanne Albers for the kind hospitality. Tamás Németh completed some of this
work while visiting the Fraunhofer Institute in Nuremberg, and is grateful for
the kind hospitality.

References

[1] S. Albers,H. Bals, Dynamic TCP acknowledgement: Penalizing long delays,
SIAM J. Discrete Math. 19, 4 (2005) 938–951. ⇒7

[2] M. Brugger, T. Christ, F. Kemeth, S. Nagy, M. Schaefer, M. M. Pietrzyk, The
FMCW technology-based indoor localization system, Proc. Ubiquitous Position-
ing Indoor Navigation and Location Based Service (UPINLBS), Helsinki, Finn-
land, 2010, pp. 1–6. ⇒6

[3] M. Brugger, F. Kemeth, Locating rate adaptation by evaluating movement spe-
cific parameters, Proc. 2010 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), Anaheim, USA, 2010, pp. 127–133. ⇒6

[4] D. R. Dooly, S. A. Goldman, S. D. Scott, On-line analysis of the TCP acknowl-
edgment delay problem, J. ACM 48, 2 (2001) 243–273. ⇒7

[5] Cs. Imreh, T. Németh, Parameter learning algorithm for the online data ac-
knowledgment problem, Optim. Methods Softw., 26, 3 (2011) 397–404. ⇒12

[6] T. Németh, Cs. Imreh, Parameter learning online algorithm for multiprocessor
scheduling with rejection, Acta Cybernet., 19, 1 (2009) 125–133. ⇒12

Received: March 8, 2013 • Revised: May 14, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 16–34

Efficient computing of n-dimensional

simultaneous Diophantine approximation

problems

Attila KOVÁCS
Eötvös Loránd University

Faculty of Informatics
email:

attila.kovacs@compalg.inf.elte.hu

Norbert TIHANYI
Eötvös Loránd University

Faculty of Informatics
email:

ntihanyi@compalg.inf.elte.hu

Abstract. In this paper we consider two algorithmic problems of simul-
taneous Diophantine approximations. The first algorithm produces a full
solution set for approximating an irrational number with rationals with
common denominators from a given interval. The second one aims at
finding as many simultaneous solutions as possible in a given time unit.
All the presented algorithms are implemented, tested and the PariGP
version made publicly available.

1 Introduction

1.1 The problem statement

Rational approximation, or alternatively, Diophantine approximation is very
important in many fields of mathematics and computer science. Archimedes
approximated the irrational number π with 22/7. Long before Archimedes, an-
cient astronomers in Egypt, Babylonia, India and China used rational approx-
imations. While the work of John Wallis (1616–1703) and Christiaan Huygens
(1629–1695) established the field of continued fractions, it began to blossom

Computing Classification System 1998: G.2.0
Mathematics Subject Classification 2010: 68R01, 11J68
Key words and phrases: Diophantine approximation

16

Simultaneous Diophantine approximations 17

when Leonhard Euler (1707–1783), Johann Heinrich Lambert (1728–1777) and
Joseph Louis Lagrange (1736–1813) embraced the topic. In the 1840s, Joseph
Liouville (1809–1882) obtained an important result on general algebraic num-
bers: if α is an irrational algebraic number of degree n > 0 over the rational
numbers, then there exists a constant c(α) > 0 such that

∣

∣α−
p

q

∣

∣ >
c(α)

qn

holds for all integers p and q > 0. This result allowed him to produce the first
proven examples of transcendental numbers. In 1891 Adolf Hurwitz (1859–1919)
proved that for each irrational α infinitely many pairs (p, q) of integers satisfy

∣

∣α−
p

q

∣

∣ <
1

q2
√
5
,

but there are some irrational numbers β for which at most finitely many pairs
satisfy

∣

∣β−
p

q

∣

∣ <
1

q2+γ
√
5+ µ

no matter how small the positive increments γ and µ are.
The idea can be generalized to simultaneous approximation. Simultane-

ous diophantine approximation originally means that for given real numbers
α1, α2, . . . , αn find p1, p2, . . . , pn, q ∈ Z such that

∣

∣αi −
pi

q

∣

∣

is “small” for all i, and q is “not too large”.
For a given real α let us denote the nearest integer distance function by ‖.‖,

that is, ‖α‖ = min{|α − j|, j ∈ Z}. Then, simultaneous approximation can be
interpreted as minimizing

max {‖qα1‖, . . . , ‖qαn‖} .

In 1842 Peter Gustav L. Dirichlet (1805–1859) showed that there exist simulta-
neous Diophantine approximations with absolute error bound q−(1+1/n). To be
more precise, he showed that there are infinitely many approximations satis-
fying

|q · αi − pi| <
1

q1/n
(1)

18 A. Kovács, N. Tihanyi

for all 1 ≤ i ≤ n. Unfortunately, no polynomial algorithm is known for the
simultaneous Diophantine approximation problem. However, due to the L3 al-
gorithm of Lenstra, Lenstra and Lovász, if α1, α2, . . . , αn are irrationals and
0 < ε < 1 then there is a polynomial time algorithm to compute integers
p1, p2, . . . , pn, q ∈ Z such that

1 ≤ q ≤ 2n(n+1)/4ε−n and |q · αi − pi| < ε

for all 1 ≤ i ≤ n (see [10]).
Lagarias [7, 8] presented many results concerning the best simultaneous ap-

proximations. Szekeres and T. Sós [12] analyzed the signatures of the best
approximation vectors. Kim et al. [4] discussed rational approximations to
pairs of irrational numbers which are linearly independent over the rationals
and applications to the theory of dynamical systems. Armknecht et al. [1]
used the inhomogeneous simultaneous approximation problem for designing
cryptographic schemes. Lagarias [9] discussed the computational complexity of
Diophantine approximation problems, which, depending on the specification,
varies from polynomial-time to NP-complete. Frank and Tardos [2] developed
a general method in combinatorial optimization using simultaneous Diophan-
tine approximations which could transform some polynomial time algorithms
into strongly polynomial.

In this paper we focus on two algorithmic problems. Consider the set of
irrationals Υ = {α1, α2, . . . , αn}. Let ε > 0 be real and 1 ≤ a ≤ b be natural
numbers. Furthermore, let us define the set

Ω(Υ, ε, a, b) = {k ∈ N : a ≤ k ≤ b, ‖kαi‖ < ε for all αi ∈ Υ} . (2)

For given Υ, ε and a, b

1. determine all the elements of Ω(Υ, ε, a, b),

2. determine as many elements of Ω(Υ, ε, a, b) as possible in a given time
unit

efficiently. We refer to the first problem as the “all-elements simultaneous Dio-
phantine approximation problem”. In case of |Υ| = n ≥ 1 we call it an n-
dimensional simultaneous approximation. The second problem is referred to as
the “approximating as many elements as possible” problem.

Challenges:

1. Determine all elements of

Ω
(

{
√
2}, 10−17, 1020, 1021

)

. (3)

Simultaneous Diophantine approximations 19

2. Determine as many elements of

Ω

({
log(p)

log(2)
, p prime , 3 ≤ p ≤ 19

}
, 10−2, 1, 1018

)

(4)

as possible in a given time unit.

1.2 The continued fraction approach

It is well-known that continued fractions are one of the most effective tools
of rational approximation to a real number. Simple continued fractions are
expressions of the form

a0 +
1

a1 +
1

a2 + · · ·
where ai are integer numbers with a1, a2, . . . > 0. It is called finite if it termi-
nates, and infinite otherwise. These continued fractions are usually represented
in bracket form [a0, a1, . . . , am, . . .], i.e.

C0 = [a0] = a0, C1 = [a0, a1] = a0+
1

a1
, C2 = [a0, a1, a2] = a0+

1

a1 +
1

a2

, . . .

where Cm are called convergents. Clearly, the convergents Cm represent some
rational numbers pm/qm. An infinite continued fraction [a0, a1, a2, . . .] is called
convergent if its sequence of convergents Cm converges in the usual sense, i.e.
the limit

α = lim
m→∞

Cm = lim
m→∞

[a0, a1, . . . , am]

exists. In this case we say that the continued fraction represents the real number
α. The simple continued fraction expansion of α ∈ R is infinite if and only if α
is irrational. The convergents Cm are the best rational approximations in the
following sense:

Lemma 1 No better rational approximation exists to the irrational number α

with smaller denominator than the convergents Cm = pm/qm.

Example 2 The simple continued fraction approximation for
√
2 is [1, 2, 2, . . .],

the sequence of the convergents is

1,
3

2
,
7

5
,
17

12
,
41

29
,
99

70
,
239

169
,
577

408
,
1393

985
,
3363

2378
,
8119

5741
, . . .

20 A. Kovács, N. Tihanyi

Among all fractions with denominator at most 29, the fraction 41/29 is the
closest to

√
2, among all fractions with denominator at most 70, the fraction

99/70 is closest to
√
2, and so on.

Every convergent is a best rational approximation, but these are not all of the
best rational approximations. Fractions of the form

pm−1 + jpm

qm−1 + jqm
(1 ≤ j ≤ am+2 − 1),

are called intermediate convergents or semi-convergents. To get every rational
approximation between two consecutive pm/qm and pm+1/qm+1, we have to
calculate the intermediate convergents.

Example 2 (cont.) The missing intermediate convergents of Example 2 are

4

3
,
10

7
,
24

17
,
58

41
,
140

99
,
338

239
,
816

577
,
1970

1393
,
4756

3363
, . . .

The approximations |α − p/q| above are also known as “best rational approx-
imations of the first kind”. However, sometimes we are interested in the ap-
proximations |α · q− p|. This is called the approximation of a second kind.

Lemma 3 [3] A rational number p/q, which is not an integer, is a convergent
of a real number α if and only if it is a best approximation of the second kind
of α.

In 1997 Clark Kimberling proved the following result regarding intermediate
convergents [5]:

Lemma 4 The best lower (upper) approximates to a positive irrational number
α are the even-indexed (odd-indexed) intermediate convergents.

Example 2 (cont.) In order to generate many integers q that satisfy

‖q ·
√
2‖ < 10−5 (5)

one can apply the theory of continued fractions, especially convergents. If qm

is the first integer that satisfies ‖qm ·
√
2‖ < 10−5 in the continued fraction

expansion of
√
2, then all convergents with denominator larger than qm will

satisfy equation (5).

Simultaneous Diophantine approximations 21

Example 5 Consider Challenge 1 stated in (3). There are only 3 convergents
of

√
2 where 1020 < qm < 1021. They are

233806732499933208099

165326326037771920630
,

564459384575477049359

399133058537705128729
,

1362725501650887306817

963592443113182178088
.

With intermediate convergents we get 2 more solutions. Hence, with the theory
of continued fractions we are able to find only 5 appropriate integers. One may
ask how many elements are in the set Ω in (3)?

Hermann Weyl (1855–1955) and Waclaw Sierpiński (1882–1969) proved in 1910
that if α ∈ R \ Q then α, 2α, 3α, . . . (mod 1) is uniformly distributed on the
unit interval. From this theorem it immediately follows that there are approx-
imately 2(b−a)ε appropriate integers in the [a, b] interval. In Challenge 1 we
expect 2(1021 − 1020) · 10−17 = 18000 (±1) integers. This is by several orders
of magnitude more than what we were able to obtain by continued fractions.

1.3 The Lenstra–Lenstra–Lovász approach

We have seen in the previous section that Challenge 1 is unsolvable with the
theory of continued fractions. Challenge 2 is a 7-dimensional simultaneous
approximation problem and is even more beyond the potentials of continued
fractions. Although there is not known polynomial-time algorithm that is able
to solve the Dirichlet type simultaneous Diophantine approximation problem,
there exists an algorithm that can be useful for similar problems. The Lenstra–
Lenstra–Lovász basis reduction algorithm (L3) is a polynomial-time algorithm
that finds a reduced basis in a lattice [10]. The algorithm can be applied to
solve simultaneous Diophantine approximation with an extra condition.

Lemma 6 There exists a polynomial-time algorithm for the given irrationals
α1, α2, . . . , αn and 0 < ε < 1 that can compute the integers p1, . . . , pn and q

such that
∣

∣αi −
pi

q

∣

∣ <
ε

q
(6)

and
0 < q ≤ βn(n+1)/4ε−n

hold for all 1 ≤ i ≤ n, where β is an appropriate reduction parameter.

The extra condition is the bound 0 < q ≤ βn(n+1)/4ε−n.

22 A. Kovács, N. Tihanyi

In one-dimension the L3 algorithm provides exactly the continued fraction
approach discussed in the previous section, hence L3 is not an effective tool
for answering Challenge 1. And what about the multidimensional case like
Challenge 2?

Let α1, α2, . . . , αn be irrational numbers and let us approximate them with
rationals admitting an ε > 0 error. Let X = βn(n+1)/4ε−n and let the matrix A

be the following:

A =

1 0 0 . . . 0

α1X X 0 . . . 0

α2X 0 X . . . 0
...

...

αnX 0 0 . . . X

.

Applying the L3 algorithm for A, the first column of the resulting matrix
contains the vector [q, p1, p2, p3, . . . , pn]

T which satisfies (6).

Let us see how the L3 algorithm works in dimension 7. Let αi =
log(pi+1)

log(2)

where pi denotes the i-th prime for 1 ≤ i ≤ 7, and let ε = 0.01. We are looking
for an integer q ≤ 214 · 1007 that satisfies ‖q ·αi‖ < ε for all i. Applying the L3

algorithm we got q = 1325886000944418. It is easy to verify that ‖qαi‖ < 0.01

holds for all 1 ≤ i ≤ 7.
The L3 algorithm can also be applied in higher dimensions, however, there are

some cases where the algorithm can not be used efficiently. The real drawback
of the method for our purposes is that it is inappropriate for finding all or
many different solutions q in an arbitrary interval. We note that sometimes
one can find a few more solutions with a different choice of β (but not much
more).

It can be concluded that the apparatus of the continued fractions and the L3

algorithm is not appropriate for solving Challenge 1 and Challenge 2 problems.
In this paper we present new methods that can be used to solve these kinds
of problems efficiently. All the algorithms presented in this paper were imple-
mented and tested in PARI/GP 2.5.3 with an extension of GNU MP 5.0.1. The
experimenting environment was an Intel R© Core i5-2450M with Sandy Bridge
architecture. The code can be downloaded from the project homepage1.

1http://www.riemann-siegel.com/

Simultaneous Diophantine approximations 23

2 Approximation in the one-dimensional case

2.1 “All-elements” approximation

In this section we present how to calculate all the elements of Ω(Υ, ε, a, b)

where Υ = {α}.
For a given Ω let k : {1, 2, . . . , |Ω|} → Ω monotonically increasing, so ki

denotes the ith integer in Ω. Let us define the set

∆Ω = {kn+1 − kn : 1 ≤ n ≤ |Ω|− 1}.

The set ∆Ω contains all possible step-sizes between two consecutive ki’s.

Theorem 7 |∆Ω| ≤ 3.

Proof. The proof has two parts. In the first step we construct all the possible
three elements of ∆Ω and in the second step we show that there is no more.
For the given irrational α and an arbitrary m ∈ N let

〈m〉 =
{
‖αm‖ if αm− ‖αm‖ ∈ N ,

−‖αm‖ if αm+ ‖αm‖ ∈ N .

Let us furthermore define the following open intervals:

A = (−2ε,−ε), B = (−ε, 0), C = (0, ε), D = (ε, 2ε) . (7)

Let m1 be the smallest positive integer that satisfies 〈m1〉 ∈ C ∪ D, let
m2 be the the smallest positive integer that satisfies 〈m2〉 ∈ A ∪ B and let
m3 = m1 +m2.

The first part of the proof is to show that there is always at least one integer
(m1,m2 or m3) that adding to an arbitrary ki ∈ Ω always produces a new
integer kj ∈ Ω. Clearly, 〈ki〉 ∈ B ∪ C for all ki. Let us see the following cases:

〈ki〉 ∈ B :
If 〈m1〉 ∈ C, 〈m2〉 ∈ A ∪ B then 〈ki +m1〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ A∪B.
If 〈ki + (m1 +m2)〉 ∈ A then 〈ki + (m1 +m2) −m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ B and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ B and 〈m1+m2〉 ∈ D then 〈ki+(m1+m2)〉 ∈ C∪D.
If 〈ki + (m1 +m2)〉 ∈ D then 〈ki + (m1 +m2) −m1〉 ∈ B ∪ C.

24 A. Kovács, N. Tihanyi

〈ki〉 ∈ C :
If 〈m1〉 ∈ C ∪D, 〈m2〉 ∈ B then 〈ki +m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ C, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ C, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ A then 〈ki+(m1+m2)〉 ∈ A∪B.
If 〈ki + (m1 +m2)〉 ∈ A then 〈ki + (m1 +m2) −m2〉 ∈ B ∪ C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ B then 〈ki+(m1+m2)〉 ∈ B∪C.

If 〈m1〉 ∈ D, 〈m2〉 ∈ A and 〈m1+m2〉 ∈ C then 〈ki+(m1+m2)〉 ∈ C∪D.
If 〈ki + (m1 +m2)〉 ∈ D then 〈ki + (m1 +m2) −m1〉 ∈ B ∪ C.

Let now X = ∆Ω \ {m1,m2,m3}. We claim that X = ∅. Suppose otherwise,
and let j be the smallest index with m = kj+1 − kj ∈ X. Clearly, 〈m〉 ∈
A∪B∪C∪D. We can observe as well that for all m ∈ N, ki ∈ Ω, 〈ki+m〉 ∈ B∪C
implies 〈m〉 ∈ A ∪ B ∪ C ∪D. Then it is easy to see that

• j > 1, and ki’s are integer linear combinations of m1 and m2 for all i ≤ j,

• m1,m2 < m < m1 +m2,

• 〈m〉 ∈ A ∪D.

If 〈m〉 ∈ A then 〈m−m2〉 ∈ B ∪ C, which contradicts the mimimality of j. In
the same way, if 〈m〉 ∈ D then 〈m − m1〉 ∈ B ∪ C, which is a contradiction
again. Hence, such an m does not exist. The proof is complete. �

Finding the integers m1 and m2 can be done very effectively with the the-
ory of intermediate convergents. It was already discussed that intermediate
convergents of an irrational α always produce the best upper and lower ap-
proximations to α, so m1 and m2 must be intermediate convergents.

Example 5 (cont.) Applying the FindMMM algorithm (Algorithm 1) we
have the values
m1 = 59341817924539925,
m2 = 24580185800219268,
m3 = 83922003724759193.
After the precalculation of m1 and m2 it is very easy to compute every ki
between 1020 and 1021. First we have to find an intermediate convergent between
1020 and 1021. It can be done in polynomial time with the theory of continued
fractions (e.g: 233806732499933208099). After that we can add, subtract m1,
m2 or m3 until we reach the bounds of the interval. The Weyl equidistribution
theorem predicts 18000 integers that solve (3). Applying Challenge 1 Solver

Simultaneous Diophantine approximations 25

algorithm (Algorithm 2) we found exactly 18 000 integers. The precalculation
and the computation of all ki values took only 31 ms.

Algorithm 1 FindMMM

Description:
The algorithm is based on Theorem 7. The algorithm finds the smallest m1, m2

and m3 integers such that 0 < 〈m1〉 < 2ε, −2ε < 〈m2〉 < 0. The output of the
algorithm is ∆Ω = {m1,m2,m1 +m2}. The main while loop in this algorithm
(from line 5 to 15) goes through all intermediate convergents to find m1 and
m2. The theory of intermediate convergents ensures that m1,m2 ∈ qi where
qi is the ith intermediate convergent. When m1 and m2 are found the while
loop terminates and the algorithm returns m1,m2 and m1 +m2 in ascending
order.

Precondition: α ∈ R \Q, α > ε > 0.

1: procedure FindMMM(α, ε)
2: i← 0

3: m1 ← 0

4: m2 ← 0

5: while m1 = 0 or m2 = 0 do
6: i← i+ 1

7: qi ← ith intermediate convergents of α
8: k← Frac(qi · α) ⊲ Fractional part of qi · α
9: if m1 = 0 and k < 2ε then

10: m1 ← qi

11: end if
12: if m2 = 0 and k > 1− 2ε then
13: m2 ← qi

14: end if
15: end while
16: Return(min(m1,m2),max(m1,m2),m1 +m2)
17: end procedure

26 A. Kovács, N. Tihanyi

Algorithm 2 Challenge 1 Solver
Description:
The algorithm solves Challenge 1 (see (3)). Line 5 calls the FindMMM algorithm to
determine ∆Ω. With the theory of continued fractions line 6 finds an integer k ∈ Ω. In
the first while loop (lines 9−18) the appropriate mi is subtracted from k to generate
a new integer ki ∈ Ω. The process is repeated until the lower bound A of the interval
is reached. In the second while loop (lines 20− 29) the appropriate mi is added to k

generating ki ∈ Ω. The process is repeated until the upper bound of the interval B is
reached. This method produces all the 18 000 integers that satisfy Challenge 1.

1: x←
√
2

2: ε← 10−17

3: A← 1020

4: B← 1021

5: v← FindMMM(x, ε)

6: k← Find qx in the interval [A,B] where Frac(qx · x) < ε

7: ktemp← k

8: print(k)

9: while k > A do
10: for i = 1→ 3 do
11: ok← Frac((k− v[i]) · x)
12: if (ok < ε) or (ok > 1− ε) then k← k− v[i]

13: if k > A then print(k)

14: end if
15: break ⊲ Leave the for loop
16: end if
17: end for
18: end while
19: k← ktemp

20: while k < B do
21: for i = 1→ 3 do
22: ok← Frac((k+ v[i]) · x)
23: if (ok < ε) or (ok > 1− ε) then k← k+ v[i]

24: if k < B then print(k)

25: end if
26: break ⊲ Leave the for loop
27: end if
28: end for
29: end while

Simultaneous Diophantine approximations 27

2.2 “Many elements” approximation

In some cases it is not necessary to find all the ki elements of Ω, rather it is
enough to find as much as possible within a given time unit. Then, the following
procedure works:

Find the smallest integer x that satisfies 0 < 〈x〉 < ε and find the smallest
integer y that satisfies −ε < 〈y〉 < 0. Using the notations (7) it is easy to see
that if 〈ki〉 ∈ B and 〈x〉 ∈ C then 〈ki+x〉 ∈ B∪C. In the same way, if 〈ki〉 ∈ C

and 〈y〉 ∈ B then 〈ki + y〉 ∈ B ∪ C. Only with these two integers it is always
possible to produce a subset of Ω.

Example 5 (cont.) If we want to determine just “many” elements of Ω, the
previous method generates 12945 integers within 15 ms.

3 Approximations for the multi-dimensional case

3.1 “Many elements” approximation

Calculating all-elements of Ω seems to be hard in higher dimensions. However,
we can generalize our one dimensional method to find “many” q ∈ Ω integers
recursively. The algorithm is based on the following lemma:

Lemma 8 Let the irrationals α1, α2, . . . , αn and the real ε > 0 be given. Then
there is a set Γn with 2n elements with the following property: if q ∈ Ω then
q+ γ ∈ Ω for some γ ∈ Γn.

Proof. Let q ∈ Ω be given. Let us define an n-dimensional binary vector b

associated with q in the following way:

bi =

{
1 if qαi − ‖qαi‖ ∈ N ,

0 if qαi + ‖qαi‖ ∈ N .
(8)

Let Γn be the set for which

1. γ ∈ Γn implies ‖qαi‖ < ε for all 1 ≤ i ≤ n,

2. all the associated binary representations by (8) are different.

Then, for a given q ∈ Ω there exists a γ ∈ Γn such that q+ γ ∈ Ω, e.g. when
their associated binary representations are (1’s binary) complements. Clearly,
|Γn| = 2n. The proof is finished. �

28 A. Kovács, N. Tihanyi

356205059916 3487229338057 3565485794412 3921690854328 4576624903864
5800642344603 7056176493393 7134432949748 7490638009664 9054007777845
10977867347721 11591199235356 11889764427290 12324225943561 15811455281618
16900850847425 17257055907341 18046611831809 18152923635291 18647375728749
18725632185104 19081837245020 19380402436954 19814863953225 20686645377416
20960788735295 21721870790627 22050020503416 22945888231366 23302093291282
23957027340818 25181044781557 25537249841473 25822432016319 27522513135230
27878718195146 28790615274715 29102735635885 29703499532825 31938492285330
32712306129043 35925048224463 38160204774654 39113548572900 39113712370586
40202944138707 41949469020031 42383930536302 42438100688898 44262882026577
44423200184969 44619087086493 44917652278427 47693582148371 51437938314147
51794143374063 52092708565997 56669333469861 58494114807540 59583346575661
60430542368111 62415805661868 62714370853802 63070575913718 65007167271975
65305732463909 65383988920264 66992266768046 67564975317859 68559097897151
68871218258321 75394965654965 76540726639349 76718061327901 76975188155620
79615221701227 79971426761143 81850378251418 82152413158738 84031364649013
84387569708929 87953055503341 88607825755191 88686082211546 91522002658677
91562625996499 92173311549603 95131573151835 95443693513005 96098463764855
98618802489892 98697058946247 100932215496438 103273520052425 104419444834495
105152471542700 107689663000211 112821979923728 119085139131729 121320131884234
140045764069338 140401969129254 143970916284590 147101940562731 151379836476975
153024924062435 156512153400492 161661323056483 164002791410156 170838495370284
175415120274148 179814246691774 183383193847110 189974502767900 204205735548863
208621878496649 208998700144938 261026707423816 266621541210731 269101092800260
269457297860176 299828135635546 305300628267360 320949406326919 331272339625104
382947603204990 408250989141648 616256074389738

Table 1: The result of the precalculation for solving Challenge 2

Remark 9 Computing the appropriate γ ∈ Γn for a given q ∈ Ω is not nec-
essarily unique.

Corollary 10 Remember the first dimension case: For all m ∈ N, q ∈ Ω,
〈q+m〉 ∈ B ∪ C implies that 〈m〉 ∈ A ∪ B ∪ C ∪D. We can generalize this to
higher dimensions. Let q ∈ Ω and m ∈ N be given. Then q +m ∈ Ω implies
‖m · αi‖ ∈ A ∪ B ∪ C ∪D for all 1 ≤ i ≤ n.

Unfortunately, the precalculation of the 2n integers is in general computation-
ally expensive. However, there are several tricks based upon Lemma 8 that can
be applied to make the generation more efficient.

Example 5 (cont.) In Challenge 2 the precalculation of the 27 = 128 inte-
gers took approximately 6.14 sec on our architecture. Table 1 shows the result.
Applying the Challenge 2 Solver we were able to produce 120852 integers in
Ω within 26.8 sec.

Simultaneous Diophantine approximations 29

Algorithm 3 Challange 2 Solver

Description:
The algorithm answers Challenge 2 (see (4)). Line 5 calls the Precalc al-
gorithm in order to determine the 2n integers. The while loop generates a
new integer in Ω using the precalculated ones. The method produces 120 852

integers that satisfy Challenge 2.

1: n← 7

2: X← log(p)
log(2)

, p prime , 3 ≤ p ≤ 19

3: ε← 0.01

4: B← 1018

5: v← Precalc(n, ε, X, 212)
6: k← 0

7: while k < B do
8: for i = 1→ length(v) do
9: t← true

10: for j = 1→ n do
11: ok← Frac((k+ v[i]) · X[j])
12: if (ok > ε) and (ok < 1− ε) then
13: t← false
14: break ⊲ Leave the for loop
15: end if
16: end for
17: if t = true then
18: k← k+ v[i]

19: if k < B then
20: Print(k)
21: end if
22: break
23: end if
24: end for
25: end while

30 A. Kovács, N. Tihanyi

Algorithm 4 Reduce

Description: The algorithm reduces the generation time of Γn in the Precalc
algorithm with adding new elements to K. In this algorithm K is a list of
integers and X is a set of irrationals such that ‖K[i] · X[j]‖ < ε for all i and for
all j < n. The main part of the algorithm is the for loop (lines 4 − 9). Each
element of K is subtracted (added) from (to) every element of K and the new
integer ki that satisfies ‖ki · X[j]‖ < ε for all j < n are appended to K.

Precondition: K: set of integers,n ∈ N, ε > 0, X: set of irrationals
1: procedure Reduce(K,n, ε, X)
2: Sort(K) ⊲ Sorting, every element ouccurs only once
3: M← dynamic array()
4: for i = 1→ length(K) do
5: for j = 1→ length(K) do
6: Append(M, abs(K[i] − K[j])) ⊲ append abs(K[i] − K[j]) to M

7: Append(M, abs(K[i] + K[j]))

8: end for
9: end for

10: Sort(M)

11: for i = 1→ length(M) do
12: t← true
13: for j = 1→ n do
14: t← t and (Frac(M[i] ·X[j]) < 2ε or Frac(M[i] ·X[j]) > 1−2ε)

15: end for
16: if t = false then
17: Delete(M[i]) ⊲ Delete the ith element of M
18: end if
19: end for
20: Append(K,M) ⊲ Append array M to K

21: Sort(K)
22: if K[1] = 0 then
23: Delete(K[1]) ⊲ Delete the zero value from K

24: end if
25: Return(K)
26: end procedure

Simultaneous Diophantine approximations 31

Algorithm 5 Precalc
Description: The algorithm is based on Lemma 8. It generates Γn, a subset of
∆Ω. In dimension n the set Γn contains exactly 2n elements. Initially (line 2), the
FindMMM algorithm is used. In higher dimensions (2, 3, . . . up to m) the algorithm
produces many integers from ∆Ω by which Γn can be generated. M is a matrix with
i rows. The ith row contains the binary representation of i. (Note: the size of M is
changing depending on the dimension.) To produce as many integers as possible the
Reduce algorithm is used (see lines 10, 11). If β goes to infinity then ∆Ω should
contain allmost all possible step-sizes, not just some. To solve Challenge 2, we set
β = 212. With this choice of β the algorithm is able to generate the appropriate Γn
up to 10 dimensions. For higher dimensions bigger β is needed.

1: procedure Precalc(m, ε, X, β)
2: T ← FindMMM(X[1], ε) ⊲ T is a dynamic array
3: for n = 2→ m do
4: T2← dynamic array()
5: N← 0, T3← 0 ⊲ N, T3 are arrays with 2n elements, every element is 0
6: M← 2n × n matrix, the ith row contains the binary representation of i
7: k← 0, tmp← 0, l← 0, number← 0

8: while true do
9: if l = 2n and number > β then

10: Reduce(T2, n, ε, X)

11: Reduce(T2, n, ε, X)

12: T ← T2

13: break ⊲ Leave the while loop
14: end if
15: for i = 1→ length(T) do
16: t← true

17: for j = 1→ n− 1 do
18: ok← Frac((k+ T [i]) · X[j])
19: if ok > ε and ok < 1− ε then
20: t← false

21: break ⊲ Leave the for loop
22: end if
23: if t = true then
24: k← k+ T [i]

25: break ⊲ Leave the for loop
26: end if
27: end for
28: end for

32 A. Kovács, N. Tihanyi

Algorithm 6 Precalc (contd.)

29: number← number+ 1

30: t← true

31: for j = 1→ n do
32: t← t and (Frac(k · X[j]) < ε or Frac(k · X[j]) > 1− ε)

33: end for
34: if t = false then
35: next
36: end if
37: t← false

38: for i = 1→ length(T2) do
39: if T2[i] = k− tmp then
40: t← true

41: end if
42: end for
43: if t = false then
44: Append(T2, k− tmp) ⊲ append k− tmp to the array T2

45: end if
46: tmp← k

47: for i = 1→ 2n do
48: t← true

49: for j = 1→ n do
50: if M[i, j] = 0 then
51: t← t and (Frac(k · X[j]) < ε)

52: else
53: t← t and (Frac(k · X[j]) > 1− ε)

54: end if
55: end for
56: if t and N[i] = 0 then
57: N[i]← 1

58: l← l+ 1

59: T3[l]← k

60: if l = 2n and n = m then
61: break(2) ⊲ Leave while loop
62: end if
63: end if
64: end for
65: end while
66: end for
67: Return(T3)
68: end procedure

Simultaneous Diophantine approximations 33

4 Practical use of our methods

The real power of the presented methods is the ability to use them in a dis-
tributed way.

There are several fields of mathematics where the techniques shown in this
paper can be applied. We used our methods in order to find high peak values
of the Riemann-zeta function effectively. It is computationaly hard to find real
t values where |ζ(1/2 + it)| is high (see [11]). In 2004 Tadej Kotnik observed

that large values of |ζ(1/2+ it)| are expected when t = 2kπ
log 2 , where k

log(pi)
log(2)

are

close to an integer for all primes pi > 2 [6]. The methods shown in this paper
can be used to find thousands of candidates within a few minutes where high
values of |ζ(1/2 + it)| are expected. We plan to continue our research in this
direction.

5 Acknowledgement

The authors would like to thank Prof. Dr. Antal Járai for his very helpful
comments, suggestions and to the anonymous reviewers for many construc-
tive comments. The research of the first author was partially supported by
the European Union and co-financed by the European Social Fund (ELTE
Támop-4.2.2/B-10/1-2010-0030).

References

[1] F. Armknecht, C. Elsner, M. Schmidt, Using the Inhomogeneous Simultaneous
Approximation Problem for Cryptographic Design. AFRICACRYPT, 2011, pp.
242–259. ⇒18

[2] A. Frank, É. Tardos, An application of simultaneous Diophantine approximation
in combinatorial optimization, Combinatorica, 7, 1 (1987) 49–66. ⇒18

[3] A. Y. Khinchin, Continued Fractions, Translated from the third (1961) Russian
edition, Reprint of the 1964 translation, Dover, Mineola, NY, 1997. ⇒20

[4] Sh. Kim, S. Östlund, Simultaneous rational approximations in the study of dy-
namical systems, Phys. Rev. A, 34, 4 (1986) 3426–3434. ⇒18

[5] C. Kimberling, Best lower and upper approximates to irrational numbers, Elem.

Math., 52, 3 (1997) 122–126. ⇒20
[6] T. Kotnik, Computational Estimation of the order of ζ(1/2+ it), Math. Comp.,

73, 246 (2004) 949–956. ⇒33
[7] J. C. Lagarias, Best simultaneous Diophantine approximations I., Growth rates

of best approximation denominators, Trans. Am. Math. Soc., 272, 2 (1982) 545–
554. ⇒18

34 A. Kovács, N. Tihanyi

[8] J. C. Lagarias, Best simultaneous Diophantine approximations II., Behavior of
consecutive best approximations, Pacific J. Math., 102, 1 (1982) 61–88. ⇒18

[9] J. C. Lagarias, The computational complexity of simultaneous Diophantine ap-
proximation problems, SIAM J. Computing 14, 1 (1985) 196–209. ⇒18

[10] A. K. Lenstra, H. W. Lenstra Jr., L. Lovász, Factoring polynomials with rational
coefficients, Math. Ann., 261, 4 (1982) 515–534. ⇒18, 21

[11] A. M. Odlyzko, The 1020-th zero of the Riemann zeta function and 175 million
of its neighbors, 1992 (unpublished) ⇒33

[12] V. T. Sós, G. Szekeres, Rational approximation vectors, Acta Arithm., 49, 3
(1988) 255–261. ⇒18

Received: April 10, 2013 • Revised: June 8, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 35–52

Finding suitable paths for the elliptic curve

primality proving algorithm

Antal JÁRAI
Eötvös Loránd University
Faculty of Infomatics

email: ajarai@moon.inf.elte.hu

Gyöngyvér KISS
Eötvös Loránd University
Faculty of Infomatics

email: kissgyongyver@gmail.com

Abstract. An important part of the Elliptic Curve Primality Proving
algorithm consists of finding a sequence of elliptic curves with appropriate
properties. In this paper we consider a strategy to search for an improved
sequence, as part of an implementation (implemented in Magma 2.19) to
obtain improved heuristics and compare it to an implementation which
does not use such heuristics, namely to a built-in Magma function.

1 Introduction

Although mathematicians have been interested in prime numbers since an-
cient times, there is still no general, deterministic, unconditional, practical,
polynomial time algorithm for primality proving. If we are willing to drop
some of these adjectives, the situation becomes different. There exist tests of
Lucas-Lehmer type that can certify primes of very large size but only of a
special form. The Miller-Rabin test has a version that is practical and runs
in polynomial time but only provides primality proofs conditional on a gen-
eralized version of the Riemann hypothesis; the variant commonly used only
produces probable primes, in the sense that with small probability a compos-
ite number will pass the tests. The now famous AKS test [1], on the other
hand, is deterministic and proves primality in polynomial time, but has yet
to be proven practical; for an improved randomized version see Bernstein [3].

Computing Classification System 1998: F.2.1, G.4

Mathematics Subject Classification 2010: 11Y11, 11A51, 14H52, 97R20

Key words and phrases: ECPP, elliptic curves, primality proving, Magma

35

36 A. Járai, G. Kiss

Somewhere in between there are two algorithms that can prove primality in
situations of practical importance (primes of hundreds or several thousands
of decimal digits), of which the complexity analysis shows sub-exponential de-
pendency on the size of the prime, but for which polynomial time bounds have
not been proven. The significance of such primality tests has increased with
the widespread use of primes for cryptographic purposes.
This paper aims to describe an implementation of one of the two successful

practical tests for primality proving, ECPP see [2], written in Magma, a high
performance software system. The test is based on elliptic curve arithmetic, by
looking at heuristics for an optimal choice of parameters and next step in the
recursion and to compare it to an implementation without heuristics, which is
a part of Magma.
In what follows, we will always assume that n is the input of our algorithm,

for which we want to construct a primality proof; also, we assume that n is a
probable prime in the sense that it has passed some compositeness tests, and
that it is free of small divisors. In particular, gcd(n, 6) = 1. However of course,
we do not assume that n is prime.

2 Elliptic curves

The main objective in the Elliptic Curve Primality Proving (ECPP for short)
algorithm, which will be described in detail in the next section, is to construct
a sequence of integers n0, n1, . . . , nk that will be proved prime in reversed
order, ending at n0 = n. When the proof is completed, these numbers ni will
be (divisors of) orders of groups of points of elliptic curves over finite fields,
as they are defined modulo ni−1. However, during the construction we can not
use yet that ni−1 is prime, and this means that we will have to be careful in
defining elliptic curves modulo n, and their arithmetic; see [8].

Definition 1 The projective plane modulo n, denoted P2(Z/nZ), for a posi-
tive integer n, consists of equivalence classes (x : y : z) of triples (x, y, z) ∈
(Z/nZ)3 satisfying gcd(x, y, z, n) = 1, under the equivalence (x, y, z) ∼ (λx,
λy, λz) for any λ ∈ (Z/nZ)∗.

Definition 2 Let n be an integer with gcd(n, 6) = 1. An elliptic curve E

modulo n is a pair (a, b) ∈ (Z/nZ)2 for which gcd(4a3 + 27b2, n) = 1. The
set of points E[Z/nZ] on an elliptic curve E modulo n consists of (x : y : z) ∈
P2(Z/nZ) for which

y2z = x3 + axz2 + bz3.

Suitable paths for the elliptic curve primality proving algorithm 37

Definition 3 Let n be an integer with gcd(n, 6) = 1, and a ∈ Z/nZ. Define
V = V [Z/nZ] as the set of all (x : y : 1) ∈ P2(Z/nZ) together with O =

(0 : 1 : 0) ∈ P2(Z/nZ). Given (V, a), the partial addition algorithm computes
for any pair P = (xp : yp : zp), Q = (xq : yq : zq) ∈ V either an element
R = (xr, yr, zr) ∈ V called the sum P +Q of P and Q, or a non-trivial divisor
d of n, as follows.

(1) If xp = xq and yp = −yq, then output R = (0 : 1 : 0).

(2) If xp 6= xq and yp = −yq, then let v = xp−xq, otherwise let v = yp+yq;
then use the extended Euclidean algorithm to compute s, t ∈ Z/nZ such
that sv+ tn = d = gcd(v, n). If d > 1 then output d.

(3) Let λ = s(yp − yq) if xp 6= xq and λ = s(3x2p + a) if xp = xq. Output

R = (λ2 − xp − xq : λ(λ2 − 2xp − xq) + yp : 1).

Remark 1 If n = p is prime, the set E[Z/pZ] forms an Abelian group for
any elliptic curve E = Ea,b, with unit element O. In this case, the partial
addition algorithm, which will now always produce a sum of two points on E,
is equivalent to the usual addition algorithm.
Moreover, it can be shown that for a prime divisor p of arbitrary n coprime

to 6, the sum R produced by the partial addition algorithm for any two points
P,Q on an elliptic curve Ea,b modulo n, has the property that Rp (obtained by
reducing the coordinates of R modulo p) is the sum of (the similarly defined)
points Pp and Qp in the group Eā,b̄[Z/pZ], where ā ≡ a mod p, and b̄ ≡
b mod p.

Using the partial addition algorithm repeatedly, it is of course possible to
obtain a partial multiplication algorithm, which computes either k · P or finds
a divisor of n, for any positive integer k, given any P ∈ V and any a as before.
However, there are various ways to speed up this computation of k · P, using
partial doubling, and the fact that it is not necessary to keep track of the
y-coordinate.
In the next sections we will occasionally be sloppy, and write about the

sum and multiples of points on elliptic curves modulo n; we mean the result
of application of the partial addition and multiplication algorithms, which in
exceptional cases means that a divisor of n is found, rather than a point.

38 A. Járai, G. Kiss

3 Elliptic Curve Primality Proving

We give an outline of the Elliptic Curve Primality Proving algorithm; some of
the necessary definitions and details will be given in the subsequent sections.
The algorithm is based on the following theorem.

Theorem 2 Let n0 ∈ N with gcd(6, n0) = 1. Let E be an elliptic curve modulo
n0, and let m,n1 ∈ N with n1 | m. Suppose that for every prime factor q of
n1 there exists P ∈ E such that mP = 0E and m

q P 6= 0E. Then for all prime
factors p of n0 holds #E[Z/pZ] ≡ 0 mod n1.

Corollary 3 Suppose that the hypotheses of Theorem 2 are satisfied. Then:

n1 > (n
1
4

0 + 1)2 ⇒ n0 is prime.

Note that the requirement is that n1 exceeds a bound slightly larger than
√
n0.

Essential in the proof of the Corollary is the Theorem of Hasse, stating that
the number of points on any elliptic curve modulo a prime p equals p+1−t for
some integer t with |t| ≤ 2

√
p. Theorem 2 easily follows from the observation

that, modulo any prime divisor p of n0 the conditions imply that #E[Z/pZ]

can not be a proper divisor of n1.

Starting point for the application of ECPP, will always be a probable prime
n0 = n; it is assumed that n will be free of small prime factors (in particular
2 and 3), and that n has passed certain compositeness tests (of Miller-Rabin
type). This will make it very likely that n is indeed prime; the objective is to
prove that.
Given such an integer n, the basic Elliptic Curve Primality Proving algo-

rithm proceeds roughly in these three stages:

(D) starting with n0 = n, find a sequence of probable primes n0, n1, . . . , nk,
such that ni+1 divides the order of some elliptic curve modulo ni, such
that ni+1 > (4

√
ni + 1)2, and such that nk is so small that primality can

be verified by easy inspection (or trial division).

(F) For each of the integers ni with i = 0, 1, . . . , k − 1, construct an elliptic
curve Ei of order a multiple of ni+1 modulo ni, together with a point Pi
of order ni+1 on the curve modulo ni.

(P) Verify that the conditions of Theorem 2 hold for the given probable
primes ni, curves Ei and points Pi, for i = k− 1, k− 2, . . . , 0.

Suitable paths for the elliptic curve primality proving algorithm 39

The original idea came from Goldwasser and Kilian, who designed such an
algorithm, which uses random elliptic curves over the integers ni, computes
the order of them and factors the orders. Computing the order of a random
elliptic curve over ni is very cumbersome. It is yet a faster way to determine
the curve order first and construct a curve with such order. Besides, we get
two elliptic curves for each integers, that increases the possibility of success. m
order has to be selected from the algebraic integer of an imaginary quadratic
field Q(

√
D). D is a negative fundamental discriminant, and as such, it has

certain properties: D ≡ 0 (mod 4), or D ≡ 1 (mod 4), for every k (> 1) D/k2

is not a fundamental discriminant, D ≤ 0 (from practical point of view we use
D ≤ −7). Moreover D must be appropriate for n, which means: (D|n) = 1,
where (D|n) is the Jacobi symbol and there exist such x, y ∈ Z for which

4n = (2x+ yD)2 − y2D. (1)

An appropriate D provides two possible orders: m = |ν± 1|2, where

ν = x+ y
D+

√
D

2
.

If (1) is valid, with the help of an x0 root of the Hilbert polynomial (mod n)

we get two elliptic curves with order m = |ν± 1|2. Refer to [2]
We will refer to this algorithm as ECPP in the rest of the paper.

3.1 Downrun

The ECPP algorithm consists of two parts. The first part of the algorithm will
be called recursively with input ni. The main objective is to find ni+1. This is
what happens at level i:

(D) select a pair D,m of negative discriminant D and integer m = mi+1 such
that m is the product of small primes and a probable prime ni+1 that
exceeds (4

√
ni + 1)2.

In practice this is what happens:

(D0) Prepare a list of primes up to some bound s = si, as well as list of
negative fundamental discriminants up to a bound d = di that factor
completely in a product of primes from the prime list, together with
their full prime factorization.

(D1) Select one discriminant D in the list, find the reduction of the binary
quadratic form Ax2 + Bxy+Cy2 of discriminant D, where A = n, B2 ≡

40 A. Járai, G. Kiss

−D mod n, and C = (B2 + D)/(4n). This requires the modular square
root of −D modulo n, which is obtained as a product of the square
roots of the prime factors of −D. If this provides ν with |ν|2 = n, then
m1 = |ν− 1|2, m2 = |ν+ 1|2.

(D2) From the two pairs D,m1, D,m2 found in the previous step, for which a
probably prime q1 dividing m1 = |ν− 1|2 can be found such that m1/q1

is the product of small primes only, similarly for m2, one is selected.

(D3) Let ni+1 be the probable prime q = q1 or q2, for which m = m1 or m2,
according to the selection in the previous step, m/q is the product of
small primes, if that satisfies the conditions, otherwise select another D
from the list.

Several comments are in order.
Usually a ‘master-list’ of primes up to some bound B is prepared in advance;

the bound si (and hence the list) in step (D0) may depend on i (the level
of the recursion arrived at), but should be at most B. Similarly for the list
of discriminants, and the bound di. This means that step (D0) will mainly
consist of the selection of sub-lists, from precompiled lists that are computed
once for all n up to a fixed size N. In Step (D2) the probable factorization of
possible curve order mi has to be found; one uses a smoothness bound b = bi,
that is, all prime factors smaller than b are removed (and considered small).
Note that backtracking may be necessary: it is possible that at some level

no D provides a new ni!
The output of the first phase of the algorithm will consist of a triple

(ni, Di,mi) for i = 0 to i = k − 1 such that mi is the product of small
primes and a probable prime ni+1 that exceeds (4

√
ni + 1)2.

3.2 Finding elliptic curves

The second phase is executed after the recursive call of the first part, which
results in a list of ni, Di,mi such triples, where ni is the input of the recursive
step produces ni+1. This phase in the primality testing algorithm can be done
as follows. Again, we describe the steps to be taken at level i.

(F) Find elliptic curves Ei and points Pi on Ei[Z/ni−1Z] with the property
that if ni−1 is prime, then the order of Pi is ni.

This is done as follows.

(F0) Compute an auxiliary polynomial Gi ∈ Z[x]; see the comments below.

Suitable paths for the elliptic curve primality proving algorithm 41

[F1) Find a root ji of Gi mod ni−1 in Z/ni−1Z, as well as an integer ti such

that the Jacobi symbol
(

ti
ni−1

)

equals −1.

(F2) Define elliptic curves E ′

i and E
′′

i by

E ′

i : y2 = x3 + 3kx+ 2k

and
E

′′

i : y2 = x3 + 3kt2ix+ 2kt3i ,

where k =
j

1728− j
.

(F3) Find (for example by randomly choosing) a point on E ′

i or E
′′

i that has
order ni, if ni−1 is prime.

Remark 4 The auxiliary polynomial Gi is the Hilbert (or Weber) polynomial
or a variant of this. The two elliptic curves are the twists of the elliptic curve
with j-invariant ji. We refer to [2] and [8] for more details, as this part of the
algorithm plays no major role in what follows.

4 Magma

Magma [4] is a large computer algebra system, with high-performance compu-
tations in number theory as one of its specializations, including very advanced
integer factorization and primality proving algorithms. Since its launch (Lon-
don, August 1993) a large body of intrinsic functions (implemented in the
C language), have been supplemented by packages developed on top of this,
making use of the Pascal-like user language and the programming environment
that is provided.

4.1 Magma-ECPP

Magma has a built-in primality test, which uses a combination of the Miller-
Rabin compositness test, and ECPP. It can be invoked by

IsPrime(n: parameter) : RngIntElt 7→ BoolElt

function. By default, this function proves primality using ECPP (after a quick
test to throw out composites), but it is possible to set the optional Boolean pa-
rameter Proof to FALSE, in which case the function only uses the probabilistic

42 A. Járai, G. Kiss

Miller-Rabin test, with the default number of bases (20). In the rest of the
paper we refer to the function in Magma v2.19 (December 2012) as Magma-
ECPP. We would like to compare our ECPP implementation, Modified-ECPP
to this function.
This function is based on F. Morain’s implementation of ECPP in the C

language, and works more or less according to the description above as one
can tell from the verbose printing (although the details of the source code are
hidden from the user). It has a list of base discriminants in a file, likely fully
factored and ordered by the value of their field h, where it loops through in
each iteration. In the ith iteration it first applies a trial division sieve on ni

with bound Pmax, then on each discriminant, it performs (D) until it either
finds ni+1 or runs out of discriminants. In the case of success it goes into the
(i+ 1)th iteration with the new input; in the second case it loops through the
same set of discriminants, but applies stronger factoring methods to each of
the numbers mi. It applies trial division, Pollard’s ρ and Pollard’s p−1 in the
first round and if (D) is not successful, supposedly ECM is used too. If the
second round still yields no ni+1, it has to backtrack to input ni−1. As after
each iteration the information on which discriminants it succeeded is stored,
on backtracking it starts from the next discriminant in the list.

4.2 Modified-ECPP

In the Modified-ECPP version, one does not abort executing the ith iteration
as soon as a good discriminant is found, but only after a certain range of
discriminants are scanned, thus we could gain a range of ni+1,j’s instead of a
single one in each (recursive) call of step (D), from which the input ni+1 for the
next call is to be selected. Choosing one ni+1 out of the range of possibilities
can be done based on criteria depending on certain properties of the numbers.

4.2.1 Theoretical observations

The following observation plays an important role in the running time analysis:
if we are able to find all prime factors of curve cardinalities mi+1 up to a bound
bi in the ith iteration, the probability that one such curve cardinality mi+1

leads to a new node will be the probability that the second largest prime factor
of mi+1 is less then bi; this is approximately

eγ
log bi

logni
.

Suitable paths for the elliptic curve primality proving algorithm 43

It is then reasonable to suppose that, if we have ei such curve orders mi+1,
the number of new nodes has a probability distribution with average approx-
imately

λi = eγ
log bi

logni
ei.

Refer to [7].
For each negative discriminant D ≤ −7 the probability of success is

1

2h(D)
,

where h(D) is the ideal class number of Q(
√
D). As each successful case results

in 2 mi+1’s, we expect

ei ≈
∑

D

1

h(D)
.

Refer to [2].

4.2.2 The tree structure

The process of ECPPmay be envisaged as choosing a path through a (directed)
tree of which the nodes represent probable primes. (Note that strictly speaking
the graph is not a tree, as it is possible, but not really likely that different paths
lead to the same node!) The root of this tree is n0, the leaves correspond to
probable primes that are small enough to be recognized as primes by some
direct method. The aim is to find a relatively short and “easy” path from the
root n0 to a leaf nk as fast as possible; in particular, one would like to avoid
computing too many nodes explicitly.
By the latter we mean that we store certain information with the nodes that

we compute explicitly: for possible descendants ni,j, j = 1, . . . , ti of ni, we store
some information to base our choice of ni+1 on it. (For the rest of the paper
with ni+1 we mean the selected ni,j.) This includes the value ni,j, as well as
si,j, di,j and bi,j, (respectively: the smoothness bound for the discriminants, the
bound on the size of the discriminants and the smoothness bound on the curve
order), the level i in the tree and a parameter measuring the suitability. The
choice of node ni+1 is based on this suitability parameter, which is determined
when the node is produced. The value of the suitability is initialized to the
value of the field di,j stored with the nodes. Backtracking is unfavorable as,
besides the useless work decreasing the level in the tree, the size of the primes
in the nodes is likely to increase, therefore there is a fixed, global penalty value

44 A. Járai, G. Kiss

p added to the suitability of each node when a new level starts up, except for
the nodes of the new level.
The idea is that the computations for smaller discriminants will be cheaper,

and hence the algorithm will be completed faster. The field di,j that gives the
initial value of suitability of the node, is determined based on the function λ,
searching for the minimal power of di,j = log(ni,j)

δi,j allowing the value of λ
to exceed a certain bound given si,j, bi,j. The power δi,j is stored as the initial
value of suitability. The nodes are stored in an array, and a certain penalty
p is added, if necessary. The value of p depends on how hard we want to
punish backtrack steps. Order by suitability and select the smallest one and
call algorithm (T) recursively with that node as input. If (T) is successful the
new nodes are added to the array and the sorting process starts again. If there
is no new node found the value of suitability and the field di,j of the selected
node is increased. The power di,j can reach a given bound where the node falls
out from the array of possible nodes. The nodes are reordered. Repeat this
procedure, until the size of the nodes reaches a limit which is small enough to
recognize the prime.

4.2.3 The path finding algorithm

The path finding algorithm (T) in the ‘tree’ then has three main stages:

(T0) Step (D) is being applied for n0 looking for the minimal choice of d(n0) =

log(n0)
δ0 for which D is successful with a kind of brute force strategy,

using a loop in which the value of d0 is incremented until there exists at
least one descendant n1,j, as the next step requires a non-empty list of
n1,j’s. This part is called just once at the beginning.

The next steps are repeated for i = 1, 2, . . . , k, where nk is the first probable
prime that can be proven prime directly.

(T1) Keeping the value of λ = λi,j above 1.5, determine the value of di,j for
given si,j, bi,j for each newly found ni,j, and store a list of (at most
100 of) the best values according to suitability. Sort the list of the best
hundred nodes and select the best as ni+1.

(T2) Apply Step (D) again on ni+1, with the parameter di+1 = logδi+1(ni+1);
if no new node is found increase the δi+1 by 0.1, repeat ordering and se-
lection until at least one new ni+1,j is found. Once Step (D) is successful,
go back to (T1) with the new list of nodes as input.

Suitable paths for the elliptic curve primality proving algorithm 45

5 Experiments

In this section we are going to point out some typical situations that occur
during the process of ECPP and that are handled differently by Magma-ECPP
and Modified-ECPP. We describe the effects of these differences with respect
to outcome and running time in one particular example.
We ran Magma-ECPP and Modified-ECPP on a probable prime with more

than one thousand digits and show the output that describes the first three
steps of the process. We present the number of digits and the first 10 and last
10 digits of big numbers occuring during the process. Describing the whole pro-
cess or presenting whole numbers in the process for probable primes of this size
would be far too space-consuming, as it usually consists of more than a hundred
iterations and contains numbers in the size of the input probable prime. The
output of the whole process for both implementations and the proof provided
by Modified-ECPP can be found on one of the authors’ homepage. Follow the
links: http://www.math.ru.nl/~kiss/Modified-ECPP_Proof.pdf, http://
www.math.ru.nl/~kiss/Modified-ECPP_Output.pdf and http://www.math.
ru.nl/~kiss/Magma-ECPP_Output.pdf. For more big probable primes (com-
ing from the generalized Pascal triangles), tested by Modified-ECPP refer to
[6]. Note that G. Farkas and G. Kallós already have dealt with such numbers
and tested them with the ECPP. Refer to [5] about the details.
The test was running in Magma v2.19 on a machine with 8001 Mb RAM

and eight 2.5 GHz Intel Xeon processors.
Modified-ECPP is currently using different variants of trial divisions to fac-

tor the curve orders. With bound t = 1000 it applies normal trial division,
and after that a batch trial division with bound bi working on a list of mi,j’s
instead of factoring them one by one. The value of the penalty p is 0.8.
On an iteration we mean in the case of Magma-ECPP that we run (D) on

one discriminant and in the case of Modified-ECPP that we run (D) on a set
of discriminants up to logdi(ni) (starting from a previously reached limit, or
from the beginning of the discriminant list). On one step in both cases we
mean a sequence of iterations, which either results in at least one new node,
or runs out of discriminants and has to backtrack to another node. Going back
to the same node is not considered as backtracking. In the implementation of
Modified-ECPP one step also contains (T1) running on the new nodes, if there
is any.

46 A. Járai, G. Kiss

5.1 Example

The input number

n= 8565190451...2658848547

was used. This number has 1015 digits.

5.1.1 Magma-ECPP

In the first step Magma-ECPP needs 58 iterations to provide a new node and
uses trial division to factor m1.

% Pmax=4000000

% N_0=8565190451...683952658848547 1015 digits

% next D is 0 at 1.950000s

% next D is 7 at 10.180000s

...

% next D is 14683 at 495.940000s

% next D is 14083 at 513.280000s

% Cofactor after sieve is a probable prime

% D[[0]]=14083

%

% End of depth 0 at 513.990000 s

In the second step, Magma-ECPP fails to find an n2 after running through
a fixed list of discriminants twice, supposedly using trial division, Pollard’s
p − 1 and Pollard’s ρ in the first turn, and other, possibly harder and more
time consuming, methods in the second, thus backtracking to n0.

% Pmax=4000000

% N_1=8985609131...1613020571 1009 digits

% next D is 0 at 514.760000s

% next D is 7 at 522.780000s

...

% next D is 991 at 1140.930000s

% next D is 19963 at 1151.780000s

%!% No next D

%!% Forced to retry, snif...

% next D is 0 at 1163.620000s

% next D is 7 at 1184.430000s

...

% next D is 991 at 2754.460000s

% next D is 19963 at 2778.880000s

%!% No next D

Suitable paths for the elliptic curve primality proving algorithm 47

%!% One redo was not enough...

% Backtracking

% End of depth -1 at 2803.580000 s

In the third step Magma-ECPP, as it backtracked in the previous step,
uses n0 again and starts from the first discriminant that was not used in the
first step. It does not find a new n1 just using trial division on the rest of the
discriminants, so it applies stronger factorization methods running through the
same set of discriminants from the beginning. As there is only one successful
discriminant in the set, it finds the n1 produced also by the first step. Therefore
it gets to an endless loop finding the same n1 and backtracking to n0 again.

% Pmax=4000000

% N_0=8565190451...683952658848547 1015 digits

% next D is 19963 at 2805.250000s

% next D is 2339 at 2814.730000s

%!% No next D

%!% Forced to retry, snif...

% next D is 0 at 2825.470000s

% next D is 7 at 2847.600000s

...

% next D is 14683 at 4084.320000s

% next D is 14083 at 4114.750000s

% Cofactor after sieve is a probable prime

% D[[0]]=14083

% End of depth 0 at 4115.470000 s

Magma-ECPP needs 58 iterations to produce a new node in the first step and
has to backtrack after the second step, and as it does not find another node
where it could continue, gets stuck in an endless loop.

5.1.2 Modified-ECPP

By default, Modified-ECPP uses parameters bi = log2(ni) and si = log(ni),
where bi is the bound to the primes used to factor the mi-s and si is the
bound to primes used to factor the discriminants (refer to section 4.2.2). This
configuration found a path to the leaves in 1246.99 seconds after 139 steps and
it finished the proof using this path in 977.65 seconds; thus the total time was
2224.64 seconds.
Below we provide more information on the process in a configuration where

we put si = log1.3(ni), as the first configuration does not find the node where
Magma-ECPP gets stuck (because limit si is too low to factor 14083, a prime

48 A. Járai, G. Kiss

in fact), and it is therefore complicated to compare the default case with the
Magma-ECPP output.
In the first step, Modified-ECPP provides two n1,j-s for n0 = n after 4 itera-

tions. The discriminant bound d0 = logδ0(n0) is increased after each iteration,
moving up from δ0 = 1 to 1.3, where it finds two appropriate nodes, n1,1 and
n1,2. It initiates bound δ = 1.2 for both of them. n1,2 is the same number that
Magma-ECPP gets stuck on and as it is smaller than n1,1, it is selected at the
end of this step.

SLimit: 23946.87 1.3

BLimit: 5461424.06 2.0

n0 8565190451...683952658848547 1015 digits

DLimit, delta: 2336.97, 1.00

Filtering discriminants and reduction takes 7.700 seconds for

711 D-s, where 56 was succesful On average that is 0.011

The time for 56 trial divisions is 0.000 seconds, 0.000 on average

Batch trial division takes 3.270 seconds for 56 D, 0.058 on average

Time of Miller-Rabin test for 55 is 2.280 seconds, 0.041 on average

This resulted 0 new nodes

...

delta: 1.30

Filtering discriminants and reduction takes 33.380 seconds for

3930 D-s, where 50 was succesful On average that is 0.009

The time for 50 trial divisions is 0.020 seconds, 0.000 on average

Batch trial division takes 3.220 seconds for 50 D, 0.064 on average

Time of Miller-Rabin test for 46 is 3.580 seconds, 0.078 on average

This resulted 2 new nodes

lambda 1.93

delta 1.20

The total time of estimation is 3.140

lambda 1.49

delta 1.20

The total time of estimation is 3.050

1 level completed in 97.930 seconds

In the second step Modified-ECPP neither provides new node in one itera-
tion, with bound δ1 = 1.2, therefore the suitability values had to be reevaluated
and the other child is selected, as after the failure of the iteration the suitability
of n1,2 is increased to 1.3.

n1: 898560913...903551613020571 1009 digits

Suitable paths for the elliptic curve primality proving algorithm 49

SLimit: 23763.64 1.3

DLimit: 10947.23 1.2

BLimit: 5397264.73590251461588576356885 2.0

Filtering discriminants and reduction takes 27.250 seconds for

3331 D-s, where 130 was succesful On average that is 0.008

The time for 130 trial divisions is 0.030 seconds, 0.000 on average

Batch trial division takes 3.410 seconds for 130 D, 0.026 on average

Time of Miller-Rabin test for 127 is 4.960 seconds, 0.039 on average

This resulted 0 new nodes

2 level completed in 36.790 seconds

It has more luck with n1,1; in the third step provides four new nodes and
initiates δ2,j, 1 ≤ j ≤ 4 for them.

n1: 1928293492...0513347699 1010 digits

SLimit: 23773.79 1.3

DLimit: 10951.55 1.2

BLimit: 5400813.29 2

Filtering discriminants and reduction takes 28.930 seconds for

3333 D-s, where 166 was succesful On average that is 0.009

The time for 166 trial divisions is 0.040 seconds, 0.000 on average

Batch trial division takes 3.480 seconds for 166 D, 0.021 on average

Time of Miller-Rabin test for 153 is 9.190 seconds, 0.060 on average

This resulted 4 new nodes

lambda 1.95

delta 1.20

The time of estimation is 3.110

...

lambda 2.06

delta 1.20

The time of estimation is 3.140

3 level completed in 51.070

Modified-ECPP provides two new nodes after 4 iterations in the first step.
Note that it does not apply any heuristics in (T0). Then it picks up the same
node n1,2 where Magma-ECPP got stuck and also has bad luck with this
number, as it produces no new node after one iteration. Therefore it had to
backtrack to n1,1. In this case λ does not help us very much as it underesti-
mated the necessary amount of discriminants to provide a new node, but as
there is another node produced on the same level, Modified-ECPP does not

50 A. Járai, G. Kiss

even have to go back to the previous level to provide a new node. In the third
step it provides four new nodes in one iteration; λ seems to work better there.
The algorithm reached the small primes in 1794.97 seconds after 146 steps.
Completing the proof using this path took 1119.23 seconds, and thus the total
running time was 2914.2 seconds.
Note that one iteration for Modified-ECPP takes a list of discriminants, this

way the 4 iterations from the first step were running through discriminants up
to 23946.
The first step took 513.99 seconds for Magma-ECPP and 97.93 seconds for

Modified-ECPP. The difference probably comes from the fact that Magma-
ECPP has to force the mi-s with strong factoring methods and big factoring
bounds to provide a new node while Modified-ECPP works with a much bigger
set of discriminants (up to 1010) and therefore it can use batch trial division
and lower factoring bounds. In this case the bounds on lower levels in the
tree are around 5300000. In the third step Modified-ECPP provides 4 new
nodes with one iteration, where the predictions have been already applied on
the value of D1. The goal of the estimation of the initial value of δi using
λ is to decrease the probability of backtracking and selecting the same node
more often by predicting the minimal interval where one iteration will run
successfully. This gives also the basis of the suitability value to predict on which
node do we have to process the least number of discriminants to provide at
least one new node. The total number of iterations in this case is 187 where 146
provides a new node. The other iterations provided the same node as the input
or provided another node to backtrack. We do not count the four iterations of
the first step in the number of the iterations, as there is no heuristics applied.

6 Remarks and conclusions

We described a strategy applied during the process of ECPP; produce more
nodes in a step in the recursion, estimate the suitability of the new nodes
and select the most suitable. With this strategy we try to avoid backtracking
(or repetition on the same node) by estimating the interval for discriminants
to search through for each new node and by predicting which ni,j to pick in
order to be able to successfully continue. 78% of the iterations ran in the test
terminated successfully on the nodes and intervals selected this way.
As we can see, the predictions give us no hundred percent certainty to avoid

such situation; for instance, in the second step from the example n1,2 provided
no new node, but at least we have an idea, what we can expect in theory

Suitable paths for the elliptic curve primality proving algorithm 51

from considering a node. Roughly speaking we could not avoid backtracking
or repetition after 22% of the iterations in this case. What to do then?
First of all we are trying to avoid backtracking to the previous level because

that might make our whole effort on the current level useless, and also because
the size of the numbers is growing going up in the tree. There we can use the
penalty value, that is added to the nodes in the previous levels’ suitability,
influencing the probability of selecting a node from previous levels. The default
value of the penalty is high, 0.8. After one unsuccessful iteration we increase
the value suitability with 0.1, and thus 0.8 would mean 8 unsuccessful iterations
on the node; this is a tough condition, does not occur frequently. Of course
different nodes starts from different suitability, thus in practice we do not
always need 8 unsuccessful iterations; if none of the nodes on the current level
is suitable enough, the numbers are just to get a feeling about the size of the
penalty. In this example backtracking to the previous level does not occur.
The goal of producing more nodes in a step is to make the implementation

more robust against backtracking to the previous level, as the nodes in the
current level are likely more suitable, and to avoid running multiple iteration
on the same node by switching between the nodes on the same level. In ad-
dition, if it turns out that a node is not as successful as estimated, and thus
produces no new node after the first iteration on the expected interval, we
become more careful and try to take small steps at a time. We increase the
value δi,j of the current node ni,j with 0.1 after each unsuccessful iteration
and reorder the list of possible nodes to see whether our selected node is still
the best. This way it tries to keep backtracking fast and flexible. That is what
happens in the second step in the example.
Modified-ECPP was tested with several numbers with around 1000 digits

and it provided proof in each situation in 2000–3000 seconds. Magma-ECPP
was running on the same numbers failed on the number from the example,
and provided proof in 2000–8000 seconds in every other cases, depending on
whether we backtrack or not there are bigger differences in running time.
It seems that the running times of Modified-ECPP are more balanced for
numbers with similar size.
The implementation works on a list of preprocessed discriminants up to 1010,

thus it can process the discriminants fast, without the need of factoring the
discriminants or the computed mi-s with high factoring bounds. By default
Modified-ECPP runs with configuration si,j = log(ni,j) and bi,j = log2(ni,j),
which for numbers with such size are around 2 300 and 5 300 000, and in our
tests always terminated successfully.

52 A. Járai, G. Kiss

As it still has to backtrack in a number of situations, there are further plans
to tune the strategy to reduce this number by involving all the important
parameters si,j, bi,j, di,j (refer to Section 4.2.2) to determine suitability. Also
the implementation is not the final version, stronger factoring methods are
going to be applied on the mi,j-s in order to gain shorter paths and to be able
to prove primality for bigger numbers.

Acknowledgements

We are greatly indebted to Prof. Wieb Bosma for his scientific consulta-
tions.

References

[1] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals Math. 160, 2 (2004)
781–793. ⇒35

[2] A. O. L. Atkin, F. Morain, Elliptic curves and primality proving Math. Comp.
61, 203 (1993) 29–68. ⇒36, 39, 41, 43

[3] D. Bernstein, Proving primality in essentially quartic random time,Math. Comp.
76, 257 (2007) 389–403. ⇒35

[4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24, 3-4 (1997) 235–265. ⇒41

[5] G. Farkas, G. Kallós, Prime numbers in generalized Pascal triangles, Acta Tech.
Jaur. 1, 1 (2008) 109–118. ⇒45

[6] G. Farkas, G. Kallós, G. Kiss, Large primes in generalized Pascal triangles, Acta
Univ. Sapientiae, Inform. 3, 2 (2011) 158–171. ⇒45

[7] J. L. Hafner, K. S. McCurley, On the Distribution of Running Times of Certain
Integer Factoring Algorithms, J. Algorithms 10, 4 (1989) 531–556. ⇒43

[8] A. K. Lenstra, H. W. Lenstra Jr., Algorithms in number theory in: Handbook of
Theoretical Computer Science (vol. A) 1990, Elsevier, Amsterdam, pp. 673–715.
⇒36, 41

Received: March 10, 2013 • Revised: May 31, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 53–62

Nonexistence of a Kruskal–Katona type

theorem for double-sided shadow

minimization in the Boolean cube layer

Maksim BASHOV
Lomonosov Moscow State University

email: max.bashov@gmail.com

Abstract. A double-sided shadow minimization problem in the Boolean
cube layer is investigated in this paper. The problem is to minimize the
size of the union of the lower and upper shadows of a k-uniform family
of subsets of [n]. It is shown that if 3 ≤ k ≤ n− 3, there is no total order
such that all its initial segments have minimal double-sided shadow.

Denote by
(
[n]
k

)
the family of all subsets of the set [n] = {1, 2, . . . , n} having the

size k. Let F ⊆
(
[n]
k

)
. The lower shadow ∆F is the (k − 1)-uniform family of

sets A such that there exists B ∈ F , A ⊂ B. Similarly, the upper shadow ∇F

is the (k + 1)-uniform family of sets A such that there exists B ∈ F , A ⊃ B.
The double-sided shadow ⋊⋉F is the union of the families ∆F and ∇F .
A family F ⊆

(
[n]
k

)
is minimal in terms of lower shadow (upper shadow,

double-sided shadow) if |∆F | ≤ |∆G| (corr., |∇F | ≤ |∇G|, | ⋊⋉F | ≤ | ⋊⋉G|) for each

family G ⊆
(
[n]
k

)
such that |G| = |F |.

A set A lexicographically precedes a set B (A <lex B) if and only if max((A\

B) ∪ (B \A)) ∈ B.
Kruskal [8] and Katona [7] described solutions of the single-sided shadow

minimization problem:
Kruskal–Katona theorem. The initial lexicographical segments of

(
[n]
k

)

are minimal families in terms of lower shadow.

A simple modern proof of this theorem is given in [1]. Clements and Lind-
ström [6] generalized this result to the products of chains. Analogues of the

Computing Classification System 1998: G.2.1

Mathematics Subject Classification 2010: 05D05, 06A07, 68R15

Key words and phrases: shadow minimization, Boolean cube, double-sided shadow, ideal

weight

53

54 M. Bashov

Kruskal–Katona theorem are also proved for a wide variety of structures, in-
cluding the products of stars and their dual posets [5].
The Kruskal—Katona theorem describes minimal families in terms of a total

order defined on
(
[n]
k

)
. In this paper we prove that it is impossible to describe

the solutions of the double-sided minimization problem as initial segments of
a total order.
We say that a total order defined on

(
[n]
k

)
is minimizing if all its initial seg-

ments are minimal in terms of double-sided shadow. The following statement
is proven in [2]:

Theorem 1 [2] If k = 3 and n > 8, then there does not exist a minimizing

total order on
(
[n]
k

)
. For every total order defined on

(
[n]
k

)
there exists a number

m 6 4n− 14 such that the initial segment of the order having the length m is

not minimal in terms of double-sided shadow.

Since
(
[n]
k

)
is isomorphic to

(
[n]
n−k

)
, a similar result holds for k = n− 3.

It is known [4] that the lexicographical order is minimizing when k ≥ n− 2,
i. e., in this case families minimizing the lower shadow are also minimal in
terms of double-sided shadow. Similarly, if k ≤ 2, then the colexicographical
order is minimizing the double-sided shadow.
Define a partial order induced by the standard shifting operator (see, e.g.,

[1]) on
(
[n]
k

)
. Let A and B be elements of

(
[n]
k

)
, A = {a1, a2, . . . , ak}, B =

{b1, b2, . . . , bk}, and their elements are sorted in ascending order, i. e., a1 <

a2 < . . . < ak, b1 < b2 < . . . < bk. The set A precedes the set B (A ⊑ B) if
ai ≤ bi for each i = 1, 2, . . . , k. A family F is an ideal if A ∈ F and B ⊑ A

imply B ∈ F . By I(A) denote the minimal ideal containing A, i. e., the family

{B ∈
(
[n]
k

)
| B ⊑ A}.

Theorem 2 [2] The family C1(n, k) = I({2, 3, . . . , k, n}) is the unique mini-

mal in terms of double-sided shadow ideal of
(
[n]
k

)
having cardinality 1+k(n−k).

The following statement gives a simple additive formula for the size of an
ideal’s shadow.

Lemma 3 [2] If F ⊆
(
[n]
k

)
is an ideal, then | ⋊⋉F | =

∑
A∈F

s(A), where s(A) =

sl(A) + su(A), sl(A) = min([n] \A) − 1, su(A) = n−maxA.

The weight function s is monotone with respect to the partial order ⊑:

Lemma 4 [2] A ⊑ B implies s(A) ≥ s(B).

Nonexistence of a Kruskal–Katona theorem for double-sided shadow 55

Let A = {1, 2, . . . ,m, am+1, . . . , ak−1, ak} ∈
(
[n]
k

)
, am+1 > m+ 1. Denote

A0 = {2, 3, . . . ,m+ 1, am+1, . . . , ak−1, n}.

Put also Î(A0) =
{
B ∈

(
[n]
k

)
, B0 = A0

}
. Suppose p = min({q : aq > q+1}∪{k}).

The poset (Î(A0),⊑) contains a least point

{1, 2, . . . , p− 1, ap, . . . , ak−1, ak−1 + 1}

in case p 6= k and a least point {1, 2, . . . , k} in case p = k. Denote this least
point by A1.
By F |q we denote the family {A ∈ F , s(A) = q}.

Lemma 5 [4] Let A0 ∈
(
[n]
k

)∣∣∣
0
, F = Î(A0) \ {A1} if A1 = {1, 2, . . . , k}, and

F = Î(A0) otherwise. Then F is isomorphic as a poset to the product of two

chains having lengths sl(A
1) + 1 and su(A

1) + 1, and the layers of the product

correspond to the families Î(A0)|m under the isomorphism.

Lemma 6 A0 ⊑ B0 if and only if A1 ⊑ B1.

Proof. In case A1 = {1, 2, . . . , k} the statement follows from the facts that

A0 = {2, 3, . . . , k, n} is the least set of the family
(
[n]
k

)∣∣∣
0
in terms of the partial

order ⊑, and A1 is the least set of
(
[n]
k

)
.

Suppose

A0 ={2, 3, . . . , p, ap, . . . , ak−1, n}, ap > p+ 1,

B0 ={2, 3, . . . , q, bq, . . . , bk−1, n}, bq > q+ 1.

Then

A1 ={1, 2, . . . , p− 1, ap, . . . , ak−1, ak−1 + 1},

B1 ={1, 2, . . . , q− 1, bq, . . . , bk−1, bk−1 + 1}.

It remains to note that the condition A0 ⊑ B0 and the condition A1 ⊑ B1 are
equivalent to p ≥ q, aj ≤ bj if p+ 1 ≤ j ≤ k− 1. �

Suppose A0 = {2, 3, . . . , p, ap, . . . , ak−1, n}, ap > p + 1. Note that if A0 6=

{2, 3, . . . , k, n}, then the possible immediate successors of A0 in terms of ⊑ are

Al0 = {2, 3, . . . , p− 1, p+ 1, ap, . . . , ak−2, ak−1, n},

Au0 = {2, 3, . . . , p− 1, p, ap, . . . , ak−2, ak−1 + 1, n},

Ã0
j = {2, 3, . . . , p− 1, p, ap, . . . , aj + 1, . . . , ak−2, ak−1, n}.

56 M. Bashov

Also note that s(Al1) = s(Au1) = s(A1) − 1, and s(Ã1
j) = s(A1).

Suppose <min is a minimizing total order defined on
(
[n]
k

)
. The properties

of the standard shifting operator [1] imply that without loss of generality we
can suppose that the initial segments of <min are ideals, i. e., A ⊑ B implies
A <min B.
By ord(A) denote the number of sets preceding A in the order <min.

Lemma 7 Let <min is a minimizing order on
(
[n]
k

)
, A <min B <min C and

A0 = C0. Then A0 = B0 = C0.

Proof. Suppose B0 6= A0.
Without loss of generality, A = A1, B = B1. Indeed, since A1 ⊑ A, B1 ⊑ B,

it holds that A1 <min A, B1 <min B. If A1 <min B1, we put A ′ = A1, B ′ = B1,
C ′ = C. If A1 >min B1, we put A ′ = B1, B ′ = A1, C ′ = B.
Without loss of generality, for all D such that D <min A, D0 6= A0 it holds

that D0 <min A. If this property doesn’t hold, we put A ′ = D1, B ′ = A,
C ′ = D0 and check the property again. This reassignment doesn’t break the
property from the previous paragraph, and an infinite chain of reassignments
is impossible since A ′ <min A and the family {A ′ : A ′ <min A} is finite.
We can assume that B is the least set of the family {B : B0 6= A0, B >min A}

in terms of the order <min. Since the initial segments of <min are ideals, by
Lemma 6 the set B0 is either incomparable to A0 in the order ⊑, or is an
immediate successor of A0.
We can assume that C is the least set of the family {C : C0 = A0, C >min B}

in terms of the order <min.
Denote by F the initial segment of <min having the length ord(B). Since

<min is a minimizing order, and F ∪ {B} is its initial segment, it holds that
| ⋊⋉(F ∪ {B})| ≤ | ⋊⋉(F ∪ {C})|, therefore

s(B) ≤ s(C). (1)

Since A ⊑ C, A0 = C0, it follows from Lemma 5 that s(C) ≤ s(A) − 1.
Denote by G the initial segment of <min having the length ord(A).
Suppose A is incomparable to B in the partial order ⊑. In this case the family

G ∪ {B} is an ideal, and by the definition of a minimizing order it holds that
| ⋊⋉(G ∪ {A})| ≤ | ⋊⋉(G ∪ {B})|, therefore s(A) ≤ s(B). This implies s(C) < s(B), a
contradiction with (1).
Suppose A is comparable to B in the partial order ⊑. Note that A0 6=

{2, 3, . . . , k, n}, because Theorem 2 implies that C1(n, k) = Î({2, 3, . . . , k, n}) is
an initial segment of <min. Then, since A0 is an immediate predecessor of B0

Nonexistence of a Kruskal–Katona theorem for double-sided shadow 57

in the order ⊑, s(B) ≥ s(A) − 1. Therefore (1) implies s(B) = s(A) − 1, and
either B0 = Al0, or B0 = Au0.
Without loss of generality, B0 = Au0, that is

A ={1, 2, . . . , p, ap+1, . . . , ak−2, q− 1, q},

B ={1, 2, . . . , p, ap+1, . . . , ak−2, q, q+ 1}, ap+1 > p+ 2.

Since A ′ = {1, 2, . . . , p, ap+1, . . . , ak−2, q− 1, q+ 1} ⊑ B, it holds that A ′ <min

B. Note also that q+ 1 ≤ n, and n− q ≥ 1.
Consider the family A =

{
A ∪ {r} \ {q}, q+ 1 < r ≤ n

}
. Note that for every

A ′′ ∈ A it holds that s(A ′′) < s(A) − 1 = s(B), and A is a chain in the partial
order ⊑. Let us show that for every A ′′ ∈ A it holds that A ′′ <min B. Suppose
A ′′ is the least set in A such that A ′′ >min B. Then

| ⋊⋉(F ∪ {A ′′})| = | ⋊⋉F |+ s(A ′′) < | ⋊⋉F |+ s(B) = | ⋊⋉(F ∪ {B})|,

a contradiction with the minimality of the family F ∪ {B}, which is an initial
segment of <min.
Note that C = A∪ {p+1} \ {p}, since for every A ′′ ∈ Î(A0) distinct from the

sets A, A ′ and A ∪ {p + 1} \ {p} it holds that s(A ′′) < s(B) = s(C). Therefore
ord(B) = ord(A) + su(A).
Let us show that the immediate successors of B in the order <min are the

sets B ∪ {r} \ {q+ 1}, q+ 1 < r ≤ n. Suppose that the immediate successor of
(B \ {q+ 1})∪ {r} is D 6= B ′ = B∪ {r+ 1} \ {q+ 1}. The initial segments of <min

having lengths ord(D) and ord(D) + 1 are minimal in terms of double-sided
shadow, and therefore

s(D) ≤ s(B ∪ {r+ 1} \ {q+ 1}) < s(C). (2)

The families

H = F ∪
{
B
}
∪
{
B ∪ {s} \ {q+ 1}, q+ 1 < s ≤ r}

and H ∪ {D} are ideals, therefore D ∈ Î(A0) implies D = C, and D ∈ Î(B0)

implies D = B ′. Hence, D /∈ Î(A0)∪Î(B0). Since D1 <min A, D0 6= A0 implies
D0 <min A, it holds that D = D1. If D is incomparable to A in terms of ⊑,
then it follows from (2) that

| ⋊⋉(G ∪ {D})| = | ⋊⋉G|+ s(D) < | ⋊⋉G|+ s(C) < | ⋊⋉G|+ s(A) = | ⋊⋉(G ∪ {A})|,

and that is a contradiction with the fact that G∪{A} is an initial segment <min

and therefore is minimal in terms of double-sided shadow. If D is comparable

58 M. Bashov

to A and incomparable to B, then, since H is an ideal, Lemma 6 implies
that D0 is an immediate successor of A0 in the order ⊑, and s(D) ≥ s(A) −

1 = s(C), a contradiction with (2). Hence, D is comparable to B. Since D0

is an immediate successor of B0 in ⊑ and s(D) < s(C), it holds that D =

{1, 2, . . . , p, ap+1, . . . , ak−2, q + 1, q + 2}. Since B ∪ {q + 2} \ {q + 1} ⊑ D, it is
true that B∪{q+2}\{q+1} <min D and r > q+2. But then s(B∪{r+1}\{q+1}) <

s(D), a contradiction with (2).
Thus, F ′ = F ∪

{
B
}
∪
{
B∪ {r} \ {q+ 1}, q+ 1 < r ≤ n

}
is an initial segment

of <min. Denote by D an immediate successor of B ∪ {n} \ {q+ 1} in terms of
the order <min. Let us show that s(D) ≥ s(C)− 1. Indeed, if D ∈ Î(A0), then
D = C, because F∪{D} is an ideal. Similarly, D /∈ Î(B0). If D /∈ Î(A0)∪Î(B0),
then s(D) ≥ s(A) whenD is incomparable to B, and s(D) ≥ s(B)−1 = s(C)−1

in case B ⊑ D. Therefore

| ⋊⋉(F ′ ∪ {D})| = | ⋊⋉F |+ s(B) +

n∑

r=q+2

s(B ∪ {r} \ {q+ 1}) + s(D) =

= | ⋊⋉F |+

n−q−1∑

r=0

(s(C) − r) + s(D).

Consider the family F ′′ = F ∪
{
C
}
∪
{
C ∪ {r} \ {q}, r < q ≤ n

}
. Note that

|F ′′| = |F ′ ∪ {D}| = |F |+ n− q, and

| ⋊⋉F ′′| = | ⋊⋉F |+ s(C) +

n∑

r=q

s(C ∪ {r} \ {q}) =

= | ⋊⋉F |+

n−q∑

r=0

(s(C) − r) = | ⋊⋉F |+

n−q−1∑

r=0

(s(C) − r) + s(C) − (n− q).

If n − q > 2, it follows that | ⋊⋉F ′′| < | ⋊⋉(F ′ ∪ {D})|, a contradiction with the
minimizing property of <min. If n − q = 1, then there does not exist D such
that B ⊑ D, B0 6= D0 and s(D) = s(B) − 1, therefore s(D) ≥ s(C), and again
| ⋊⋉F ′′| < | ⋊⋉(F ′ ∪ {D})|. �

Corollary 8 Let < be a total order defined on
(
[n]
k

)
such that all its initial

segments are ideals, A < B < C and A0 = C0 6= B0. Then there exists a number

m such that the initial segment of < having the length m is not a minimal

family in terms of double-sided shadow, and m ≤ min{ord(B), ord(A) + 2n}.

Thus, the families Î(A0) are segments of any minimizing total order. The
following statement describes how the sets from these families are sorted by a
minimizing order.

Nonexistence of a Kruskal–Katona theorem for double-sided shadow 59

Lemma 9 Suppose <min is a minimizing order, s(A) > 0, sl(A) = p, su(A) =

n − q, and B is the immediate successor of A in <min. If sl(A
1) < su(A

1),

then

B =

{
A ∪ {q+ 1} \ {q}, if q < n,

A ∪ {p+ 1, n− su(A
1)} \ {p, q}, if q = n.

(3)

If sl(A
1) > su(A

1), then

B =

{
A ∪ {p+ 1} \ {p}, if p > 0,

A ∪ {p+ 1, q+ 1} \ {sl(A
1) + 1, q}, if p = 0.

(4)

And if sl(A
1) = su(A

1), then either for each A ∈ Î(A0) its immediate succes-

sor in <min is defined by (3), or for each A it is defined by (4).

Proof. This statement follows from Lemma 5, monotonicity and symmetry of
the function s defined on Î(A0) and the two-dimensional case of the Clements–
Lindström theorem. �

The order of families Î(A0) in the minimizing order is described by the
following two statements.

Lemma 10 Suppose <min is a minimizing order, for each C0 ⊑ A0 it holds

that C0 <min B0, for each C0 ⊑ B0 it holds that C0 <min A0, and s(A1) <

s(B1). Then A1 <min B1.

Proof. Assume the converse. Suppose A0 and B0 meet the conditions of the
lemma, and A1 >min B1. Denote by F the initial segment of <min having the
length ord(B1). Then F ∪ {A1} is an ideal, and since A1 /∈ F ,

| ⋊⋉(F ∪ {A1})| = | ⋊⋉F |+ s(A1) < | ⋊⋉F |+ s(B1) = | ⋊⋉(F ∪ {B1})|,

a contradiction to minimality of the initial segment F ∪ {B1}. �

Lemma 11 Suppose <min is a minimizing order, for each C0 ⊑ A0 it holds

that C0 <min B0, for each C0 ⊑ B0 it holds that C0 <min A0, and s(A1) =

s(B1), max{sl(A
1), su(A

1)} > max{sl(B
1), su(B

1)}. Then A1 <min B1.

Proof. Assume the converse. Suppose A0 and B0 meet the conditions of the
lemma, and A1 >min B1. Denote by F the initial segment of <min having
the length ord(B1). Without loss of generality we can assume that su(A

1) =

60 M. Bashov

n − q ′ ≥ sl(A
1) = p ′, su(B

1) = n − q ′′ ≥ sl(B
1) = p ′′. Then since sl(B

1) >

sl(A
1) ≥ 0, Lemma 9 states that the family

F ′ = F ∪
{
B1

}
∪
{
B1 ∪ {r} \ {q ′′}, q ′′ < r ≤ n

}
∪
{
B1 ∪ {p ′′ + 1} \ {p ′′}

}

is an initial segment of <min. Consider the family

F ′′ = F ∪
{
A1

}
∪
{
A1 ∪ {r} \ {q ′}, q ′ < r ≤ n+ q ′ + 1− q ′′

}
.

Note that |F ′| = |F ′′| = |F |+n−q ′′+2, and since n−q ′′ = su(B
1) ≥ sl(B

1) ≥ 1,
it holds that

| ⋊⋉F ′′| = | ⋊⋉F |+

n−q ′′+1∑

r=0

(s(A1) − r) = | ⋊⋉F |+

n−q ′′+1∑

r=0

(s(B1) − r) <

< | ⋊⋉F |+

n−q ′′

∑

r=0

(s(B1) − r) + s(B1) − 1 = | ⋊⋉F ′|,

a contradiction to the definition of a minimizing order. �

Since the least set of
(
[n]
k

)
\ C1(n, k) in terms of ⊑, namely,

{1, 2, . . . , k− 2, k+ 1, k+ 2}

belongs to Î({2, 3, . . . , k − 1, k + 1, n}), the families C1(n, k) and Ĉ1(n, k) =

C1(n, k)∪ Î({2, 3, . . . , k− 1, k+ 1, n}) are initial segments of <min. The family(
[n]
k

)
\ Ĉ1(n, k) contains two minimal sets. In case n 6= 2k we can infer which

one is smaller in terms of <min.

Lemma 12 If n > 2k, A ∈ Î({2, 3, . . . , k − 1, k + 2, n}), B ∈ Î({2, 3, . . . , k −

2, k, k+ 1, n}), and <min is a minimizing order, then B <min A.

Proof. Note that A0 = {2, 3, . . . , k−1, k+2, n} and B0 = {2, 3, . . . , k−2, k, k+

1, n} meet the conditions of Lemma 11, and

max(sl(A
1), su(A

1)) = n− k− 2 < n− k− 1 = max(sl(B
1), su(B

1)).

�

Theorem 13 If 4 6 k < n
2 , then there does not exist a minimizing total

order on
(
[n]
k

)
. For every total order defined on

(
[n]
k

)
there exists a number

m 6 1 + k(n − k) + (k − 1)(2n − 2k − 3) such that the initial segment of the

order having the length m is not minimal in terms of double-sided shadow.

Nonexistence of a Kruskal–Katona theorem for double-sided shadow 61

Proof. Consider the initial segment L of the order <min having the length

|I({2, 3, . . . , k− 1, k+ 2, n})| = 1+ k(n− k) + (k− 1)(2n− 2k− 3).

It follows from Lemmas 7, 9, 10, 12 that this segment is the union of the
ideal I({2, 3, . . . , k − 2, k, k + 1, n}) and the family of n − 2k sets belonging
to Î({2, 3, . . . , k − 3, k, k + 1, k + 2, n}). Counting the size of the double-sided
shadow by Lemma 3, we get

| ⋊⋉L| = | ⋊⋉I({2, 3, . . . , k− 1, k+ 2, n})|+ (n− 2k)(k− 3),

a contradiction to the definition of a minimizing order. �

Since
(
[n]
k

)
is isomorphic to

(
[n]
n−k

)
, the same result holds when n

2 < k ≤ n−4.
It is known [3] that there is a nested system of minimal sets contained in

C1(n, k) ∪ {{1, 2, . . . , k − 2, k + 1, k + 2}}, therefore it is impossible to get an
estimate for m lower than 2+ k(n− k).
Now consider the case n = 2k, k > 5.

Theorem 14 If 5 6 k = n
2 , then there does not exist a minimizing total

order on
(
[n]
k

)
. For every total order defined on

(
[n]
k

)
there exists a number

m 6 1+k2+(2k−3)(k−2)+
k(k−1)2

2 such that the initial segment of the order

having the length m is not minimal in terms of double-sided shadow.

Proof. Consider the family

F = I({3, 4, . . . , k+ 1, n}) ∪ I({2, 3, . . . , k− 2, k, k+ 2, n}).

Since
([n]
n/2

)
has a symmetry, without loss of generality we can assume that

{2, 3, . . . , k− 1, k+ 2, n} >min {2, 3, . . . , k− 2, k, k+ 1, n}.

Lemmas 10 and 11 determine the subsequent order of the families Î(A0) in
the minimizing order, and the initial segment L of <min having the length
|F | contains the ideals I({3, 4, . . . , k + 1, n}), I({2, 3, . . . , k − 1, k + 3, n}) and
the set {1, 2, . . . , k − 2, k + 4, k + 5}. Counting the size of the shadow, we get
| ⋊⋉L| = | ⋊⋉F |+k− 4, a contradiction to the definition of a minimizing order. �

Now we consider the cases not covered by Theorems 1, 13 and 14. There
does not exist a minimizing order on

(
[8]
4

)
, and the maximal size m of a nested

system of minimal families equals 42, since the only minimal ideals having
size 41 are I({2, 4, 5, 8}) ∪ I({2, 3, 7, 8}) and I({2, 3, 6, 8}) ∪ I({3, 4, 5, 8}), while

62 M. Bashov

the only minimal ideal having size 42 is I({2, 4, 6, 8}). There does not exist a

minimizing order on
(
[7]
3

)
, and m = 15, since the only minimal ideal having size

15 is I({1, 6, 7}), and it does not contain C1(7, 3). Finally, there is a minimizing

order on
(
[6]
3

)
distinct from lexicographical:

{1, 2, 3} <min {1, 2, 4} <min {1, 2, 5} <min {1, 2, 6} <min {1, 3, 4} <min

{1, 3, 5} <min {1, 3, 6} <min {2, 3, 4} <min {2, 3, 5} <min {2, 3, 6} <min

{1, 4, 5} <min {1, 4, 6} <min {2, 4, 5} <min {2, 4, 6} <min {1, 5, 6} <min

{2, 5, 6} <min {3, 4, 5} <min {3, 4, 6} <min {3, 5, 6} <min {4, 5, 6}.

Thus, a minimizing order exists on
(
[n]
k

)
only in cases k ≤ 2, k ≥ n − 2, and

n = 6, k = 3.

Acknowledgements

The author would like to thank his advisor Prof. Alexander A. Sapozhenko for
formulation of the problem and constant attention to the work. The author
also thanks Dmitry V. Chistikov for useful discussions.

References

[1] R. Ahlswede, H. Aydinian, L. H. Khachatrian, More about shifting techniques,
European J. Combin. 24, 5 (2003) 551–556. ⇒53, 54, 56

[2] M. A. Bashov, On minimisation of the double-sided shadow in the unit cube,
Diskr. Mat., 23, 4 (2011) 115–132. ⇒54

[3] M. A. Bashov, Minimal families in terms of double-sided shadow in the Boolean
cube layer, Electron. Notes in Discrete Math., 38 (2011) 117–122. ⇒61

[4] M. A. Bashov, Minimal in terms of double-sided shadow subsets of Boolean cube
layer distinct from circles, Diskretn. Anal. Issled. Oper., 19, 5 (2012) 3–20. ⇒
54, 55

[5] S. L. Bezrukov, U. Leck, Macaulay posets, Electron. J. Combin. (2004), Dynamic
Survey DS12, http://www.combinatorics.org/. ⇒54

[6] G. F. Clements, B. Lindström, A generalization of a combinatorial theorem of
Macaulay, J. Combin. Theory 7 (1969) 230–238. ⇒53

[7] G. O. H. Katona, A theorem of finite sets, Proc. Tihany Conference, New York,
1966, pp. 187–207. ⇒53

[8] J. Kruskal, The number of simplices in a complex. In:Mathematical Optimization

Techniques, Berkeley, Los Angeles, Univ. of California Press, 1963, 251–278. ⇒
53

Received: February 5, 2013 • Revised: May 31, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 63–76

Location-stamp for GPS coordinates

Éva ÁDÁMKÓ
University of Debrecen
Faculty of Informatics

email: adamko.eva@inf.unideb.hu

Attila PETHŐ
University of Debrecen
Faculty of Informatics

email: petho.attila@inf.unideb.hu

Abstract. Anybody can make a time information authentic easily nowa-
days with the help of a time-stamp by a Certification Authority. In
this paper, we propose a similar service for mobile devices—which have
GPS receiver–to authentication GPS coordinates. This service name is
location-stamping, and we propose two protocols for this service.

1 Introduction

Nowadays the applications which based on the Global Positioning System
(GPS) gain more and more place for themselves, like the locating, passenger
guiding, traffic controlling, tracking or navigation system. These services be-
came vital parts of our everyday life. A big percentage of the mobile devices
have a GPS receiver too.
In 2001 Alf Zugenmaier and Matthias Kabatnik in [8] introduced a location-

stamp service for mobile telephone network. Their solution authenticates cell
information. The usage of the protocol mentioned in this article is impossible
in the case of GPS because the Certification Authority and the Location Mea-
surement System carry on two-way communication with each other. In our case
the Location Measurement System is the GPS, where the communication is
one-way, because the satellite only can send the information, but can’t receive
it. In this article we propose two solutions for the cryptographic authenti-
cation of GPS coordinates. The basic idea is that the data received and/or

Computing Classification System 1998: K.6.5

Mathematics Subject Classification 2010: 68P30

Key words and phrases: location authentication, GPS, location stamp

63

64 E. Ádámkó, A. Pethő

computed by the GPS device are sent to a trusted organization, which can be
for example a certification authority. Of course the GPS device digitally signs
the message. If this information is compatible with other information available
by the organization, then it signs the GPS coordinates. The basic difference
between the two solutions is that while in the first case we assume that we
have access to the row data sent by the satellites and received by the GPS de-
vice, thus they can be signed; however in the second case we have access only
to the computed GPS coordinates. Thus the first protocol is favorable, but
the second is safe enough in most applications. This paper is the essentially
revised and extended version of our publication [1].
The paper is organized as follows. In Section 2 we give a brief introduction to

the basics of Global Positioning Systems (GPS). In Section 3 we compare the
geodesic and cryptographic notion of authenticity. Furthermore we describe
situations when cryptographic authentication of GPS data may be important.
Finally in Section 4 we present two protocols, which are able to solve the basic
problem of authentication of GPS coordinates.

2 Global Positioning System

“The Global Positioning System (GPS) is a space-based global navigation
satellite system that provides location and time information anywhere on or
near the Earth.” [3] The position calculation is based on trilateration with
satellites orbiting in space, and the measuring system is a receiver, which
communicates with the satellites through radio-waves. This communication is
one way because the satellites only can send the information, but cannot re-
ceive it. Several software exist which are able to calculate the GPS coordinates
from the “raw” data which come from the satellites. For this reason, a GPS
receiver calculates the actual coordinates with a special software, from the
data received from the satellites through radio-waves. The Global Positioning
System has three distinct segments. These segments are the space segment,
the control segment and the user segment. The space segment formed from
a constellation of 24 satellites. The control segment consists of the stations,
which control the satellites from the Earth and last the user segment means
anybody, who receives the data which come from the satellites. See more about
the Global Positioning System in the following books [3, 2].

3 Authenticity

It is very important to define the differences between the geodesic and the
cryptographic authenticity, to understand the aims of this paper.

Location-stamp for GPS coordinates 65

3.1 Geodesic authenticity

If we measure the position of an object, we can do it accurate with the
help of the Global Positioning System. But this accuracy can mean different
measuring result for different people. “For example to a hiker or soldier in
the desert, accurate means about 15m. To a ship in coastal waters, accurate
means 5m. To a land surveyor, accurate means 1cm or less. GPS can be used
to achieve all of these accuracies in all of these applications, the difference
being the type of GPS receiver used and the technique employed.” [4] In some
cases we need extremely high accuracy. For example in the OPERA project
of CERN the distance of the source of the CNGS neutrino beams at CERN
and the OPERA detector at Gran Sasso, which is about 730 km was measured
with a precision of 20 cm. [3] It is possible to correct the calculations with a
lot of different methods. So we may declare that the GPS coordinates of an
object are more accurate from geodesy viewpoint when we can calculate them
with much smaller difference. In other words, it means, we can calculate them
more precisely. To improve the precision of GPS coordinates the mathematical
methods must be made more accurate. The devices are validated regularly,
which means that their results are compared with the results of authentic
devices.

3.2 Cryptographic authenticity

In this paper we deal with the cryptographic authenticity of GPS coordi-
nates. We use a lot of data while we work with the GPS system, for example
the raw data arriving from a satellite, the time information or the calculated
coordinates. The task of cryptography is to prevent these data from chang-
ing during the process of the calculations. The changes can be made by for
example a malicious person, a virus, a modified device or modified software
sometimes it may happen by chance.
The cryptographic authenticity—as any other prevention—costs time and

money. Only such data should be prevented, which are worth enough. We
should ask the question: is the authenticity of these data important? The
answer depends on the application. It is true that for example in passenger
guiding, or in navigation not really important the above-mentioned certainty
because the calculation of GPS coordinates takes so little time and it hap-
pens so often that there is no chance to change them and there is no point
in changing them too. At the topic of vehicle-tracking, certainty-problem also
forced a little bit, but for example, if you would like to prove with GPS coor-

66 E. Ádámkó, A. Pethő

dinates that the fences of your neighbor is on your place it is quite certain that
you will need some kind of authentication before the official establishments to
prove your truth. Until in an argument of a parcel the Land Register proceed,
and make exact measurement, but it cannot do in any cases due to capacity
problems.
For the foregoing case here is an example, and this will be our main example:

A supervisor of the Land Registry finds a field where the ragweed had pro-
liferated. He wants to fine the owner. To prove his truth he makes an official
report:

• locates the area with a GPS device,

• signs the report digitally,

• and asks for an authentic time stamp.

After all these, he proves when the report was made and that he made it. If
the aforesaid cases come on for trial, then neither the penalized driver nor
the civil servant can prove that their GPS coordinates are match the place
where they made it. Despite the fact that the supervisor certified the location
information by his digital signature.
They cannot prove that the location information is correct because not a

single people or device is fully trusted too. Electronically saved or transmitted
data can be changed easily, thus without some kind of provable signature the
authenticity of data is always questionable. That is why we need some kind of
service, which helps us to certify our place authentically, by GPS coordinates.
In this article we suggest a solution to this problem. Our solution that is

the location-stamp may be similar to the time-stamp for the above problems.
The time stamp is provided by a Certification Authority. The plan with the
location stamp is similar, we need an organization that is independent from
the measurement and can guarantee that nobody modified the results we got.
We think this location stamp service workable by a Certification Authority
too. Actually, the aim is that we should make us independent from the person
who makes the measurement and the device which makes it.

4 Problem formulation

As for the precision of the device, there are several options for the crypto-
graphic authenticity:

• First we trust the person and the device in all cases. We accept the
measured coordinates, and the time provided by the device.

Location-stamp for GPS coordinates 67

• Second we trust the person and the device, but we do not trust the time
information of the device. We accept the measured coordinates, but we
do not accept the time provided by the device.

• Third we neither trust the person nor the device. We neither accept the
measured coordinates nor the time provided by the device.

In this paper we only deal with this third option and we introduce two solutions
for that option. First there is a higher safety solution, which is the driver-level
solution, and then there is a lower safety solution that is the software-level
solution. The differences between these two solutions are the following: in
the first case the authentic software is built in the driver level of a mobile
device. The data are signed immediately the device received them. Thus the
provided security is as high as possible. On the other hand it is very hardware
dependent. In the second case the authentic software is on the level of the
operating system. Its security is a little bit less than in the other solution.
Thus we complement this version with a trilateration for the mobile device for
added security.
We use the following cryptographic primitives during the work of the pro-

tocols: digital signature, hash function and time stamp. We do not detail the
working of these cryptographic primitives here, but we recommend the book
[7] for the interested readers for the easier understanding.

5 Protocols

5.1 High-safety solution: Driver-level

In this solution our aim is to get the raw data before somebody could modify
them. We try to build our authentic software in a very deep layer of the process,
so we would like to build it in the driver level.

5.1.1 Participants and notations

GPS is the Global Positioning System. The satellites of this system provide
the data from which the GPS receiver calculates the coordinates of the actual
position.
MD is the Mobile Device. The device with a GPS receiver, we make the

positioning and the authentication with the help of this device.
CA is the Certification Authority. It provides the authenticate time and

68 E. Ádámkó, A. Pethő

Figure 1: Driver-level protocol

location stamp, this is an organization, which is independent from the mea-
surement and can guarantee that nobody modified the results we got.
AS is the Authentic Software. This software makes the authentication for

the raw data (which come from the satellites) and for the calculated GPS
coordinates.
CS is the Calculator Software. This software calculates the GPS coordinates

of the actual position from the raw data come from the satellites.

Location-stamp for GPS coordinates 69

M is the text or photo or some other data, that we want to authenticate
with a location-stamp.
h(. . .) is the hash function.
H is the hash value of the M.
c(. . .) is the calculator function, which calculates the current position from

the raw data that come from the satellites.
RD is the raw data come from one of the satellites of Global Positioning

System.
GPSc is the GPS coordinate calculated by the calculator software.
SAS(. . .) is the signature of the data in parenthesis with the private key of

the authentic software.
SCA(. . .) is the signature of the data in parenthesis with the private key of

the certification authority.
VAS(. . .) is the verification of the data in parenthesis with the public key of

the authentic software.
VCA(. . .) is the verification of the data in parenthesis with the public key of

the certification authority.
si is the ith signed data.
TIME is the time information.
t is the time information of RD.
ALS is the authentic location stamp, generated by the certification author-

ity.
f (. . .) is the freshness checking function.

5.1.2 Protocol

1. MD calculates the hash value of M : H = h(M)

2. MD→ AS : H||M

3. AS digitally signs H with its private key: s1 = SAS(H)

4. GPS→ AS : RD

5. AS digitally signs the hash value of RD with its private key:
s2 = SAS(h(RD))

6. AS→ CS : RD

7. CS calculates the actual position from RD : GPSc = c(RD)

8. AS← CS : GPSC

9. AS digitally signs the hash value of GPSc with its private key:
s3 = SAS(h(GPSc))

70 E. Ádámkó, A. Pethő

10. AS concatenates H, s1 , RD, s2 , GPSc and s3 and takes its hash value
and then digitally signs this hash value with its private key:
s4 = SAS(h(H||RD||GPSc||s1||s2||s3))

11. AS→ CA : H||RD||GPSc||s1||s2||s3||s4

12. CA verifies that the raw data were signed by AS and CA verifies that
GPSc can be computed from RD, and checks the freshness of the t.
VAS(s2)

c(RD) = ?GPSc

f(t)

12.1. if the answer is true for all questions, then CA makes the authentic
location-stamp:
ALS = TIME||SCA(h(H||RD||GPSc||s1||s2||s3||s4||TIME))

AS← CA : ALS

12.1.1. AS verifies that really the CA signed the location-stamp that
it got:
VCA(ALS)

12.1.1.1. if the answer is true, then AS accepts the authentic location-
stamp

12.1.1.2. if the answer is false, then AS starts a new location-stamp
request with step 4.

12.2. if the answer is false, then CA rejects to generate the authentic
location-stamp
AS← CA : rejection

5.1.3 Protocol description

The protocol, described in the previous subsection, have three important
participants, these are the satellites of the Global Positioning System, the
mobile device and the certification authority. The mobile device generates a
print of the data,—we want to stamp with an authentic location stamp—
initially with an eligible hash function, this is necessary because of the digital
signing. After this the authentic software, which is built in the driver of the
mobile device, gets the data from the three GPS satellites, and then it digitally
signs these data with its own private key presently. This signing is required in
order that nobody is able to falsify during the computational process the raw
data arriving from the satellites. The authentic software located in the driver
of the mobile device so it can protect the data from the attack of any software

Location-stamp for GPS coordinates 71

installed on the operation system of the mobile device. Once the authentic
software digitally signed and stored the raw data, sends it to the calculator
software. The calculator software calculates the current GPS coordinates from
the present raw data and sends back the result to the authentic software. The
authentic software digitally signs these data too. Now we arrived at the point
that the authentic software is able to ask for an authentic time stamp from
the certification authority. So the authentic software sends a request to the
certification authority, this request contains the data hash value, the raw data
and the calculated coordinates concatenated and digitally signed with its own
private key. Then the certification authority generates a nonce value in order
to ensure the freshness of the protocol and gives it back to the software. The
authentic software appends the nonce to the previous request and turns it back
to the certification authority, which checks that really the authentic software
sent the request. If the result of the verification is right then the certification
authority checks that GPSc can be computed from the raw data, if the answer
is true, then it generates the location stamp, which also includes a time stamp
too.

5.2 Lower-safety solution: Software-level

The protocol of the previous section is hardware dependent. This is because
we signed the raw data received by the GPS device from the satellites. Our aim
in the sequel is to describe a less hardware dependent authentication. Thus
we cannot assume to have access to the raw data, but only calculated GPS
coordinates. Hence to authenticate the data of the GPS device, the trusted
organization has to have own data which it can compare with received ones.
The mobile phone services have cell information, but they are usually not
accurate enough to fix the location the GPS device. By our knowledge this is
possible in bigger cities where the mobile network coverage is broad enough.
Then the mobile phone service has independent information on the location
of the GPS device, which can be compared to the data it sends to the trusted
organization. This second protocol is only applicable if the above assumption
holds. After this preparation we present the details of the protocol.

5.2.1 Participants and notations

Here we mention only those symbols which differ from participants or nota-
tions in the previous protocol, other symbols denote the same as above. MPSP

is the Mobile Phone Service Provider, this provides the cell information for a
mobile identifier.

72 E. Ádámkó, A. Pethő

Figure 2: Sotware-level protocol

AS is the Authentic Software. This software makes the authentication for
the calculated GPS coordinates.
MoID is the Mobil identifier, a number from which the MPSP can identify

the current mobile device.
t(. . .) is the trilateration function, trilaterates the CI from the MoID.
CI is the cell information from the MPSP.
ck(. . .) is the checking function, which checks if a GPS coordinates are in

Location-stamp for GPS coordinates 73

the area which is defined by the cell information.
SMPSP(. . .) is the signature of the data in parenthesis with the private key

of the mobile phone service provider.
VMPSP(. . .) is the verification of the data in parenthesis with the public key

of the mobile phone service provider.

5.2.2 Protocol

1. MD calculates the hash value of M : H = h(M)

2. MD→ AS : H||M

3. GPS→ AS : RD

4. AS calculates the actual position from RD : GPSc = c(RD)

5. AS concatenates MoID, H, RD and GPSc and digitally signs its hash
value with its private key:
s1 = SAS(h(MoID||H||RD||GPSc))

6. AS→ CA : MoID||H||RD||GPSc||s1
7. CA verifies that the raw data were signed by AS and CA verifies that

GPSc can be computed from RD and checks the freshness of the t.
VAS(s1)

c(RD) = ?GPSc

f(t)

7.1. if the answer is true then:
CA→MPSP : MoID and asks for a cell information

7.1.1. MPSP trilaterates CI from the MoID:
t(MoID) = CI

s2 = SMPSP(MOID||CI)

CA←MPSP : MOID||CI||s2

7.1.2. CA verifies that really the MPSP signed the data, which it got,
and, that the GPSc matches to the CI:
VMPSP(s2)

ck(GPSc,CI) = true

7.1.2.1. if the answer is true, then CA makes the authentic location-
stamp:
ALS = TIME||SCA(h(MoID||H||RD||GPSc||s1||s2||CI||TIME))

AS← CA : ALS

7.1.2.1.1. AS verifies that really the CA signed the location-stamp
that it got:
VCA(ALS)

74 E. Ádámkó, A. Pethő

7.1.2.1.1.1 if the answer is true, then AS accepts the authentic
location-stamp

7.1.2.1.1.2 if the answer is false then AS starts a new location
stamp request with the step 3.

7.1.2.2. if the answer it false then CA asks a new cell information
with the step

7.2. if the answer is false, then CA rejects to generate the authentic
location stamp
AS← CA : rejection

5.2.3 Protocol description

Against the protocol, described in the previous chapter, in this part the pro-
tocol has four important participants, the satellites of the Global Positioning
System, the mobile device, the certification authority and the mobile phone
service provider of the actual mobile device. There are some other differences
between the two protocols, in the previous solution the authentic software is
built in the driver level of the mobile device, in the actual case the software is
installed on the operation system of the mobile device as it usually. The mo-
bile device initially generates a print of the data with a hash function as same
as the previous case. After this the authentic software, which is installed on
the mobile device, gets the data from the three GPS satellites, and calculates
the current GPS coordinates from the present raw data. Then it concatenates
these two values, the document hash value and the mobile device identifier
and digitally signs with its own private key. After this the authentic soft-
ware asks for an authentic time stamp from the certification authority with
the help of these digitally signed data. The certification authority generates a
nonce value in order to ensure the freshness of the protocol and gives it back
to the software. The authentic software appends the nonce to the previous
request and turns it back to the certification authority, which checks that re-
ally the authentic software sent the request. Now the certification authority
sends the identifier of the mobile device to the mobile phone service provider,
which trilaterates the cell information for the device and gives it back. In this
point only the verification remains behind. If the result of the verification is
right, namely the calculated GPS coordinates matches to the cell information,
and the private key belongs the authenticate software, then the certification
authority generates the location stamp, which also includes a time stamp too.

Location-stamp for GPS coordinates 75

6 Attacks

In the field of authentication of GPS information there are two main type
of the possible attacks, these are jamming and spoofing.

• Jamming

In the course of jamming the attacker try to interrupt the connection be-
tween GPS satellites and GPS receivers. It is fairly an easy task, considering
that the GPS satellites are orbiting in the space 20 000 km far from the Earth.
This is the first reason why the broadcast signals are not too powerful and
the other reason is that this communication happens over wireless connection.
Therefore, the aim of the attacker is that make the satellites inaccessible for
the receivers. In order to achieve the former goals the attacker produce an
obstruction into the connection.

• Spoofing

In contrast with jamming, in the course of spoofing attack the connection be-
tween satellites and receivers is in good working order. Spoofing cause a much
more dangerous situation. The attacker transmits a more powerful signal than
the signal broadcast by the GPS satellites. From this point the receiver will
think that this modified signal is the original which comes from the satellites.
The fact that the receiver will receive this modified signal means that the at-
tacker can fake the location information of the receiver, and this can mislead
the user.
Compared to some other authentication method for GPS coordinates [5, 6]

none of our protocols protects against jamming and only one of them protects
against spoofing, but this was not the goal that we would have liked to achieve.
Neither spoofing nor jamming is relevant to our case because this protocol is
intended to use in the civil service. In the case that someone disrupts or ter-
minates information flow - so the jamming occurred -, then there is simply no
data that needs to be validated. There is a low-level security against spoof-
ing in the second protocol, but this type of attack is not probable, because
these data we would like to verify are not at the high classified level. So these
data are not worth so much to make sense of spoofing—falsifying the GPS
signals—. If you would like to verify a high classified data, then this can easily
achieved by strengthen our protocol with another anti-spoofing solution, our
make some changes on one of these protocols. Maybe in the future we will use
some of these solutions to amplify the security of our protocol. In summary,
our solution protects data from that point that they are in the mobile device.

76 E. Ádámkó, A. Pethő

7 Conclusion

In this article, we describe two protocols to authenticate GPS coordinates
in a mobile device, and we did not give solutions to jamming or spoofing
attack. So this service can only provide against for example the following
type of attacks: modified software on the mobile device (which calculate false
coordinates), direct adding a fake location information to the device (by hand,
or by sms, or via email) or some analogue attacks. In a second article we would
like to analyze the security and complexity of these protocols.

References

[1] É. Ádámkó, A. Pethő, Helysźın-bélyegzés, hiteleśıtett GPS koordináták, in: Az
elmélet és a gyakorlat találkozása a térinformatikában, Ed.: Dr. Lóky József,
Debrecen, Hungary, 2011, pp. 381–388. ⇒64

[2] A. El-Rabbany, Introduction to GPS: The Global Positioning System (2nd edi-
tion), The Artech House Press, 2006. ⇒64

[3] B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins, Global Positioning System:

Theory and Practice, The Springer Press, 1993. ⇒64, 65
[4] C. Kennedy, GPS Basics, GeoPlane Services. (1999), http://www.geoplane.

com/gpsbasics.pdf ⇒65
[5] M. G. Kuhn, An Asymmetric Security Mechanism for Navigation Signals, Sixth

Information Hiding Workshop, Toronto, Canada, 2004, pp. 239–252. ⇒75
[6] S. Lo, D. De Lorenzo, P. Enge, D. Akos, P. Bradley, Signal Authentication, A

Secure Civil GNSS for today, InsideGNSS, Technical Article, 2009 September-
October, pp. 30–39. ⇒75

[7] A. J. Menezes, P. C.van Oorshot, S. A. Vanstone, Handbook of applied cryptog-

raphy, The CRC Press, 1997. ⇒67
[8] A. Zugenmaier, M. Kabatnik, Location stamps for digital signatures: a new ser-

vice for mobile telephone networks, ICN’01 Proc. First International Conference

on Networking, Part 2, Colmar, France, 2001, pp. 20–30. ⇒63

Received: March 19, 2013 • Revised: June 1, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 77–102

Test software quality issues and

connections to international standards

Attila KOVÁCS
Eötvös Loránd University
Faculty of Informatics

email:
attila.kovacs@compalg.inf.elte.hu

Kristóf SZABADOS1

Eötvös Loránd University
Faculty of Informatics

email:
kristof.szabados@ericsson.com

Abstract. This paper examines how ISO/IEC 9126-1 and ISO/IEC
25010 quality models can be applied to software testing products in in-
dustrial environment. We present a set of code smells for test systems
written in TTCN-3 and their categorization according to quality model
standards. We demonstrate our measurements on industrial and ETSI
projects, and provide a method for estimating their effects on product
risks in current projects.

1 Introduction

In our fast changing world the usage of electrical devices belongs to the every-
day life of the society. These devices contain software helping the navigation
to destinations, supporting the communication with other people, driving the
production, distribution and consumption of energy resources. Software drives
companies, trades on the markets, takes care of people’s health.
All of these systems must fulfill very strict (but different) quality restrictions.

In the telecommunication area “five nines” (99.999%) availability allows only
5.26 minutes downtime per year — often including planned upgrades and
maintenance. Companies producing these systems perform strategically several

Computing Classification System 1998: D.2.9
Mathematics Subject Classification 2010: 68Q60
Key words and phrases: ISO/IEC 9126, ISO/IEC 25010, TTCN-3, test system architec-
ture, software quality

1Corresponding author

77

78 A. Kovács, K. Szabados

activities to ensure the required level of quality. In 1986 the software engineer
Barry Boehm observed that the cost of detecting, reporting and correcting
defects increases exponentially by the time they are found in the software
development process [2]. At that time the overall magnitude of software costs
was estimated to be roughly $140 billion per year, worldwide. Since then the
size and complexity of software systems have been growing constantly together
with the quality expectations against these systems.
Clearly, as the size and complexity of software systems grows, so does the

size and complexity of their tests. Before Y2K tests were mostly designed and
executed manually. Nowadays every corporation aims at automating their tests
which produces large scale test architectures. In the telecom area this pressure
facilitated the ETSI2 to develop a scripting language used in conformance
testing of communicating systems and a specification of test infrastructure
interfaces that glue abstract test scripts with concrete communication envi-
ronments. This programming language standard is called TTCN-33 and offers
potentials for reducing test maintenance costs significantly.
Companies developing complex software systems require quality standards,

models and methods to define, perform and institutionalize their quality man-
agement processes. The ISO4 and IEC5 published the multiple standards 9126
[11] and 25000 [16] which approach software product quality. Other standards
like ISO/IEC 9001 or CMMI6 [4] focus on the quality of the software processes.
GQM7 [25] describes measurement techniques used in software development,
while PSP8 [27] and TSP9 [10] aims at the human resources and personal
processes used during software development.
Regarding the software testing area applying TMMi10 organizations can

improve their test processes. ISTQB11 offers certifications of competences in
software testing. A wide range of software testing tools supports the testing
processes, including test management, functional and non-functional testing,
etc. Yet, the theoretical research and graphical tool support lacks behind these
quality trends in testing.

2European Telecommunications Standards Institute
3Testing and Test Control Notation – 3
4International Organization for Standardization
5International Electrotechnical Commission
6Capability Maturity Model Integration
7Goal Question Metric
8Personal Software Process
9Team Software Process

10Test Maturity Model Integration
11International Software Testing Qualifications Board

Test software quality issues 79

The paper is organized as follows. In Section 2 we present the earlier results
related to our subject. In Section 3 we give a bird’s-eye view on ISO/IEC 9126

and ISO/IEC 25010 models. Section 4 contains the list of code smells we have
analyzed and the categorization of them. We implemented and measured the
quality of the tests via these code smells on actual industrial projects and
we present the findings in Section 5. Section 6 summarizes the results of this
paper.

2 Earlier results and related work

In 2007 Zeiss et al. [29] published a model for test specification derived from
ISO 9126 concentrating only on internal quality attributes. This model is
divided into 7 main characteristics: test effectivity, reliability, usability, effi-
ciency, maintainability, portability and re-usability. Each main characteristic
is divided into sub-characteristics. Most of these main and sub-characteristics
are re-interpreted and re-named from ISO 9126 in order to be more appropri-
ate in the context of testing. For example the suitability sub-characteristic of
the functionality main characteristic in the ISO 9126 model is renamed to test
effectivity / test coverage. The reason for this, as they explained, is that “in
the context of test specification, the suitability aspect is characterized by the
test coverage. Coverage constitutes a measure for test completeness”. Another
important part of this work is the definition of the re-usability main charac-
teristic. Re-usability is an important aspect in case of test specifications. The
specifications of functional tests, performance tests and load tests might be
different, but the test data could be reused in all of these test suites. Another
example could be functional tests: once developed, they might be used for
regression testing purposes.
In the present work we take a different way of looking at the tests. Our atten-

tion is to look at tests as software products. So, instead of re-interpreting the
quality standards for testing, we re-interpret the testing for software product
quality. The previously mentioned article chooses TTCN-3 as a test specifi-
cation language. In this work TTCN-3 is viewed as a programming language.
Software products written in TTCN-3 have to be analyzed in order to fulfill
quality requirements by applying quality metrics. As we see the two stand-
points is not contradicting but rather complementing each other.
In the paper of Bánsághi et al. [1] one of the cornerstones was the com-

parison of the models ISO 9126 and ISO 25010. The article comes to the
conclusion that even though the new model is broader, both models suffer

80 A. Kovács, K. Szabados

from the fact that “different parties with different views of software quality
can select different definitions”. They state that although both of the stan-
dards offer a good frame of reference for software product quality, neither of
them offer a practically applicable method for assessing quality. The other
cornerstone was the fact that there is a wast literature proposing numerous
ways of measuring software quality metrics without providing traceable and
easily applicable translation to the multi-faceted notation of quality. To bridge
this gap the authors analyzed the rules of the PMD [24] and FxCop [8] static
source code analyzers and classified them into the quality characteristics of the
standards. PMD analyzes Java source code and looks for possible code smells,
like duplicate code, unused local variables, etc. FxCop analyzes managed code
assemblies in the .NET framework common language runtime. They have clas-
sified 203 PMD and 225 FxCop rules into ISO 9126 and ISO 25010 categories.
They have found that most rules fall into the maintainability characteristic in
both standards.
This work tries to extend [1] with quality rules for testing systems.
The following questions arise naturally: are the TTCN-3 language and the

test systems written in it complex enough for such an analysis? Is it worth
to regard the test language as a programming language? The answer is yes.
It was already shown [26] that current testing systems written in TTCN-3
are not only large in size, but are also very complex. The importation graph-
structure of these software systems shows scale-free properties. This was one
of our main motivations why the TTCN-3 language and systems need to be
studied deeper.

3 Bird’s-eye view on ISO/IEC product quality stan-
dards

It is well-known that specification and evaluation of software quality attributes
are key factors to ensure adequate business quality. Yet, software quality is
still considered to be a trait that can not be measured [17]. This attribute is
based on the fact that in general quality is a multidimensional concept. The
understanding of quality depends on the entity of interest, attributes of that
entity and the viewpoint of the observer. In order to achieve high software
quality appropriate quality characteristics must be defined and taken into
account. These characteristics should drive the significant architectural and
design decisions. Software quality management should help to ensure that the
required level of quality is reached.

Test software quality issues 81

3.1 ISO/IEC 9126

ISO/IEC 9126-1 defines quality as “the totality of features and characteristics
of a product or service that bear on its ability to satisfy stated or implied
needs” [11]. This standard has later been revised and separated into 4 parts:
part one defines the characteristics and viewpoints of software product quality
[12]; part two provides metrics for the external quality, as the totality of char-
acteristics of the software product from an external point of view [13]; part
three assesses a software system’s internal quality, as the totality of charac-
teristics of a software product from an internal point of view [14]. It provides
metrics that measure the software itself. Part four evaluates metrics by the
quality in use, as the end user’s view of the quality of the software product,
as it is used in the specific usage context [15].
ISO/IEC 9126-1 contains a two part model. The first part is applicable for

modelling the internal and external quality of a product, while the second part
models the quality in use of a software product. Generally, internal quality is
understood as something attainable on reviews by doing static code analysis.
Internal quality can be used early in the development process to predict the
quality of the final product. External quality describes properties of software
as it interacts with its environment. Quality in use is perceived by the end user
who executes the software product. These product quality views represent dif-
ferent stages of the development, but instead of being completely independent,
they influence each other.
ISO/IEC 9126-1 defines the same frame for modelling internal and external

quality (shown on Figure 1), which can be instantiated for both using differ-
ent set of metrics. The model itself describes 6 characteristics: functionality,
reliability, usability, efficiency, maintainability and portability. Each of these
characteristics has several further sub-characteristics. The importance of the
characteristics varies depending on the view point concerned.

3.2 ISO/IEC 25010

ISO/IEC 9126 has been recently replaced by ISO/IEC 25010 [16]. It revises
the old standard and incorporates the same characteristics with some amend-
ments.

• The scope of quality models includes computer systems and quality in
use from system perspective.

• Several new characteristics and sub-characteristics were added. Some
characteristics were escalated from being sub-characteristics (security),
some were removed, some were renamed to have more appropriate names.

82 A. Kovács, K. Szabados

Figure 1: Quality characteristics of a software product in ISO/IEC 9126

• Internal and external quality models were combined as the product qual-
ity model.

This standard states that “this International Standard is intended to be
used in conjunction with the other parts of SQuaRE series of International
Standards (ISO/IEC 25000 to ISO/IEC 25099), and with ISO/IEC 14598 until
superseded by the ISO/IEC 2504n series of International Standards”.
ISO/IEC 25010 categorizes the product quality properties into eight charac-

teristics: functional suitability, performance efficiency, compatibility, usability,
reliability, security, maintainability and portability. With each characteristics
being composed of a set of related sub-characteristics (see Figure 2).
Quality in use attributes are categorized into five characteristics: effective-

ness, efficiency, satisfaction, freedom from risk, context coverage. The defini-
tion of quality in use compared to ISO/IEC 9126 also includes the quality of
hardware, operating environment and the characteristics of users, tasks and
social environment as having an effect on stakeholders.

Test software quality issues 83

Figure 2: Software product quality according to ISO/IEC 25010

4 Code smells and categorization

As we stated earlier our starting point is different from the previous researches.
They usually tried to map constructs from the testing context onto software
product quality rules. Our point of view approximates from the other direction,
i.e., we map software product quality constructs on software systems written
in TTCN-3. We started to analyze existing systems which are actually used
for testing.
Another serious difference is that we are able to consider incomplete systems:

software products which are part of some larger software products (and might
contain smaller software products within themselves). In this context software
code itself is viewed as a product. For example a library of functions that
can be used to send and receive messages on a protocol, or a framework that
enables the user to do load testing (after configuring the specific messages
to be sent/received). Both examples are software systems that could be used

84 A. Kovács, K. Szabados

in a standalone mode or as part of a bigger architecture. At the same time
both examples share the property of being products that are used by other
programmers or test designers. These software products are delivered to the
customer in the form of source codes.
This point of view means that usability also becomes a characteristic that

can be measured by a static source code analyzer. This way usability andmain-
tainability seems to be hard to separate so we have to refine the distinction. In
our understanding maintainability means the attributes related to maintaining
the actual product, usability means the usage from a higher abstraction level
or by an external product. In case of a TTCN-3 function, in a vague sense,
this could mean that the quality attributes of the function’s body most likely
belong to the maintainability characteristic, while the quality attributes of the
formal parameter list belongs to the usability characteristic. If a function has
too many formal parameters than it may cause problems for the party trying
to invoke (use) it. While the actual implementation of some feature is the in-
ternal responsibility of the product, it could be changed without creating any
noticeable side effect for the external calling party.

4.1 Code smells

A code smell is a hint that something has gone wrong somewhere in the code.
In order to find valid code smells that can be used to measure the quality of
TTCN-3 testing systems we have analyzed the archives of the Quality Assur-
ance Organization of a large telecom company and the code smells already
detected by existing static analyzers in other languages.
First we have reviewed every Inspection Record (source code review doc-

uments) created from year 2006. We have also reviewed all entries in the
Trouble Report (errors and problems found in released products) database.
These records have proven to be very usefull for the rest of the research. All
of them were code quality issues which may became show stoppers at some
point in the project’s life cycle.
Second, we have also reviewed the rules of PMD [24], FxCop [8], Checkstyle

[3], FindBugs [6], xUnit Patterns [20], Martin Fowler’s book on refactoring [7]
and TRex [28] to see if there are any static analyzer rules that can be used
in testing and in particular for the TTCN-3 language. Checkstyle is a highly
configurable static code analyzer for Java, mostly directed to issues related to
breaking naming conventions. Findbugs is an open source static code analyzer
operating on Java bytecode. xUnit Patterns is an extensive collection of unit
testing specific code smells. Martin Fowler’s book provides an extensive list of

Test software quality issues 85

code smells, their description and refactoring methods for “deodorizing them”.
As TTCN-3 is not an object oriented language and was designed with a testing
oriented mindset, most of the reviewed rules could not be applied. Another
important difference is that the standard of the TTCN-3 language is changing
rapidly. Visibility checking was introduced to the standard in year 2009 [5].
This change came with the public, private and friend words becoming keywords
and no longer usable as identifiers. After the introduction of the keywords the
source codes that contained them were no longer backward compilable.
TRex [22, 23] has an extensive list of code smells for TTCN-3 with the

following entries: (1) Duplicated Code, (2) References, (3) Parameters, (4)
Complexity, (5) Default Anomalies, (6) Test Behaviour, (7) Test Configura-
tion, (8) Coding Standards (9) Data Flow Anomalies, (10) Miscellaneous, hav-
ing altogether 38 smells. The Duplicated Code smell mentioned in this article
describes 7 separate smells differentiating the dupplication of template data,
local data, inline-data, component data, statement, conditional branches and
Alt branches. They showed the practicability of their smells in the test systems
SIP v4.1.1, HiperMan v2.3.1 and IPv6 v1.1 having altogether 61282 lines of
code. Based on this work we extended and redesigned the list of code smells
we found to be applicable to TTCN-3. They are as follows:

1. FIXME tags: Developer markings of severe incorrect or missing features.
2. TODO tags: Developer markings of incorrect or missing features.
3. Circular importation: The import relation of modules forms at least one

loop.
4. Duplicated code: Very similar code exists in more than one location.
5. Similar functions: Several functions differing only in literal values.
6. Mergeable templates: Similar data structures, that could be merged into

a single parameterized one.
7. Long statement blocks: A block of statements that has grown too large.
8. Too many parameters: A long list of formal parameters.
9. Excessively short identifiers: The name of an identifier is too short to

reflect it’s functions.
10. Excessively long identifier: The name of an identifier is too long.
11. Divergent naming: The identifier breaks the naming conventions.
12. ”Private” group: Public definitions categorized in a group called ”pri-

vate”.
13. Internal comments: Internal comments indicate too complicated code.
14. Missing comments: All methods should be commented.

86 A. Kovács, K. Szabados

15. Type in method name: The return type’s name is redundant in the
method name.

16. Module in method name: The containing module is mentioned in the
method name.

17. Visibility embedded in name: Visibility rules evaluated by user.
18. Incomplete literals: Some fields of literals and constants are initialized

unbound.
19. Initialize with constant: Structured value declared without initial value.
20. Dummy fields in constants: Field always overridden, should be left un-

bound.
21. Goto detection: Goto is considered to break structured programming

rules.
22. Unnecessary imports: Module importations that are unnecessary.
23. Unused global definitions: Some global definitions are not used.
24. Unused local definitions: Some local definitions are not used.
25. Unnecessary operations: Operations never executed.
26. Unchecked module parameter: The module parameter is used before be-

ing checked.
27. Push definition to component: Functions running on a component define

the same local variable.
28. Pull definition to local: A component member is only used in a few

functions.
29. Unused return value: The result or error handling of the function call is

missing.
30. Unused started return value: Information sent back is not reachable.
31. Infinite loops: Loops the code could not exit from.
32. Busy wait: Waiting for message in an event based system with polling.
33. Non-private private definitions: Public definitions used only internally.
34. Excessive rotation size: List rotation size should not exceed the size of

the list.
35. Consequtive assignments to an entity: Assignments could be merged to

a single assignment.
36. Sequential ”if” statements: If possible should be changed to ”if-else”

conditions.
37. Size check in loop limit: The size of an unchanged list is checked in every

iteration.
38. Reused loop variables: Loop variable declared and used outside the loop.
39. Unnecessary condition: The condition can be evaluated by the static

analyzer.

Test software quality issues 87

40. Conditional complexity: Too large conditional logic blocks.
41. Explicit condition check: Explicitly check the value of a boolean condi-

tion.
42. Boolean evaluation with branching: All of the branches only set a single

logical value.
43. Mergeable conditions: Consecutive conditionals do exactly the same op-

erations.
44. If without else: In testing software all execution paths should be handled,

at least logged.
45. Method with single condition: All statements of a function are in a single

conditional.
46. Too many branches on a value: Switching on a value with consecutive

conditionals.
47. Not written inout parameter: Reference passing used when not needed.
48. Not written out parameter: Result not calculated and passed back.
49. Not written variable: Variable declaration when constant would suffice.
50. Restrictable templates: Templates that could be more restricted based

on their usage, but are not.
51. Dead code: Code fragment which is executed but not used anywhere.
52. Code commented out: Instead of removing it code was commented out.
53. Empty blocks: An empty code block.
54. Setverdict without reason: The testcase verdict is set without attached

reason.
55. Variant outside Encodes: Encoding variants are specified without con-

text.
56. Functions containing Stop: The execution is stopped inside a function,

instead of the testcase.
57. Valueof used with value: The valueof function (used to convert a template

to a value) is used with a value parameter.
58. Magic number: Numeric literals in the code.
59. Magic string: String literals inside the code.
60. XML tags in strings: XML encoding is simulated via string manipulation.
61. Nested block depth: The nesting of constructs exceeded a given level.
62. Indicent exposure: Too much of the module is exposed to the public.
63. Inappropriate intimacy: Dependencies on other module’s implementa-

tion details. Functions using definitions only from an other module should
be moved there. Members used only by a single external module should
be moved there.

64. Feature envy: The function uses only an other module’s attributes.

88 A. Kovács, K. Szabados

65. Divergent change: Changes touch completely different parts of a module.
66. Shotgun surgery: A change requires several changes in several modules.
67. PTC created, not started: A Parallel component is not started.
68. Isolated PTC: A parallel component is not connected to the test system.
69. Un-needed ”runs on”: There is no need for restricting a function to a

specific component.
70. Contrieved complexity: Complex design patterns, where simpler would

suffice.
71. Incorrect indentation: The code is not well indented.
72. Divergent naming of files: The names of files does not follow the naming

conventions.
73. Incorrect pre-processability indication: Pre-processablity is not indicated

in file extension.
74. Ordering of definitions: Definitions declared out of order.
75. Filling in values one-by-one: Structured value is filled in in several state-

ments.
76. Private definitions published: A public function returns with a private

definition creating a potential security hole.
77. Floating point equality check: Floating point numbers should not be

compard directly.
78. Public/private keywords: The public/private keywords are used as iden-

tifiers.
79. Select without default branch: A select statement does not have ”case

else” branch.
80. Switch density: The ratio of branches are too high in the code.
81. Logic inversion: the whole conditional expression is negated.
82. Cyclometric complexity: The number of decision points in a method,

plus one for the method entry.
83. NPath complexity: The number of acyclic execution paths in a method.

Similar to Cyclometric complexity, but also takes into account the nest-
ing of statements.

84. Break/continue usage: Break and continue statements are used incor-
rectly.

85. Unreachable code: A part of the code that can not be reached.
86. Using ”*” for mandatory fields: Optionality is indicated for a mandatory

field.

Test software quality issues 89

4.2 Categorization

The classification process was a technical review. In the review meeting each
rule was discussed and decisions were made for belonging or not to some
characteristic and sub-characteristic class. Each rule was categorized into the
class to which it most likely belongs. Most likely means that more than 66% of
the review meeting members agreed. In this way there were several rules which
fell into multiple categories. For example the rule “infinite loops” belongs
to functionality/suitability as most likely the program was not intended to
operate like that, while it also belongs to the efficiency/time behavior since a
program running in an infinite loop is most likely wasting resources. During
the review we have agreed not to categorize the “FIXME / TODO tags”
rule. The content and severity of this rule depends on the information the
developers wished to make visible. As such each instance may belong to any
of the characteristics, completely independently from any other instance. The
result of the categorization review can be seen on Figure 3 and Figure 4.

Figure 3: Code smells categorized according to ISO/IEC 9126-1

It can be observed that some of the categories of ISO/IEC 9126 kept their
coverage ratio when the smells were categorized against ISO/IEC 25010, while
others were re-partitioned. Functionality, reliability, efficiency and portability
were almost identically mapped with respect to the categories of functional
suitability, reliability, performance efficiency and portability. While the con-
tents of the usability and maintainability categories were distributed among

90 A. Kovács, K. Szabados

Figure 4: Code smells categorized according to ISO/IEC 25010

the usability, security and maintainability with much more focus placed on
maintainability. The reason behind this comes from our understanding of these
categories. For example the code smells “unused global definitions” and “un-
used local definitions” were categorized into functionality and usability accord-
ing to ISO/IEC 9126. When evaluated against ISO/IEC 25010 we found them
to be fitting only into the functional suitability/completeness category. This
categorization is still valid, since having unused definitions (either global or
local) in the source code can indicate that something might not work correctly,
since some elements are unused that were planned to be used. The question of
why we choose to not fit these smells into the usability category is somewhat
less obvious. ISO/IEC 9126 defines usability/understandability as “attributes
of software that bear on the users’ effort for recognizing the logical and its
applicability”. The decision in the review meeting was that unused global and
local definitions fall into this category, since for someone who should like to
understand the relations and operations of such code, these definitions pro-
vides confusion and a large amount of extra work. ISO/IEC 25010 defines
usability as the “degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use”. Although unused definitions decrease the effec-
tiveness of using a software framework, we decided that it may have just a
little obstacle to actually hinder usability. In modern IDEs the effect of these

Test software quality issues 91

smells is only having a few more elements in the tools “code completion” or
“recommendation” lists which can quickly be overcome by the user.
Another example is the case of the code smell “conditional complexity”. It

is clear that this is a maintenance related problem according to both stan-
dards. Yet, we decided that this code smell only fits the usability category
in ISO/IEC 9126, but not in ISO/IEC 25010. While“conditional complexity”
provides problems for users of the functionality willing to understand its in-
ternal operations, it is not necessarily hindering them to achieve specific goals
in a single specified context of use.

5 Measuring the test quality via code smells

To make sure that our code smells are useful we have analyzed 16 projects. All
projects were real life projects at a large telecommunication company except
6 of them which were standard ETSI TTCN-3 test projects.
The size range of this set of projects12 stretches from 21 174 to 794 829

with the average of 205 438 effective lines of code. The number of modules per
project varies from 4 to 583 with the average of 174 modules. The average
module size was 1183 lines of TTCN-3 code. Some projects contain only a
few tests for very simple systems, others are large frameworks with complex
tests. Some of these are organized in a single project, others form hierarchies
of sub-projects. We believe that this range is not only the widest studied so
far, but should also cover most usages and ways of working with TTCN-3.
It is important to mention that the measurements data were gathered in

the time frame of a full year. For this reason the results do not represent the
general level of quality at any given point of time.
In the time-frame of the research project we were able to implement and

measure 35 code smells. Most of the measured code smells are valuable as they
point out existing issues. In fact, most of them were present in the projects
in a large quantity. There was only a single code smell (excessive rotation
size) which was not manifesting in any analyzed projects. Other smells either
manifested in almost every project, or were localized in only a few ones.

1 FIXME tags: Together there were 121 occurrences, 91% of them were in
3 projects.

2 TODO tags: There were 522 occurrences, 78% of them were in 4 projects.

12These were complete projects, i.e., a project were considered together with all its sub-
projects

92 A. Kovács, K. Szabados

3 Circular importation: There were 70 occurrences. In one of the projects
25% of the modules belonged to a circular import cycle.

7 Long statement blocks13: There were 499 occurrences, 97% in two pro-
jects. One of them had a hit in every 600 lines in average.

8 Too many parameters14: There were 1648 occurrences, we have found
hits in almost each project proportionally to their sizes. There were only
two projects without this warning sign.

11 Divergent naming: There were 244480 occurrences, 79% of them in 5

projects. There was a project with extremely high hit ratio comparing
to its size (more than 50%).

14 Missing comments: There were 2202 occurrences, 75% of them in three
projects. The highest hits/project size ratio was in one of the smallest
project.

15 Type in method name: There were 12343 occurrences, mainly propor-
tional to the sizes of the projects, except one case: the fourth biggest
project had no hits to this smell.

16 Module in method name: There were 731 occurrences, 81% of them in
three projects. There were 5 projects without any hits.

17 Visibility embedded in name: There were 250 occurrences, 75% in two
projects. One of them, a small sized project, had 88 hits. There were 11

projects without any occurrences.
19 Initialize with constant: We found together 61333 occurrences, 66% of

them were in two projects. One of them (a middle sized project) had
42% of all hits.

21 Goto detection: We found occurrences in 6 projects, one (middle sized)
project had the 98% of the hits.

22 Unused imports: There were 25597 occurrences, 90% in the two largest
projects.

23 Unused global definitions: There were 26032 occurrences, 61% in three
of the four largest projects. It is interesting to note that there were not
any hits in the third largest project.

24 Unused local definitions: There were together 9717 occurrences, 57%
in the largest project. In two (a large and a medium sized) projects
there were no hits at all.

29 Unused return value: There were 5426 occurrences, 66% in two (a small
and a middle sized) projects. In 9 projects there were no hits at all.

30 Unused started return value: There were 416 occurrences in two pro-
jects, basically one of them (a middle sized project) had all of the hits.

Test software quality issues 93

31 Infinite loops: There were 35 occurrences in 9 projects, 24 hits in two (a
large and a middle sized) projects.

32 Busy wait: There was only one occurrence.
33 Non-private private definitions: There were 14390 occurrences, the sec-

ond largest project has 21% of them. It must be noted that a middle sized
project had 11% of all the hits.

34 Excessive rotation size: There was no occurrence at all.
37 Size check in loop limit: There were 3251 occurrences, 85% in three of

the four largest project. In the third largest project there was only 1

hits.
40 Conditional complexity: There were together 3089 occurrences, 72% in

three projects. One of them (a middle sized project) had 38% of the hits.
47 Not written inout parameter: There were 771 occurrences, 62% in two

projects. The second largest project had 40% of all hits.
48 Not written out parameter: There were 68 occurrences, 55% of them

in two large projects. In 6 projects there were no hits at all.
49 Not written variable: There were 36133 occurrences, 69% of them in

the largest project.
53 Empty blocks: There were 3358 occurrences, 50% of them in one (middle

sized) project. 63% of all the hits were in two projects.
54 Setverdict without reason: There were 15525 occurrences, 72% of them

were in one (middle sized) project.
55 Variant outside encode: Altogether there were 290 occurrences in 2 (a

large and a middle sized) projects.
56 Functions containing Stop: There were 1075 occurrences, 91% of them

in the third largest project. In 6 projects there were no hits at all.
57 Valueof used with value: There were 49 occurrences in two projects,

almost all hits were in the largest project.
58 Magic number: There were 54592 occurrences, 64% in two (the largest

and a middle sized) projects.
59 Magic string: There were together 457288 occurrences, 74% were in two

(the largest and a middle sized) projects.
81 Logic inversion: There were 2019 occurrences, 67% of them in a middle

sized project.
85 Unreachable code: There were only 8 occurrences in four projects.

The connection of the implemented smells to the examined international
standard can be seen in the Figures (5–6).
Zhang et al. [30] provided a systematic literature review on code smells

94 A. Kovács, K. Szabados

Figure 5: The implemented code smells categorized according to ISO/IEC
9126-1

and refactoring strategies based on papers published by IEEE and six leading
software engineering journals from 2000 to June 2009. Nearly half of the iden-
tified papers (49%) described methods or tools to detect code smells, one-third
focused on the interpretation of code smells, and 15% centered on refactor-
ing. There were only a few study investigating the impact of code smells on
maintenance or other quality attributes [21, 19, 18], but none of them were
applicable to our test quality smells. We found an interesting machine learn-
ing approach for the calculation of thresholds for software metrics to evaluate
quality attributes [9] but we decided to apply a pragmatic approach.
In order to have an impression about the usefulness of the previous smells

we calculated the project risk factors in the usual way:

RiskFactor(proj) =
∑

smell

RelativeOccurrence(proj, smell)× Impact(smell) .

For the impact estimation we used three classes:

1 – small impact,
2 – medium impact,
3 – large impact.

There were 4 smells classified into the large-impact class (with ordinal num-
bers from the smell enumeration): 12, 17, 18, 19; nine smells were classified into

Test software quality issues 95

Figure 6: The implemented code smells categorized according to ISO/IEC
25010

the small impact class: 2, 3, 6, 13, 14, 20, 27, 29, 34; all the others belonged to
the medium impact category.
In order to determine the classification of the relative occurrences15 of the

smells we used smell-baselines on the measured data. For a smell S the smell-
baseline Sb means that the smell S is acceptable to occur in every Sb effective
lines of code in average. Then, we applied the following categories:

0 – no smell occurrence,
1 – rare occurrences (Sactual > Sb),
2 – occasional occurrences (Sb ≥ Sactual > Sb/2),
3 – likely occurrences (Sb/2 ≥ Sactual > Sb/8),
4 – frequent occurrences (Sb/8 ≥ Sactual).

Here Sactual means the actually measured relative occurrence in a given project.
Let see an example. Based on the ETSI projects the smell-baseline for the

smell MagicNumber is 50. In project P with size 135845 eLOC the actual
(measured) value was 5657 occurrences, i.e.,

MagicNumberactual = 135845/5657 = 24.

15Here relative occurrence means the size normalized occurrence.

96 A. Kovács, K. Szabados

Hence, this smell occurs more than twice often then the baseline, therefore

RelativeOccurrence(P, MagicNumber) = 3.

After calculating the relative occurrences for all smells in project P we are able
to determine the risk factor of this project. Then, we can compute the quality
level of the project P by

very high if 0 < RiskFactor(P) <= T ,
high if T < RiskFactor(P) ≤ 2T ,

medium if 2T < RiskFactor(P) ≤ 3T ,
low if 3T < RiskFactor(P) ≤ 4T ,

very low otherwise.

The threshold T was calculated as the average value of the risk factors times
2C/5, where the correction factor C is between 1 and 2. In our case C was 1.6.

Figure 7: Relative occurrence distribution of the measured smells for all
projects

The smell-baselines were determined on the basis of the 6 ETSI projects. We
assumed further that the ETSI projects have good (or very good) quality, i.e.,
we forced them to fall into the high or very high quality category by adjusting

Test software quality issues 97

the correction factor C. Figure 7 shows the relative occurrence distribution of
the measured projects for all smells.

Figure 8: Project qualities with sizes

The average value of the risk factors were 67.75, hence T = 43. The quality
categories of the projects can be seen in Figure 8. We note that we found no
correlations between quality categories and project sizes, but there were no
“big” project with very high quality. It must also be noted that altogether
there were only one medium and one low quality project. The ETSI projects
in Figure 8 are marked with marble filling.
Figure 9 and 10 show the most occurred (i.e. likely or frequently) code

smell penetration for the low quality project according to the ISO 9126 and
ISO 25010 models.
It would be an interesting continuation of this research to analyze the spread-

ing of both the widely spread and the localized smells further. Local smells
might be the result of misunderstanding some documentation or not sufficient
knowledge transfer. It might also happen that some of the functionalities of the
language are only used, by (a few) users. At the other end of the spectrum the

98 A. Kovács, K. Szabados

Figure 9: The most occurred code smells for the low quality project categorized
according to ISO/IEC 9126-1

widely spread smells might be the results of misconceptions spreading among
projects.

6 Summary

In this paper we examined the ISO/IEC 9126 and ISO/IEC 25010 software
quality standards from the point of view of test software products. We analyzed
how large scale test frameworks written in TTCN-3 can be adapted to these
standards. We presented a list of code smells which were collected from PMD,
FxCop, Checkstyle, FindBugs, TRex and code smells which were identified
during reviews or trouble reports in actual industrial systems.
We conclude that the set of code smells we have shown overlaps with all main

characteristics in the ISO/IEC 9126 quality standard. On the other hand they
overlap all but the compatibility main characteristic of the ISO/IEC 25010

standard. We found that compatibility in the ISO/IEC 25010 meaning is not
applicable in our situations. ISO/IEC 25010 defines compatibility as “degree
to which a product, system or component can exchange information with other
products, systems or components, and/or perform its required functions, while

Test software quality issues 99

Figure 10: The most occurred code smells for the low quality project catego-
rized according to ISO/IEC 25010

sharing the same hardware or software environment”. The TTCN-3 language
abstracts away all hardware and software environments standardizing the in-
ternal communications of the system.
It is interesting to see that the rules according to ISO/IEC 9126 are how well

distributed. This is no longer true for ISO/IEC 25010 where maintainability
takes up 38% of all rules while it was only 21% according to ISO/IEC 9126.

7 Further work

Our future plans involve the measurement of all of the code smells in actual
projects to see how well we could estimate the quality of a TTCN-3 test soft-
ware product. Later we would like to rise the abstraction level and include high
level metrics and measure architectural quality. This way we could profile the
quality of the project on several levels. We could then measure quality for
designers, architects and managers. All of which are valid point of views but
have different understanding and requirements. We also plan to measure run-
time characteristics in order to increase our understanding of software product
quality.

100 A. Kovács, K. Szabados

It is also in our plans to analyze the spreading of issues among projects.
We would like to research why some of the code smells are localized to only
a few projects, while others are present in almost every project. This might
bring up very interesting questions related to ways of working, information
distribution, or other higher level quality aspects of the projects.

8 Acknowledgments

This research would not have been possible without the help of the Quality
Assurance Organization and the Software Technology (DUCI SWT) depart-
ment of our industrial partner Ericsson. They were kind enough to allow us
access to their databases and some of their TTCN-3 source codes and provide
funding. These proved to be invaluable to find code smells that are of real life
significance.
We would also like to thank Bernadett Diana Iván for her help in processing

the fault and review databases. Her data mining knowledge allowed us to
quickly extract and process large amount of data recorded in the span of 6
years. We would like to thank also Dániel Poroszkai for implementing many
code smell metrics thoroughly.

References

[1] A. Bánsághi, B. G. Ézsiás, A. Kovács, A. Tátrai, Source Code Scanners in Soft-
ware Quality Management and Connections to International Standards, Annales
Univ. Sci. Budapest. Sect. Comput., 37 (2012) 81–92. ⇒79, 80

[2] B. W. Boehm, Ph. N. Papaccio, Understanding and Controlling Software Costs,
IEEE Transactions on Software Engineering , 14, 10 (1988) 1462–1477. ⇒78

[3] Checkstyle, http://checkstyle.sourceforger.net ⇒84
[4] CMMI institute, http://cmmiinstitute.com/ ⇒78
[5] ETSI ES 201 873-1 v4.5.1: Methods for Testing and Specification (MTS), The

Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.
⇒85

[6] FindBugs, http://findbugs.sourceforge.net ⇒84
[7] M. Fowler, Refactoring, Improving the Design of Existing Code, Addison-Wesley,

1999. ⇒84
[8] FxCop, http://msdn.microsoft.com ⇒80, 84
[9] S. Herbold, J. Grabovszki, S. Waack, Calculation and Optimization of Thresh-

olds for Sets of Software Metrics. Empirical Software Engineering, Springer,
Netherlands, May 2011. ⇒94

Test software quality issues 101

[10] W. S. Humphrey, The Team Software Process, (2000) Technical Report,
CMU/SEI-2000-TR-023, ESC-TR-2000-023 ⇒78

[11] ISO/IEC 9126:1991, ISO Standard for Software Engineering – Product Quality
Revised by ISO/IEC 9126–1:2001. ⇒78, 81

[12] ISO/IEC 9126-1:2001: ISO Standard for Software Engineering – Product Quality
– Part 1: Quality Model. ⇒81

[13] ISO/IEC TR 9126-2:2003: ISO Standard for Software Engineering – Product
Quality – Part 2: External Metrics. ⇒81

[14] ISO/IEC TR 9126-3:2003: ISO Standard for Software Engineering – Product
Quality – Part 3: Internal Metrics. ⇒81

[15] ISO/IEC TR 9126-4:2004: ISO Standard for Software Engineering – Product
Quality – Part 4: Quality in Use Metrics. ⇒81

[16] ISO/IEC 25010:2011: ISO Systems and Software Engineering - Systems and Soft-
ware Quality Requirements and Evaluation (SQuaRE) – System and Software
Quality Models. ⇒78, 81

[17] S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-
Wesley, Boston, 2003. ⇒80

[18] F. Khomh, M. Di Penta, Y-G. Gueheneuc, An Exploratory Study of the Impact
of Code Smells on Software Change-proneness, Proc. 16th Working Conference
on Reverse Engineering, 2009, pp. 75–84. ⇒94

[19] W. Li, R. Shatnawi, An empirical study of the bad smells and class error proba-
bility in the post-release object-oriented system evolution, Systems and Software
80, 7 (2007) 1120–1128. ⇒94

[20] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Addison-Wesley Pro-
fessional, 2007. ⇒84

[21] A. Monden, D. Nakae, T. Kamiya, S. Sato, K. Matsumoto, Software quality
analysis by code clones in industrial legacy software, Symposium on Software
Metrics, 2002, pp. 87–94. ⇒94

[22] H. Neukirchen, B. Zeiss, J. Grabovszki, An approach to quality engineering of
TTCN-3 test specifications, International Journal on Software Tools for Tech-
nology Transfer (STTT), 10, 4 (2008) 309–326. ⇒85

[23] H. Neukirchen, M. Bisanz, Utilising code smells to detect quality problems in
TTCN-3 test suites, Proc 19th IFIP International Conference on Testing of
Communicating Systems and 7th International Workshop on Formal Approaches
to Testing of Software (TestCom/FATES 2007), June 26-29, 2007, Tallinn, Es-
tonia. Lecture Notes in Computer Science (LNCS) 4581, 2007 pp. 228–243. ⇒
85

[24] PMD, http://pmd.sourceforge.net ⇒80, 84
[25] R. van Solingen, E. Berghout, The Goal/Question/Metric Method, a Practical

Method for Quality Improvement of Software Development, McGraw-Hill, 1999.
⇒78

102 A. Kovács, K. Szabados

[26] K. Szabados, Structural analysis of large TTCN-3 projects, Proc. 21st IFIP
WG 6.1 International Conference on Testing of Software and Communication
Systems and 9th International FATES Workshop, Lecture Notes in Computer
Science 5826:, Testing of Software and Communication Systems, Springer-
Verlag Berlin, Heidelberg, 2009 pp. 241–246. ⇒80

[27] The Personal Software Process (PSP) Body of Knowledge, Version 2.0; Special
Report; CMU/SEI-2009-SR-018 ⇒78

[28] TRex, http://www.trex.informatik.uni-goettingen.de/trac ⇒84
[29] B. Zeiss, D. Vega, I. Schiferdecker, H. Neukirchen, J. Grabovszki, Applying the

ISO 9126 Quality Model to Test Specifications – Exemplified for TTCN-3 Test
Specifictions, Software Engineering, Lecture Notes in Informatics (LNI) 105,
2007, pp. 231–242. Gesellschaft für Informatik, Köllen Verlag, Bonn, ⇒79

[30] M. Zhang, T. Hall, N. Baddoo, Code Bad Smells: a review of current knowledge,
J. Softw. Maint. Evol.: Research and Practice 23, 3 (2011) 179–202. ⇒93

Received: April 10, 2013 • Revised: June 7, 2013

Acta Univ. Sapientiae, Informatica, 5, 1 (2013) 103–139

The s-monotone index selection rule for

criss-cross algorithms of linear

complementarity problems

Zsolt CSIZMADIA
FICO

email: zsoltcsizmadia@fico.com

Tibor ILLÉS
Budapest University of Technology and

Economics
Department of Differential Equations

email: illes@math.bme.hu

Adrienn NAGY
FICO, PhD student at ELTE

email: adriennnagy@fico.com

Abstract. In this paper we introduce the s-monotone index selection
rules for the well-known criss-cross method for solving the linear comple-
mentarity problem (LCP). Most LCP solution methods require a priori
information about the properties of the input matrix. One of the most
general matrix properties often required for finiteness of the pivot algo-
rithms (or polynomial complexity of interior point algorithms) is suffi-
ciency. However, there is no known polynomial time method for checking
the sufficiency of a matrix (classification of column sufficiency of a matrix
is co-NP-complete).

Following the ideas of Fukuda, Namiki and Tamura, using Existen-
tially Polynomial (EP)-type theorems, a simple extension of the criss-
cross algorithm is introduced for LCPs with general matrices. Computa-
tional results obtained using the extended version of the criss-cross algo-
rithm for bi-matrix games and for the Arrow-Debreu market equilibrium
problem with different market size is presented.

Computing Classification System 1998: G.1.6.

Mathematics Subject Classification 2010: 49M35, 90C20

Key words and phrases: linear complementarity problem, sufficient matrix, criss-cross

algorithm, alternative and EP theorems, bi-matrix games, Arrow-Debreu market equilibrium

problems

103

104 Zs. Csizmadia, T. Illés, A. Nagy

1 Introduction

Let us consider the linear complementarity problem (LCP) in the standard
form: find vectors u,v ∈ Rn, such that

−Mu + v = q, u v = 0, u, v ≥ 0 (P − LCP)

where M ∈ Rn×n, q ∈ Rn and uv = (u1v1, . . . , unvn) ∈ Rn.
The linear complementarity problem is one of the most studied areas of

mathematical programming. A large number of practical applications and the
wide range of unsolved—both theoretical and algorithmic—problems make it
an attractive field of research.

There are several different pivot algorithms to solve LCP problems with
different matrices. The criss-cross algorithm is one of those which were devel-
oped independently—for different optimization problems—by Chang [4], Ter-
laky [23] and Wang [29]. Since then, the criss-cross method has become a class
of algorithms that differs in the index selection rule.

Akkeleş, Balogh and Illés [1] developed their criss-cross algorithm for LCP
problems with bisymmetric matrices. They used the LIFO (last-in-first-out)
and the MOSV (most-often-selected-variable) pivot rules. These index selec-
tion rules are flexible in the sense that they offer a choice of alternative pivots in
certain situations, while still preserving finiteness. These index selection rules
have been generalized for the linear programming problem in [9]. It is an inter-
esting question which is the widest class of matrices for which the criss-cross
algorithm with the above mentioned index selection rules can be extended,
preserving finiteness.

The class of sufficient matrices was introduced by Cottle, Pang and Venka-
teswaran [6]. Sufficient matrices can be interpreted as generalizations of P and
PSD matrices. Väliaho [27] showed that the class of sufficient matrices is the
same as the class of P∗ matrices, introduced in [20] for interior point methods
of LCP problems. It was proved by den Hertog, Roos and Terlaky [14], that the
sufficient matrices are exactly those matrices for which the criss-cross algorithm
with the minimal index pivot selection rule solves the LCP problem with any
right-hand side vector.

There is no known efficient algorithm to decide whether a matrix is sufficient
or not, and Tseng [24] has shown that the classification of column sufficiency of
a matrix is co-NP-complete. (Väliaho [26] developed a non-polynomial, induc-
tive method to check sufficiency). Most algorithms developed for LCP problems
have the practically unattractive property that they need the a priori infor-
mation that the matrix is sufficient or possesses some other good properties.

Finite index selection rules for LCP criss-cross algorithm 105

Fukuda, Namiki and Tamura [12] gave the first such algorithm—based on the
alternative theorem for LCP of Fukuda and Terlaky [13], a generalization of
the fundamental result of Farkas [10, 11]—used in the form of Existentially
Polynomial (EP) theorems—that did not require a priori information on the
sufficiency of the matrix. If the algorithm cannot proceed or would begin to
cycle, it provides a polynomial size certificate that the input matrix is not
sufficient.

For more than a decade, it was an open question whether EP theorems for
linear complementarity problems could be proved using interior point algo-
rithms or not. The first result in this direction has been published by Illés, M.
Nagy and Terlaky [16]. Their EP theorem is different from that of Fukuda,
Namiki and Tamura [12]: (i) there exist a solution for the dual LCP problem,
(ii) there exist a solution for the feasibility problem part of the primal LCP,
(iii) the matrix is not row sufficient. The polynomial size certificates for each of
these statement is provided using a polynomial time interior point algorithm for
linear feasibility problems. This result however is weaker than that of Fukuda,
Namiki and Tamura since statement (ii) does not guarantee solvability of the
primal LCP problem.

The following paper of Illés, M. Nagy and Terlaky [17] related to EP theorems
contain a generalization of the affine scaling and predictor-corrector interior
point algorithms to solve LCPs with general matrices in EP-sense, namely, the
generalized interior point algorithms either solve the problem with rational
a coefficient matrix in polynomial time or give a polynomial size certificate
that the matrix does not belong to the set of P∗(κ) matrices, with arbitrary
large, but apriori fixed, rational, positive κ. This EP theorem differs both from
the EP theorem published by Fukuda et al. [12] and from that of Illés et al.
[17], because it contains only two statements. The reason for this is due to
the fact that the embedding technique [22] of linear programming can not be
generalized for LCPs with sufficient matrices. Therefore, one option is to deal
with LCPs that have initial, strictly positive feasible solution. In this case, the
dual LCP could not have solution, therefore the related EP theorems only need
to consider two cases.

In their third paper, Illés, M. Nagy and Terlaky [18] use the embedding
technique introduced by Kojima et al. [20] and the related results about the
solvability of the primal LCP to solve the embedded problem with a generalized
path-following interior point algorithm. This allows them to prove almost the
same EP theorem as Fukuda et al. [12]. There are two differences between the
Fukuda-Namiki-Tamura and the Illés-Nagy-Terlaky EP theorems: (i) the later
provides a decision between the options in polynomial time (ii) while, instead

106 Zs. Csizmadia, T. Illés, A. Nagy

of the whole class of sufficient matrices, the algorithm works only for a given
subset of sufficient matrices, i.e. for any P∗(κ) matrix, with apriori fixed κ > 0.
Property (i) is an improvement compared to the EP theorem of Fukuda et
al., however (ii) states that the improvement works only for a given subset of
sufficient matrices instead of the whole class.

The criss-cross method using the LIFO or MOSV index selection rules have
been generalized for sufficient matrices to the form of EP-theorems in [8].

This paper introduces a new variant of the criss-cross type algorithm that
combines the flexibility of the s-monotone index selection rules with the prac-
ticability of EP-theorems: the criss-cross algorithm using s-monotone index
selection rules is modified in such a way that in case of an arbitrary matrix M

and right-hand side q, it either solves the LCP problem, or provides a polyno-
mial size certificate that the matrix M is not sufficient. This property improves
the value of the algorithm significantly making it applicable to a wide range
of LCP problems, without requiring a priori information on the properties of
the matrix. Indeed, the improved freedom of the s-monotone pivot position se-
lection compared to the traditional minimal index rule gives the possibility to
avoid numerically instable pivots, further extending the practical applicability.

The finiteness proofs using s-monotone index selection rules also proves the
finiteness of these rules for the criss-cross method for the linear and convex
quadratic problems in a more general context, as the Karush-Khun-Tucker
conditions of the linear and quadratic problems yield a linear complementarity
problem with bisymmetric matrices which are known to be sufficient (when
the quadratic problem is convex) making this paper a natural extension of [9].

Throughout this paper, matrices are denoted by italic capital letters, vectors
by bold, scalars by normal letters and index sets by capital calligraphic letters.
Columns of a matrix are indexed as a subscript while rows are indexed by
superscripts. M denotes the original problem matrix, q the right hand side.
Without loss of generality we may assume that rank(M) = n. The (ordered)
set of all indices is I := {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}∪{q} which includes the index of
the right hand side, and so |I | = 2n+ 1. To denote the complementarity pairs,
let ᾱ = α for all α ∈ I \ {q}, so the complementary index pair of ᾱ is α. For a
given basis B, we denote the nonbasic part of M by N; the corresponding set of
indices for the basis and nonbasic part are denoted by IB and IN, respectively.
The corresponding short pivot tableau for B is denoted by T := B−1N, while the
transformed right hand side is denoted by q := B−1q. Individual coefficients of
the short pivot tableau will be denoted by m̄ij; please note that the definition
of coefficients tij will be formally provided in Section 4.1.1. The complementary
variable pairs (ul, vl) will usually be referred to as variable pairs. When it is

Finite index selection rules for LCP criss-cross algorithm 107

advantageous, the element-wise Hadamard product will be emphasized by "·".
A vector of an appropriate size consisting of all ones will be denoted by 1.

The structure of the paper is as follows: following the introduction, the first
two sections present the theoretical background used by the algorithms: Section
2 introduces the concept of sufficient matrices and their relevant algorithmi-
cally important properties, while Section 3 summarizes the s − monotone

index selection rules. Section 4 presents new variants of the generalized criss-
cross algorithm for LCP using s-monotone index selection rules, while Section
5 extends it to the EP-theorem case. Section 6 present computational experi-
ments solving small scale bimatrix games and Arrow-Debreu market equilib-
rium problems. The paper is closed by a summary.

2 Linear complementarity problems and sufficient

matrices

For most solution methods for LCPs, the solvability of the linear complemen-
tarity problems and the efficiency of algorithms depend on the properties of
matrix M. For pivot methods, one of the most general classes of interest is the
sufficient matrices, which are generalizations of positive semidefinite matrices.

Definition 1 [6] The matrix M ∈ IRn×n is called column sufficient if no vector
x ∈ Rn exists, for which

{
xi (Mx)i ≤ 0 for all indices i ∈ {1, . . . , n}

xj (Mx)j < 0 for at least one index j ∈ {1, . . . , n}
(1)

and we call it row sufficient if its transpose is column sufficient. A matrix M

is called sufficient if it is both column and row sufficient at the same time.

It can be shown that column sufficient matrices are exactly those, for which
the solution set of linear complementarity problems is convex [6], in fact a
polyhedron; den Hertog, Roos and Terlaky [14] proved that sufficient matrices
are exactly those, for which the criss-cross algorithm with the minimal index
pivot rule can solve linear complementarity problems for any right-hand side
vector q, in a finite number of iterations.

The algorithms presented in this paper will use the concept of strictly sign
reversing and strictly sign preserving vectors:

Definition 2 [12] We call a vector x ∈ R2n strictly sign reversing if

xixī ≤ 0 for all indices i = 1, . . . , n

xixī < 0 for at least one index i ∈ {1, . . . , n} .

108 Zs. Csizmadia, T. Illés, A. Nagy

We call a vector x ∈ R2n strictly sign preserving if

xixī ≥ 0 for all indices i = 1, . . . , n

xixī > 0 for at least one index i ∈ {1, . . . , n} .

A vector of x ∈ R related to an LCP problem is called strictly sign preserving
or strictly sign reversing, if the vector (x,Mx) ∈ R2n is strictly sign preserving
or strictly sign reversing respectively.

To simplify the definition of the next lemma, let us introduce the subspaces

V :=
{
(u,v) ∈ R2n | −Mu+ v = 0

}

and
V⊥ :=

{
(x,y) ∈ R2n | x+MTy = 0

}
,

where u,v,x and y are all vectors of length n. V and V⊥ are orthogonal
complementary subspaces [12] of R2n.

Lemma 3 [12] A matrix M ∈ Rn×n is sufficient if and only if no strictly sign
reversing vector exists in V and no strictly sign preserving vector exists in V⊥.

A basis B of the linear system −Mu+ v = q is called complementary, if for
each index i ∈ I exactly one of the columns corresponding to variables vi and
ui is in the basis. A short pivot tableau [19] is called complementary, if the cor-
responding basis is complementary. The next lemma shows the sign structure
of short complementary pivot tableaux of LCPs with sufficient matrices, which
is the main property of these matrices that the algorithms presented later will
rely on.

Lemma 4 [6] Let M be a sufficient matrix, B a complementary basis and
M̄ = [m̄ij | i ∈ JB, j ∈ JN] the corresponding short pivot tableau. Then

(a) m̄īi ≥ 0 for all i ∈ JB; furthermore

(b) for all i ∈ JB, if m̄īi = 0 then m̄īj = m̄j̄i = 0 or m̄īj · m̄j̄i < 0 for all
j ∈ JB, j 6= i.

The proof of the previous lemma is constructive, so if the given structure
of the matrix is violated, we can easily obtain the certificate from tableau M̄,

Finite index selection rules for LCP criss-cross algorithm 109

that M is not sufficient. The coding size of this certificate is bounded by a
polynomial of the input length of matrix M [12, 8]

By the permutation of M ∈ Rn×n, we mean the matrix PTMP, where P is a
permutation matrix.

Lemma 5 [14] Let M ∈ Rn×n be a row (column) sufficient matrix. Then

1. any permutation of matrix M is row (column) sufficient,

2. the product DMD is row (column) sufficient, where D ∈ Rn×n
+ is a posi-

tive diagonal matrix,

3. every principal submatrix of M is row (column) sufficient.

A sufficient matrix M̄ is also sufficient after any number of arbitrary principal
pivots. The class of sufficient matrices is closed under principal block pivot
operations [26], and as a consequence their properties are preserved during the
criss-cross type algorithms, as the exchange pivot operations carried out by the
criss-cross algorithms are equivalent to a block pivot operation of size 2× 2.

The matrix of Example 6 will be used in all examples of the paper.

Example 6 As an example of a non-sufficient matrix, consider

M =

1 −1 −1 0 −1

−1 2 0 0 −1

1 −2 −1 −2 0

−4 −1 −1 2 4

−1 0 2 0 1

.

This matrix is neither column, nor row sufficient. In this example, the operator
· denotes the Hadamard, element-wise product. Consider the column vector

xT =
(

0 0 1 0 0
)

then

x · (Mx) =

0

0

1

0

0

·

1 −1 −1 0 −1

−1 2 0 0 −1

1 −2 −1 −2 0

−4 −1 −1 2 4

−1 0 2 0 1

0

0

1

0

0

=

110 Zs. Csizmadia, T. Illés, A. Nagy

=

0

0

1

0

0

·

−1

0

−1

−1

2

=

0

0

−1

0

0

a strictly sign reversing vector. Similarly, for row vector

y =
(

0 0 1 1 0
)

we have

(yM) ·y =
(

−3 −3 −2 0 4
)

·
(

0 0 1 1 0
)

=
(

0 0 −2 0 0
)

making y a proof that M is not sufficient according to Definition 1.

The decision problem, whether an arbitrary linear complementarity problem
has a solution or not, is in NP, and not always in co-NP [5], although for the
class of sufficient matrices it belongs to co-NP, and can be stated using the
dual of the LCP (1) problem:

(x,y) ∈ V(M,q)⊥ :=

{
(x,y) |

x+MTy = 0, qTy = −1

xy = 0, x, y ≥ 0

}
(D− LCP)

Using the definition of the dual, the alternative theorem of LCP problems is
as follows.

Theorem 7 [13] For a sufficient matrix M ∈ Rn×n and a vector q ∈ Rn,
exactly one of the following statements holds:

(1) the (P-LCP) problem has a feasible complementary solution (u,v),

(2) the (D-LCP) problem has a feasible complementary solution (x,y).

As a consequence, it is well-characterized when the (P−LCP) problem has no
feasible complementary solution if the matrix M is sufficient and rational, as
a polynomial size certificate can be given, namely the solution of the problem
(D− LCP).

The alternative theorem for LCP of Fukuda and Terlaky is an interesting
generalization of Farkas-lemma [10, 11]. Due to the fact, that primal and dual
LCPs are more complicated problems, to show that exactly one of the al-
ternative statements holds it is necessary to have information on the matrix
property. Therefore, Fukuda and Terlaky’s result, comparing to that of Farkas’
needs an extra assumption, that the matrix M is sufficient.

Finite index selection rules for LCP criss-cross algorithm 111

3 The s-monotone index selection rule

The concept of s-monotone index selection rules have been introduced in [9],
presented here for the LCP case. We say a variable moves during a pivot, if it
either leaves, or enters the basis.

Definition 8 (Possible pivot sequence) A sequence of index pairs

S = {Sk = (ik, ok) : ik, ok ∈ N for some consecutive k ∈ N},

is called a possible pivot sequence, if

(i) 2n = max{max
k∈N

ik, max
k∈N

ok},

(ii) there exists a (P-LCP) in standard form with 2n variables and the
rank(M) = n, and

(iii) (possibly infinite) pivot sequence, where the moving variable pairs of
(P-LCP) correspond to the index pairs of S.

The index pairs of a possible pivot sequence are thus only required to comply
with the basic and nonbasic status. It is now easy to show that

Proposition 9 If a possible pivot sequence is not finite then there exists a
(sub)set of indices, I∗, that occurs infinitely many times in S.

The concept of pivot index preference describes how to select pivot positions
when the primary algorithm offers flexibility:

Definition 10 (Pivot index preference) A sequence of vectors sk ∈ N2n is
called a pivot index preference of an index selection rule, if in iteration j, in
case of ambiguity according to a pivot selection rule, the index selection rule
selects an index with highest value in sj among the candidates.

The concept of s-monotone index selection rule [9] aims to formalize a com-
mon monotonicity property of several index selection rules.

Definition 11 (s-monotone index selection rule) Let n ∈ N be given. An
index selection rule is called s-monotone, if

1. there exists a pivot index preference sk ∈ N2n, for which

112 Zs. Csizmadia, T. Illés, A. Nagy

(a) the values in the vector sj−1 after iteration j may only change for ij
and oj, where ij and oj are the indices involved in the pivot opera-
tion,

(b) the values may not decrease.

2. For any infinite possible pivot sequence S and for any iteration j there
exists iteration r ≥ j such that

(a) the index with minimal value in sr among I∗ ∩ IBr is unique (let it
be l), where IBr is the set of basic indices, in iteration r,

(b) in iteration t > r when index l ∈ I∗ occurs again in S for the first
time, the indices of I∗ that occurred in S strictly between Sr and St
have a value in st higher than the index l.

To apply the s-monotone index selection rules for linear complementarity
problems, a small extension is necessary comparing to that one for linear pro-
gramming [9].

Definition 12 An s-monotone pivot rule applied to an LCP problem is sym-
metric, if s(i) = s(̄i) always holds for any i ∈ I.

The criss-cross algorithms presented in this paper will apply the s-monotone
rules in a symmetric way. As examples for s-monotone rules, below is the
definition of an s vector for the minimal index, the last-in-first-out and most
often selected rules.

• Minimal index/Bland: The variables with the smallest index is selected.
Initialize s consisting of constant entries

si = n− i, i ∈ I

where n is the number of the problem columns in the problem.

• Last-In-First-Out (LIFO): The most recently moved variable is selected.

Initialize s equal to 0. For a pivot at (k, l) in the rth iteration update s

as

s
′

i =

{
r if i ∈ {k, l}

si otherwise

Finite index selection rules for LCP criss-cross algorithm 113

• Most-Often-Selected-Variable (MOSV): Select the variable that has been
selected the largest amount of times before.

Initialize s equal to 0. For a pivot at (k, l) in the rth iteration update s

as

s
′

i =

{
si + 1 if i ∈ {k, l}

si otherwise

4 The criss-cross method

This section presents the criss-cross algorithm for linear complementarity prob-
lems using s-monotone index selection rules.

The criss-cross algorithms for LCP problems need a starting complementary
solution, for which u = 0 and v = q is a possible selection using the assumption
that rank(M) = n. Starting from the initial complementarity solution, the
criss-cross method performs a sequence of so called diagonal and exchange
pivots.

If in any complementary basis during the algorithm vj is a basic variable
and the value of variable vj is infeasible and m̄jj < 0, then the algorithm, may
perform a diagonal pivot where variable uj enters the basis while variable vj
leaves it.

If m̄jj = 0 and the algorithm select vj to leave the bases, then it pivots
on such an index k for which m̄jk < 0. The solution obtained after a pivot
like this is not complementary any more, so to restore the complementarity
of the solution the algorithm pivots on the position (k, j) as well. According
to Lemma 4, in case of sufficient matrices m̄kj > 0 will hold in this situation.
These two pivots together are called an exchange pivot.

uj

...
vj . . . − . . . −

...

Diagonal pivot

uk uj
...

vk +
...

vj . . . − . . . 0 . . . −
...

Exchange pivot

Figure 1: Diagonal and exchange pivot

114 Zs. Csizmadia, T. Illés, A. Nagy

During an exchange pivot, variables uj and uk enter the basis, while vj and
vk leave it. We say that uj and vj are chosen actively, while uk and vk are
chosen passively. Thus, the terms passively and actively refer to the order in
which the indices are selected, irrespective of the variable types (i.e. the same
rule applies to an exchange pivot involving different combinations like (vj, uk)

exchanged with (uj, vk)). The two types of pivot operations are presented in
Figure 1.

When using s-monotone index selection rules, the role of the s-vector is to
maintain a history about the movements of the variables. In the LCP case, these
updates are generalized as follows: in case of an exchange pivot, the vector s of
the s-monotone pivot rule is updated to the passively selected pair of variables
first, and only then for the actively selected pair, thus the symmetry of vector
s (i.e. the value of any variable pair (ui, vi) in s is the same after each pivot)
is also maintained. This way, from the s vector’s point of view, an exchange
pivot is considered as two pivots. This rule will play an important role in the
finiteness proofs.

Note, that Lemma 5 ensures that the sufficiency of the matrix is preserved
during the algorithm. Moreover, both the diagonal and the exchange pivot
operations preserve complementarity as well.

The pseudo-code and flow chart of the criss-cross type algorithm using s-
monotone index selection rules is presented in Figure 2 and Figure 3.

The sufficiency of matrix M ensures that (Lemma 4) the sign of the chosen
pivot elements will be as desired in the case of exchange pivot. The algorithm
terminates only if there is no solution or if it has found the solution, so it is
sufficient to prove that it is finite. As the number of possible bases is finite, we
have to show that the criss-cross type algorithm with s-monotone pivot rule
does not cycle.

4.1 Almost terminal tableaux of the criss-cross method

To prove finiteness of the algorithm, we assume the contrary, i.e. that it cycles.
The results of this section are a generalization of the proof presented in [8] to
the s-monotone case.

Let us assume that an example exists for which the algorithm is not finite.
The number of bases is finite, at most

(

2n
n

)

, so the algorithm makes an infi-
nite number of iterations only if cycling occurs. Let us consider a minimal size
cycling example. In such an example, because of minimality—and the mono-
tonicity of s—every variable moves during the cycle.

Let us consider the situation described by the second criterion of s-monoto-

Finite index selection rules for LCP criss-cross algorithm 115

Criss-cross type algorithm with symmetric s-monotone pivot rule

Input: problem (1), where M is sufficient, T := −M, q̄ := q, r := 1. Initialize s.
Begin

J := {i ∈ I : q̄i < 0} .

While (J 6= ∅) do
Jmax := {j ∈ J | s(j) ≥ s(α), for all α ∈ J } , let k ∈ Jmax arbitrary.
If (m̄kk < 0) then

Diagonal pivot on m̄kk, update vector s for variable pair (uk, vk).
Let r := r+ 1.

Else
K := {i ∈ I : m̄ki < 0}.
If (K = ∅) then Stop: The LCP problem has no feasible solution.
Else

Kmax = {β ∈ K | s(β) ≥ s(α), for all α ∈ K} .

Let l ∈ Kmax arbitrary.
Exchange pivot on m̄kl and m̄lk.
Update vector s for variable pair (ul, vl) as in iteration r+ 1,
then for variable pair (uk, vk) as in iteration r+ 2.
Let r := r+ 2.

Endif
Endif

Endwhile
Stop: A feasible complementary solution has been computed.

End

Figure 2: The criss-cross type algorithm

nicity and with variable ul outside the bases. Consider basis B ′ where variable
ul enters the bases for the first time after this situation occurred. Since ul

and vl have the smallest value according to vector s and the symmetry of the
rule, vl is the only infeasible variable in basis B ′. The short pivot tableaux
(presented in Figures 4 and 5) for this case are as follows:

1. The algorithm chooses ul to enter the basis.

The diagonal element m̄ll < 0, so a diagonal pivot is possible [Figure
4, tableau (a)]: ul enters the basis, while vl leaves it. The vector s is
modified symmetrically for variable pair (ul, vl).

2. The algorithm chooses variable ul to enter the basis, but m̄ll = 0, so an
exchange pivot is necessary [Figure 4, tableau (b)]. Variables ul and uj

enter the basis, while variables vl and vj leave it. The vector s is modified

116 Zs. Csizmadia, T. Illés, A. Nagy

0

?

feasible

solution

no

no

l

k̄

no solution

yes

yes no

exchange
pivot possible

k

k− −

−

− k

k̄

l̄

START

STOP

yes

feasible?

diagonal

pivot possible?

STOP

complementary

tableau

⊕

⊕

∗

∗

⊕⊕

......complementary

Figure 3: Flow chart of the algorithm

symmetrically (i.e. the complementary variable pairs always have the
same value in s), first for variable pair (uj, vj) and then for variable pair
(ul, vl) as if in the next iteration.

The column of q is the same as in tableau (a). In this case, it is not important
whether uj or vj is in the basis. We consider the case when vj is in the basis.

Finite index selection rules for LCP criss-cross algorithm 117

ul

(a) ⊕
⊕
...
...
⊕
⊕

vl − −

uj ul

(b) ⊕
vj + ⊕

...

...
⊕
⊕

vl − 0 −

Figure 4: Variable ul is actively selected to enter the bases

3. The algorithm chooses a variable uj to enter the basis, but m̄jj = 0, so
an exchange pivot is necessary and the algorithm chooses the variable ul

as well (passively) [Figure 5, tableau (c)].

ul uj

(c) ⊖
...
⊖

vl +
⊖
...
⊖

vj ⊕ · · · ⊕ − ⊕ · · · ⊕ 0 −

Figure 5: Variable ul is passively selected in a a second pivot position in an
exchange pivot to enter the basis

According to the situation when ul enters the basis, the row of vj only
in the columns of ul and q may contain negative elements, and because
m̄jj = 0 –using Lemma 4– we also know the sign structure of the column
of uj. In this case, it is once again not important whether uj or vj is
in the basis. We consider the case when vj is in the basis. The vector
s is modified symmetrically first for variable pair (ul, vl) and then for
variable pair (uj, vj) as if in the next iteration.

For the purpose of the EP-theorem considered in the next section, we note
that in Cases 1. and 2. only the properties of the pivot rule has been used when

118 Zs. Csizmadia, T. Illés, A. Nagy

filling out the sign structures, while the sufficiency of the matrix has been used
in the third case for the column of uj.

Now consider basis B ′′, when ul leaves the basis for the first time after
basis B ′. The pivot tableau for this iteration can have three different struc-
tures (as presented in Figures 6 and 7), according to the second criterion of
s-monotonicity.

A. According to the pivot rule, the algorithm chooses variable ul to leave
the basis, m̄ll < 0, so a diagonal pivot takes place [Figure 6, tableau (A)].

vl
(A) ⊕

...
⊕
−
...
−

ul − −

vk vl
(B)

uk +

ul − 0 −

Figure 6: Variable ul is actively selected to leave the bases

B. The pivot rule chooses variable ul to leave the basis, but m̄ll = 0, so an
exchange pivot is needed: vk (or uk) enters the basis, while uk (or vk)
leaves it [Figure 6, tableau (B)].

C. The algorithm chooses variable uk (or vk), but m̄kk = 0, so an exchange
pivot takes place and vl enters the basis, while uk leaves it [Figure 7,
tableau (C)].

We show that none of the tableaux (a) − (c) can be followed by one of the
tableaux (A)−(C) if matrix M is sufficient. For the purposes of the next section
that further extends the algorithm for the EP-theorem case, it is important to
make note which parts of the proofs are based on the sufficiency of the input
matrix, and which on the properties of s-monotonicity.

4.1.1 Auxiliary lemmas

We will use the following fundamental result of pivot tableaux called the ortho-
gonality theorem that describes an orthogonal property between different pivot

Finite index selection rules for LCP criss-cross algorithm 119

vl vk
(C)

ul +

uk − 0 −

Figure 7: Variable ul is passively selected in a second pivot position in an
exchange pivot to leave the basis

tableaux of the set of vectors. Denote the row vector

(

t(i)
)

k
=

tik, if k ∈ JN ∪ {b}

1, if k = i

0, otherwise

and the columns vector

(tj)k =

tkj, if k ∈ JB

−1, if k = j

0, otherwise.

Theorem 13 [19] For any matrix A ∈ IRm×n and with arbitrary bases B ′ and
B ′′, the vectors t

′(i) and t ′′j belonging to basic tableaux TB ′ and TB ′′ respectively,
are orthogonal.

First, consider the cases that do not use the sufficiency of matrix M. We
begin by showing that tableau (c) cannot be followed by tableaux (A) or (B).

Lemma 14 Let us denote the tableau of case (c) by TB ′ and the tableau of A

(or B) by TB ′′ . Consider the vectors t ′
(̄j) and t ′′q , read from the row of the basic

variable vj in tableau TB ′ , and from the column of q in TB ′′ . Then

(t ′ (̄j))T t ′′q > 0.

Proof. Let K ′′ := { i ∈ IB ′′ | q̄ ′′
i < 0 }. Using the second criterion of s-monotone

pivot rules, variables referring to these indices (with the possible exception of
index j̄ and l) have not moved since B ′, or else their s value would have to be

120 Zs. Csizmadia, T. Illés, A. Nagy

larger than of ul, thus the algorithm would have chosen one from K ′′ instead of
ul, so K ′′ ⊆ IB ′ ∩IB ′′ . This indicates that t ′

j̄i
= 0 for all indices i ∈ K ′′ \

{
j̄, l

}
,

thus ∑

i∈J ′′\{̄j,l}

t ′
j̄i
t ′′iq = 0. (2)

Since at the exchange pivot made on B ′, the s value was first updated for
variable pair (ul, vl) and only in the next pivot for (uj, vj), we also know from
s-monotonicity that t ′′jq and t ′′

j̄q
are nonnegative (one is outside the basis, and

since they have moved since B ′, their s value is bigger than of ul).
Furthermore, it can be read from tableau (c) that t ′

j̄j
= 0, t ′

j̄̄j
= 1, t ′

j̄̄l
= 0,

t ′
j̄l
< 0 and t ′

j̄q
< 0 so

t ′
j̄̄j
t ′′
j̄q
+ t ′

j̄j
t ′′jq + t ′

j̄̄l
t ′′
l̄q
+ t̄jl t

′′
lq + t ′

j̄q
t ′′qq ≥ t ′

j̄l
t ′′lq − t ′

j̄q
> 0, (3)

because t ′′qq = −1 by definition, and t ′′lq < 0 according to the pivot rule of the
algorithm (tableaux (A) and (B)).

If h /∈ K ′′ ∪
{
j, j̄, l, l̄, q

}
, we know again from the tableaux that t ′

j̄h
≥ 0 and

by the definition of K ′′ it holds that t ′′hq ≥ 0, so

∑

h 6∈K ′′∪{j,̄j,l,̄l,q}

t ′
j̄h

t ′′hq ≥ 0. (4)

The result follows as we sum up inequalities (2)–(4). �

From tableau (c) we considered the structure of the row for variable vj,

while from tableaux (A) and (B) the structure of the column of q. In none of
these cases did we use the sufficiency of the matrix, and the proofs used only
the combinatorial nature of the s-monotone pivot rules. Thus tableaux (c) and
(A) (or (B)) are exclusive because of the orthogonality theorem and the lemma
above, regardless of the sufficiency of the matrix.

We now prove that tableaux (a) and (b) cannot be followed by tableau (C).

Lemma 15 Let us denote tableau (a) (or (b)) by TB ′ and tableau (C) by TB ′′ .
Consider the vectors t ′q and t ′′(k) belonging to the column of q in tableau MB ′ ,
and to the row of uk in tableau MB ′′ . Then

(t ′′(k))T t ′q > 0.

Proof. Like in the previous lemma, K ′′
k := {i ∈ IN ′′ | t ′′ki < 0} ⊂ IN ′ holds

because of the second criterion of s-monotonicity, so t ′iq = 0 for every i ∈

Finite index selection rules for LCP criss-cross algorithm 121

K ′′
k \ {l}, thus ∑

i∈K ′′

k
\{l}

t ′′ki t
′
iq = 0. (5)

Furthermore, for an index h /∈ K ′′
l ∪ {̄j, j, l̄, l, q}, t ′′kh ≥ 0 and t ′hq ≥ 0, therefore

∑

j 6∈K ′′

l
∪{̄j,j,̄l,l,q}

t ′′kj t
′
jq ≥ 0. (6)

From tableaux TB ′ and TB ′′ it can be read that
t ′qq = −1, t ′′kk = 1, t ′′

kk̄
= t ′′kl = t ′lq = 0 and t ′′

kl̄
< 0, t ′′kq < 0, t ′

l̄q
< 0, t ′

k̄q
≥ 0

and t ′kq ≥ 0 so

t ′′
kk̄

t ′
k̄q

+t ′′kk t
′
kq+t ′′

kl̄
t ′
l̄q
+t ′′kl t

′
lq+t ′′kq t

′
qq = t ′kq+t ′′

kl̄
t ′
l̄q
−t ′′kq ≥ t ′′

kl̄
t ′
l̄q
−t ′′kq > 0.

The result follows as we sum up inequalities (5) − (7).
�

We can now consider tableaux where the sufficiency of the matrix plays an
important role.

In the following, we show that tableaux (a) (or (b)) cannot be followed by
tableaux (A) or (B).

Lemma 16 Let the complementary solutions (u ′,v ′) and (u ′′,v ′′), belonging
to tableaux (a) (or (b)) and (A) (or (B)) be given. Then the Hadamard product

(u ′ − u ′′) · M (u ′ − u ′′) � 0,

i.e. (u ′ − u ′′) is a strictly sign reversing vector with respect to M.

Proof. We prove all four cases simultaneously.

(u ′ − u ′′) · M (u ′ − u ′′) = (u ′ − u ′′) · (q+Mu ′ − q−Mu ′′)

= (u ′ − u ′′) · (v ′ − v ′′)

= u ′ · v ′ − u ′ · v ′′ − u ′′ · v ′ + u ′′ · v ′′

= −u ′ · v ′′ − u ′′ · v ′,

where the last equation holds because of the complementarity of the given
solutions.

Let K ′′ := { i ∈ IB ′′ | q̄ ′′
i < 0 }. As before, according to s-monotonicity,

variables indexed by K ′′ have not moved since bases B ′, or else the algorithm

122 Zs. Csizmadia, T. Illés, A. Nagy

would have chosen one from them, thus for all i ∈ K ′′\ {l}, the value of u ′
i (or

v ′′
i) and u ′′

i (or v ′
i) is zero:

u ′
i v

′′
i + u ′′

i v ′
i = 0. (7)

From tableau (a) (or (b)), and tableau (A) (or (B)), it can be read that u ′
l =

0, v ′l < 0 and u ′′
l < 0, v ′′

l = 0 so,

u ′
l v

′′
l + u ′′

l v ′
l > 0. (8)

Furthermore, for any h /∈ K ′′ it holds that u ′
h, v

′
h, u

′′
h , v

′′
h ≥ 0, thus

u ′
h v ′′

h + u ′′
h v ′

h ≥ 0. (9)

To summarize, the vector (u ′ − u ′′) is such that (u ′ − u ′′) · M (u ′ − u ′′) � 0.

�

Note, that the proof is constructive because the vector u ′ − u ′′ proving the
lack of sufficiency of our matrix can easily be obtained from the bases B ′ and
B ′′.

In the last auxiliary lemma, we consider the case when tableau (c) would be
followed by tableau (C).

Lemma 17 Let us denote tableau (c) by TB ′ , and tableau (C) by TB ′′ . Consider
the vectors t ′j and t ′′(k) belonging to the column of uj in tableau TB ′ and to the
row of uk in tableau TB ′′ . Then

(t ′′(k))T t ′j < 0.

Proof. Let K ′′
k = {i ∈ IN ′′ : t ′′ki < 0}\ {j}. Using the second criterion of s-

monotone pivot rules again, the variables of the indices K ′′
k have not moved

since B ′, so (IN ′′ \ K ′′
k) ⊂ IB ′ and K ′′

k ⊂ IN ′ , thus t ′ij = 0 if i ∈ K ′′
k . Based on

these observations, we have
∑

i∈K ′′

k
∪{q}

t ′′ki t
′
ij = 0. (10)

Furthermore, if h /∈ K ′′
k ∪

{
q, l, l̄, j, j̄, k, k̄

}
then t ′hj ≤ 0 according to tableau

(c). By the definition of K ′′
k , t

′′
kh ≥ 0, so

∑

h 6∈K ′′

k
∪{q,l,̄l,j,̄j,k,k̄}

t ′′kh t
′
hj ≤ 0, (11)

Finite index selection rules for LCP criss-cross algorithm 123

From tableaux TB ′ and TB ′′ , taking the definition of vector t into consideration,
it follows that

t ′lj = t ′′
kk̄

= t ′
j̄j
= t ′qj = t ′′kl = 0, t ′′kk = 1, t ′jj = −1 and t′kj ≤ 0, t ′′

kl̄
< 0, t ′

l̄j
> 0

so

t ′′kq t
′
qj + t ′′kl t

′
lj + t ′′

kl̄
t ′
l̄j
+ t ′′kj t

′
jj + t ′′

k̄j
t ′
j̄j
+ t ′′kk t

′
kj + t ′′

kk̄
t ′
k̄j
< −t ′′kj. (12)

By the definition of the algorithm, at the exchange pivot in tableau c, the
first variable pair for which the update of the s vector is applied is (ul, vl), and
only after for (uj, vj). Hence variable (uj, vj) is already considered to be moved
since B ′, thus by the second criterion of s-monotone pivot rules their s value
is bigger than of index l. This is only possible if t ′′kj ≥ 0 either because out of
bases, or because of its associated s value.

The result follows as we sum up inequalities (10) − (12).
�

4.2 Finiteness of the criss-cross method

In this section, we prove the finiteness of the criss-cross algorithm.

Theorem 18 The criss-cross type algorithm with s-monotone pivot rule is
finite for the linear complementarity problem with sufficient matrices.

Proof. Let us assume the contrary, that the algorithm is not finite. Because a
linear complementarity problem has finitely many different bases, the algorithm
can have an infinite number of iterations only if it is cycling. Then we have a
cycling example. Let us choose from the cycling examples one with a minimal
size. Then, every variable moves during the cycle. Taking the auxiliary lemmas
into consideration, after variable ul enters the basis after basis B ′, it cannot
leave it again:

If it enters in case (a) or (b) and leaves the basis in case (A) or (B), Lemma
16. contradicts the sufficiency of matrix M.

If it enters in case (c) and leaves the basis in case (A) or (B), Lemma 14.
contradicts the orthogonality theorem.

If it enters in case (c) and leaves the basis in case (C), Lemma 17. contradicts
the orthogonality theorem.

If it enters in case (a) or (b) and leaves the basis in case (C), Lemma 15.
contradicts the orthogonality theorem.

124 Zs. Csizmadia, T. Illés, A. Nagy

All possible cases lead to a contradiction, therefore the algorithm is finite. �

Figure 8 shows the cases in which the sufficiency of matrix T has been used
in the proof of finiteness of the criss-cross type algorithm.

(a) (b) (c)

(A) ∗ ∗
(B) ∗ ∗
(C) ∗

Figure 8: The cases when sufficiency of the pivot matrix is used

5 EP theorems and the linear complementarity

problem

This section generalizes the algorithm in the sense of EP theorems. As moti-
vation, Example 19 demonstrates that the criss-cross algorithm may solve a
LCP problem even if the matrix is not sufficient.

Example 19 To demonstrate the criss-cross method, consider the linear com-
plementarity problem with the matrix presented in Example 6 with the corre-
sponding short pivot tableau where the identity matrix corresponding to v serves
as an initial complementary basis.

Solving the problem with the cross-cross method, pivoting first on diagonal
elements (u1, v1) and (u2, v2):

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 -2
v3 -1 2 1 2 0 16
v4 4 1 1 -2 -4 6
v5 1 0 -2 0 -1 4

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 -3
v3 -1 1 0 2 -1 17
v4 4 5 5 -2 0 2
v5 1 1 -1 0 0 3

Tableau 2.

then (u4, v4):

Finite index selection rules for LCP criss-cross algorithm 125

v1 v2 u3 u4 u5

u1 -2 -1 -2 0 -3 4
u2 -1 -1 -1 0 -2 3
v3 0 1 1 2 1 14
v4 9 5 10 -2 10 -13
v5 2 1 0 0 2 0

Tableau 3.
v1 u2 u3 v4 u5

u1 -2 -1 -2 0 -3 4
u2 -1 -1 -1 0 -2 3
v3 9 6 11 1 11 1
u4 -4.5 -2.5 -5 -0.5 -5 6.5
v5 2 1 0 0 2 0

Tableau 4.

arriving at the solution u1 = 4, u2 = 3, v3 = 1, u4 = 6.5 and all other variables
zero. The method has found a feasible complementary solution for a problem
with non-sufficient matrix.

Example 19 compensated for an obvious matrix coefficient making the matrix
non-sufficient (diagonal entry for (u3, v3)) with a large right hand side value.
As example 20 shows, this is not necessary.

Example 20 Consider the same M matrix as in Example 19, but with a dif-
ferent right hand side.

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 2
v3 -1 2 1 2 0 -1
v4 4 1 1 -2 -4 5
v5 1 0 -2 0 -1 1

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 0
v4 4 5 5 -2 0 1
v5 1 1 -1 0 0 0

Tableau 2.

Pivoting on (u1, v1) arrives at a feasible complementary solution, even though
the row of diagonal with the incorrect sign in respect to sufficiency stared out
to be infeasible.

An EP theorem is usually a collection of several alternative possible state-
ments, from which one always holds, and if any statement holds, then a polyno-
mial size (in the length of the input data) certificate for it must exist. It may

126 Zs. Csizmadia, T. Illés, A. Nagy

also be viewed as a general framework for making provable and practically
applicable theories.

The general form of an EP (Existentially Polynomial time) theorem is as
follows [3]:

[∀x : F1(x) or F2(x) or . . . or Fk(x)]

where Fi(x) is a statement of the form

Fi(x) = [∃yi for which ‖yi‖ ≤ ‖x‖ni and fi(x,yi)] .

where each ni is a positive integer.
The extended algorithm makes use of the following two theorems.

Theorem 21 [12] Let the matrix M ∈ IRn×n be not sufficient. In this case, a
certificate exists that M is not sufficient, the coding size of which is polynomi-
ally bounded by the input length of matrix M .

Theorem 22 [12]. For any matrix M ∈ Qn×n and vector q ∈ Qn, at least
one of the following statements holds:

(1) problem (P-LCP) has a complementary, feasible solution (u,v) the en-
coding size of which is polynomially bounded by the input length of matrix
M and vector q.

(2) problem (D-LCP) has a complementary, feasible solution (x,y) the en-
coding size of which is polynomially bounded by the input length of matrix
M and vector q.

(3) matrix M is not sufficient, and there is a certificate the encoding size of
which is polynomially bounded by the input length of matrix M.

Note that cases (1) and (2) are exclusive, while case (3) can hold alone or
together with either case (1) or (2). It is a naturally arising condition that the
entries of the matrix should be rational numbers.

We modify the extended criss-cross algorithm so that it either solves problem
(P−LCP) or its dual, or proves the lack of sufficiency of the input matrix, giving
a polynomial size certificate.

Lemma 4 ensures that the pivot operations can always be done if our matrix
is sufficient, and if it is not, it provides the required certificate that matrix M

is not sufficient.

Finite index selection rules for LCP criss-cross algorithm 127

The criss-cross type algorithm with s-monotone index selection rules in
the form of EP-theorems

Input: T = −M, q̄ = q, r = 1, Initialize Q and s.
Begin

While ((J := {i ∈ I | q̄i < 0}) 6= ∅) do
Jmax := {β ∈ J | s(β) ≥ s(α), for all α ∈ J }.
Let k ∈ Jmax be arbitrary.
Check −u ′ · v ′′ − u ′′ · v ′′ with the help of Q(k).
If (−u ′ · v ′′ − u ′′ · v ′′ � 0) then

Stop: M is not sufficient, certificate: u ′ − u ′′.
Endif
If (tkk < 0) then

Diagonal pivot on tkk, update s.
Q(k) = [JB, t̄q], r := r+ 1.

ElseIf (tkk > 0)

Stop: M is not sufficient, create certificate.
Else /* tkk = 0 */

K := {α ∈ I | t̄kα < 0}

If (K = ∅) then
Stop: DLCP solution.

Else
Kmax = {β ∈ K | s(β) ≥ s(α), for all α ∈ K}.
Let l ∈ Kmax be arbitrary.
If ((tk, tk) or (tl,t

l) sign structure is violated) then
Stop: M is not sufficient, create certificate.

Endif
Exchange pivot on tkl and tlk, update s first for (uk, vk),
then for (ul, vl) as in a next iteration.
Q(k) = [JB, t̄q], Q(l) = [∅,0], r := r+ 2.

Endif
Endif

EndWhile
Stop: we have a complementary feasible solution.

End

Figure 9: The criss-cross type algorithm with s-monotone index selection rules
in the form of EP-theorems

128 Zs. Csizmadia, T. Illés, A. Nagy

As Example 23 shows, in the lack of sufficiency the criss-cross method may
cycle.

Example 23 Consider the same M matrix as in Example 19 and Example 20
but with a another different right hand side.

The criss-cross algorithm first pivots on (u1, v1). In the second tableau, an
exchange pivot is necessary, pivoting on (u3, v5) and then (u5, v3) leading to
Tableau 4.

u1 u2 u3 u4 u5

v1 -1 1 1 0 1 -1
v2 1 -2 0 0 1 2
v3 -1 2 1 2 0 0
v4 4 1 1 -2 -4 10
v5 1 0 -2 0 -1 0

Tableau 1.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 1
v4 4 5 5 -2 0 6
v5 1 1 -1 0 0 -1

Tableau 2.

On Tableau 4, another exchange picot takes place, (v3, u5) and then (v5, u3)

resulting in Tableau 6.

v1 u2 v5 u4 u5

u1 -2 -2 -1 0 -1 2
v2 2 0 1 0 2 0
v3 -1 1 0 2 -1 1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 3.

v1 u2 v5 u4 v3
u1 -1 -3 -1 -2 -1 1
v2 0 2 1 4 2 2
u5 1 -1 0 -2 -1 -1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 4.

v1 u2 v5 u4 u5

u1 -2 -2 -1 0 -1 2
v2 2 0 1 0 2 0
v3 -1 1 0 2 -1 1
v4 9 10 5 -2 0 1
u3 -1 -1 -1 0 0 1

Tableau 5.

v1 u2 u3 u4 u5

u1 -1 -1 -1 0 -1 1
v2 1 -1 1 0 2 1
v3 -1 1 0 2 -1 1
v4 4 5 5 -2 0 6
v5 1 1 -1 0 0 -1

Tableau 6.

Tableau 6 coincides with Tableau 2: the pivot choices have been unique as the
negative right hand side values were unique: the algorithm cycles.

Finite index selection rules for LCP criss-cross algorithm 129

We now need to analyse the proofs of finiteness of the original algorithm.
Avoiding cycling: Note, that minimality of the cycling example is not ne-

cessary in the proof of finiteness of the original algorithm. Every proof remains
valid for any cycling example, since those variables that do not move during a
cycle do not change their basis status, thus have a zero value in the orthogo-
nality theorem.

Consider an arbitrary cycling example. Let the index set of the variables
involved in the cycling be R, and consider an iteration, when cycling has already
begun. Let the basis B ′ such that satisfies the second criterion of s-monotonicity
with variable xl.

In this case the structure of tableaux MB′ and MB′′ restricted to indices R

and vector q is exactly like in case (a) − (c) and (A) − (C). Between these
two tableaux, a variable whose index is not in R has not moved. Thus, in
the product of the vectors analysed in Lemmas 14, 15 and 17, for the indices
not in R and not q exactly one of the corresponding variables is in basis, so
the contribution to the product for these indices is always zero. For the same
reason, in the product of −u ′ · v ′′ − u ′′ · v ′ in Lemma 16, the entries for the
indices not in R are each zero. This proves that the proofs are valid for an
arbitrary cycling example.

Handling the lack of sufficiency: Sufficiency has only been used in Lem-
mas 16 and 17. This latter one used the sign property of sufficient matrices,
based on Lemma 4. Therefore, if the algorithm checks that the required sign
property is fulfilled during every exchange pivot (cases (c) and (C) refer to
such pivots), tableau (c) cannot be followed by tableau (C), because of the
orthogonality theorem. If the required sign structure is violated, the certificate
that matrix M is not sufficient is provided by the same lemma.

There remain the cases of tableaux (a)-(b) and (A)-(B). Lemma 16 handled
this case. The proof of the lemma is based on the product

− u ′ · v ′′ − u ′′ · v ′ (13)

referring to such subsequent tableaux MB ′ and MB ′′ , where the same variable
moves during both pivot operations, and in both cases this variable was chosen
actively (that is, not as the second variable of an exchange pivot). Note, that
we do not need the whole tableau here, the only information we use is the
column of q (the actual complementary solution) and the set of indices in the
basis. If vector (13) is strictly sign reversing, then as in the note after Lemma
16, the evidence that matrix M is not sufficient is the vector u ′ − u ′′.

Let us introduce a list Q(p) (p = 1, . . . , n). Two vectors of dimension n

belongs to every entry of this list. At the beginning,

130 Zs. Csizmadia, T. Illés, A. Nagy

Q(p) :=

[

[1, . . . , n]

[0, . . . , 0]

]

p = 1, . . . , n.

When variable ul or vl leaves the basis during a diagonal pivot or such an
exchange pivot where this variable is active (variable selected first), we modify
the value of Q(l) in such a way, that we write the indices of variables in basis
to the first vector before the actual pivot operation, while we write the values
of variables in basis before the pivot operation to the second vector:

Q(l) :=

[

[indices of variables in basis]

[values of variables in basis]

]

.

If variable ul or vl enters the basis passively (as the second variable of an
exchange pivot), we modify the value of Q(l) as:

Q(l) :=

[

[1, . . . , n]

[0, . . . , 0]

]

.

An operation Q(j) = [{I}, {h}] means that to the entry of j in the list Q, we
write list I to the place of basic indices, while the values of the vector h in the
place of q.

Before the algorithm performs a pivot operation, it checks if the actively
selected variable that enters the basis was chosen actively previously or not
when it left the basis. If yes, with the help of list Q, it checks vector (13)
and only after this does it modify list Q. Because the complementary pairs
of variables move together during the pivot operations, it is not necessary to
provide space for both of them in list Q.

Note, that because the definition of the initial values of Q and the modifica-
tion of Q during a passive exchange pivot, it suffices to check the product (13)
during any pivot. If tableau (a) (or (b)) is followed by tableau (A) (or (B)),
the product will always be zero.

It would not be necessary to fill out list Q every time. With a slight mod-
ification of the algorithm, we would be able to save storage space as well. In
the worst case, the storage space required by list Q would be the storage space
required to store n2 integer and n2 rational numbers.

We have to investigate the case when (P−LCP) has no solution. This occurs
when K = ∅. The structure of the pivot tableau is shown in Figure 11. Consider
the vector

(x ′,y ′) = t(k) |JN∪JB .

Finite index selection rules for LCP criss-cross algorithm 131

l

STOP

START

STOP

positive

yes

= 0

yesno no

the tableau
certificate from
not sufficient,

u"v ′ ≥ 0?
−u ′v"−

violated?
sign structure

certificate from Q

not sufficient,

− k

exchange pivot

l̄

0

k̄

STOP

k̄

− k

diagonal
pivot

k̄

+ k−
the tableau
certificate from
not sufficient,

STOP

negative sign of
tkk

STOP

complementary

tableau

feasible
feasible
complementary
solution

yes

yes

no

no

⊕
...

⊕

. . .⊕ ⊕ -

diagonal/
exchange pivot

possible

no solution

Figure 10: Flow chart of the modified criss-cross algorithm

Using the orthogonality theorem, we get that this vector is orthogonal to
every row of [−MT | −I], in other words MTx ′ + y ′ = 0. Applying the ortho-
gonality theorem to the column of the right-hand side vector q (in the starting
basis), we have

(x ′,y ′)Ttq |JN∪JB= (x ′,y ′)T (q,0) = x ′Tq = qk.

So the vector (x,y) = (x ′,y ′)/(−qk) is a solution to the problem (D−LCP),
because nonnegativity and complementary follow from the structure of the
pivot tableau.

Based on the discussion above, we showed that the modified criss-cross al-
gorithm can be started from any complementarity basic solution of a general
linear complementarity problem without apriori information on the matrix

132 Zs. Csizmadia, T. Illés, A. Nagy

property and using s-monotone index rule, in a finite number of iteration the
algorithm stops with one of the EP theorem cases, stated in Theorem 22.

Next example shows that the modified criss-cross algorithm (see on Figure
9 and it’s flowchart on Figure 10) identifies the lack of sufficiency for matrix
M.

+ + + +... ...0 k

q̄(ū, v̄)

−M I

1(x̄, ȳ) −

(x, y)i =

−tki/q̄k if i ∈ IN
−1/q̄k if i = k

0 otherwise.

Figure 11: The dual solution when no primal solution exists

Example 24 As an example, consider the problem presented in Example 23
again. The extended algorithm would stop on Tableau 3: the sign of the second
pivot position of the exchange pivot violates the expected sign structure.

6 Computational experiences

In this section we provide some numerical experience using the proposed algo-
rithm for solving general LCP problems arising from Arrow-Debreu exchange
matrix problems and bimatrix games. The experiments have been carried out
in Matlab, using the built in QR decomposition and update for the basis. To
maximize the chance of success, in positions when the selected s-monotone
rule (MOSV) offered flexibility of pivot selection, a random position has been
selected from among the eligible choices.

The results presented here emphasize the applicability of the new variant
of the criss-cross method together with the flexibility of the s-monotone index
selection rules. For a comprehensive numerical study concentrating on the s-
monotone index selection rules see [15].

6.1 A market equilibrium problem

Consider the exchange market equilibrium problem as described by Walras
[28]. There are m traders (players) and n goods on the market, where each

Finite index selection rules for LCP criss-cross algorithm 133

good type j has a price pj ≥ 0. Each trader i is assumed to have an initial
endowment of commodities
wi = (wi1, . . . , win) ∈ Rn

⊕. The traders will sell their product on the market
and use their income to buy a bundle of goods xi = (xi1, . . . , xin) ∈ Rn

⊕.
A trader i has a utility function ui, which describes his preferences for the
different bundle of commodities and a budget constraint pTxi ≤ pTwi. Finally,
each trader i maximizes his individual utility function subject to his budget
constraint.

Each trader optimizes his own utility function ui with these side constraints:

max ui(xi)

pTxi ≤ pTwi

xi ≥ 0,

where the vector of prices p is an equilibrium for the exchange economy;
if there is a bundle of goods xi(p) (so a maximizer of the utility function ui

subject to the budget constraint) for all traders i, such that

m∑

i=1

xij(p) ≤
m∑

i=1

wij for all goods j.

The exchange market equilibrium problem pursues prices where the demand∑
i xij(p) does not exceed the supply

∑
iwij for any good j.

Arrow and Debreu [2] proved that under mild conditions, for concave utility
functions, the exchange markets equilibrium exists. Using the Leontief utility
function

ui(xi) = min
j

{
xij

aij
: aij > 0

}
,

where A = (aij) ∈ Rn×n
⊕ is the Leontief coefficient matrix, Ye [25] has shown

that the solution of the Arrow-Debreu competitive market equilibrium problem
with Leontief’s utility function is equivalent to the following linear complemen-
tarity problem:

AT u+ v = e, u ≥ 0, v ≥ 0, uv = 0 and u 6= 0

where the matrix A has non-negative entries.
It is easy to see that this problem will almost always have a non-sufficient

matrix, and as such is a demanding problem class for the generalized criss-cross
algorithm.

The computational experiences have been carried out using a 100 problems,
ranging

134 Zs. Csizmadia, T. Illés, A. Nagy

n ∈ {10, 20, 40, 60, 80, 100, 200, 300, 400, 500} taking 10 random instances for
each value of n. For this problem the trivial basis corresponding to the columns
of v is not valid, as it is a feasible solution to the problem, but u 6= 0 does not
hold.

To address this problem, a structural crash heuristic has been used, based
on the following heuristics. Start from the empty selection B = ∅. For any set
of vectors, define it’s support as supp(B) = {j : ∃i : ai ∈ B, aj,i 6= 0}. In each
iteration of the crash heuristics for all i ∈ 1 . . . n, if there is such an index j for
which aji 6= 0 and i /∈ supp(B), then add ai to B, else, add the corresponding
identity vector ei to the B. It is easy to see, that this procedure will yield a
complementary basis, and unless A = 0 it will contain at least one columns
corresponding to u. When the selection of the column from A was not unique,
the algorithm has selected randomly. Each experiment was repeated 10 times,
yielding a total of 1000 test runs.

n Successful solves Mean iterations Maximum iterations
10 762 0.619 12
20 318 1.432 12
40 26 1.445 9
60 13 1.479 10
80 2 1.396 9
100 0 1.295 10
200 0 1.213 9

Table 1: Numerical experiments on random market equilibrium problems

The number of successful solves diminished very quickly with size, also the
algorithm terminates after a very small iteration count, with declaring the
matrix not sufficient in most cases. There has been no successful solves for
n ≥ 100 suggesting that most of the successful solves for smaller sizes strongly
depend on luck associated with the crash heuristics applied.

6.2 A bimatrix game

In this problem, two companies are considering entering n markets. Entering
a market has both fixed, and variable costs, and there are fixed transport
charges. The problem of finding optimal profit strategies can be formulated as
a bimatrix game [21]. Consider a bimatrix game defined by A and B.

Finite index selection rules for LCP criss-cross algorithm 135

Theorem 25 The Karush-Khun-Tucker conditions of the bimatrix game can
equivalently be formulated as

xT (A+ B)y − α− β → max

x,y ≥ 0

1Tmx = 1

1Tny = 1

Ay ≤ α1m

BTx ≤ β1n

where the zero valued solutions are the Nash-equilibria.

This Karush-Khun-Tucker conditions for this quadratic programming prob-
lem can be stated as

(

Q PT

−P O

)(

u

t

)

+

(

s

v

)

=

(

c

b

)

u t = 0

s v = 0

u, t, s,v ≥ 0

where

Q =

(

O −A − B

(−A − B)T O

)

u =

(

x

y

)

∈ Rm+n

P =

BT O 0 0 −1 1

O A −1 1 0 0

1T 0 0 0 0 0

−1T 0 0 0 0 0

0 1T 0 0 0 0

0 −1T 0 0 0 0

t =

α+

α−

β+

β−

∈ R4.

As A and B can be chosen arbitrary, it is easy to see that the resulting LCP
will not necessarily be sufficient.

Experiments have been carried out for payoff matrices with n = m =

2, 3, . . . , 7, with each experiment using random values for A and B and repeated
1000 times. As a trivial initial complementary bases, the identity columns cor-
responding to variables (s,v) have been selected.

136 Zs. Csizmadia, T. Illés, A. Nagy

Payoff matrix Local solution Close to zero Local solution Close to zero
size (obj > 0.001) (obj < 0.001) (obj > 0.01) (obj < 0.01)
2x2 563 437 516 484
3x3 768 232 684 316
4x4 908 92 801 199
5x5 931 69 827 173
6x6 960 40 855 145
7x7 973 27 871 129

Table 2: Numerical experiments on random bimatrix games

Although the number of successful solves where the objective of the original
quadratic problem is zero diminishes, the algorithm managed to find solution
in a reasonable portion of the problems. Computational results are summa-
rized on Table 2, where the optimal objective function value, due to numerical
computational errors, claimed to be optimal in the interval [0, ε). In case of
column two of the Table 2, ε = 0.001, while in column three ε = 0.01. This
shows that the computational precision may influence which problem will be
declared as solved problem.

7 Summary

We have presented a variant of a generalized criss-cross type algorithm for
linear complementarity problems with sufficient matrices, using s-monotone
pivot rules. For better practical applicability, we have modified the generalized
algorithm so that the a priori information on the sufficiency of the matrix
is not necessary. In case of lack of sufficiency, if the algorithm cannot ensure
finiteness, then it terminates and provides a polynomial size certificate that the
matrix is not sufficient. We have achieved our goals using the duality theorem of
linear complementarity problems [13] and with its EP theorem form [12]. With
the use of flexible s-monotone pivot rules, the algorithm provides significant
freedom in choosing the pivot position (usually during the first part of the
algorithm), making it possible to avoid some numerically instable pivots.

Some supporting evidence for the applicability of the proposed algorithm
has been presented by solving general linear complementarity problems aris-
ing from bimatrix games and the Arrow-Debreu market equilibrium problem,
where the algorithm has proved to be applicable in (rather) small dimensions.

Finite index selection rules for LCP criss-cross algorithm 137

Acknowledgements

This research has been supported by the TÁMOP-4.2.2./B-10/1-2010-0009,
Hungarian National Office of Research and Technology with the financial sup-
port of the European Union from the European Social Fund.

Tibor Illés acknowledges the research support obtained from Strathclyde
University, Glasgow under the John Anderson Research Leadership Program.

Parts of this paper has been included in the Ph.D. thesis of Zsolt Csizmadia
[7].

References

[1] A. A. Akkeleş, L. Balogh, T. Illés, New variants of the criss-cross method for
linearly constrained convex quadratic programming, Eur. J. Oper. Res., 157, 1
(2004) 74–86. ⇒104

[2] K. J. Arrow, G. Debreu, Existence of an equilibrium for competitive economy,
Econometrica, 22 (1954) 265–290. ⇒133

[3] K. Cameron, J. Edmonds, Existentially polytime theorems, in: Polyhedral combi-
natorics, (eds. W. Cook, P.D. Seymour) DIMACS Ser. Discrete Math. Theoret.
Comput. Sci., American Mathematical Society, Providence, RI, 1990, pp. 83–100.
⇒126

[4] Y. Y. Chang, Least index resolution of degeneracy in linear complementarity prob-
lems, Technical Report 79-14, Department of Operations Research, Stanford Uni-
versity, Stanford, Calfornia, USA, 1979. ⇒104

[5] S. J. Chung, NP-completeness of the linear complementarity problem, J. Optimiz.
Theory Appl., 60, 3 (1989) 393–399. ⇒110

[6] R. W. Cottle, J. S. Pang, V. Venkateswaran, Sufficient matrices and the linear
complementarity problem, Linear Algebra Appl., 114/115 (1989) 231–249. ⇒
104, 107, 108

[7] Zs. Csizmadia, New pivot based methods in linear optimization, and an application
in petroleum industry, PhD Thesis, Eötvös Loránd University of Sciences, 2007.
⇒137

[8] Zs. Csizmadia, T. Illés, New criss-cross type algorithms for linear complementarity
problems with sufficient matrices, Optim. Methods Softw., 21, 2 (2006) 247–266.
⇒106, 109, 114

[9] Zs. Csizmadia, T. Illés, A. Nagy, The s-monotone index selection rules for pivot
algorithms of linear programming, European J. Oper. Res., 221, 3 (2012) 491–500.
⇒104, 106, 111, 112

[10] Gy. Farkas, A Fourier-féle mechanikai elv alkalmazásai (the applications of the
mechanical principle of fourier), Mathematikai és Természettudományi Értesítő,
12 (1894) 457–472. ⇒105, 110

138 Zs. Csizmadia, T. Illés, A. Nagy

[11] Gy. Farkas, Theorie der einfachen ungleichungen, J. Reine Angew. Math., 124
(1901) 1–27. ⇒105, 110

[12] K. Fukuda, M. Namiki, A. Tamura, EP theorems and linear complementarity
problems, Discrete Appl. Math., 84, 1-3 (1998) 107–119. ⇒ 105, 107, 108, 109,
126, 136

[13] K. Fukuda T. Terlaky, Linear complementarity and oriented matroids, J. Oper.
Res. Soc. Japan, 35, 1 (1992) 45–61. ⇒105, 110, 136

[14] D. den Hertog, C. Roos, T. Terlaky, The linear complementarity problem, suf-
ficient matrices, and the criss-cross method, Linear Algebra Appl., 187, 1 (1993)
1–14. ⇒104, 107, 109

[15] T. Illés, A. Nagy, Computational aspects of simplex and MBU-simplex algo-
rithms using different anti-cycling pivot rules, Department of Operations Re-
search, Eötvös Loránd University of Sciences, Operations Research Report, 2012-
02 (2012) submitted for publication. ⇒132

[16] T. Illés, M. Nagy, T. Terlaky, EP theorem for dual linear complementarity prob-
lems, J. Optim. Theory Appl., 140, 2 (2009) 233–238. ⇒105

[17] T. Illés, M. Nagy, T. Terlaky, Polynomial interior point algorithms for general
linear complementarity problems, Algorithmic Oper. Res.h, 5, 1 (2010) 1–12. ⇒
105

[18] T. Illés, M. Nagy, T. Terlaky, A polynomial path-following interior point algo-
rithm for general linear complementarity problems, J. Global Optim., 47, 3 (2010)
329–342. ⇒105

[19] E. Klafszky, T. Terlaky, The role of pivoting in proving some fundamental the-
orems of linear algebra, Linear Algebra Appl., 151 (1991) 97–118. ⇒108, 119

[20] M. Kojima, N. Megiddo, T. Noma, A. Yoshise, A Unified Approach to Interior
Point Algorithms for Linear Complementarity Problems, Lecture Notes in Com-
puter Science 538, Springer-Verlag, Berlin, 1991. ⇒104, 105

[21] C.E. Lemke, J.T. Howson, Jr., Equilibrium points of bimatrix games, Journal
Soc. Indust. Appl. Math., 12 (1964) 413–423. ⇒134

[22] C. Roos, T. Terlaky, J.-Ph. Vial, Theory and Algorithms for Linear Optimization:
An Interior Point Approach, Wiley-Interscience Series in Discrete Mathematics
and Optimization, John Wiley & Sons, New York, USA, 1997. Second edition:
Interior PointMethods for Linear Optimization, Springer, New York, 2006. ⇒
105

[23] T. Terlaky, A convergent criss-cross method, Optimization, 16, 5 (1985) 683–690.
⇒104

[24] P. Tseng, Co-NP-completeness of some matrix classification problems, Math. Pro-
gram., Series A:88 (2000) 183–192. ⇒104

[25] Y. Ye, A Path to the Arrow-Debreu Competitive Market Equilibrium, Math.
Program., 111, 1-2 (2008) 315–348. ⇒133

[26] H. Väliaho, Criteria for sufficient matrices, Linear Algebra Appl., 233 (1996)
109–129. ⇒104, 109

[27] H. Väliaho, P∗-matrices are just sufficient, Linear Algebra Appl., 239 (1996)
103–108. ⇒104

Finite index selection rules for LCP criss-cross algorithm 139

[28] L. Walras, Elements of Pure Economics, or the Theory of Social Wealth, (1874)
(1899, 4th ed.; 1926, rev. ed., 1954, Engl. Transl.) ⇒132

[29] Z.M. Wang, A finite conformal-elimination free algorithm over oriented matroid
programming, Chin. Ann. Math. Ser. B , 8, 1 (1987) 120–125. ⇒104

Received: February 19, 2013 • Revised: April 10, 2013

Acta Universitatis Sapientiae
The scientific journal of Sapientia Hungarian University of Transylvania publishes

original papers and surveys in several areas of sciences written in English.
Information about each series can be found at

http://www.acta.sapientia.ro.

Editor-in-Chief

László DÁVID

Main Editorial Board

Zoltán A. BIRÓ Zoltán KÁSA András KELEMEN
Ágnes PETHŐ Emőd VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor

Zoltán KÁSA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board

Tibor CSENDES (University of Szeged, Hungary)
László DÁVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babeş-Bolyai University, Romania)
Horia GEORGESCU (University of Bucureşti, Romania)

Gheorghe GRIGORAŞ (Alexandru Ioan Cuza University, Romania)
Antal IVÁNYI (Eötvös Loránd University, Hungary)

Hanspeter MÖSSENBÖCK (Johannes Kepler University, Austria)
Attila PETHŐ (University of Debrecen, Hungary)

Ladislav SAMUELIS (Technical University of Košice, Slovakia)
Veronika STOFFA (STOFFOVÁ) (János Selye University, Slovakia)

Daniela ZAHARIE (West University of Timişoara, Romania)

Each volume contains two issues.

Sapientia University Scientia Publishing House

ISSN 1844-6086

http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
LATEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is necessary too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Illustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:

Acta Universitatis Sapientiae, Informatica
RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-inf@acta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086

http://www.acta.sapientia.ro

	1 Introduction
	2 The mathematical model of the clustering problem
	3 Competitive analysis
	3.1 Analysis without constraints
	3.1.1 No Waiting Time Algorithm

	3.2 Latency limited analysis

	4 Experimental evaluation
	4.1 Variable Waiting Time Algorithm
	4.2 Empirical analysis

	5 Summary and open questions
	1 Introduction
	1.1 The problem statement
	1.2 The continued fraction approach
	1.3 The Lenstra–Lenstra–Lovász approach

	2 Approximation in the one-dimensional case
	2.1 ``All-elements'' approximation
	2.2 ``Many elements'' approximation

	3 Approximations for the multi-dimensional case
	3.1 ``Many elements'' approximation

	4 Practical use of our methods
	5 Acknowledgement
	1 Introduction
	2 Elliptic curves
	3 Elliptic Curve Primality Proving
	3.1 Downrun
	3.2 Finding elliptic curves

	4 Magma
	4.1 Magma-ECPP
	4.2 Modified-ECPP
	4.2.1 Theoretical observations
	4.2.2 The tree structure
	4.2.3 The path finding algorithm

	5 Experiments
	5.1 Example
	5.1.1 Magma-ECPP
	5.1.2 Modified-ECPP

	6 Remarks and conclusions
	1 Introduction
	2 Global Positioning System
	3 Authenticity
	3.1 Geodesic authenticity
	3.2 Cryptographic authenticity

	4 Problem formulation
	5 Protocols
	5.1 High-safety solution: Driver-level
	5.1.1 Participants and notations
	5.1.2 Protocol
	5.1.3 Protocol description

	5.2 Lower-safety solution: Software-level
	5.2.1 Participants and notations
	5.2.2 Protocol
	5.2.3 Protocol description

	6 Attacks
	7 Conclusion
	1 Introduction
	2 Earlier results and related work
	3 Bird's-eye view on ISO/IEC product quality standards
	3.1 ISO/IEC 9126
	3.2 ISO/IEC 25010

	4 Code smells and categorization
	4.1 Code smells
	4.2 Categorization

	5 Measuring the test quality via code smells
	6 Summary
	7 Further work
	8 Acknowledgments
	1 Introduction
	2 Linear complementarity problems and sufficientmatrices
	3 The s-monotone index selection rule
	4 The criss-cross method
	4.1 Almost terminal tableaux of the criss-cross method
	4.1.1 Auxiliary lemmas

	4.2 Finiteness of the criss-cross method

	5 EP theorems and the linear complementarity problem
	6 Computational experiences
	6.1 A market equilibrium problem
	6.2 A bimatrix game

	7 Summary

