Acta Universitatis Sapientiae

Informatica
Volume 3, Number 1, 2011

Sapientia Hungarian University of Transylvania
Scientia Publishing House

Contents

G. Lischke

Primitive words and roots of wordscciiiiiiiiiiiin, 5
V. Popov

Arc-preserving subsequences of arc-annotated sequences 35

B. Parv, S. Motogna, I. Lazar, I. G. Czibula, C. L. Lazar
ComDeValCo framework: designing software components and
systems using MDD, executable models, and TDD 48

L. Domoszlai, E. Bruél, J. M. Jansen
Implementing a non-strict purely functional language in

JavaScript ..ot i i i it e ettt 76
A. Tvanyi, 1. Kdtai

Testing of random matricescciiiiiiiiiiiiiiinnan.. 99
Z. Kasa

On scattered subword complexityccvviiiiiiiiiinnn.. 127

AcTA UNIV. SAPIENTIAE, INFORMATICA, 3, 1 (2011) 5-34

&

Primitive words and roots of words

Gerhard LISCHKE
Fakultat fiir Mathematik und Informatik
Friedrich-Schiller-Universitit Jena
Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany

email: gerhard.lischke@uni-jena.de

Abstract. In the algebraic theory of codes and formal languages, the set
Q of all primitive words over some alphabet X has received special inter-
est. With this survey article we give an overview about relevant research
to this topic during the last twenty years including own investigations and
some new results. In Section 1 after recalling the most important notions
from formal language theory we illustrate the connection between coding
theory and primitive words by some facts. We define primitive words as
words having only a trivial representation as the power of another word.
Nonprimitive words (without the empty word) are exactly the periodic
words. Every nonempty word is a power of an uniquely determined prim-
itive word which is called the root of the former one. The set of all roots
of nonempty words of a language is called the root of the language. The
primitive words have interesting combinatorial properties which we con-
sider in Section 2. In Section 3 we investigate the relationship between
the set Q of all primitive words over some fixed alphabet and the lan-
guage classes of the Chomsky Hierarchy and the contextual languages
over the same alphabet. The computational complexity of the set Q and
of the roots of languages are considered in Section 4. The set of all pow-
ers of the same degree of all words from a language is the power of this
language. We examine the powers of languages for different sets of ex-
ponents, and especially their regularity and context-freeness, in Section
5, and the decidability of appropriate questions in Section 6. Section 7
is dedicated to several generalizations of the notions of periodicity and
primitivity of words.

Computing Classification System 1998: F.4.3

Mathematics Subject Classification 2010: 03-2, 68-02, 68Q45, 68R15, 03D15

Key words and phrases: primitivity of words, periodicity of words, roots of words and
languages, powers of languages, combinatorics on words, Chomsky hierarchy, contextual
languages, computational complexity, decidability

5

6 G. Lischke

1 Preliminaries

1.1 Words and languages

First, we repeat the most important notions which we will use in our paper.
Y should be a fixed alphabet, which means, it is a finite and nonempty
set of symbols. Mostly, we assume that it is a nontrivial alphabet, which
means that it has at least two symbols which we will denote by a and b,
a#b.IN={0,1,2,3,...} denotes the set of all natural numbers. £* is the free
monoid generated by X or the set of all words over X. The number of letters
of a word p, with their multiplicities, is the length of the word p, denoted by
Ipl. If [p| = n and n = 0, then p is the empty word, denoted by € (in other
papers also by e or A). The set of words of length n over I is denoted by X™.

Then £* = |J I™ and Z£° = {e}. For the set of nonempty words over £ we
nelN
will use the notation It = Z* \ {e}.

The concatenation of two words p = x1x2---Xm and d = Yy1y2---Yn,
Xi,Yj € L, is the word pg = x1%2-- - Xmy1yz---Yn. We have |[pq| = [p[+ Iq|.
The powers of a word p € L* are defined inductively: p© = €, and p™ = p™'p
for n > 1. p* denotes the set {p™:n € IN}, and p™ =p* \ {e}.

For p € Z* and 1 <1 <|p|, p[i] is the letter at the i-th position of p.

Then p =p[1lp[2]---plpll.

For words p,q € X*, p is a prefix of q, in symbols p C q, if there exists
T € * such that @ = pr. p is a strict prefix of ¢, in symbols p C q, if p E g
and p # q. Pr(q) =pfs {p : p C q} is the set of all strict prefixes of ¢
(including € if q # €).

p is a suffix of q, if there exists v € X* such that q = rp.

For an arbitrary set M, M| denotes the cardinality of M, and P(M) denotes
the set of all subsets of M.

A language over X or a formal language over X is a subset L of L*.
{L:L C X*} = P(L*) is the set of all languages over L. If L is a nonempty
strict subset of £*, L C L*, then we call it a nontrivial language.

For languages Ly, Ly, and L we define:

Li-L=LiL=ps{pg:p € LiAq € L2},

[0 =p¢le), and LM =ps L™ - L forn > 1.

If one of Lq,L, is a one-element set {p}, then, usually, in L1L, we write p
instead of {p}.

Languages can be classified in several ways, for instance according to the
Chomsky hierarchy, which we will assume the reader to be familiar with (other-
wise, see, for instance, in [8, 9, 23]). These are the classes of regular, context-

Primitive words and roots of words 7

free, context-sensitive, and enumerable languages, respectively. Later on we
will also consider linear languages and contextual languages and define them
in Section 3.

1.2 Periodic words, primitive words, and codes

Two of the fundamental problems of the investigations of words and languages
are the questions how a word can be decomposed and whether words are
powers of a common word. These occur for instance in coding theory and
in the longest repeating segment problem which is one of the most important
problems of sequence comparing in molecular biology. The study of primitivity
of sequences is often the first step towards the understanding of sequences.

We will give two definitions of periodic words and primitive words, respec-
tively, and show some connections to coding theory.

Definition 1 A word uw € £ is said to be periodic if there exists a word
v € L* and a natural number n > 2 such that w = V. If w € LT is not
periodic, then it is called a primitive word over X.

Obviously, this definition is equivalent to the following.

Definition 1’ A word w € I is said to be primitive if it is not a power of
another word, that is, w = v™ withv € L* impliesn =1 andv =u. Ifue L+t
s not primitive, then it is called a periodic word over X.

Definition 2 The set of all periodic words over L is denoted by Per(L), the
set of all primitive words over L is denoted by Q(X).

Obviously, Q(Z) =Xt \ Per(X).

In the sequel, if X is understood, and for simplicity, instead of Per(X) and
Q(X) we will write Per and Q, respectively.

Now we cite some fundamental definitions from coding theory.

Definition 3 A nonempty set C C L* is called a code if every equation
WU -+ - Um = V1V2 - - -V with ui, vy € C for all i and j implies n = m and
u; = vy for all 1.

A nonempty set C C L* is called an n-code for n € IN, if every nonempty
subset of C with at most 1 elements is a code. A monempty set C C L1 is
called an intercode if there is some m > 1 such that C™ nItecmLt = .

Connections to primitive words are stated by the following theorems.

8 G. Lischke

Theorem 4 IfC C £ and for all p,q € C with p # q holds that pq € Q,
then C is a 2-code.

The proof will be given in Section 2.
Theorem 5 If C is an intercode, then C C Q.

Proof. Assume that C Z Q is an intercode and C™'NZ+HC™L* = () for some
m > 1. Then we have a periodic word u in C which means u = v™ € C for some
ve Itand n > 2. Then u™t! = ymtl) — y(ynm)yn—1 ¢ cmtl o y+omy +
which is a contradiction.]

1.3 Roots of words and languages

Every nonempty word p € L7 is either the power of a shorter word q (if it is
periodic) or it is not a power of another word (if it is primitive). The shortest
word g with this property (in the first case) resp. p itself (in the second case)
is called the root of p.

Definition 6 The root of a word p € Xt is the unique primitive word q
such that p = q™ for some also unique natural number n. It is denoted by \/p
or root(p). The number n in this equation is called the degree of p, denoted
by deg(p). For a language L, VL =ps {v/P:p € LAp # e} is theroot of L,
deg(L) =pf{deg(p):p € LAp # €} is the degree of L.

Remark. The uniqueness of root and degree is obvious, a formal proof will
be given in Section 2.

Corollary 7 p = ﬁdeg(p) for each wordp # €; L C Q for each language
L; VI*=Q; +VL=LifandonlyifL CQ.

2 Primitivity and combinatorics on words

Combinatorics on words is a fundamental part of the theory of words and lan-
guages. It is profoundly connected to numerous different fields of mathematics
and its applications and it emphasizes the algorithmic nature of problems
on words. Its objects are elements from a finitely generated free monoid and
therefore combinatorics on words is a part of noncommutative discrete math-
ematics. For its comprehensive results and its influence to coding theory and

Primitive words and roots of words 9

Figure 1: To the proof of Theorem 8

primitive words we refer to the textbooks of Yu [28], Shyr [24], Lothaire [19],

and to Chapter 6 in [23]. Here we summarize some results from this theory

which are important for studying primitive words or which will be used later.
The following theorem was first proved for elements of a free monoid.

Theorem 8 (Lyndon and Schiitzenberger [20]). If pq = qp for nonempty
words p and q, then p and q are powers of a common word and therefore pq
18 not primitive.

Proof. We prove the theorem by induction on the length of pq, which is at
least 2. For |pq| =2 and pq = qp, p, q # €, we must have p = q = a for some
a € X, and the conclusion is true. Now suppose the theorem is true for all pq
with |pgq| < n for a fixed n > 2. Let [pql =n+1, pq = qp, p,q # €, and,
without loss of generality, [p| < |q]. We have a situation as in Figure 1. There
must exist x € L* such that g = px = xp.

Case 1) x = €. Then p = q, and the conclusion is true.

Case 2) x # €. Since [px| < n, by induction hypothesis p and x are powers
of a common word. Then also q is a power of this common word.

The theorem follows from induction.]

Corollary 9 w ¢ Q if and only if there exist p,q € £ such that
w =7pq = (qp.

Theorem 10 (Shyr and Thierrin [25]) For words p,q € L*, the two-element
set {p, q} is a code if and only if pq # qp.

Proof. First note, that both statements in the theorem imply, that p,q # €
and p # q. It is trivial that for a code {p,q}, pq # qp must hold. Now we
show, that no set {p, q} with pq # gp can exist which is not a code. Assume
the opposite. Then

10 G. Lischke

M =p¢{{p,q}: p,q € Z* A pq # qp A {p,q} is not a code} # 0.
Let {p,q} € M where |pq| is minimal, and let w be a word with minimal

length having two different representations over {p, q}. Then |[w| > 2 and one
of the following must be true:

either (a) w = pup = qu’q or (b) w = pvq = qv’p for some u,u’,v,v’' €
{p, q}*. Because of p # q, p C q or q C p must follow. Let us assume that
p C q. For the case q C p the proof can be carried out symmetrically. Then
from both (a) and (b) it follows that ¢ = pr = sp for some r,s € L. We
have |r| = |s| # |p| (because otherwise v = s = p and q = pp), [pr| < Ipql,
and pr # rp (because otherwise r = s and pq = psp = prp = qp). With
q = pr follows either (a’) pup = pru/pr from (a), or (b’) pvpr = prv'p from
(b). Because of |pr| < [pq|, the choice of {p, q} having minimal length, and the
definition of M, it must follow that {p,r} is a code. But then from both (a’)
and (b’) follows p = r, which is a contradiction. Hence M must be empty. [

From the last two theorems we get the following corollary which for its part
proves Theorem 4.

Corollary 11 Ifpq € Q for words p,q # €, then {p, q} is a code.

Note, that the reversal of this corollary is not true. For example, {aba, b} is
a code, but abab ¢ Q.

A weaker variant of the next theorem has been proved also by Lyndon
and Schiitzenberger [20] for elements of a free monoid. Our proof follows that
presented by Lothaire [19].

Theorem 12 (Fine and Wilf [7]) Let p and q be nonempty words, |p| = n,
lgl =m, and d = gcd(n, m) be the greatest common divisor of n and m. If pt
and ' for some i,j € IN have a common prefix w of length n+m —d, then p
and q are powers of a common word of length d and therefore \/p = /q.

Proof. Assume that the premises of the theorem are fulfilled and, without
loss of generality,] <n < m—1 (otherwise n =m =d and p =q =u). We
first assume d = 1 and show, that p and q are powers of a common letter.
Because of u C pt and [u| = m — 14 n we have

(1) ulxl=ulx+n] forT<x<m-—1.

Because of u C g’ we have

(2) uyl=uly+m] forT<y<n-—-1.

Because of (1) and 1 <m—n <m—1 we have

(3) u[m]=u[m—nl.

Primitive words and roots of words 11

Let now 1 < x <y<m-—1with y—x=n mod m. Then we have two
cases.

Case a). y =x+n < m— 1, and therefore u[x] = ufy] by (1).

Case b).y =x+n—m. Since x <m—1 we have x+n—m <n—1 and
ufyl =ulx +n—m] =ulx +n] = ulx] by (2) and (1).

Hence u[x] = u[y] whenever 1 <x<y<m-—1landy—x=n mod m. It
follows by (1) that u[x] = u[y] whenever 1 <x <y <m—1 and
y—x=k-n modm for some k € IN. Because of gcd(n, m) = 1, the latter
is true if y — x is any value of {1, 2, ..., m— 1}. This means, under inclusion of
(3), u[l] =uf2] =--- =u[ml], and p and q are powers of the letter u[1].

If d > 1, we argue in exactly the same way assuming L9 instead of £ as the
alphabet. O

If we assume, p' = q for primitive words p and q and i,j € IN\ {0}, then by
Theorem 12, p and q are powers of a common word which can only be p = q
itself because of its primitivity. This means the uniqueness of the root of a
word which also implies the uniqueness of its degree.

Using Theorem 12 we can easily prove the next theorem.

Theorem 13 (Borwein) If w ¢ Q and wa € Q, where w € £ and a € X,
then w € a*.

The next theorem belongs to the most frequently referred properties con-
cerning primitive words.

Theorem 14 (Shyr and Thierrin [26]) If ujuy # € and ujuy = p* for some
p € Q, then uyu; = q* for some q € Q. This means, if w = ujuy # € and
u = uyuy, then deg(u) = deg(u’), |[Vul = [Vu/|, and therefore w primitive if
and only if u' primitive.

Proof. Let uju,; = pl # € and p € Q. We consider two cases.

Case 1). 1 = 1, which means, uju; is primitive. Assume that uyu; is not
primitive and therefore uyu; = g’ for some q € Q andj > 2. Then q = q1q2 #
¢ such that u; = (g192)™q1, w1 = q2(q192)™, and j = n+ m + 1. It follows
that wiuz = (q2q1)™™H = (q2q71)’ is not primitive. By this contradiction,
Urug = q' is primitive.

Case 2). i > 2. Then p = p1p2 # € such that w; = (p1p2)™p1, Uz =
p2(p1p2)™, and i = n+ m+ 1. Since p = p1p2 is primitive, by Case 1 also
q =pf P2p1 is primitive, and uzuy = (popy) ™M+ =gt g

The proof of the following theorem, which was first done by Lyndon and
Schiitzenberger [20] for a free group, is rather difficult and therefore omitted
here.

12 G. Lischke

Theorem 15 If u™™ = wX #£ € for words w,v,w € £* and natural numbers
m,n,k > 2, then w,v and w are powers of a common word.

We say, that the equation u™™ = WX, where m,n,k > 2 has only trivial
solutions.

The next two theorems are consequences of Theorem 15.
Theorem 16 Ifp,q € Q withp # q, then p'q) € Q for all i,j > 2.

This theorem is not true if i = 1 or j = 1. For instance, let p = aba, q = baab,
i=2,5=1.

Theorem 17 Ifp,q € Q with p # q and i > 1, then there are at most two
periodic words in each of the languages ptq* and p*qt.

Proof. Assume that there are periodic words in pq*, and ptq’ should be the
smallest of them. Then p'q’ = r* for some v € Q, k > 2, r # q. Let also
plgqt =s™ e Per,s € Q,1>j, m>2 Then s™ =1kq"7, and 1 —j = 1
by Theorem 15. Therefore at most two words ptq’ and p*q’*! in plq* can be
periodic. For p*q* the proof is done analogously. O

With essentially more effort, the following can be shown.

Theorem 18 (Shyr and Yu [27, 28|) If p,q € Q with p # q, then there is at
most one periodic word in the language pTqt.

3 Primitivity and language classes

As soon as the set Q of primitive words (over a fixed alphabet X) was defined,
the question arose which is the exact relationship between Q and several known
language classes. Here it is important that X is a nontrivial alphabet because
in the other case all results become trivial or meaningless: If ¥ = {a} then
Q(X)=XZ={a}and Per(L)={a™:n > 2}.

First we will examine the relationship of Q to the classes of the Chomsky
hierarchy, and second that to the Marcus contextual languages.

3.1 Chomsky hierarchy

Let us denote by REG, CF and CS the class of all regular languages, the class
of all context-free languages and the class of all context-sensitive languages
(all over the nontrivial alphabet L), respectively. It is known from Chomsky
Hierarchy that REG C CF C CS (see, e.g., the textbooks [8, 9, 23]). It is easy

Primitive words and roots of words 13

to show that Q € CS \ REG, and hence it remains the question whether Q is
context-free. Before stating the theorem let us remember that CF is the class of
languages which are acceptable by nondeterministic pushdown automata, and
CS is the class of languages which are acceptable by nondeterministic linear
bounded automata. The latter are Turing machines where the used space on
its tapes (this is the number of tape cells touched by the head) is bounded by a
constant multiple of the length of the input string. If the accepting automaton
is a deterministic one the corresponding language is called a deterministic
context-free or a deterministic context-sensitive language, respectively. It can
be shown that the deterministic context-free languages are a strict subclass of
the context-free languages, whereas it is not yet known whether this inclusion
is also strict in the case of context-sensitive languages (This is the famous
LBA-problem).

Theorem 19 Q is deterministic context-sensitive but not reqular.

Proof. 1. It is easy to see that by a deterministic Turing machine for a given
word u can be checked whether it fulfills Definition 1 and thus whether it is
not primitive or primitive, and this can be done in space which is a constant
multiple of |ul.

2. is a corollary from the next theorem.

Theorem 20 A language containing only a bounded number of primitive words
and having an infinite root cannot be reqular.

If Q would be regular, then also Q = Per U{e} would be regular because the

class of regular languages is closed under complementation. But \5 =Q is
infinite and therefore by Theorem 20 it cannot be regular. O

Proof of Theorem 20. Let L be a language with an infinite root and a
bounded number of primitive words. Further let

m =pr max({|p| : p € LN Q}U{0}). Assume that L is regular. By the pumping
lemma for regular languages, there exists a natural number n > 1, such that
any word u € L with |u| > n has the form u = xyz such that [xy| < n,y # e,
and xy*z € L for all k € IN. Let now u € L with |,/u| > n and [u] > m. Then
u = xyz such that 1 < Jy| < xy| < n, z # €, and xy*z € L for all k € IN.
By Theorem 14, for each k > 1, zxyX is periodic (since |[xy*z| > [u| > m). Let
P =pDf VzX, 1 =p¢ deg(zx), and q =pr /Y. It is p # q because otherwise, by
Theorem 14, [yul = |\/zxy| = [\/yl < [yl < n contradicting the assumption
|v/u| > n. Then we have infinitely many periodic words in p'q* contradicting
Theorem 17. I

14 G. Lischke

In 1991 it was conjectured by Démosi, Horvath and Ito [4] that Q is not
context-free. Even though up to now all attempts to prove or disprove this
conjecture failed, it is mostly assumed to be true. Some approximations to the
solution of this problem will be given with the following theorems.

Theorem 21 Q s not deterministic context-free.

Proof. We use the fact that the class of deterministic context-free languages
is closed under complementation and under intersection with regular sets.
Assume that Q is deterministic context-free. Then also Q N a*b*a*b* =
{a'bla'b) :1,j € IN} must be deterministic context-free. But using the pumping
lemma for context-free languages, it can be shown that the latter is not even
context-free. O

In the same way (using the pumping lemma for Per N a*b*a*b*) it also
follows that Per is not context-free.

The next theorem has a rather difficult proof. Therefore and because we will
not explain what unambiguity means, we omit the proof.

Theorem 22 (Petersen [22]) Q is not an unambigous context-free language.

Another interesting language class which is strictly between the context-free
and the regular languages is the class LIN of all linear languages.

Definition 23 A grammar G = [N, T, P,S] is linear if its productions are of
the form A — aB or A —» Ba or A — a, where a € T and A,B € N. A
production of the form S — € can also be accepted if the start symbol S does
not occur in the right-hand side of any production.

A linear language is a language which can be generated by a linear gram-
mar. LIN is the class of all linear languages.

It can be shown that REG C LIN C CF.
Theorem 24 (Horvath [10]) Q is not a linear language.

The proof can be done by using a special pumping lemma for linear lan-
guages and will be omitted here.

Let £ be the union of the classes of linear languages, unambigous context-
free languages and deterministic context-free languages. Then £ C CF and, by
the former theorems, Q ¢ L. But, whether Q € CF or not, is still unknown.

Primitive words and roots of words 15

3.2 Contextual languages

Though we do not know the exact position of Q in the Chomsky Hierarchy, its
position in the system of contextual languages is clear. First, we cite the basic
definitions from [21], see also [15], and then, after three examples we prove our
result.

Definition 25 A (Marcus) contextual grammar is a structure G =
[X, A, C,d] where L is an alphabet, A is a finite subset of L* (called the set
of axzioms), C is a finite subset of Z* x L* (called the set of contexts), and ¢
is a function from X* into P(C) (called the choice function). If db(u) = C for
every w € L* then G is called a (Marcus) contextual grammar without
choice.

With such a grammar the following relations on X* are associated: For
w,w’ e I*,
(1) w =ex W' if and only if there exists [p1,p2] € ¢(w) such that
w' = P1wp2,
(2) w =in W’ if and only if there exists wy,wz, w3 € Z* and [p1,p2] € d(w2)
such that w = wiwows and w' = wipiwapows.

=4y and =7, denote the reflexive and transitive closure of these two rela-
tions.

Definition 26 For a conteztual grammar G = [Z, A, C, d] (with or without
choice),

Lex(G) =pf {w: Ju(u € AAu =%, w)} is the external contextual lan-
guage (with or without choice) generated by G,

and Lin(G) =pf {w: Ju(u € AAu =}, w)} is the internal contextual
language (with or without choice) generated by G.

For every contextual grammar G = [L,A,C,d], A C Lx(G) C Lin(G)
holds.

The above definitions are illustrated by the following examples.

Example 1 Let G = [X, A, C, ¢] be a contextual grammar where £ = {a, b},
A ={e,ab}, C = {[e, €l [a,bl}, d(e) = {[e, el}, d(ab) = {[a,b]} and $(w) =0
if wé¢ A. Then L.x(G) ={€, ab, aabb} and
Lin(G) ={a™™:n € IN}since ab = ¢, aabb, ab =} a™b" for every n > 1,
and there does not exist any w’ such that aabb =, w’.

Example 2 Let G = [X, A, C, ¢] be a contextual grammar where

¥ ={a,b}, A ={a}, C ={le, €l, e, dl,[e, b},

16 G. Lischke

d(e) = {[e, €]}, d(ua) = {[e,b]} for u € L* and $(ub) = {[e, a]} for u € L*.
Then L (G) = {a, ab, aba,abab,...} = a(ba)* U a(ba)*d and Li(G) =
aXl*\ aaZ®.

Example 3 Let u = ajaaz--- be an w-word over a nontrivial alpha-
bet £ where a; € X for all 1 > 1. Let G = [X,A,C,d] be a contextual
grammar where A = {€,a1}, C = {[e, €]} U{le,a]l : a € L}, d(e) = {[¢, €]},
dlaraz---ai) = {le,air1]} and d(w) = 0 if w is not a prefix of u. Then
Lex(G) = {e,a1,a1az,ajaz2a3,...} = Pr(u) is the set of all prefixes of u.
Hence, there exist contextual grammars generating languages which are not
recursively enumerable.

Theorem 27 (Ito [5]) Q is an external contextual language with choice but
not an external contextual language without choice or an internal contextual
language with or without choice.

Proof. 1. Let G = [£, X, {[u,v] : uw € Z* A Juv| < 2}, ¢] be a contextual
grammar, where ¢p(w) = {[u,v] : uv € Z* A jluv] < 2 Auwv € Q} for every
w € X*. Then obviously Lex(G) € Q. We prove Q C Lex(G) by induction.
First we have £ C (ZU Z?) N Q C Lex(G). Now assume that for a fixed n > 2
all primitive words p with |p| < n are in Lex(G). Let u be a primitive word of
smallest length > n + 1. We have two cases.

Case a). w = wxixz with xq,x2 € £ and at least one of w and wx; is in
Q. Then, by induction hypothesis, w € Lex(G) or wxi € Lex(G). But then
W =ex WX1X2 OF WX] = ex WX1X2, and thus u € L (G).

Case b). u =wx1x2 with xq,x2 € £ and none of w and wxy is in Q. Then,
by Theorem 13, w = x{" for some i > 1, hence u = x?‘“xz with x7 # x3, and
X2 Sex X1X2 Zex X1X1X2 Fex - Zex X1 X2, and therefore 1 € Lex(G).

2. Assume that there exists a contextual grammar G = [Z, A, C, ¢] without
choice such that Q = L¢y(G). There must be at least one pair [u,v] € ¢(w)
with uv # € for all w € I*. Let p = y/vu and 1 = deg(vu) > 1. Because
of p € Q = Lex(G), also upv would be in Lex(G). We have vup = p't!. By
Theorem 14, deg(upv) = deg(vup) =i+ 1 > 2 and therefore upv ¢ Q, which
is a contradiction.

3. Assume Q = Lin(G) for some contextual grammar G = [X, A, C, ¢] (with
or without choice). There must be words u,v,w € L* with uv # € and [u,V] €
d(w). Let n = [uwv| and a,b € X with a # b. Then a™b™wa™b™uwv € Q,
but a™MwabMuwy =in a™bMuwva™bMuwv = (a"b™uwv)? ¢ Q, contra-
dicting Lin(G) = Q. O

Theorem 28 Per is not a contextual language of any kind.

Primitive words and roots of words 17

Proof. Assume Per = L, (G) or Per = Li(G) for some contextual grammar
G = [X,A,C,¢] (with or without choice). Let m be a fixed number with
m > max{|p|:p € AVIu(lp,ul € CV[u,p] € C)}. Because a™b™a™b™ € Per
we must have q € Per such that ¢ =¢ a™db™a™b™ or q =in a™b™a™b™.

In the first case, ¢ = a'b™a™b’ with i < mV j < m must follow. But then
q ¢ Per. In the second case, ¢ = a'bla*b! withi < mVj < mVk < mVl<m
must follow. But then qq =in a™b™a™b™a'b)akb! ¢ Per whereas qq € Per.
Therefore Per # Lex(G) and Per # Lin(G).]

4 Primitivity and complexity

To investigate the computational complexity of Q and that of roots of lan-
guages on the one hand is interesting for itself, on the other hand - because
Q = V/Z* - there was some speculation to get hints for solving the problem of
context-freeness of Q. First, let us repeat some basic notions from complexity
theory.

If M is a deterministic Turing machine, then t, is the time complexity
of M, defined as follows. If p € X* where X is the input alphabet of M,
and M on input p reaches a final state (we also say M halts on p), then
taq(p) is the number of computation steps required by M to halt. If M does
not halt on p, then ty(p) is undefined. For natural numbers n, taq(n) =ps
max{ty(p):p € Z*A [p| =n} if M halts on each word of length n. If t is a
function over the natural numbers, then TIME(t) denotes the class of all sets
which are accepted by multitape deterministic Turing machines whose time
complexity is bounded from above by t. Restricting to one-tape machines, the
time complexity class is denoted by 1-TIME(t).

For simplicity, let us write TIME(n?) instead of the more exact notation
TIME(f), where f(n) = n?.

Theorem 29 (Horvath and Kudlek [12]) Q € 1-TIME(n?).

The proof which will be omitted is based on Corollary 9 and the linear
speed-up of time complexity. The latter means that 1-TIME(t’) C 1-TIME(t)
if t’ € O(t) and t(n) > n? for all n.

The time bound n? is optimal for accepting Q (or Per) by one-tape Turing
machines, which is shown by the next theorem.

Theorem 30 ([17]) For each one-tape Turing machine M deciding Q, ta €
Q(n?) must hold. The latter means:
JecInglc > 0ANg € NAVYR(N > g — tyy(n) > c-n?)).

18 G. Lischke

The proof which will be omitted also, uses the for complexity theorists well-
known method of counting the crossing sequences.

Now we turn to the relationship between the complexity of a language and
that of its root. It turns out that there is no general relation, even more, there
can be an arbitrary large gap between the complexity of a language and that
of its root.

Theorem 31 ([17, 16]) Let t and f be arbitrary total functions over IN such
that t € w(n) is monotone nondecreasing and f is monotone nondecreasing,

unbounded, and time constructible. Then there exists a language L such that
L € I-TIME(O(t)) but VL ¢ TIME(f).

Instead of the proof which is a little bit complicated we only explain the
notions occuring in the theorem. t € w(n) means lim ﬁ = 0. A time
n—oo

constructible function is a function f for which there is a Turing machine
halting in exactly f(n) steps on every input of length n for each n € IN. One
can show that the most common functions have these properties. Finally,
1-TIME(O(t)) = J1-TIME(t’) : 3c3np(c > 0Ang € NAVn(n > ng —
t'(n) <c-t(n))k

Let us still remark, that from Theorem 31 we can deduce that there exist
regular languages the roots of which are not even context-sensitive, see [15, 16].

5 Powers of languages

In arithmetics powers in some sense are counterparts to roots. Also for formal
languages we can define powers, and also here we shall establish some con-
nections to roots. For the first time, the power pow(L) of a language L was
defined by Calbrix and Nivat in [3] in connection with the study of properties
of period and prefix languages of w-languages. They also raised the problem
to characterize those regular languages whose powers are also regular, and to
decide the problem whether a given regular language has this property. Cachat
[2] gave a partial solution to this problem showing that for a regular language
L over a one-letter alphabet, it is decidable whether pow(L) is regular. Also
he suggested to consider as the set of exponents not only the whole set IN of
natural numbers but also an arbitrary regular set of natural numbers. This
suggestion was taken up in [13] with the next definition.

Definition 32 For a language L C X* and a natural number k € IN,
LM =p¢{p*:pell. ForHCNN,

Primitive words and roots of words 19

pown(L) =ps U L™ ={p*:p € LAk € H} is the H-power of L.
keH
Instead of pown(L) we also write L

instead of pown (L) = LI,

(M) and also it is usual to write pow(L)

Note the difference between L¥) and L¥. For instance, if L = {a, b} then
L@ ={aa,bb}, L% ={aa, ab,ba,bb} and L™ = a* U b*.

We say that a set H of natural numbers has some language theoretical
property if the corresponding one-symbol language {a® : k € H} = {a}(H)
which is isomorphic to H has this property.

It is easy to see that every regular power of a regular language is context-
sensitive. More generally, we have the following theorem.

Theorem 33 ([13]) If H C IN is context-sensitive and L € CS then also
pown(L) = LM s context-sensitive.

Proof. Let L C X* be context-sensitive and also H C IN be context-sensitive.
By the following algorithm, for a given word u € X* we can decide whether
ue LH),

1 if(luelATeH)V(u=eA0€ecH)

2 then return “u is in L(H)”

3 else compute p = /u and d = deg(u)

4 for i 1 to [4]

5 doifp'e LA¢eH

6 then return “u is in L(H)”
7 return “u is not in L(M”

| 4] in line 4 is $ if d is even, and 45 if d is odd. Each step of the algorithm

can be done by a linear bounded automaton or by a Turing machine where
the used space is bounded by a constant multiple of [u|. Crucial for this are
that |p| < [u], d < [u], and the decisions in line 1 and in line 5 can also be
done by a linear bounded automaton with this boundary, because L and H are
context-sensitive and therefore acceptable by linear bounded automata. O

The last theorem raises the question whether and when LH) is in a smaller
class of the Chomsky hierarchy, especially if L is regular. This essentially de-
pends on whether the root of L is finite or not. Therefore we will introduce
the notions FR for the class of all regular languages L such that /L is finite,
and IR =pf REG \ FR for the class of all regular languages L such that /L is
infinite.

20 G. Lischke

Theorem 34 ([13]) The class FR of reqular sets having a finite root is closed
under the power with finite sets.

Proof. Let L be a regular language with a finite root {p1,...,px} and € ¢ L,
and let Ly =pf LN p; for each i € {1,...,k}. Since L; C p; and L; € REG, L;
is isomorphic to a regular set M; of natural numbers, namely M; = deg(L;).
For each n € IN, My -n =pf {m-n:m € M;} is regular too. Therefore, for a

finite set H C IN, also |J Mj-n is regular which is isomorphic to LEH). Then
neH

k
LH) = U LEH) is regular, and VL(H) = /L is finite. If the empty word is in
i=1

the language then, because of powy(LU{e}) = pown(L)U{e} we get the same
result. O

If H is infinite then powy (L) may be nonregular and even non-context-free.
This is true even in the case of a one-letter alphabet where the root of each
nonempty set (except {€}) has exactly one element. This is illustrated by the
following example.

Let L={a’™"3:m e N} Then L € FR but

L™ ={gk: ke N\ {2™:m > 0]} ¢ CF.

Therefore it remains a problem to characterize those regular sets L with finite
roots where powy(L) is regular for any (maybe regular) set H.

Our next theorem shows that the powers of arbitrary (not necessarily reg-
ular) languages which have infinite roots are not regular, even more, they are
not even context-free, if the exponent set is an arbitrary set of natural numbers
containing at least one element which is greater than 2 and does not contain
the number 1, or some other properties are fulfilled.

Theorem 35 ([13]) For every language L which has an infinite root and for
every set H C IN containing at least one number greater than 2, powy(L) is
not context-free if one of the following conditions is true:

(a) 1¢H, (c) LNn+VL € REG,
(b) VL€ REG, (d) L€ REG and /LW \ L is infinite.

Proof. Let L C £* be a language such that v/L is infinite, and let H C IN with
H\ {0, 1,2} # 0. We define

pown(L) if (a) is true,

- pown(L) \ VL if (b) is true,
—Df pown(L)\ (LNVL) if (c)is true,
pown(L)\ L if (d) is true.

Primitive words and roots of words 21

If more than one of the conditions (a), (b), (c), (d) are true simultaneously,
then it doesn’t matter which of the appropriate lines in the definition of L’ we
choose. It is important that in each case, VL’ is infinite, there is no primitive
word in L’ and, if powy(L) was context-free then also L’ would be context-
free. But we show that the latter is not true.
Assume that L’ is context-free, and let n > 3 be a fixed number from H. By
the pumping lemma for context-free languages, there exists a natural number
m such that every z € L’ with |z| > m is of the form wiw,w3zwsws where:
Wawy # €, [wawswy| < m, and wiwiwswiws € L’ for all i € IN.
Now let z € L’ with deg(z) > m and |/z| > 2m which exists because
VL' is infinite. Let p =pf vz and k =ps deg(z). Then |z = k- |p| >
2km. By the pumping lemma, z = p* = wiwowszwsws where wowy # €,
[Wwowswyl < m < l%‘, and W]W%W3W1W5 € L’ for each i € IN. Especially,
for i = 0, x =pf wiwsws € L’ and therefore x is nonprimitive. Now let
2/ =pf wswiwowswy, 4 =pf Vz/, X' =pf wswiws, and s =p¢ V. By
Theorem 14 we have deg(z’) = deg(z) = k and x’ nonprimitive, therefore
lql = [p| > 2m and [s| < |x72’| It follows z/ = q¥ and x’ = q*'q’ for some word
q’ with \%I < |q’l < |q| (because of 0 < [wywy| < [wawzwy| < %) The words
z’ and x’ which are powers of q and s, respectively, have a common prefix
wswq of length |z| — [wowswy| > k- |q| — L;”. Because of |s| < ‘X—le < % -|q]
and k > 3, we have |q| + |s| < (% + gl < (k— %)Iq\, and therefore q = s
by Theorem 12. But then x’ = s*1q’ with 0 < |q’| < |s| which contradicts
Vx! =s. O
It remains open whether the H-power of a regular language is regular or
context-free or neither, if H = IN or H C {0,1,2}. First, we consider the
exceptions 0, 1, and 2 where we find out a different behavior.

Theorem 36 ([13]) (i) For each L € REG and H C {0,1}, L") € REG.
(ii) For each L € FR, L1?) € FR.
(iii) For each L € IR, L®) ¢ REG.

Proof. (i) is trivial, (ii) follows from Theorem 34. (iii) follows from Theorem
20. g

A set powy (L) = L(?) we call also the square of L. Because of the former
theorem, only the squares of regular languages with infinite roots remain for
interest. In contrast to the former results where the power of a regular set
either is regular again or not context-free, this is not true for the squares. It
is illustrated by the following examples:

22 G. Lischke

Let Ly =pf a - {b}* and L, =pr {a,b}*. Then both Ly and L, are regular
with infinite roots, but ng) € CF and L(zz) ¢ CF.

To characterize those regular languages whose squares are context-free we
introduce the following notion.

Definition 37 Letp € Q and w,w’ € £* such that p is not a suffiz of w and
w'w & pt. The sets wp*w’ and p*wp* are called inserted iterations
of the primitive word p. The words p, w, W' are called the modules of
wp*w’, and p, w are called the modules of p*wp*. A FIP-set is a finite
union L1U. .. ULy, of inserted iterations of primitive words. The sets Ly, ..., Ly
are also called the components of the FIP-set.

Using this notion we can give the following reformulation and simplification
of a theorem by Ito and Katsura from 1991 (see [14]) which has a rather
difficult proof.

Theorem 38 If L2 € CF and LD C QW@ then L must be a subset of a
FIP-set.

Using this theorem and the proof idea from Theorem 35 we can show the
following characterization.

Theorem 39 ([18]) For a regular language L, L) is context-free if and only
if L is a subset of a FIP-set.

Proof. We show here only one direction. Let L be regular and L2} € CF.
We consider three cases. Case a). L € FR. Let vL = {p1,...,pn}. Then L C
p{U---Up;yand pyU---Up) is a FIP-set.

Case b). L € IR and VL N Per is infinite. This means, L has infinitely many
periodic words with altogether infinitely many roots of unbounded lengths.
Then L? contains words z with |\/z| > 2m for arbitrary m and deg(z) > 4.
If L@ would be context-free then we would get the same contradiction as in
the proof of Theorem 35. Therefore case b) cannot occur.

Case c). L € IR and VLN Per is finite. Let L1 =pf LN Q, Ly =pf LN Q,
and L, ={p1,...,px;. Then L=L;UL,, LyNL, =0, and
L= ((pyU---Upg) \{p1,...,p}) NL is in FR. Therefore also L(zz) € FR
by Theorem 36, and ng) € CF because L2 = ng) U L(zz) € CF. We have

ng) C Q@ and by Theorem 38 follows that L; is a subset of a FIP-set. L, is
a subset of a FIP-set by case a), and so is L =L U L;. O

Primitive words and roots of words 23

Now it is easy to clarify the situation for the n-th power of a regular or

even context-free set for an arbitrary natural number n, where it is trivial
that L(© = {e}, LV = L.

Theorem 40 ([18]) For an arbitrary context-free language L and a natural
number n > 2, if L™ s context-free, then eithern >3 and L € FR orn =2
and LN Per € FR.

Proof. If n > 3 and /L is infinite then L™ ¢ CF by Theorem 35. It is
well-known that every context-free language over a single-letter alphabet is
regular. Using this fact it is easy to show that every context-free language
with finite root is regular too. Therefore, if /L is finite and L € CF then
L € FR, and L™ € FR by Theorem 34. If n = 2, L™ € CF and v/L is infinite,
then L N Per € FR must be true by the proof of Theorem 39. O

Now we consider the full power pow(L) = pown(L) for a regular language
L.

Theorem 41 (Fazekas [6]) For a regular language L, pow(L) is regular if and
only if pow(L)\ L € FR.

Proof. If pow(L)\ L € FR C REG then (pow(L)\ L)UL =pow(L) € REG
because the class of regular languages is closed under union. For the opposite
direction assume pow(L) € REG. Then also L’ =pf pow(L) \ L is regular
because the class of regular languages is closed under difference of two sets.
There are no primitive words in L’ and therefore, by Theorem 20, it must have
a finite root. O

6 Decidability questions

Questions about the decidability of several properties of sets or decidability
of problems belong to the most important questions in (theoretical) computer
science. Here we consider the decidability of properties of languages regarding
their roots and powers. We will cite the most important theorems in chrono-
logical order of their proofs but we omit the proofs because of their complexity.

Theorem 42 (Horvath and Ito [11]) For a context-free language L it is de-
cidable whether /L is finite.

Theorem 43 (Cachat [2]) For a regular or context-free language L over single-
letter alphabet it is decidable whether pow(L) is regular.

24 G. Lischke

Using Cachat’s algorithm, Horvath showed (but not yet published) the fol-
lowing.

Theorem 44 (Horvath) For a regular or context-free language L with finite
root it is decidable whether pow(L) is regular.

Remark. Since the context-free languages with finite root are exactly the
languages in FR (Remark in the proof of Theorem 40), it doesn’t matter
whether we speak of regularity or context-freeness in the last theorems.

Remarkable in this connection is also the only negative decidability result
by Bordihn.

Theorem 45 (Bordihn [1]) For a context-free language L with infinite root it
is not decidable whether pow(L) is context-free.

The problem of Calbrix and Nivat [3] and the open question of Cachat [2] for
languages over any finite alphabet and almost any sets of exponents, but not
for all, was answered in [13]. Especially the regularity of pow(L) for a regular
set L remained open, but it was conjectured that the latter is decidable. Using
these papers, finally Fazekas [6] could prove this conjecture.

Theorem 46 (Fazekas [6]) For a regular language L it is decidable whether
pow(L) is regular.

Finally, we look at the squares of regular and context-free languages.

Theorem 47 ([18]) For a regular language L it is decidable whether 112 is
regular or context-free or none of them.

Proof. Let L be a regular language generated by a right-linear grammar G =
[X,N,S,R] and let m = |[N| + 1. By Theorem 36, L(?) is regular if and only if
VL is finite. The latter is decidable by Theorem 42. If VL is infinite then by
Theorem 39, L2 is context-free if and only if L is a subset of a FIP-set. If L is
a subset of a FIP-set then we can show that there exists a FIP-set F such that
L C F and all modules of all components of F have lengths smaller than m.
Thus there are only finitely many words which can be modules and only finitely
many inserted iterations of primitive words having these modules. The latter
can be effectively computed. Let Ly,...,L, be all these inserted iterations of
primitive words. Then L@ is context-free if and only if L C L1 U---ULy
which is equivalent to LN (LjU---ULy,) = 0. The latter is decidable for
regular languages L and Lq,..., L. U

Primitive words and roots of words 25

P |

| |p or

Figure 2: Concatenation with overlap

7 Generalizations of periodicity and primitivity

If u is a periodic word then we have a strict prefix v of u such that u is ex-
hausted by concatenation of two or more copies of v, u =v™ n > 2 (see Figure
3). But it could be that such an exhaustion is not completely possible, there
may remain a strict prefix of v and the rest of v overhangs u, i.e. u = v/,
n > 2, v’ C v (see Figure 4). In such case we call u to be semi-periodic. A third
possibility is to exhaust u by concatenation of two or more copies of v where
several consecutive copies may overlap (see Figure 5). In this case we speak
about quasi-periodic words. If a nonempty word is not periodic, semi-periodic,
or quasi-periodic, respectively, we call it a primitive, strongly primitive, or hy-
perprimitive word, respectively. Of course, periodic and primitive words are
those we considered before in this paper. Finally, we can combine the possi-
bilities to get three further types which we will summarize in the forthcoming
Definition 49. Before doing so, we give a formal definition of concatenation
with overlaps. All these generalizations have been introduced and detailed
investigated in [15]. Most of the material in this section is taken from there.

Definition 48 Forp,q € X*, we define

P ®q =pf {wiwawz: wiwz # € A wiwz =p A wows = g},
p®0 =p¢le}, P! =prUw@p:wecp®} forkec N,
ARB=prp®q:peA AN qecB} forsets A/BCLI*.

The following example shows that in general, p ® ¢ is a set of words:
Let p = aabaa. Then p@p = p®? = {aabaaaabaa, aabaaabaa, aabaabaal.
We can illustrate this by Figure 2.

In the following definition we repeat our Definitions 1 and 2 and give the
generalizations suggested above.

26 G. Lischke

Figure 3: u is periodic, u € Per, v = root(u)

Definition 49
Per =p¢f {u:3dvin(vCuAn>2Au=v")} 1s the set of

periodic words.
Q =pf ZT\Per is the set of primitive words.

SPer =pf {u:IvInvCuANnN>2Auevt - Pr(v))} 15 the
set of semi-periodic words.
SQ =pf Xt\SPer is the set of strongly primitive words.

QPer =pf {u:IIn(vCuAn>2Aucvom)) is the set of
quasi-periodic words.
HQ =p¢f X"\ QPer is the set of hyperprimitive words.

PSPer =pf {u:IvInvCuAn>2Aue{ v Pr(v))} 15 the
set of pre-periodic words.
SSQ =pf LT\ PSPer is the set of super strongly primitive
words.

SQPer =pf {u:IIn(vCcuAn>2Aucv®.Pr(v))} is the
set of semi-quasi-periodic words.
SHQ =pf ZXT\SQPer is the set of strongly hyperprimitive
words.

QQPer =pf {u:IINVCuAN>2Aucv®"®Pr(v))} is the
set of quasi-quasi-periodic words.
HHQ =pf X"\ QQPer is the set of hyperhyperprimitive
words.

The different kinds of generalized periodicity are illustrated in the Figures
3-8.

Theorem 50 The sets from Definition 49 have the inclusion structure as
giwen in Figure 9. The lines in this figure denote strict inclusion from bottom
to top. Sets which are not connected by such a line are incomparable under
inclusion.

Primitive words and roots of words

27

|
v
|

Figure 6: u is pre-periodic, u € PSPer, v = ssroot(u)

I
f
(% v v (N
l

Figure 8: u is quasi-quasi-periodic, u € QQPer, v = hhroot(u)

28 G. Lischke

QQPer Q

SQPer SQ
PSPer
QPer HQ
SSQ
SPer SHQ

Per HHQ

Figure 9: Inclusion structure

Proof. Because of the duality between the sets, it is enough to prove the
left structure in Figure 9. Let u € SPer, it means, u = v*q where n > 2
and q C v. Thus v = qr for some r € Z* and u = (qr)"q € (qrq)®™ and
therefore u € QPer and SPer C QPer. The remaining inclusions are clear by
the definition. To show the strictness of the inclusions we can use the following
examples:

u; = abaababab, u; = aababaababaabaab, w3z = aabaaabaaba,
U4 = abaabab, us = ababa.

Then w; € QQPer\ (SQPer U PSPer), u, € SQPer\ QPer,

usz € QPer \ PSPer, uy € PSPer\ SQPer, and wus € SPer \ Per.

uz and uy also prove the incomparability.]

The six different kinds of periodicity resp. primitivity of words give rise to
define six types of roots where the first one is again that from Definition 6.

Definition 51 Letu € T,

The shortest word v such that there exists a natural number n with

u=v" s called the root of u, denoted by root(u).

The shortest word v such that there exists a natural number n with

u e v Pr(v) is called the strong root of u, denoted by sroot(u).

The shortest word v such that there exists a natural number n with

u € v s called the hyperroot of u, denoted by hroot(u).

The shortest word v such that there exists a natural number n with

u € {(vi®@Pr(v) is called the super strong root of u, denoted by ssroot(u).
The shortest word v such that there exists a natural number n with

Primitive words and roots of words 29

u € v®™. Pr(v) is called the strong hyperroot of u, denoted by shroot(u).
The shortest word v such that there exists a natural number n with

u € v¥ @ Pr(v) is called the hyperhyperroot of u, denoted by hhroot(u).
If L is a language, then root(L) =pf{root(p): p €L A p # €} is theroot
of L. Analogously sroot(L), hroot(L), ssroot(L), shroot(L) and hhroot(L)
are defined.

The six kinds of roots are illustrated in the Figures 3-8 (if v is the shortest
prefix with the appropriate property).

root, sroot, hroot, ssroot, shroot and hhroot are word functions over
It ie., functions from It to £*. Generally, for word functions we define the
following partial ordering, also denoted by C.
dom(f) for a function f denotes the domain of f.

Definition 52 For word functions f and g having the same domain,
fC g =pf Yulu € dom(f) — f(u) C g(u)).

Theorem 53 The partial ordering T for the functions from Definition 51
s given in Figure 10.

Proof. It follows from the definition, that for an arbitrary word u € £ and its
roots we have the prefix relationship as shown in the figure. It remains to show
the strict prefixes and incomparability. This can be done, for instance, by the
following examples. Let 1; = abaabaababaabaabab, u,; = abaabaabab,
and u3 = abaababaabaabaab. Then

hhroot(u;) = aba C shroot(u;) = abaab C ssroot(uy) = sroot(u;) =
abaabaab C hroot(u;) = abaabaabab C root(u;) = ug,
ssroot(uy) = aba C shroot(uy) = abaab C sroot(u;) = abaabaab C

hroot(uy) =uy, and
hroot(us) = abaab C sroot(uz) = abaababaaba, which proves our figure.
]

For most words u, some of the six roots coincide, and we have the question
how many roots of u are different, and whether there exist words u such that
all the six roots of u are different from each other. This last question was
raised in [15], and it was first assumed that they do not exist. But in 2010
Georg Lohmann discovered the first of such words.

Definition 54 Let k € {1,2,3,4,5,6}. A word uw € L' is called a k-root
word if
[{root(u), sroot(u), hroot(u), ssroot(u), shroot(u), hhroot(u)} = k.

30 G. Lischke

root

sroot hroot

ssroot shroot

hhroot

Figure 10: Partial ordering of the root-functions

A 6-root word is also called « Lohmann word.
u is called a strong k-root word if it is a k-root word and root(u) # u, it
means, it 1s a periodic k-root word.

The following theorems give answers to our questions. The proofs are easy
or will be published elsewhere.

Theorem 55 The lexicographic smallest k-root words are a fork =1,
aba for k=2, ababa for k=3, abaabaabab for k =4,
abaabaababaabaabab for k =5, and
ababaabababaababaababababaabab for k = 6.

The lexicographic smallest strong k-root words are aa fork =1,
abaababaab for k =2, (ab3abab3abab3)? for k =3, and
(ababaabababaabab)? for k = 4.

Theorem 56 There exist no strong k-root words for k =5 and k = 6.

Theorem 57 Letv and w be words such that e Cv T w, Wv IZ pb for some
pCwandl>T1 and kq,k2, k3 be natural numbers with 2 < k1 < ky < k3 <
2kqy. Then u = wMvwkzywkywsvwks =% 45 o Lohmann word.

Primitive words and roots of words 31

It is still open whether the sufficient condition in the last theorem is also a
necessary condition for Lohmann words.

Let us now examine whether the results from the former sections are also
true for generalized periodicity and primitivity. First, we give generalizations
of Corollary 9 and Theorem 13. For their proofs we refer to [15].

Lemrlnz‘i 58 w ¢ SQ if and only if w = pq = qr for some p,q,7 € L1 and
lql > 5.

Lemma 59 If aw ¢ SQ and wb & SQ, where w € £" and a,b € X, then
awb ¢ SQ.

Lemma 60 If aw ¢ HQ and wb € HQ, where w € £* and a,b € X, then
awb ¢ HQ.

Theorem 19 remains true for each of the sets from Definition 49. The Theo-
rems 21, 22, and 24 with their proofs are passed to each of the languages SQ,
HQ, SSQ, SHQ, and HHQ. Also the non-context-freeness of each of the sets
of generalized periodic words is simple as remarked after Theorem 21. The
context-freeness of the sets of generalized primitive words is open just as that
of Q.

Using Lemma 59 and Lemma 60 it can be shown that Theorem 27 is also
true for SQ and HQ. Also none of SSQ, SHQ, HHQ, and the sets of generalized
periodic words is a contextual language of any kind.

Theorem 30 and its proof remain true for each of the sets from Definition 49.
Theorem 29 is true for SQ where the proof uses Lemma 58. Whether the time
bound n? is also optimal for accepting one of the remaining sets remains open.
Theorem 31 and its proof remain true for each of the roots from Definition 51.

Acknowledgements

The author is grateful to Antal Ivanyi in Budapest for his suggestion to write
this paper, for Martin Hiinniger in Jena for his help with the figures, and to
Peter Leupold in Kassel and to the anonymous referee for some hints.

This work was supported by the project under the grant agreement no.
TAMOP 4.2.1/B-09/1/KMR-2010-0003 (E6tvos Lorand University, Budapest)
financed by the European Union and the European Social Fund.

32 G. Lischke
References
[1] H. Bordihn, Context-freeness of the power of context-free languages is

2]

undecidable, Theoret. Comput. Sci. 314, 3 (2004) 445-449. =24

T. Cachat, The power of one-letter rational languages, Proc. 5th Interna-
tional Conference Developments in Language Theory, Wien, July 16-21,
2001, Lecture Notes in Comput. Sci. 2295 (2002) 145-154. =18, 23, 24

H. Calbrix, M. Nivat, Prefix and period languages of rational w-
languages, Proc. Developments in Language Theory II, At the Crossroads
of Mathematics, Computer Science and Biology, Magdeburg, Germany,
July 17-21, 1995, World Scientific, 1996, pp. 341-349. =18, 24

P. Domosi, S. Horvath, M. Ito, On the connection between formal lan-
guages and primitive words, Proc. First Session on Scientific Commu-
nication, Univ. of Oradea, Oradea, Romania, June 1991, pp. 59-67. =
14

P. Démosi, M. Ito, S. Marcus, Marcus contextual languages consisting of
primitive words, Discrete Math. 308, 21 (2008) 4877—-4881. =16

S. Z. Fazekas, Powers of regular languages, Proc. Developments in Lan-
guage Theory, Stuttgart 2009, Lecture Notes in Comput. Sci. 5583 (2009)
221-227. =23,24

N. J. Fine, H. S. Wilf, Uniqueness theorems for periodic functions, Proc.
Amer. Math. Soc., 16, 1 (1965) 109-114. =10

M. Harrison, Introduction to Formal Language Theory, Addison-Wesley,
Reading, MA, 1978. =6, 12

J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979. = 6,
12

S. Horvath, Strong interchangeability and nonlinearity of primitive words,
Proc. Algebraic Methods in Language Processing, Univ. of Twente, En-
schede, the Netherlands, December 1995, pp. 173-178. =14

S. Horvéath, M. Ito, Decidable and undecidable problems of primitive
words, regular and context-free languages, J. UCS 5, 9 (1999) 532-541.
=23

Primitive words and roots of words 33

[12]

[13]

[21]

[22]

23]

[24]

S. Horvath, M. Kudlek, On classification and decidability problems of
primitive words, Pure Math. Appl. 6, 2-3 (1995) 171-189. =17

S. Horvath, P. Leupold, G. Lischke, Roots and powers of regular lan-
guages, Proc. 6th International Conference Developments in Language
Theory, Kyoto 2002, Lecture Notes in Comput. Sci. 2450 (2003) 220230
=18, 19, 20, 21, 24

M. Ito, M. Katsura, Context-free languages consisting of non-primitive
words, Internat. J. Comput. Math. 40, 34 (1991) 157-167. =22

M. Ito, G. Lischke, Generalized periodicity and primitivity for words,
Math. Log. Quart. 53, 1 (2007) 91-106. =15, 18, 25, 29, 31

M. Ito, G. Lischke, Corrigendum to “Generalized periodicity and primi-
tivity for words”, Math. Log. Quart. 53, 6 (2007) 642-643. =18

G. Lischke, The root of a language and its complexity, Proc. 5th Interna-
tional Conference Developments in Language Theory, Wien 2001, Lecture
Notes in Comput. Sci., 2295 (2002) 272-280 =17, 18

G. Lischke, Squares of regular languages, Math. Log. Quart., 51, 3 (2005)
299-304. =22, 23, 24

M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA,
1983. =9, 10

R. C. Lyndon, M. P. Schiitzenberger, On the equation aM = bNcP in a
free group, Michigan Math. J., 9, 4 (1962) 289-298. =19, 10, 11

G. Paun, Marcus Contextual Grammars, Kluwer, Dordrecht-Boston-
London, 1997. =15

H. Petersen, The ambiguity of primitive words, Proc. STACS 94, Lecture
Notes in Comput. Sci., 775 (1994) 679-690. = 14

G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol.
1, Springer, Berlin-Heidelberg, 1997. =6, 9, 12

H. J. Shyr, Free Monoids and Languages, Hon Min Book Company,
Taichung, 1991. =9

34

G. Lischke

[25]

H. J. Shyr, G. Thierrin, Codes and binary relations, Séminare d’Algébre,
Paul Dubreil, Paris 1975-1976, Lecture Notes in Math. 586 (1977) 180—
188. =9

H. J. Shyr, G. Thierrin, Disjunctive languages and codes, Proc. Interna-
tional Conference Mathematical Foundations of Computer Science, Poz-
nan 1977, Lecture Notes in Comput. Sci. 56 (1977) 171-176 =11

H. J. Shyr, S. S. Yu, Non-primitive words in the language pTq™, Soochow
J. Math. 20, 4 (1994) 535 546. = 12

S.S. Yu, Languages and Codes, Tsang Hai Book Publishing Co., Taichung,
2005. =9, 12

Received: December 16, 2010 * Revised: February 22, 2011

&

ActA UNIV. SAPIENTIAE, INFORMATICA, 3, 1 (2011) 35-47

Arc-preserving subsequences of
arc-annotated sequences

Vladimir Yu. POPOV

Department of Mathematics and Mechanics

Ural State University
620083 Ekaterinburg, RUSSTA
email: Vladimir.Popov@usu.ru

Abstract. Arc-annotated sequences are useful in representing the struc-
tural information of RNA and protein sequences. The longest arc-pre-
serving common subsequence problem has been introduced as a frame-
work for studying the similarity of arc-annotated sequences. In this pa-
per, we consider arc-annotated sequences with various arc structures.
We consider the longest arc preserving common subsequence problem.
In particular, we show that the decision version of the 1-FRAGMENT
LAPCS(CROSSING,CHAIN) and the decision version of the 0-DIAGONAL
LAPCS(CROSSING,CHAIN) are NP-complete for some fixed alphabet X
such that |X| = 2. Also we show that if |X| = 1, then the decision version
of the 1-FRAGMENT LAPCS(UNLIMITED, PLAIN) and the decision ver-
sion of the 0-DIAGONAL LAPCS(UNLIMITED, PLAIN) are NP-complete.

1 Introduction

Algorithms on sequences of symbols have been studied for a long time and
now form a fundamental part of computer science. One of the very important
problems in analysis of sequences is the longest common subsequence (LCS)
problem. The computational problem of finding the longest common subse-
quence of a set of k strings has been studied extensively over the last thirty
years (see [5, 19, 21] and references). This problem has many applications.

Computing Classification System 1998: F.1.3
Mathematics Subject Classification 2010: 68Q15

Key words and phrases:

complete

35

longest common subsequence, sequence annotation, NP-

36 V. Popov

When k = 2, the longest common subsequence is a measure of the similarity
of two strings and is thus useful in molecular biology, pattern recognition, and
text compression [26, 27, 34]. The version of LCS in which the number of
strings is unrestricted is also useful in text compression [27], and is a special
case of the multiple sequence alignment and consensus subsequence discovery
problem in molecular biology [11, 12, 32].

The k-unrestricted LCS problem is NP-complete [27]. If the number of
sequences is fixed at k with maximum length n, their longest common subse-
quence can be found in O(m*~") time, through an extension of the pairwise
algorithm [21]. Suppose |S1] = n and |S;| = m, the longest common subse-
quence of S7 and S, can be found in time O(nm) [8, 18, 35].

Sequence-level investigation has become essential in modern molecular bi-
ology. But to consider genetic molecules only as long sequences consisting of
the 4 basic constituents is too simple to determine the function and physical
structure of the molecules. Additional information about the sequences should
be added to the sequences. Early works with these additional information are
primary structure based, the sequence comparison is basically done on the
primary structure while trying to incorporate secondary structure data [2, 9].
This approach has the weakness that it does not treat a base pair as a whole
entity. Recently, an improved model was proposed [13, 14].

Arc-annotated sequences are useful in describing the secondary and tertiary
structures of RNA and protein sequences. See [13, 4, 16, 22, 23] for further
discussion and references. Structure comparison for RNA and for protein se-
quences has become a central computational problem bearing many challeng-
ing computer science questions. In this context, the longest arc preserving
common subsequence problem (LAPCS) recently has received considerable
attention [13, 14, 22, 23, 25]. It is a sound and meaningful mathematical
formalization of comparing the secondary structures of molecular sequences.
Studies for this problem have been undertaken in [5, 16, 1, 3, 6, 7, 10, 15, 20,
28, 29, 30, 33].

2 Preliminaries and problem definitions

Given two sequences S and T over some fixed alphabet X, the sequence T is a
subsequence of S if T can be obtained from S by deleting some letters from S.
Notice that the order of the remaining letters of S bases must be preserved.
The length of a sequence S is the number of letters in it and is denoted as [S|.
For simplicity, we use S[i] to denote the ith letter in sequence S, and S[i,j] to

Arc-preserving subsequences 37

denote the substring of S consisting of the ith letter through the jth letter.

Given two sequences S7 and S, (over some fixed alphabet X), the classic
longest common subsequence problem asks for a longest sequence T that is a
subsequence of both S7 and Sj.

An arc-annotated sequence of length n on a finite alphabet X is a couple
A = (S,P) where S is a sequence of length n on X and P is a set of pairs
(i1,12), with 1 < 1i; < iy < n. In this paper we will then call an element of S
a base. A pair (i1,12) € P represents an arc linking bases S[i1] and S[i,] of S.
The bases S[i1] and S[i;] are said to belong to the arc (i1,12) and are the only
bases that belong to this arc.

Given two annotated sequences S; and S, with arc sets Py and P, respec-
tively, a common subsequence T of S7 and S; induces a bijective mapping from
a subset of {1,...,|S1[} to subset of {1,...,]S2|}. The common subsequence T is
arc-preserving if the arcs induced by the mapping are preserved, i.e., for any
(i1,31) and (iz,j2) in the mapping,

(i1,12) € P1 & (j1,i2) € P2

The LAPCS problem is to find a longest common subsequence of S1 and
S, that is arc-preserving (with respect to the given arc sets Py and Py) [13].
LAPCS:
INSTANCE: An alphabet X, annotated sequences Si and S,, S1,S, € X,
with arc sets Py and P, respectively.
QUESTION: Find a longest common subsequence of S; and S, that is arc-
preserving.
The arc structure can be restricted. We consider the following four natural
restrictions on an arc set P which are first discussed in [13]:
1. no sharing of endpoints:
V(in,i2), (i3,14) € Piiy #ig,12 # 13, and 1) =13 & 12 = 4.
2. no crossing:
V(ir,12), (i3,14) € P, iy € [i3,14] & 12 € [i3,14].
3. no nesting:
V(i i2), (i3,14) € P < i3 & 12 < 3.
4. no arcs:
P=0.
These restrictions are used progressively and inclusively to produce five
distinct levels of permitted arc structures for LAPCS:
— UNLIMITED — no restrictions;
— CROSSING — restriction 1;
— NESTED — restrictions 1 and 2;

38 V. Popov

— CHAIN — restrictions 1, 2 and 3;

— PLAIN — restriction 4.

The problem LAPCS is varied by these different levels of restrictions as
LAPCS(x,y) which is problem LAPCS with S; having restriction level x and
S, having restriction level y. Without loss of generality, we always assume that
x is the same level or higher than y.

We give the definitions of two special cases of the LAPCS problem, which
were first studied in [25]. The special cases are motivated from biological
applications [17, 24].

THE c-FRAGMENT LAPCS PROBLEM (c > 1):

INSTANCE: An alphabet £, annotated sequences S7 and Sy, S1,S; € X*, with
arc sets P71 and P, respectively, where S1 and S, are divided into fragments of
lengths exactly ¢ (the last fragment can have a length less than c).

QUESTION: Find a longest common subsequence of S1 and S; that is arc-
preserving. The allowed matches are those between fragments at the same
location.

The c-DIAGONAL LAPCS problem, (¢ > 0), is an extension of the c-
FRAGMENT LAPCS problem, where base S»[i] is allowed only to match bases
in the range S1[i —c¢,1i+ cl.

The ¢-DIAGONAL LAPCS and c-FRAGMENT LAPCS problems are relevant
in the comparison of conserved RNA sequences where we already have a rough
idea about the correspondence between bases in the two sequences.

3 Previous results

It is shown in [25] that the 1-FRAGMENT LAPCS(CROSSING, CROSSING) and
0-DIAGONAL LAPCS(CROSSING, CROSSING) are solvable in time O(n). An
overview on known NP-completeness results for c-DIAGONAL LAPCS and
c-FRAGMENT LAPCS is given in Figure 1.

unlimited | crossing nested chain | plain
unlimited | NP-h [25] | NP-h [25] | NP-h [25] ? ?
crossing — NP-h [25] | NP-h [25] ? ?
nested — — NP-h [25] ? ?

Figure 1: NP-completeness results for c-DIAGONAL LAPCS (with ¢ > 1) and
c-FRAGMENT LAPCS (with ¢ > 2)

Arc-preserving subsequences 39

4 The c-FRAGMENT LAPCS(UNLIMITED,PLAIN) and the
c-DIAGONAL LAPCS(UNLIMITED,PLAIN) problem

Let us consider the decision version of the c-FRAGMENT LAPCS problem.

INSTANCE: An alphabet X, a positive integer k, annotated sequences Sj
and Sy, $71,S, € X*, with arc sets Py and P, respectively, where S; and S»
are divided into fragments of lengths exactly c (the last fragment can have a
length less than c).

QUESTION: Is there a common subsequence T of S; and S, that is arc-
preserving, |T| > k? (The allowed matches are those between fragments at the
same location).

Similarly, we can define the decision version of the c-DIAGONAL LAPCS
problem.

Theorem 1 If |£| =1, then 1-FRAGMENT LAPCS(UNLIMITED, PLAIN) and
0-DIAGONAL LAPCS(UNLIMITED, PLAIN) are NP-complete.

Proof. It is easy to see that 1-FRAGMENT LAPCS(UNLIMITED, PLAIN) =
0-DIAGONAL LAPCS(UNLIMITED, PLAIN).

Let G = (V,E) be an undirected graph, and let I C V. We say that the set
I is independent if whenever 1i,j € I then there is no edge between 1 and j. We
make use of the following problem:

INDEPENDENT SET (IS): INSTANCE: A graph G = (V,E), a positive integer
k.

QUESTION: Is there an independent set I, I C V, with [I|] > k?

IS is NP-complete (see [31]).

Let us suppose that £ = {a}. We will show that IS can be polynomially
reduced to problem 1-FRAGMENT LAPCS(UNLIMITED, PLAIN).

Let (G =(V,E),V ={1,2,...,n}, k) be an instance of IS. Now we transform
an instance of the IS problem to an instance of the 1-FRAGMENT LAPCS(UN-
LIMITED, PLAIN) problem as follows.

o S] = Sz =a™

e Py =E P,=0.

® ((S1,P1),(S2,P2), k).

First suppose that the graph G has an independent set I of size k. By
definition of independent set, (i,j) € E for each 1,j € 1. For a given subset I,
let

M ={(i,i):1el}.

Since I is an independent set, if (1,j) € E = Py then either (i,1) ¢ M or

40 V. Popov

(j,j) € M. This preserves arcs since P, is empty. Clearly, Sq1[i] = S[i] for
each i € I, and the allowed matches are those between fragments at the same
location. Therefore, there is a common subsequence T of S; and S, that is
arc-preserving, |T| = k, and the allowed matches are those between fragments
at the same location.

Now suppose that there is a common subsequence T of S; and S, that is
arc-preserving, |T| = k, and the allowed matches are those between fragments
at the same location. In this case there is a valid mapping M, with |[M| = k.
Since ¢ = 1, it is easy to see that if (1,j) € M then i =j. Let

I={i:(i1i) € M}.

Clearly,
Il = IM| =k.

Let i; and i, be any two distinct members of I. Then let (i1,j1), (i2,j2) € M.
Since

1 =jn2=j21 #12
it is easy to see that jj # j;. Since P, is empty, (j1,j2) € P2, so (i1,12) ¢ P;.
Since P; = E, the set I of vertices is a size k independent set of G. O

5 The c-FRAGMENT LAPCS(CROSSING,CHAIN) and the
c-DIAGONAL LAPCS(CROSSING,CHAIN) problem

Theorem 2 If |X| = 2, then 1-FRAGMENT LAPCS(CROSSING,CHAIN) and
0-DIAGONAL LAPCS(CROSSING,CHAIN) are NP-complete.

Proof. It is easy to see that 1-FRAGMENT LAPCS(CROSSING, CHAIN) =
0-DIAGONAL LAPCS(CROSSING, CHAIN).

Let us suppose that X = {a,b}. We will show that IS can be polynomially
reduced to problem 1-FRAGMENT LAPCS(CROSSING, CHAIN).

Let (G = (V,E),V = {1,2,...,n},k) be an instance of IS. Note that IS
remains NP-complete when restricted to connected graphs with no loops and
multiple edges. Let G = (V, E) be such a graph. Now we transform an instance
of the IS problem to an instance of the 1-FRAGMENT LAPCS(CROSSING,
CHAIN) problem as follows.

Arc-preserving subsequences 41

There are two cases to consider.

CaseI.k>n

° S] = Sz =a

(] P] = Pz = @

e ((S1,P1),(S2,P2),k)

Clearly, if I is an independent set, then I C V and |I| < |V| = n. Therefore,
there is no an independent set I, with |I| > k.

Sincek >nandn € {1,2,...},itis easy tosee that k > 1. Since S =S, =a
and P; = P, = 0, T = a is the longest arc-preserving common subsequence.
Therefore, there is no an arc-preserving common subsequence T such that

IT| > k.
CaseII. k<n

eSS =S5,=(ba™)"

e Let « < 3. Then

(,p)ePi & EFie{],2,...,n}Fe{1,2,...,n}
(i,j) e EAax={1—1)n+2)+j+TIA
AB=0G—-1(n+2)+1i+1)V
VEie{1,2,....nfla=1—1)n+2)+TAB =1i(n+2))],

(x,B)ePr&3ie(l,2,...,n)
(a={A—-1)N+2)+1TAB=1i(n+2)).

® ((S1,P1),(S2,P2), k(n +2))
First suppose that G has an independent set I of size k. By definition of
independent set, (1,j) € E for each i,j € I. For a given subset I, let

le{1,2,... . n+ 2}

Let (j,j) € M, and there exist 1 such that j = (n+2)(i—1)+1. By definition
of M,

(M+2)A—D+T,n+2)l—-1N+1)eMs
S (n+2)i,(n+2)i) e M.

42 V. Popov

By definition of Py, (n+2)(i—1)+ 1,(n+ 2)i) € Py where 1l = 1,2. Let
(j,j) € M, and there exist i such that j = (n + 2)i. By definition of M,

(M+2)i,(n+2)i)eM &

S(M+2)A—D+T,(n+2)i-1)+1) e M.
By definition of Py,

(M+2)A—1+1,(n+2)i) e Py
where 1 =1,2. Let (j,j) € M, and
j=Mm4+2)i—-1)+1

where 1 <1< n+ 2. By definition of M, 1 € I. Since I is an independent set,
if (i,1—1) € E then1—1 ¢ I. Since

T<l<n+2
by definition of Py, either
(M+2) -1+, (n+2)(1—-2)+14+1) € Py

or

(M+2)A—-1)+1t) ¢ Py

for each t. Since
T<l<n+2,

by definition of Py,
(M+2)i—1+1Lt) ¢ P2

for each t. If
(M+2)A-1D) 4+, m+2)(1-2)+i+1) € Py,
then in view of L —1 ¢ 1,
(M+2)1-2)+i+T,(n+2)(1-2)+i+1) ¢ M.
This preserves arcs. Since |I| = k, it is easy to see that

IM| = k(n + 2).

Arc-preserving subsequences 43

Clearly, S1[i] = S»[i] for each i € I, and the allowed matches are those between
fragments at the same location. Therefore, there is a common subsequence T
of S; and S, that is arc-preserving, |T| = k(n + 2), and the allowed matches
are those between fragments at the same location.

Now suppose that there is a common subsequence T of S7 and S, that is
arc-preserving, |T| = k, and the allowed matches are those between fragments
at the same location. In this case there is a valid mapping M, with |[M| = k.
Since ¢ = 1, it is easy to see that if (1,j) € M theni=j. Let I ={i: (i,1) € M}
Clearly, |I] = IM| = k. Let i; and i, be any two distinct members of I. Then
let (i1,j1), (i2,j2) € M. Since i1 = j1,i2 = j2,11 # 1y, it is easy to see that
j1 # jo2. Since P, is empty, (j1,j2) € P2, so (i1,12) € Py. Since Py = E, the set
I of vertices is a size k independent set of G. U

6 Conclusions

In this paper, we considered two special cases of the LAPCS problem, which
were first studied in [25]. We have shown that the decision version of the
1-FRAGMENT LAPCS(CROSSING,CHAIN) and the decision version of the 0-
DIAGONAL LAPCS(CROSSING,CHAIN) are NP-complete for some fixed alpha-
bet X such that |X| = 2. Also we have shown that if || = 1, then the decision
version of the 1-FRAGMENT LAPCS(UNLIMITED, PLAIN) and the decision ver-
sion of the 0-DIAGONAL LAPCS(UNLIMITED, PLAIN) are NP-complete. This
results answers some open questions in [16] (see Table 4.2. in [16]).

Acknowledgements

The work was partially supported by Grant of President of the Russian Fed-
eration MD-1687.2008.9 and Analytical Departmental Program “Developing
the scientific potential of high school” 2.1.1/1775.

References

[1] J. Alber, J. Gramm, J. Guo, R. Niedermeier, Computing of two sequences
with nested arc notations, Theoret. Comput. Sci. 312, 2-3 (2004) 337-358.
=36

44

V. Popov

2]

V. Bafna, S. Muthukrishnan, R. Ravi, Comparing similarity between
RNA strings, Proc. 6th Annual Symposium on Combinatorial Pattern
Matching, Lecture Notes in Comput. Sci. 937 (1995) 1-16. = 36

G. Blin, H. Touzet, How to compare arc-annotated sequences: The align-
ment hierarchy, Proc. 13th International Symposium on String Processing
and Information Retrieval (SPIRE), Lecture Notes in Comput. Sci. 4209
(2006) 291-303. =36

G. Blin, M. Crochemore, S. Vialette, Algorithmic aspects of arc-annotated
sequences, in: Algorithms in Computational Molecular Biology: Tech-
niques, Approaches and Applications (ed. M. Elloumi, A. Y. Zomaya),
John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 171-183. =36

H. L. Bodlaender, R. G. Downey, M. R. Fellows, H. T. Wareham, The
parameterized complexity of sequence alignment and consensus, Theoret.
Comput. Sci. 147, 1-2 (1995) 31-54. =35, 36

H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, H. T.
Wareham, Parameterized complexity analysis in computational biology,
Computer Applications in the Biosciences 11, 1 (1995) 49-57. = 36

J. Chen, X. Huang, I. A. Kanj, G. Xia, W-hardness under linear FPT-
reductions: structural properties and further applications, Proc. of CO-
COON, Kunming, China, 2005, pp. 975-984. =36

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, Third edition, The MIT Press, Cambridge, Massachusetts,
2009. =36

F. Corpet, B. Michot, Rnalign program: alignment of RNA sequences
using both primary and secondary structures, Computer Applications in
the Biosciences 10, 4 (1994) 389-399. = 36

P. Damaschke, A remark on the subsequence problem for arc-annotated
sequences with pairwise nested arcs, Inform. Process. Lett. 100, 2 (2006)
64-68. =36

W. H. E. Day, F. R. McMorris, Discovering consensus molecular se-
quences, in: Information and Classification — Concepts, Methods, and
Applications (ed. O. Opitz, B. Lausen, R. Klar), Springer-Verlag, Berlin,
1993, pp. 393-402. = 36

Arc-preserving subsequences 45

[12]

[13]

[14]

[15]

[16]

[20]

[21]

W. H. E. Day, F. R. McMorris, The computation of consensus patterns
in DNA sequences, Math. Comput. Modelling 17, 10 (1993) 49-52. =36

P. A. Evans, Algorithms and Complexity for Annotated Sequence Analysis,
PhD Thesis, University of Victoria, Victoria, 1999. =36, 37

P. A. Evans, Finding common subsequences with arcs and pseudo-
knots, Proc. 10th Annual Symposium on Combinatorial Pattern Matching
(CPM’99), Lecture Notes in Comput. Sci. 1645 (1999) 270-280. = 36

J. Gramm, J. Guo, R. Niedermeier, Pattern matching for arc-annotated
sequences, ACM Trans. Algorithms 2, 1 (2006) 44-65. = 36

J. Guo, Ezact algorithms for the longest common subsequence problem
for arc-annotated sequences, Master Thesis, Eberhard-Karls-Universitit,
Tiibingen, 2002. = 36, 43

D. Gusfield, Algorithm on Strings, Trees, and Sequences: Computer
Science and Computational Biology, Cambridge University Press, Cam-
bridge, 1997. = 38

D. S. Hirschberg, The Longest Common Subsequence Problem, PhD The-
sis, Princeton University, Princeton, 1975. =36

D. S. Hirschberg, Recent results on the complexity of common subse-
quence problems, in: Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison (ed. D. Sankoff, J.
B. Kruskal), Addison-Wesley Publishing Company, Reading/Menlo Park,
NY, 1983, pp. 325-330. =35

C. S. Iliopouéos, M. S. Rahman, Algorithms for computing variants of
the longest common subsequence problem, Theoret. Comput. Sci. 395,
2-3 (2008) 255-267. =36

R. W. Irving, C. B. Fraser, Two algorithms for the longest common
subsequence of three (or more) strings, Proc. Third Annual Symposium
on Combinatorial Pattern Matching, Lecture Notes in Comput. Sci. 644
(1992) 214-229. =35, 36

T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subsequence
problem for arc-annotated sequences, Proc. 11th Annual Symposium on
Combinatorial Pattern Matching (CPM 2000), Lecture Notes in Comput.
Sci. 1848 (2000) 154-165. =36

46

V. Popov

23]

[24]

T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subsequence
problem for arc-annotated sequences, J. Discrete Algorithms 2, 2 (2004)
257-270. =36

M. Li, B. Ma, L. Wang, Near optimal multiple alignment within a band in
polynomial time, Proc. Thirty-second Annual ACM Symposium on The-
ory of Computing (STOC’00), Portland, OR, 2000, pp. 425-434. = 38

G. H. Lin, Z. Z. Chen, T. Jiang, J. J. Wen, The longest common subse-
quence problem for sequences with nested arc annotations, Proceedings
of the 28th International Colloguium on Automata, Languages and Pro-
gramming, Lecture Notes in Comput. Sci. 2076 (2001) 444-455. = 36,
38, 43

S. Y. Lu, K. S. Fu, A sentence-to-sentence clustering procedure for pattern
analysis, IEEE Transactions on Systems, Man, and Cybernetics 8, 5
(1978) 381-389. =36

D. Maier, The complexity of some problems on subsequences and super-
sequences, J. ACM 25, 2 (1978) 322-336. = 36

D. Marx, I. Schlotter, Parameterized complexity of the arc-preserving
subsequence problem, Proc. 36th International Workshop on Graph The-
oretic Concepts in Computer Science (WG 2010), Lecture Notes in Com-
put. Sci. 6410 (2010) 244-255. = 36

A. Ouangraoua, C. Chauve, V. Guignon, S. Hamel, New algorithms
for aligning nested arc-annotated sequences, Laboratoire Bordelais de
Recherche en Informatique, Research Report RR-1443-08, Université Bor-
deaux, 2008. = 36

A. Ouangraoua, V. Guignon, S. Hamel, C. Chauve, A new algorithm for
aligning nested arc-annotated sequences under arbitrary weight schemes,
Theoret. Comput. Sci. 412, 8-10 (2011) 753-764. =36

C. H. Papadimitriou, Computational complexity, Addison-Wesley Pub-
lishing Company, Reading/Menlo Park, NY, 1994. =39

P. A. Pevzner, Multiple alignment, communication cost, and graph
matching, STAM J. Appl. Math. 52, 6 (1992) 1763-1779. = 36

Arc-preserving subsequences 47

[33] K. Pietrzak, On the parameterized complexity of the fixed alphabet short-
est common supersequence and longest common subsequence problems,

J. Comput. System Sci. 67, 4 (2003) 757-771. = 36

[34] D. Sankoff, Matching comparisons under deletion/insertion constraints,
Proc. Natl. Acad. Sci. USA 69, 1 (1972) 4-6. =36

[35] R. A. Wagner, M. J. Fischer, The string-to-string correction problem, .J.
ACM 21,1 (1974) 168-173. =36

Received: November 17, 2010 Revised: March 11, 2011

ActA UNIV. SAPIENTIAE, INFORMATICA, 3, 1 (2011) 76-98

&

Implementing a non-strict purely
functional language in JavaScript

Léaszl6 DOMOSZLAI

Eo6tvos Lorand University, Budapest, Hungary
Radboud University Nijmegen, the Netherlands
email: dlacko@gmail.com

Eddy BRUEL Jan Martin JANSEN
Vrije Universiteit Amsterdam Faculty of Military Sciences
the Netherlands Netherlands Defence Academy

email: ejpbruel@gmail . com Den Helder, the Netherlands

email: jm. jansen.04@nlda.nl

Abstract. This paper describes an implementation of a non-strict purely
functional language in JavaScript. This particular implementation is based
on the translation of a high-level functional language such as Haskell or
Clean into JavaScript via the intermediate functional language Sapl. The
resulting code relies on the use of an evaluator function to emulate the
non-strict semantics of these languages. The speed of execution is com-
petitive with that of the original Sapl interpreter itself and better than
that of other existing interpreters.

1 Introduction

Client-side processing for web applications has become an important research
subject. Non-strict purely functional languages such as Haskell and Clean have
many interesting properties, but their use in client-side processing has been
limited so far. This is at least partly due to the lack of browser support for
these languages. Therefore, the availability of an implementation for non-strict

Computing Classification System 1998: D.1.1

Mathematics Subject Classification 2010: 68N18

Key words and phrases: web programming, functional programming, Sapl, JavaScript,
Clean

76

Implementing a non-strict purely functional language in JavaScript 77

purely functional languages in the browser has the potential to significantly
improve the applicability of these languages in this area.

Several implementations of non-strict purely functional languages in the
browser already exist. However, these implementations are either based on
the use of a Java Applet (e.g. for Sapl, a client-side platform for Clean [8,
14]) or a dedicated plug-in (e.g. for HaskellScript [11] a Haskell-like functional
language). Both these solutions require the installation of a plug-in, which
is often infeasible in environments where the user has no control over the
configuration of his/her system.

1.1 Why switch to JavaScript?

As an alternative solution, one might consider the use of JavaScript. A
JavaScript interpreter is shipped with every major browser, so that the in-
stallation of a plug-in would no longer be required. Although traditionally
perceived as being slower than languages such as Java and C, the introduction
of JIT compilers for JavaScript has changed this picture significantly. Modern
implementations of JavaScript, such as the V8 engine that is shipped with the
Google Chrome browser, offer performance that sometimes rivals that of Java.

As an additional advantage, browsers that support JavaScript usually also
expose their HTML DOM through a JavaScript API. This allows for the as-
sociation of JavaScript functions to HTML elements through the use of event
listeners, and the use of JavaScript functions to manipulate these same ele-
ments.

This notwithstanding, the use of multiple formalisms complicates the devel-
opment of Internet applications considerably, due to the close collaboration
required between the client and server parts of most web applications.

1.2 Results at a glance

We implemented a compiler that translates Sapl to JavaScript expressions.
Its implementation is based on the representation of unevaluated expressions
(thunks) as JavaScript arrays, and the just-in-time evaluation of these thunks
by a dedicated evaluation function (different form the eval function provided
by JavaScript itself).

Our final results show that it is indeed possible to realize this translation
scheme in such a way that the resulting code runs at a speed competitive
with that of the original Sapl interpreter itself. Summarizing, we obtained the
following results:

78 L. Domoszlai, E. Bruél, J. M. Jansen

e We realized an implementation of the non-strict purely functional pro-
gramming language Clean in the browser, via the intermediate language
Sapl, that does not require the installation of a plug-in.

e The performance of this implementation is competitive with that of the
original Sapl interpreter and faster than that of many other interpreters
for non-strict purely functional languages.

e The underlying translation scheme is straightforward, constituting a one-
to-one mapping of Sapl onto JavaScript functions and expressions.

e The implementation of the compiler is based on the representation of
unevaluated expressions as JavaScript arrays and the just-in-time evalu-
ation of these thunks by a dedicated evaluation function.

e The generated code is compatible with JavaScript in the sense that the
namespace for functions is shared with that of JavaScript. This allows
generated code to interact with JavaScript libraries.

1.3 Organization of the paper

The structure of the remainder of this paper is as follows: we start with intro-
ducing Sapl, the intermediate language we intend to implement in JavaScript
in Section 2. The translation scheme underlying this implementation is pre-
sented in Section 3. We present the translation scheme used by our compiler
in two steps. In step one, we describe a straightforward translation of Sapl to
JavaScript expressions. In step two, we add several optimizations to the trans-
lation scheme described in step one. Section 4 presents a number of benchmark
tests for the implementation. A number of potential applications is presented
in Section 5. Section 6 compares our approach with that of others. Finally, we
end with our conclusions and a summary of planned future work in Section 7.

2 The Sapl programming language and interpreter

Sapl stands for Simple Application Programming Language. The original ver-
sion of Sapl provided no special constructs for algebraic data types. Instead,
they are represented as ordinary functions. Details on this encoding and its
consequences can be found in [8]. Later a Clean like type definition style was
adopted for readability and to allow for the generation of more efficient code
(as will become apparent in Section 3).

The syntax of the language is the following:

Implementing a non-strict purely functional language in JavaScript 79

(program) ::= {(function) | (type)}+

(type) == i (ident) =" (ident) (ident)* {’|” (ident) (ident)*}*
(function) ::= (ident) (ident)* =’ (let-expr)

(let-expr) ::= [let’ (let-defs) ’in’] (main-expr)

(let-defs) ::= (ident) =’ (application) {’," (ident) =" {application)}*
(main-expr) ::= (select-expr) | (if-expr) | {application)

(select-expr) ::= ’select’ (factor) {’(’ {{lambda-expr) | (let-expr)}) }+
(if-expr) = "if” (factor) '’ (let-expr) ’)’ '(’ (let-expr) ')’
(lambda-expr) ::= "\’ (ident)+ =" (let-expr)
(application) ::= (factor) (factor)*
(factor) == (ident) | (literal) | ’(’ (application) ’)’

An identifier can be any identifier accepted by Clean, including operator
notations. For literals characters, strings, integer or floating-point numbers
and boolean values are accepted.

We illustrate the use of Sapl by giving a number of examples. We start with
the encoding of the list data type, together with the sum function.

:: List =Nil | Cons x xs
sum xxs = select xxs 0 (Ax xs = x + sum xs)

The select keyword is used to make a case analysis on the data type of
the variable xxs. The remaining arguments handle the different constructor
cases in the same order as they occur in the type definition (all cases must be
handled separately). Each case is a function that is applied to the arguments
of the corresponding constructor.

As a more complex example, consider the mappair function written in Clean,
which is based on the use of pattern matching:
mappair f Nil zs =Nil
mappair f (Cons x xs) Nil =DNil
mappair f (Cons x xs) (Cons y ys) =Cons (f x y) (mappair f xs ys)

This definition is transformed to the following Sapl function (using the above
definitions for Nil and Cons).

mappair f as zs
= select as Nil (Ax xs = select zs Nil (A\y ys =Cons (f x y) (mappair f xs ys)))

Sapl is used as an intermediate formalism for the interpretation of non-strict
purely functional programming languages such as Haskell and Clean. The Clean
compiler includes a Sapl back-end that generates Sapl code. Recently, the Clean
compiler has been extended to be able to compile Haskell programs as well [5].

80 L. Domoszlai, E. Bruél, J. M. Jansen

2.1 Some remarks on the definition of Sapl

Sapl is very similar to the core languages of Haskell and Clean. Therefore,
we choose not to give a full definition of its semantics. Rather, we only say
something about its main characteristics and give a few examples to illustrate
these.

The only keywords in Sapl are let, in, if and select. Only constant (non-
function) let expressions are allowed that may be mutually recursive (for
creating cyclic expressions). They may occur at the top level in a function
and at the top level in arguments of an if and select. A-expressions may
only occur as arguments to a select. If a Clean program contains nested A-
expressions, and you compile it to Sapl, they should be lifted to the top-level.

3 A JavaScript based implementation for Sapl

Section 1 motivated the choice for implementing a Sapl interpreter in the
browser using JavaScript. Our goal was to make the implementation as efficient
as possible.

Compared to Java, JavaScript provides several features that offer opportuni-
ties for a more efficient implementation. First of all, the fact that JavaScript is
a dynamic language allows both functions and function calls to be generated
at run-time, using the built-in functions eval and apply, respectively. Second,
the fact that JavaScript is a dynamically typed language allows the creation
of heterogeneous arrays. Therefore, rather than building an interpreter, we
have chosen to build a compiler/interpreter hybrid that exploits the features
mentioned above.

Besides these, the evaluation procedure is heavily based on the use of the
typeof operator and the runtime determination of the number of formal pa-
rameters of a function which is another example of the dynamic properties of
the JavaScript language.

For the following Sapl constructs we must describe how they are translated
to JavaScript:

e literals, such as booleans, integers, real numbers, and strings;
e identifiers, such as variable and function names;

e function definitions;

e constructor definitions;

e let constructs;

e applications;

Implementing a non-strict purely functional language in JavaScript 81

e select statements;
e if statements;
e built-in functions, such as add, eq, etc.

Literals Literals do not have to be transformed. They have the same repre-
sentation in Sapl and JavaScript.

Identifiers Identifiers in Sapl and JavaScript share the same namespace, there-
fore, they need not to be transformed either.

However, the absence of block scope in JavaScript can cause problems. The
scope of variables declared using the var keyword is hoisted to the entire
containing function. This affects the let construct and the A-expressions, but
can be easily avoided by postfixing the declared identifiers to be unique. In
this way, the original variable name can be restored if needed.

With this remark we will neglect these transformations in the examples of
this paper for the sake of readability.

Function definitions Due to JavaScript’s support for higher-order functions,
function definitions can be translated from Sapl to JavaScript in a straightfor-
ward manner:

T[f x1 ... xn = body] = function f(x1, ..., xn) { T[body] }

So Sapl functions are mapped one-to-one to JavaScript functions with the same
name and the same number of arguments.

Constructor definitions Constructor definitions in Sapl are translated to
arrays in JavaScript, in such a way that they can be used in a select con-
struct to select the right case. A Sapl type definition containing constructors
is translated as follows:

T[:: typename = ... | Ck xk0 ... xkn | ...]
= ... function Ck(xk0, ..., xkn) { return [k, ‘Ck’, xk0, ..., xkn]; } ...

where k is a positive integer, corresponding to the position of the construc-
tor in the original type definition. The name of the constructor, ‘Ck’, is put
into the result for printing purposes only. This representation of the construc-
tors together with the use of the select statement allows for a very efficient
JavaScript translation of the Sapl language.

Let constructs Let constructs are translated differently depending on whether
they are cyclic or not. Non-cyclic lets in Sapl can be translated to var decla-
rations in JavaScript, as follows:

82 L. Domoszlai, E. Bruél, J. M. Jansen

T[let x = e in b] = var x = T[e]; T[b]

Due to JavaScript’s support for closures, cyclic lets can be translated from
Sapl to JavaScript in a straightforward manner. The idea is to take any occur-
rences of x in e and replace them with:

function () { return x; }

This construction relies on the fact that the scope of a JavaScript closure is
the whole function itself. This means that after the declaration the call of this
closure will return a valid reference. In Section 3.1 we present an example to
illustrate this.

Applications Every Sapl expression is an application. Due to JavaScript’s
eager evaluation semantics, applications cannot be translated from Sapl to
JavaScript directly. Instead, unevaluated expressions (or thunks) in Sapl are
translated to arrays in JavaScript:

T[x0 x1 .. xn] = [T[x0], [T[x1], ..., T[xn]]]

Thus, a thunk is represented with an array of two elements. The first one
is the function involved, and the second one is an array of the arguments.
This second array is used for performance reasons. In this way one can take
advantage of the JavaScript apply () method and it is very straightforward
and fast to join such two arrays, which is necessary to do during evaluation.

select statements A select statement in Sapl is translated to a switch
statement in JavaScript, as follows:

T[select £ (\x0 ... x=n =b) ...]

var _tmp = Sapl.feval(T[f]);
switch(_tmp[0]) {
case 0: var x0 = _tmp[2], ..., xn = _tmp[n+2];
T[b];
break;

h

Evaluating the first argument of a select statement yields an array repre-
senting a constructor (see above). The first argument in this array represents
the position of the constructor in its type definition, and is used to select
the right case in the definition. The parameters of the A- expression for each
case are bound to the corresponding arguments of the constructor in the var
declaration (see also examples).

Implementing a non-strict purely functional language in JavaScript 83

if statements An if statement in Sapl is translated to an if statement in
JavaScript straightforwardly:

T[if p t £f] = if (Sapl.feval(T[p])){ T[t]; } else { T[f]; }

This translation works because booleans in Sapl and JavaScript have the same
representation.

Built-in functions Sapl defines several built-in functions for arithmetic and
logical operations. As an example, the add function is defined as follows:
function add(x, y) { return Sapl.feval(x) + Sapl.feval(y); }

Unlike user-defined functions, a built-in function such as add has strict evalu-
ation semantics. To guarantee that they are in normal form when the function

is called, the function Sapl.feval is applied to its arguments (see Section
3.2).

3.1 Examples
The following definitions in Sapl:

:: List = Nil | Cons x xs

ones = let os =Cons 1 os in os
facn=if (eqn 0) 1 (mult n (fac (subn 1)))
sum xxs = select xxs 0 (Ax xs = add x (sum xs))

are translated to the following definitions in JavaScript:

function Nil() { return [0, °Nil’]; }
function Cons(x, xs) { return [1, ’Cons’, x, xs]; }

function ones() { var os = Cons(1, function() { return os; }); return os; }

function fac(n) {
if (Sapl.feval(n) == 0) {
return 1;
} else {
} return [mult, [n, [fac, [[sub, [n, 1]]]]]];

84 L. Domoszlai, E. Bruél, J. M. Jansen

function sum(as) {
var _tmp = Sapl.feval(as);
switch (_tmp[0]) {
case 0: return 0;
case 1: var x = _tmp[2], xs = _tmp[3];
]

lxs])]];

return [add, [x, [sum, [xs]]]

}

The examples show that the translation is straightforward and preserves the
structure of the original definitions.

3.2 The feval function

To emulate Sapl’s non-strict evaluation semantics for function applications,
we represented unevaluated expressions (thunks) as arrays in JavaScript. Be-
cause JavaScript treats these arrays as primitive values, some way is needed to
explicitly reduce thunks to normal form when their value is required. This is
the purpose of the Sapl.feval function. It reduces expressions to weak head
normal form. Further evaluation of expressions is done by the printing rou-
tine. Sapl.feval performs a case analysis on an expression and undertakes
different actions based on its type:

Literals If the expression is a literal or a constructor, it is returned immedi-
ately. Literals and constructors are already in normal form.

Thunks If the expression is a thunk of the form [f, [xs]], it is transformed
into a function call f (xs) with the JavaScript apply function, and Sapl.feval
is applied recursively to the result (this is necessary because the result of a
function call may be another thunk).

Due to JavaScript’s reference semantics for arrays, thunks may become
shared between expressions over the course of evaluation. To prevent the same
thunk from being reduced twice, the result of the call is written back into the
array. If this result is a primitive value, the array is transformed into a boxed
value instead. Boxed values are represented as arrays of size one. Note that in
JavaScript, the size of an array can be altered in-place.

If the number of arguments in the thunk is smaller than the arity of the
function, it cannot be further reduced (is already in normal form), so it is
returned immediately. Conversely, if the number of arguments in the thunk is
larger than the arity of the function, a new thunk is constructed from the result
of the call and the remainder of the arguments, and Sapl.feval is applied
iteratively to the result.

Implementing a non-strict purely functional language in JavaScript 85

Boxed values If the expression is a boxed value of the form [x], the value
x is unboxed and returned immediately (only literals and constructors can be
boxed).

Curried applications If the expression is a curried application of the form
[[f, [xs]], [ysl],itistransformedinto [f, [xs ++ ys]], and Sapl.feval
is applied iteratively to the result.

More details on evaluation For the sake of deeper understanding we also
give the full source code of feval:

feval = function (expr) {
var y, f, xs;

while (1) {
if (typeof(expr) == "object") { // closure
if (expr.length == 1) return expr|[0]; // boxed value

else if (typeof(expr[0]) == "function") { // application -> make call
f = expr[0]; =xs = expr[l];

if (f.length == xs.length) { // most often occurring case
y = f.apply(null, xs); // turn chunk into call
expr[0] = y; // overwrite for sharing!
expr.length = 1; // adapt size

} else if (f.length < xs.length) { //less likely case
y = f.apply(null,xs.splice(0, f.length));

expr[0] = y; // slice of arguments
} else
return expr; // not enough arguments
} else if (typeof(expr[0])=="object") { // curried app -> uncurry
y = expr[0];
expr[0] = y[0);
expr[l] = y[1].concat(expr[1]);
} else
return expr; // constructor
} else if (typeof(expr) == "function") // function
expr = [expr, []];
else // literal

return expr;

3.3 Further optimizations

Above we described a straightforward compilation scheme from Sapl to
JavaScript, where unevaluated expressions (thunks) are translated to arrays.

86 L. Domoszlai, E. Bruél, J. M. Jansen

The Sapl.feval function is used to reduce thunks to normal form when their
value is required. For ordinary function calls, our measurements indicate that
the use of Sapl.feval is more than 10 times slower than doing the same call
directly. This constitutes a significant overhead. Fortunately, a simple compile
time analysis reveals many opportunities to eliminate unnecessary thunks in
favor of such direct calls. Thus, expressions of the form:

Sapl.feval([f, [x1, ..., xn])

are replaced by:
f(x1, ..., xn)

This substitution is only possible if f is a function with known arity at compile-
time, and the number of arguments in the thunk is equal to the arity of the
function. It can be performed wherever a call to Sapl.feval occurs:

e The first argument to a select or if;

e The arguments to a built-in function;

e Thunks that follow a return statement in JavaScript. These expressions
are always evaluated immediately after they are returned.

As an additional optimization, arithmetic operations are inlined wherever
they occur. With these optimizations added, the earlier definitions of sum and
fac are now translated to:

function fac(n) {
if (Sapl.feval(n) == 0) {
return 1;
} else {
return Sapl.feval(n) * fac(Sapl.feval(n) - 1);
}

}

function sum(xxs) {
var _tmp = Sapl.feval(xxs);
switch(_tmp[0]){
case 0: return 0;
case 1: var x = _tmp[2], xxs = _tmp[3];
return Sapl.feval(x) + sum(xs);

}

Moreover, let’s consider the following definition of the Fibonacci function, £ib,
in Sapl:

Implementing a non-strict purely functional language in JavaScript 87

fibn=if (gt 2n) 1 (add (fib (subn 1)) (fib (sub n 2)))
This is translated to the following function in JavaScript:
function fib(n) {
if (2 > Sapl.feval(n)) {
return 1;

} else {
} return (fib([sub, [n, 1]]) + fib([sub, [n, 2]]));

}

A simple strictness analysis reveals that this definition can be turned into:
function fib(n) {

if (2>n){
return 1;
} else {

return (fib(n - 1) + fib(n - 2));
} }

The calls to feval are now gone, which results in a huge improvement in
performance. Indeed, this is how fib would have been written, had it been
defined in JavaScript directly. In this particular example, the use of eager eval-
uation did not affect the semantics of the function. However, this is not true in
general. For the use of such an optimization we adopted a Clean like strictness
annotation. Thus, the above code can be generated from the following Sapl
definition:

fib 'n=if (gt 2 n) 1 (add (fib (sub n 1)) (fib (sub n 2)))

But strictly defined arguments also have their price. In case one does not know
if an argument in a function call is already in evaluated form, an additional
wrapper function call is needed that has as only task to evaluate the strict
arguments:

function fib$eval(a0) {
return fib(Sapl.feval(a0));
}

As a possible further improvement, a more thorough static analysis on the
propagation of strict arguments could help to avoid some of these wrapper
calls.

Finally, the Sapl to JavaScript compiler provides simple tail recursion opti-
mization, which has impact on not only the execution time, but also reduces
stack use.

88 L. Domoszlai, E. Bruél, J. M. Jansen

The optimizations only affect the generated code and not the implementa-
tion of feval. In the next section an indication of the speed-up obtained by
the optimizations is given.

4 Benchmarks

In this section we present the results of several benchmark tests for the
JavaScript implementation of Sapl (which we will call Sapljs) and a comparison
with the Java Applet implementation of Sapl. We ran the benchmarks on a
MacBook 2.26 MHz Core 2 Duo machine running MacOS X10.6.4. We used
Google Chrome with the V8 JavaScript engine to run the programs. At this
moment V8 offers one of the fastest platforms for running Sapljs programs.
However, there is a heavy competition on JavaScript engines and they tend
to become much faster. The benchmark programs we used for the compari-
son are the same as the benchmarks we used for comparing Sapl with other
interpreters and compilers in [8]. In that comparison it turned out that Sapl
is at least twice as fast (and often even faster) as other interpreters like He-
lium, Amanda, GHCi and Hugs. Here we used the Java Applet version for the
comparison. This version is about 40% slower than the C version of the in-
terpreter described in [8] (varying from 25 to 50% between benchmarks), but
is still faster than the other interpreters mentioned above. The Java Applet
and JavaScript version of Sapl and all benchmark code can be found at [2]. We
briefly repeat the description of the benchmark programs here:

1. Prime Sieve The prime number sieve program, calculating the 2000th
prime number.

2. Symbolic Primes Symbolic prime number sieve using Peano numbers,
calculating the 160th prime number.

3. Interpreter A small Sapl interpreter. As an example we coded the prime
number sieve for this interpreter and calculated the 30th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.

5. Match Nested pattern matching (5 levels deep) repeated 160000 times.

6. Hamming The generation of the list of Hamming numbers (a cyclic def-
inition) and taking the 1000th Hamming number, repeated 1000 times.

7. Sorting Tree Sort (3000 elements), Insertion Sort (3000 elements), Quick
Sort (3000 elements), Merge Sort (10000 elements, merge sort is much
faster, we therefore use a larger example)

8. Queens Number of placements of 11 Queens on a 11 x 11 chess board.

Implementing a non-strict purely functional language in JavaScript 89

Pri |Sym |Inter|Fib |Match|Ham|Qns |Kns |Sort |Plog |Parse

Sapl 1200 {4100 |500 |8700 |1700 {2500 9000 |3200 |1700|1500 1100

Sapljs 2200|4000 |220 [280 [2200 |3700 |11500|3950 |[2450|2750 |4150

Sapljs nopt |4500 | 11000 | 1500 | 36000 | 6700 {5500 | 36000 | 11000 | 4000 | 5200 | 6850

perc. mem. |58 |68 38 0 21 31 37 35 45 |53 |41

Figure 1: Speed comparison (time in miliseconds).

9. Knights Finding a Knights tour on a 5 x 5 chess board.

10. Prolog A small Prolog interpreter based on unification only (no arith-
metic operations), calculating ancestors in a four generation family tree,
repeated 100 times.

11. Parser Combinators A parser for Prolog programs based on Parser Com-
binators parsing a 3500 lines Prolog program.

For sorting a list of size n a source list is used consisting of numbers 1 to n.
The elements that are 0 modulo 10 are put before those that are 1 modulo 10,
etc.

The benchmarks cover a wide range of aspects of functional programming;:
lists, laziness, deep recursion, higher order functions, cyclic definitions, pattern
matching, heavy calculations, heavy memory usage. The programs were chosen
to run at least for a second, if possible. This helps eliminating start-up effects
and gives the JIT compiler enough time to do its work. In many cases the
output was converted to a single number (e.g. by summing the elements of a
list) to eliminate the influence of slow output routines.

4.1 Benchmark tests

We ran the tests for the following versions of Sapl:

e Sapl: the Java Applet version of Sapl;

e Sapljs: the Sapljs version including the normal form optimization, the
inlining of arithmetic operations and the tail recursion optimization.
The strictness optimization is only used for the fib benchmark;

e Sapljs nopt: the version not using these optimizations.

We also included the estimated percentage of time spent on memory manage-
ment for the Sapljs version. The results can be found in Figure 1.

90 L. Domoszlai, E. Bruél, J. M. Jansen

4.2 Evaluation of the benchmark tests

Before analysing the results we first make some general remarks about the
performance of Java, JavaScript and the Sapl interpreter which are relevant for
a better understanding of the results. In general it is difficult to give absolute
figures when comparing the speeds of language implementations. They often
also depend on the platform (processor), the operating system running on it
and the particular benchmarks used to compare. Therefore, all numbers given
should be interpreted as global indications.

According to the language shoot-out site [3] Java programs run between
3 and 5 times faster than similar JavaScript programs running on V8. So a
reimplementation of the Sapl interpreter in JavaScript is expected to run much
slower as the Sapl interpreter.

We could not run all benchmarks as long as we wished because of stack
limitations for V8 JavaScript in Google Chrome. It supports a standard (not
user modifiable) stack of only 30k at this moment. This is certainly enough
for most JavaScript programs, but not for a number of our benchmarks that
can be deeply recursive. This limited the size of the runs of the following
benchmarks: Interpreter! all sorting benchmarks, and the Prolog and Parser
Combinator benchmark. Another benchmark that we used previously, and that
could not be ran at all in Sapljs is: twice twice twice twice inc O.

For a lazy functional language the creation of thunks and the re-collection
of them later on, often takes a substantial part of program run-times. It is
therefore important to do some special tests that say something about the
speed of memory (de-)allocation. The Sapl interpreter uses a dedicated mem-
ory management unit (see [8]) not depending on Java memory management.
The better performance of the Sapl interpreter in comparison with the other
interpreters partly depends on its fast memory management. For the JavaScript
implementation we rely on the memory management of JavaScript itself. We
did some dedicated tests that showed that memory allocation for the Java
Sapl interpreter is about 5-7 times faster than the JavaScript implementation.
Therefore, we included an estimation of the percentage of time spent on mem-
ory management for all benchmarks ran in Sapljs. The estimation was done
by counting all memory allocations for a benchmark (all creations of thunks)
and multiplying it with an estimation of the time to create a thunk, which
was measured by a special application that only creates thunks.

IThe latest version of Chrome has an even more restricted stack size. We can now run
Interpreter only up to the 18th prime number.

Implementing a non-strict purely functional language in JavaScript 91

Results The Fibonacci and Interpreter benchmarks run (30 and 2 times resp.)
significantly faster in Sapljs than in the Sapl interpreter. Note that both these
benchmarks profit significantly from the optimizations with Fibonacci being
more than 100 times faster and Interpreter almost 7 times faster than the
non-optimized version. The addition of the strictness annotation for Fibonacci
contributes a factor of 3 to the speed-up. With this annotation the compiled
Fibonacci program is equivalent to a direct implementation of Fibonacci in
JavaScript and does not use feval anymore. The original Sapl interpreter does
not apply any of these optimizations. The Interpreter benchmark profits much
(almost a factor of 2) from the tail recursion optimization that applies for a
number of often used functions that dominate the performance of this bench-
mark.

Symbolic Primes, Match, Queens and Knights run at a speed comparable
to the Sapl interpreter. Hamming and Sort are 40 percent slower, Primes and
Prolog are 80 percent slower. Parser Combinators is the worst performing bench-
mark and is almost 4 times slower than in Sapl.

All benchmarks benefit considerably from the optimizations (between 1.5
and 120 times faster), with Fibonacci as the most exceptional.

The Parser Combinators benchmark profits only modestly from the optimiza-
tions and spends relatively much time in memory management operations. It
is also the most ‘higher order’ benchmark of all. Note that for the original
Sapl interpreter this is one of the best performing benchmarks (see [8]), per-
forming at a speed that is even competitive with compiler implementations.
The original Sapl interpreter does an exceptionally good job on higher order
functions.

We conclude that the Sapljs implementation offers a performance that is
competitive with that of the Sapl interpreter and therefore with other inter-
preters for lazy functional programming languages.

Previously [8] we also compared Sapl with the GHC and Clean compilers. It
was shown that the C version of the Sapl interpreter is about 3 times slower
than GHC without optimizer. Extrapolating this result using the figures men-
tioned above we conclude that Sapljs is about 6-7 times slower than GHC
(without optimizer). In this comparison we should also take into account that
JavaScript applications run at least 5 times slower than comparable C appli-
cations. The remaining difference can be mainly attributed to the high price
for memory operations in Sapljs.

92 L. Domoszlai, E. Bruél, J. M. Jansen

4.3 Alternative memory management?

For many Sapljs examples a substantial part of their run-time is spent on mem-
ory management. They can only run significantly faster after a more efficient
memory management is realized or after other optimizations are realized. It is
tempting to implement a memory management similar to that of the Sapl in-
terpreter. But this memory management relies heavily on representing graphs
by binary trees, which does not fit with our model for turning thunks into
JavaScript function calls which depends heavily on using arrays to represent
thunks.

5 Applications

Developing rich client-side applications in Clean We can use the Sapljs
compiler to create dedicated client-side applications in Clean that make use of
JavaScript libraries. We can do this because JavaScript and code generated by
Sapljs share the same namespace. In this way it is possible to call functions
within Sapl programs that are implemented in JavaScript. The Sapljs compiler
doesn’t check the availability of a function, so one has to rely on the JavaScript
interpreter to do this. Examples of such functions are the built-in core functions
like add and eq, but they can be any application related predefined function.

Because we have to compile from Clean to Sapl before compiling to JavaScript,
we need a way to use functions implemented in JavaScript within Clean pro-
grams. Clean does not allow that programs contain unknown functions, so we
need a way to make these functions known to the Clean compiler. This can be
realized in the following way. If one wants to postpone the implementation of
a function to a later time, one can define its type and define its body to be
undef. E.g., example is a function with 2 integer arguments and an integer
result with an implementation only in JavaScript.

example :: Int Int — Int
example = undef

The function undef is defined in the StdMisc module. An undef expressions
matches every type, so we can use this definition to check if the written code
is syntactically and type correct. We adapted the Clean to Sapl compiler not
to generate code for functions with an undefined body. In this way we have
created a universal method to reference functions defined outside the Clean
environment.

Implementing a non-strict purely functional language in JavaScript 93

We used these techniques to define a library in Clean for manipulating the
HTML DOM at the client side. The following Clean code gives a demonstration
of its use:

import StdEnv, SaplHtml

onKeyUp :: !HtmlEvent !'#HtmlDocument — *(*HtmlDocument, Bool)
onKeyUp e d
(d, str) = getDomAttr d "textarea" "value"
(d, str) = setDomAttr d "counter" "inmerHTML" (toString (size str))

= (d, True)
Start
= toString (Div [] [] [TextArea [Id "textarea", Rows 15, Cols 50)]
[OnKeyUp onKeyUp] ,
Div [Id "counter"] [] []])

It is basically a definition of a piece of HTML using arrays and ADT's defined
in the SaplHtml module. What is worth to notice here are the definitions of
the event handler function and the DOM manipulating functions, getDomAttr
and setDomAttr, which are also defined in SaplHtml, but are implemented
in JavaScript using the above mentioned techniques. The two parameters of
the event handler function are effectively the related JavaScript Event and
Document objects, respectively.

Compiling the program to JavaScript and running it returns the following
string, which is legal HTML:

<div><textarea id="textarea"
rows="15"
cols="50"
onKeyUp="Sapl . execEvent (event, ’onKeyUp$eval’)">
</textarea>
<div id="counter"></div>
</div>

The event handler call is wrapped by the Sapl.execEvent function which is
responsible for passing the event related parameters to the actual event han-
dler. Including this string into an HTML document along with the generated
JavaScript functions we get a client side web application originally written in
Clean. Despite this program is deliberately very simple, it demonstrates al-
most all the basics necessary to write any client side application. Additional
interface functions, e.g. calling methods of a JavaScript object, can be found
in the SaplHtml module.

94 L. Domoszlai, E. Bruél, J. M. Jansen

iTask integration Another possible application is related to the iTask system
[13]. iTask is a combinator library written in Clean, and is used for the realiza-
tion of web-based dynamic workflow systems. An iTask application consists of
a structured collection of tasks to be performed by users, computers or both.

To enhance the performance of iTask applications, the possibility to handle
tasks on the client was added [14], accomplished by the addition of a simple
OnClient annotation to a task. When this annotation is present, the iTask
runtime automatically takes care of all communication between the client and
server parts of the application. The client part is executed by the Sapl inter-
preter, which is available as a Java applet on the client.

However, the approachability of JavaScript is much better compared to Java.
The Java runtime environment, the Java Virtual Machine might not even be
available on certain platforms (on mobile devices in particular). Besides that,
it exhibits significant latency during start-up. For these reasons, a new im-
plementation of this feature is recommended using Sapljs instead of the Sapl
interpreter written in Java. Several feature were made to foster this modifica-
tion:

e The Sapl language was extended with some syntactic sugar to allow
distinguishing between constructors and records.

e Automatic conversion of data types like records, arrays, etc, between
Sapl and JavaScript was added. In this way full interaction between Sapl
and existing libraries in JavaScript became possible.

e Automatic conversion of JSON data structures to enable direct interfac-
ing with all kinds of web-services was added.

6 Related work

Client-side processing for Internet applications is a subject that has drawn
much attention in the last years with the advent of Ajax based applications.

Earlier approaches using JavaScript as a client-side platform for the execu-
tion of functional programming languages are Hop [15, 10], Links [1] and Curry
[7].

Hop is a dedicated web programming language with a HTML-like syntax
build on top of Scheme. It uses two compilers, one for compiling the server-
side program and one for compiling the client-side part. The client-side part is
only used for executing the user interface. The application essentially runs on
the client and may call services on the server. Syntactic constructions are used
for indicating client and server part code. In [10] it is shown that a reasonably

Implementing a non-strict purely functional language in JavaScript 95

good performance for client-side functions in Hop can be obtained. However,
contrary to Haskell and Clean, both Hop and the below mentioned Links are
strict functional languages, which simplifies their translation to JavaScript
considerably.

Links [1] and its extension Formlets is a functional language-based web pro-
gramming language. Links compiles to JavaScript for rendering HTML pages,
and SQL to communicate with a back-end database. Client-server communi-
cation is implemented using Ajax technology, like this is done in the iTask
System.

Curry offers a much more restricted approach: only a very restricted subset
of the functional-logic language Curry is translated to JavaScript to handle
client-side verification code fragments only.

A more recent approach is the Flapjax language [12], an implementation of
functional reactive programming in JavaScript. Flapjax can be used either as
a programming language, compiling to JavaScript, or as a JavaScript library.
Entire applications can be developed in Flapjax. Flapjax automatically tracks
dependencies and propagates updates along dataflows, allowing for a declara-
tive style of programming.

An approach to compile Haskell to JavaScript is YCR2JS [4] that com-
piles YHC Core to JavaScript, comparable to our approach compiling Sapl to
JavaScript. Unfortunately, we could not find any performance figures for this
implementation.

Another, more recent approach, for compiling Haskell to JavaScript is HS2JS
[6], which integrates a JavaScript backend into the GHC compiler. A comparison
of JavaScript programs generated by this implementation indicate that they
run significantly slower than their Sapljs counterparts.

7 Conclusion and future work

In this paper we evaluated the use of JavaScript as a target language for lazy
functional programming languages like Haskell or Clean using the intermediate
language Sapl. The implementation has the following characteristics:

e It achieves a speed for compiled benchmarks that is competitive with
that of the Sapl interpreter and is faster than interpreters like Amanda,
Helium, Hugs and GHCi. This is despite the fact that JavaScript has a
3-5 times slower execution speed than the platforms used to implement
these interpreters.

96 L. Domoszlai, E. Bruél, J. M. Jansen

e The execution time of benchmarks is often dominated by memory oper-
ations. But in many cases this overhead could be significantly reduced
by a simple optimization on the creation of thunks.

e The implementation tries to map Sapl to corresponding JavaScript con-
structs as much as possible. Only when the lazy semantics of Sapl re-
quires this, an alternative translation is made. This opens the way for
additional optimizations based on compile time analysis of programs.

e The implementation supports the full Clean (and Haskell) language, but
not all libraries are supported. We tested the implementation against a
large number of Clean programs compiled with the Clean to Sapl com-
piler.

7.1 Future work

We have planned the following future work:

e Implement a web-based Clean to Sapl (or to JavaScript) compiler (exper-
imental version already made).

e Experimenting with supercompilation optimization by implementing a
Sapl to Sapl compiler based on whole program analysis.

e Encapsulate JavaScript libraries in a functional way, e.g. using generic
programming techniques.

e Attach client-side call-backs written in Clean to iTask editors. It can be
implemented using Clean-Sapl dynamics [9] which make it possible to
serialize expressions at the server side and execute them at the client
side.

e Use JavaScript currying instead of building thunks. Our preliminary
results indicate that using JavaScript currying would be significantly
slower, but further investigation is needed for proper analysis.

Acknowledgements
The research of the first author was supported by the European Union and

the European Social Fund under the grant agreement no. TAMOP 4.2.1 /B-
09/1/KMR-2010-0003.

Implementing a non-strict purely functional language in JavaScript 97

References

1]

E. Cooper, S. Lindley, P. Wadler, J. Yallop, Links: web programming
without tiers, Proc. 5th International Symposium on Formal Methods for
Components and Objects (FMCO ’06) , Lecture Notes in Comput. Sci.,
4709 (2006) 266-296. =94, 95

L. Domoszlai, E. Bruél, J. M. Jansen, The Sapl home page, http://www.
nlda-tw.nl/janmartin/sapl. =88

B. Fulgham, The computer language benchmark game, http://
shootout.alioth.debian.org. =90

D. Golubovsky, N. Mitchell, M. Naylor, Yhc.Core — from Haskell to Core,
The Monad.Reader, 7 (2007) 236-243. =95

J. van Groningen, T. van Noort, P. Achten, P. Koopman, R. Plasmeijer,
Exchanging sources between Clean and Haskell — a double-edged front
end for the Clean compiler, Haskell Symposium, Baltimore, MD, 2010.
=79

T. Hallgren, HS2JS test programs, http://www.altocumulus.org/
~hallgren/hs2js/tests/. =95

M. Hanus, Putting declarative programming into the web: translating
Curry to JavaScript, Proc. 9th ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming (PPDP °07),
Wroclaw, Poland, 2007, ACM, pp. 155-166. =94

J. M. Jansen, P. Koopman, R. Plasmeijer, Efficient interpretation by
transforming data types and patterns to functions, Proc. Seventh Sympo-
stum on Trends in Functional Programming (TFP 2006), Nottingham,
UK, 2006. =77, 78, 88, 90, 91

J. M. Jansen, P. Koopman, R. Plasmeijer, iEditors:extending iTask with
interactive plug-ins, Proc. 20th International Symposium on the Imple-
mentation and Application of Functional Languages (IFL 2008), Hert-
fordshire, UK, 2008, pp. 170-186. =96

F. Loitsch, M. Serrano, Hop client-side compilation, Trends in Functional
Programming (TFP 2007), New York, 2007, pp. 141-158. =94

98

L. Domoszlai, E. Bruél, J. M. Jansen

[11]

[14]

[15]

E. Meijer, D. Leijen, J. Hook, Client-side web scripting with HaskellScript,
First International Workshop on Practical Aspects of Declarative Lan-
guages (PADL ’99), San Antonio, Texas, 1999, Lecture Notes in Comput.
Sci., 1551 (1999) 196-210. =77

L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, S. Krishnamurthi, Flapjax: a programming language for
Ajax applications, SIGPLAN Not., 44 (2009) 1-20. =95

R. Plasmeijer, P. Achten, P. Koopman, iTasks: executable specifica-
tions of interactive work flow systems for the web, Proc. 12th ACM
SIGPLAN International Conference on Functional Programming (ICFP
2007), Freiburg, Germany, 2007, ACM, pp. 141-152. =94

R. Plasmeijer, J. M. Jansen, P. Koopman, P. Achten, Declarative Ajax
and client side evaluation of workflows using iTasks, 10th International
ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’08), Valencia, Spain, 2008. = 77, 94

M. Serrano, E. Gallesio, F. Loitsch, Hop: a language for programming the
web 2.0, ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006),
Portland, Oregon, 2006, pp. 975-985. =94

Received: January 31, 2011 » Revised: March 23, 2011

AcTtA UNIV. SAPIENTIAE, INFORMATICA, 3, 1 (2011) 127-136

&

On scattered subword complexity

Zoltan KASA

Sapientia Hungarian University of Transylvania
Department of Mathematics and Informatics,
Tg. Mures, Romania
email: kasa@ms.sapientia.ro

Abstract. Special scattered subwords, in which the gaps are of length
from a given set, are defined. The scattered subword complexity, which is
the number of such scattered subwords, is computed for rainbow words.

1 Introduction

Sequences of characters called words or strings are widely studied in combi-
natorics, and used in various fields of sciences (e.g. chemistry, physics, social
sciences, biology [2, 3, 4, 11] etc.). The elements of a word are called letters.
A contiguous part of a word (obtained by erasing a prefix or/and a suffix) is a
subword or factor. If we erase arbitrary letters from a word, what is obtained
is a scattered subword. Special scattered subwords, in which the consecutive
letters are at distance at most d (d > 1) in the original word, are called
d-subwords [7, 8]. In [9] the super-d-subword is defined, in which case the
distances are of length at least d. The super-d-complexity, as the number of
such subwords, is computed for rainbow words (words with pairwise different
letters).

In this paper we define special scattered subwords, for which the distance
in the original word of length n between two letters which will be consecutive
in the subword, is taken from a subset of {1,2,...,n—1}.

Computing Classification System 1998: G.2.1, F.2.2

Mathematics Subject Classification 2010: 68R15

Key words and phrases: word complexity, scattered subword, d-complexity, super-d-
complexity

127

128 Z. Kasa

The complexity of a word is defined as the number of all its different sub-
words. Similar definitions are for d-complexity, super-d-complezity and scat-
tered subword complexity.

The scattered subword complexity is computed in the special case of rainbow
words. The idea of using scattered words with gaps of length between two given
values is from Jézsef Bukor [1].

Another point of view of scattered complexity in the case of non-primitive
words is given is [5].

2 Definitions

Let £ be an alphabet, X™, as usually, the set of all words of length n over I,
and X* the set of all finite word over X.

Definition 1 Let n and s be positive integers, M C{1,2,...,n—1} and u =
X1X2...Xn € L™ An M-subword of length s of u is defined as v = xi, X4, ... X4
where

1>,

ij+1 —ij S MfOTj =1,2,...,s—1,

ig < n.

S

Definition 2 The number of M-subwords of a word u for a given set M 1is
the scattered subword complexity, simply M-complexity.

The M-subword in the case of M ={1,2,...,d} is the d-subword defined in

[7], while in the case of M = {d,d + 1,...,n — 1} is the super-d-complexity
defined in [9)].
Examples. The word abcd has 11 {1, 3}-subwords: a, ab, abc, abcd, ad, b,
be, bed, ¢, cd, d. The {2,3...,n — 1}-subwords of the word abcdef are the
following: a, ac, ad, ae, af, ace, acf, adf, b, bd, be, bf, bdf, c, ce, cf, d, df,
e, f.

Hereinafter instead of {d;,d; + 1,...,d> — 1, ds}-subword we will use the
simple notation (dj, d,)-subword.

3 Computing the scattered complexity for rainbow

words

Words with pairwise different letters are called rainbow words. The M-comple-
xity of a rainbow word of length n does not depend on what letters it contains,

On scattered subword complexity 129

and is denoted by K(n, M).

Let us recall two results for special scattered words, as d-subwords and
super-d-subwords.

For a rainbow word of length n the super-d-compexity [9] is equal to

n—(d—1)k
K(n,{d,d—k],...,n—]}):é(k(+1)) (1)
and the (n — d)-complexity [8] is
K(n,{1,2,...,n—d}) =2"—(d—2)-24 " =2, forn >2d-2.
For special cases the following propositions can be easily proved.

Proposition 3 Forn,d; < d; positive integers

K(n,{dy,di+1,...,d2}) <n+ > (“_](i‘r]_”k> - <“k_+d12k>.

k>1 k>1
Proof. This can be obtained from (1) and the formula

K(n,{di,di+1,...,d2}) < K(n({di,di+1,...,n—1})
— K(n,{dz+1,dz+2,...,n—]})-I-TL.

O

For example, K(7,{2,3,4,5,6}) = 33, K(7,{4,5,6}) = 13, and from the propo-

sition K(7,{2,3}) < 27. The exact value is K(7,{2,3}) = 25, the two words acg

and aeg are not eliminated (here the original distances are 2 and 4 in acg,
and 4 and 2 in aeg).

Proposition 4 For the integers n,d > 1, where n =hd +m

K(n.{d)) = (h—i—]);n—l—m).

Proof. ned)
Kn,{d}) = n+Zrd_lJ:n+d(1+z+...+h—1)+mh
i=1

~ g dh(h—1) S mh— (h—|—1)(n—l—m).

2 2

130 Z. Kasa

Figure 1: Graph for (2,n — 1)-subwords when n = 6.

To compute the M-complexity of a rainbow word of length n we will use
graph theoretical results. Let us consider the rainbow word aja;...a, and
the correspondig digraph G = (V, E), with

V={a,a...,an},

E={(ajq)|j—ieM i=12...,n,j=12,...,n}.

For n =6,M ={2,3,4,5} see Figure 1.

The adjacency matrix A = (ai]-) — of the graph is defined by:

aﬁ:{]’ ifj—ieM, fori=1,2,...,n,j=1,2,...,n.

0, otherwise,

Because the graph has no directed cycles, the entry in row i and column j in
AK (where A* = A¥TA | with A! = A) will represent the number of directed
paths of length k from aj to aj. If I is the identity matrix (with entries equal to
1 only on the first diagonal, and 0 otherwise), let us define the matrix R = (r3):

R=I14+A+A%2+.-+ AKX where A¥"" = O (the null matrix).

The M-complexity of a rainbow word is then

K(Tl, M) = Z ZTij.

i=1 j=1

Matrix R can be better computed using a variant of the well-known Warshall
algorithm (for the original Warshall algorithm see for example [12]):

On scattered subword complexity 131

WARSHALL(A, n)

1 W« A

2 fork+—1ton

3 dofori—1ton

4 doforj«— Tton

5 do Wij & Wy + WikWij
6 return W

From W we obtain easily R=1+ W.
For example let us consider the graph in Figure 1. The corresponding adjacency
matrix is:

cococoo

cocooo
cocoococo -
co oo — —
cCOo O = - =
S > Y .

00
After applying the Warshall algorithm:

2 3

cococoo
coooo
co oo =
cCOoO OO = —
c o ==
o = =
co oo —
cocooc o —-o
oo —=o =
O =4O ==
©C = O = =N
— o = = NW

00 00 0

and then K(6,{2,3,4,5}) = 20, the sum of elements in R.

The Warshall algorithm combined with the Latin square method can be
used to obtain all nontrivial (with length at least 2) M-subwords of a given
rainbow word ajaz---an. Let us consider a matrix A with the entries Ay,
which are set of words. Initially this matrix is defined as:

Ay = { {aiq;}, ifj—ie M,

fori=1,2,... j=1,2,...,m.
0, otherwise, ort YLy L) 2,00,

If A and B are sets of words, AB will be formed by the set of concatenation
of each word from A with each word from B:
AB:{ab‘aeA,bGB}.

If s =sys2---sp is a word, let us denote by ’s the word obtained from s by
erasing the first character: 's = s3s3---sp. Let us denote by 'Aj; the set Ay

132

Z. Kasa

in which we erase the first character from each element. In this case ‘A is a

matrix with entries 'Ayj.

Starting with the matrix A4 defined as before, the algorithm to obtain all
nontrivial M-subwords is the following:

WARSHALL-LATIN(.A, 1)

1
2
3

4
)
6
7

W A
for k< 1ton
dofori+—1ton

doforj«—1ton
do if Wik 75 Q) and Wk)' 75 @
then Wij — Wij U Wik /Wk]'

return W

The set of nontrivial M-subwords is

U ws

i,je{1,2,...n}

For n =8, M ={3,4,5, 6,7} the initial matrix is:

S eSS
ST o o=

0
o0
o0
o0
o0
o0
o0
o0

0
0
0
0
0
0

{ad} {ae} {af} {ag} {ah}
{be} {bf} {bg} {bh}

{cf} {cg} {ch}
0 {dg} {dh}

0 0 {eh}
0 0 0
0 0 0
0 0 0

The result of the algorithm WARSHALL-LATIN in this case is:

S oo e =

0
0
0
0
0
0
0
0

S e S =

0
0
0
0
0
0
0

S eSS

The algorithm WARSHALL-LATIN can be used for nonrainbow words too,
with the remark that repeating subwords must be eliminated. For the word

{cf}
0
1)
0
0
0

{ad} {ae} {af} {ag,adg} {ah,adh,aeh}
{be} {bf}

{bg} {bh, beh}
{cg} {ch}
{dg} {dh}

0 {eh}

0 0

0 1)

0 0

aabbbaaa and M ={3,4,5,6,7} the result is: aa, ab, aba, ba.

On scattered subword complexity 133

4 Computing the (d;, d;)-complexity

Let us denote by aj the number of (dq, d2)-subwords which terminate at po-
sition 1 in a rainbow word of length n. Then

ai=1+aiq, +ai—q,—1+--+ai—q,, (2)

with the remark that for 1 < 0 we have a; = 0. Subtracting a;_1 from a; we
get the following simpler equation.

ai = i1+ 0i—gd; — Ai—1—d,-

The (dy, d2)-complexity of a rainbow word of length n is
n
K(1’L,{d1,d1—1-1,...,(12}):ZaaL (3)
izt

For example, if di = 2,d, =4, the following values are obtained

I n 1 5 6 7 8 9 10 11 12 13

2 3 4
an 11 2 3 5 7 11 16 24 35 52 76 112
K(n,{2,3,4}) 2 4 7 12 19 30 46 70 105 157 233 345

If we denote by A(z) = Z anz"™ the generating function of the sequence
n>1
an, then from (2) we obtain

n>1 n>1 n>1 n>1

and

Alz) = é +zA(Z) 4+ 2VA(2).

From this we obtain

B z
R T

A(z) (4)

For dy = 2,d; = 4 the sequence (an)n>o ([10] sequence A023435) corre-
sponds to a variant of the dying rabbits problem [6].

134 Z. Kasa

To compute the generating function for the complexity K(n,{d1 ydi+1,.0 .
dz}), let us denote this complexity simply by K;, only, and its generating
function by K(z) = Z Knz™ We remark that K, =0 for n <0, and Ky = 1.

n>1
From (3) and (4) we can immediately conclude that

1 z
(1 —z) (2Rt —zd —z 4+ 1)

5 Correspondence between (d,n + d — 1)-subwords
and {1, d}-subwords

The following result is inspired from the sequence A050228 of [10].

Proposition 5 The number of {1, d}-subwords of a rainbow word of length n
is equal to the number of {d,d+1,...,n+ d — 1}-subwords of length at least
2 of a rainbow word of length n + d.

Proof. By the generalization of the sequence A050228 [10] the number of the
{1, d}-subwords of a rainbow word of length n is equal to

K (1, d) :Z<n+1k——£(z—1)k>.

k>0

From (1) we have

K(n—i—d,{d,d—i—l,...,n—l—d—]})_(n_,_d):Z<n+dk—(c:—1)k>'
k>1 +

T—(d—-T1)k
By changing k to k + 1 in the sum, we obtain Z n () , and
= k+2

this proves the theorem. O

Example. For abcde the 19 {1, 3}-subwords are:

a,b,c,d, e, ab,abc, abed, ad, ade, abcde, abe, bc, becd, bede, be, cd, cde, de.
For abcdefgh the 19 {3,4,5, 6, 7}-subwords of length at least 2 are:

ad, ae, af, ag, adg, ah, adh, aeh, be, bf, bg, bh, beh, cf, cg, ch, dg, dh, eh.

L A050228: a, is the number of subsequences {sx} of {1,2,3,...n} such that s 1 — sy is 1
or 3.

On scattered subword complexity 135

Conclusions

A special scattered subword, the so-called M-subword is defined, in which the
distances (gaps) between letters are from the set M. The number of the M-
subwords of a given word is the M-complexity. Graph algorithms are used to
compute the M-complexity and to determine all M-subwords of a rainbow
word. This notion of M-complexity is a generalization of the d-complexity [7]
and of the super-d-complexity [9]. If M consists of successive numbers from d;
to d, then the so-called (dj, dy)-complexity is computed by recursive equations
and generating functions.

Acknowledgements

This work was supported by the project under the grant agreement no. TAMOP
4.2.1/B-09/1/KMR-2010-0003 (E6tvos Lordnd University, Budapest) financed
by the European Union and the European Social Fund.

References

[1] J. Bukor, Personal communication at the 8th Joint Conference on Math-
ematics and Computer Science, Koméarno (Slovakia), July 14-17, 2010.
=128

[2] W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution,
Akademie-Verlag, Berlin, 1982. =127

[3] C. Elzinga, S. Rahmann, H. Wang, Algorithms for subsequence combina-
torics, Theor. Comput. Sci. 409, 3 (2008) 394-404. =127

[4] C. H. Elzinga, Complexity of categorial time series, Sociological Methods
& Research 38, 3 (2010) 463-481. =127

[6] Sz. Zs. Fazekas, B. Nagy, Scattered subword complexity of non-primitive
words, J. Autom. Lang. Comb. 13, 3-4 (2008) 233-247. =128

[6] V. E. Hoggatt Jr., D. A. Lind, The dying rabbit problem, Fib. Quart. 7,
5 (1969), 482-487. =133

[7] A.Ivanyi, On the d-complexity of words, Ann. Univ. Sci. Budapest., Sect.
Comput. 8 (1987) 69-90. = 127, 128, 135

136

Z. Kasa

8]

[12]

Z. Kéasa, On the d-complexity of strings, Pure Math. Appl. 9, 1-2 (1998)
119-128. =127, 129

7. Késa, Super-d-complexity of finite words, MACS 2010: 8th Joint
Conference on Mathematics and Computer Science, Selected Papers,
Komaérno (Slovakia), July 14-17, 2010, pp. 251-261. = 127, 128, 129,
135

N. J. A. Sloane, The on-line encyclopedia of integer sequences,
http://www.research.att.com/ "njas/sequences/. =133, 134

O. G. Troyanskaya, O. Arbell, Y. Koren, G. M. Landau, A. Bolshoy,
Sequence complexity profiles of prokaryotic genomic sequences: A fast al-
gorithm for calculating linguistic complexity, Bioinformatics 18, 5 (2002)
679-688. =127

S. Warshall, A theorem on Boolean matrices, J. ACM 9, 1 (1962) 11-12.
=130

Received: December 4, 2010 ¢ Revised: March 12, 2011

Acta Universitatis Sapientiae

The scientific journal of Sapientia Hungarian University of Transylvania publishes
original papers and surveys in several areas of sciences written in English.
Information about each series can be found at
http://www.acta.sapientia.ro.

Editor-in-Chief
Antal BEGE
abege@ms.sapientia.ro

Main Editorial Board

Zoltan A. BIRO Zoltdn KASA Andrés KELEMEN
Agnes PETHO Emé6d VERESS

Acta Universitatis Sapientiae, Informatica

Executive Editor
Zoltan KASA (Sapientia University, Romania)
kasa@ms.sapientia.ro

Editorial Board
Laszl6 DAVID (Sapientia University, Romania)

Dumitru DUMITRESCU (Babes-Bolyai University, Romania)
Horia GEORGESCU (University of Bucuresti, Romania)
Gheorghe GRIGORAS (Alexandru Ioan Cuza University, Romania)
Antal IVANYT (E6tvés Lorand University, Hungary)
Hanspeter MOSSENBOCK (Johannes Kepler University, Austria)
Attila PETHO (University of Debrecen, Hungary)
Ladislav SAMUELIS (Technical University of Kosice, Slovakia)
Veronika STOFFA (STOFFOVA) (Jénos Selye University, Slovakia)
Daniela ZAHARIE (West University of Timigoara, Romania)

Each volume contains two issues.

%

¥

Sapientia University Scientia Publishing House

ISSN 1844-6086
http://www.acta.sapientia.ro

Information for authors

Acta Universitatis Sapientiae, Informatica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals.
The corresponding author is responsible for obtaining the permission of coauthors
and of the authorities of institutes, if needed, for publication, the Editorial Board is
disclaiming any responsibility.

Submission must be made by email (acta-inf@acta.sapientia.ro) only, using the
ETEX style and sample file at the address http://www.acta.sapientia.ro. Beside
the IXTEX source a pdf format of the paper is needed too.

Prepare your paper carefully, including keywords, ACM Computing Classification Sys-
tem codes (http://www.acm.org/about/class/1998) and AMS Mathematics Sub-
ject Classification codes (http://www.ams.org/msc/).

References should be listed alphabetically based on the Intructions for Authors given
at the address http://www.acta.sapientia.ro.

Nlustrations should be given in Encapsulated Postscript (eps) format.

One issue is offered each author free of charge. No reprints will be available.

Contact address and subscription:
Acta Universitatis Sapientiae, Informatica
RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-infQacta.sapientia.ro

Printed by Gloria Printing House
Director: Péter Nagy

ISSN 1844-6086
http://www.acta.sapientia.ro

	1 Preliminaries
	1.1 Words and languages
	1.2 Periodic words, primitive words, and codes
	1.3 Roots of words and languages

	2 Primitivity and combinatorics on words
	3 Primitivity and language classes
	3.1 Chomsky hierarchy
	3.2 Contextual languages

	4 Primitivity and complexity
	5 Powers of languages
	6 Decidability questions
	7 Generalizations of periodicity and primitivity
	1 Introduction
	2 Preliminaries and problem definitions
	3 Previous results
	4 The c-fragment LAPCS(unlimited,plain) and the c-diagonal LAPCS(unlimited,plain) problem
	5 The c-fragment LAPCS(crossing,chain) and the c-diagonal LAPCS(crossing,chain) problem
	6 Conclusions
	1 Introduction
	1.1 Why switch to JavaScript?
	1.2 Results at a glance
	1.3 Organization of the paper

	2 The Sapl programming language and interpreter
	2.1 Some remarks on the definition of Sapl

	3 A JavaScript based implementation for Sapl
	Literals
	Identifiers
	Function definitions
	Constructor definitions
	Let constructs
	Applications
	select statements
	if statements
	Built-in functions

	3.1 Examples
	3.2 The feval function
	Literals
	Thunks
	Boxed values
	Curried applications
	More details on evaluation

	3.3 Further optimizations

	4 Benchmarks
	4.1 Benchmark tests
	4.2 Evaluation of the benchmark tests
	Results

	4.3 Alternative memory management?

	5 Applications
	Developing rich client-side applications in Clean
	iTask integration

	6 Related work
	7 Conclusion and future work
	7.1 Future work

	1 Introduction
	2 Definitions
	3 Computing the scattered complexity for rainbow words
	4 Computing the (d1,d2)-complexity
	5 Correspondence between (d,n+d-1)-subwords and {1,d}-subwords
	COVER1.pdf
	COVER2.pdf

