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Asena Çetinkaya
Department of Mathematics and

Computer Sciences, İstanbul Kültür
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Abstract. We study a family of harmonic univalent functions in the
open unit disc defined by using post quantum calculus operators. We first
obtained a coefficient characterization of these functions. Using this, co-
efficients estimates, distortion and covering theorems were also obtained.
The extreme points of the family and a radius result were also obtained.
The results obtained include several known results as special cases.

1 Introduction

Let A be the class of functions f that are analytic in the open unit disc
D := {z : |z| < 1} with the normalization f(0) = f ′(0)− 1 = 0. A function f ∈ A

can be expressed in the form

f(z) = z+

∞∑

k=2

akz
k, z ∈ D. (1)
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The theory of (p, q)-calculus (or post quantum calculus) operators are used
in various areas of science and also in the geometric function theory. Let 0 <

q ≤ p ≤ 1. The (p, q)-bracket or twin-basic number [k]p,q is defined by

[k]p,q =
pk − qk

p− q
(q 6= p), and [k]p,p = kpk−1.

Notice that limq→p[k]p,q = [k]p,p. For 0 < q ≤ 1, q-bracket [k]q for k =

0, 1, 2, · · · is given by

[k]q = [k]1,q =
1− qk

1− q
(q 6= 1), and [k]1 = [k]1,1 = k.

The (p, q)-derivative operator Dp,q of a function f ∈ A is given by

Dp,qf(z) = 1+

∞∑

k=2

[k]p,qakz
k−1. (2)

For a function f ∈ A, it can be easily seen that

Dp,qf(z) =
f(pz) − f(qz)

(p− q)z
, (p 6= q, z 6= 0), (3)

(Dp,qf)(0) = 1 and (Dp,pf)(z) = f ′(z). For definitions and properties of (p, q)-
calculus, one may refer to [6]. The (1, q)-derivative operator D1,q is known as
the q-derivative operator and is denoted by Dq; for z 6= 0, it satisfies

(Dqf)(z) =
f(z) − f(qz)

(1− q)z
. (4)

For definitions and properties of q-derivative operator, one may refer to [3, 9,
10, 11, 8].
For a function h analytic in D and an integer m ≥ 0, we define the (p, q)-

Sălăgean differential operator Lmp,q, using (p, q)-derivative operator, by

L0p,qh(z) = h(z) and Lmp,qh(z) = zDp,q(L
m−1
p,q (h(z)).

For analytic function g(z) =
∞∑

k=1

bkz
k, we have

Lmp,qg(z) =

∞∑

k=1

[k]mp,qbkz
k. (5)
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In particular, for h ∈ A with h(z) = z+
∑

∞

k=2 akz
k, we have

Lmp,qh(z) = z+

∞∑

k=2

[k]mp,qakz
k. (6)

Let H be the family of complex-valued harmonic functions f = h+g defined
in D, where h and g has the following power series expansion

h(z) = z+

∞∑

k=2

akz
k and g(z) =

∞∑

k=1

bkz
k. (7)

Note that f = h+g is sense-preserving in D if and only if h ′(z) 6= 0 in D and the
second dilatation w of f satisfies the condition |g ′(z)/h ′(z)| < 1 in D. Let SH

be a subclass of functions f in H that are sense-preserving and univalent in D.
Clunie and Sheil-Small studied the class SH in their remarkable paper [5]. For
a survey or comprehensive study of the theory of harmonic univalent functions,
one may refer to the papers [1, 2, 7]. We introduce and study a new subclass
of harmonic univalent functions by using (p, q)-Sălăgean harmonic differential
operator Lmp,q : H → H. For the functions in the newly introduced family, a
coefficient characterization is obtained (Theorem 3). Using this, coefficients
estimates (Corollary 4), distortion (Theorem 6) and covering (Corollary 7)
theorems were also obtained. The extreme points of the family (Theorem 5)
and a radius result (Theorem 8) were also obtained. The results obtained
include several known results as special cases. Our results can be extended,
for example, by using fractional q-integral operator (see Ravikumar [16]).

2 Main results

We define the (p, q)-Sălăgean harmonic differential operator Lmp,q of a harmonic
function f = h+ g ∈ H by

Lmp,qf(z) = Lmp,qh(z) + (−1)mLmp,qg(z)

= z+

∞∑

k=2

[k]mp,qakz
k + (−1)m

∞∑

k=1

[k]mp,qbkzk.
(8)

This last expression is obtained by using (6) and (5) and is motivated by
Sălăgean[17]. Recall that convolution (or the Hadamard product) of two complex-
valued harmonic functions

f1(z) = z+

∞∑

k=2

a1kz
k +

∞∑

k=1

b1kzk and f2(z) = z+

∞∑

k=2

a2kz
k +

∞∑

k=1

b2kzk
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is defined by

f1(z) ∗ f2(z) = (f1 ∗ f2)(z) = z+

∞∑

k=2

a1ka2kz
k +

∞∑

k=1

b1kb2kzk, z ∈ D.

We now introduce a family of (p, q)-Sălăgean harmonic univalent functions
by using convolution and the (p, q)-Sălăgean harmonic differential operator
Lmp,q.

Definition 1 Suppose i, j ∈ {0, 1}. Let the function Φi, Ψj given by

Φi(z) = z+

∞∑

k=2

λkz
k + (−1)i

∞∑

k=1

µkz
k, (9)

Ψj(z) = z+

∞∑

k=2

ukz
k + (−1)j

∞∑

k=1

vkz
k (10)

be harmonic in D with λk > uk ≥ 0 (k ≥ 2) and µk > vk ≥ 0 (k ≥ 1).
For α ∈ [0, 1), 0 < q ≤ p ≤ 1, m ∈ N, n ∈ N0, m > n and z ∈ D, let
SH(m,n,Φi, Ψj, p, q, α) denote the family of harmonic functions f in H that
satisfy the condition

Re

{
(Lmp,qf ∗Φi)(z)

(Lnp,qf ∗ Ψj)(z)

}

> α, (11)

where Lmp,q is defined by (8).

Using (8), (9) and (10), we obtain

(Lmp,qf ∗Φi)(z) = z+

∞∑

k=2

λk[k]
m
p,qakz

k + (−1)m+i
∞∑

k=1

µk[k]
m
p,qbkz

k, (12)

and

(Lnp,qf ∗ Ψj)(z) = z+

∞∑

k=2

uk[k]
n
p,qakz

k + (−1)n+j
∞∑

k=1

vk[k]
n
p,qbkz

k. (13)

Definition 2 Let T SH(m,n,Φi, Ψj, p, q, α) be the family of harmonic func-
tions fm = h+ gm ∈ T SH(m,n,Φi, Ψj, p, q, α) such that h and gm are of the
form

h(z) = z−

∞∑

k=2

|ak|z
k and gm(z) = (−1)m+i−1

∞∑

k=1

|bk|z
k, |b1| < 1. (14)



Harmonic functions defined by post quantum calculus operators 9

The families of SH(m,n,Φi, Ψj, p, q, α) and T SH(m,n,Φi, Ψj, p, q, α) include
a variety of well-known subclasses of harmonic functions as well as many new
ones. For example,

(1) SH(m,n,α) ≡ SH(m,n, z
(1−z)2

− z
(1−z)2

, z
1−z +

z
1−z , 1, 1, α),

T SH(m,n,α) ≡ T SH(m,n, z
(1−z)2

− z
(1−z)2

, z
1−z +

z
1−z , 1, 1, α), [18].

(2) S∗
H(α) ≡ SH(1, 0,

z
(1−z)2

− z
(1−z)2

, z
1−z +

z
1−z , 1, 1, α),

T S∗
H(α) ≡ T SH(1, 0,

z
(1−z)2

− z
(1−z)2

, z
1−z +

z
1−z , 1, 1, α), [12].

(3) KH(α) ≡ SH(2, 1,
z+z2

(1−z)3
+ z+z2

(1−z)3
, z
(1−z)2

− z
(1−z)2

, 1, 1, α),

T KH(α) ≡ T SH(2, 1,
z+z2

(1−z)3
+ z+z2

(1−z)3
, z
(1−z)2

− z
(1−z)2

, 1, 1, α), [13].

(4) S∗
Hq

(α) ≡ SH(1, 0,
z

(1−z)2
− z

(1−z)2
, z
1−z +

z
1−z , 1, q, α),

T S∗
Hq

(α) ≡ T SH(1, 0,
z

(1−z)2
− z

(1−z)2
, z
1−z +

z
1−z , 1, q, α), [4].

(5) KHq(α) ≡ SH(2, 1,
z+z2

(1−z)3
+ z+z2

(1−z)3
, z
(1−z)2

− z
(1−z)2

, 1, q, α),

T KHq(α) ≡ T SH(2, 1,
z+z2

(1−z)3
+ z+z2

(1−z)3
, z
(1−z)2

− z
(1−z)2

, 1, q, α).

(6) SH(n+ 1, n, q, α) ≡ SH(n+ 1, n, z
(1−z)2

− z
(1−z)2

, z
1−z +

z
1−z , 1, q, α),

T SH(n + 1, n, q, α) ≡ T SH(n + 1, n, z
(1−z)2

− z
(1−z)2

, z
1−z + z

1−z , 1, q, α),

[14].

(7) SH(Φi, Ψj, α) ≡ SH(0, 0,Φi, Ψj, 1, 1, α),

T SH(Φi, Ψj, α) ≡ T SH(0, 0,Φi, Ψj, 1, 1, α), [15].

We first prove coefficient conditions for the functions in SH(m,n,Φi, Ψj, p, q, α)

and T SH(m,n,Φi, Ψj, p, q, α).

Theorem 3 Let the function f = h + g be such that the functions h and g

are given by (7). Also, let the (p, q)-coefficient inequality

∞∑

k=2

λk[k]
m
p,q − αuk[k]

n
p,q

1− α
|ak|

+

∞∑

k=1

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk| ≤ 1,

(15)

be satisfied for α ∈ [0, 1), 0 < q ≤ p ≤ 1, m ∈ N, n ∈ N0, m > n, λk > uk ≥ 0

(k ≥ 2) and µk > vk ≥ 0 (k ≥ 1). Then
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(i) the function f = h + g given by (7) is a sense-preserving harmonic
univalent functions in D and f ∈ SH(m,n,Φi, Ψj, p, q, α) if the inequality in
(15) is satisfied.
(ii) the function fm = h+gm given by (14) is in the T SH(m,n,Φi, Ψj, p, q, α)

if and only if the inequality in (15) is satisfied.

Proof. (i). Using the techniques used in [14] and [15], it is a routine step to
prove that f = h + g given by (7) is sense-preserving and locally univalent in
D. Using the fact Re(w) > α if and only if |1−α+w| ≥ |1+α−w|, it suffices
to show that

∣

∣

∣

∣

1− α+
(Lmp,qf ∗Φi)(z)

(Lnp,qf ∗ Ψj)(z)

∣

∣

∣

∣

−

∣

∣

∣

∣

1+ α−
(Lmp,qf ∗Φi)(z)

(Lnp,qf ∗ Ψj)(z)

∣

∣

∣

∣

≥ 0. (16)

In view of (12) and (13), left side of (16) yields

∣

∣(Lmp,qf ∗Φi)(z) + (1− α)(Lnp,qf ∗ Ψj)(z)
∣

∣

−
∣

∣(Lmp,qf ∗Φi)(z) − (1+ α)(Lnp,qf ∗ Ψj)(z)
∣

∣

=

∣

∣

∣

∣

(2− α)z+

∞∑

k=2

(λk[k]
m
p,q + (1− α)uk[k]

n
p,q)akz

k

+ (−1)m+i
∞∑

k=1

(µk[k]
m
p,q + (−1)n+j−(m+i)(1− α)vk[k]

n
p,q)bkz

k

∣

∣

∣

∣

−

∣

∣

∣

∣

− αz+

∞∑

k=2

(λk[k]
m
p,q − (1+ α)uk[k]

n
p,q)akz

k

+ (−1)m+i
∞∑

k=1

(µk[k]
m
p,q − (−1)n+j−(m+i)(1+ α)vk[k]

n
p,q)bkz

k

∣

∣

∣

∣

≥ (2− 2α)|z|− 2

∞∑

k=2

(λk[k]
m
p,q − αuk[k]

n
p,q)|ak||z|

k

−

∞∑

k=1

(µk[k]
m
p,q + (−1)n+j−(m+i)(1− α)vk[k]

n
p,q)|b|k|z|

k

−

∞∑

k=1

(µk[k]
m
p,q − (−1)n+j−(m+i)(1+ α)vk[k]

n
p,q)|b|k|z|

k

≥
(

1− α
)

|z|

[

1−

∞∑

k=2

λk[k]
m
p,q − αuk[k]

n
p,q

1− α
|ak||z|

k−1
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−

∞∑

k=1

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk||z|

k−1

]

>
(

1− α
)

|z|

[

1−

( ∞∑

k=2

λk[k]
m
p,q − αuk[k]

n
p,q

1− α
|ak|

+

∞∑

k=1

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk|

)]

.

This last expression is non-negative because of the condition given in (15).
This completes the proof of part (i) of theorem.
(ii). Since

T SH(m,n,Φi, Ψj, p, q, α) ⊂ SH(m,n,Φi, Ψj, p, q, α),

the sufficient part of part (ii) follows from part (i). In order to prove the
necessary part of part (ii), we assume that fm ∈ T SH(m,n,Φi, Ψj, p, q, α).
We notice that

Re

{
(Lmp,qf ∗Φi)(z)

(Lnp,qf ∗ Ψj)(z)
− α

}

= Re

{ (1− α)z−
∞∑

k=2

(λk[k]
m
p,q − αuk[k]

n
p,q)akz

k

z−
∞∑

k=2

uk[k]np,qakzk + (−1)m+i+n+j−1
∞∑

k=1

vk[k]np,qbkz
k

+

(−1)2m+2i−1
∞∑

k=1

(µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q)bkz

k

z−
∞∑

k=2

uk[k]np,qakzk + (−1)m+i+n+j−1
∞∑

k=1

vk[k]np,qbkz
k

}

≥

(1− α) −
∞∑

k=2

(λk[k]
m
p,q − αuk[k]

n
p,q)akr

k−1

−
∞∑

k=1

(µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q)bkrk−1

1−
∞∑

k=2

uk[k]np,qakrk−1 − (−1)m+i+n+j
∞∑

k=1

vk[k]np,qbkrk−1

≥ 0,

by (11). The above inequality must hold for all z ∈ D. In particular, choosing
the values of z on the positive real axis and z → 1−, we obtain the required
condition (15). This completes the proof of part (ii) of theorem.
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The harmonic mappings

f(z) = z+

∞∑

k=2

1− α

λk[k]mp,q − αuk[k]np,q
xkz

k

+

∞∑

k=1

1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
ykz

k,

(17)

where
∞∑

k=2

|xk| +
∞∑

k=1

|yk| = 1, show that the coefficient bound given by (15) is

sharp. �

Theorem 3 also yields the following corollary.

Corollary 4 For the function fm = h+ gm given by (14), we have

|ak| ≤
1− α

λk[k]mp,q − αuk[k]np,q
, k ≥ 2

and

|bk| ≤
1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
, k ≥ 1.

The result is sharp for each k.

Using Theorem 3 (part ii), it is seen that the class T SH(m,n,Φi, Ψj, p, q, α) is
convex and closed with respect to the topology of locally uniform convergence
so that the closed convex hulls of T SH(m,n,Φi, Ψj, p, q, α) equals itself. The
next theorem determines the extreme points of T SH(m,n,Φi, Ψj, p, q, α).

Theorem 5 Let the function fm = h + gm be given by (14). Then the func-

tion fm ∈ clco T SH(m,n,Φi, Ψj, p, q, α) if and only if fm(z) =
∞∑

k=1

(xkhk(z) +

ykgmk
(z)), where

h1(z) = z, hk(z) = z−
1− α

λk[k]mp,q − αuk[k]np,q
zk, k ≥ 2,

gmk
(z) = z+ (−1)m+i−1 1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
zk, k ≥ 1,

and
∞∑

k=1

(xk + yk) = 1 where xk ≥ 0 and yk ≥ 0. In particular, the extreme

points of T SH(m,n,Φi, Ψj, p, q, α) are {hk} and {gmk
}.
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Proof. For a function fm of the form fm(z) =
∞∑

k=1

(xkhk(z)+ykgmk
(z)), where

∞∑

k=1

(xk + yk) = 1, we have

fm(z) = z−

∞∑

k=2

1− α

λk[k]mp,q − αuk[k]np,q
xkz

k

+

∞∑

k=1

(−1)m+i−1 1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
ykz

k.

Then fm ∈ clco T SH(m,n,Φi, Ψj, p, q, α) because

∞∑

k=2

λk[k]
m
p,q − αuk[k]

n
p,q

1− α

(

1− α

λk[k]mp,q − αuk[k]np,q
xk

)

+

∞∑

k=1

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α

(

1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
yk

)

=

∞∑

k=2

xk +

∞∑

k=1

yk = 1− x1 ≤ 1.

Conversely, suppose fm ∈ clco T SH(m,n,Φi, Ψj, p, q, α). Then

|ak| ≤
1− α

λk[k]mp,q − αuk[k]np,q
and |bk| ≤

1− α

µk[k]mp,q − (−1)n+j−(m+i)αvk[k]np,q
.

Set

xk =
λk[k]

m
p,q − αuk[k]

n
p,q

1− α
|ak| and yk =

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk|.

By Theorem 3 (ii),
∞∑

k=2

xk +
∞∑

k=1

yk ≤ 1. Therefore we define x1 = 1 −
∞∑

k=2

xk −

∞∑

k=1

yk ≥ 0. Consequently, we obtain fm(z) =
∞∑

k=1

(xkhk(z) + ykgmk
(z)) as re-

quired. �

For functions in the class T SH(m,n,Φi, Ψj, p, q, α), the following theorem
gives distortion bounds which in turns yields the covering result for this class.
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Theorem 6 Let the function fm ∈ T SH(m,n,Φi, Ψj, p, q, α), γk = λk[k]
m
p,q −

αuk[k]
n
p,q, k ≥ 2 and φk = µk[k]

m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q, k ≥ 1. If {γk}

and {φk} are non-decreasing sequences, then we have

|fm(z)| ≤ (1+ |b1|)|z|+
1− α

β

(

1−
µ1 − (−1)n+j−(m+i)αv1

β
|b1|

)

|z|2 (18)

and

|fm(z)| ≥ (1− |b1|)|z|−
1− α

β

(

1−
µ1 − (−1)n+j−(m+i)αv1

β
|b1|

)

|z|2, (19)

for all z ∈ D, where b1 = fz(0) and

β = min{γ2, φ2} = min{λ2[2]
m
p,q − αu2[2]

n
p,q, µ2[2]

m
p,q − (−1)n+j−(m+i)αv2[2]

n
p,q}.

Proof. Let the function fm ∈ T SH(m,n,Φi, Ψj, p, q, α). Taking the absolute
value of fm, we obtain

|fm(z)| ≤ (1+ |b1|)|z|+

∞∑

k=2

(|ak|+ |bk|)|z|
k

≤ (1+ |b1|)|z|+

∞∑

k=2

(|ak|+ |bk|)|z|
2

≤ (1+ |b1|)|z|+
1− α

β

∞∑

n=2

(

β

1− α
|ak|+

β

1− α
|bk|

)

|z|2

≤ (1+ |b1|)|z|+
1− α

β

∞∑

k=2

(

λk[k]
m
p,q − αuk[k]

n
p,q

1− α
|ak|

+
µk[k]

m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk|

)

|z|2

≤ (1+ |b1|)|z|+
1− α

β

(

1−
µ1 − (−1)n+j−(m+i)αv1

1− α
|b1|

)

|z|2.

This proves (18). The proof of (19) is omitted as it is similar to the proof of
(18). �

The following covering result follows from the inequality (19).

Corollary 7 Under the hypothesis of Theorem 6, we have
{

w : |w| <
1

β

(

β− 1+ α+ (µ1 − (−1)n+j−(m+i)αv1 − β)|b1|
)

}

⊂ f(D).
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Theorem 8 If the function fm ∈ T SH(m,n,Φi, Ψj, p, q, α), then the function
fm is convex in the disc

|z| ≤ min
k

{
1− b1

k[1−
µ1−(−1)n+j−(m+i)αv1

1−α b1]

} 1
k−1

, k ≥ 2.

Proof. Let fm ∈ T SH(m,n,Φi, Ψj, p, q, α) and let r, 0 < r < 1, be fixed. Then
r−1fm(rz) ∈ T SH(m,n,Φi, p, q, α) and we have

∞∑

k=2

k2(|ak|+ |bk|) =

∞∑

k=2

k(|ak|+ |bk|)kr
k−1

≤

∞∑

k=2

(

λk[k]
m
p,q − αuk[k]

n
p,q

1− α
|ak|+

µk[k]
m
p,q − (−1)n+j−(m+i)αvk[k]

n
p,q

1− α
|bk|

)

krk−1

≤

∞∑

k=2

(

1−
µ1 − (−1)n+j−(m+i)αv1

1− α
|b1|

)

krk−1

≤ 1− b1

provided

krk−1 ≤
1− b1

1−
µ1−(−1)n+j−(m+i)αv1

1−α b1

which is true if

r ≤ min
k

{
1− b1

k[1−
µ1−(−1)n+j−(m+i)αv1

1−α b1]

} 1
k−1

, k ≥ 2.

�

Remark 9 Our results naturally includes several results known for those sub-
classes of harmonic functions listed after Definition 2.
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16 O. P. Ahuja, A. Çetinkaya, V. Ravichandran

References

[1] O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal.
Pure Appl. Math., 6 (2005) (4), Art. 122, 18 pp.

[2] O. P. Ahuja, Recent advances in the theory of harmonic univalent map-
pings in the plane, Math. Student, 83 (1–4) (2014), 125–154.
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Abstract. Let G be a group with identity e and let R be a G-graded ring.
In this paper, we introduce and study the concept of gr-n-ideals of R.
We obtain many results concerning gr-n-ideals. Some characterizations
of gr-n-ideals and their homogeneous components are given.

1 Introduction and preliminaries

Throughout this article, rings are assumed to be commutative with 1 6= 0. Let
R be a ring, I be a proper ideal of R. By

√
I, we mean the radical of I which

is {r ∈ R : rn ∈ I for some positive integer n}. In particular,
√
0 is the set of

nilpotent elements in R. Recall from [11] that a proper ideal I of R is said to
be an n-ideal if whenever a, b ∈ R and ab ∈ I with a /∈

√
0 implies b ∈ I. For

a ∈ R, we define Ann(a) = {r ∈ R : ra = 0}.

The scope of this paper is devoted to the theory of graded commutative
rings. One use of rings with gradings is in describing certain topics in algebraic

2010 Mathematics Subject Classification: 13A02, 16W50

Key words and phrases: gr-n-ideals, gr-prime ideals, graded rings
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geometry. Here, in particular, we are dealing with gr-n-ideals in a G-graded
commutative ring.
First, we recall some basic properties of graded rings which will be used in

the sequel. We refer to [6]-[8] for these basic properties and more information
on graded rings.
Let G be a group with identity e. A ring R is called graded (or more precisely,

G-graded ) if there exists a family of subgroups {Rg} of R such that R = ⊕g∈GRg

(as abelian groups) indexed by the elements g ∈ G, and RgRh ⊆ Rgh for all
g, h ∈ G. The summands Rg are called homogeneous components and elements
of these summands are called homogeneous elements. If a ∈ R, then a can be
written uniquely a =

∑
g∈G ag where ag is the component of a in Rg. Also,

we write h(R) = ∪g∈GRg. Let R = ⊕
g∈G

Rg be a G-graded ring. An ideal I of R is

said to be a graded ideal if I = ⊕g∈G(I ∩ Rg) := ⊕g∈GIg. An ideal of a graded
ring need not be graded.
If I is a graded ideal of R, then the quotient ring R/I is a G-graded ring.

Indeed, R/I = ⊕
g∈G

(R/I)g where (R/I)g = {x+ I : x ∈ Rg}. A G-graded ring R is

called a graded integral domain ( gr-integral domain) if whenever rg, sh ∈ h(R)

with rgsh = 0, then either rg = 0 or sh = 0.
The graded radical of a graded ideal I, denoted by Gr(I), is the set of all

x =
∑

g∈G xg ∈ R such that for each g ∈ G there exists ng ∈ N with x
ng
g ∈ I.

Note that, if r is a homogeneous element, then r ∈ Gr(I) if and only if rn ∈ I

for some n ∈ N, (see [10].)
Let R be a G-graded ring. A graded ideal I of R is said to be a graded prime

(gr-prime) if I 6= R; and whenever rg, sh ∈ h(R) with rgsh ∈ I, then either
rg ∈ I or sh ∈ I, (see [10].)
The concepts of graded primary ideals and graded weakly primary ideals

of a graded ring have been introduced in [9] and [5], respectively. Let I be
a proper graded ideal of a graded ring R. Then I is called a graded primary
(gr-primary) (resp. graded weakly primary) ideal if whenever rg, sh ∈ h(R)

and rgsh ∈ I (resp. 0 6= rgsh ∈ I), then either rg ∈ I or sh ∈ Gr(I).
Graded 2-absorbing and graded weakly 2-absorbing ideals of a commutative

graded rings have been introduced in [2]. According to that paper, I is said
to be a graded 2-absorbing (resp. graded weakly 2-absorbing) ideal of R if
whenever rg, sh, ti ∈ h(R) with rgshti ∈ I (resp. 0 6= rgshti ∈ I), then rgsh ∈ I

or rgti ∈ I or shti ∈ I.
Then the graded 2-absorbing primary and graded weakly 2-absorbing pri-

mary ideals defined and studied in [4]. A graded ideal I is said to be a graded
2-absorbing primary (resp. graded weakly 2-absorbing primary) ideal of R if
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whenever rg, sh, ti ∈ h(R) with rgshti ∈ I (resp. 0 6= rgshti ∈ I), then rgsh ∈ I

or rgti ∈ Gr(I) or shti ∈ Gr(I).
Recently, R. Abu-Dawwas and M. Bataineh in [1] introduced and studied

the concepts of graded r-ideals of a commutative graded rings. A proper graded
ideal I of R is said to be a graded r-ideal (gr–r-ideal) of R if whenever rg, sh ∈
h(R) such that rgsh ∈ I and Ann(a) = {0}, then sh ∈ I.

In this paper, we introduce the concept of graded n-ideals (gr-n-ideals) and
investigate the basic properties and facts concerning gr-n-ideals.

2 Results

Definition 1 Let R be a G-graded ring. A proper graded ideal I of R is called
a graded n-ideal of R if whenever rg, sh ∈ h(R) with rgsh ∈ I and rg /∈ Gr(0),

then rg ∈ I. In short, we call it a gr-n-ideal.

Example 1 (i) Suppose that (R,M) is a graded local ring with unique graded
prime ideal. Then every graded ideal is a gr-n-ideal.

(ii) In any graded integral domain D, the graded zero ideal is a gr-n-ideal.

(iii) Any graded ring R need not have a gr-n-ideal. For instance, let G = Z2,

R = Z6 be a G-graded ring with R0 = Z6 and R1 = {0}. Then R has not
any gr-n-ideal.

Lemma 1 Let R be a G-graded ring and I be a graded ideal of R. If I is a
gr-n-ideal of R, then I ⊆ Gr(0).

Proof. Assume that I is a gr-n-ideal and I * Gr(0). Then there exists rg ∈
h(R) ∩ I such that rg /∈ Gr(0). Since rg1 = rg ∈ I and I is a gr-n-ideal, we get
1 ∈ I, so I = R, a contradiction. Hence I ⊆ Gr(0). �

Theorem 1 Let R be a G-graded ring and I be a gr-prime ideal of R. Then I

is a gr-n-ideal of R if and only if I = Gr(0).

Proof. Assume that I is a gr-prime ideal of R. It is easy to see Gr(0) ⊆
Gr(I) = I. If I is a gr-n-ideal of R, by Lemma 1, we have I ⊆ Gr(0) and so
I = Gr(0). For the converse, assume that I = Gr(0). Let rg, sh ∈ h(R) such
that rgsh ∈ I and rg /∈ Gr(0). Since I is a gr-prime ideal and rg /∈ Gr(0) = I,

we get sh ∈ I. �
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Corollary 1 Let R be a G-graded ring. Then Gr(0) is a gr-n-ideal of R if and
only if it is a gr-prime ideal of R.

Proof. Assume that Gr(0) is a gr-n-ideal of R. Let rg, sh ∈ h(R) such that
rgsh ∈ Gr(0) and rg /∈ Gr(0).Then sh ∈ Gr(0) as Gr(0) is a gr-n-ideal of
R. Hence Gr(0) is a gr-prime ideal of R. Conversely, Assume that Gr(0) is a
gr-prime ideal of R, by Theorem 1, we conclude that Gr(0) is a gr-n-ideal
of R. �

The following theorem give us a characterization of gr-n-ideal of a graded
rings.

Theorem 2 Let R be a graded ring and I be a proper graded ideal of R. Then
the following statements are equivalent:

(i) I is a gr-n-ideal of R.

(ii) I = (I :R rg) for every rg ∈ h(R) −Gr(0).

(iii) For every graded ideals J and K of R such that JK ⊆ I and J ∩ (h(R) −

Gr(0)) 6= ∅ implies K ⊆ I.

Proof. (i) ⇒ (ii) Assume that I is a gr-n-ideal of R. Let rg ∈ h(R) − Gr(0).

Clearly, I ⊆ (I :R rg). Now, Let s =
∑

h∈G sh ∈ (I :R rg). This yields that
rgsh ∈ I for each h ∈ G. Since I is a gr-n-ideal of R and rg ∈ h(R) − Gr(0),

we have sh ∈ I for each h ∈ G and so s ∈ I. This implies that (I :R rg) ⊆ I.

Therefore, I = (I :R rg).

(ii) ⇒ (iii) Assume that JK ⊆ I with J ∩ (h(R) − Gr(0)) 6= ∅ for graded
ideals J and K of R. Then there exists rg ∈ J ∩ h(R) such that rg /∈ Gr(0).
Hence rgK ⊆ I, it follows that K ⊆ (I :R rg). By our assumption, we obtain
K ⊆ (I :R rg) = I.

(iii) ⇒ (i) Let rg, sh ∈ h(R) such that rgsh ∈ I and rg /∈ Gr(0). Let J = rgR

and K = shR be two graded ideals of R generated by rg and sh, respectively.
Then JK ⊆ I. By our assumption, we obtain, K ⊆ I and so sh ∈ I. Thus I is a
gr-n-ideal of R. �

Theorem 3 Let R be a G-graded ring and {Iα}α∈Λ be a non empty set of
gr-n-ideals of R. Then ∩i∈∆Ii is gr-n-ideal of R.

Proof. Clearly, ∩α∈ΛIα is a graded ideal of R. Let rg, sh ∈ h(R) such that
rgsh ∈ ∩α∈ΛIα and rg /∈ Gr(0). Then rgsh ∈ Iα for every α ∈ Λ. Since Iα is a
gr-n-ideal of R, we have sh ∈ Iα for every α ∈ Λ thus sh ∈ ∩α∈ΛIα. �
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Theorem 4 Let R be a G-graded ring and I be a graded ideal of R. If I is a
gr-n-ideal of R, then I is a gr-r-ideal of R.

Proof. Assume that I is a gr-n-ideal of R. Let rg, sh ∈ h(R) such that rgsh ∈ I

and ann(rg) = 0. Since ann(rg) = 0, rg /∈ Gr(0). Then sh ∈ I as I is a
gr-n-ideal. Thus I is a gr-r-ideal of R. �

Remark 1 It is easy to see that every graded nilpotent element is also a graded
zero divisor. So graded zero divisors and graded nilpotent elements are equal
in case < 0 > is a graded primary ideal of R. Thus the gr-n-ideals and gr-r-
ideals are equivalent in any graded commutative ring whose graded zero ideal
is graded primary.

Recall that a G-graded ring R is called a G-graded reduced ring if r2 = 0

implies r = 0 for any r ∈ h(R); i.e. Gr(0) = 0.

Theorem 5 Let R be a G-graded ring. Then the following hold:

(i) Any G-graded reduced ring R, which is not graded integral domain, has
no gr-n-ideal.

(ii) If R is a G-graded reduced ring, then R is a graded integral domain if and
only if 0 is a gr-n-ideal.

Proof. (i) Let R be a G-graded reduced ring such that R is not graded integral
domain. Assume that there exists a gr-n-ideal I of R. Since R is a G-graded
reduced ring, Gr(0) = 0. By Lemma 1, we get, I ⊆ Gr(0) = 0 and so Gr(0) =

0 = I. Since Gr(0) = 0 is not gr-prime ideal of R, by Corollary 1, we get
I = Gr(0) is not a gr-n-ideal, a contradiction.
(ii) Assume that R is a G-graded reduced ring. If R is a graded integral

domain, then Gr(0) = 0 is a gr-prime ideal, and hence by Corollary 1, 0 =

Gr(0) is a gr-n-ideal of R. For the converse if 0 is a gr-n-ideal of R, then by
part (i) R is a graded integral domain. �

Theorem 6 Let R be a G-graded ring, I be a gr-n-ideal of R and tg ∈ h(R)−I.

Then (I :R tg) is a gr-n-ideal of R.

Proof. By [9, Proposition 1.13], (I :R tg) is a graded ideal. Since tg /∈ I,

(I :R tg) 6= R. Now, let rh, sλ ∈ h(R) such that rhsλ ∈ (I :R tg) and rh /∈
Gr((I :R tg)). Then rhsλ tg ∈ I. Since I is a gr-n-ideal of R and rh /∈ Gr(0), we
get sλ tg ∈ I. This yields that sλ ∈ (I :R tg). Therefore, (I :R tg) is a gr-n-ideal
of R. �
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Theorem 7 Let R be G-graded ring and I be a graded ideal of R. If I is a
maximal gr-n-ideal of R, then I = Gr(0).

Proof. Assume that I is a maximal gr-n-ideal of R. Let rg, sh ∈ h(R) such
that rgsh ∈ I and rg /∈ I. Since I is a gr-n-ideal and rg /∈ I, by Theorem 6, we
have (I :R rg) is a gr-n-ideal. Thus sh ∈ (I :R rg) = I by maximality of I. This
yields that I is a gr-prime ideal of R. By Theorem 1, we get I = Gr(0). �

Lemma 2 Let R be a G-graded ring and {Ii : i ∈ Λ} be a directed collection of
gr-n-ideals of R. Then I = ∪i∈ΛIi is a gr-n-ideal of R.

Proof. Suppose that rgsh ∈ I and rg /∈ Gr(0) for some rg, sh ∈ h(R). Hence
rgsh ∈ Ik for some k ∈ Λ. Since Ik is a gr-n-ideal of R, we conclude that
sh ∈ Ik ⊆ ∪i∈ΛIi = I. Thus I is a gr-n-ideal. �

Theorem 8 Let R be a G-graded ring. Then the following statements are
equivalent:

(i) Gr(0) is a gr-prime ideal of R.

(ii) There exists a gr-n-ideal of R.

Proof. (i) ⇒ (ii) It is clear by Corollary 1.
(ii) ⇒ (i) First we show that R has a maximal gr-n-ideal. Let D be the set

of all gr-n-ideals of R. Then by our assumption, D 6= ∅. Since D is a poset
by the set inclusion, take a chain I1 ⊆ I2 ⊆ · · · in D. We conclude that the
upper bound of this chain is I = ∪∞

i=1Ii by Lemma 2. Then D has a maximal
element which is a maximal gr-n-ideal. Thus that ideal is Gr(0) by Corollary
1 and Theorem 7. �

In view of Lemma 1 and Theorem 8, we have the following result.

Theorem 9 Let R be a G-graded ring and I a graded ideal of R such that
I ⊆ Gr(0).

(i) I is a gr-n-ideal if and only if I is a gr-primary ideal.

(ii) If I is a gr-n-ideal, then I is a graded weakly primary (so graded weakly
2-absorbing primary) and graded 2-absorbing primary ideal.

(iii) If Gr(0) is gr-prime, then I is a graded weakly 2-absorbing primary ideal
if and only if I is a graded 2-absorbing primary ideal of R.
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(iv) If R has at least one gr-n-ideal, then I is a graded weakly 2-absorbing
primary ideal if and only if I is a graded 2-absorbing primary ideal of R.

Proof. Straightforward. �

Theorem 10 Let R be a G-graded ring. Then R is a graded integral domain
if and only if 0 is the only gr-n-ideal of R.

Proof. Let R be a graded integral domain. Assume that I is a nonzero gr-n-
ideal of R. Then we have I ⊆ Gr(0) = 0 by Lemma 1, a contradiction. Hence 0
is a gr-n-ideal by Example 1 (ii). Conversely, if 0 is the only gr-n-ideal, we get
Gr(0) is a gr-prime ideal and also a gr-n-ideal by Corollary 1 and Theorem
8. Hence Gr(0) = 0 is a gr-prime ideal. Thus R is a graded integral domain. �

Theorem 11 Let R be a G-graded ring and J be a graded ideal of R with
J ∩ (h(R) −Gr(0)) 6= ∅. Then the following statements hold:

(i) If I1 and I2 are gr-n-ideals of R such that I1J = I2J, then I1 = I2.

(ii) If IJ is a gr-n-ideal of R, then IJ = I.

Proof.

(i) Suppose that I1J = I2J. Since I2J ⊆ I1, J ∩ (h(R) − Gr(0)) 6= ∅, and I1 is
a gr-n-ideal, by Theorem 2, we conclude that I2 ⊆ I1. Similarly, since I2 is a
gr-n-ideal, we have the inverse inclusion.
(ii) It is clear from (i). �

For G-graded rings R and R′, a G-graded ring homomorphism f : R → R′ is
a ring homomorphism such that f(Rg) ⊆ R′

g for every g ∈ G.

The following result studies the behavior of gr-n-ideals under graded homo-
morphism.

Theorem 12 Let R1 and R2 be two G-graded rings and f : R1 → R2 a graded
ring homomorphism. Then the following statements hold:

(i) If f is a graded epimorphism and I1 is a gr-n-ideal of R1 containing kerf,
then f(I1) is a gr-n-ideal of R2.

(ii) If f is a graded monomorphism and I2 is a gr-n-ideal of R2, then f−1(I2)

is a gr-n-ideal of R1.
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Proof. (i) Suppose that rgsh ∈ f(I1) and rg /∈ Gr(0R2
) for some rg, sh ∈

h(R2). Since f is onto, f(xg) = rg, f(yh) = sh for some xg, yh ∈ h(R1).

Hence f(xgyh) ∈ f(I1) implies that xgyh ∈ I1 as Kerf ⊆ I1. It is clear that
xg /∈ Gr(0R1

). Since I1 is a gr-n-ideal of R1, we conclude that yh ∈ I1; and so
sh = f(yh) ∈ f(I1). Thus f(I1) is a gr-n-ideal of R2.

(ii) Suppose that rgsh ∈ f−1(I2) and rg /∈ Gr(0R1
) for some rg, sh ∈ h(R1).

Since kerf = {0}, we have f(rg) /∈ Gr(0R2
). Since f(rgsh ) = f(rg)f(sh ) ∈ I2 and

I2 is a gr-n-ideal of R2, we conclude that f(sh ) ∈ I2. It means sh ∈ f−1(I2),
we are done. �

Corollary 2 Let I1 and I2 be two graded ideals of a G-graded ring R with
I1 ⊆ I2. Then the following statements hold:

(i) If I2 is a gr-n-ideal of R, then I2/I1 is a gr-n-ideal of R/I1.

(ii) If I2/I1 is a gr-n-ideal of R/I1 and I1 ⊆ Gr(0), then I2 is a gr-n-ideal of
R.

(iii) If I2/I1 is a gr-n-ideal of R/I1 and I1 is a gr-n-ideal of R, then I2 is a
gr-n-ideal of R.

Proof. (i) Considering the natural graded epimorphism Π : R → R/I1, the
result is clear by Theorem 12.
(ii) Suppose that rgsh ∈ I2 and rg /∈ Gr(0) for some rg, sh ∈ h(R). Hence

(rg + I1)(sh + I1) = rgsh + I1 ∈ I2/I1 and rg /∈ Gr(0R/I1). It implies that
sh + I2 ∈ I1/I2. Thus sh ∈ I1, we are done.
(iii) Let I2/I1 be a gr-n-ideal of R/I1 and I1 a gr-n-ideal of R. Assume that

I2 is not gr-n-ideal. Then I1 * Gr(0) by (ii). From Lemma 1, we conclude that
I1 is not a gr-n-ideal, a contradiction. Thus I2 is a gr-n-ideal of R. �

Corollary 3 Let R be a G-graded ring, I be a gr-n-ideal of R and S a subring
of R with S * I. Then I ∩ S is a gr-n-ideal of S.

Proof. Consider the injection i : S → R. Then i is a graded homomorphism.
Since I is a gr-n-ideal of R, i−1(I) = I ∩ S is a gr-n-ideal of S by Theorem 12
(ii). �

Let R be a G-graded ring and S ⊆ h(R) a multiplicatively closed subset of
R. Then graded ring of fractions is denoted by S−1R which defined by S−1R =

⊕g∈G(S
−1R)g where (S−1R)g = {as : a ∈ R, s ∈ S, g = (deg s)−1(dega)}.

A homogeneous element rg ∈ h(R) is said to be gr-regular if ann(rg) = 0.
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Observe that the set of all gr-regular elements of R is a multiplicatively closed
subset of R.
The following result studies the behaviour of gr-n-ideal under localization.

Theorem 13 Let R be a G-graded ring, S ⊆ h(R) a multiplicatively closed
subset of R. Then the following statements hold:

(i) If I is a gr-n-ideal of R, then S−1I is a gr-n-ideal of S−1R.

(ii) Let S be the set of all gr-regular elements of R. If J is a gr-n-ideal of
S−1R, then Jc is a gr-n-ideal of R.

Proof. (i) Suppose that a
s
b
t ∈ S−1I with a

s /∈ Gr(0S−1R) for some a
s ,

b
t ∈

h(S−1R). Hence there exists u ∈ h(S) such that uab ∈ I. Clearly, we have
a /∈ Gr(0). It implies that ub ∈ I; so b

t = ub
ut ∈ S−1I. Thus S−1I is a gr-n-ideal

of S−1R.

(ii) Suppose that a, b ∈ h(R) with ab ∈ Jc and b /∈ Jc. Then b
1 /∈ J. Since

J is a gr-n-ideal, we have a
1 ∈ Gr(0S−1R). Hence uak = 0 for some u ∈ S and

k ≥ 1. Since u is gr-regular, ak = 0; i.e. a ∈ Gr(0). Thus Jc is a gr-n-ideal
of R. �

Definition 2 Let S be a nonempty subset of a G-graded ring R with h(R) −

Gr(0) ⊆ S ⊆ h(R). Then we call S gr-n-multiplicatively closed subset of R if
whenever rg ∈ h(R) −Gr(0) and sh ∈ S, then rgsh ∈ S.

Theorem 14 Let I be a graded ideal of a G-graded ring R. Then the following
statements are equivalent:

(i) I is a gr-n-ideal of R.

(ii) h(R) − I is a gr-n-multiplicatively closed subset of R.

Proof. (i) ⇒ (ii) Let I be a gr-n-ideal of R. Suppose that rg ∈ h(R) − Gr(0)

and sh ∈ h(R) − I. Since rg /∈ Gr(0), sh /∈ I, and I is a gr-n-ideal of R, we
conclude that rgsh /∈ I. Therefore rgsh ∈ h(R) − I. Since I is a gr-n-ideal of R,
we have I ⊆ Gr(0) by Lemma 1. Then h(R) −Gr(0) ⊆ h(R) − I.
(ii) ⇒ (i) Suppose that rg, sh ∈ h(R) with rgsh ∈ I and rg /∈ Gr(0). If

sh ∈ h(R) − I, then from our assumption (ii), we have rgsh ∈ h(R) − I, a
contradiction. Thus sh ∈ I which means that I is a gr-n-ideal of R. �

Theorem 15 Let I be a graded ideal of a G-graded ring R and S a gr-n-
multiplicatively closed subset of R with I∩S = ∅. Then there exists a gr-n-ideal
K of R such that I ⊆ K and K ∩ S = ∅.
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Proof. Let D = {J : J is a graded ideal of R with I ⊆ J and J∩ S = ∅}. Observe
thatD 6= ∅ as I ∈ D. Suppose J1 ⊆ J2 ⊆ · · · is a chain inD. Then ∪∞

i=1Ji is a gr-
n-ideal of R by Lemma 2. Since I ⊆ ∪∞

i=1Ji and (∪∞

i=1Ji)∩S = ∪∞

i=1(Ji ∩S) = ∅,
we get ∪∞

i=1Ji is the upper bound of this chain. From Zorn’s Lemma, there is
a maximal element K of D. We show that this maximal element K is a gr-n-
ideal of R. Suppose that rgsh ∈ K and sh /∈ K for some rg, sh ∈ h(R). Then
K ( (K :R rg). Since K is maximal, it implies that (K :R rg) ∩ S 6= ∅. Hence
there is an element tλ ∈ (K :R rg) ∩ S. Then rgtλ ∈ K. If rg ∈ Gr(0), then we
are done. So assume that rg /∈ Gr(0). Since S is gr-n-multiplicatively closed,
we conclude that rgtλ ∈ S. Thus rgtλ ∈ S ∩ K, a contradiction. Therefore K is
a gr-n-ideal of R. �
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Abstract. A generalized hypersubstitution of type τ maps each oper-
ation symbol of the type to a term of the type, and can be extended
to a mapping defined on the set of all terms of this type. The set of all
such generalized hypersubstitutions forms a monoid. An element a of a
semigroup S is intra-regular if there is b ∈ S such that a = baab. In this
paper, we determine the set of all intra-regular elements of this monoid
for type τ = (2).

1 Introduction

A solid variety is a variety in which every identity holds as a hyperidentity, that
is, we substitute not only elements for the variables but also term operations
for the operation symbols. The notions of hyperidentities and hypervarieties
of a given type τ without nullary operations were studied by J. Aczèl [1], V.D.
Belousov [2], W.D. Neumann [8] and W. Taylor [13]. The main tool used to
study hyperidentities and hypervarieties is the concept of a hypersubstitution,
introduced by K. Denecke et al. [5]. The concept of a generalized hypersubsti-
tution was introduced by S. Leeratanavalee and K. Denecke [7]. The authors
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defined a binary operation on the set of all generalized hypersubstitutions and
proved that this set together with the binary operation forms a monoid. In
2010, W. Puninagool and S. Leeratanavalee determined all regular elements
of this monoid for type τ = (n), see [10]. The set of all completely regular
elements of this monoid of type τ = (n) was determined by A. Boonmee and
S. Leeratanavalee [3]. Furthermore, we found that every completely regular
element is intra-regular. In the present paper, we show that the set of all
completely regular elements and the set of all intra-regular elements of type
τ = (2) are the same.
Let n ≥ 1 be a natural number and let Xn := {x1, x2, . . . , xn} be an n-

element set which is called an n-element alphabet and let its elements be
called variables. Let X := {x1, x2, . . .} be a countably infinite set of variables
and {fi | i ∈ I} be a set of ni-ary operation symbols, which is disjoint from X,
indexed by the set I. To every ni-ary operation symbol fi we assign a natural
number ni ≥ 1, called the arity of fi. The sequence τ = (ni)i∈I is called the
type. For n ≥ 1, an n-ary term of type τ is defined in the following inductive
way:

(i) Every variable xi ∈ Xn is an n-ary term of type τ.

(ii) If t1, . . . , tni
are n-ary terms of type τ then fi(t1, . . . , tni

) is an n-ary
term of type τ.

The smallest set which contains x1, . . . , xn and is closed under any finite
number of applications of (ii) is denoted by Wτ(Xn), and is called the set of
all n- ary terms of type τ. The set Wτ(X) := ∪∞

n=1Wτ(Xn) is called the set of
all terms of type τ.

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ : {fi |

i ∈ I} → Wτ(X) which does not necessarily preserve the arity. Let HypG(τ)

be the set of all generalized hypersubstitutions of type τ. In general, the usual
composition of mappings can be used as a binary operation on mappings.
But in the case of HypG(τ) this can not be done immediately. To define a
binary operation on this set, we define inductively the concept of a generalized
superposition of terms Sm : Wτ(X)

m+1 → Wτ(X) by the following steps:

(i) If t = xj, 1 ≤ j ≤ m, then Sm(xj, t1, . . . , tm) := tj.

(ii) If t = xj, m < j ∈ N, then Sm(xj, t1, . . . , tm) := xj.

(iii) If t = fi(s1, s2, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , S

m(sni
, t1, . . . , tm)).
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We extend any generalized hypersubstitution σ to a mapping σ̂ : Wτ(X) →
Wτ(X) inductively defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, t2, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary opera-
tion symbol fi assuming that σ̂[tj], 1 ≤ j ≤ ni are already defined.

Now, we define a binary operation ◦G on HypG(τ) by σ1 ◦Gσ2 := σ̂1 ◦σ2 where
◦ denotes the usual composition of mappings. Let σid be the hypersubstitution
which maps each ni−ary operation symbol fi to the term fi(x1, x2, . . . , xni

).
Then HypG(τ) = (HypG(τ), ◦G, σid) is a monoid [7].
From now on, we introduce some notations which will be used throughout

this paper. For a type τ = (n) with an n−ary operation symbol f and t ∈

W(n)(X), we denote
σt - the generalized hypersubstitution σ of type τ = (n) which maps f to the
term t,
var(t) - the set of all variables occurring in the term t,
vbt(x) - the total number of x-variable occurring in the term t.
For a term t ∈ W(n)(X), the set sub(t) of its subterms is defined as follows

([11], [12]):

(i) if t ∈ X, then sub(t) = {t},

(ii) if t = f(t1, . . . , tn), then sub(t) = {t} ∪ sub(t1) ∪ . . . ∪ sub(tn).

Example 1 Let τ = (2) and t ∈ W(2)(X) where t = f(t1, t2) with t1 =

f(x3, f(x1, x4)) and t2 = f(f(x7, x1), f(x2, x1)). Then
var(t) = {x1, x2, x3, x4, x7}

vbt(x1) = 3, vbt(x2) = 1, vbt(x3) = 1, vbt(x4) = 1, vbt(x7) = 1,
sub(t1) = {t1, f(x1, x4), x1, x3, x4},
sub(t2) = {t2, f(x7, x1), f(x2, x1), x1, x2, x7},
sub(t) = {t, t1, t2, f(x1, x4), f(x7, x1), f(x2, x1), x1, x2, x3, x4, x7}.

2 Sequence of terms

In this section, we construct some tools used to characterize all intra-regular
elements in HypG(2). These tools are called the sequence of a term and the
depth of a term, respectively.
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Definition 1 Let t ∈ W(n)(X) \ X where t = f(t1 . . . , tn) for some t1, . . . tn ∈

W(n)(X). For each s ∈ sub(t), s 6= t, a set seqt(s) of sequences of s in t is de-
fined by where πil : W(n)(X) \X → W(n)(X) by the formula πil(f(t1, . . . , tn)) =

til. Maps πil are defined for il = 1, 2, . . . , n.

Example 2 Let t ∈ W(4)(X) where t = f(t1, t2, t3, t4) such that t1 = f(x3, x1, s,

x4), t2 = x4, t3 = (f(x7, s, x1, x4), x4, f(x8, f(x3, x1, s, x4), x2, f(x3, x1, s, x4)), s)

and t4 = s for some s ∈ W(4)(X). Then
seqt(s) = {(1, 3), (3, 1, 2), (3, 3, 2, 3), (3, 3, 4, 3), (3, 4), (4)},
seqt3(s) = {(1, 2), (3, 2, 3), (3, 4, 3), (4)},
seqt(t1) = {(1), (3, 3, 2), (3, 3, 4)}

seqt(x4) = {(1, 4), (2), (3, 1, 3)}.

Lemma 1 ([4]) Let t, s ∈ W(n)(X)\X, x ∈ var(t) and var(s)∩Xn = {xz1 , . . . , xzk}.
If (i1, . . . , im) ∈ seqt(x) where i1, . . . , im ∈ {z1, . . . , zk} then x ∈ var(σ̂s[t]) =

var(σs ◦G σt) and there is (ai1 , . . . , aim) ∈ seqσ̂s[t](x) where aij is a sequence
of natural numbers j1, . . . , jh such that (j1, . . . , jh) ∈ seqs(xij) for all j ∈

{1, . . . ,m}.

Let t ∈ W(n)(X) \ X, and ti ∈ sub(t). It can be possible that ti occurs in the
term t more than once, we denote

t
(j)
i - subterm ti occurring in the jth order of t (from the left).

Definition 2 Let t ∈ W(n)(X)\X where t = f(t1, . . . , tn) for some t1, . . . , tn ∈

W(n)(X) and let πil : W(n)(X)\X → W(n)(X) by the formula πil(t) = πil(f(t1, . . . ,

tn)) = til . Maps πil are defined for il = 1, 2, . . . , n. For each s(j) ∈ sub(t) for
some j ∈ N, we denote the sequence of s(j) in t by seqt(s(j)) and denote the
depth of s(j) in t by deptht(s(j)). If s(j) = πim ◦ . . . ◦ πi1(t) for some m ∈ N,
then

seqt(s(j)) = (i1, . . . , im) and deptht(s(j)) = m.

Example 3 Let τ = (3) and let t ∈ W(3)(X)\X where t = f(t1, t2, t3) such that
t1 = x5, t2 = f(x3, f(x4, f(x2, x7, x10), x5), x5) and t3 = f(f(x5, x4, f(x2, x7, x10)),

x1, x6). Then

seqt(x
(1)
5 ) = (1) and deptht(x

(1)
5 ) = 1;

seqt(x
(2)
5 ) = (2, 2, 3) and deptht(x

(2)
5 ) = 3;

seqt(x
(3)
5 ) = (2, 3) and deptht(x

(3)
5 ) = 2;
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seqt(x
(4)
5 ) = (3, 1, 1) and deptht(x

(4)
5 ) = 3;

seqt(f(x2, x7, x10)
(1)) = (2, 2, 2) and deptht(f(x2, x7, x10)

(1)) = 3;

seqt(f(x2, x7, x10)
(2)) = (3, 1, 3) and deptht(f(x2, x7, x10)

(2)) = 3;

seqt3(f(x2, x7, x10)
(1)) = (1, 3) and deptht3(f(x2, x7, x10)

(1)) = 2;

seqt(x
(1)
10 ) = (2, 2, 2, 3) and deptht(x

(1)
10 ) = (4);

seqt(x
(2)
10 ) = (3, 1, 3, 3) and deptht(x

(2)
10 ) = 4;

seqt3(x
(1)
10 ) = (1, 3, 3) and deptht3(x

(1)
10 ) = 3.

Let t, s1, s2, . . . , sk ∈ W(n)(X) \ X and xi ∈ var(t). We donote

x
(j)
i - variable xi occurring in the jth order of t (from the left);

x
(j,j1)
i - variable x

(j)
i occurring in the jth1 order of σ̂s1 [t] (from the left);

x
(j,j1,j2)
i - variable x

(j,j1)
i occurring in the jth2 order of σ̂s2 [σ̂s1 [t]] (from the

left).
Similarly,

x
(j,j1,j2,...,jk)
i - variable x

(j,j1,...,jk−1)
i occurring in the jthk order of

σ̂sk [σ̂sk−1
[. . . [σ̂s2 [σ̂s1 [t]] . . .] (from the left).

Theorem 1 Let t, s ∈ W(n)(X) \ X and x
(j)
i ∈ var(t) for some i, j ∈ N and let

seqt(x
(j)
i ) = i1, . . . , im. Then xi1 , . . . , xim ∈ var(s) ∩ Xn if and only if x

(j,j1)
i ∈

var(σ̂s[t]) = var(σs ◦G σt) for some j1 ∈ N and seqσ̂s[t](x
(j,j1)
i ) = (ai1 , . . . , aim)

where ail is a sequence of natural number p1, . . . , pq such that (p1, . . . , pq) =

seqs(xhl

il
) for some hl ∈ N and for all l ∈ {1, . . . ,m}.

Proof.(⇒) By Lemma 1.

(⇐) Assume that x
(j,j1)
i ∈ var(σ̂s[t]) = var(σs ◦G σt) for some j1 ∈ N and

seqσ̂s[t](x
(j,j1)
i ) = (ai1 , . . . , aim) where ail is a sequence of natural number

p1, . . . , pq such that (p1, . . . , pq) = seqs(xhl

il
) for some hl ∈ N and for all

l ∈ {1, . . . ,m}. Then

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× . . .× vbs(xim).

Suppose that xik /∈ var(s) ∩ Xn for some 1 ≤ k ≤ m, so vbs(xiz) = 0, i.e.

vbσ̂s[t](x
(j)
i ) = 0, which contradicts to our assumption. Hence xi1 , . . . , xim ∈

var(s) ∩ Xn. �

Example 4 Let τ = (3) and let t = f(x2, f(x4, x5, x2), f(x2, x6, x7)) and s =

f(x3, x1, x3). Then seqt(x
(1)
2 ) = (1), seqt(x

(2)
2 ) = (2, 3), seqt(x

(3)
2 ) = (3, 1)
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and seqt(x
(1)
7 ) = (3, 3). By Theorem 1 , there is x

(1,h)
2 , x

(3,k1)
2 , x

(3,k2)
2 , x

(1,l1)
7 ,

x
(1,l2)
7 , x

(1,l3)
7 , x

(1,l4)
7 ∈ var(σ̂s[t]) for some h, k1, k2, l1, l2,3 , l4 ∈ N and

seqσ̂s[t](x
(1,h)
2 ) = (2) = seqσ̂s[t](x

(1,2)
2 ) where seqs(x

(1)
1 ) = (2)

seqσ̂s[t](x
(3,k1)
2 ) = (1, 2) = seqσ̂s[t](x

(3,1)
2 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(1)
1 ) = (2)

seqσ̂s[t](x
(3,k2)
2 ) = (3, 2) = seqσ̂s[t](x

(3,3)
2 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(1)
1 ) = (2)

seqσ̂s[t](x
(1,l1)
7 ) = (1, 1) = seqσ̂s[t](x

(1,1)
7 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(1)
3 ) = (1)

seqσ̂s[t](x
(1,l2)
7 ) = (1, 3) = seqσ̂s[t](x

(1,2)
7 ) where seqs(x

(1)
3 ) = (1) and

seqs(x
(2)
3 ) = (3)

seqσ̂s[t](x
(1,l3)
7 ) = (3, 1) = seqσ̂s[t](x

(1,3)
7 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(1)
3 ) = (1)

seqσ̂s[t](x
(1,l4)
7 ) = (3, 3) = seqσ̂s[t](x

(1,4)
7 ) where seqs(x

(2)
3 ) = (3) and

seqs(x
(2)
3 ) = (3).

Since x2 /∈ var(s), so x
(2,i)
2 /∈ var(σ̂s[t]) for all i ∈ N. Consider,

σ̂s[t] = σ̂s[f(x
(1)
2 , f(x4, x5, x

(2)
2 ), f(x

(3)
2 , x6, x

(1)
7 ))]

= S3(f(x3, x1, x3), σ̂s[x
(1)
2 ], σ̂s[f(x4, x5, x

(2)
2 )], σ̂s[f(x

(3)
2 , x6, x

(1)
7 )])

= f(f(x
(1,1)
7 , x

(3,1)
2 , x

(1,2)
7 ), x

(1,2)
2 , f(x

(1,3)
7 , x

(3,3)
2 , x

(1,4)
7 ))

= f(f(x7, x2, x7), x2, f(x7, x2, x7)).

Corollary 1 Let t, s ∈ W(n)(X)\X and x
(j)
i ∈ var(t) for some i, j ∈ N such that

seqt(x
(j)
i ) = (i1, i2, . . . , im) for some i1, i2, . . . , im ∈ {1, . . . , n} and xik ∈ var(s)

for all 1 ≤ k ≤ m. Then there is j1 ∈ N such that

depthσ̂s[t](x
(j,j1)
i ) = depths(x

(l1)
i1

) + depths(x
(l2)
i2

) + . . .+ depths(x
(lm)
im

)

for some l1, l2, . . . , lm ∈ N, and

vbσ̂s[t](x
(j)
i ) = vbs(xi1)× vbs(xi2)× . . .× vbs(xim).

Let vbt(xi) = d.

If xi ∈ Xn, then vbσ̂s[t](xi) =

d∑

j=1

vbσ̂s[t](x
(j)
i ).
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If xi ∈ X \ Xn where xi /∈ var(s), then vbσ̂s[t](xi) =

d∑

j=1

vbσ̂s[t](x
(j)
i ).

3 Main results

In this section, we will show that the set of all completely regular elements
and the set of all intra-regular elements in HypG(2) are the same. First, we
recall definitions of regular and completely regular elements and then we char-
acterize all completely regular elements in HypG(2).

Definition 3 [6] An element a of a semigroup S is called regular if there exists
x ∈ S such that axa = a.

Definition 4 [9] An element a of a semigroup S is called completely regular
if there exists b ∈ S such that a = aba and ab = ba.

Let σt ∈ HypG(2). We denote
R1 := {σxi |xi ∈ X};
R2 := {σt|var(t) ∩ X2 = ∅};
R3 := {σt|t = f(t1, t2) where ti = xj for some i, j ∈ {1, 2} and var(t)∩X2 =

{xj}}∪ {σf(x1,x2), σf(x2,x1)}

CR(R3) := {σt|t = f(t1, t2) where ti = xi for some i ∈ {1, 2} and var(t) ∩
X2 = {xi}}∪ {σf(x1,x2), σf(x2, x1)}.

It was shown in [10] and [3] that

3⋃

i=1

Ri is the set of all regular elements

in HypG(2) and CR(HypG(2)) := CR(R3)∪ R1 ∪ R2 is the set of all completely
regular elements in HypG(2), respectively.

Definition 5 [9] An element a of a semigroup S is called intra-regular if there
is b ∈ S such that a = baab.

Theorem 2 [3] Let S be a semigroup and a ∈ S. If a is completely regular,
then a is intra-regular.

Corollary 2 [3] Let σt ∈ CR(HypG(2)). Then σt is intra-regular in HypG(2).

Lemma 2 Let t = f(t1, x1) where t1 ∈ W(2)(X) \ X2. Then σt is not intra-
regular in HypG(2).
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Proof. Let t = f(t1, x1) where t1 ∈ W(2)(X) \ X2. For each u ∈ X, we get

σu ◦G σ2
t ◦G σv 6= σt and σv ◦G σ2

t ◦G σu 6= σt for all v ∈ W(2)(X). Let u, v ∈

W(2)(X) \ X where u = f(u1, u2) and v = f(v1, v2) for some u1, u2, v1, v2 ∈

W(2)(X), we will show that σu ◦G σ2
t ◦G σv 6= σt. If t1 ∈ X \ X2 then x2 /∈

var(t). By Theorem 1, x1 /∈ var(σ̂t[t]) = var(σ2
t), i.e. var(σ

2
t) ∩ X2 = ∅. Hence

σu ◦G σ2
t ◦G σv 6= σt. If t1 ∈ W(2)(X) \ X,

σ2
t(f) = σ̂t[t] = S2(f(t1, x1), σ̂t[t1], x1) = f(w1, w2)

where w1 = S2(t1, σ̂t[t1], x1) and w2 = S2(x1, σ̂t[t1], x1) = σ̂t[t1]. Let w =

f(w1, w2). Since t1 /∈ X, so w1 /∈ X and w2 = σ̂t[t1] /∈ X. Consider

σ2
t ◦G σv(f) = σ̂w[v] = S2(f(w1, w2), σ̂w[v1], σ̂w[v2]) = f(s1, s2)

where si = S2(wi, σ̂w[v1], σ̂w[v2]) for all i ∈ {1, 2}. Since wi /∈ X for all i ∈ {1, 2},
si /∈ X for all i ∈ {1, 2}. Then σ̂u[si] /∈ X for all i ∈ {1, 2}. Consider

σu ◦G σ2
t ◦G σv(f) = S2(f(u1, u2), σ̂u[s1], σ̂u[s2]) = f(r1, r2)

where ri = S2(ui, σ̂u[s1], σ̂u[s2]) for all i ∈ {1, 2}. If u2 ∈ W(2)(X)\X or u2 ∈ X2

then r2 /∈ X. If u2 ∈ X\X2 then u2 = r2. So r2 6= x1. Therefore σu ◦Gσ2
t ◦Gσv 6=

σt. Hence σt is not intra-regular in HypG(2). �

Lemma 3 Let t = f(x2, t2) where t2 ∈ W(2)(X) \ X2. Then σt is not intra-
regular in HypG(2).

Proof. The proof is similar to the proof of Lemma 2. �

Lemma 4 Let t = f(x1, t2) where t2 ∈ W(2)(X) \X2 and x2 ∈ var(t). Then σt

is not intra-regular in HypG(2).

Proof. Assume that t = f(x1, t2) where t2 ∈ W(2)(X)\X2 and x2 ∈ var(t). Let

m = max{deptht(x
(i)
2 )|x

(i)
2 ∈ var(t) for some i ∈ N} (∗), then there exists h ∈ N

such that seqt(x
(h)
2 ) = (i1, i2, . . . , im) where i1, i2, . . . , im ∈ {1, 2}. It means

x
(h)
2 = πim ◦ πim−1

◦ . . . ◦ πi1(t) where maps πi1 , . . . , πim−1
, πim are defined

on W(2)(X) \ X2 to W(2)(X). Since x
(h)
2 ∈ var(t2), πi1(t) = t2, i.e. i1 = 2.

So seqt(x
(h)
2 ) = (2, i2, . . . , im). By Theorem 1, there is x

(h,h1)
2 ∈ var(σ̂t[t]) =

var(σ2
t) for some h1 ∈ N such that

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, . . . , im, ai2 , . . . , aim)
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where (2, i2, . . . , im) = seqt(x
(h)
2 ) and aiz is a sequence of natural numbers such

that (aiz) = seqs(x
(hiz )

iz
) for some hiz ∈ N and for all 2 ≤ z ≤ m.

[
Note: x

(h)
2

is a variable x2 occurring in the hth order of t (from the left) and x
(h,h1)
2 is

a variable x
(h)
2 occurring in the hth

1 order of σ2
t (from the left)

]
. Instead of a

sequence ai2 , . . . , aim , we write a sequence of natural numbers w1, . . . , wd for
some d ∈ N and w1, . . . , wd ∈ {1, 2}. Then

seqσ
2
t (x

(h,h1)
2 ) = (2, i2, . . . , im, w1, . . . , wd).

Suppose that there exist u, v ∈ W(2)(X) such that σu ◦G σ2
t ◦G σv = σt (∗∗), i.e.

u = f(x1, u2) and v = f(x1, v2) for some u2, v2 ∈ W2(X) where x2 ∈ var(u2) ∩

var(v2). Choose x
(j)
2 ∈ var(v) for some j ∈ N. Then seqv(x

(j)
2 ) = (2, p1, . . . , pq)

for some p1, . . . , pq ∈ {1, 2} and for some q ∈ N. By Theorem 1, there is

x
(j,j1)
2 ∈ var(σ2

t ◦G σv) for some j1 ∈ N such that

seqσ
2
t◦Gσv(x

(j,j1)
2 ) = (2, i2, . . . , im, w1, . . . , wd, ap1 , . . . , apq)

where (2, i2, . . . , im, w1, . . . , wd) = seqσ
2
t (x

(h,h1)
2 ) and apz is a sequence of natu-

ral numbers such that (apz) = seqs(x
(lz)
pz ) for some lz ∈ N and for all 1 ≤ z ≤ q.[

Note: x
(j)
2 is a variable x2 occurring in the jth order of v (from the left) and

x
(j,j1)
2 is a variable x

(j)
2 occurring in the jth1 order of σ2

t ◦G σv (from the left)
]
.

Instead of a sequence ap1 , . . . , apq we write a sequence of natural numbers
wd+1, . . . , wk for some k ∈ N and wd+1, . . . , wk ∈ {1, 2}. Then

seqσ
2
t◦Gσv(x

(j,j1)
2 ) = (2, i2, . . . , im, w1, . . . , wd, wd+1, . . . , wk).

By Theorem 1, we have x
(j,j1,j2)
2 ∈ var(σu ◦G σ2

t ◦G σv) for some j2 ∈ N. By
Corollary 1, we have

depthσu◦Gσ2
t◦Gσv(x

(j,j1,j2)
2 )= depthu(x

(b1)
2 )+ depthu(x

(b2)
i2

)+ . . .+ depthu(x
(bm)
im

)

+ depthu(x
(bm+1)
w1

) + . . .+ depthu(x
(bm+d)
wd

)

+ depthu(x
(bm+d+1)
wd+1

) + . . .+ depthu(x
(bm+k)
wk

)

> m

for some b1, . . . , bm, bm+1, . . . , bm+d, bm+d+1, . . . , bm+k ∈ N, which contradicts
to (∗) and (∗∗). Therefore σt is not intra-regular in HypG(2). �

Lemma 5 Let t = f(t1, x2) where t1 ∈ W(2)(X) \X2 and x1 ∈ var(t). Then σt

is not intra-regular in HypG(2).
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Proof. The proof is similar to the proof of Lemma 4. �

Lemma 6 If t = f(t1, t2) where t1, t2 ∈ W(2)(X) \X2 and var(t)∩X2 6= ∅ then
σt is not intra-regular in HypG(2).

Proof. Let t = f(t1, t2) where t1, t2 ∈ W(2)(X) \ X2 and var(t) ∩ X2 6= ∅.
Case1: var(t) ∩ X2 = {xi} for some i ∈ {1, 2}. Let j ∈ {1, 2} where i 6= j.

If j is occurring in seqt(x
(h)
i ) for all x

(h)
i ∈ var(t) then var(σ2

t) ∩ X2 = ∅, i.e.
σu ◦G σ2

t ◦G σv 6= σt for all u, v ∈ W(2)(X).

If j is not occurring in seqt(x
(h)
i ) for some x

(h)
i ∈ var(t) then seqt(x

(h)
i ) =

(i1, i2, . . . , im) where i1, i2, . . . , im ∈ {i} for some m ∈ N. We can prove similar
to the proof of Lemma 4, then σu ◦G σ2

t ◦G σv 6= σt for all u, v ∈ W(2)(X).
Case2: var(t)∩X2 = X2. We can prove similar to the proof of Lemma 4, then
σu ◦G σ2

t ◦G σv 6= σt for all u, v ∈ W(2)(X).
Therefore σt is not intra-regular in HypG(2). �

Theorem 3 CR(HypG(2)) is the set of all intra-regular elements in HypG(2).

Proof. By Corollary 2 and by Lemma 2 to 6. �
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Abstract. A subset Z ⊆ V(G) of initially colored black vertices of a
graph G is known as a zero forcing set if we can alter the color of all ver-
tices in G as black by iteratively applying the subsequent color change
condition. At each step, any black colored vertex has exactly one white
neighbor, then change the color of this white vertex as black. The zero
forcing number Z(G), is the minimum number of vertices in a zero forcing
set Z of G (see [11]). In this paper, we compute the zero forcing num-
ber of the degree splitting graph (DS-Graph) and the complete degree
splitting graph (CDS-Graph) of a graph. We prove that for any simple
graph, Z[DS(G)] ≤ k+ t, where Z(G) = k and t is the number of newly
introduced vertices in DS(G) to construct it.

1 Introduction

In this article, we consider only simple, finite and undirected graphs. In graph
theory, the notion of zero forcing was introduced by the AIM Minimum Rank-
Special Graph Work Group (see [11]). For a graph G the zero forcing number
Z(G) can be defined as follows:
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Key words and phrases: zero forcing number, splitting graph
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• Color change rule: Consider a colored graph G in which every vertex is
colored as either white or black. If u is a black vertex of G and exactly
one neighbor v of u is white, then change the color of v to black.

• For a given a coloring of G, the derived coloring is the result of applying
the color-change rule until no more changes are possible.

• A primarily colored black vertex set Z ⊆ V(G) is called a zero forcing
set if all vertices’s of G changes to black after limited applications of the
color-change rule. The zero forcing number Z(G), is the minimum |Z|

over all zero forcing sets in G (see [11]).

The zero forcing number Z(G) can be used to bound the minimum rank for
numerous families of graphs (see [11]), also it can be use as a tool for logic
circuits (see [2]).

We use the following definitions and notations from [3].

• Open neighborhood and closed neighborhood. The set of all vertices
adjacent to a vertex v excluding the vertex v is called the open neigh-
borhood of v and is denoted by N(v). The set of all vertices adjacent to
a vertex v including the vertex v is called the closed neighborhood of v
and is denoted by N[v], i.e, N[v] = {v ∪N(v)}.

• Cartesian product. The Cartesian product G�H of two graphs G and H

is the graph with vertex set equal to the Cartesian product V(G)×V(H)

and where two vertices (g1, h1) and (g2, h2) are adjacent in G�H if and
only if, either g1 is adjacent to g2 in G or h1 is adjacent to h2 in H, that
is, if g1 = g2 and h1 is adjacent to h2 or h1 = h2 and g1 is adjacent to
g2.

• Tensor product. Let G and H be two distinct graphs. The tensor product
G⊕H has vertex set V(G⊕H) = V(G)× V(H), edge set
E(G⊕H) = {(u, v)(w, x) | uw ∈ E(G) and vx ∈ E(H)}.

• Join of two graphs. Let G and H be two distinct graphs. The graph
obtained by joining every vertex of G to every vertex of H is called the
join of two graphs G and H and is denoted by G ∨H, i.e, G ∨H is the
graph union G ∪ H together with all the edges xy where x ∈ v(G) and
y ∈ V(H).
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• The circular ladder graph or the prism graphs are the graphs obtained
by taking Cartesian product of a cycle graph Cn with a single edge K2

i.e, CLn = Cn�K2.

• When the color change rule is applied to a vertex u to change the color
of v, we say u forces v and write u  v.

The Splitting graph S(G) of G was introduced by E. Sampathkumar and
H.B. Walikar [8] and is the graph S(G) obtained by taking a new vertex v

′

corresponding to each vertex v ∈ G and join v
′

to all vertices of G adjacent
to v. The graph thus obtained is the splitting graph (see [8]). It is immediate
that S(G) − E(G) = G⊕ K2.
In [5], Premodkumar et al. studied the concept of the zero forcing number of

the splitting graph of a graph G and gave the exact values of the zero forcing
number of several classes of splitting graphs.

The degree splitting graph was introduced by R. Ponraj and S. Somasun-
daram [4]. Let G be a graph with V(G) = D1 ∪D2 ∪ . . . ∪Dt ∪ B where each
Di is a set of vertices of the same degree with minimum two elements and
B = V(G) \ ∪t

i=1Di. The degree splitting graph of G, denoted by DS(G), is
obtained from G by adding vertices d1, d2, ..., dt and joining the vertex di to
each vertex of Di for 1 ≤ i ≤ t.

For a graph G = (V, E), let Ai denote the set of vertices in G having degree i,
0 ≤ i ≤ ∆(G), A1∪A2∪ . . .∪A∆(G) = V(G) and A1∩A2∩ . . .∩A∆(G) = ∅ . The
complete degree splitting graph of a graph G is the graph CDS(G) obtained
from the graph G by adding new vertices v

′

i corresponding to each set Ai in
G and joining v

′

i to all vertices of Ai.

Example 1 Consider the tree T depicted in the following figure. The degree

splitting graph and the complete degree splitting graph of the tree T are shown

in the Figure 1.

This paper aims to discuss the zero forcing number of the degree splitting
graph DS(G) and the complete degree splitting graph CDS(G) of a graph G.
For more definitions on graphs refer to [3]. For a detailed study of zero forcing
refer to [11, 6, 7].

Proposition 1 The zero forcing number can be easily determined for the fol-

lowing degree and complete degree splitting graphs:
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Tree T 

Degree Splitting tree  DS(T) 

Complete Degree Splitting tree  CDS(T) 

Figure 1:

• For Pn, a path on n ≥ 5 vertices, Z[DS(Pn)] = Z[CDS(Pn)] = 3.

• For Cn a cycle on n ≥ 3 vertices, Z[DS(Cn)] = Z[CDS(Cn)] = 3.

If G is a totally disconnected graph, then the degree splitting graph of G is
the star graph. By using this fact we have the following

Proposition 2 If G is a totally disconnected graph with at least two vertices,

then Z[DS(G)] = Z[CDS(G)] = n−1, where n is the number of vertices of the

graph G.

Theorem 3 Let G be any simple graph of order n ≥ 2 with Z(G) = k and

let t be the number of vertices introduced in G to construct DS(G). Then

Z[DS(G)] ≤ k+ t.

Proof. With out loss of generality assume that G is a simple graph of order
n ≥ 2 and let Z be an optimal zero forcing set of G with vertices {v1, v2, . . . , vk}.
The degree splitting graph DS(G) of G is obtained from G by taking new ver-
tices d1, d2, . . . , dt and joining it to each Di. Consider the degree splitting
graph DS(G) and color the vertices d1, d2, . . . , dt black. Since Z is a zero forc-
ing set of G and d1, d2, . . . , dt are black vertices, {v1, v2, . . . , vk}∪{d1, d2, . . . , dt}

forms a zero forcing of DS(G). Hence the result follows. �
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The above proof remains valid for the complete degree splitting graph
CDS(G). Therefore we have the following

Theorem 4 Let G be any simple graph of order n ≥ 2 with Z(G) = k and

let t be the number of vertices introduced in G to construct CDS(G). Then

Z[CDS(G)] ≤ k+ t.

Corollary 5 Let G be the degree splitting graph of the cartesian product of

Pn with Pm, n ≤ m. Then Z(DS(Pn�Pm)) ≤ n+ 3.

We recall the following result from [9] to prove the next result.

Theorem 6 [9] Let G1 and G2 be two connected graphs. Then Z(G1 ∨G2) =

min{|G2|+ Z(G1), |G1|+ Z(G2)}.

Theorem 7 Let G be a regular graph of order n > 1 and let Z(G) = k, k > 1

be a positive integer. Then Z(DS(G)) = k+ 1.

Proof. Assume that G is a regular graph. The graph DS(G) is obtained from
G by taking a new vertex v and joining v to all other vertices in G that is,
DS(G) = G ∨ H , where H is a graph with a single vertex v. Therefore,
Z(H) = 1. We have from theorem 6,

Z(G∨H) = min{|H|+ Z(G), |G|+ Z(H)} = min{1+ k, n+ 1} = 1+ k.

�

Now we give special attention to the zero forcing number of the regular
graphs considered in [11]. We recall the following results from [11].

Theorem 8 [11]

(i) For the hypercube Qn, Z(Qn) = 2n−1.

(ii) If G is the prism graph CLn, then Z(G) = 4.

(iii) If G is the Petersen graph, then Z(G) = 5.

(iv) If G is the Complete bipartite graph Km,n, then Z(G) = m+ n− 2.

The following results are the immediate consequence of the above two the-
orems

Corollary 9 (i) If G is the Petersen graph, then Z(DS(G)) = Z(G)+1 = 6.
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(ii) If G is the complete bipartite graph Kn,n , n ≥ 2, then Z(DS(G)) =

2n− 1.

(iii) If G is the degree splitting graph of the prism graph CLn, then Z(G) = 5.

(iv) If G is the degree splitting graph of the n-regular Hypercube graph Qn,

then Z(G) = 2n−1 + 1.

If G is a regular graph, then we have the following:

Corollary 10 Let G be a regular graph and let Z(G) = k. Then Z[DS(G)] =

Z[CDS(G)] = k+ 1.

We use the following observation from [11] to prove the next proposition.

Observation 11 [11] For any simple graph G, δ(G) ≤ Z(G), where δ(G)

denote the minimum degree of G.

The degree splitting graph of the cycle Ck, is known as the wheel graph Wn,
where n = k+ 1.

Proposition 12 If G is the wheel graph Wn on n vertices, then Z[DS(G)] =

Z[CDS(G)] = 4.

Proof. Let G be the wheel graph Wn on n vertices. Then δ[DS(G)] = 4, and
we have from Observation 11

4 ≤ Z(DS(G)). (1)

Since DS(G) is a graph obtained from G by taking a single vertex v and
joining v to all vertices of the cycle Ck. From Proposition 1 and Theorem 3
we conclude that

Z(DS(G)) ≤ Z(Wn) + 1 = 4. (2)

Hence from Equatins (1) and (2) the result follows. �

Proposition 13 If G is the star graph K1,n on n + 1 vertices, where n ≥ 2,

then Z[DS(G)] = Z[CDS(G)] = n.

Proof. The degree splitting graph of the star graph is the complete bipartite
graph K2,n, in [11], the AIM group observed that Z(K2,n) = 2 + n − 2 = n.
Therefore the result follows. �

In the next Proposition we consider complete graphs of order n. In [11] the
AIM group observed that for the complete graph Kn, Z(Kn) = n − 1. Using
this fact and considering that the degree splitting graph of Kn is Kn+1, we have
the following:
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Proposition 14 For a complete graph of order n, Z[DS(Kn)] = n.

We recall the following result from [11].

Proposition 15 [11] For the complete graph Kn of order n ≥ 2 and for the

path Pk of order k ≥ 2, Z(Kn�Pk) = n.

Now we consider the degree splitting graph of the ladder graph and find its
zero forcing number. The cartesian product graph Pn�K2 is known as the
ladder graph.

Proposition 16 Let G be the degree splitting graph of the ladder graph Pn�K2

with n ≥ 4 vertices. Then Z(G) = 4.

Proof. We have from Proposition 15, Z(K2�Pk) = 2. Assume that G be the
degree splitting graph of K2�Pk. The degree splitting graph of K2�Pk contains
two newly introduced vertices and hence t = 2. Therefore, from Theorem 4

Z(G) ≤ Z(K2�Pk) + 2 = 4. (3)

Consider the n-ladder graph as Ln = Pn�K2. Let v1, v2, . . . , vn be the ver-
tices of the path Pn in Ln and v ′

1, v
′

2, . . . , v
′

n be the corresponding vertices of
v1, v2, . . . , vn in Ln. Let B1 = {v1, v

′

1, vn, v
′

n} be the set of vertices of degree 2
in Ln and let B2 = {v2, v3, . . . , vn−1, v

′

2, v
′

3, . . . , v
′

n−1} be the set of vertices of
degree 3 in Ln. Consider the graph G ≡ DS(Ln). Let A1 = {B1∪{a1}} be the set
of vertices in G with deg(a1) = 4 and A2 = {B2∪{a2}} with deg(a2) = 2(n−2).

To prove the reverse part assume that there exist a zero forcing set consist-
ing of three vertices u, v and w. Degree of each vertex in G is at least three,
therefore, to force at least one vertex it is necessary that uv and vw should
form edges in G.

Case 1 Assume that the vertices u, v and w are in A2. In A2 each vertices
have degree at least four, therefore u, v and w does not form a zero forcing
set, a contradiction.

Case 2 Assume that the vertices u and v are in A2 and the vertex w is
in A1. In this case u and v have degree at lest four and w has degree three
therefore, u, v and w does not form a zero forcing set, a contradiction.

Case 3 Assume that the vertices u and v are in A1 and the vertex w is in
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A2. u = v1, v = v2 and w = v ′

1. Now v1 forces the vertex a1 and v ′

1 forces the
vertex v ′

2 after this forcing, no more color changing is possible, a contradiction.

Case 4 Assume that the vertices u, v and w are in A1. We have the fol-
lowing two sub cases.

Subcase 4.1 u = v1, v = v ′

1 and w = a1. Now v1 forces v2 and v ′

1 forces
v ′

2 after this forcing, no more color changing is possible, a contradiction.

Subcase 4.2 u = v1, v = a1 and w = vn. In this case deg(u) = 3, deg(v) = 4

and deg(w) = 3 and each of these vertices have two white neighbors, color
changing is not possible, a contradiction.
Hence

4 ≤ Z(G). (4)

Therefore, from (3) and (4) the result follows. �

2 Classes of graphs with Z[DS(G)] < k+ t

In this section, we study simple graphs with Z[DS(G)] < k+t, where Z(G) = k

and t be the newly introduced vertices in DS(G). Let G be the path P4 and
DS(P4) be the degree splitting graph of P4 as shown in Figure 2. Then the
black vertices depicted in Figure 2 will act as a zero forcing set for DS(P4)

and hence, ZDS(P4) = 2 < 1+ 2.

Figure 2:

Example 2 Let G ≡ DS(C5 ◦ K1) be the graph depicted in Figure 3. One can

easily verify that the set {v7, v4, v8, v9} forms a zero forcing set since there is no

smaller zero forcing set exist for the graph G, therefore, Z(G) = 4. Here v1 and

v10 are the newly introduced vertices in C5 ◦ K1 to form DS(C5 ◦ K1) , therefore

t = 2. We have from [11], Z(C5◦K1) = k = 3. Therefore, Z(G) = 4 < k+t = 5.

Proposition 17 If G is the complete bipartite graph Km,n, where m,n ≥ 2

and m 6= n, then Z(DS(G)) = m+ n− 1.
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Figure 3:

Proof. Without loss of generality assume G is the complete bipartite graph
Km,n and H = DS(G). Assume that we have a zero forcing set Z of H con-
sisting of m + n − 2 vertices. Then the number of white vertices in H is
m+n+ 2− (m+n− 2) = 4. Now we divide the vertex set of H into four sets
A,B,C and D as depicted in Figure 4. Where A = {u}, B = {u1, u2, . . . , um},
C = {v1, v2, . . . , vn} and D = {v}. Assume that the four white vertices are dis-
tributed among the sets A,B,C and D.

Claim 1. If H has a zero forcing set, then the total number of white vertices
in the set B will never exceed one. On the contrary assume that there exist
two white vertices ui and uj in the set B. Then for all vertices vi, 1 ≤ i ≤ n in
the set C, the open neighborhood of N(vi) contains two white neighbors in the
set B also the vertex u will never force the vertices ui and uj. Therefore, color
changing rule is not applicable in this case, a contradiction to our assumption
that there exist two white vertices ui and uj in the set B.

Claim 2. If H has a zero forcing set, then the total number of white vertices
in the set C will never exceed one. On the contrary assume that there exist
two white vertices vi and vj in the set C. Then for all vertices ui, 1 ≤ i ≤ n in
the set B, the open neighborhood of N(ui) contains two white neighbors in the
set C also the vertex v will never force the vertices vi and vj. Therefore, color
changing rule is not applicable in this case, a contradiction to our assumption
that there exist two white vertices vi and vj in the set C.

Now assume that we have distributed the white vertices one each in all sets
A,B,C and D. Immediately, we can see that any black vertices in the set B

and the set C have two white neighbors also the vertices u and v are white,
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color changing rule is not applicable, a contradiction to our assumption that
there exist a zero forcing set in H consisting of m+ n− 2 vertices. Therefore,

Z(DS(G)) ≥ m+ n− 1. (5)

Figure 4:

To prove the reverse part consider the set E = {u2, u3, . . . , um, v2, v3, . . . , vn, v}

of vertices from the Figure 4. Color the vertices in the set E as black. Clearly
the vertex v  v1, v1  u1, and u1  u. Now the set E forms a zero forcing
set and |E| = m− 1+ n− 1+ 1 = m+ n− 1. Therefore,

Z(DS(G)) ≤ m+ n− 1. (6)

Hence from (5) and (6) the result follows. �

The following Lemma can be found in [7].

Lemma 1 [7] Let G = (V, E) be a connected graph with a cut-vertex v ∈ V(G).

Let C1, . . . , Ck be the vertex sets for the connected components of G − v, and

for 1 ≤ i ≤ k, let Gi = G[Ci ∪ {v}]. Then Z(G) ≥
k∑

i=1

Z(Gi) − k+ 1.

Definition 1 The Pineapple graph Kn
m is obtained by coalescing any vertex of

the complete graph Km with the star K1,n at the vertex of degree n. The number

of vertices in Kn
m is m+ n, number of edges in Kn

m is m2−m+2n
2

. These graphs

were defined and studied in [12] and [10].



50 Ch. Dominic

The authors in [12] and [10] studied about the spectral properties of Pineapple
Graphs.

We recall the following results from [13].

Proposition 18 [13] If G is the Pineapple graph Kn
m with n ≥ 2,m ≥ 3, then

Z(G) = m+ n− 3.

Proposition 19 If G is the Pineapple graph K1
m with m ≥ 3, then Z(G) =

m− 1.

Proposition 20 If G is the Pineapple graph Kn
m with m ≥ 3 and n ≥ 1, then

Z(DS(Kn
m)) = m+ n− 2.

Proof. Case 1 Without of loss of generality assume that n = 1. Let DS(K1
m)

be the degree splitting graph of K1
m and let v be the newly introduced vertex in

DS(K1
m) to construct it. Let u

′

be the coalesced vertex of the complete graph
Km with the star K1,n in K1

m and let u be the corresponding vertex of u
′

in
DS(K1

m). Let w be the pendant vertex in DS(K1
m) and let x be an arbitrary

vertex of DS(K1
m) other than u, v and w. Color all vertices except u, x and w

in DS(K1
m) as black. Clearly the vertex v  x, x  u and u  w and hence

Z(DS(K1
m)) ≤ m− 1. (7)

To prove the reverse part we use the following
Z(Km+1 − e) = m− 1 (A)
Z(K2) = 1. (B)

Now Lemma 1, (A) and (B) yields,

Z(DS(K1
m)) ≥

2∑

i=1

Z(Gi) − 2+ 1 = Z(Km+1 − e) + Z(K2) − 1 = m− 1. (8)

Thus the result follows from (7) and (8).

Case 2 Assume that n = 2. Let DS(K2
m) be the degree splitting graph of K2

m.
Let u

′

be the coalesced vertex of the complete graph Km with the star K1,n in
K1
m and let u be the corresponding vertex of u

′

in DS(K2
m). Let w1, w2 and w3

be the vertices of degree two in DS(K2
m). The subgraph induced by the vertices

w1, w2, w3 and u forms a cycles C4 in DS(K2
m). Let x be an arbitrary vertex of

DS(K2
m) other than w1, w2, w3 and u. Color all vertices except w2, w3, x and
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u in DS(K2
m) black. Let y be an arbitrary black colored vertex other than w1

in DS(K2
m). Clearly y  x, x  u , u  w3 and w3  w2, hence

Z(DS(K2
m)) ≤ m. (9)

To prove the reverse inequality use the the following
Z(K2,2) = 2. (C)

Now Lemma 1, (A) and (C) yields the following,

Z(DS(K2
m)) ≥

2∑

i=1

Z(Gi)−2+1 = Z(Km+1−e)+Z(K2,2)−1 = m−1+2−1 = m.

(10)
Therefore, from (9) and (10) the result follows.

Case 3 Assume n ≥ 3. Let DS(Kn
m) be the degree splitting graph of Kn

m.
Let u

′

be the coalesced vertex of the complete graph Km with the star K1,n in
Kn
m and let u be the corresponding vertex of u

′

in DS(Kn
m). Similarly let t be

the newly introduced vertex in DS(Kn
m) obtained by joining the pendant ver-

tices in Kn
m. Let w1, w2, . . . , wn be the vertices of degree two in DS(Kn

m). The
subgraph induced by the vertices {w1, w2, . . . , wn} ∪ {t, u} forms the complete
bipartite graph K2,n in DS(Kn

m).
Let x be the newly introduced vertex in DS(Kn

m) other than the vertex t

in DS(Kn
m). Let y be a vertex in DS(Kn

m) other than w1, w2, . . . , wn, u, x and
t. Color all vertices except the vertices wn, t, y and u in DS(Kn

m) as black.
Clearly x  y, y  u, u  wn , wn  t hence

Z(DS(Kn
m)) ≤ m+ n− 2. (11)

To prove the reverse inequality use the the following result from [13]
Z(Km,n) = m+ n− 2. (D)

Now Lemma 1, (A) and (D) yields the following,

Z(DS(Kn
m)) ≥

2∑

i=1

Z(Gi) − 2+ 1 = Z(Km+1 − e) + Z(Km,n) − 1

= (m− 1) + (2+ n− 2) − 1 = m+ n− 1.

(12)

Therefore, from (11) and (12) the result follows. �
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3 Conclusion and open problems

This paper deals with the problem of determination of the zero forcing number
of graphs and their degree splitting graphs. Characterization of classes graphs
for which Z[DS(G)] = k+ t is an open problem.
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Abstract. In this paper we establish some multiplicative inequalities
for weighted arithmetic and harmonic operator means under various as-
sumption for the positive invertible operators A, B. Some applications
when A, B are bounded above and below by positive constants are given
as well.

1 Introduction

Throughout this paper A, B are positive invertible operators on a complex
Hilbert space (H, 〈·, ·〉) . We use the following notations for operators

A∇νB := (1− ν)A+ νB,

the weighted operator arithmetic mean,

A♯νB := A1/2
(

A−1/2BA−1/2
)ν

A1/2,
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the weighted operator geometric mean and

A!νB :=
(

(1− ν)A−1 + νB−1
)−1

the weighted operator harmonic mean, where ν ∈ [0, 1] .

When ν = 1
2 , we write A∇B, A♯B and A!B for brevity, respectively.

The following fundamental inequality between the weighted arithmetic, ge-
ometric and harmonic operator means holds

A!νB ≤ A♯νB ≤ A∇νB (1)

for any ν ∈ [0, 1] .

For various recent inequalities between these means we recommend the re-
cent papers [3]-[6], [8]-[12] and the references therein.
The following additive double inequality has been obtained in the recent

paper [7]:

ν (1− ν)
(b− a)2

max {b, a}
≤ Aν (a, b) −Hν (a, b) ≤ ν (1− ν)

(b− a)2

min {b, a}
, (2)

for any a, b > 0 and ν ∈ [0, 1] , where Aν (a, b) and Hν (a, b) are the scalar
weighted arithmetic mean and harmonic mean, respectively, namely

Aν (a, b) := (1− ν)a+ νb and Hν (a, b) :=
ab

(1− ν)b+ νa
.

In particular,

1

4

(b− a)2

max {b, a}
≤ A (a, b) −H (a, b) ≤

1

4

(b− a)2

min {b, a}
, (3)

where

A (a, b) :=
a+ b

2
and H (a, b) :=

2ab

b+ a
.

We consider the Kantorovich’s constant defined by

K (h) :=
(h+ 1)2

4h
, h > 0. (4)

The function K is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for
any h > 0 and K (h) = K

(

1
h

)

for any h > 0.
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Observe that for any h > 0

K (h) − 1 =
(h− 1)2

4h
= K

(

1

h

)

− 1.

Observe that

K

(

b

a

)

− 1 =
(b− a)2

4ab
for a, b > 0.

Since, obviously

ab = min {a, b}max {a, b} for a, b > 0,

then we have the following version of (2):

4ν (1− ν)min {a, b}

[

K

(

b

a

)

− 1

]

≤ Aν (a, b) −Hν (a, b) (5)

≤ 4ν (1− ν)max {a, b}

[

K

(

b

a

)

− 1

]

.

for any a, b > 0 and ν ∈ [0, 1].
For positive invertible operators A, B we define

A∇∞B :=
1

2
(A+ B) +

1

2
A1/2

∣

∣

∣
A−1/2 (B−A)A−1/2

∣

∣

∣
A1/2

and

A∇−∞B :=
1

2
(A+ B) −

1

2
A1/2

∣

∣

∣
A−1/2 (B−A)A−1/2

∣

∣

∣
A1/2.

If we consider the continuous functions f∞, f−∞ : [0,∞) → [0,∞) defined by

f∞ (x) = max {x, 1} =
1

2
(x+ 1) +

1

2
|x− 1|

and

f−∞ (x) = max {x, 1} =
1

2
(x+ 1) −

1

2
|x− 1| ,

then, obviously, we have

A∇±∞B = A1/2f±∞

(

A−1/2BA−1
)

A1/2.

If A and B are commutative, then

A∇±∞B =
1

2
(A+ B)±

1

2
|B−A| = B∇±∞A.

The following additive inequality between the weighted arithmetic and har-
monic operator means holds [7]:
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Theorem 1 Let A, B be positive invertible operators and M > m > 0 such
that the condition

mA ≤ B ≤ MA (6)

holds. Then we have

4ν (1− ν)g (m,M)A∇−∞B ≤ A∇νB−A!νB (7)

≤ 4ν (1− ν)G (m,M)A∇∞B,

where

g (m,M) :=






K (M) − 1 if M < 1,

0 if m ≤ 1 ≤ M,

K (m) − 1 if 1 < m

and

G (m,M) :=






K (m) − 1 if M < 1,

max {K (m) , K (M)}− 1 if m ≤ 1 ≤ M,

K (M) − 1 if 1 < m.

In particular,

g (m,M)A∇−∞B ≤ A∇B−A!B ≤ G (m,M)A∇∞B. (8)

Motivated by the above facts, we establish in this paper some multiplicative
inequalities for weighted arithmetic and harmonic operator means under var-
ious assumption for the positive invertible operators A, B. Some applications
when A, B are bounded above and below by positive constants are given as
well.

2 Multiplicative inequalities

The following result is of interest in itself:

Lemma 1 For any a, b > 0 and ν ∈ [0, 1] we have

ν (1− ν)

(

1−
min {a, b}

max {a, b}

)2

≤
Aν (a, b)

Hν (a, b)
− 1 ≤ ν (1− ν)

(

max {a, b}

min {a, b}
− 1

)2

.

(9)
In particular,

1

4

(

1−
min {a, b}

max {a, b}

)2

≤
A (a, b)

H (a, b)
− 1 ≤

1

4

(

max {a, b}

min {a, b}
− 1

)2

. (10)
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Proof. We have for any a, b > 0 and ν ∈ [0, 1] that

Aν (a, b)

Hν (a, b)
=

[(1− ν)a+ νb] [(1− ν)b+ νa]

ab

=
(1− ν)2 ab+ ν (1− ν)b2 + ν (1− ν)a2 + ν2ab

ab

=
ν (1− ν)

(

b2 + a2
)

+
(

1− 2ν+ 2ν2
)

ab

ab
,

which is equivalent with

Aν (a, b)

Hν (a, b)
− 1 = ν (1− ν)

(b− a)2

ab
(11)

for any a, b > 0 and ν ∈ [0, 1] .

Since min2 {a, b} ≤ ab ≤ max2 {a, b} hence

ν (1− ν)
(b− a)2

ab
≤ ν (1− ν)

(b− a)2

min2 {a, b}

= ν (1− ν)

(

max {a, b}

min {a, b}
− 1

)2

and

ν (1− ν)
(b− a)2

ab
≥ ν (1− ν)

(b− a)2

max2 {a, b}

= ν (1− ν)

(

1−
min {a, b}

max {a, b}

)2

and by (11) we get the desired result (9). �

We observe that the inequality (9) can be written in an equivalent form as

[

ν (1− ν)

(

1−
min {a, b}

max {a, b}

)2

+ 1

]

Hν (a, b) (12)

≤ Aν (a, b)

≤

[

ν (1− ν)

(

max {a, b}

min {a, b}
− 1

)2

+ 1

]

Hν (a, b)
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for any a, b > 0 and ν ∈ [0, 1] , while (10) as
[

1

4

(

1−
min {a, b}

max {a, b}

)2

+ 1

]

H (a, b) (13)

≤ A (a, b)

≤

[

1

4

(

max {a, b}

min {a, b}
− 1

)2

+ 1

]

H (a, b)

for any a, b > 0.

Corollary 1 For any a, b ∈ [k, K] ⊂ (0,∞) and ν ∈ [0, 1] we have

Aν (a, b)

Hν (a, b)
− 1 ≤ ν (1− ν)

(

K

k
− 1

)2

. (14)

In particular,

A (a, b)

H (a, b)
− 1 ≤

1

4

(

K

k
− 1

)2

. (15)

We have the following multiplicative inequality between the weighted arith-
metic and harmonic operator means:

Theorem 2 Let A, B be positive invertible operators and M > m > 0 such
that the condition (6) holds. Then we have

[

ν (1− ν)

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

A!νB (16)

≤ A∇νB

≤

[

ν (1− ν)

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

A!νB

for any ν ∈ [0, 1] .

In particular,
[

1

4

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

A!B (17)

≤ A∇B

≤

[

1

4

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

A!B.
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Proof. If we write the inequality (12) for a = 1 and b = x ∈ (0,∞) then we
have

[

ν (1− ν)

(

1−
min {1, x}

max {1, x}

)2

+ 1

]

(

1− ν+ νx−1
)−1

(18)

≤ 1− ν+ νx

≤

[

ν (1− ν)

(

max {1, x}

min {1, x}
− 1

)2

+ 1

]

(

1− ν+ νx−1
)−1

.

for any ν ∈ [0, 1] .

If x ∈ [m,M] ⊂ (0,∞) , then max {m, 1} ≤ max {x, 1} ≤ max {M,1} and
min {m, 1} ≤ min {x, 1} ≤ min {M,1} .

We have
(

max {1, x}

min {1, x}
− 1

)2

≤

(

max {M,1}

min {m, 1}
− 1

)2

and
(

1−
min {M,1}

max {m, 1}

)2

≤

(

1−
min {1, x}

max {1, x}

)2

for any x ∈ [m,M] ⊂ (0,∞) .

Therefore, by (18) we have

[

ν (1− ν)

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

(

1− ν+ νx−1
)−1

(19)

≤ 1− ν+ νx

≤

[

ν (1− ν)

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

(

1− ν+ νx−1
)−1

,

for any x ∈ [m,M] and for any ν ∈ [0, 1] .

If we use the continuous functional calculus for the positive invertible oper-
ator X with mI ≤ X ≤ MI, then we have from (19) that

[

ν (1− ν)

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

(

(1− ν) I+ νX−1
)−1

(20)

≤ (1− ν) I+ νX

≤

[

ν (1− ν)

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

(

(1− ν) I+ νX−1
)−1

,



Upper and lower bounds 61

for any ν ∈ [0, 1] .

If we multiply (6) both sides by A−1/2 we get MI ≥ A−1/2BA−1/2 ≥ mI.

By writing the inequality (20) for X = A−1/2BA−1/2 we obtain

[

ν (1− ν)

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

(21)

×

(

(1− ν) I+ ν
(

A−1/2BA−1/2
)−1

)−1

≤ (1− ν) I+ νA−1/2BA−1/2

≤

[

ν (1− ν)

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

×

(

(1− ν) I+ ν
(

A−1/2BA−1/2
)−1

)−1

,

for any ν ∈ [0, 1] .

If we multiply the inequality (21) both sides with A1/2, then we get

[

ν (1− ν)

(

1−
min {M,1}

max {m, 1}

)2

+ 1

]

(22)

×A1/2

(

(1− ν) I+ ν
(

A−1/2BA−1/2
)−1

)−1

A1/2

≤ (1− ν)A+ νB

≤

[

ν (1− ν)

(

max {M,1}

min {m, 1}
− 1

)2

+ 1

]

×A1/2

(

(1− ν) I+ ν
(

A−1/2BA−1/2
)−1

)−1

A1/2,

for any ν ∈ [0, 1] .

Since

A1/2

(

(1− ν) I+ ν
(

A−1/2BA−1/2
)−1

)−1

A1/2

= A1/2
(

(1− ν) I+ νA1/2B−1A1/2
)−1

A1/2

= A1/2
(

A1/2
(

(1− ν)A−1 + νB−1
)

A1/2
)−1

A1/2
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= A1/2

(

A−1/2
(

(1− ν)A−1 + νB−1
)−1

A−1/2

)

A1/2

=
(

(1− ν)A−1 + νB−1
)−1

= A!νB

hence by (22) we get the desired result (16). �

We also have:

Theorem 3 Let A, B be positive invertible operators and M > m > 0 such
that the condition (6) holds. Then we have

dν (m,M)A!νB ≤ A∇νB ≤ Dν (m,M)A!νB (23)

for any ν ∈ [0, 1] , where

dν (m,M) := 4





(

ν−
1

2

)2

+ ν (1− ν)×






K (M) if M < 1,

1 if m ≤ 1 ≤ M,

K (m) if 1 < m





and

Dν (m,M)

:= 4





(

ν−
1

2

)2

+ ν (1− ν)×






K (m) if M < 1,

max {K (m) , K (M)} if m ≤ 1 ≤ M,

K (M) if 1 < m.





In particular, we have

d (m,M)A!B ≤ A∇B ≤ D (m,M)A!B (24)

where

d (m,M) :=






K (M) if M < 1,

1 if m ≤ 1 ≤ M,

K (m) if 1 < m

and

D (m,M) :=






K (m) if M < 1,

max {K (m) , K (M)} if m ≤ 1 ≤ M,

K (M) if 1 < m.

Proof. From (11) we have for any x ∈ (0,∞) and for any ν ∈ [0, 1] that

Aν (1, x)

Hν (1, x)
− 1 = ν (1− ν)

(x− 1)2

x
. (25)
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Since K (x) − 1 =
(x−1)2

4x , x > 0, then by (25) we have

Aν (1, x)

Hν (1, x)
= 1+ 4ν (1− ν) [K (x) − 1]

= 4ν (1− ν)K (x) + 4

(

ν−
1

2

)2

= 4

[

ν (1− ν)K (x) +

(

ν−
1

2

)2
]

or, equivalently,

Aν (1, x) = 4

[

ν (1− ν)K (x) +

(

ν−
1

2

)2
]

Hν (1, x) (26)

for any x ∈ (0,∞) and for any ν ∈ [0, 1] .

From (26) we then have for any x ∈ [m,M] ⊂ (0,∞) that

4

[

ν (1− ν) min
x∈[m,M]

K (x) +

(

ν−
1

2

)2
]

Hν (1, x) (27)

≤ Aν (1, x) ≤ 4

[

ν (1− ν) max
x∈[m,M]

K (x) +

(

ν−
1

2

)2
]

Hν (1, x) .

Since

min
x∈[m,M]

K (x) =






K (M) if M < 1,

1 if m ≤ 1 ≤ M,

K (m) if 1 < m

and

max
x∈[m,M]

K (x) =






K (m) if M < 1,

max {K (m) , K (M)} if m ≤ 1 ≤ M,

K (M) if 1 < m,

then by (27) we have

dν (m,M)
(

1− ν+ νx−1
)−1

≤ 1− ν+ νx (28)

≤ Dν (m,M)
(

1− ν+ νx−1
)−1

for any x ∈ [m,M] and for any ν ∈ [0, 1] .

By a similar argument to the one from Theorem 2 we deduce the desired
operator inequality (23). The details are omitted. �



64 S. S. Dragomir

3 Some particular cases

Let A, B positive invertible operators and positive real numbers m, m′, M,

M′ such that the condition 0 < mI ≤ A ≤ m′I < M′I ≤ B ≤ MI holds.
Put h := M

m and h′ := M′

m′ , then we have

A < h′A =
M′

m′
A ≤ B ≤

M

m
A = hA.

By (16) we get

[

ν (1− ν)

(

h′ − 1

h′

)2

+ 1

]

A!νB ≤ A∇νB (29)

≤
[

ν (1− ν) (h− 1)2 + 1
]

A!νB

for any ν ∈ [0, 1] .

By (23) we get

4

[

(

ν−
1

2

)2

+ ν (1− ν)K
(

h′
)

]

A!νB (30)

≤ A∇νB ≤ 4

[

(

ν−
1

2

)2

+ ν (1− ν)K (h)

]

A!νB

for any ν ∈ [0, 1] .

If 0 < mI ≤ B ≤ m′I < M′I ≤ A ≤ MI, then for h := M
m and h′ := M′

m′ we
also have

1

h
A ≤ B ≤

1

h′
A < A.

Finally, by (16) we get (29) while from (23) we get (30) as well.
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Abstract. Let G be an Abelian group with a metric d and E be a
normed space. For any f : G → E we define the Drygas difference of the
function f by the formula

Λf(x, y) := 2f(x) + f(y) + f(−y) − f(x+ y) − f(x− y)

for all x, y ∈ G. In this article, we prove that if Λf is Lipschitz, then there
exists a Drygas function D : G → E such that f−D is Lipschitz with the
same constant. Moreover, some results concerning the approximation of
the Drygas functional equation in the Lipschitz norms are presented.

1 Introduction

The stability theory of functional equations began with the well-known Ulam’s
Problem [21], concerning the stability of homomorphisms in metric groups:

Problem. Let (G1, ∗), (G2, ⋆) be two groups and d : G2 × G2 → [0,∞) be a

metric. Given ǫ > 0, does there exist δ > 0 such that if a function f : G1 → G2

satisfies the inequality

d(f(x ∗ y), f(x) ⋆ f(y)) ≤ δ

2010 Mathematics Subject Classification: 65Q20, 39B82, 41A65

Key words and phrases: Drygas functional equation, stability, Lipschitz space
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Lipschitz approximation of a Drygas equation 67

for all x, y ∈ G1, then there is a homomorphism h : G1 → G2 with

d(f(x), h(x)) ≤ ǫ

for all x ∈ G1?

Ulam’s problem was partially solved by Hyers [14] in 1941 in the context
of Banach spaces with δ = ǫ. Aoki [1], Z. Gajda [11] and Th.M. Rassias
[17] provided a generalization of the result of Hyers for additive and linear
mappings, respectively, by allowing the Cauchy difference to be unbounded.
Since then many authors have studied the question of stability of various
functional equations (see [9, 15] for the survey of stability results).
Let G and Y be an Abelian group and a Banach space respectively. We say

that a function f : G → Y satisfies the Drygas equation if

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ G, (1)

and every solution of the Drygas equation is called a Drygas function. The
above equation was introduced in [4] to obtain a characterization of the quasi-
inner-product spaces. The general solution of (1), obtained by Ebanks et al. in
[5] (see also[18]). The stability in the Hyers–Ulam sense of the Drygas equation
has been investigated, for example, in [6, 7, 10, 16, 19, 22].
In Lipschitz spaces the stability type problems for some functional equations

was studied by a number of mathematicians (see, e.g., [3, 8, 20])
In the present paper, we establish the stability problem of (1) in Lipschitz

spaces.

2 Preliminaries

In this section we are going to introduce some basic definitions and notations
needed for further considerations.

Definition 1 [2] Let R be the set of real numbers, E a vector space and S(E)
a family of subsets of E. We say that this family is linearly invariant if

(1) x+ αV ∈ S(E) for x ∈ E, α ∈ R and V ∈ S(E),

(2) V +W ∈ S(E) for V,W ∈ S(E).

Definition 2 Let G be a set, E a vector space and S(E) any linearly invariant
family. By B(G,S(E)) we denote the family

B
(
G,S(E)

)
:= {f : G → E; Im f ⊂ V for some V ∈ S(E)} .
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It is easy to verify that B(G,S(E)) is a vector space. For any f : G → E,
a ∈ G, where G is a group, we put

fa(x) := f(x+ a), x ∈ G.

Definition 3 [13, 20] Let G be a group, E a vector space, and let S(E) be
a linearly invariant family of subsets of E. We say that B(G,S(E)) admits
a left invariant mean (LIM for short) if there exists a linear operator M :

B(G,S(E)) → E such that

(i) if Im f ⊂ V for some V ∈ S(E), then M[f] ∈ V,

(ii) if f ∈ B(G,S(E)) and a ∈ G, then M[fa] = M[f].

Analogously we can define so-called right invariant mean. For more infor-
mation about spaces which admit LIM see, e.g., [2, 12, 13].

Example 1 Let G be a finite group, let E be a vector space, and let S(E) be
any linearly invariant family of convex subsets of E. Let f ∈ B(G,S(E)) be
arbitrary. We define

M[f] :=
1

|G|

∑

g∈G

f(g).

One can easily check that M is a LIM on B(G,S(E)), where |G| = cardinality
of G.

Definition 4 Let G be a group, E a vector space and let S(E) be a linearly
invariant family. We say that d : G×G → S(E) is translation invariant if

d(x+ a, y+ a) = d(a+ x, a+ y) = d(x, y), for all x, y, a ∈ G.

The function f : G → E is d-Lipschitz if for all x, y ∈ G,

f(x) − f(y) ∈ d(x, y).

Definition 5 Let G be a group with a metric d and E a normed space.

a/ We say that w : R+ → R+ is the module of continuity of f : G → E if for
every δ ∈ R+

d(x, y) ≤ δ ⇒ ‖f(x) − f(y)‖ ≤ w(δ) x, y ∈ G.
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b/ A function f : G → E called a Lipschitz function if there exists an L ∈ R+

such that
‖f(x) − f(y)‖ ≤ Ld(x, y), x, y ∈ G.

The smallest constant L with this property is denoted by lip(f). By Lip(G,E)

we mean the space of all bounded Lipschitz functions with the norm

‖f‖Lip := ‖f‖sup + lip(f).

Moreover, by Lip0(G,E) we denote the space of all Lipschitz functions f : G →
E with the norm defined by the formula

‖f‖Lip0 := ‖f(0)‖+ lip(f).

Finally, we introduce the following remarks.

Remark 1 (i) If E is a vector space and S(E) is a linearly invariant family,
then for every x ∈ E, the set {x} ∈ S(E).
(ii) The family B(G,S(E)) contains all constant functions.

Remark 2 Let (G,+) be a group and E a vector space. Assume that S(E) is
a linearly invariant family such that B(G,S(E)) satisfies the condition LIM or
RIM. If f : G → E is constant, then M[f] = Im f (i.e., if f(x) = c for x ∈ G,

where c ∈ E, then M[f] = c).

Remark 3 Let G be a group with metric d and let E be a normed space. Let
L ∈ R+, and

d(x, y) := Ld(x, y)B(0, 1),

where B(0, 1) is the closed ball with the center at 0 and the radius 1. Then
the function f : G → E is Lipschitz with the constant L if and only if it is
d-Lipschitz.

3 Lipschitz approximation of Eq. (1)

In this section, we can prove one of the main results of this paper.

Theorem 1 Let G be an Abelian group and E a vector space. Assume that
S(E) is a linearly invariant family such that B(G,S(E)) admits LIM. Let f :

G → E be an arbitrary function. If Λf(·, y) : G → E is d-Lipschitz for every
y ∈ G, then there exists a Drygas function D : G → E such that f −D is 1

2d-

Lipschitz. Moreover, if Im(Λf) ⊂ V for some V ∈ S(E), then Im(f−D) ⊂ 1
2V.
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Proof. For every a ∈ G we define Fa : G → E by

Fa(y) :=
1

2
f(a+ y) +

1

2
f(a− y) −

1

2
f(y) −

1

2
f(−y), y ∈ G.

We will prove that Fa belongs to B(G,S(E)). In fact, we have for y, a ∈ G,

Fa(y) =
1

2
Λf(0, y) −

1

2
Λf(a, y) + f(a) − f(0).

So, Fa ∈ B(G,S(E)) for a ∈ G.

According to the assumptions, there exists a linear operatorM : B(G,S(E)) →
E such that

(i) Im(g) ⊂ V ⇒ M[g] ∈ V ,

(ii) if g ∈ B(G,S(E)) and ga : G → E for a ∈ G is defined by

ga(x) := g(a+ x), x ∈ G,

then ga ∈ B(G,S(E)) and M[ga] = M[g].

Consider the function D : G → E given by

D(x) := M[Fx], for x ∈ G.

We will verify that f−D is 1
2d-Lipschitz.

In view of our assumptions it follows that 1
2Λf(·, y) is 1

2d-Lipschitz for every
y ∈ G, which means that

1

2
Λf(x, y) −

1

2
Λf(z, y) ∈

1

2
d(x, z) (2)

for all x, z ∈ G. Let l : G → E be the function

l(x) := f(x) −M[Fx] = f(x) −D(x), x ∈ G,

and for any x ∈ G, Rx : G → E be defined by

Rx(y) := f(x), y ∈ G.

Therefore, applying Remarks 1 and 2, one gets for all x ∈ G,

l(x) = f(x) −M[Fx] = M[Rx − Fx]

= M
[
f(x) +

1

2
f(·) +

1

2
f(−·) −

1

2
f(x+ ·) −

1

2
f(x− ·)

]

= M

[
1

2
Λf(x, ·)

]
.

(3)
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Immediately from (2) and (3) we obtain

l(x) − l(z) = M

[
1

2
Λf(x, ·) −

1

2
Λf(z, ·)

]
, x, z ∈ G. (4)

For any x, z ∈ G, we define A(x,z) : G → E by

A(x,z)(y) :=
1

2
Λf(x, y) −

1

2
Λf(z, y), y ∈ G.

By (2) we have ImA(x,z) ⊂
1
2d(x, z), which together with (4) implies

l(x) − l(z) = M[A(x,z)] ∈
1

2
d(x, z),

for all y, z ∈ G. This proves that

(f(x) −D(x)) − (f(z) −D(z)) ∈
1

2
d(x, z), for all x, z ∈ G,

i.e., f−D is 1
2d-Lipschitz.

Now we will verify that D is a Drygas function. We have the equalities

D(x+ z) +D(x− z) = M[Fx+z(y)] +M[Fx−z(y)]

= M
[1
2
f(x+ z+ y) +

1

2
f(x+ z− y) −

1

2
f(y) −

1

2
f(−y)

]

= M
[1
2
f(x− z+ y) +

1

2
f(x− z− y) −

1

2
f(y) −

1

2
f(−y)

]

and

2D(x) +D(z) +D(−z) = 2M[Fx(y)] +M[Fz(y)] +M[F−z(y)]

= 2M
[1
2
f(x+ y) +

1

2
f(x− y) −

1

2
f(y) −

1

2
f(−y)

]

+M
[1
2
f(z+ y) +

1

2
f(z− y) −

1

2
f(y) −

1

2
f(−y)

]

+M
[1
2
f(−z+ y) +

1

2
f(−z− y) −

1

2
f(y) −

1

2
f(−y)

]

= M
[1
2
f(x+ y+ z) +

1

2
f(x− y+ z) −

1

2
f(y+ z) −

1

2
f(−y+ z)

]

+M
[1
2
f(x+ y− z) +

1

2
f(x− y− z) −

1

2
f(y− z) −

1

2
f(−y− z)

]

+M
[1
2
f(z+ y) +

1

2
f(z− y) −

1

2
f(y) −

1

2
f(−y)

]
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+M
[1
2
f(−z+ y) +

1

2
f(−z− y) −

1

2
f(y) −

1

2
f(−y)

]

= D(x+ z) +D(x− z).

It follows that D is a Drygas function.
To finish the proof assume that Im(Λf) ⊂ V for some V ∈ S(E). Then we

have Im
(
1
2Λf

)
⊂ 1

2V . In view of (3) we get f(x) − D(x) = M
[
1
2Λf(x, ·)

]
∈

1
2V for all x ∈ G. Thus Im(f − D) ⊂ 1

2V, which completes the proof of the
theorem. �

Corollary 1 Let G be an Abelian group and (E, ‖.‖) a normed space. Assume
that S(E) is a family of closed balls such that B(G,S(E)) admits LIM. Let
f : G → E and g : G → R+ satisfy the inequality

‖Λf(x, y) −Λf(z, y)‖ ≤ g(x− z) (5)

for all x, y, z ∈ G. Then there exists a Drygas function D : G → E such that

‖(f−D)(x) − (f−D)(y)‖ ≤ (1/2)g(x− y) (6)

for all x, y ∈ G, where (f−D)(x) ≡ f(x) −D(x).

Proof. We put
d(x, y) := g(x− y)B(0, 1), x, y ∈ G

where B(0, 1) is the closed unit ball with center at zero. By (5) we obtain

Λf(x, y) −Λf(z, y) ∈ d(x, z), x, y, z ∈ G,

which means that Λf(·, y) is a d-Lipschitz. Therefore, from Theorem 1 there
exists a Drygas function D : G → E such that f − D is (1/2)d-Lipschitz. By
the definition of d we get the desired result. �

4 Approximation with Lipschitz norm

We shall introduce the following definition (see also [20]).

Definition 6 A group (G,+, d, d̃ ) is said to be a metric pair if

(1) (G,+, d) is an Abelian metric group,

(2) d̃ : (G×G)× (G×G) → R+ is a metric in G×G,
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(3) d̃((a, x), (a, y)) = d̃((x, a), (y, a)) = d(x, y) for x, y, a ∈ G.

The following lemma is needed to establish the next results.

Lemma 1 Let (G,+, d, d̃ ) be a metric pair and (E, ‖ · ‖) a normed space.
Assume that S(E) is a family of closed balls such that B(G,S(E)) admits LIM.
Let f : G → E be a function and w : R+ → R+ be the module of continuity of
the function Λf : G×G → E. Then there exists a Drygas function D : G → E

such that the function (1/2)w is the module of continuity of f−D. Moreover,
if Λf ∈ B(G×G,S(E)), then

‖f−D‖sup ≤ (1/2)‖Λf‖sup. (7)

Proof. Define d : G×G → S(E) by the formula

d(x, y) :=

(
inf

t≥d(x,y)
w(t)

)
B(0, 1),

where B(0, 1) is the closed unit ball with center at zero. Since w is the module
of continuity of Λf(·, y) for y ∈ G, we have

‖Λf(x, y) −Λf(z, y)‖ ≤ inf
t≥d̃((x,y),(z,y))

w(t), x, y, z ∈ G. (8)

This implies that

‖Λf(x, y) −Λf(z, y)‖ ≤ inf
t≥d(x,z)

w(t), x, y, z ∈ G, (9)

i.e.,
Λf(x, y) −Λf(z, y) ∈ d(x, z), for x, y, z ∈ G.

This shows that Qf(·, y) is d-Lipschitz.
Now, in view of Theorem 1, there exists a Drygas function D : G → E such

that f−D is (1/2)d-Lipschitz and consequently

(f(x) −D(x)) − (f(y) −D(y)) ∈ (1/2)d(x, y), x, y ∈ G.

This is equivalent to the condition

‖(f(x) −D(x)) − (f(y) −D(y))‖ ≤ inf
t≥d(x,y)

(1/2)w(t), x, y ∈ G.

This shows that (1/2)w is the module of continuity of f−D.
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Finally, assume that Λf ∈ B(G × G,S(E)). Thus the following set is well
defined:

W := B (0, ‖Λf‖sup) with Im(Λf) ⊂ W.

Thus from Theorem 1, we get

Im(f−D) ⊂ (1/2)W

which implies the inequality (7) and completes the proof. �

In the remaining part of the paper, we investigate two results about the sta-
bility of the generalized quadratic functional equation in the Lipschitz norms.

Theorem 2 Let (G,+, d, d̃ ) be a metric pair and (E, ‖ · ‖) a normed space.
Assume that S(E) is a family of closed balls such that B(G,S(E)) admits LIM.

(i) Let f : G → E be a function satisfying the condition Λf ∈ Lip(G×G,E).
Then there exists a Drygas function D : G → E such that

‖f−D‖Lip ≤ (1/2)‖Λf‖Lip. (10)

(ii) Let f : G → E be a function satisfying the condition Λf ∈ Lip0(G×G,E).
Then there exists a Drygas function D : G → E such that

‖f−D‖Lip0 ≤ (1/2)‖Λf‖Lip0 . (11)

Proof. (i) Consider w : R+ → R+ by the formula

w(x) := lip(Λf)x, for x ∈ R+.

Since Λf ∈ Lip(G×G,E), we obtain

‖Λf(x, y) −Λf(t, z)‖ ≤ lip(Λf)d̃((x, y), (t, z))

= w
(
d̃((x, y), (t, z))

)
, x, y, t, z ∈ G,

which means that w is the module of continuity of Λf. Thus, by Lemma 1,
there exists a Drygas function D : G → E such that (1/2)w is the module of
continuity of f−D. Thus we have the inequality

‖(f(x) −D(x)) − (f(y) −D(y))‖ ≤ (1/2)w(d(x, y))

= (1/2)lip(Λf)d(x, y), x, y ∈ G.
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This inequality implies that f−D is a Lipschitz function and

lip(f−D) ≤
1

2
lip(Λf). (12)

Taking into account thatΛf ∈ Lip(G×G,E), we have alsoΛf ∈ B(G×G,S(E)).
Therefore by Lemma 1 we obtain

‖f−D‖sup ≤
1

2
‖Λf‖sup, (13)

that is, f −D ∈ Lip(G,E). Finally, from (12) and (13), we obtain the desired
result.
(ii) By the same reasoning as in the proof of (i) we can prove that there

exists a Drygas function D : G → E such that f−D is Lipschitz and

lip(f−D) ≤
1

2
lip(Λf).

Since D(0) = 0, we obtain

‖f(0) −D(0)‖ = ‖f(0)‖ = (1/2)‖Λf(0, 0)‖.

Thus

‖f−D‖Lip0 = ‖f(0) −D(0)‖+ lip(f−D)

≤
1

2
‖Λf(0, 0)‖+

1

2
lip(Λf)

=
1

2
‖Λf‖Lip0 ,

which completes the proof. �
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Abstract. In this paper, we find the necessary and sufficient condi-
tions, inclusion relations for Poisson distribution series K(m, z) = z +
∞∑

n=2

mn−1

(n−1)!
e−mzn to be in the subclasses S(k, λ) and C(k, λ) of analytic

functions with negative coefficients. Further, we obtain necessary and

sufficient conditions for the integral operator G(m, z) =
∫z
0

F(m,t)

t
dt to

be in the above classes.

1 Introduction and definitions

Let A denote the class of the normalized functions of the form

f(z) = z+

∞∑

n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let T
be a subclass of A consisting of functions of the form,

f(z) = z−

∞∑

n=2

|an| z
n, z ∈ U . (2)

2010 Mathematics Subject Classification: 30C45

Key words and phrases: analytic functions, Poisson distribution series
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A function f of the form (2) is in S(k, λ) if it satisfies the condition

∣

∣

∣

∣

∣

∣

zf′(z)

(1−λ)f(z)+λzf′(z)
− 1

zf′(z)

(1−λ)f(z)+λzf′(z)
+ 1

∣

∣

∣

∣

∣

∣

< k, (0 < k ≤ 1, 0 ≤ λ < 1, z ∈ U)

and f ∈ C(k, λ) if and only if zf′ ∈ S(k, λ). The class S(k, λ) was introduced
by Frasin et al. [3].
We note that S(k, 0) = S(k) and C(k, 0) = C(k), where the classes S(k) and

C(k) were introduced and studied by Padmanabhan [9] (see also, [5], [8]).
A function f ∈ A is said to be in the class Rτ(A,B),τ ∈ C\{0}, −1 ≤ B <

A ≤ 1, if it satisfies the inequality

∣

∣

∣

∣

f′(z) − 1

(A− B)τ− B[f′(z) − 1]

∣

∣

∣

∣

< 1, z ∈ U .

This class was introduced by Dixit and Pal [2].
A variable x is said to be Poisson distributed if it takes the values 0, 1, 2, 3, . . .

with probabilities e−m, me−m

1!
, m2 e−m

2!
, m3 e−m

3!
, . . . respectively, where m is

called the parameter. Thus

P(x = r) =
mre−m

r!
, r = 0, 1, 2, 3, . . . .

Very recently, Porwal [10] (see also, [6, 7]) introduce a power series whose
coefficients are probabilities of Poisson distribution

K(m, z) = z+

∞∑

n=2

mn−1

(n− 1)!
e−mzn, z ∈ U ,

where m > 0. By ratio test the radius of convergence of above series is infinity.
In [10], Porwal also defined the series

F(m, z) = 2z−K(m, z) = z−

∞∑

n=2

mn−1

(n− 1)!
e−mzn, z ∈ U .

Using the Hadamard product, Porwal and Kumar [12] introduced a new
linear operator I(m, z) : A → A defined by

I(m, z)f = K(m, z) ∗ f(z) = z+

∞∑

n=2

mn−1

(n− 1)!
e−manz

n, z ∈ U ,
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where ∗ denote the convolution or Hadamard product of two series.
Motivated by several earlier results on connections between various sub-

classes of analytic and univalent functions by using hypergeometric functions
(see [1, 4, 13, 14]) and by the recent investigations of Porwal ([10, 12, 11]),
in the present paper we determine the necessary and sufficient conditions for
F(m, z) to be in our new classes S(k, λ) and C(k, λ) and connections of these
subclasses with Rτ(A,B). Finally, we give conditions for the integral operator

G(m, z) =
∫z
0

F(m,t)
t

dt to be in the classes S(k, λ) and C(k, λ).

To establish our main results, we will require the following Lemmas.

Lemma 1 [3] A function f of the form (2) is in S(k, λ) if and only if it

satisfies
∞∑

n=2

[n((1− λ) + k(1+ λ)) − (1− λ)(1− k)] |an| ≤ 2k (3)

where 0 < k ≤ 1 and 0 ≤ λ < 1. The result is sharp.

Lemma 2 [3] A function f of the form (2) is in C(k, λ) if and only if it

satisfies

∞∑

n=2

n[n((1− λ) + k(1+ λ)) − (1− λ)(1− k)] |an| ≤ 2k (4)

where 0 < k ≤ 1 and 0 ≤ λ < 1. The result is sharp.

Lemma 3 [2] If f ∈ Rτ(A,B) is of the form, then

|an| ≤ (A− B)
|τ|

n
, n ∈ N− {1}.

The result is sharp.

2 The necessary and sufficient conditions

Theorem 1 If m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1, then F(m, z) is in S(k, λ)

if and only if

((1− λ) + k(1+ λ))mem ≤ 2k. (5)

Proof. Since

F(m, z) = z−

∞∑

n=2

mn−1

(n− 1)!
e−mzn (6)
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according to (3) of Lemma 1, we must show that

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
≤ 2kem. (7)

Writing n = (n− 1) + 1, we have

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!

=

∞∑

n=2

[(n− 1)((1− λ) + k(1+ λ)) + 2k]
mn−1

(n− 1)!

= [(1− λ) + k(1+ λ)]

∞∑

n=2

mn−1

(n− 2)!
+ 2k

∞∑

n=2

mn−1

(n− 1)!

= ((1− λ) + k(1+ λ))mem + 2k(em − 1) .

(8)

But this last expression is bounded above by 2kem if and only if (5) holds. �

Theorem 2 If m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1, then F(m, z) is in C(k, λ)

if and only if

((1− λ) + k(1+ λ))m2em + 2(1+ 2k+ kλ− λ)mem ≤ 2k. (9)

Proof. In view of Lemma 2, it suffices to show that

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
≤ 2kem.

Now

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!

=

∞∑

n=2

n2((1− λ) + k(1+ λ)) + n(1− λ)(k− 1)]
mn−1

(n− 1)!
.

(10)

Writing n = (n− 1) + 1 and n2 = (n− 1)(n− 2) + 3(n− 1) + 1, in (10) we see
that

∞∑

n=2

n2((1− λ) + k(1+ λ)) + n(1− λ)(k− 1)]
mn−1

(n− 1)!
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=

∞∑

n=2

(n− 1)(n− 2)((1− λ) + k(1+ λ))
mn−1

(n− 1)!

+

∞∑

n=2

(n− 1)[3((1− λ)+k(1+ λ)+(1− λ)(k− 1)]
mn−1

(n− 1)!
+

∞∑

n=2

2k
mn−1

(n− 1)!

= ((1− λ) + k(1+ λ))

∞∑

n=2

mn−1

(n− 3)!
+ 2(1+ 2k+ kλ− λ)

∞∑

n=2

mn−1

(n− 2)!

+ 2k

∞∑

n=2

mn−1

(n− 1)!

= ((1− λ) + k(1+ λ))m2em + 2(1+ 2k+ kλ− λ)mem + 2k (em − 1).

But this last expression is bounded above by 2kem if and only if (9) holds. �

By specializing the parameter λ = 0 in Theorems 1 and 2 , we have the
following corollaries.

Corollary 1 If m > 0 and 0 < k ≤ 1, then F(m, z) is in S(k) if and only if

(1+ k)mem ≤ 2k. (11)

Corollary 2 If m > 0 and 0 < k ≤ 1, then F(m, z) is in C(k) if and only if

(1+ k)m2em + 2(1+ 2k)mem ≤ 2k. (12)

3 Inclusion properties

Theorem 3 Let m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1. If f ∈ Rτ(A,B), then

I(m, z)f is in S(k, λ) if and only if

(A− B) |τ|
[

((1− λ) + k(1+ λ))(1− e−m)

+
(1− λ)(k− 1)

m
(1− e−m(1+m))

]

≤ 2k.
(13)

Proof. In view of Lemma 1, it suffices to show that

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
|an| ≤ 2kem.

Since f ∈ Rτ(A,B), then by Lemma 3, we get

|an| ≤
(A− B) |τ|

n
. (14)
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Thus, we have

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
|an|

≤ (A− B) |τ|

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

n!

= (A− B) |τ|

[

((1− λ) + k(1+ λ))

∞∑

n=2

mn−1

(n− 1)!
+

(1− λ)(k− 1)

m

∞∑

n=2

mn

n!

]

= (A− B) |τ|

[

((1− λ) + k(1+ λ))(em − 1) +
(1− λ)(k− 1)

m
(em − 1−m)

]

.

But this last expression is bounded above by 2kem if and only if (13) holds. �

Theorem 4 Let m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1. If f ∈ Rτ(A,B), then

F(m, z)f is in C(k, λ) if and only if

(A− B) |τ| [((1− λ) + k(1+ λ))m+ 2k(1− e−m)] ≤ 2k. (15)

Proof. In view of Lemma 2, it suffices to show that

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
|an| ≤ 2kem.

Using (14), we have

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
|an|

≤

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!

(A− B) |τ|

n

= (A− B) |τ|

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!

= (A− B) |τ|

∞∑

n=2

[(n− 1)((1− λ) + k(1+ λ)) + 2k]
mn−1

(n− 1)!

= (A− B) |τ|

[

((1− λ) + k(1+ λ))

∞∑

n=2

mn−1

(n− 2)!
+ 2k

∞∑

n=2

mn−1

(n− 1)!

]
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= (A− B) |τ| [((1− λ) + k(1+ λ))mem + 2k(em − 1)].

But this last expression is bounded above by 2kem if and only if (15) holds. �

By taking λ = 0 in Theorems 3 and 4, we obtain the following corollaries.

Corollary 3 Let m > 0 and 0 < k ≤ 1. If f ∈ Rτ(A,B), then I(m, z)f is in

S(k) if and only if

(A− B) |τ|

[

(1+ k)(1− e−m) +
(k− 1)

m
(1− e−m(1+m))

]

≤ 2k. (16)

Corollary 4 Let m > 0 and 0 < k ≤ 1. If f ∈ Rτ(A,B), then I(m, z)f is in

C(k) if and only if

(A− B) |τ| [(1+ k)m+ 2k(1− e−m)] ≤ 2k. (17)

4 An integral operator

In this section, we obtain the necessary and sufficient conditions for the integral
operator G(m, z) defined by

G(m, z) =

∫ z

0

F(m, t)

t
dt (18)

to be in the class C(k, λ).

Theorem 5 If m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1, then the integral operator

G(m, z) defined by (18) is in C(k, λ) if and only if (5) is satisfied.

Proof. Since

G(m, z) = z−

∞∑

n=2

e−mmn−1

n!
zn

then by Lemma 2, we need only to show that

∞∑

n=2

n[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

n!
≤ 2kem.

or, equivalently

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!
≤ 2kem.
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From (8) it follows that

∞∑

n=2

[n((1− λ) + k(1+ λ)) + (1− λ)(k− 1)]
mn−1

(n− 1)!

= ((1− λ) + k(1+ λ))mem + 2k(em − 1)

and this last expression is bounded above by 2kem if and only if (5) holds. �

The proof of Theorem 6 (below) is much similar to that of Theorem 5 and
so the details are omitted.

Theorem 6 If m > 0, 0 < k ≤ 1 and 0 ≤ λ < 1, then the integral operator

G(m, z) defined by (18) is in S(k, λ) if and only if

((1− λ) + k(1+ λ))(1− e−m) +
(1− λ)(k− 1)

m
(1− e−m −me−m) ≤ 2k.

By taking λ = 0 in Theorems 5 and 6, we obtain the following corollaries.

Corollary 5 If m > 0 and 0 < k ≤ 1, then the integral operator defined by

(18) is in C(k) if and only if (11) is satisfied.

Corollary 6 If m > 0 and 0 < k ≤ 1,then the integral operator defined by

(18) is in S(k) if and only if

(1+ k)(1− e−m) +
(k− 1)

m
(1− e−m −me−m) ≤ 2k.
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Abstract. In the present paper, we introduce a certain subclassKq(λ, γ, h)

of analytic functions by means of a quasi-subordination. Sharp bounds of
the Fekete-Szegő functional for functions belonging to the classKq(λ, γ, h)

are obtained. The results presented in the paper give improved versions
for the certain subclasses involving the quasi-subordination and majoriza-
tion.

1 Introduction and definitions

Let A denote the family of normalized functions of the form

f(z) = z+

∞∑

n=2

anz
n, (1)

which are analytic in the open unit disk U = {z : |z| < 1}. If f ∈ A satisfies
f(z1) 6= f(z2) for any z1 ∈ U and z2 ∈ U with z1 6= z2, then f is said to be
univalent in U and denoted by f ∈ S.
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Key words and phrases: univalent functions, subordination, quasi-subordination, Fekete-
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Let g and f be two analytic functions in U then function g is said to be
subordinate to f if there exists an analytic function w in the unit disk U with
w(0) = 0 and |w(z)| < 1 such that

g(z) = f(w(z)) (z ∈ U).

We denote this subordination by g ≺ f. In particular, if the f is univalent in
U, the above subordination is equivalent to g(0) = f(0) and f(U) ⊂ g(U).

Further, function g is said to be quasi-subordinate [18] to f in the unit disk U

if there exist the functions w (with constant coefficient zero) and φ which are
analytic and bounded by one in the unit disk U such that

g(z) = φ(z)f(w(z))

and this is equivalent to

g(z)

φ(z)
≺ f(z) (z ∈ U).

We denote this quasi-subordination by g ≺q f. It is observed that if φ(z) = 1

(z ∈ U), then the quasi-subordination ≺q become the usual subordination ≺,
and for the function w(z) = z (z ∈ U), the quasi-subordination ≺q become
the majorization ’≪’. In this case

g(z) = φ(z)f(w(z)) ⇒ g(z) ≪ f(z), (z ∈ U).

Some typical problems in geometric function theory are to study functionals
made up of combinations of the coefficients of f. In 1933, Fekete and Szegő [5]
obtained a sharp bound of the functional λa2

2 − a3, with real λ(0 ≤ λ ≤ 1) for
a univalent function f. Since then, the problem of finding the sharp bounds for
this functional of any compact family of functions f ∈ A with any complex λ is
known as the classical Fekete-Szegő problem or inequality. Lawrence Zalcman
posed a conjecture in 1960 that the coefficients of S satisfy the sharp inequality

|a2
n − a2n−1| ≤ (n− 1)2, n ≥ 2.

More general versions of Zalcman conjecture have also been considered ([4, 12,
13, 14]) for the functional such as

λa2
n − a2n−1 and λaman − am+n−1
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for certain positive value of λ. These functionals can be seen as generalizations
of the Fekete-Szegő functional λa2

2 − a3. Several authors including [1]–[4], [9]–
[15], [17, 20] have investigated the Fekete-Szegő and Zalcman functionals for
various subclasses of univalent and multivalent functions.
Throughout this paper it is assumed that functions φ and h are analytic in

U. Also let

φ(z) = A0 +A1z+A2z
2 + · · · (|φ(z)| ≤ 1, z ∈ U) (2)

and
h(z) = 1+ B1z+ B2z

2 + · · · (B1 ∈ R
+). (3)

Motivated by earlier works in ([6], [7], [15], [17], [19]) on quasi-subordination,
we introduce here the following subclass of analytic functions:

Definition 1 For 0 ≤ λ ≤ 1 and γ ∈ C\{0}, a function f ∈ A given by (1) is
said to be in the class Kq(λ, γ, h) if the following condition are satisfied:

1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

≺q (h(z) − 1), (4)

where h is given by (3) and z ∈ U.

It follows that a function f is in the class Kq(λ, γ, h) if and only if there exists
an analytic function φ with |φ(z)| ≤ 1, in U such that

1
γ

(

zf
′

(z)+z2f
′′

(z)

(1−λ)z+λzf
′
(z)

− 1
)

φ(z)
≺ (h(z) − 1)

where h is given by (3) and z ∈ U.
If we set φ(z) ≡ 1 (z ∈ U), then the class Kq(λ, γ, h) is denoted by K(λ, γ, h)

satisfying the condition that

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

≺ h(z) (z ∈ U).

In the present paper, we find sharp bounds on the Fekete-Szegő functional
for functions belonging in the class Kq(λ, γ, h). Several known and new con-
sequences of these results are also pointed out. In order to derive our main
results, we have to recall here the following well-known lemma:
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Let Ω be class of analytic functions of the form

w(z) = w1z+w2z
2 + · · · (5)

in the unit disk U satisfying the condition |w(z)| < 1.

Lemma 1 ([8], p.10) If w ∈ Ω, then for any complex number ν:

|w1| ≤ 1, |w2 − νw2
1| ≤ 1+ (|ν|− 1)|w2

1| ≤ max{1, |ν|}.

The result is sharp for the functions w(z) = z or w(z) = z2.

2 Main results

Theorem 1 Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1) belonging
to the class Kq(λ, γ, h), then

|a2| ≤
|γ|B1

2(2− λ)
(6)

and for any ν ∈ C

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
max

{
1,

∣

∣

∣

∣

B2

B1
−QB1

∣

∣

∣

∣

}
, (7)

where

Q = γ

(

3ν(3− λ)

4(2− λ)2
−

λ

2− λ

)

. (8)

The results are sharp.

Proof. Let f ∈ Kq(λ, γ, h). In view of Definition 1, there exist then Schwarz
functions w and an analytic function φ such that

1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= φ(z)(h(w(z)) − 1) (z ∈ U). (9)

Series expansions for f and its successive derivatives from (1) gives us

1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
−1

)

=
1

γ

[

2(2−λ)a2z+
(

3(3−λ)a3−4λ(2−λ)a2
2

)

z2+...

]

.

(10)
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Similarly from (2), (3) and (5), we obtain

h(w(z)) − 1 = B1w1z+ (B1w2 + B2w
2
1)z

2 + · · ·

and

φ(z)
(

h(w(z)) − 1
)

= A0B1w1z+ [A1B1w1 +A0(B1w2 +B2w
2
1)]z

2 + · · · . (11)

Equating (10) and (11) in view of (9) and comparing the coefficients of z and
z2, we get

a2 =
γA0B1w1

2(2− λ)
(12)

and

a3 =
γB1

3(3− λ)

[

A1w1 +A0{w2 +

(

γλA0B1

2− λ
+

B2

B1

)

w2
1}

]

. (13)

Thus, for any ν ∈ C, we have

a3−νa2
2 =

γB1

3(3− λ)

[

A1w1+

(

w2+
B2

B1
w2

1

)

A0−

(

3(3− λ)γ

4(2− λ)2
ν−

γλ

2− λ

)

B1A
2
0w

2
1

]

=
γB1

3(3− λ)

[

A1w1 +

(

w2 +
B2

B1
w2

1

)

A0 −QB1A
2
0w

2
1

]

, (14)

where Q is given by (8).
Since φ(z) = A0 + A1z + A2z

2 + · · · is analytic and bounded by one in U,
therefore we have (see [16], p 172 )

|A0| ≤ 1 and A1 = (1−A2
0)y (y ≤ 1). (15)

From (14) and (15), we obtain

a3 − νa2
2 =

γB1

3(3− λ)

[

yw1 +

(

w2 +
B2

B1
w2

1

)

A0 −

(

B1Qw2
1 + yw1

)

A2
0

]

. (16)

If A0=0 in (16), we at once get

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
. (17)

But if A0 6= 0, let us then suppose that

G(A0) = yw1 +

(

w2 +
B2

B1
w2

1

)

A0 −

(

B1Qw2
1 + yw1

)

A2
0
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which is a quadratic polynomial in A0 and hence analytic in |A0| ≤ 1 and
maximum value of |G(A0)| is attained at A0 = eιθ (0 ≤ θ < 2π), we find that

max|G(A0)| = max
0≤θ<2π

|G(eιθ)| = |G(1)|

=

∣

∣

∣

∣

w2 −

(

QB1 −
B2

B1

)

w2
1

∣

∣

∣

∣

.

Therefore, it follows from (16) that

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)

∣

∣

∣

∣

w2 −

(

QB1 −
B2

B1

)

w2
1

∣

∣

∣

∣

, (18)

which on using Lemma 1, shows that

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
max

{
1,

∣

∣

∣

∣

B2

B1
−QB1

∣

∣

∣

∣

}
,

and this last above inequality together with (17) establish the results. The
result are sharps for the function f given by

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= h(z),

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= h(z2)

and

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= z(h(z) − 1).

This completes the proof of Theorem 1. �

For λ = 0 the Theorem 1 reduces to following corollary:

Corollary 1 If f ∈ A of the form (1) satisfies

1

γ
(f

′

(z) + zf
′′

(z) − 1) ≺q (h(z) − 1) (z ∈ U, γ ∈ C\{0}),

then

|a2| ≤
|γ|B1

4
,

and for some ν ∈ C

|a3 − νa2
2| ≤

|γ|B1

9
max

{
1,

∣

∣

∣

∣

B2

B1
−

9ν|γ|B1

16

∣

∣

∣

∣

}
.

The results are sharp.
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Remark 1 In Corollary 1, if we set φ ≡ 1, then above result match with the
result given in [3].

Remark 2 For φ ≡ 1, γ = λ = 1, Theorem 1 reduces to an improved result
of given in [15].

The next theorem gives the result based on majorization.

Theorem 2 Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1) satisfies

1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

≪ (h(z) − 1) (z ∈ U), (19)

then

|a2| ≤
|γ|B1

2(2− λ)

and for any ν ∈ C

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
max

{
1,

∣

∣

∣

∣

B2

B1
−QB1

∣

∣

∣

∣

}
,

where Q is given by (8). The results are sharp.

Proof. Assume that (19) holds. From the definition of majorization, there
exist an analytic function φ such that

1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= φ(z)(h(z) − 1) (z ∈ U).

Following similar steps as in the proof of Theorem 1, and by setting w(z) ≡ z,
so that w1 = 1,wn = 0, n ≥ 2, we obtain

a2 =
γA0B1

2(2− λ)

and also we obtain that

a3 − νa2
2 =

γB1

3(3− λ)

[

A1 +
B2

B1
A0 −QB1A

2
0

]

.

On putting the value of A1 from (15), we obtain

a3 − νa2
2 =

γB1

3(3− λ)

[

y+
B2

B1
A0 − (QB1 + y)A2

0

]

. (20)
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If A0=0 in (20), we at once get

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
, (21)

But if A0 6= 0, let us then suppose that

T(A0) = y+
B2

B1
A0 −

(

QB1 + y
)

A2
0,

which is a quadratic polynomial inA0, hence analytic in |A0| ≤ 1 and maximum
value of |T(A0)| is attained at A0 = eιθ (0 ≤ θ < 2π), we find that

max|T(A0)| = max
0≤θ<2π

|T(eιθ)| = |T(1)|.

Hence, from (20), we obtain

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)

∣

∣

∣

∣

QB1 −
B2

B1

∣

∣

∣

∣

.

Thus, the assertion of Theorem 2 follows from this last above inequality to-
gether with (21). The results are sharp for the function given by

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= h(z),

which completes the proof of Theorem 2. �

Theorem 3 Let 0 ≤ λ ≤ 1 and γ ∈ C\{0}. If f ∈ A of the form (1) belonging
to the class K(λ, γ, h), then

|a2| ≤
|γ|B1

2(2− λ)

and for any ν ∈ C

|a3 − νa2
2| ≤

|γ|B1

3(3− λ)
max

{
1,

∣

∣

∣

∣

B2

B1
−QB1

∣

∣

∣

∣

}
,

where Q is given by (8), the results are sharp.
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Proof. The proof is similar to Theorem 1, Let f ∈ K(λ, γ, h).
If φ(z) = 1, then A0 = 1,An = 0 (n ∈ N). Therefore, in view of (12) and (14)
and by application of Lemma 1, we obtain the desired assertion. The results
are sharp for the function f given by

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= h(z),

or

1+
1

γ

(

zf
′

(z) + z2f
′′

(z)

(1− λ)z+ λzf
′

(z)
− 1

)

= h(z2).

Thus, the proof of Theorem 3 is completed. �

Now, we determine the bounds on the functional |a3 − νa2
2| for real ν.

Theorem 4 Let 0 ≤ λ ≤ 1. If f ∈ A of the form (1) belonging to the class
Kq(λ, γ, h), then for real ν and γ, we have

|a3 − νa2
2| ≤






|γ|B1

3(3−λ)

[

B1γ
(

λ
2−λ −

3(3−λ)

4(2−λ)2
ν
)

+ B2

B1

]

(ν ≤ σ1),

|γ|B1

3(3−λ)
(σ1 ≤ ν ≤ σ1 + 2ρ),

−
|γ|B1

3(3−λ)

[

B1γ
(

λ
2−λ −

3(3−λ)

4(2−λ)2
ν
)

+ B2

B1

]

(ν ≥ σ1 + 2ρ),

(22)
where

σ1 =
4λ(2− λ)

3(3− λ)
−

4(2− λ)2

3γ(3− λ)

( 1

B1
−

B2

B2
1

)

(23)

and

ρ =
4(2− λ)2

3γ(3− λ)B1
. (24)

Each of the estimates in (22) are sharp.

Proof. For real values of ν and γ the above bounds can be obtained from (7),
respectively, under the following cases:

B1Q−
B2

B1
≤ −1, −1 ≤ B1Q−

B2

B1
≤ 1 and B1Q−

B2

B1
≥ 1,

where Q is given by (8). We also note the following:

(i) When ν < σ1 or ν > σ1 + 2ρ, then the equality holds if and only if
φ(z) ≡ 1 and w(z) = z or one of its rotations.
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(ii) When σ1 < ν < σ1 + 2ρ, then the equality holds if and only if φ(z) ≡ 1

and w(z) = z2 or one of its rotations.

(iii) Equality holds for ν = σ1 if and only if φ(z) ≡ 1 and w(z) =
z(z+ǫ)
1+ǫz (0 ≤

ǫ ≤ 1), or one of its rotations, while for ν = σ1 + 2ρ, the equality holds

if and only if φ(z) ≡ 1 and w(z) = −
z(z+ǫ)
1+ǫz (0 ≤ ǫ ≤ 1), or one of its

rotations. �

The bounds of the functional a3−νa2
2 for real values of ν and γ for the middle

range of the parameter ν can be improved further as follows:

Theorem 5 Let 0 ≤ λ ≤ 1. If f ∈ A of the form (1) belonging to the class
Kq(λ, γ, h), then for real ν and γ, we have

|a3 − νa2
2|+ (ν− σ1)|a2|

2 ≤
|γ|B1

3(3− λ)
(σ1 ≤ ν ≤ σ1 + ρ) (25)

and

|a3 − νa2
2|+ (σ1 + 2ρ− ν)|a2|

2 ≤
|γ|B1

3(3− λ)
(σ1 + ρ ≤ ν ≤ σ1 + 2ρ), (26)

where σ1 and ρ are given by (23) and (24), respectively.

Proof. Let f ∈ Kq(λ, γ, h). For real ν satisfying σ1 + ρ ≤ ν ≤ σ1 + 2ρ and
using (12) and (18) we get

|a3 − νa2
2|+ (ν− σ1)|a2|

2

≤
|γ|B1

3(3− λ)

[

|w2|−
3|γ|B1(3− λ)

4(2− λ)2
(ν−σ1−ρ)|w1|

2+
3|γ|B1(3− λ)

4(2− λ)2
(ν− σ1)|w1|

2
]

.

Therefore, by virtue of Lemma 1, we get

|a3 − νa2
2|+ (ν− σ1)|a2|

2 ≤
|γ|B1

3(3− λ)
[1− |w1|

2 + |w1|
2],

which yields the assertion (25).
If σ1 + ρ ≤ ν ≤ σ1 + 2ρ, then again from (12), (18) and the application of

Lemma 1, we have

|a3−νa2
2|+ (σ1 + 2ρ− ν)|a2|

2 ≤
|γ|B1

3(3− λ)

[

|w2|+
3|γ|B1(3− λ)

4(2− λ)2
(ν− σ1− ρ)|w1|

2

+
3|γ|B1(3− λ)

4(2− λ)2
(σ1 + 2ρ− ν)|w1|

2

]

≤
|γ|B1

3(3− λ)
[1− |w1|

2 + |w1|
2],
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which estimates (26). �
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Abstract. In this paper, we propose a new approximate method, namely
fractional natural decomposition method (FNDM) in order to solve a cer-
tain class of nonlinear time-fractional wave-like equations with variable
coefficients. The fractional natural decomposition method is a combined
form of the natural transform method and the Adomian decomposition
method. The nonlinear term can easily be handled with the help of Ado-
mian polynomials which is considered to be a clear advantage of this
technique over the decomposition method. Some examples are given to
illustrate the applicability and the easiness of this approach.

1 Introduction

Fractional differential equations, as generalizations of classical integer order
differential equations, are gradually employed to model problems in fluid flow,
finance, physical, hydrological, biological processes and systems [6, 7, 8, 9].
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The most frequent used methods for investigating fractional differential
equations are: Adomian decomposition method (ADM) [1] variational iter-
ation method (VIM) [12], generalized differential transform method (GDTM)
[10], homotopy analysis method (HAM) [3], homotopy perturbation method
(HPM) [11]. Also, there are some other classical solution techniques such as
Laplace transform method, fractional Green’s function method, Mellin trans-
form method and method of orthogonal polynomials [8].
In this paper, the main objective is to solve a certain class of nonlinear time-

fractional wave-like equation with variable coefficients by using a modified
method called fractional natural decomposition method (FNDM) which is a
combination of two powerful methods, the Natural transform and the Adomian
decomposition method.
Consider the following nonlinear time-fractional wave-like equations

Dα
t v =

n∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj)

+

n∑

i=1

G1i(X, t, v)
∂p

∂x
p
i

G2i(vxi) +H(X, t, v) + S(X, t),

(1)

with initial conditions

v(X, 0) = a0(X), vt(X, 0) = a1(X), (2)

where Dα
t is the Caputo fractional derivative operator of order α, 1 < α ≤ 2.

Here X = (x1, x2, ..., xn), F1ij, G1i i, j ∈ {1, 2, ..., n} are nonlinear functions of
X, t and v, F2ij, G2i i, j ∈ {1, 2, ..., n} , are nonlinear functions of derivatives of v
with respect to xi and xj i, j ∈ {1, 2, ..., n} , respectively. Also H, S are nonlinear
functions and k,m, p are integers.
For α = 2, these types of equations are of considerable significance in vari-

ous fields of applied sciences, mathematical physics, nonlinear hydrodynamics,
engineering physics, biophysics, human movement sciences, astrophysics and
plasma physics. These equations describe the evolution of erratic motions of
small particles that are immersed in fluids, fluctuations of the intensity of laser
light, velocity distributions of fluid particles in turbulent flows.

2 Basic definitions

In this section, we introduce some definitions and important properties of
the fractional calculus, the natural transform, and the natural transform of
fractional derivatives, which are used further in this paper.
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2.1 Fractional calculus

Definition 1 [8] A real function f(t), t > 0, is considered to be in the space
Cµ, µ ∈ R if there exists a real number p > µ, so that f(t) = tph(t), where
h(t) ∈ C ([0,∞[), and it is said to be in the space Cn

µ if f(n) ∈ Cµ, n ∈ N.

Definition 2 [8] The Riemann-Liouville fractional integral operator Iα of or-
der α for a function f ∈ Cµ, µ ≥ −1 is defined as follows

Iαf(t) =






1
Γ(α)

t∫

0

(t− ξ)α−1 f(ξ)dξ, α > 0, t > 0,

f(t), α = 0,

(3)

where Γ(.) is the well-known Gamma function.

Definition 3 [8] The fractional derivative of f(t) in the Caputo sense is de-
fined as follows

Dαf(t) = In−αDnf(t) =
1

Γ(n− α)

t∫

0

(t− ξ)n−α−1f(n)(ξ)dξ, t > 0, (4)

where n− 1 < α ≤ n, n ∈ N, f ∈ Cn
−1.

For the Riemann-Liouville fractional integral and Caputo fractional deriva-
tive, we have the following relation

IαDαf(t) = f(t) −

n−1∑

k=0

f(k)(0+)
tk

k!
, t > 0. (5)

Definition 4 [8] The Mittag-Leffler function is defined as follows

Eα (z) =

∞∑

n=0

zn

Γ(nα+ 1)
, α ∈ C, Re(α) > 0. (6)

A further generalization of (6) is given in the form

Eα,β (z) =

∞∑

n=0

zn

Γ(nα+ β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0. (7)

For α = 1, Eα (z) reduces to ez.
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2.2 Natural transform

Definition 5 [2] The natural transform is defined over the set of functions is
defined over the set of functions

A =

{

f(t)/∃M,τ1, τ2 > 0, |f(t)| < Me
|t|

τj , if t ∈ (−1)j × [0,∞)

}

,

by the following integral

N+ [f(t)] = R+(s, u) =
1

u

+∞∫

0

e−
st
u f(t)dt, s, u ∈ (0,∞). (8)

Some basic properties of the natural transform are given as follows [2].

Property 1 The natural transform is a linear operator. That is, if λ and µ

are non–zero constants, then

N+ [λf(t)± µg(t)] = λN+ [f(t)]± µN+ [g(t)] .

Property 2 If f(n)(t) is the n-th derivative of function f(t) w.r.t. "t" then its
natural transform is given by

N+
[

f(n)(t)
]

= R+
n(s, u) =

sn

un
R+(s, u) −

n−1∑

k=0

sn−(k+1)

un−k
f(k)(0).

Property 3 (Convolution property) Suppose F+(s, u) and G+(s, u) are the
natural transforms of f(t) and g(t), respectively, both defined in the set A.
Then the natural transform of their convolution is given by

N+ [(f ∗ g) (t)] = uF+(s, u)G+(s, u),

where the convolution of two functions is defined by

(f ∗ g) (t) =

t∫

0

f(ξ)g(t− ξ)dξ =

t∫

0

f(t− ξ)g(ξ)dξ.

Property 4 Some special natural transforms

N+ [1] =
1

s
,
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N+ [t] =
u

s2
,

N+

[

tn−1

(n− 1) !

]

=
un−1

sn
, n = 1, 2, ....

Property 5 If α > −1, then the natural transform of tα is given by

N+ [tα] = Γ (α+ 1)
uα

sα+1
.

2.3 Natural transform of fractional derivatives

Theorem 1 If R+(s, u) is the natural transform of f(t), then the natural
transform of the Riemann-Liouville fractional integral for f(t) of order α, is
given by

N+ [Iαf(t)] =
uα

sα
R+(s, u). (9)

Proof. The Riemann-Liouville fractional integral for the function f(t), as in
(3), can be expressed as the convolution

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t). (10)

Applying the natural transform in the Eq. (10) and using Properties 3 and
5, we have

N+ [Iαf(t)] = N+

[

1

Γ(α)
tα−1 ∗ f(t)

]

= u
1

Γ(α)
N+

[

tα−1
]

N+ [f(t)]

= u
uα−1

sα
R+(s, u) =

uα

sα
R+(s, u).

The proof is complete. �

Theorem 2 n ∈ N
∗ and α > 0 be such that n − 1 < α ≤ n and R+(s, u) be

the natural transform of the function f(t), then the natural transform denoted
by R+

α (s, u) of the Caputo fractional derivative of the function f(t) of order α,
is given by

N+ [Dαf(t)] = R+
α (s, u) =

sα

uα
R+(s, u) −

n−1∑

k=0

sα−(k+1)

uα−k

[

Dkf(t)
]

t=0
. (11)
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Proof. Let g(t) = f(n)(t), then by the Definition 3 of the Caputo fractional
derivative, we obtain

Dαf(t) =
1

Γ(n− α)

t∫

0

(t− ξ)n−α−1f(n)(ξ)dξ

=
1

Γ(n− α)

t∫

0

(t− ξ)n−α−1g(ξ)dξ

= In−αg(t).

(12)

Applying the natural transform on both sides of (12) using Eq. (9), we get

N+ [Dαf(t)] = N+
[

In−αg(t)
]

=
un−α

sn−α
G+(s, u). (13)

Also, we have from the Property 2

N+ [g(t)] = N+
[

f(n)(t)
]

,

G+(s, u) =
sn

un
R+(s, u) −

n−1∑

k=0

sn−(k+1)

un−k

[

f(k)(t)
]

t=0
.

(14)

Hence, 13 becomes

N+ [Dαf(t)] =
un−α

sn−α

(

sn

un
R+(s, u) −

n−1∑

k=0

sn−(k+1)

un−k
f(k)(0)

)

=
sα

uα
R+(s, u) −

n−1∑

k=0

sα−(k+1)

uα−k

[

Dkf(t)
]

t=0
= R+

α (s, u),

−1 < n− 1 < α ≤ n.

The proof is complete. �

3 FNDM of nonlinear time-fractional wave-like equa-

tions with variable coefficients

Theorem 3 Consider the following nonlinear time-fractional wave-like equa-
tions (1) with the initial conditions (2).
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Then, by FNDM, the solution of Eqs. (1)-(2) is given in the form of infinite
series as follows

v(X, t) =

∞∑

n=0

vn(X, t).

Proof. In order to to achieve our goal, we consider the following nonlinear
time-fractional wave-like equations (1) with the initial conditions (2).
First we define

Nv =

n∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xki ∂x
m
j

F2ij(vxi , vxj),

Mv = +

n∑

i=1

G1i(X, t, v)
∂p

∂x
p
i

G2i(vxi),

Kv = H(X, t, v).

(15)

Eq. (1) is written in the form

Dα
t v(X, t) = Nv(X, t) +Mv(X, t) + Kv(X, t) + S(X, t),

t > 0, 1 < α ≤ 2.
(16)

Applying the natural transform on both sides of (16) and using the Theorem
2, we get

N+ [v(X, t)] =
uα

sα

n−1∑

k=0

sα−(k+1)

uα−k

[

Dkv(X, t)
]

t=0

+
uα

sα
N+ [Nv(X, t) +Mv(X, t) + Kv(X, t) + S(X, t)] .

(17)

After that, let us take the inverse natural transform on both sides of (17)
we have

v(X, t) = L(X, t) +N−1

(

uα

sα
N+ [Nv(X, t) +Mv(X, t) + Kv(X, t)]

)

, (18)

where L(X, t) is a term arising from the source term and the prescribed initial
conditions.
Now, we represent the solution in an infinite series form

v(X, t) =

∞∑

n=0

vn(X, t), (19)
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and the nonlinear terms can be decomposed as

Nv(X, t) =

∞∑

n=0

An,Mv(X, t) =

∞∑

n=0

Bn, Kv(X, t) =

∞∑

n=0

Cn, (20)

where An, Bn and Cn are Adomian polynomials [13], of v0, v1, v2, .., vn, and it
can be calculated by formula given below

An = Bn = Cn =
1

n!

dn

dλn

[

N

(

∞∑

i=0

λivi

)]

λ=0

, n = 0, 1, 2, ... (21)

Using Eqs. (19) and (20), we can rewrite Eq. (18) as

∞∑

n=0

vn(X, t) = L(X, t) +N−1

(

uα

sα
N+

[

∞∑

n=0

An +

∞∑

n=0

Bn +

∞∑

n=0

Cn

])

. (22)

By comparing both sides of Eq. (22) we have the following relation

v0(X, t) = L(X, t),

v1(X, t) = N−1

(

uα

sα
N+ [A0 + B0 + C0]

)

,

v2(X, t) = N−1

(

uα

sα
N+ [A1 + B1 + C1]

)

,

v3(X, t) = N−1

(

uα

sα
N+ [A2 + B2 + C2]

)

,

. . . ,

(23)

and so on.
In general the recursive relation is given by

v0(X, t) = L(X, t),

vn+1(X, t) = N−1

(

uα

sα
N+ [An + Bn + Cn]

)

, n ≥ 0.
(24)

Then, the solution of Eqs. (1)-(2) is given in the form of infinite series as
follows

v(X, t) =

∞∑

n=0

vn(X, t). (25)

The proof is complete. �
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Theorem 4 Let B be a Banach space, Then the series solution of the Eqs.
(1)-(2) converges to S ∈ B , if there exists γ, 0 < γ < 1 such that

‖vn‖ ≤ γ ‖vn−1‖ ,∀n ∈ N.

Proof. Define the sequences Sn of partial sums of the series given by the
recursive relation (24) as

Sn(X, t) = v0(X, t) + v2(X, t) + v3(X, t) + ...+ vn(X, t),

and we need to show that {Sn} are a Cauchy sequences in Banach space B. For
this purpose, we consider

‖Sn+1 − Sn‖ ≤ ‖vn+1‖ ≤ γ ‖vn‖ ≤ γ2 ‖vn−1‖ ≤ ... ≤ γn+1 ‖v0‖ . (26)

For every n,m ∈ N, n ≥ m, by using (26) and triangle inequality succes-
sively, we have

‖Sn − Sm‖ = ‖Sm+1 − Sm + Sm+2 − Sm+1 + ...+ Sn − Sn−1‖

≤ ‖Sm+1 − Sm‖+ ‖Sm+2 − Sm+1‖+ ...+ ‖Sn − Sn−1‖

≤ γm+1 ‖v0‖+ γm+2 ‖v0‖+ ...+ γn ‖v0‖

= γm+1
(

1+ γ+ ...+ γn−m−1
)

‖v0‖

≤ γm+1

(

1− γn−m

1− γ

)

‖v0‖ .

Since 0 < γ < 1, so 1 1− γn−m ≤ 1 then

‖Sn − Sm‖ ≤
γm+1

1− γ
‖v0‖ .

Since v0 is bounded, then

lim
n,m−→∞

‖Sn − Sm‖ = 0.

Therefore, the sequences {Sn} are Cauchy sequences in the Banach space B,
so the series solution defined in (25) converges. This completes the proof. �

Remark 1 The m−term approximate solution of Eqs. (1)-(2) is given by

v(X, t) =

m−1∑

n=0

vn(X, t) = v0(X, t) + v1(X, t) + v2(X, t) + ...
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4 Appliquations and numerical results

In this section, we apply the (FNDM) on three examples of nonlinear time-
fractional wave-like equations with variable coefficients and then compare our
approximate solutions with the exact solutions.

Example 1 Consider the 2-dimensional nonlinear time-fractional wave-like
equation with variable coefficients

Dα
t v =

∂2

∂x∂y
(vxxvyy) −

∂2

∂x∂y
(xyvxvy) − v, 1 < α ≤ 2, (27)

with initial conditions

v(x, y, 0) = exy, vt(x, y, 0) = exy, (28)

where Dα
t is the Caputo fractional derivative operator of order α, and v is a

function of (x, y, t) ∈ R
2 × R

+.

By applying the steps involved in (FNDM) as presented in Section 3 to Eqs.
(27)-(28), we have

v0(x, y, t) = (1+ t)exy,

v1(x, y, t) = −

(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)

exy,

v2(x, y, t) =

(

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)

exy,

. . .

So, the solution of Eqs. (27)-(28) can be expressed by

v(x, y, t) =

∞∑

n=0

vn(x, y, t) (29)

=

(

1+t−
tα

Γ(α+1)
−

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
− . . .

)

exy.

= (Eα(−tα) + tEα,2(−tα)) exy,

where Eα(−tα)exy and Eα,2(−tα) are the Mittag-Leffler functions, defined by
Eqs. (6) and (7).
Taking α = 2 in (29), the solution of Eqs. (27)-(28) has the general pattern

form which is coinciding with the following exact solution in terms of infinite
series

v(x, y, t) =

(

1+ t−
t2

2!
−

t3

3!
+

t4

4!
+

t5

5!
− . . .

)

exy.
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So, the exact solution of Eqs. (27)-(28) in a closed form of elementary func-
tion will be

v(x, y, t) = (cos t+ sin t) exy,

which is the same result obtained by (ADM) [4] and (HPTM) [5], for the same
test problem.
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Figure 1: The surface graph of the 4−term approximate solution by (FNDM)
and the exact solution for Example 1 when y = 0.5: (a) v when α = 1.5, (b)
v when α = 1.75, (c) v when α = 2, and (d) v exact.

t α = 1.7 α = 1.8 α = 1.95 α = 2 exact solution |vexact − vFNDM|

0.1 1.3953 1.3999 1.4046 1.4058 1.4058 3.2196× 10−13

0.3 1.5522 1.5735 1.5991 1.6061 1.6061 2.1569× 10−9

0.5 1.6359 1.6755 1.7272 1.7424 1.7424 1.3095× 10−7

0.7 1.6540 1.7088 1.7854 1.8093 1.8093 1.9680× 10−6

0.9 1.6137 1.6775 1.7728 1.8040 1.8040 1.4947× 10−5

Table 1: The numerical values of the 4−term approximate solution and the
exact solution for Example 1 when x = y = 0.5.
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Figure 2: The behavior of the 4−term approximate solution by (FNDM) and
the exact solution for Example 1 for different values of α when x = y = 0.5.

Example 2 Consider the following nonlinear time-fractional wave-like equa-
tion with variable coefficients

Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx) − 18v5 + v, 1 < α ≤ 2, (30)

with initial conditions

v(x, 0) = ex, vt(x, 0) = ex, (31)

where Dα
t is the Caputo fractional derivative operator of order α, and v is a

function of (x, t) ∈ ]0, 1[× R
+.

By applying the steps involved in (FNDM) as presented in Section 3 to Eqs.
(30)-(31), we have

v0(x, t) = (1+ t) ex,

v1(x, t) =

(

tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)

)

ex,

v2(x, t) =

(

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)

ex,

. . .
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So, the solution of Eqs. (30)-(31) can be expressed by

v(x, t) =

(

1+ t+
tα

Γ(α+ 1)
+

tα+1

Γ(α+ 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)

ex

= (Eα(t
α) + tEα,2(t

α)) ex, (32)

where Eα(t
α) and Eα,2(t

α) are the Mittag-Leffler functions, defined by Eqs. (6)
and (7).
Taking α = 2 in (32), the solution of Eqs. (30)-(31) has the general pattern

form which is coinciding with the following exact solution in terms of infinite
series

v(x, t) =

(

1+ t+
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ...

)

ex.

So, the exact solution of Eqs. (30)-(31) in a closed form of elementary func-
tion will be

v(x, t) = ex+t,

which is the same result obtained by (ADM) [4] and (HPTM) [5], for the same
test problem.
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Figure 3: The surface graph of the 4−term approximate solution by (FNDM)
and the exact solution for Example 2: (a) v when α = 1.5, (b) v when α = 1.75,
(c) v when α = 2, and (d) v exact.
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Figure 4: The behavior of the 4−term approximate solution by (FNDM) and
the exact solution for Example 2 for different values of α when x = 0.5.

t α = 1.7 α = 1.8 α = 1.95 α = 2 exact solution |vexact − vFNDM|

0.1 1.8357 1.8298 1.8236 1.8221 1.8221 4.1350× 10−13

0.3 2.2994 2.2697 2.2350 2.2255 2.2255 2.7750× 10−9

0.5 2.8800 2.8174 2.7402 2.7183 2.7183 1.6907× 10−7

0.7 3.5940 3.4901 3.3585 3.3201 3.3201 2.5543× 10−6

0.9 4.4670 4.3129 4.1140 4.0552 4.0552 1.9535× 10−5

Table 2: The numerical values of the 4−term approximate solution and the
exact solution for Example 2 when x = 0.5.

Example 3 Consider the following one dimensional nonlinear time-fractional
wave-like equation with variable coefficients

Dα
t v = x2

∂

∂x
(vxvxx) − x2(vxx)

2 − v, 1 < α ≤ 2, (33)

with initial conditions

v(x, 0) = 0, vt(x, 0) = x2, (34)

where Dα
t is the Caputo fractional derivative operator of order α, and v is a

function of (x, t) ∈ ]0, 1[× R
+.
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By applying the steps involved in (FNDM) as presented in Section 3 to Eqs.
(33)-(34), we have

v0(x, t) = tx2,

v1(x, t) = −
tα+1

Γ(α+ 2)
x2,

v2(x, t) =
t2α+1

Γ(2α+ 2)
x2,

. . .

So, the solution of Eqs. (33)-(34) can be expressed by

v(x, t) =

∞∑

n=0

vn(x, t)

= x2
(

t−
tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− ...

)

= x2 (tEα,2(−tα)) ,

(35)

where Eα,2(−tα) is the Mittag-Leffler function, defined by Eq. (6).
Taking α = 2 in (35), the solution of Eqs. (33)-(34) has the general pattern

form which is coinciding with the following exact solution in terms of infinite
series

v(x, t) = x2
(

t−
t3

3!
+

t5

5!
− ...

)

.

So, the exact solution of Eqs. (33)-(34) in a closed form of elementary func-
tion will be

v(x, t) = x2 sin t,

which is the same result obtained by (ADM) [4] and (HPTM) [5], for the same
test problem.

Remark 2 The numerical results (See Figures 1, 2,..., 6) and (Tables 1, 2
and 3), affirm that when α approaches 2, our results approach the exact solu-
tions.

Remark 3 In this paper, we only apply four terms to approximate the solu-
tions, if we apply more terms of the approximate solutions, the accuracy of the
approximate solutions will be greatly improved.
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Figure 5: The surface graph of the 4−term approximate solution by (FNDM)
and the exact solution for Example 3: (a) v when α = 1.5, (b) v when α = 1.75,
(c) v when α = 2, and (d) v exact.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.05

0.1

0.15

0.2

0.25

v

Exact solution α=2 α=1.95 α=1.8 α=1.7

Figure 6: The behavior of the 4−term approximate solution by (FNDM) and
the exact solution for Example 3 for different values of α when x = 0.5.
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t α = 1.7 α = 1.8 α = 1.95 α = 2 exact solution |vexact − vFNDM|

0.1 0.02488 0.02492 0.02495 0.02496 0.02496 6.8887× 10−16

0.3 0.07271 0.07319 0.07374 0.07388 0.07388 1.3549× 10−11

0.5 0.11604 0.11752 0.11934 0.11986 0.11986 1.3425× 10−9

0.7 0.15325 0.15615 0.15994 0.16105 0.16105 2.7677× 10−8

0.9 0.18327 0.18777 0.19394 0.19583 0.19583 2.6495× 10−7

Table 3: The numerical values of the 4−term approximate solution and the
exact solution for Example 3 when x = 0.5.

5 Conclution

In this paper, the (FNDM) has been successfully applied to study a certain
class of nonlinear time-fractional wave-like equations with variable coefficients.
The results show that the (FNDM) is an efficient and easy to use technique
for finding approximate and exact solutions for this equation. The obtained
approximate solutions using the suggested method is in excellent agreement
with the exact solution. This confirms our belief that the efficiency of our
technique gives it much wider applicability for general classes of nonlinear
problems.
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Abstract. In this paper, we introduce the use of a powerful tool from
theoretical complex analysis, the Blaschke product, for the solution of
Riemann-Hilbert problems. Classically, Riemann-Hilbert problems are
considered for analytic functions. We give a factorization theorem for
meromorphic functions over simply connected nonempty proper open
subsets of the complex plane and use this theorem to solve Riemann-
Hilbert problems where the given data consists of a meromorphic func-
tion.

1 Introduction

Approximation of holomorphic functions of a complex variable by a sequence
of polynomials has a long history [23], some notable theorems in this regard
are the Runge theorem [20], the Mergelyan theorem [19], and the Arakelyan
theorem [2]. A different approach to approximation of a holomorphic function
is to find and truncate an expansion or a factorization.
Since holomorphic functions are complex analytic, they admit Taylor ex-

pansion on an open disk. Furthermore, they admit Fourier expansions on the
unit circle. Over the open unit disk, a holomorphic function can be written
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Key words and phrases: Riemann-Hilbert problems, meromorphic functions, positive
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formally as a series of Blaschke products [9]. Moreover, entire functions can
be factorized by Weierstrass factorization theorem [25]. In this paper, we give
a factorization of meromorphic functions by Blaschke products over simply
connected nonempty proper open subsets of the complex plane and use this
theorem to solve Riemann-Hilbert problems with meromorphic functions.
One of the shortcomings of the classical solutions to Riemann-Hilbert prob-

lems is their dependence on the index of the coefficients and the Hölder conti-
nuity requirement in the application of Sokhotski-Plemelj formula. In [16], we
proposed solutions to overcome these shortcomings. The current work can be
considered as a sequel to [16], focusing on the complex variable case.
This paper is organized as follows. In Section 1, we define the classical

Riemann-Hilbert problem, recall results on Blaschke products and state the
Riemann Mapping Theorem. In Section 2, we use Blaschke products and the
Riemann Mapping Theorem to give factorization theorems for meromorphic
functions of bounded type over simply connected nonempty proper open sub-
sets of the complex plane. In Section 3, we define a Riemann-Hilbert problem
with meromorphic data and give a general solution by employing the results of
Section 2. In Section 4, we give several results for positive definite functions on
absolutely convex subsets of the complex plane. Our main results are Theorem
(3), Theorem (4) , Theorem (7) and their applications which are discussed in
Section 3.

1.1 Riemann-Hilbert problems with analytic functions

The Riemann-Hilbert problem was first introduced by Bernhard Riemann in
connection with the Riemann’s Monodromy problem which later was general-
ized to the Riemann-Hilbert problem by Hilbert [1, A.1.3].

Definition 1 [10, 14.1.] Suppose that we are given a simple smooth closed
contour L dividing the plane of the complex variable into an interior domain
D+ and an exterior domain D−, and two functions of on the contour, G(t)

and g(t) which satisfy the Hölder condition, where G(t) does not vanish. It is
required to find two functions: Φ+(z), analytic in the domain D+; and Φ−(z),
analytic in the domain D−, including z = ∞, which satisfy on the contour L

either the linear relation

Φ+(z) = G(t)Φ−(z)

or

Φ+(z) = G(t)Φ−(z) + g(t)
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The function G(t) will be called the coefficient of the Riemann problem, and
the function g(t) its free (inhomogeneous) term.

The following theorem is of particular importance in the solution of analytic
Riemann-Hilbert problems.

Theorem 1 [10, 13.2, Generalized Liouville’s Theorem] Let the function f(z)

be analytic in the entire complex plane, except at the points a0 = ∞, ak (k :=

1, 2, . . . , n), where it has poles, and suppose that the principal parts of the
expansions of the function f(z) in the vicinities of the poles have the form:
at the point a0

G0(z) = c01z+ c02z
2 + . . .+ c0n0

zn0

at the point ak

G0

(
1

z− ak

)
=

ck1
z− ak

+
ck2

(z− ak)2
+ . . .+

ckmk

(z− ak)mk
.

Then the function f(z) is a rational function and is representable by the relation

f(z) = C+G0(z) +

n∑

k=1

Gk(
1

z− ak
).

In particular, if the only singularity of the function f(z) is a pole of order m

at infinity, then f(z) is a polynomial of degree m:

f(z) = c0 + c1z+ . . .+ cmz
m.

1.2 Blaschke products

Definition 2 [11] A Blaschke product is a function of the form

B(z) = eiαzK
∏

n≥1

|zn|

zn

zn − z

1− z̄nz

in which α ∈ R, K ∈ N0, and {z1, z2, . . .} is a sequence (finite or infinite) in
{0 < |z| < 1} that satisfies the Blaschke condition

∑

n≥1

(1− |zn|) < ∞.
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Finite Blaschke products can be considered as generalizations of polynomials
in the unit disk because of their remarkable similar properties to polynomials
[18, p. 249]. We only mention few of these similarities:

Proposition 1 The following hold:

(i) Let f be analytic in C and suppose that lim
|z|→∞

|f(z)| = ∞ then f is a

polynomial [18, Theorem 3].

(ii) Let f be analytic in D and suppose that lim
|z|→1

|f(z)| = 1 then f is a finite

Blaschke product [18, Theorem 13].

(iii) Let P be a polynomial of degree n with zeros z1, . . . , zn in C. The critical
points of P lie in the convex hull of the set {z1, . . . , zn} [18, Theorem 9].

(iv) Let B be a finite Blaschke product of degree n with zeros z1, . . . , zn in D.
Then B(z) has exactly n − 1 critical points in D and these all lie in the
hyperbolic convex hull 1 of the set {z1, . . . , zn} [18, Theorem 19].

1.3 Riemann Mapping Theorem

We recall the Riemann Mapping Theorem.

Theorem 2 [3, 14.2] For any simply connected domain R( 6= C) and z0 ∈ R,
there exists a unique conformal mapping φ of R onto U such that φ(z0) = 0

and φ′(z0) > 0.

Example 1 The map f(z) = z−i
z+i is a conformal map of the unit disk to the

upper half plane H. In fact, all conformal maps from the upper half plane to
the unit disk take the form eiθ z−β

z−β
where θ ∈ R and β ∈ H [22, Chapter 8,

Exercise 14].

For simple domains such as polygons, one can construct a Riemann map by
using the Schwarz-Christoffel formula. The construction of a Riemann map for
a general simply connected domain has been studied extensively and numerous
algorithms are known rm [13, 6, 5, 8, 7].

1Recall that the Poincaré disk provides a model of the hyperbolic plane in the disk |z| < 1;
we refer to a line in the Poincaré model as a hyperbolic line and to the associated subregions
as hyperbolic half-planes. The hyperbolic convex hull of a point set is the intersection of all
hyperbolic half-planes containing the point set [24].
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2 Factorization of meromorphic functions

In this section, we give some theorems on factorization of meromorphic func-
tions satisfying certain boundedness conditions in terms of (finite or infinite)
Blaschke products.

Lemma 1 Let f : X ⊂ C → C be a holomorphic function where X is a simply
connected bounded open set. If lim

|z|→|a|
|f(z)| 6= 0 for all a ∈ ∂X, then f has finitely

many zeros in X.

Proof. Since f is holomorphic on X, it is continuous on X. Assume that f has
infinitely many zeros. The zero set Z = {zk} of f is bounded; therefore, it has
an accumulation point by the Bolzano-Weierstrass Theorem. The accumula-
tion point of zeros of f does not belong to ∂X because lim

k→∞

|f(zk)| = 0 but

lim
|z|→|a|

|f(z)| 6= 0. Therefore, the accumulation point must belong to X. By the

Identity Theorem, f ≡ 0, on X which is a contradiction. �

Lemma 2 Let f : X ⊂ C → C be holomorphic on X where X is a simply
connected open set. If f has no zeros in X, then there exists a holomorphic
function h on X such that f = eh. Furthermore, if X is bounded, f is continuous
on X, and constant on ∂X then f is constant on X.

Proof. The first part of the lemma is a standard result and its proof can be
found in [17, XIII, Theorem 2.1]. For the second part, we note that if f has no
zeros in X, then 1

f is holomorphic on X. By the maximum modulus principle,

the maximum of the harmonic function 1
|f(z)|

is on the boundary of X. But also

the maximum of the |f| is on the boundary. If |f| is constant on the boundary
then |f(z)| = c for all z ∈ X. �

Theorem 3 Let f : X ⊂ C → C be a meromorphic function where X is a
simply connected bounded open Jordan domain. If lim

|x|→|a|
|f(x)| where a ∈ ∂X

exists and it is not zero or infinity, then

f(φ(z)) = eq(z)
n∏

i=1

zi − z

1− z̄iz

m∏

j=1

p̄j −
1
z

1−
pj
z

where φ : D → X is a Riemann map, q : D → C is a holomorphic function,
{zi}

n
i=1 is the set of zeros and {pj}

m
j=1 is the set of poles of f ◦ φ.
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Proof. By the Riemann mapping theorem, there exists a conformal bijective
map φ : D → X. By Carathéodory’s theorem, there exists a homeomorphism
φ̃ : D̄ → X̄ that extends φ. Therefore, if |z| → |1| then |φ(z)| → |a| where
a ∈ ∂X and hence lim

|z|→1
|f(φ(z))| 6= 0,∞. Since g = f ◦ φ : D → C is mero-

morphic, it is the ratio of two holomorphic functions, i.e. g = h
k where h and

k are holomorphic. Since lim
|z|→|1|

|g(z)| 6= 0,∞, we conclude lim
|z|→|1|

|h(z)| 6= 0 and

lim
|z|→|1|

|k(z)| 6= 0. By Lemma (1), h and k have finitely many zeros in D, denoted

by {zi}
n
i=1 and {pj}

m
j=1 respectively.

The function hn := h
Bh

where Bh(z) =
∏n

i=1
zi−z
1−z̄iz

, is holomorphic in D

and has no zeros in D. By Lemma (2), there exists a holomorphic function
qh such that hn = eqh . Therefore, h = eqhBh and we can proceed similarly
to prove k = eqkBk. Hence, g = eqh−qk Bh

Bk
. Since B̄k(

1
z̄ ) = 1

Bk(z)
, we have

g(z) = eq(z)Bh(z)B̄k(
1
z̄ ) where q(z) = qh(z) − qk(z). �

Definition 3 A function defined on a simply connected open subset X of the
complex plane is said to be of bounded type if it is equal to the ratio of two
analytic functions bounded in X. The class of all such functions is called the
Nevanlinna class for X.

Lemma 3 [22, p. 156] If f is holomorphic in the unit disk, bounded and not
identically zero, and z1, z2, . . . , zn, . . . are its zeros (|zk| < 1), then

∑

n

(1− |zn|) < ∞.

Lemma 4 [14, p. 64] Let {αn} be a sequence of non-zeros complex numbers
in the open unit disc D. A necessary and sufficient condition that the infinite
product

B(z) =

∞∏

n=1

[
ᾱn

|αn|

(αn − z)

(1− ᾱnz)

]

should converge uniformly on compact subsets of the unit disc is that
∞∑

n=1

(1 − |αn|) < ∞. When this condition is satisfied, the product defines an

inner function whose zeros are exactly α1, α2, . . .

We now obtain a factorization theorem that has useful applications to the
Riemann-Hilbert problem. This is discussed further in Section 3.
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Theorem 4 Let f : X ⊂ C → C be a meromorphic function where X is a
simply connected open set. If f is of bounded type then

f(φ(z)) = zr−sq(z)

∞∏

i=1

z̄i

|zi|

zi − z

1− z̄iz

∞∏

j=1

|pj|

pj

p̄j −
1
z

1−
pj
z

where φ : D → X is a Riemann map, r, s ∈ N0, q is a bounded holomorphic
function without zeros, {zi} is the set of zeros and {pj} is the set of poles of
f ◦ φ.

Proof. By Riemann mapping theorem, there exists a conformal bijective map
φ : D → X. Since g = f ◦ φ : D → C is meromorphic of bounded type, it’s
the ratio of two bounded holomorphic functions, i.e. g = h

k where h and k

are holomorphic and bounded. The functions h and k can be factorized as
h(z) = zrh1(z) and k(z) = zsk1(z) where h1(0) 6= 0 and k1(0) 6= 0. Let {zi}

and {pj} be the zeros of h1 and k1. By Lemma (3),
∑

i

(1 − |zi|) < ∞ and

∑

j

(1− |pj|) < ∞. By Lemma (4), the following products are convergent:

Bh1
(z) =

∞∏

i=1

[
z̄i

|zi|

(zi − z)

(1− z̄iz)

]

Bk1(z) =

∞∏

j=1

[
p̄j

|pj|

(pj − z)

(1− p̄jz)

]

Hence, we can write h1(z) = u(z)Bh1
(z) and k1(z) = v(z)Bk1(z) where

u(z) =
h1(z)
Bh1

(z)
and v(z) =

k1(z)
Bk1

(z)
are bounded holomorphic functions. Therefore,

f(φ(z)) = zr−su(z)

v(z)

Bh1
(z)

Bk1(z)
= zr−sq(z)Bh1

(z)B̄k1(
1

z̄
)

where q(z) =
u(z)
v(z)

is a bounded holomorphic function. �

3 Applications in Riemann-Hilbert problems with

meromorphic functions

In engineering, a transfer function is a representation of the relation between
the input and output of a linear time-invariant (LTI) system and it is a primary
tool in classical control engineering. In this section, we employ Theorem (4)
to find the transfer function of a differential system.
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Lemma 5 [4, Theorem 5.1] Suppose f : R → C is continuous, supp(f) ⊂

[M,∞), and has exponential order a, i.e. |f(t)| ≤ Keat for all t ∈ R. Then the
Laplace transform L(f)(z) :=

∫
∞

−∞
e−ztf(t)dt is holomorphic in the half plane

{z | ℜ(z) > a}. The derivative is

(L(f))′(z) = −

∫
∞

−∞

e−zttf(t)dt

and the Laplace transform satisfies the estimate

|L(f)(z)| ≤ K
eM(a−ℜ(z))

(ℜ(z) − a)
,ℜ(z) > a

Remark 1 If ℜ(z) > a + ǫ > a and M > 0 where ǫ > 0 , then |L(f)(z)| ≤
K

ǫeMǫ , i.e. the Laplace transform is bounded.

Lemma 6 [21, Theorem 2.12] Suppose that f(t), f́(t), . . . , f(n−1)(t) are contin-
uous on (0,∞) and of exponential order, while f(n)(t) is piecewise continuous
on [0,∞). Then L(f(n)(t)) = snL(f(t))−sn−1f(0+)−sn−2f́(0+)−. . .−f(n−1)(0+).

Theorem 5 Suppose fk, gk : R → C are continuous, have left bounded sup-
port on the positive real line, and have positive exponential orders ak and bk.
Furthermore, assume that u, y : R → C are n-times continuously differen-
tiable, with nth derivative of exponential order. Then the transfer function of
the following differential system with zero initial conditions, i.e. u(k)(0) = 0,
y(k)(0) = 0,

n∑

k=0

fk(t) ∗
dku(t)

dtk
=

n∑

k=0

gk(t) ∗
dky(t)

dtk

is a meromorphic function of bounded type of the form

T(φ(z)) = zr−sq(z)

∞∏

i=1

z̄i

|zi|

zi − z

1− z̄iz

∞∏

j=1

|pj|

pj

p̄j −
1
z

1−
pj
z

where φ : D → X is defined by φ(z) :=
1+(z−α)
1−(z−α)

where X = {z ∈ C | ℜ(z) > α},

α = min{ak, bk} + ǫ, ǫ > 0 is sufficiently small, r, s ∈ N0, q is a bounded
holomorphic function without zeros, {zi} is the set of zeros and {pj} is the set
of poles of T ◦φ. The transfer function T : X → C appears as the coefficient of
the Riemann-Hilbert problem Φ+(z) = G(z)Φ−(z) where

G(z) =
T(φ(z))

q(z)
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Φ+(z) = zr
∞∏

i=1

z̄i

|zi|

zi − z

1− z̄iz

and

Φ−(z) = zs
∞∏

j=1

p̄j

|pj|

pj − z

1− p̄jz

Proof. The transfer function is defined as the ratio of the Laplace transform
of the output signal to the Laplace transform of the input signal, i.e. T(s) :=
L(y)(s)
L(u)(s)

. If we take Laplace transform of the differential system, apply Lemma

(6), and the properties of Laplace transform with respect to convolution and
addition, we derive the following equation

( n∑

k=0

skL(fk)(s)

)
L(u)(s) =

( n∑

k=0

skL(gk)(s)

)
L(y)(s)

Therefore, the transfer function is of the following form

T(s) =
L(y)(s)

L(u)(s)
=

n∑

k=0

skL(fk)(s)

n∑

k=0

skL(gk)(s)

On the domain X = {z ∈ C | ℜ(z) > α}, where α = min{ak, bk} + ǫ, and
ǫ > 0 is sufficiently small, the transfer function

T(s) =
L(y)(s)

L(u)(s)
=

n∑

k=0

sk−nL(fk)(s)

n∑

k=0

sk−nL(gk)(s)

is a meromorphic function of bounded type by Lemma (5). It suffices to apply
Theorem (4) to the transfer function T . �

4 Positive definite functions of a complex variable

In this section, we give some results on positive definite functions over abso-
lutely convex subsets of C. It is interesting to see whether one can factorize
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a meromorphic positive definite function; in the sense of Definition (4), such
that all factors are positive definite. Unfortunately, it is difficult to determine
positive definiteness of Blaschke products; even the determination of hermi-
tianness is difficult because it requires finding all the zeros of the equation
B(−z) − B(z) = 0. Nevertheless, we give a theorem (Theorem (7)) that can
simplify the determination of positive definiteness for holomorphic hermitian
functions.

Definition 4 A set X ⊆ C is called absolutely convex if for any points x1, x2
in X and any numbers λ1, λ2 in C satisfying |λ1|+ |λ2| ≤ 1, the sum λ1x1+λ2x2
belongs to X.

If X ⊆ C is absolutely convex then rX is absolutely convex for all r ∈ C.

Definition 5 A function f : X → C is positive definite, where X ⊆ C is
absolutely convex, if

∑n
j,k=1 f(

xj−xk
2 )ξjξ̄k ≥ 0 for every choice of x1, . . . , xn in

X and ξ1, . . . , ξn in C.

If we set ω∗=[ξ̄1, . . . , ξ̄n] and A = [f(
xj−xk

2 )]j,k then we can rewrite the
above condition as ω∗Aω ≥ 0, i.e. A is positive-semidefinite. In the following
proposition, we review some of the properties of positive definite functions.

Proposition 2 If f : X → C is positive definite, where X ⊆ C is absolutely
convex, then the following hold:

(i) f(0) ≥ 0, f(− z
2) = f̄( z2), and |f( z2)|

2 ≤ f(0)2.

(ii) If f, g : X → C are positive definite then fg and c1f+c2g where c1, c2 ∈ N

are positive definite.

(iii) If X = R, f and g are integrable and positive definite then f∗g is positive
definite.

(iv) If X = R, and f is integrable then x2k+1f(x) with k ∈ N is not positive
definite.

(v) If X = R, and f is Cn-differentiable then dnf(x)
dxn is positive definite only

if n = 4k where k ∈ N.

(vi) If X = R, and f is integrable then eiaxf(x) is positive definite.
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Proof. (i) If we set n = 1 in Definition (5) then f(0)|ξ1|
2 ≥ 0 which implies

f(0) ≥ 0. If we set n = 2 and consider the set of points {z, 0} then α =

f(0)2(|ξ1|
2 + |ξ2|

2) + f(− z
2)ξ1ξ̄2 + f( z2)ξ2ξ̄1 ≥ 0. Since α = ᾱ, we have f(− z

2) =

f̄( z2). Since the following matrix is positive-semidefinite, its determinant is
nonnegative, i.e. |f( z2)|

2 ≤ f(0)2.

A =

(
f(0) f( z2)

f(−z
2 ) f(0)

)

(ii) Since positive linear combination and product of positive definite func-
tions correspond to positive linear combination and Hadamard product of
positive-semidefinite matrices, positive-definiteness is preserved under these
operations.
(iii) By convolution theorem f̂ ∗ g = f̂ ∗ ĝ which is positive by Bochner’s

theorem.
(iv) The Fourier transform of x2k+1f(x) is ( i

2π)
2k+1 d

2k+1f̂(ξ)

dξ2k+1 which is purely
imaginary by Bochner’s theorem.
(v) The Fourier transform of dnf(x)

dxn is (2πiξ)nf̂(ξ) which is positive only if
n = 4k, k ∈ N.
(vi) The Fourier transform of eiaxf(x) is f̂(ξ− a

2π). �

Proposition 3 If the Möbius transform f(z) = az+b
cz+d is positive definite and

not identically zero on C ∪ {∞} then a = 0.

Proof. Assume a 6= 0 then we can set z = 2b
a in the condition f(− z

2) = f̄( z2)

which implies b = 0. Therefore, the condition |f( z2)|
2 ≤ f(0)2 implies that f is

identically zero which is a contradiction. �

Lemma 7 The function f(z) = eia zk−z
1−z̄kz

where zk, z ∈ D, and a ∈ R is not
positive definite.

Proof. For the set { ie
−ia

2 , 0} in D, the determinant of the associated matrix A is
|zk|

4−1

4+z̄2
k
e−2ia . The numerator of det(A) is negative for zk ∈ D, but the denominator

is not negative for any value of zk ∈ D, and a ∈ R. Therefore, det(A) is not
nonegative for all zk ∈ D, and a ∈ R. �

Theorem 6 A conformal map from D to D is not positive definite.

Proof. A conformal map from D to D is of the form eiak zk−z
1−z̄kz

which is not
positive definite by Lemma (7). �
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Lemma 8 [15, Exercise 1.1.8], [12, Lemma 24] For any nontrivial holomorphic
function f : U → C where U ⊂ C

n is open and connected, U−Z(f) is connected
and dense in U where Z(f) denotes the zero set of f.

Theorem 7 Let X ⊆ C be an absolutely convex simply connected set and
f : X ⊆ C → C be a holomorphic hermitian, i.e. f(−z) = f(z), function. Define
the function Wn(f) : X

n → Mn(C) by Wn(f)(x) = [f(
xj−xk

2 )]j,k. If there exists a
point x ∈ Xn at which Wn(f) is positive definite for all n ∈ N then f is positive
definite on X.

Proof. For simplicity, we denote Wn(f) by g. Since det(g) is a polynomial of f
and f is holomorphic, det(g) is holomorphic. By Lemma (8), S = supp(det(g))

is connected, open and dense in Xn. Since f is hermitian, Spec(g) = {λx ∈ C | λx
is an eigenvalue of g(x), x ∈ Xn} is in R. By definition of S, g is invertible on S.
Therefore, 0 /∈ Spec(g|S). We claim that either Spec(g|S) ⊆ R+ or Spec(g|S) ⊆
R−. Assume otherwise, then there exist x, y ∈ S such that λx ∈ R+ and
λy ∈ R−. Since S is path connected, there exists a path in S that connects x

to y in S. But, there is no path that connects λx to λy because 0 /∈ Spec(g|S)

which gives a contradiction. If there exists a point x0 ∈ Xn for which g is
positive definite, then either x0 ∈ S or x0 is a limit point of S because S is
dense in Xn. In either case, Spec(g|S) ⊆ R+ and by density of S we conclude
Spec(g) ⊆ R+ for all n ∈ N, i.e. f is positive definite on X. �
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Abstract. The aim of this paper is to introduce a new class of hyper-
modules that may be called (M,N)-hypermodules over (R, S)-hyperrings.
Then, we investigate some properties of this new class of hyperstructures.
Since the main tools in the theory of hyperstructures are the fundamental
relations, we give some results about them with respect to the fundamen-
tal relations.

1 (M,N)-hypermodule over (R, S)-hyperring

One knows the construction of a hypergroup K having as core a fixed hyper-
group H. In [10], the aforesaid construction is generalized to a large class of
hypergroups obtained from a group and from a family of fixed sets, and its
properties are analyzed especially in the finite case. We recall the following
notions from [4, 10]. Let (M,⊕) be a hypergroup and (N,⊎) be a group with
a neutral element 0N. Also, let {An}n∈N be a family of non-empty subsets in-
dexed in N such that for all x, y ∈ N, x 6= y, Ax ∩Ay = ∅, and A0N =M. We
set P =

⋃
n∈NAn and we define the hyperoperation ⊕̄ in P in the following

way:
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(1) for every (x, y) ∈M2, x⊕̄y = x⊕ y,

(2) for every (x, y) ∈ An1
×An2

6= H2, x⊕̄y = An1⊎n2
.

The hyperstructure (P, ⊕̄) is a hypergroup [4, 10]. In [14], Spartalis presented
a way to obtain new hyperrings, starting with other hyperrings. We recall the
following notions from [8, 14]. Let (S, †, ·) be a hyperring and let {Bi}i∈R be a
family of non-empty sets such that:

(1) (R,+, ⋆) is a ring,

(2) B0R = S,

(3) for every i 6= j, Bi ∩ Bj = ∅.

Let T =
⋃
i∈R Bi and define the following hyperoperations on T : for every

(x, y) ∈ Bi × Bj:

x‡y =

{
x†y, if (i, j) = (0R, 0R)

Bi+j, if (i, j) 6= (0R, 0R)
and x⊙y =

{
x · y, if (i, j) = (0R, 0R)

Bi⋆j, if (i, j) 6= (0R, 0R).

The structure (T, ‡,⊙) is a hyperring [8, 14].
Now, we introduce a way to obtain new hypermodules, starting with other

hypermodules.

Definition 1 Let (M,⊕, •) be a hypermodule over a hyperring (S, †, ·) and let
{An}n∈N and {Bi}i∈R be two families of non-empty sets such that:

(1) (N,⊎, ∗) be a module over a ring (R,+, ⋆),

(2) A0N =M and B0R = S,

(3) for every m,n ∈ N, m 6= n, Am ∩ An = ∅ and for every i, j ∈ N, i 6= j,
Bi ∩ Bj = ∅.

Let P =
⋃
n∈NAn and T =

⋃
i∈R Bi. We define the hyperoperation ⊕̄ on P and

the hyperoperations ‡ and ⊙ on T similar to the above mentioned definitions.
Also, we define a map •̄ : T × P → ℘∗(P) as follows:

t•̄x =

{
t • x, if (i, n) = (0R, 0M)

Ai∗n, if (i, n) 6= (0R, 0M),

for every (t, x) ∈ Bi ×An.
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Theorem 1 The structure (P, ⊕̄, •̄) over the hyperring (T, ‡,⊙) is a hypermod-
ule.

Proof. According to [10, 14], (P, ⊕̄) is a hypergroup and (T, ‡,⊙) is a hyperring.
We show that for every r, s ∈ T and x, y ∈ P:

(1) r•̄(x⊕̄y) = r•̄x⊕̄r•̄x,

(2) (r‡s)•̄x = r•̄x‡s•̄x,

(3) (r⊙ s)•̄x = r•̄(s•̄x).

First, we prove (1). Let r ∈ T and x, y ∈ P. Then, we have the following cases:

(i) r ∈ B0R = S and x, y ∈ A0N =M. Then, we have r•̄(x⊕̄y) = r• (x⊕y) =
r • x⊕ r • x = r•̄x⊕̄r•̄x,

(ii) r ∈ Bj, where 0R 6= j ∈ R, and x, y ∈ A0N . Then, we have r•̄(x⊕̄y) =

r•̄(x ⊕ y) = Aj∗0N = A0N and r•̄x⊕̄r•̄x = Aj∗0N⊕̄Aj∗0N = A0N ⊕ A0N =

A0N . So (1) is true.

(iii) r ∈ B0R and (x, y) ∈ Aa × Ab, where (0R, 0R) 6= (a, b). Then, it is not
difficult to see that r•̄(x⊕̄y) = A0N and r•̄x⊕̄r•̄x = A0N .

(iv) r ∈ Bj, where 0R 6= j ∈ R, and (x, y) ∈ Aa ×Ab, where (0N, 0N) 6= (a, b).
Then, it is not difficult to see that r•̄(x⊕̄y) = Aj∗(a⊎b) and r•̄x⊕̄r•̄x =

Aj∗a⊎j∗b. Since (N,⊎, ∗) is a module over a ring (R,+, ⋆), then j∗(a⊎b) =
j ∗ a ⊎ j ∗ b and so (1) is true.

Therefore, we show that (1). Similarly, we can prove (2) and (3). �

Example 1 Let N = (Z3,+) be a module over the ring R = (Z3,+, ·), M =

(Z2,⊕) be a hypermodule over a hyperring S = (Z2,⊕, ·), where 0 ⊕ 0 = 0,

0 ⊕ 1 = 1 ⊕ 1 = 1 and 1 ⊕ 1 = {0, 1} and set A0 = B0 = Z2, A1 = B1 = {a, b}

and A2 = B2 = {c}. Now, we have P = T = {0, 1, a, b, c, d, e}. Then, we obtain
⊕̄ = ‡ and •̄ = ⊙. Also, we have

0⊕̄1 = 1, a⊕̄a = b⊕̄a = a⊕̄b = b⊕̄b = {c}, c⊕̄c = {a, b},

0⊕̄0 = 0, 0⊕̄a = 1⊕̄a = 0⊕̄b = 1⊕̄b = {a, b}, 0⊕̄c = 1⊕̄c = {c},

1⊕̄1 = {0, 1}, c⊕̄a = c⊕̄a = c⊕̄b = c⊕̄b = {0, 1}.

and

0•̄1 = 0, a•̄a = b•̄a = a•̄b = b•̄b = {a, b}, c•̄c = {a, b},

0•̄0 = 0, 0•̄a = 1•̄a = 0•̄b = 1•̄b = {0, 1}, 0•̄c = 1•̄c = {0, 1},

1•̄1 = 1, c•̄a = c•̄a = c•̄b = c•̄b = {c},
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Let (H,+) be a hypergroup. We consider the fundamental relation β on H as
follows: xβy if and only if {x, y} ⊆

∑n
i=1 xi, for some xi ∈ H. Let β

∗ be the
transitive closure of β. The fundamental relation β∗ is the smallest equivalence
relation such that the quotient H/β∗ is a group. This relation introduced by
Koskas [12] and studied by others, for example see [3, 4, 5, 12, 16]. Also, we
recall the definition of the fundamental relation γ on a hypergroup H as fol-
lows: xγy if and only if x ∈

∑n
i=1 xi, y ∈

∑n
i=1 xσ(i), xi ∈ H, σ ∈ Sn. Let

γ∗ be the transitive closure of γ. The fundamental relation γ∗ is the smallest
equivalence relation such that the quotient H/γ∗ is an abelian group [11], also
see [6, 7].
The fundamental relation Γ on a hyperring was introduced by Vougiouk-

lis at the fourth AHA congress (1990) [15] as follows: xΓy if and only if
∃n ∈ N, ∃ (k1, . . . , kn) ∈ N

n, and [∃ (xi1, . . . , xiki) ∈ Rki , (i = 1, . . . , n)] such

that {x, y} ⊆
∑n
i=1(

∏ki
j=1 xij). The fundamental relation Γ on a hyperring is

defined as the smallest equivalence relation so that the quotient would be the
(fundamental) ring. Note that the commutativity with respect to both sum
and product in the fundamental ring are not assumed. In [9], Davvaz and Vou-
giouklis introduced a new strongly regular equivalence relation on a hyperring
such that the set of quotients is an ordinary commutative ring. We recall the
following definition from [9].

Definition 2 [9] Let R be a hyperring. We define the relation α as follows: xαy
if and only if ∃n ∈ N, ∃(k1, . . . , kn) ∈ N

n, ∃σ ∈ Sn and [∃(xi1, . . . , xiki) ∈ R
ki,

∃σi ∈ Ski , (i = 1, . . . , n)] such that x ∈
∑n
i=1(

∏ki
j=1 xij) and y ∈

∑n
i=1Aσ(i),

where Ai =
∏ki
j=1 xiσi(j).

If α∗ is the transitive closure of α, then α∗ is a strongly regular relation
both on (R,+) and (R, ·), and the quotient R/α∗ is a commutative ring [9],
also see [13].
Now, consider Definition 1 and Theorem 1. Then:

Theorem 2 We have

(1) P/β∗

P
∼= N (group isomorphism).

(2) P/γ∗P
∼= N/γ∗N (group isomorphism) and if N is commutative then P/γ∗P

∼=

N.

(3) T/Γ∗T
∼= R (ring isomorphism).

(4) T/α∗

T
∼= R/α∗

R (ring isomorphism) and if R is commutative (with respect
to the both operations) then T/α∗

T
∼= R.



Construction of (M,N)-hypermodule over (R, S)-hyperring 135

Proof. (1) We define φ : P/β∗

P −→ N, with φ(β∗

P(an)) = n, where an ∈ An
and n ∈ N. Since β∗

P is a regular relation, so (β∗

P(an))(β
∗

P(am)) = (β∗

P(anam))

and φ is a homomorphism. Let (β∗

P(an)) = 0N. Then, n = 0N and so Kerφ =

(β∗

P(a0N)). Hence, φ is one to one. Clearly, φ is onto.
(2) We define ψ : P/γ∗P −→ N/γ∗N, with ψ(γ∗P(an)) = γN(an), where

an ∈ An and n ∈ N. Since γ∗P and γ
∗

N are regular relations, so (γ∗P(an))(γ
∗

P(am))

= (γ∗N(n)γ
∗

N(m)) = (γ∗N(nm)) = (γ∗P(anam)). Then, φ is a homomorphism.
Let (γ∗P(an)) = 0N/γ∗

N
= γ∗N(0N). Then, n = 0N and so Kerψ = (γ∗P(a0N)).

Hence, ψ is one to one. Clearly, ψ is onto.
(3) We define λ : T/γ∗T −→ R, with λ(Γ∗T (bi)) = i, where bi ∈ Ai and i ∈ N.

Since Γ∗T is a regular relation, so (Γ∗P (an))(Γ
∗

P (am)) = (Γ∗P (anam)) and λ is a
homomorphism. Let (Γ∗P (ai)) = 0R. Then, i = 0R and so Kerλ = (Γ∗P (a0R)).
Hence λ is one to one. Clearly, λ is onto.
(4) We define µ : T/α∗

T −→ R, with µ(α∗

T (bi)) = α∗

R(i), where bi ∈ Ai
and i ∈ N. Since α∗

T and α∗

R are regular relations, so (α∗

P(ai))(α
∗

P(aj)) =

(α∗

R(i))(α
∗

R(j)) = (α∗

R(ij)) = (α∗

P(aiaj)). Then, µ is a homomorphism. Let
(α∗

P(ai)) = 0R/α∗

R
. Then, i = 0R and so Kerµ = (α∗

P(a0R)). Thus, µ is one to
one. Clearly, µ is onto. �

Now, we recall the definition of the fundamental relation ǫ on M from
[16]. Let M be an R-hypermodule. Then xǫy if and only if {x, y} ⊆

∑n
i=1m

′

i,

where m ′

i = mi or m ′

i =
∑ni

j=1(
∏kij
k=1 xijk)mi, rijk ∈ R. The fundamental

relation ǫ∗ is defined to be the smallest equivalence relation such that the
quotient M/ǫ∗ is a module over the ring R/Γ∗. Also, according to [1, 2] we
can consider the fundamental relation θ on hypermodules as follows: xθy if
and only if ∃ n ∈ N, ∃(m1, . . . ,mn) ∈ Mn, ∃(k1, k2, . . . , kn) ∈ N

n, ∃σ ∈ Sn,

∃(xi1, xi2, . . . , xik) ∈ Rki , ∃σi ∈ Sni
, ∃σij ∈ Skij , such that x ∈

∑n
i=1m

′

i,

m ′

i = mi orm
′

i =
∑ni

j=1(
∏kij
k=1 xijk)mi and y ∈

∑n
i=1m

′

σ(i), wherem
′

σ(i) = mσ(i)

if m ′

i = mi; m
′

σ(i) = Bσ(i)mσ(i) if m ′

i =
∑ni

j=1(
∏kij
k=1 xijk)mi, such that Bi =

∑ni

j=1Aiσi(j) and Aij =
∏kij
k=1 xijσij(k). Then, the (abelian group) M/θ∗ is an

R/α∗- module, where R/α∗ is a commutative ring.

Theorem 3 (1) The module P/ǫ∗P over the ring T/Γ∗T is isomorphic to the
module N over the ring R.

(2) The module P/θ∗P over the ring T/α∗

T is isomorphic to the module N/θ∗N
over the ring R/α∗

R.

Proof. (1) Let x ∈ P. Then, there exists n ∈ N such that x ∈ An. If x ǫ y, then
there exist rijk ∈ T and mk ∈ P such that {x, y} ⊆

∑l
k=1m

′

k, where m
′

k = mk
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or m ′

k = (
∑∏

rijk)mk. From the definition of the hyperoperations ⊕̄, •̄, ‡ and

⊙ it follows that
∑l
k=1m

′

k = Am for some m ∈ N. Hence, x ∈ An ∩ Am and
so m = n. Then, y ∈ An. Now, if y ∈ ǫ∗(x), then there exist z1, z2, . . . , zs ∈ P
such that x ǫ z1 ǫ z2 . . . zs ǫ y. From x ǫ z1 and x ∈ An, we have z1 ∈ An, so
z2 ∈ An and finally we obtain y ∈ An. Therefore, ǫ

∗(x) ⊆ An.

Conversely, suppose that y ∈ An. If n = 0 then set v ∈ Am and w ∈ A−m,
where m ∈ N− {0}. Then, {x, y} ⊆ A0 = v⊕̄w. Thus, y ∈ ǫ∗(x). If n 6= 0, then
we consider v ∈ An and w ∈ A0, so {x, y} ⊆ An = v⊕̄w. Therefore, y ∈ ǫ∗(x)

and consequently An ⊆ ǫ∗(x).

Finally, we consider the maps Ψ : P/ǫ∗ → N by ǫ∗(x) → n, where x ∈ An,
and ψ : T/Γ∗ → R by Γ∗(r) → i, where r ∈ Bi. Then, Ψ is a module isomorphism
and ψ is a ring isomorphism. �

The following theorem from [16] gives us a connection between the fundamen-
tal relations of β∗ and ǫ∗.

Theorem 4 [16]. If for any a ∈ T and p ∈ P, there exists u ∈ P such that
Γ∗(a).β∗(p) ⊆ β∗(u), then ǫ = β.

Also, in a similar way we have:

Theorem 5 If for any a ∈ T and p ∈ P, there exists u ∈ P such that
α∗(a).γ∗(p) ⊆ γ∗(u), then θ = γ.

Corollary 1 Let for any a ∈ T and p ∈ P, there exists u ∈ P such that
Γ∗(a).β∗(p) ⊆ β∗(u).

(1) The module P/β∗

P over the ring T/Γ∗T is isomorphic to the module N over
the ring R.

(2) The module P/γ∗P over the ring T/α∗

T is isomorphic to the module N/θ∗N
over the ring R/α∗

R.

By the proof of Theorem 3, we have:

Theorem 6 For every m1, . . . ,mk ∈ P and rijk ∈ T where k ≥ 1, one of the
following cases is verified.

(1) There exists t ∈ N such that
∑k
l=1m

′

l = At, where m ′

l = ml or
m ′

l = (
∑∏

rijl)ml.

(2) There exists B ∈ ℘∗(M) such that
∑l
l=1m

′

l = B, where m ′

l = ml or
m ′

l = (
∑∏

rijl)ml.
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Proof. Let m1, . . . ,mk ∈ P and rijk ∈ T . Set m
′

l = ml or m
′

l = (
∑∏

rijl)ml.

Since P is a hypermodule so
∑k
l=1m

′

l ⊆ P. Let ml ∈ Anl
and rijl ∈ Btijl .

If nl 6= 0N or tijl 6= 0R then by definition of the (M,N)-hypermodule over

the (R, S)-hyperring, there exists t ∈ N such that
∑k
l=1m

′

l = At. Else, for
every l, i and j, we haveml ∈ A0N = M and rijl ∈ B0R = S. Therefore,
∑k
l=1m

′

l ⊆ A0N =M and so there exists B ∈ ℘∗(M) such that
∑k
l=1m

′

l = B. �

Theorem 7 (1) For every x ∈ N and a ∈ Ax, Cǫ(a) = Ai.

(2) wP =M.

Proof.

(1) By Theorem 6, it follows that for any i ∈ N, Ai is a complete part.
On the other hand for any i ∈ N, there exists (y, z) ∈ P2 such that
y⊕̄z = Ay⊎z = Ai.

(2) It obtains immediately from (1).
�

Theorem 8 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). Then ⊕̄ is commutative if and only if ⊕ is commutative.

Proof. It is straightforward. �

Lemma 1 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). Let N has an element 1N such that for every r ∈ R, r ∗ 1N = r. Then,
Br ⊆ Ar for every r ∈ R if and only if for every t ∈ T , t ∈ t•̄u, for all u ∈ A1N .

Proof. If N has an element 1N such that r ∗ 1N = r, for every r ∈ R, then
R ⊆ N and so B0 ⊆ A0. Let r ∈ R

∗, t ∈ Br and u ∈ A1N . Then, t•̄u = Ar∗1N =

Ar ⊇ Br ∋ t.

Conversely, let r ∈ R and t ∈ Br. Then for every u ∈ A1N we have t ∈ t•̄u =

Ar∗1N = Ar and so Br ⊆ Ar. �

Let (M,+, ◦) be a hypermodule over a hyperring (R,+, ·) such that M has
zero element 0. If A ⊆M and B ⊆ R then we define the following notations:

(0 :R A) = {r ∈ R | ∀x ∈ A, r ◦ x = 0} = AnnR(M),

(B :M 0) = {x ∈M | ∀r ∈ B, r ◦ x = 0}.

A faithful module M is one where the action of each r 6= 0R in R on M is
non-trivial (i.e., rx 6= 0N for some x in M). Equivalently, the annihilator of
M(AnnR(M)) is the zero hyperideal.
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Lemma 2 Let (M,+, ◦) be a hypermodule over a hyperring (R,+, ·) such that
M has zero element 0.

(1) If A be a non-empty subset of M, then (0 :R A) is a hyperideal of R.

(2) If B be a non-empty subset of R, then (B :M 0) is a subhypermodule of R.

Theorem 9 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙).

(1) Let N has an element 1N such that r ∗ 1N = r for every r ∈ R, t ∈ t•̄u
for every t ∈ T and u ∈ A1N . Set E((P, •̄)) = {e ∈ P | ∀t ∈ T, t ∈ t•̄e}.

Then E((P, •̄)) =
⋃
x∈(R:N0)

Ax+1N .

(2) Let R has an element 1R such that 1R ∗ x = x for every x ∈ N, and
E((T, •̄)) = {ε ∈ T | ∀x ∈ P, ε ∈ ε•̄x}. Then E((T, •̄)) =

⋃
a∈AnnR(N) Ba+1R .

Proof. (1) By Lemma 1, we have Br ⊆ Ar for every r ∈ R. For every t ∈ T
there exists r ∈ R such that t ∈ Br. Now, let u ∈

⋃
x∈(R:N0)

Ax+1N . Then, there
exists z ∈ (R :N 0) such that u = Az+1N . Thus, t•̄u = Br•̄Az+1N = Ar∗(z+1N) =

Ar ⊇ Br ∋ t. Therefore, u ∈ E((P, •̄)).

Conversely, suppose that e ∈ E((P, •̄)). Then, for every t ∈ T, t ∈ t•̄e. Let
t ∈ Bj and e ∈ An. Then, t ∈ Aj∗n. But t ∈ t•̄A1N = Aj∗1N = Aj so Aj = Aj∗n.
Therefore, j = j∗n for every j ∈ R. Thus, j(n−1N) = 0N and n−1N ∈ (R :N 0).

Therefore, there exists z ∈ (R :N 0) such that n = z+ 1N.

(2) Let t ∈ B1R+a, where a ∈ (0 :R A). For all x ∈ P, if x ∈ An, then t•̄x =

A(1R+a)∗n = A(1R∗n+a∗n) = An+0 = An ∋ x. Hence, t ∈ E((T, •̄)). Conversely,
suppose that b ∈ E((T, •̄)). Then, there exists r ∈ R∗, such that b ∈ Br. Let
z ∈ B1R . So, for every n ∈ N and x ∈ An we have x ∈ z•̄x ∈ A1R ∗ n = An
and x ∈ b•̄x ∈ Ar∗n. Therefore, for every An ∩ Ar∗n 6= ∅ and r ∗ n = n for
every n ∈ N. Therefore, (r− 1R) ∗n = 0 and r− 1R ∈ (0 :R A) and there exists
a ∈ (0 :R A) such that r = 1R + a. �

Corollary 2 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). If N has an element 1N such that t ∈ t•̄1N for every t ∈ T and R is
a unitary ring, then E((P, •̄)) = A1N .

Corollary 3 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). If R has an element 1R such that 1R ∗ x = x for every x ∈ N, and N
is a faithful module over the ring R, then E((T, •̄)) = B1R .
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Lemma 3 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a ∈ R set Q = a ◦M. Then Q is a subhypermodule.

Proof. We show that R ◦Q ⊆ Q and for all q ∈ Q, Q+ q = q+Q = Q. Let
r ∈ R and q ∈ Q. Then, there exists m ∈ M such that q = a ◦m. Now, we
have r ◦ q = r ◦ (a ◦m) = (r · a) ◦m = (a · r) ◦m = a ◦ (r ◦m) ⊆ a ◦M = Q.
Also, Q + q = a ◦M + a ◦m = a ◦ (M +m) = a ◦M = Q and q + Q =

a ◦m+a ◦M = a ◦ (m+M) = a ◦M = Q. Therefore, Q is a subhypermodule
of M. �

Theorem 10 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). Set Pt = t•̄P. If S is a commutative hyperring, then Pt is a subhyper-
module of P. Also, for every r ∈ R, Pr = 0, for every t ∈ (0 :P t), Pt = 0.

Lemma 4 [8]. Let (R,+, ·) be a hyperring and let x ∈ R. Let I = K · x. Then
I is a left hyperideal of R if and only if for every y ∈ I, I · y = y · I = I.

Corollary 4 Let (R,+, ·) be a commutative hyperring and let x ∈ R. If we set
I = K · x then I is a hyperideal of R if and only if for every y ∈ I, I · y = I.

Moreover, (I,+, ◦) is a hyperring.

Theorem 11 [8] Let (T, ‡,⊙) be an (R, S)-hyperring and S be commutative.
Then Tt = T ⊙ t is a hyperideal of T and (Tt, ‡,⊙) is a commutative hyperring.

Lemma 5 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a, b ∈ R set Ma = a ◦M and Rb = R · b. Then Ma is a
hypermodule over a hyperring Rb if and only if for every x ∈ Rb, Rb · x = Rb.

Theorem 12 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙) and let a, b ∈ T. If S is a commutative hyperring then (a•̄P, ⊕̄, •̄) is a
hypermodule over a hyperring (T ⊙ b, ‡,⊙).

Proof. It obtains from Theorems 10 and 11 and Lemma 5. �

Example 2 Let (M,+, ◦) be a hypermodule over a commutative hyperring
(R,+, ·) and for every a ∈ R set Q = a ◦M, and Q+ q 6= Q.

Lemma 6 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). Then S has a weak neutral element if and only if P has a weak neutral
element.



140 S. Mirvakili, S. M. Anvariyeh, B. Davvaz

Proof. Let e ∈ P be a weak neutral element of P. So for every p ∈ P we
have p ∈ e⊕̄p ∩ p⊕̄e. Let e ∈ An. We show that n = 0N. If n 6= 0N, then
e ∈ e⊕̄e = An+n which implies that e ∈ An ∩ An+n and An = An+n. Thus,
n+ n = n and n = 0N. Therefore, e ∈ A0N =M.

Conversely, let e ∈ M be a weak neutral element of M. Then, for every
p ∈ An when n 6= 0N, we have p⊕̄e ∈ An+0N = An and so p ∈ p⊕̄e. In a
similar way, we obtain p ∈ e⊕̄p. Therefore, e is a weak neutral element of P. �

Theorem 13 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). If R is a field and N is a unitary R-module, then P/ǫ∗P is a hypervector
space over the field T/Γ∗T .

Proof. Since R is a field, T is a hyperfield. Since N is a unitary R-module,
P/ǫ∗P is a unitary T/Γ∗T -module. Therefore, P/ǫ∗P is a hypervector space over
the field T/Γ∗T . �

Let us denote P⊕̄ and P•̄, the sets of scalars of the (M,N)-hypermodule over the
(R, S)-hyperring with respect to the hyperoperations ⊕̄ and •̄, respectively, i.e.,
P⊕̄ = {u ∈ P | card(u⊕̄x) = 1, for all x ∈ P} and P•̄ = {u ∈ P | card(t•̄u) = 1,
for all t ∈ T }.

Theorem 14 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule over an (R, S)-hyperring
(T, ‡,⊙). Then:

(1) If P⊕̄∩ (P−M) 6= ∅ and P⊕̄∩ (P−M) 6= ∅, then ⊕̄ and •̄ are operations.

(2) If P⊕̄ 6= ∅ and P⊕̄ ∩ (P−M) = ∅, then cardAn = 1 for all n ∈ N− {0N}.

Proof. (1) Let u ∈ P⊕̄ ∩ (P −M), i.e., u ∈ An 6= N. Then, for all m ∈ N, Am
is singleton, because by taking y ∈ Am−1N , we get the singleton u⊕̄y = Am.
Consequently, •̄ and ⊕̄ are operations.
(2) By hypothesis, we have P⊕̄ ⊆M. Moreover, if u ∈ P⊕̄, then u ∈ A0N . For

all n ∈ N−{0N}, we consider y ∈ An. Then, we get the singleton u⊕̄y = An. �

An (M,N)-hypermodule over an (R, S)-hyperring (T, ‡,⊙) is called a (0,N)-
hypermodule, when M is a singleton set.

Theorem 15 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule. We have

(1) P•̄ 6= ∅, if and only if P is a (0,N)-hypermodule.

(2) If P•̄ ∩An 6= ∅, for some n ∈ N, then An ⊆ P•̄ and we have cardAk = 1
and Ak ⊆ P•̄, for all k ∈ R ∗ n.
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Proof. (1) Let y ∈ P•̄. If y ∈ M, then for t ∈ Bi 6= S we have M = t•̄y is a
singleton set. If y ∈ P−M, then for s ∈ S = B0R , we haveM = A0N = t•̄y is a
singleton set. Hence, P is a (0,N)-hypermodule. Conversely, ifM is a singleton
set, then P•̄ 6= ∅.
(2) Let P•̄∩An 6= ∅, n ∈ N. If n = 0N, then because of (1),M is a singleton

set and so (2) is valid. We prove (2) for n ∈ N− {0n}. Since, for all x, y ∈ An,
t ∈ T , t•̄x = t•̄y, this implies that An ⊆ P•̄. Moreover, if x ∈ P•̄ ∩ An, then
for all r ∈ R, we consider an arbitrary t ∈ Br and we have that Ar∗n = t•̄x

is a singleton set. Hence, cardAk = 1, for all k ∈ R ∗ n. Finally, let Ak = {x},
when k ∈ R ∗ n. Then, for all t ∈ Br 6= S, t•̄x = Ar∗k is a singleton set,
because r ∗ k ∈ R ∗n. Also, by (1), M is a singleton set and so Ak ⊆ P•̄, when
k ∈ R ∗ n. �

Now, let T•̄ = {t ∈ T | card(t•̄u) = 1, for all u ∈ P.} Then, similar to Theorem
15, we have:

Theorem 16 Let (P, ⊕̄, •̄) be an (M,N)-hypermodule. Then:

(1) T•̄ 6= ∅, if and only if P is a (0,N)-hypermodule.

(2) If T•̄ ∩ Br 6= ∅, for some r ∈ R, then Br ⊆ T•̄ and for all k ∈ r ∗N, we
have cardAk = 1.

2 Quotient of an (M,N)-hypermodule over an (R, S)-

hyperring

Proposition 1 Let (P, ⊕̄, •̄) be a canonical (M,N)-hypermodule over the Kras-
ner (R, S)-hyperring (T, ‡,⊙) and ∅ 6= q ⊆ P, ∅ 6= I ⊆ T . Then:

(1) q is a subhypermodule of P if and only if q =
⋃
n∈QAn, where Q is a

submodule of (N,⊎, ∗).

(2) h is a hyperideal of P if and only if h =
⋃
r∈H Br, where H is an ideal of

(S, †, ·).

Proof. (1) Let q be a subhypermodule of P. Then, 0 ∈ q and r ∈ R∗ which
implies that A0 = r•̄0 ⊆ q, so M ⊆ q. Let there exists n ∈ N∗ such that
q∩An 6= ∅ and x ∈ q∩An. Then −x ∈ g and −x ∈ A−n so we have A−n ∈ q.

Consequently, from the closure of ⊕̄ in q, it follows q =
⋃
n∈QAn, where Q

is a subgroup of (N,⊎, ∗). Now, let r ∈ R. Then, Br•̄An = Ar∗n ⊆ q. Hence,
r∗n ∈ Q and Q is a submodule of N. The converse is verified in a simple way.
(2) It obtains similar to the part (i) of Proposition 4.1 [14]. �



142 S. Mirvakili, S. M. Anvariyeh, B. Davvaz

Proposition 2 Let (P, ⊕̄, •̄) be a canonical (M,N)-hypermodule over the Kras-
ner (R, S)-hyperring (T, ‡,⊙). Suppose that G be a submodule of (N,⊎, ∗) and
H be an ideal of (R,+, ⋆). If g =

⋃
n∈GAn and h =

⋃
j∈H Bj, then [P : g∗] ∼=

[N : G∗] and [T : h∗] ∼= [R : H∗]. In addition, the module [P : g∗] over the ring
[T : h∗] is isomorphic to the module [M : G∗] over the ring [R : H∗].

Proof. According to [17], [P : g∗] is a hypermodule over the hyperring [T : h∗]

and Spartalis in [14], proved that [T : h∗] ∼= [R : H∗] and ϕ : [T : h∗] → [R : H∗]

by ϕ(h + t) = H + r, is an isomorphism, where t ∈ Ar. Define the map
φ : [P : g∗] −→ [N : G∗] by g⊕̄ai 7→ G + i. Then, φ is one to one and onto.
Moreover, for every m,n ∈ N, r, s ∈ R, x ∈ Am, y ∈ An, t ∈ Br, we have
φ((g⊕̄x) + (g⊕̄y)) = G +m + n = φ(g⊕̄x) + φ(g⊕̄y) and for any tr ∈ T we
have φ((h + t) ◦ (g + x)) = φ(g + t•̄x) = G + rm = (H + r) ◦ (G + m) =

ϕ(h+ t) ◦ φ(g+ x). �
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Abstract. The purpose of this paper is to introduce a class of functions
Fλ, λ ∈ [0, 1], consisting of analytic functions f normalized by f(0) =

f ′(0) − 1 = 0 in the open unit disk U which satisfies the subordination
condition that

zf ′(z)/{(1− λ)f(z) + λz} ≺ q(z), z ∈ U,

where q(z) =
√
1+ z2+ z. Some basic properties (including the radius of

convexity) are obtained for this class of functions.

1 Introduction

Let H denote the class of analytic functions in the open unit disc U = {z :

|z| < 1} in the complex plane C. Also, let A denote the subclass of H comprising
of functions f normalized by f(0) = 0, f ′(0) = 1, and let S ⊂ A denote the
class of functions which are univalent in U. We say that an analytic function
f is subordinate to an analytic function g, and write f(z) ≺ g(z), if and only
if there exists a function ω, analytic in U such that ω(0) = 0, |ω(z)| < 1 for
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|z| < 1 and f(z) = g(ω(z)). In particular, if g is univalent in U, then we have
the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(|z| < 1) ⊂ g(|z| < 1). (1)

Let a function f be analytic univalent in the unit disc U = {z : |z| < 1} on
the complex plane C with the normalization f(0) = 0, then f maps U onto a
starlike domain with respect to w0 = 0 if and only if

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ U). (2)

It is well known that if an analytic function f satisfies (2) and f(0) = 0,

f ′(0) 6= 0, then f is univalent and starlike in U.
A set E is said to be convex if and only if it is starlike with respect to each

of its points, that is if and only if the linear segment joining any two points
of E lies entirely in E. Let f be analytic and univalent in Ur = {z : |z| < r ≤ 1}.
Then f maps Ur onto a convex domain E if and only if

Re

{
1+

zf ′′(z)

f ′(z)

}
> 0 (z ∈ Ur). (3)

If r = 1, then the function f is said to be convex in U (or briefly convex). The
set of all functions f ∈ A that are starlike univalent in U will be denoted by
S∗ and the set of all functions f ∈ A that are convex univalent in U by K.

Definition. For given λ ∈ [0, 1], let Fλ denote the class of analytic functions
f in the unit disc U normalized by f(0) = f ′(0) − 1 = 0 and satisfying the
condition that

zf ′(z)

(1− λ)f(z) + λz
≺

√
1+ z2 + z =: q(z), z ∈ U, (4)

where the branch of the square root is chosen to be q(0) = 1.
We note that for λ = 0 in (4), we have the class F0 which connects a starlike

function with the function q(z) by means of a subordination and is defined by

F0 = {f ∈ A : zf ′(z)/f(z) ≺
√

1+ z2 + z, z ∈ U}. (5)

Also, for λ = 1 in (4), we obtain a class F1 which depicts a subordination
relationship between the function f ′(z) with the function q(z) and this class
is defined by

F1 = {f ∈ A : f ′(z) ≺
√

1+ z2 + z, z ∈ U}. (6)
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The function w(z) =
√
1+ z maps U onto a set bounded by Bernoulli lem-

niscate, and the class of functions f ∈ A such that zf ′(z)/f(z) ≺
√
1+ z was

considered in [14], while zf ′(z)/f(z) ≺
√
1+ cz was considered in [1]. This way

the well known class of k-starlike functions were seen to be connected with
certain conic domains. For some recent results for k-starlike functions, we re-
fer to [8, 11, 13, 15]. Certain function classes were also considered in recent
papers [2, 3, 4, 5, 7, 12] which were defined by means of the subordination
that zf ′(z)/f(z) ≺ q̂(z), where q̂(z) was not univalent. For a unified treatment
of some special classes of univalent functions we refer to [10] (see also [16]).

2 Auxiliary results

Lemma 1 The function

h(z) =
z√

1+ z2
(7)

is convex in Ur, where r =
√
2/2..

Proof. Using (7), we have

1+
zh ′′(z)

h ′(z)
=

1− 2z2

1+ z2
,

hence

Re

{
1+

zh ′′(z)

h ′(z)

}
> 0 for |z| <

√
2

2

and thus h(z) is convex in Ur, where r ≤
√
2/2. �

Corollary 1 If r ≤
√
2/2 and h(z) = z/

√
1+ z2, then we have

min
|z|≤r

{Re {h(z)}} =
−r√
1+ r2

.

Proof. By Lemma 1, the function h(z) is convex in Ur, where r ≤
√
2/2 and

h(Ur) is symmetric with respect to the real axis. Since the function h(z) is real
for real z, therefore, Re {h(z)} attains its extremal values at −r and r, which
proves the corollary. �

Lemma 2 The function

q(z) =
√

1+ z2 + z

is convex in Ur, where r is at least
√
2/2.
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Proof. By elementary calculations, it can easily be shown that q(z) is univa-
lent in the unit disc. For the proof that q(z) is convex, we use (3). Thus, we
obtain

1+
zq ′′(z)

q ′(z)
=

1

1+ z2
+

z√
1+ z2

=
1

1+ z2
+ h(z),

where h(z) is given in (7). By Corollary 1, we have

min
|z|≤

√
2/2

{
Re

{
1+

zq ′′(z)

q ′(z)

}}
≥ min

0<x≤
√
2/2

{
Re

{
1

1+ x2
−

x√
1+ x2

}}

=
2−

√
3

3
> 0,

(8)

because

t(x) =
1

1+ x2
−

x√
1+ x2

decreases in

[
0,

√
(
√
5− 1)/2

]
from t(0) = 1 to t

(√
(
√
5− 1)/2

)
= 0, so

that t(
√
2/2) = (2 −

√
3)/3 is the smallest value of t(x) for 0 < x ≤

√
2/2.

Therefore, in view of (8), the function q(z) =
√
1+ z2 + z is convex in Ur,

where r is at least
√
2/2.

�

Corollary 2 If r ≤
√
2/2 and q(z) =

√
1+ z2 + z, then we have

min
|z|≤r

{Re {q(z)}} =
√

1+ r2 − r.

Proof. By Lemma 2, the function q(z) is convex in Ur, where r ≤
√
2/2 and

h(Ur) is symmetric with respect to the real axis. Therefore, q(z) is real for
real z, and thus, Re {q(z)} attains its extremal values at −r and r. �

Lemma 3 The function q(z) =
√
1+ z2 + z satisfies

Re {q(z)} > 0 (9)

in U.
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Proof. Let z = eit, t ∈ [0, 2π). We assume that arg{e2it + 1} ∈ (−π, π]. It
follows that |e2it + 1| = |2 cos t| and

arg(e2it + 1) =






t for t ∈ [0, π/2),

t− π for t ∈ (π/2, 3π/2),

t− 2π for t ∈ (3π/2, 2π).

Therefore, we infer that

eit +
√
e2it + 1

=






cos t+ i sin t+
√

|2 cos t|(cos t/2+ i sin t/2) for t ∈ [0, π/2),

i for t = π/2,

cos t+ i sin t+
√

|2 cos t|(sin t/2− i cos t/2) for t ∈ (π/2, 3π/2),

−i for t = 3π/2,

cos t+ i sin t+
√

|2 cos t|(− cos t/2− i sin t/2) for t ∈ (3π/2, 2π).

Now some simple calculations show that Re
{
eit +

√
e2it + 1

}
= 0 if and only

if t = π/2 or if t = 3π/2, which implies that Re {q(z)} > 0 in U (see Fig.1
below). �

✲

✻

Re

Im

ri

r−i

r
c

r
1

r
e

c =
√
2− 1

e =
√
2+ 1

Figure 1. q(eit).

3 Basic properties of the class Fλ

Corollary 3 Let n ≥ 2 be a given positive integer. Then the function

fn,a(z) = z+ azn (z ∈ U)
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is in the class Fλ if and only if

|a| ≤ 2−
√
2

n+ (1−
√
2)(1− λ)

. (10)

Proof. The function

Fn,a(z) :=
zf ′n,a(z)

(1− λ)fn,a(z) + λz
=

1+ nazn−1

1+ (1− λ)azn−1

maps U onto the disc Fn,a(U) that is symmetric with respect to the real axis.
For

Fn,a(z) ≺
√

1+ z2 + z, (11)

it is necessary that Fn,a(z) 6= 0, and so we may assume that |na| < 1. We have
then

1− n|a|

1− (1− λ)|a|
< Re{Fn,a(z)} <

1+ n|a|

1+ (1− λ)|a|
.

It follows by applying a geometric interpretation of the subordination condition
that (11) is equivalent to

√
2− 1 ≤ 1− n|a|

1− (1− λ)|a|
and

1+ n|a|

1+ (1− λ)|a|
≤

√
2+ 1. (12)

Since the second inequality in (12) above is weaker, the desired inequality
(10) readily follows from the first inequality of (12).

�

Theorem 1 Let the function f defined by

f(z) = z+

∞∑

n=2

anz
n (z ∈ U)

belong to the class Fλ, then

|a2| ≤ 1/(1+ λ) (13)

and

|a3| ≤
{

3−λ
2(1+λ)(2+λ)

for λ ∈ [0, 1/3],
1

2+λ for λ ∈ (1/3, 1].
(14)

Furthermore,

|a4| ≤
5+ 9λ− 2λ2 + 2

∣∣2λ2 + 11λ− 1
∣∣

2(1+ λ)(2+ λ)(3+ λ)
. (15)
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Proof. Since the function f defined by (1) belongs to the class Fλ, therefore
from (4), we have

zf ′(z) −

{

z+ (1− λ)

∞∑

n=2

anz
n

}

ω(z) =

{

z+ (1− λ)

∞∑

n=2

anz
n

}√
ω2(z) + 1,

where ω is such that ω(0) = 0 and |ω(z)| < 1 for |z| < 1. Let us denote the
function ω(z) by

ω(z) =

∞∑

k=1

ckz
k. (16)

Thus, (16) readily gives

√
ω2(z) + 1 = 1+

1

2
c21z

2 + c1c2z
3 +

(
c1c3 +

1

2
c22 −

1

8
c21

)
z4 + · · · .

Moreover,

{

z+ (1− λ)

∞∑

n=2

anz
n

}√
ω2(z) + 1

= z+ (1− λ)a2z
2 +

(
1

2
c21 + (1− λ)a3

)
z3

+

(
c1c2 +

1− λ

2
c21a2 + (1− λ)a4

)
z4 + · · ·

(17)

and

zf ′(z) −

{

z+ (1− λ)

∞∑

n=2

anz
n

}

ω(z)

= z+ (2a2 − c1)z
2 + (3a3 − (1− λ)c1a2 − c2)z

3

+ (4a4 − (1− λ)[c1a3 − c2a2] − c3)z
4 + · · · .

(18)

Equating now the second, third and fourth coefficients in (17) and (18), we
have

(i) (1− λ)a2 = 2a2 − c1,

(ii) 1
2c

2
1 + (1− λ)a3 = 3a3 − (1− λ)c1a2 − c2,

(iii) c1c2 +
1−λ
2 c21a2 + (1− λ)a4 = 4a4 − (1− λ)[c1a3 + c2a2] − c3.
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From (i), we get

a2 =
c1

1+ λ
. (19)

It is well known that the coefficients of the bounded function ω(z) satisfies
the inequality that |ck| ≤ 1, (k = 1, 2, 3, . . .), so from (19), we have the first
inequality that |a2| ≤ 1/(1+ λ). Now, from (ii) and (13), we obtain that

(2+ λ)a3 =
1

2
c21 + (1− λ)c1a2 + c2

=
1

2
c21 +

1− λ

1+ λ
c21 + c2

= c2 +
3− λ

2(1+ λ)
c21.

(20)

Also,

λ ∈ [0, 1/3] ⇒
∣∣∣∣

3− λ

2(1+ λ)

∣∣∣∣ ≥ 1 and λ ∈ (1/3, 1] ⇒
∣∣∣∣

3− λ

2(1+ λ)

∣∣∣∣ < 1.

Therefore, by using the estimate (see [9]) that if ω(z) has the form (16), then

|c2 − µc21| ≤ max {1, |µ|} , for all µ ∈ C,

we obtain (14). Also, from (i)-(iii) and (19)-(20), we find that

|(3+ λ)a4| =

∣∣∣∣(1− λ)[c1a3 + c2a2] + c3 + c1c2 +
1− λ

2
c21a2

∣∣∣∣

=

∣∣∣∣
5(1− λ)

2(1+ λ)(2+ λ)
c31 +

5+ 2λ− λ2

(1+ λ)(2+ λ)
c1c2 + c3

∣∣∣∣

=

∣∣∣∣
5(1− λ)

2(1+ λ)(2+ λ)

(
c31 + 2c1c2 + c3

)
+

7λ− λ2

(1+ λ)(2+ λ)
c1c2

+

(
1−

5(1− λ)

2(1+ λ)(2+ λ)

)
c3

∣∣∣∣

≤ 5(1− λ)

2(1+ λ)(2+ λ)

∣∣∣c31 + 2c1c2 + c3

∣∣∣+ (7λ− λ2)|c1c2|

(1+ λ)(2+ λ)

+

∣∣2λ2 + 11λ− 1
∣∣ |c3|

2(1+ λ)(2+ λ)
.

(21)

We next use some properties of ck involved in (16). It is known that the
function p(z) given by

1+ω(z)

1−ω(z)
= 1+ p1z+ p2z

2 + · · · =: p(z) (22)
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defines a Caratheodory function with the property that Re{p(z)} > 0 in U and
that |pk| ≤ 2 (k = 1, 2, 3, . . .). Equating of the coefficients in (22) yields that

p2 = 2(c21 + c2)

and

p3 = 2(c31 + 2c1c2 + c3).

Hence |c21 + c2| ≤ 1 and

|c31 + 2c1c2 + c3| ≤ 1. (23)

By applying (21) and (23), we find that

|(3+ λ)a4| ≤
5(1− λ)

2(1+ λ)(2+ λ)
+

7λ− λ2

(1+ λ)(2+ λ)
+

∣∣2λ2 + 11λ− 1
∣∣

2(1+ λ)(2+ λ)
,

which gives (15). �

4 Some consequences and special cases

It may be observed from (4), (5) and (9) of Lemma 3 that

Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ U)

for f ∈ F0, hence f is univalent starlike with respect to the origin, and this
leads to the following result.

Corollary 4 F0 ⊂ S∗.

In view of (5) and (6), we can deduce the coefficient estimates for functions
belonging to the classes F0 and F1 from Theorem 3.1. These results are easy
to obtain and we skip mentioning here their details.

Lastly, we prove the radius of convexity of a function belonging to the
class F0.

Theorem 2 If f ∈ F0, then f is convex in Ur, where r is at least

√
(5−

√
13)/2 = 0.482 . . . .
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Proof. Assume that |z| <
√
2/2. Let f ∈ S∗(q), then in view of (4), we have

f ′(z)/f(z) =

√
1+ω2(z) +ω(z),

where ω satisfies ω(0) = 0, |ω(z)| < 1 for |z| < 1, and by Schwarz Lemma, ω
satisfies |ω(reiϕ)| < r. Let us recall that ([see [6], Vol. II, p. 77])

|ω ′(z)| ≤ 1− |ω(z)|2

1− |z|2
. (24)

Differentiating zf ′(z)/f(z) =
√
1+ω2(z) +ω(z) and using (24), we obtain

Re

{
1+

zf ′′(z)

f ′(z)

}
= Re

{√
1+ω2(z) +ω(z) +

zω ′(z)√
1+ω2(z)

}

. (25)

Applying now Corollary 2, we get

min
|z|<

√
2/2

{
Re

{√
1+ω2(z) +ω(z)

}}
=

√
1+ r2 − r. (26)

Hence, from (25) and (26), we have

Re

{
1+

zf ′′(z)

f ′(z)

}
≥

√
1+ r2 − r−

∣∣∣∣∣
zω ′(z)√
1+ω2(z)

∣∣∣∣∣

≥
√

1+ r2 − r− r
1− |ω2(z)|

1− |z2|

1

|
√

1+ω2(z)|

≥
√

1+ r2 − r− r
1− |ω2(z)|

1− |z2|

1√
1− |ω2(z)|

=
√
1+ r2 − r− r

√
1− |ω2(z)|

1− r2

>
√

1+ r2 − r−
r

1− r2
.

Solving in [0,
√
2/2] the inequality:

√
1+ r2 − r−

r

1− r2
≥ 0,

we obtain that 3r4− 5r2+ 1 ≥ 0, and so if r ∈
[
0,

√
(5−

√
13)/2

]
, then by (3)

the function f is convex in Ur. �
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Abstract. In the present paper we shall introduce some generalized dif-
ference Cesàro sequence spaces of fuzzy real numbers defined by Musielak-
Orlicz function and λ-convergence. We make an effort to study some topo-
logical and algebraic properties of these sequence spaces. Furthermore,
some inclusion relations between these sequence spaces are establish.

1 Introduction and preliminaries

Fuzzy set theory as compared to other mathematical theories is perhaps the
most easily adaptable theory to practice. The main reason is that a fuzzy
set has the property of relativity, variability and inexactness in the definition
of its elements. Instead of defining an entity in calculus by assuming that
its role is exactly known, we can use fuzzy sets to define the same entity by
allowing possible deviations and inexactness in its role. This representation
suits well the uncertainties encountered in practical life, which make fuzzy
sets a valuable mathematical tool. The concepts of fuzzy sets and fuzzy set
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On some spaces of Cesàro sequences associated with λ-convergence 157

operations were first introduced by Zadeh [23] and subsequently several au-
thors have discussed various aspects of the theory and applications of fuzzy
sets such as fuzzy topological spaces, similarity relations and fuzzy orderings,
fuzzy measures of fuzzy events, fuzzy mathematical programming. Matloka [7]
introduced bounded and convergent sequences of fuzzy numbers and studied
some of their properties.
A fuzzy number is a fuzzy set on the real axis, i.e., a mapping X : Rn → [0, 1]

which satisfies the following four conditions:

1. X is normal, i.e., there exist an x0 ∈ R
n such that X(x0) = 1,

2. X is fuzzy convex, i.e., for x, y ∈ R
n and 0 ≤ λ ≤ 1, X(λx + (1 − λ)y) ≥

min[X(x), X(y)],

3. X is upper semi-continuous; i.e., if for each ǫ > 0, X−1([0, a+ ǫ)) for all
a ∈ [0, 1] is open in the usual topology of Rn,

4. The closure of {x ∈ R
n : X(x) > 0}, denoted by [X]0, is compact.

Let C(Rn) = {A ⊂ R
n : A is compact and convex}. The spaces C(Rn) has a

linear structure induced by the operations

A+ B = {a+ b, a ∈ A,b ∈ B}

and
λA = {λa : a ∈ A}

for A,B ∈ C(Rn) and λ ∈ R. The Hausdorff distance between A and B of
C(Rn) is defined as

δ∞(A,B) = max{sup
a∈A

inf
b∈B

‖a− b‖, sup
b∈B

inf
a∈A

‖a− b‖},

where ‖.‖ denotes the usual Euclidean norm in R
n. It is well known that

(C(Rn), δ∞) is a complete (non separable) metric space.
For 0 < α ≤ 1, the α-level set, Xα = {x ∈ R

n : X(x) ≥ α} is a non empty
compact convex, subset of Rn, as is the support X0. Let L(Rn) denote the set
of all fuzzy numbers. The linear structure of L(Rn) induces addition X+Y and
scalar multiplication λX, λ ∈ R, in terms of α-level sets by

[X+ Y]α = [X]α + [Y]α

and
[λX]α = λ[X]α.
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Define for each 1 ≤ q < ∞

dq(X, Y) =
{∫ 1

0

δ∞(Xα, Yα)qdα
}1/q

and d∞(X, Y) = sup
0<α≤1

δ∞(Xα, Yα). Clearly d∞(X, Y) = lim
q→∞

dq(X, Y) with

dq ≤ dr if q ≤ r. Moreover (L(Rn), d∞) is a complete, separable and locally
compact metric space. We denote by w(f) the set of all sequences X = (Xk)

of fuzzy numbers. For more details about sequence spaces and fuzzy sequence
spaces one can refer to [14, 15, 16, 17, 22].
Mursaleen and Noman (see [9, 10]) introduced the notion of λ-convergent

and λ-bounded sequences as follows:
Let w be the set of all complex sequences x = (xk). Let λ = (λk)

∞

k=1 be strictly
increasing sequence of positive real numbers tending to infinity as

0 < λ0 < λ1 < .... and λk → ∞ as k → ∞

and said that a sequence x = (xk) ∈ w is λ-convergent to the number L, called
the λ-limit of x if Λm(x) → L as m → ∞, where

Λm(x) =
1

λm

m∑

k=1

(λk − λk−1)xk.

The sequence x = (xk) ∈ w is λ-bounded if supm |Λm(x)| < ∞. It is well known
[11] that if limm xm = a in the ordinary sense of convergence, then

lim
m

1

λm

(

m∑

k=1

(λk − λk−1)|xk − a|

)

= 0.

This implies that

lim
m

|Λm(x) − a| = lim
m

|
1

λm

m∑

k=1

(λk − λk−1)(xk − a)| = 0

which yields that limmΛm(x) = a and hence x = (xk) ∈ w is λ-convergent
to a.

Definition 1 A fuzzy real number X is a fuzzy set on R, i.e. a mapping X :

R → I(= [0, 1]) associating each real number t with its grade of membership
X(t).
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Definition 2 A fuzzy real number X is called convex if X(t) ≥ X(s)∧ X(r) =

min(X(s), X(r)), where s < t < r.

Definition 3 If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real
number X is called normal.

Definition 4 A fuzzy real number X is said to be upper semi continuous if for
each ǫ > 0, X−1([0, a+ ǫ)), for all a ∈ I, is open in the usual topology of R.

The class of all upper semi-continuous, normal, convex fuzzy real numbers is
denoted by R(I).

Definition 5 For X ∈ R(I), the α-level set Xα, for 0 < α ≤ 1 is defined by
Xα = {t ∈ R : X(t) ≥ α}. The 0-level, i.e. X0 is the closure of strong 0-cut, i.e.
X0 = cl{t ∈ R : X(t) > 0}.

Definition 6 The absolute value of X ∈ R(I), i.e. |X| is defined by

|X|(t) =

{
max{X(t), X(−t)}, for t ≥ 0

0, otherwise.

Definition 7 For r ∈ R, r ∈ R(I) is defined as

r(t) =

{
1, if t = r

0, if t 6= r.

Definition 8 The additive identity and multiplicative identity of R(I) are de-
noted by 0 and 1 respectively. The zero sequence of fuzzy real numbers is de-
noted by θ.

Definition 9 Let D be the set of all closed bounded intervals X = [XL, XR].
Define d : D × D −→ R by d(X, Y) = max{|XL − YL|, |XR − YR|}. Then clearly
(D,d) is a complete metric space.
Define d : R(I)×R(I) by d(X, Y) = sup

0<α≤1
d(Xα, Yα), for X, Y ∈ R(I). Then it is

well known that (R(I), d) is a complete metric space.

Definition 10 A sequence X = (Xk) of fuzzy numbers is said to be convergent
to a fuzzy number X0, if for every ǫ > 0 there exists a positive integer k0 such
that d(Xk, X0) < ǫ, for all k ≥ k0.

Definition 11 A sequence X = (Xk) of fuzzy numbers is said to be bounded if
the set {Xk : k ∈ N} of fuzzy numbers is bounded.
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Definition 12 A sequence space E is said to be solid(or normal) if (Yn) ∈ E

whenever (Xn) ∈ E and |Yn| ≤ |Xn| for all n ∈ N.

Definition 13 Let X = (Xn) be a sequence, then S(X) denotes the set of all
permutations of the elements of (Xn) i.e. S(X) = {(Xπ(n)) : π is a permutation
of N}. A sequence space E is said to be symmetric if S(X) ⊂ E for all X ∈ E.

Definition 14 A sequence space E is said to be convergence-free if (Yn) ∈ E

whenever (Xn) ∈ E and Xn = 0 implies Yn = 0.

Definition 15 A sequence space E is said to be monotone if E contains the
canonical pre-images of all its step spaces.

Lemma 1 [3] A sequence space E is normal implies E is monotone.

The notion of difference sequence spaces was introduced by Kizmaz [4], who
studied the difference sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Çolak [1] by introducing the spaces ℓ∞(∆n),
c(∆n) and c0(∆

n). Another type of generalization of the difference sequence
spaces is due to Tripathy and Esi [19] who studied the spaces ℓ∞(∆n

m), c(∆
n
m)

and c0(∆
n
m). Let m,n be non-negative integers, then we have sequence spaces

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z}

for Z = c, c0 and ℓ∞, where ∆n
mx = (∆n

mxk) = (∆n−1
m xk − ∆n−1

m xk+1) and
∆0
mxk = xk for all k ∈ N, which is equivalent to the following binomial repre-

sentation

∆n
mxk =

n∑

v=0

(−1)v
(

n

v

)

xk+mv. (1)

Taking m = 1, we get the spaces ℓ∞(∆n), c(∆n) and c0(∆
n) studied by Et

and Çolak [1]. Taking m = n = 1, we get the spaces ℓ∞(∆), c(∆) and c0(∆)

introduced and studied by Kizmaz [4].

Definition 16 Ng and Lee [12] defined the Cesàro sequence spaces Xp of non-
absolute type as follows:

x = (xk) ∈ Xp if and only if σ(x) ∈ ℓp, 1 ≤ p < ∞,

where σ(x) =

(

1
n

n∑

k=1

xk

)

∞

n=1

.
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Orhan [13] defined the Cesàro difference sequence spaces Xp(Λ), for 1 ≤ p < ∞
and studied their different properties and proved some inclusion results. He
also obtained the duals of these sequence spaces.
Musaleen et al. [8] defined the second difference Cesàro sequence spaces

Xp(Λ
2), for 1 ≤ p < ∞ and studied their different topological properties

and proved some inclusion results. They also calculated their duals sequence
spaces.
Later on, Tripathy et al. [20] further introduced new types of difference

Cesàro sequence spaces as C∞(∆n
m), O∞(∆n

m), Cp(∆
n
m), Op(∆

n
m) and ℓ∞(∆n

m),
for 1 ≤ p < ∞.
For m = 1, the spaces Cp(∆

n) and C∞(∆n
m) are studied by Et [2].

An Orlicz function M : [0,∞) → [0,∞) is a continuous, non-decreasing
and convex such that M(0) = 0, M(x) > 0 for x > 0 and M(x) −→ ∞ as
x −→ ∞. An Orlicz function M is said to satisfy ∆2-condition for all values
of x, if there exists a constant K > 0, M(Lx) ≤ KLM(x), for all x > 0 and
for L > 1. If convexity of the Orlicz function is replaced by subadditivity i.e.
M(x+y) ≤ M(x)+M(y), then this function is called as modulus function [18].
Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the

following sequence space,

ℓM =

{
x = (xk) ∈ w :

∞∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

is known as an Orlicz sequence space. The space ℓM is a Banach space with
the norm

||x|| = inf

{
ρ > 0 :

∞∑

k=1

M

(

|xk|

ρ

)

≤ 1

}
.

Also it was shown in [5] that every Orlicz sequence space ℓM contains a sub-
space isomorphic to ℓp(p ≥ 1). A sequence M = (Mk) of Orlicz functions is
said to be Musielak-Orlicz function (see [6]).
Let m,n ≥ 0 be fixed integers, M = (Mk) be a Musielak-Orlicz function

and p = (pk) be a bounded sequence of positive real numbers. In this paper
we define the following generalized difference Cesàro sequence spaces of fuzzy
real numbers:

CF(M, Λ,∆n
m, p) =

{

X=(Xk) ∈ w(F) :

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))

)pk

< ∞, for some ρ > 0

}

,
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CF
∞
(M, Λ,∆n

m, p) =
{

X=(Xk) ∈ w(F) : sup
i

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n
mXk, 0)

ρ

)

)pk

< ∞, for some ρ > 0

}

,

ℓF(M, Λ,∆n
m, p) ={

X = (Xk) ∈ w(F) :

∞∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))pk

< ∞, for some ρ > 0

}

,

OF(M, Λ,∆n
m, p) =

{

X=(Xk) ∈ w(F) :

∞∑

i=1

1

i

(

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))

)pk

< ∞, for some ρ > 0

}

,

OF
∞
(M, Λ,∆n

m, p) =
{

X = (Xk) ∈ w(F) : sup
i

1

i

i∑

k=1

Mk

(

d(Λk∆
n
mXk, 0)

ρ

)pk

< ∞, for some ρ > 0

}

.

Lemma 2 [21] Let 1 ≤ p < ∞. Then,
(i) The space CF

p(M) is a complete metric space with the metric,

η1(X, Y) = inf

{

ρ > 0 :

(

∞∑

i=1

1

i

i∑

k=1

(

M

(

d(Xk, Yk)

ρ

))p
)

1
p

≤ 1

}

.

(ii) The space CF
∞
(M) is a complete metric space with the metric,

η2(X, Y) = inf

{

ρ > 0 : sup
i

1

i

i∑

k=1

(

M

(

d(Xk, Yk)

ρ

)

≤ 1

}

.

(iii) The space ℓFp(M) is a complete metric space with the metric,

η3(X, Y) = inf

{

ρ > 0 :

(

∞∑

k=1

(

M

(

d(Xk, Yk)

ρ

))p
)

1
p

≤ 1

}

.

(iv) The space OF
p(M) is a complete metric space with the metric,

η4(X, Y) = inf

{

ρ > 0 :

(

∞∑

i=1

1

i

i∑

k=1

(

M

(

d(Xk, Yk)

ρ

))p
)

1
p

≤ 1

}

.
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(v) The space OF
∞
(M) is a complete metric space with the metric,

η5(X, Y) = inf

{

ρ > 0 : sup
i

1

i

i∑

k=1

(

M

(

d(Xk, Yk)

ρ

)

≤ 1

}

.

The following inequality will be used throughout the paper. Let p = (pk)

be a sequence of positive real numbers with 0 < pk ≤ supk pk = H and let
K = max

{
1, 2H−1

}
. Then, for the factorable sequences (ak) and (bk) in the

complex plane, we have

|ak + bk|
pk ≤ K(|ak|

pk + |bk|
pk). (2)

Also |ak|
pk ≤ max

{
1, |a|H

}
for all a ∈ C.

The main aim of this paper is to study some topological properties and
prove some inclusion relations between above defined sequence spaces.

2 Main results

Theorem 1 Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be
a bounded sequence of positive real numbers. Then the classes of sequences
CF(M, Λ,∆n

m, p), CF
∞
(M, Λ,∆n

m, p), ℓF(M, Λ,∆n
m, p), OF(M, Λ,∆n

m, p) and
OF

∞
(M, Λ,∆n

m, p) are linear spaces over the field R of real numbers.

Proof. We shall prove the result for the space CF(M, Λ,∆n
m, p) and for other

spaces, it will follow on applying similar arguments. Suppose X = (Xk), Y =

(Yk) ∈ CF(M, Λ,∆n
m, p) and α,β ∈ R. Then there exit positive real numbers

ρ1, ρ2 such that

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ1

))

)pk

< ∞, for some ρ1 > 0

and

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mYk, 0)

ρ2

))

)pk

< ∞, for some ρ2 > 0.

Let ρ3 = max(2|α|ρ1, 2|β|ρ2). Since M = (Mk) is a non-decreasing and convex
so by using inequality (2), we have



164 K. Raj, S. Pandoh

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(αΛk∆
n
mXk + βΛk∆

n
mYk, 0)

ρ3

))

)pk

=

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(αΛk∆
n
mXk, 0)

ρ3
+

d(βΛk∆
n
mYk, 0)

ρ3

))

)pk

≤

∞∑

i=1

(

1

i

i∑

k=1

1

2pk

(

Mk

(

d(αΛk∆
n
mXk, 0)

ρ1

)

+Mk

(

d(βΛk∆
n
mYk, 0)

ρ2

))

)pk

≤ K

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ1

))

)pk

+ K

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mYk, 0)

ρ2

))

)pk

< ∞.

Thus, αX + βY ∈ CF(M, Λ,∆n
m, p). This proves that CF(M, Λ,∆n

m, p) is a
linear space. �

Proposition 1 The classes of sequences CF(M, Λ,∆n
m, p), C

F
∞
(M, Λ,∆n

m, p),
ℓF(M, Λ,∆n

m, p), OF(M, Λ,∆n
m, p) and OF

∞
(M, Λ,∆n

m, p) are metric spaces
with respect to the metric,

f(X, Y) =

mn∑

k=1

d(Xk, 0) + η(Λk∆
n
mXk, Λk∆

n
mYk),

where Z = CF, CF
∞
, OF, OF

∞
, ℓF.

Proof. The proof of the proposition is direct consequence of the Proposition
3.1 [21]. �

Theorem 2 Let Z(M) be a complete metric space with respect to the metric
η, the space Z(M, Λ,∆n

m, p) is a complete metric space with respect to the
metric,

f(X, Y) =

mn∑

k=1

d(Xk, 0) + η(Λk∆
n
mXk, Λk∆

n
mYk),

where Z = CF, CF
∞
, OF, OF

∞
, ℓF.



On some spaces of Cesàro sequences associated with λ-convergence 165

Proof. Let (X(u)) be a Cauchy sequence in Z(M, Λ,∆n
m, p) such that (X(u)) =

(X
(u)
n )∞n=1. Then for ǫ > 0, there exists a positive integer n0 = n0(ǫ) such that

f(X(u), X(v)) < ǫ for all u, v ≥ n0.

By the definition of f, we get

mn∑

r=1

d(X
(u)
r , X

(v)
r ) + η(Λk∆

n
mX

(u)
k , Λk∆

n
mX

(v)
k ) < ǫ, for all u, v ≥ n0 (3)

=⇒
mn∑

r=1

d(X
(u)
r , X

(v)
r ) < ǫ ∀ u, v ≥ n0

=⇒ d(X
(u)
r , X

(v)
r ) < ǫ ∀ u, v ≥ n0, r = 1, 2, 3, ...,mn.

Hence, (X
(u)
r ) is a Cauchy sequence in R(I), so it is convergent in R(I) by the

completeness property of R(I), for r = 1, 2, 3, ...,mn.
Let

lim
u→∞

X
(u)
r = Xr, for r = 1, 2, 3, ...,mn. (4)

Next, we have

η(Λk∆
n
mX

(u)
k , Λk∆

n
mX

(v)
k ) < ǫ for all u, v ≥ n0

which implies that (Λk∆
n
mX

(u)
k ) is a Cauchy sequence in Z(M), SinceM = (Mk)

is continuous function and so it is convergent in Z(M) by the completeness
property of Z(M).

Let lim
u

Λk∆
n
mX

(u)
k = Yk (say), in Z(M), for each k ∈ N. We have to prove

lim
u

X(u) = X and X ∈ Z(M, Λ,∆n
m, p).

For k = 1, we have from equation (1) and (4),

lim
u

X
(u)
mn+1 + Xmn+1, for m ≥ 1, n ≥ 1.

Proceeding in this way of induction, we get

lim
u

X
(u)
k + Xk, for each k ∈ N.

Also, limuΛk∆
n
mX

(u)
k = Λk∆

n
mXk for each k ∈ N. Now, taking v → ∞ and

fixing u, it follows from (3),

mn∑

r=1

d(X
(u)
r , Xr) + η(Λk∆

n
mX

(u)
k , Λk∆

n
mXk) < ǫ, for all u, v ≥ n0.
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=⇒ f(X(u), X) < ǫ, for all u ≥ n0.

Therefore, we have lim
u

X(u) = X.

Now, we show that X ∈ Z(M, Λ,∆n
m, p). Since

f(Λk∆
n
mXk, 0) ≤ f(Λk∆

n
mX

(i)
k , Λk∆

n
mXk) + f(Λk∆

n
mX

(i)
k , 0) < ∞.

=⇒ X ∈ Z(M, Λ,∆n
m, p). Hence, Z(M, Λ,∆n

m, p) is a complete metric space. �

Proposition 2 Let 1 ≤ p = sup
k

pk < ∞. Then,

(i) The space CF(M, Λ,∆n
m, p) is a complete metric space with the metric,

f1(X, Y) =

mn∑

r=1

d(Xr, Yr)+inf

{

ρ > 0 :

(

∞∑

i=1

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, Λk∆

n
mYk)

ρ

))p
)

1
p

≤ 1

}

.

(ii) The space CF
∞
(M, Λ,∆n

m, p) is a complete metric space with the metric,

f2(X, Y) =

mn∑

r=1

d(Xr, Yr) + inf

{

ρ > 0 : sup
i

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, Λk∆

n
mYk)

ρ

))pk

≤ 1

}

.

(iii) The space ℓF(M, Λ,∆n
m, p) is a complete metric space with the metric,

f3(X, Y) =

mn∑

r=1

d(Xr, Yr) + inf

{

ρ > 0 :

(

∞∑

k=1

(

Mk

(

d(Λk∆
n
mXk, Λk∆

n
mYk)

ρ

))p
)

1
p

≤ 1

}

.

(iv) The space OF(M, Λ,∆n
m, p) is a complete metric space with the metric,

f4(X, Y) =

mn∑

r=1

d(Xr, Yr)+inf
{
ρ > 0 :

(

∞∑

i=1

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, Λk∆

n
mYk)

ρ

))p
)

1
p

≤ 1
}
.
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(v) The space OF
∞
(M, Λ,∆n

m, p) is a complete metric space with the metric,

f5(X, Y) =

mn∑

r=1

d(Xr, Yr) + inf

{

ρ > 0 : sup
i

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, Λk∆

n
mYk)

ρ

))pk

≤ 1

}

.

Proof. The proof directly comes from ([21], Proposition 3.2). �

Theorem 3 (a) ℓF(M, Λ,∆n
m, p) ⊂ OF(M, Λ,∆n

m, p) ⊂ CF
∞
(M, Λ,∆n

m, p) and
the inclusions are strict.
(b) Z(M, Λ,∆n−1

m , p) ⊂ Z(M, Λ,∆n
m, p) (in general Z(M, Λ,∆i

m, p) ⊂ Z(M, Λ,

∆n
m, p) for i = 1, 2, 3..., n− 1), for Z = CF, CF

∞
, OF, OF

∞
, ℓF.

(c) OF
∞
(M, Λ,∆n

m, p) ⊂ CF
∞
(M, Λ,∆n

m, p) and the inclusion is strict.

Proof. We shall prove the result for the space Z = C∞ only and others can
be proved in the similar way. Let (Xk) ∈ CF

∞
(M, Λ,∆n−1

m , p). Then, we have

sup
i

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n−1
m Xk, 0)

ρ

)

)pk

< ∞, for some ρ > 0.

Now, we have

sup
i

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n
mXk, 0)

2ρ

)

)pk

= sup
i

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n−1
m Xk −Λk∆

n−1
m Xk+1, 0)

2ρ

)

)pk

≤ sup
i

1

2

(

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n−1
m Xk, 0)

2ρ

)

))pk

+ sup
i

1

2

(

1

i

(

i∑

k=1

Mk

(

d(Λk∆
n−1
m Xk+1, 0)

2ρ

)

))pk

< ∞.

Proceeding in this way, we have Z(M, Λ,∆i
m, p) ⊂ Z(M, Λ,∆n

m, p), for 0 ≤
i < n, for Z = CF, CF

∞
, OF, OF

∞
, ℓF. �
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Theorem 4 (a) If 1 ≤ p < q < ∞, then
(i) CF(M, Λ,∆n

m, p) ⊂ CF(M, Λ,∆n
m, q);

(ii) ℓF(M, Λ,∆n
m, p) ⊂ ℓF(M, Λ,∆n

m, q);

(b) CF(M, Λ, p) ⊂ CF(M, Λ,∆n
m, p) for all m ≥ 1 and n ≥ 1.

Proof. (i) We shall prove the result for the space CF(M, Λ,∆n
m, p) and others

can be proved in the similar way. Let X ∈ CF(M, Λ,∆n
m, p). Then there exists

ρ > 0 such that

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))

)pk

< ∞.

This implies that

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))pk

< 1

for sufficiently large values of i. Since (Mk) is non-decreasing, we get

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))

)qk

≤

∞∑

i=1

(

1

i

i∑

k=1

(

Mk

(

d(Λk∆
n
mXk, 0)

ρ

))

)pk

< ∞.

Thus, X ∈ CF(M, Λ,∆n
m, q). This completes the proof. �

Theorem 5 Let M = (Mk), M ′ = (M ′
k) and M ′′ = (M ′′

k ) be Musielak-
Orlicz functions satisfying ∆2−condition. Then for Z = CF, CF

∞
, OF, OF

∞
, ℓF,

we have
(i) Z(M ′, Λ,∆n

m, p) ⊆ Z(M◦M ′, Λ,∆n
m, p).

(ii) Z(M ′, Λ,∆n
m, p) ∩ Z(M ′′, Λ,∆n

m, p) ⊆ Z(M ′ +M ′′, Λ,∆n
m, p).

Proof. Let (Xk) ∈ Z(M ′, Λ,∆n
m, p). For ǫ > 0, there exists η > 0 such that

ǫ = M(η). Then,

M ′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

< η, for some ρ > 0, L ∈ R(I).
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Let Yk = M ′
k

(

d(Λk∆
n
mXk,L)
ρ

)pk
, for some ρ > 0, L ∈ R(I). Since M = (Mk) is

continuous and non-decreasing, we get

Mk(Yk) = Mk

(

M ′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

< Mk(η) = ǫ, for some ρ > 0.

=⇒ (Xk) ∈ Z(M◦M ′, Λ,∆n
m, p).

(ii) Let (Xk) ∈ Z(M ′, Λ,∆n
m, p) ∩ Z(M ′′, Λ,∆n

m, p). Then,

M ′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

< ǫ, for some ρ > 0, L ∈ R(I)

and

M ′′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

< ǫ, for some ρ > 0, L ∈ R(I).

The rest of the proof follows from the equality

(M ′
k +M ′′

k )

(

d(Λk∆
n
mXk, L)

ρ

)pk

= M ′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

+M ′′
k

(

d(Λk∆
n
mXk, L)

ρ

)pk

< ǫ+ ǫ = 2ǫ, for some ρ > 0

which implies that (Xk) ∈ Z(M ′+M ′′, Λ,∆n
m, p). This completes the proof. �
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[12] P. N. Ng, P. Y. Lee, Cesàro sequence spaces of non absolute type, Com-
ment. Math., 20 (1978), 429–433.
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Abstract. Let S be a semiring. An S-semimodule M is called a mul-
tiplication semimodule if for each subsemimodule N of M there exists
an ideal I of S such that N = IM. In this paper we investigate some
properties of multiplication semimodules and generalize some results on
multiplication modules to semimodules. We show that every multiplica-
tively cancellative multiplication semimodule is finitely generated and
projective. Moreover, we characterize finitely generated cancellative mul-
tiplication S-semimodules when S is a yoked semiring such that every
maximal ideal of S is subtractive.

1 Introduction

In this paper, we study multiplication semimodules and extend some results
of [7] and [17] to semimodules over semirings. A semiring is a nonempty set S
together with two binary operations addition (+) and multiplication (·) such
that (S,+) is a commutative monoid with identity element 0; (S, .) is a monoid
with identity element 1 6= 0; 0a = 0 = a0 for all a ∈ S; a(b + c) = ab + ac

and (b+ c)a = ba+ ca for every a, b, c ∈ S. We say that S is a commutative
semiring if the monoid (S, .) is commutative. In this paper we assume that
all semirings are commutative. A nonempty subset I of a semiring S is called
an ideal of S if a + b ∈ I and sa ∈ I for all a, b ∈ I and s ∈ S. A semiring

2010 Mathematics Subject Classification: 16Y60

Key words and phrases: semiring, multiplication semimodule
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S is called yoked if for all a, b ∈ S, there exists an element t of S such that
a + t = b or b + t = a. An ideal I of a semiring S is subtractive if a + b ∈ I

and b ∈ I imply that a ∈ I for all a, b ∈ S. A semiring S is local if it has a
unique maximal ideal. A semiring is entire if ab = 0 implies that a = 0 or
b = 0. An element s of a semiring S is a unit if there exists an element s′ of
S such that ss′ = 1. A semiring S is called a semidomain if for any nonzero
element a of S, ab = ac implies that b = c. An element a of a semiring S is
called multiplicatively idempotent if a2 = a. The semiring S is multiplicatively
idempotent if every element of S is multiplicatively idempotent.
Let (M,+) be an additive abelian monoid with additive identity 0M. Then

M is called an S-semimodule if there exists a scalar multiplication S×M → M

denoted by (s,m) 7→ sm, such that (ss′)m = s(s′m); s(m+m′) = sm+ sm′;
(s + s′)m = sm + s′m; 1m = m and s0M = 0M = 0m for all s, s′ ∈ S and all
m,m′ ∈ M. A subsemimodule N of a semimodule M is a nonempty subset of
M such that m + n ∈ N and sn ∈ N for all m,n ∈ N and s ∈ S. If N and L

are subsemimodules of M, we set (N : L) = {s ∈ S | sL ⊆ N}. It is clear that
(N : L) is an ideal of S.
Let R be a ring. An R-module M is a multiplication module if for each

submodule N of M there exists an ideal I of R such that N = IM [2]. Mul-
tiplication semimodules are defined similarly. These semimodules have been
studied by several authors(e.g. [5], [6], [18], [20]). It is known that invertible
ideals of a ring R are multiplication R-modules. Invertible ideals of semirings
has been studied in [8]. In this paper, in order to study the relations between
invertible ideals of semirings and multiplication semimodules, we generalize
some properties of multiplication modules to multiplication semimodules (cf.
Theorems 2 and 12). In Section 2, we show that if M is a multiplication S-
semimodule and P is a maximal ideal of S such that M 6= PM, then MP

is cyclic. In Section 3, we study multiplicatively cancellative(abbreviated as
MC) multiplication semimodules. We show that MC multiplication semimod-
ules are finitely generated and projective. In Section 4, we characterize finitely
generated cancellative multiplication semimodules over yoked semirings with
subtractive maximal ideals.

2 Multiplication semimodule

In this section we give some results of multiplication semimodules which are
related to the corresponding results in multiplication modules.
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Definition 1 [6] Let S be a semiring and M an S-semimodule. Then M is

called a multiplication semimodule if for each subsemimodule N of M there

exists an ideal I of S such that N = IM. In this case it is easy to prove that

N = (N : M)M. For example, every cyclic S-semimodule is a multiplication

S-semimodule [20, Example 2].

Example 1 Let S be a multiplicatively idempotent semiring. Then every ideal

of S is a multiplication S-semimodule. Let J be an ideal of S and I ⊆ J. If

x ∈ I, then x = x2 ∈ IJ. Therefore I = IJ and hence J is a multiplication

S-semimodule.

Let M and N be S-semimodules and f : M → N an S-homomorphism. If
M′ is a subsemimodule of M and I is an ideal of S, then f(IM′) = If(M′).
Now suppose that f is surjective and N′ is a subsemimodule of N. Put M′ =

{m ∈ M | f(m) ∈ N′}. Then M′ is a subsemimodule of M and f(M′) = N′.
It is well-known that every homomorphic image of a multiplication module is
a multiplication module (cf. [7] and [19, Note 1.4]). A similar result holds for
multiplication semimodules.

Theorem 1 Let S be a semiring, M and N S-semimodules and f : M → N

a surjective S-homomorphism. If M is a multiplication S-semimodule, then N

is a multiplication S-semimodule.

Proof. Let N′ be a subsemimodule of N. Then there exists a subsemimodule
M′ of M such that f(M′) = N′. Since M is a multiplication S-semimodule,
there exists an ideal I of S such that M′ = IM. Then N′ = f(M′) = f(IM) =

If(M) = IN. Therefore N is a multiplication S-semimodule. �

Fractional and invertible ideals of semirings have been studied in [8]. We
recall here some definitions and properties.
An element s of a semiring S is multiplicatively-cancellable (abbreviated as

MC), if sb = sc implies b = c for all b, c ∈ S. We denote the set of all MC

elements of S by MC(S). The total quotient semiring of S, denoted by Q(S),
is defined as the localization of S at MC(S). Then Q(S) is an S-semimodule
and S can be regarded as a subsemimodule of Q(S). For the concept of the
localization in semiring theory, we refer to [10] and [11]. A subset I of Q(S)

is called a fractional ideal of S if I is a subsemimodule of Q(S) and there
exists an MC element d ∈ S such that dI ⊆ S. Note that every ideal of S
is a fractional ideal. The product of two fractional ideals is defined by IJ =

{a1b1+ . . .+anbn | ai ∈ I, bi ∈ J}. A fractional ideal I of a semiring S is called
invertible if there exists a fractional ideal J of S such that IJ = S.
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Now we restate the following property of invertible ideals from [8, Theorem
1.3] (see also [13, Proposition 6.3]).

Theorem 2 Let S be a semiring. An ideal I of S is invertible iff it is a mul-

tiplication S-semimodule which contains an MC element of S.

Let M be an S-semimodule and P a maximal ideal of S. Then similar to [7],
we define TP(M) = {m ∈ M | there exist s ∈ S and q ∈ P such that s+q =

1 and sm = 0}. Clearly Tp(M) is a subsemimodule of M. We say that M

is P-cyclic if there exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1 and
tM ⊆ Sm.
The following two theorems can be thought of as a generalization of [7,

Theorem 1.2] (see also [5, Proposition 3]).

Theorem 3 Let M be an S-semimodule. If for every maximal ideal P of S

either TP(M) = M or M is P-cyclic, then M is a multiplication semimodule.

Proof. Let N be a subsemimodule of M and I = (N : M). Then IM ⊆ N. Let
x ∈ N and J = {s ∈ S | sx ∈ IM}. Clearly J is an ideal of S. If J 6= S, then
by [9, Proposition 6.59] there exists a maximal ideal P of S such that J ⊆ P.
If M = TP(M), then there exist s ∈ S and q ∈ P such that s + q = 1 and
sx = 0 ∈ IM. Hence s ∈ J ⊆ P which is a contradiction. So the second case will
happen. Therefore there exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1

and tM ⊆ Sm. Thus tN is a subsemimodule of Sm and tN = Km where
K = {s ∈ S | sm ∈ tN}. Moreover, tKM = KtM ⊆ Km ⊆ N. Therefore tK ⊆ I.
Thus t2x ∈ t2N = tKm ⊆ IM. Hence t2 ∈ J ⊆ P which is a contradiction.
Therefore J = S and x ∈ IM. �

Theorem 4 Suppose that M is an S-semimodule. If M is a multiplication

semimodule, then for every maximal ideal P of S either M = {m ∈ M | m =

qm for some q ∈ P} or M is P-cyclic.

Proof. Let P be a maximal ideal of S and M = PM. If m ∈ M, then there
exists an ideal I of S such that Sm = IM. Hence Sm = IPM = PIM = Pm.
Therefore m = qm for some q ∈ P. Now let M 6= PM. Thus there exists
x ∈ M such that x /∈ PM. Then there exists ideal I of S such that Sx = IM.
If I ⊆ P, then x ∈ IM ⊆ PM which is a contradiction. Thus I * P and since P

is a maximal ideal of S, P + I = S. Thus there exist t ∈ I and q ∈ P such that
q+ t = 1. Moreover, tM ⊆ IM = Sx. Therefore M is P-cyclic. �

We recall the following result from [10].
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Theorem 5 A commutative semiring S is local iff for all r, s ∈ S, r + s = 1

implies r or s is a unit.

By using Theorem 4, we obtain the following corollary.

Corollary 1 Suppose that (S,m) is a local semiring. Let M be a multiplication

S-semimodule such that M 6= mM. Then M is a cyclic semimodule.

Proof. Since M 6= mM, M is m-cyclic. Thus there exist n ∈ M, t ∈ S and
q ∈ m such that t+q = 1 and tM ⊆ Sn. Since S is a local semiring, t is unit.
Hence M = Sn. �

Remark 1 Let S be a semiring and T a non-empty multiplicatively closed

subset of S, and let M be an S-semimodule. Define a relation ∼ on M× T as

follows: (m, t) ∼ (m′, t′) ⇐⇒ ∃s ∈ T such that stm′ = st′m. The relation ∼ on

M × T is an equivalence relation. Denote the set M × T/ ∼ by T−1M and the

equivalence class of each pair (m, s) ∈ M× T by m/s. We can define addition

on T−1M by m/t + m′/t′ = (t′m + tm′)/tt′. Then (T−1M,+) is an abelian

monoid. Let s/t ∈ T−1S and m/u ∈ T−1M. We can define the product of s/t

and m/u by (s/t)(m/u) = sm/tu. Then it is easy to check that T−1M is an

T−1S-semimodule [3]. Let P be a prime ideal in S and T = S\P. Then T−1M

is denoted by MP.

We can obtain the following results as in [15].

1. Suppose that I is an ideal of a semiring S and M is an S-semimodule.

Then T−1(IM) = T−1IT−1M.

2. Let N, N′ be subsemimodules of an S-semimodule M. If Nm = N′

m for

every maximal ideal m, then N = N′.

Theorem 6 Let S be a semiring and M a multiplication S-semimodule. If P

is a maximal ideal of S such that M 6= PM, then MP is cyclic.

Proof. By (1), MP is a multiplication SP-semimodule. Since M 6= PM, MP 6=

PPMP by (2). Moreover, by [10, Theorem 4.5], SP is a local semiring. Thus by
Corollary 1, MP is cyclic. �

3 MC multiplication semimodules

In this section, we study MC multiplication semimodules and give some prop-
erties of these semimodules.



Multiplication semimodules 177

In [4] an S-semimodule M is called cancellative if for any s, s′ ∈ S and
0 6= m ∈ M, sm = s′m implies s = s′. We will call these semimodules
multiplicatively cancellative(abbreviated as MC). For example every ideal of
a semidomain S is an MC S-semimodule.
Note that if M is an MC S-semimodule, then M is a faithful semimodule.

Let tM = {0} for some t ∈ S. If 0 6= m ∈ M, then tm = 0m = 0. Thus t = 0.
Therefore M is faithful. But the converse is not true. For example, if S is an
entire multiplicatively idempotent semiring, then every ideal of S is a faithful
S-semimodule but it is not an MC semimodule.
Moreover, for an R-module M over a domain R, M is an MC semimodule

iff it is torsionfree. Also we know that if R is a domain and M a faithful
multiplication R-module, then M will be a torsionfree R-module and so M is
an MC semimodule.
An element m of an S-semimodule M is cancellable if m + m1 = m + m2

implies that m1 = m2. The semimodule M is cancellative iff every element of
M is cancellable [9, P. 172].

Lemma 1 Let S be a yoked entire semiring and M a cancellative faithful

multiplication S-semimodule. Then M is an MC semimodule.

Proof. Let 0 6= m ∈ M and s, s′ ∈ S such that sm = s′m. Since S is a yoked
semiring, there exists t ∈ S such that s + t = s′ or s′ + t = s. Suppose that
s + t = s′. Then sm + tm = s′m. Since M is a cancellative S-semimodule,
tm = 0. Moreover, there exists an ideal I of S such that Sm = IM since M

is a multiplication S-semimodule. Then tIM = tSm = {0} and hence tI = {0}

since M is faithful. But S is an entire semiring, so t = 0. Therefore s = s′.
Now suppose that s′ + t = s. A similar argument shows that s = s′. Therefore
M is an MC semimodule. �

We now give the following definition similar to [12, P. 127].

Definition 2 Let S be a semidomain. An S-semimodule M is said to be tor-

sionfree if for any 0 6= a ∈ S, multiplication by a on M is injective, i.e., if

ax = ay for some x, y ∈ M, then x = y.

Theorem 7 Let S be a yoked semidomain and M a cancellative torsionfree

S-semimodule. Then M is an MC semimodule.

Proof. Let 0 6= m ∈ M and s, s′ ∈ S such that sm = s′m. Since S is a
yoked semiring, there exists t ∈ S such that s + t = s′ or s′ + t = s. Suppose
that s+ t = s′. Then sm+ tm = s′m. Since M is a cancellative S-semimodule,
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tm = 0. SinceM is a torsionfree S-semimodule,m = 0 which is a contradiction.
Thus t = 0 and hence s = s′. Now suppose that s′+ t = s. A similar argument
shows that s = s′. Therefore M is an MC semimodule. �

Now, similar to [7, Lemma 2.10] we give the following theorem (see also [6,
Theorem 3.2]).

Theorem 8 Let P be a prime ideal of S and M an MC multiplication semi-

module. Let a ∈ S and x ∈ M such that ax ∈ PM. Then a ∈ P or x ∈ PM.

Proof. Let a /∈ P and put K = {s ∈ S | sx ∈ PM}. If K 6= S, there exists a
maximal ideal Q of S such that K ⊆ Q. Let M = QM and m ∈ M. Then
similar to the proof of Theorem 4, there exists q ∈ Q such that m = qm

which is a contradiction, since M is an MC semimodule. Therefore M 6= QM.
Thus by Theorem 4, we can conclude that M is Q-cyclic. Therefore there
exist m ∈ M, t ∈ S and q ∈ Q such that t + q = 1 and tM ⊆ Sm. Thus
tx = sm for some s ∈ S. Moreover, tPM ⊆ Pm. Hence tax ∈ tPM ⊆ Pm.
Therefore tax = p1m for some p1 ∈ P and hence asm = p1m. Since M is
an MC semimodule, as = p1 ∈ P and since P is a prime ideal, s ∈ P . Then
tx = sm ∈ PM and hence t ∈ K ⊆ Q which is a contradiction. Thus K = S.
Therefore x ∈ PM. �

Lemma 2 (cf. [1]) Suppose that S is a semiring. Let M be an S-semimodule

and θ(M) =
∑

m∈M(Sm : M). If M is a multiplication S-semimodule, then

M = θ(M)M.

Proof. Suppose that m ∈ M. Then Sm = (Sm : M)M. Thus m ∈ (Sm : M)

M ⊆ θ(M)M. Therefore M = θ(M)M. �

Theorem 9 (cf. [7, Theorem 3.1]) Let S be a semiring and M an MC multi-

plication S-semimodule. Then the following statements hold:

1. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

2. For each subsemimodule N of M there exists a unique ideal I of S such

that N = IM.

3. M 6= IM for any proper ideal I of S.

4. M 6= PM for any maximal ideal P of S.

5. M is finitely generated.
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Proof. (1) Let IM ⊆ JM and a ∈ I. Set K = {s ∈ S | sa ∈ J}. If K 6= S, there
exists a maximal ideal P of S such that K ⊆ P. By Theorem 4, M is P-cyclic
since M is an MC semimodule. Thus there exist m ∈ M, t ∈ S and q ∈ P

such that t + q = 1 and tM ⊆ Sm. Then tam ∈ tIM ⊆ tJM = JtM ⊆ Jm.
Hence there exists b ∈ J such that tam = bm. Since M is an MC semimodule,
ta = b ∈ J. Thus t ∈ K ⊆ P which is a contradiction. Therefore K = S and
hence I ⊆ J.
(2) Follows by (1)

(3) Follows by (2)

(4) Follows by (3)

(5) By Lemma 2, M = θ(M)M, where θ(M) =
∑

m∈M(Sm : M). Then
by 3, θ(M) = S. Thus there exist a positive integer n and elements mi ∈ M,
ri ∈ (Smi : M) such that 1 = r1+. . .+rn. If m ∈ M, then m = r1m+. . .+rnm.
Therefore M = Sm1 + . . .+ Smn. �

By Lemma 1, we have the following result.

Corollary 2 Let S be a yoked entire semiring and M a cancellative faithful

multiplication S-semimodule. Then the following statements hold:

1. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

2. For each subsemimodule N of M there exists a unique ideal I of S such

that N = IM.

3. M 6= IM for any proper ideal I of S.

4. M 6= PM for any maximal ideal P of S.

5. M is finitely generated.

The concept of cancellation modules was introduced in [14]. Similarly we
call an S-semimodule M a cancellation semimodule if whenever IM = JM for
ideals I and J of S, then I = J.
Using the Theorem 9, we obtain the following corollary.

Corollary 3 Let M be an MC multiplication semimodule. Then M is a can-

cellation semimodule.

In [7, Lemma 4.1] it is shown that faithful multiplication modules are torsion-
free. Similarly, we have the following result.

Theorem 10 Suppose that S is a semidomain and M is an MC multiplication

S-semimodule. Then M is a torsionfree S-semimodule.
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Proof. Suppose that there exist 0 6= t ∈ S andm,m′ ∈ M such that tm = tm′.
Then Sm = IM and Sm′ = JM for some ideals I, J of S. Thus tIM = tJM

since tm = tm′. By Corollary 3, M is a cancellation semimodule, thus tI = tJ.
Let x ∈ I. Then tx = tx′ for some x′ ∈ J. Since S is a semidomain, x = x′.
Therefore I ⊆ J. Similarly J ⊆ I. Hence I = J and Sm = Sm′. Then there
exists s1 ∈ S such that m = s1m

′. Thus tm′ = tm = ts1m
′. Since M is an

MC semimodule, t = s1t. Since S is a semidomain, s1 = 1. Therefore m = m′

and hence M is torsionfree. �

If M is a finitely generated faithful multiplication module, then M is a pro-
jective module [17, Theorem 11]. Similarly, we have the following theorem:

Theorem 11 Let M be an MC multiplication semimodule. Then M is a pro-

jective S-semimodule.

Proof. By Theorem 9, θ(M) =
∑n

i (Smi : M) = S. Thus for each 1 ≤ i ≤ n,
there exist ri ∈ (Smi : M) and si ∈ S such that 1 = s1r

2
1 + . . . + snr

2
n. Define

a map φi : M → S by φi : m 7→ siria where a is an element of S such that
rim = ami. Suppose that ami = bmi for some b ∈ S. Since M is an MC

semimodule, a = b and therefore φi is a well defined S-homomorphism. Let
m ∈ M. Then m = 1m = s1r

2
1m+ . . .+ snr

2
nm = φ1(m)m1 + . . .+φn(m)mn.

By [16, Theorem 3.4.12], M is a projective S-semimodule. �

By Lemma 1, we obtain the following result.

Corollary 4 Let S be a yoked entire semiring and M a cancellative faithful

multiplication S-semimodule. Then M is a projective S-semimodule.

Theorem 12 [7, Lemma 3.6] Let S be a semidomain and let M be an MC

multiplication S-semimodule. Then there exists an invertible ideal I of S such

that M ∼= I.

Proof. Suppose that 0 6= m ∈ M. Then there exists an ideal J of S such that
Sm = JM. Let 0 6= a ∈ J. We can define an S-homomorphism φ : M → Sm

by φ : x 7→ ax. Let x, x′ ∈ M such that ax = ax′. By Theorem 10, M is
torsionfree and hence x = x′. Therefore φ is injective and so M ∼= f(M). Now
define an S-homomorphism φ′ : S → Sm by φ′(s) = sm. Let s, s′ ∈ S such that
sm = s′m. Since M is an MC semimodule, s = s′. Therefore φ′ is injective.
It is clear that φ′ is surjective. Therefore S ∼= Sm. Hence M is isomorphic to
an ideal I of S. Thus I is a multiplication ideal and hence an invertible ideal
of S. �
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4 Cancellative multiplication semimodule

In this section, we investigate cancellative multiplication semimodules over
some special semirings and restate some previous results. From now on, let S
be a yoked semiring such that every maximal ideal of S is subtractive and let
M be a cancellative S-semimodule.

Theorem 13 (See Theorems 4 and 3) The S-semimodule M is a multiplica-

tion S-semimodule iff for every maximal ideal P of S either M is P-cyclic or

M = {m ∈ M | m = qm for some q ∈ P}.

Proof. (⇒) Follows by Theorem 4.
(⇐) Let N be a subsemimodule of M and I = (N : M). Then IM ⊆ N. Let

x ∈ N and put K = {s ∈ S | sx ∈ IM}. If K 6= S, there exists a maximal ideal P
of S such that K ⊆ P. If M = {m ∈ M | m = qm for some q ∈ P}, then there
exists q ∈ P such that x = qx. Since S is a yoked semiring, there exists t ∈ S

such that t + 1 = q or q + t = 1. Suppose that q + t = 1. Then qx + tx = x

and hence tx = 0. Therefore t ∈ K ⊆ P which is a contradiction. Now suppose
that t+ 1 = q. Then tx+ x = qx and hence tx = 0. Therefore t ∈ K ⊆ P. But
P is a subtractive ideal of S, so 1 ∈ P which is a contradiction. Therefore M

is P-cyclic. Thus there exist m ∈ M, t ∈ S and q ∈ P such that t+ q = 1 and
tM ⊆ Sm. Therefore tN is a subsemimodule of Sm. Hence tN = Jm where
J is the ideal {s ∈ S | sm ∈ tN} of S. Then tJM = JtM ⊆ Jm ⊆ N and
hence tJ ⊆ I. Thus t2x ∈ t2N = tJm ⊆ IM. Therefore t2 ∈ K ⊆ P which is a
contradiction. �

Lemma 3 If P is a maximal ideal of S, then N = {m ∈ M | m = qm for some

q ∈ P} is a subsemimodule of M.

Proof. Let m1,m2 ∈ N. Then there exist q1, q2 ∈ P such that m1 = q1m1

and m2 = q2m2. Since S is a yoked semiring, there exits an element r such

that q1 + q2 + r = q1q2 or q1q2 + r = q1 + q2. Since P is a subtractive ideal,

r ∈ P.

Assume that q1q2 + r = q1 + q2. Then q1q2(m1+ m2) + r(m1+ m2) =

(q1 + q2)(m1+m2). Thus q1q2m1 + q1q2m2 + r(m1 +m2) = q1m1 + q2m1 +

q1m2+q2m2. Hence q2m1+q1m2+r(m1+m2) = q1m1+q2m1+q1m2+q2m2.

Since M is a cancellative S-semimodule, r(m1 + m2) = q1m1 + q2m2. Thus

r(m1 +m2) = m1 +m2. Therefore m1 +m2 ∈ N.

Now assume that q1+q2+r = q1q2. Then (q1+q2+r)(m1+m2) = q1q2(m1+

m2). Hence q1m1 + q1m2 + q2m1 + q2m2 + r(m1 +m2) = q1q2m1 + q1q2m2.

Thus q1m1 + q1m2 + q2m1 + q2m2 + r(m1 +m2) = q2m1 + q1m2. Since M
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is a cancellative S-semimodule, q1m1 + q2m2 + r(m1 + m2) = 0 and hence

m1 + m2 + r(m1 + m2) = (1 + r)(m1 + m2) = 0. Since P is a subtractive

ideal, (1 + r) /∈ P. Therefore (1 + r) + P = S since P is a maximal ideal

of S. Thus there exist t ∈ P and s ∈ S such that s(1 + r) + t = 1. Hence

s(1+ r)(m1+m2)+ t(m1+m2) = m1+m2. Therefore t(m1+m2) = m1+m2

and so m1 +m2 ∈ N.

Let s ∈ S and m ∈ N. Then there exists q ∈ P such that m = qm. Thus

sm = sqm. Since sq ∈ P, sm ∈ N. Therefore N is a subsemimodule of M. �

Similar to [7, Corollary 1.3], we have the following theorem.

Theorem 14 Let M =
∑

λ∈Λ Smλ. Then M is a multiplication semimodule

if and only if there exist ideals Iλ(λ ∈ Λ) of S such that Smλ = IλM for all

λ ∈ Λ.

Proof. (⇒) Obvious.
(⇐) Assume that there exist ideals Iλ(λ ∈ Λ) of S such that Smλ = IλM(λ ∈

Λ). Let P be a maximal ideal of S and Iµ * P for some µ ∈ Λ. Then there
exists t ∈ Iµ such that t /∈ P. Thus P + (t) = S and hence there exist q ∈ P

and s ∈ S such that 1 = q + st. Then tsM ⊆ IµM = Smµ. Therefore M is
P-cyclic. Now suppose that Iλ ⊆ P for all λ ∈ Λ. Then Smλ ⊆ PM(λ ∈ Λ).
This implies that M = PM. But for any λ ∈ Λ, Smλ = IλM = IλPM = Pmλ.
Therefore mλ ∈ {m ∈ M | m = qm for some q ∈ P}. Since by Lemma
3, {m ∈ M | m = qm for some q ∈ P} is an S-semimodule, we conclude
that M = {m ∈ M | m = qm for some q ∈ P}. By Theorem 13, M is a
multiplication semimodule. �

It follows from Theorem 14 that if S is a yoked semiring such that every maxi-
mal ideal of S is subtractive, then any additively cancellative ideal I generated
by idempotents is a multiplication ideal.
The following is a generalization of [7, Theorem 3.1]

Theorem 15 Let M be a faithful multiplication S-semimodule. Then the fol-

lowing statements are equivalent:

1. M is finitely generated.

2. M 6= PM for any maximal ideal P of S.

3. If I and J are ideals of S such that IM ⊆ JM then I ⊆ J.

4. For each subsemimodule N of M there exists a unique ideal I of S such

that N = IM.
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5. M 6= IM for any proper ideal I of S.

Proof. (1) → (2) Let P be a maximal ideal of S such that M = PM and
M = Sm1 + . . . + Smn. Since M is a multiplication S-semimodule, for each
1 ≤ i ≤ n, there exists Ki ⊆ S such that Smi = KiM = KiPM = PKiM = Pmi.
Therefore mi = pimi for some pi ∈ P. Since S is a yoked semiring, there exists
ti ∈ S such that ti + pi = 1 or 1 + ti = pi. Suppose that ti + pi = 1. Then
timi + pimi = mi. Since M is a cancellative S-semimodule, timi = 0. Now
suppose that 1 + ti = pi. Then mi + timi = pimi. Since M is a cancellative
S-semimodule, timi = 0. Put t = t1 . . . tn. Then for all i, tmi = 0. Thus
tM = {0}. Since M is a faithful S-semimodule, t = 0 ∈ P. Since P is a prime
ideal, ti ∈ P for some 1 ≤ i ≤ n. If ti + pi = 1, then 1 ∈ P which is a
contradiction. If 1 + ti = pi, then, since P is a subtractive ideal of S, 1 ∈ P

which is a contradiction. Therefore M 6= PM.
(2) → (3) Let I and J be ideals of S such that IM ⊆ JM. Let a ∈ I and

put K = {r ∈ S | ra ∈ J}. If K 6= S, then there exists a maximal ideal P of
S such that K ⊆ P. By 2, M 6= PM. Thus M is P-cyclic and hence there
exist m ∈ M, t ∈ S and q ∈ P such that t + q = 1 and tM ⊆ Sm. Then
tam ∈ tJM = JtM ⊆ Jm. Thus there exists b ∈ J such that tam = bm. Since
S is a yoked semiring, there exists c ∈ S such that ta + c = b or b + c = ta.
Suppose that ta + c = b. Then t2a + tc = tb and tam + cm = bm. Since
M is cancellative, cm = 0. But tcM ⊆ c(Sm) = {0}. Since M is a faithful
semimodule, tc = 0. Hence t2a = tb ∈ J. Therefore t2 ∈ K ⊆ P which is a
contradiction. Thus S = K and a ∈ J. Now suppose that b + c = ta. Then
tb+tc = t2a and bm+cm = tam. Since M is cancellative, cm = 0. A similar
argument shows that a ∈ J.
(3) → (4) → (5) Obvious.
(5) → (1) By Lemma 2, M = θ(M)M, where θ(M) =

∑
m∈M(Sm : M).

Then by 5, θ(M) = S. Thus there exist elements mi ∈ M, ri ∈ (Smi : M) such
that 1 = r1 + . . .+ rn. Now let m ∈ M. Then m = r1m+ . . .+ rnm. Hence M

is finitely generated. �

Theorem 8 can be restated as follows:

Theorem 16 (cf. [5, Proposition 3]) Suppose that P is a prime ideal and let

M be a faithful multiplication S-semimodule. Let a ∈ S and x ∈ M such that

ax ∈ PM. Then a ∈ P or x ∈ PM.

Proof. Let a /∈ P and K = {s ∈ S | sx ∈ PM}. Assume that K 6= S. Then
there exists a maximal ideal Q of S such that K ⊆ Q. A similar argument
to that of Theorem 13 shows that M 6= QM. Thus by Theorem 4, M is Q-
cyclic. Therefore there exist m ∈ M, t ∈ S and q ∈ Q such that t+q = 1 and



184 R. Razavi Nazari, Sh. Ghalandarzadeh

tM ⊆ Sm. Thus tx = sm for some s ∈ S. Since tPM ⊆ Pm, tax ∈ tPM ⊆ Pm.
Hence tax = p1m for some p1 ∈ P. Then asm = p1m. Since S is a yoked
semiring, there exists c ∈ S such that as + c = p1 or c + p1 = as. Suppose
that as + c = p1. Then asm + cm = p1m. Since M is cancellative, cm = 0.
Then tcM ⊆ c(Sm) = {0}. Since M is a faithful semimodule, tc = 0. Hence
ast = p1t ∈ P and so s ∈ P since P is a prime ideal. Then tx = sm ∈ PM and
hence t ∈ K ⊆ Q which is a contradiction. Thus K = S. Therefore x ∈ PM.
Now suppose that c+ p1 = as. A similar argument shows that x ∈ PM. �
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a weak IASI graph. The set-indexing number of an element of a graph
G, a vertex or an edge, is the cardinality of its set-labels. The sparing
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1 Introduction

For all terms and definitions, not defined specifically in this paper, we refer
to [3, 7, 18]. For different graph classes, we further refer to [2, 4, 19]. Unless
mentioned otherwise, all graphs considered here are simple, finite and have no
isolated vertices.
The sumset of two non-empty sets A and B is denoted by A + B and is

defined by A + B = {a + b : a ∈ A,b ∈ B} (see [8]). Using the concept of
sumsets of two sets we have the following notion.
Let N0 denote the set of all non-negative integers. An integer additive set-

indexer (IASI, in short) of a graph G is defined in [5] as an injective function
f : V(G) → P(N0) such that the induced function f+ : E(G) → P(N0) defined
by f+(uv) = f(u) + f(v) is also injective (see [5, 9]).
The cardinality of the labeling set of an element (vertex or edge) of a graph

G is called the set-indexing number of that element (see [9, 6]).

Lemma 1 [6] Let A and B be two non-empty finite sets of non-negative in-

tegers. Then, max(|A|, |B|) ≤ |A + B| ≤ |A| |B|. Therefore, for an integer ad-

ditive set-indexer f of a graph G, we have max(|f(u)|, |f(v)|) ≤ |f+(uv)| =

|f(u) + f(v)| ≤ |f(u)||f(v)|, where u, v ∈ V(G).

Definition 1 [6] An IASI f is said to be a weak IASI if |f+(uv)| = |f(u) +

f(v)| = max(|f(u)|, |f(v)|) for all uv ∈ E(G). A graph which admits a weak IASI
may be called a weak IASI graph. A weak IASI f is said to be weakly k-uniform

IASI if |f+(uv)| = k, for all u, v ∈ V(G) and for some positive integer k.

Lemma 2 [6] An IASI f define on a graph G is a weak IASI of G if and

only if, with respect to f, at least one end vertex of every edge of G has the

set-indexing number 1.

Definition 2 [10] An element (a vertex or an edge) of graph which has the
set-indexing number 1 is called a mono-indexed element of that graph. The
sparing number of a graph G is defined to be the minimum number of mono-
indexed edges required for G to admit a weak IASI and is denoted by ϕ(G).

The following are some major results on the spring number of certain graph
classes, which are relevant in our present study.

Theorem 1 [10] An odd cycle Cn contains odd number of mono-indexed edges

and an even cycle contains an even number of mono-indexed edges.
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Theorem 2 [10] The sparing number of an odd cycle Cn is 1 and that of an

even cycle is 0.

Theorem 3 [10] The sparing number of a bipartite graph is 0.

Theorem 4 [10] The sparing number of a complete graph Kn is 1
2
(n−1)(n−2).

Now, let us recall the definition of graph powers.

Definition 3 [3] The r-th power of a simple graph G is the graph Gr whose
vertex set is V , two distinct vertices being adjacent in Gr if and only if their
distance in G is at most r. The graph G2 is referred to as the square of G, the
graph G3 as the cube of G.

The following is an important theorem on graph powers.

Theorem 5 [17] If d is the diameter of a graph G, then Gd is a complete

graph.

Some studies on the sparing numbers of certain graph classes and graph
structures have been done in [12, 13, 14]. As a continuation of these studies,
in this paper, we determine the sparing number of the powers certain graph
classes. The statements of the main results of this paper can also be seen in
the review paper [15]. For the concepts of graph powers which admit certain
types of IASIs, see [16] also.

2 Sparing number of square of some graphs

In this section, we estimate the sparing number of the square of certain graph
classes. It is to be noted that the weak IASI f which gives the minimum number
of mono-indexed edges in a given graph G will not induce a weak IASI for its
square graph, since some of the vertices having non-singleton set-labels will
also be at a distance 2 in G. Hence, interchanging the set-labels or relabeling
certain vertices may be required to obtain a weak IASI for the square graph
of a given graph.
First consider a path graph Pn on n vertices. The following theorem provides

the sparing number of the square of a path Pn.

Proposition 1 The sparing number of the square of a path Pn is given by

ϕ(P2
n) =






1
3
(2n− 3) if n ≡ 0 (mod 3)

1
3
(2n− 2) if n ≡ 1 (mod 3)

1
3
(2n− 1) if n ≡ 2 (mod 3)
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Proof. Let Pm : v1v2v3 . . . vn, where m = n − 1. In P2
m, d(v1) = d(vn) = 2

and d(v2) = d(vn−1) = 3 and d(vr) = 4, where 3 ≤ r ≤ n − 2. Hence,
|E(P2

m)| =
1
2

∑
v∈V d(v) = 1

2
[2 × 2 + 2 × 3 + 4(n − 4)] = (2n − 3). Also, for

1 ≤ i ≤ n − 2, the vertices vi, vi+1, and vi+2 form a triangle in P2
m. Then, by

Theorem 5, each of these triangles must have a mono-indexed edge. That is,
among any three consecutive vertices vi, vi+1, and vi+2 of Pm, two vertices must
be mono-indexed. We require an IASI which makes the maximum possible
number of vertices that are not mono-indexed. Hence, label v1 and v2 by
singleton sets and v3 by a non-singleton set. Since v4 and v5 are adjacent to
v3, they can be labeled only by distinct singleton sets that are not used before
for labeling. Now, v6 can be labeled by a non-singleton set that has not already
been used. Proceeding like this the vertices which has the form v3k, 3k ≤ n

can be labeled by distinct non-singleton sets and all other vertices by singleton
sets. Now, we have to consider the following cases.
Case-1: If n ≡ 0 (mod 3), then n = 3k. Therefore, vn can also be labeled by
a non-singleton set. Then the number of vertices that are not mono-indexed
is n

3
. Therefore, the number of edges that are not mono-indexed is 4(n

3
−

1) + 2 = 1
3
(4n − 6). Therefore, the total number of mono-indexed edges is

(2n− 3) − 1
3
(4n− 6) = 1

3
(2n− 3).

Case-2: If n ≡ 1 (mod 3), then n − 1 = 3k. Then, vn−1 can be labeled by a
non-singleton set and vn can be labeled by a singleton set. Then the number
of vertices that are not mono-indexed is n−1

3
. Therefore, the number of edges

that are not mono-indexed is 4( (n−1)
3

−1)+3 = 1
3
(4n−7). Therefore, the total

number of mono-indexed edges is (2n− 3) − 1
3
(4n− 7) = 1

3
(2n− 2).

Case-3: If n ≡ 2 (mod 3), then n − 2 = 3k. Then, vn−2 can be labeled by a
non-singleton set and vn and vn−1 can be labeled by distinct singleton sets.
Then the number of vertices that are not mono-indexed is n−2

3
. Therefore, the

number of edges that are not mono-indexed is 4( (n−2)
3

= 1
3
(4n− 8). Therefore,

the total number of mono-indexed edges is (2n−3)− 1
3
(4n−8) = 1

3
(2n−1). �

Figure 1 illustrates squares of even and odd paths which admit weak IASIs.
Mono-indexed edges of the graphs are represented by dotted lines.
Next, we shall discuss the sparing number of the square of cycles. We have

C2
3 = C3 = K3, C

2
4 = K4 and C2

5 = K5 and hence by Theorem 4, their sparing
numbers are 1, 3 and 6 respectively. The following theorem determines the
sparing number of the square of a given cycle on n vertices, for n ≥ 5.

Theorem 6 Let Cn be a cycle on n vertices. Then, the sparing number of the

square of Cn is given by
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ϕ(C2
n) =






2
3
n if n ≡ 0 (mod 3)

2
3
(n+ 2) if n ≡ 1 (mod 3)

2
3
(n+ 4) if n ≡ 2 (mod 3).

Figure 1: Squares of even and odd paths which admit weak IASI

Proof. Let Cn : v1v2v3 . . . vnv1 be the given cycle on n vertices. The square of
Cn is a 4-regular graph. Also, V(C2

n) = V(Cn). Therefore, by the first theorem
on graph theory, we have

∑
v∈V d(v) = 2|E|. That is, 2|E| = 4n ⇒ |E| = 2n,

n ≥ 5.
First, label the vertex v1 in C2

n by a non-singleton set. Therefore, four ver-
tices v2, v3, vn, andvn−1 must be labeled by distinct singleton sets. Next, we can
label the vertex v4 by a non-singleton set, that is not already used for labeling.
The vertices v2 and v3 have already been mono-indexed and the vertices v5
and v6 that are adjacent to v4 in C2

n must be labeled by distinct singleton sets
that are not used before for labeling. Proceeding like this, we can label all the
vertices of the form v3k+1, where k is a positive integer such that 3k+1 ≤ n−2

(since the last vertex that remains unlabeled is vn−2).
Here, we need to consider the following cases.
Case-1: If n ≡ 0 (mod 3), then n − 2 = 3k + 1 for some positive integer k.
Then, vn−2 can be labeled by a non-singleton set. Therefore, the number of
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vertices that are labeled by non-singleton sets is n
3
. Since C2

n is 4-regular, we

have the number of edges that are not mono-indexed in C2
n is 4n

3
. Hence, the

number of mono-indexed edges is 2n− 4n
3
= 2n

3
.

Case-2: If n ≡ 1 (mod 3), then n − 2 6= 3k + 1 for some positive integer k.
Then, vn−2 can not be labeled by a non-singleton set. Here n− 3 = 3k+ 1 for
some positive integer k. Therefore, the number of vertices that are labeled by
non-singleton sets is n−1

3
and the number of edges that are not mono-indexed in

C2
n is 4(n−1)

3
. Hence, the number of mono-indexed edges is 2n−

4(n−1)
3

=
2(n+2)

3
.

Case-3: If n ≡ 2 (mod 3), then neither n − 2 nor n − 3 is equal to 3k + 1

for some positive integer k. Here n − 4 = 3k + 1 for some positive integer k.
Therefore, the number of vertices that are labeled by non-singleton sets is n−2

3

and the number of edges that are not mono-indexed in C2
n is 4(n−2)

3
. Hence,

the number of mono-indexed edges is 2n−
4(n−2)

3
=

2(n+4)
3

. �

Figure 2 illustrates the admissibility of weak IASIs by the squares of cycles.
The graphs given in the figure are examples to the weak IASIs of an even cycle
and an odd cycle respectively.

Figure 2: Weak IASIs of C2
12 and C2

7.

A question that arouses much interest in this context is about the sparing
number of the powers of bipartite graphs. Invoking Theorem 5, we first verify
the existence of weak IASIs for the complete bipartite graphs.

Theorem 7 The sparing number of the square of a complete bipartite graph

Km,n is 1
2
(m+ n− 1)(m+ n− 1).
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Proof. The diameter of a graph Km,n is 2. Hence by Theorem 5, K2
m,n = Km+n.

Hence, every pair of vertices, that are not mono-indexed, are at a distance 2.
The set-labels of all these vertices, except one, must be replaced by distinct
singleton sets. Therefore, by Theorem 4, ϕ(K2

m,n) =
1
2
(m+n−1)(m+n−2). �

A balanced bipartite graph is the bipartite graph which has equal number of
vertices in each of its bipartitions.

Corollary 1 If G is a balanced complete bipartite graph on 2n vertices, then

ϕ(G) = (n− 1)(2n− 1)

Proof. Let G = Kn,n. Then by Theorem 7, ϕ(G) = 1
2
(2n − 1)(2n − 2) =

(n− 1)(2n− 1). �

Let G be a bipartite graph. The vertices which are at a distance 2 are either
simultaneously mono-indexed or simultaneously labeled by non-singleton sets.
Therefore, in G2, among any pair of vertices which are are not mono-indexed
and are at a distance 2 between them, one vertex should be relabeled by a
singleton set. Hence, the sparing number of the square of a bipartite graph
G depends on the adjacency pattern of its vertices. Hence, the problem of
finding the sparing number of bipartite graphs does not offer much scope in
this context.
Now we proceed to study the admissibility of weak IASI by the squares

of certain other graph classes. First, we discuss about the sparing number of
wheel graphs. A wheel graph can be defined as follows.

Definition 4 [4] A wheel graph is a graph defined by Wn+1 = Cn + K1. The
following theorem discusses the sparing number of the square of a wheel graph
Wn+1.

The sparing number of the square of a wheel graph Wn+1 is determined in
the following result.

Proposition 2 The sparing number of the square of a wheel graph on n + 1

vertices is 1
2
n(n− 1).

Proof. The diameter of a wheel graph Wn+1, for any positive integer n ≥ 3,
is 2. Hence, by Theorem 5, the square of a wheel graph Wn+1 is a complete
graph on n+ 1 vertices. Therefore, by Theorem 4, the sparing number of the
square graph W2

n+1 is 1
2
n(n− 1). �

Next, we determine the sparing number of another graph class known as
helm graphs which is defined as follows.
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Definition 5 A helm graph, denoted by Hn, is the graph obtained by adjoining

a pendant edge to each vertex of the outer cycle Cn of a wheel graph Wn+1. It

has 2n+ 1 vertices and 3n edges.

The following result determines the sparing number of a helm graph.

Theorem 8 The sparing number of the square of a helm graph Hn is 1
2
n

(n+ 1).

Proof. Let v be the central vertex, V = {v1, v2, v3, . . . , vn} be the vertex set of
the outer cycle of the corresponding wheel graph andW = {w1, w2, w3, . . . , wn}

be the set of pendant vertices in Hn.
The vertex v is adjacent to all the vertices in V and is at distance 2 from all

the vertices in W. Therefore, the degree of v in H2
n is 2n. In Hn, for 1 ≤ i ≤ n,

each vi is adjacent to two vertices vi−1 and vi+1 in V and is adjacent to wi in
W and to the vertex v and is at a distance 2 from all the remaining vertices
in V and from the vertices wi−1 and wi+2 in W. Therefore, the degree of each
vi ∈ V in H2

n is n+3. Now, in Hn, each vertex wi is adjacent to the vertex vi in
V and is at a distance 2 from two vertices vi−1 and vi+2 in V and to the central
vertex v. Hence, the degree of each wi ∈ W in H2

n is 4. Therefore, the number
of edges in Hn, |E| =

1
2

∑
u∈V(Hn)

d(u) = 1
2
[2n+ n(n+ 3) + 4n] = 1

2
n(n+ 9).

It is to be noted that W is an independent set in H2
n and we can label

all vertices in W by distinct non-singleton sets. It can be seen that there are
more edges in H2

n that are not mono-indexed if we label all the vertices of
W by non-singleton sets than labeling possible number of vertices of V ∪ {v}

by non-singleton sets. Therefore, the number of edges of H2
n which are not

mono-indexed is 4n. Therefore, the number of mono-indexed edges in H2
n is

1
2
n(n+ 9) − 4n = 1

2
n(n+ 1). �

Figure 3 illustrates the existence of a weak IASI for the square of a helm
graph.
An interesting question in this context is about the sparing number of some

graph classes containing complete graphs as subgraphs. An important graph
class of this kind is a complete n-sun which is defined as follows.

Definition 6 [2] An n-sun or a trampoline, denoted by Sn, is a chordal graph
on 2n vertices, where n ≥ 3, whose vertex set can be partitioned into two
sets U = {u1, u2, c3, . . . , un} and W = {w1, w2, w3, . . . , wn} such that W is
an independent set of G and wj is adjacent to ui if and only if j = i or
j = i+ 1 (modn). A complete sun is a sun G where the induced subgraph 〈U〉
is complete.
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Figure 3: Square of a helm graph with a weak IASI defined on it.

The following theorem determines the sparing number of the square of com-
plete sun graphs.

Theorem 9 Let G be the complete sun graph on 2n vertices. Then sparing

number of G2 is

ϕ(G2) =

{
n2 + 1 if n is odd
n
2
(2n− 1) if n is even.

Proof. Let G be a sun graph on 2n vertices, whose vertex set can be par-
titioned into two sets U = {u1, u2, c3, . . . , un} and W = {w1, w2, w3, . . . , wn}

such that wj is adjacent to ui if and only if j = i or j = i+ 1 (mod n), where
W is an independent set and the induced subgraph 〈U〉 is complete.
In G, the degree of each ui is n + 1 and the degree of each wj is 2. It

can be seen that each vertex wj is adjacent to two vertices in U and is at
a distance 2 from all other vertices in U. Hence, in G2, each vertex wj is
adjacent to all vertices in U and to two vertices wj−1 and wj+1 (in the sense
that w0 = wn and wn+1 = w1). That is, in G2, the degree of each vertex wj

in W is n + 2 and the degree of each vertex ui in U is 2n − 1. Therefore,
|E(G2)| = 1

2

∑
v∈V d(v) = 1

2
[n(n+ 2) + n(2n− 1)] = 1

2
n(3n+ 1).



The sparing number of certain graph powers 195

If we label any vertex ui by a non-singleton set, then no other vertex in G2

can be labeled by non-singleton sets, as each ui is adjacent to all other vertices
in G2. Therefore, we label possible number of vertices in W by non-singleton
sets. Since wj is adjacent to wj+1, only alternate vertices in W can be labeled
by non-singleton sets.
Case 1: If n odd, then 1

2
(n− 1) vertices W can be labeled by distinct non-

singleton sets. Therefore, the number of edges that are not mono-indexed in
G2 is 1

2
(n − 1)(n + 2). Hence, the number of mono-indexed edges in G2 is

1
2
n(3n+ 1) − 1

2
(n− 1)(n+ 2) = n2 + 1.

Case 2: If n even, then n
2
vertices W can be labeled by distinct non-singleton

sets. Therefore, the number of edges that are not mono-indexed in G2 is 1
2
n(n+

2). Hence, the number of mono-indexed edges in G2 is 1
2
n(3n+1)− 1

2
n(n+2) =

1
2
n(2n− 1). �

Theorem 9 is illustrated in Figure 4. The first and second graphs in 9 are
example to the weak IASIs of the square of the complete n-sun graphs where
n is odd and even respectively.

Figure 4: Weak IASIs of the square of a complete 3-sun and a complete 4-sun.

Another important graph that contains a complete graph as one of its sub-
graph is a split graph, which is defined as follows.

Definition 7 [2] A split graph is a graph in which the vertices can be parti-
tioned into a clique Kr and an independent set S. A split graph is said to be
a complete split graph if every vertex of the independent set S is adjacent to
every vertex of the the clique Kr and is denoted by KS(r, s), where r and s are
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the orders of Kr and S respectively.

The following theorem establishes the sparing number of the square of a
complete split graph.

Theorem 10 Let G = KS(r, s) be a complete split graph without isolated ver-

tices. Then, the sparing number of G2 is 1
2
[(r+s−1)(r+s−2)], where r = |V(Kr)|

and s = |S|.

Proof. Since G has no isolated vertices, every vertex of vi S is adjacent to at
least one vertex uj of Kr. Then, vi is at a distance 2 from all other vertices of
Kr. Hence, in G2 each vertex vi in S is adjacent to all the vertices of Kr. Also,
in G, two vertices of S is at a distance 2 from all other vertices of S. Therefore,
every pair of vertices in S are also adjacent in G2. That is, G2 is a complete
graph on r+s vertices. Hence, by Theorem 4, ϕ(G2) = 1

2
[(r+s−1)(r+s−2). �

So far we have discussed about the sparing number of square of certain
graph classes. In this context, a study about the sparing number of the higher
powers of these graph classes is noteworthy. In the following section, we discuss
about the sparing number of arbitrary powers of certain graph classes.

3 Sparing number of arbitrary graph powers

For the descriptions of graph powers, please see [16] also. For any positive
integer n, we know that the diameter of a complete graph Kn is 1. Hence, any
power of Kn, denoted by Kr

n is Kn itself. Hence, we have the following result.

Proposition 3 For a positive integer r, ϕ(Kr
n) =

1
2
(n− 1)(n− 2).

Proof. We have Kr
n = Kn. Hence, ϕ(Kr

n) = ϕ(Kn). Therefore, by Theorem 4,
ϕ(Kr

n) =
1
2
(n− 1)(n− 2). �

The following results discuss about the sparing numbers of the arbitrary
powers of the graph classes which are discussed in Section 2.

Proposition 4 For a positive integer r > 1, the sparing number of the r-th

power of a complete bipartite graph Km,n is 1
2
(m+ n− 1)(m+ n− 2).

Proof. Since K2
m,n = Km+n, we have Kr

m,n = Km+n for any positive integer
r ≥ 2. Therefore, ϕ(Kr

m,n) = ϕ(Km+n) =
1
2
(m+ n− 1)(m+ n− 2). �
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Proposition 5 Let G be a split graph, without isolated vertices, that contains

a clique Kr and an independent set S with |S| = s. Then, for r ≥ 3, the sparing

number of Gr is 1
2
(r+ s− 1)(r+ s− 2).

Proof. Since S has no isolated vertices in G, every pair vertices of S are
at a distance at most 3 among themselves. Hence, G3 is a complete graph.
Therefore, For any r ≥ 3, Gr is a complete graph. Hence by Theorem 4, the
sparing number of Gr is 1

2
(r+ s− 1)(r+ s− 2). �

Theorem 11 For a positive integer r > 2, the sparing number of Hr
n is

ϕ(Hr
n) =

{
⌊n
2
⌋(n+ 3) if r = 3

n(2n− 1) if r ≥ 4.

Proof. Let u be the central vertex, V = {v1v2v3, . . . , vn} be the set of vertices
of the cycle Cn and W = {w1, w2, w3, . . . ,

wn} be the set of pendant vertices in Hn. In Hn, the central vertex u is adjacent
to each vertex vi of V and each vi is adjacent to a vertex wi in W.
Since each vertex wi in W is at a distance at most 3 from u as well as from

all vertices of V , for 1 ≤ i ≤ n, and from two vertices wi−1 and wi+1 of W, the
subgraph of H3

n induced by V ∪ {u,wi−1, wi, wi+1} is a complete graph. Hence
only one vertex of this set can have a non-singleton set-label. We get minimum
number of mono-indexed edges if we label possible number of vertices in W

by non-singleton sets. Since wi is adjacent to wi−1 and wi+1, only alternate
vertices in W can be labeled by non-singleton sets. Therefore, ⌊n

2
⌋ vertices in

W can be labeled by non-singleton sets. Therefore, since each wi is of degree
n+ 3, total number of edges in H3

n, that are not mono-indexed, is ⌊n
2
⌋(n+ 3).

The distance between any two points of a helm graph is at most 4. Hence,
G4 is a complete graph. Therefore, For any r ≥ 4, Gr is a complete graph.
Hence by Theorem 4, the sparing number of Gr is n(2n− 1). �

We have not determined the sparing number of arbitrary powers of paths
and cycles yet. The following results discusses the sparing number of the r-th
power of a path on n vertices.
The diameter of a path Pm on n = m+ 1 vertices is m = n− 1. Therefore,

by Theorem 5, Pm
m = Pn−1

n−1 is a complete graph. Hence, we need to study about
the r-th powers of Pn−1 if r < n− 1.

Theorem 12 Let Pn−1 be a path graph on n vertices. Then, its spring number

is r−1
2(r+1)

[r(2n− 1− r) + 2i].
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Proof. Let Pm : v1v2v3 . . . vn, where m = n − 1. In P2
m, d(v1) = d(vn) =

r, d(v2) = d(vn−1) = r + 1, . . . , d(vr) = d(vn−r+1 = r + r − 1 = 2r − 1 and

d(vj) = 2r, r + 1 ≤ j ≤ n − r. Hence,
∑

v∈V(Pn)

d(v) = 2[r + (r + 1) + (r + 2) +

. . .+ 2r− 1)] + (n− 2r)2r = r(2n− 1− r). Therefore, |E(Pr
m)| =

r
2
(2n− 1− r).

It can be seen that among any r + 1 consecutive vertices vi, vi+1, . . . vi+r of
Pm, r vertices must be mono-indexed. Hence, label v1, v2, . . . , vk by singleton
sets and vr+1 by a non-singleton set. Since vr+2, vr+3 . . . , v2r+1 are adjacent
to vr+1, they can be labeled only by distinct singleton sets that are not used
before for labeling. Now, v2r+2 can be labeled by a non-singleton set that has
not already been used. Proceeding like this the vertices which has the form
v(r+1)k, (r+1)k ≤ n can be labeled by distinct non-singleton sets and all other
vertices by singleton sets.
If n ≡ i (mod (k + 1)), then vn−i can also be labeled by a non-singleton

set. Then the number of vertices that are not mono-indexed is n−i
r+1

. Therefore,

the number of edges that are not mono-indexed is 2r[
(n−i)
r+1

− 1] + (r + i) =
1

r+1
[r(2n−1−r)−(r−1)i]. Therefore, the total number of mono-indexed edges

is r
2
(2n− 1− r) − 1

r+1
[r(2n− 1− r) − (r− 1)i] = r−1

2(r+1)
[r(2n− 1− r) + 2i]. �

Figure 5 depicts the cube of a path with a weak IASI defined on it.

Figure 5: Cubes of a path which admits a weak IASI

The diameter of a cycle Cn is ⌊n
2
⌋. Therefore, by Theorem 5, C

⌊n

2
⌋

n (and
higher powers) is a complete graph. Hence, we need to study about the r-th
power of Cn if r < ⌊n

2
⌋. The following theorem discusses about the sparing

number of an arbitrary power of a cycle.

Theorem 13 Let Cn be a cycle on n vertices and let r be a positive integer

less than ⌊n
2
⌋. Then the sparing number of the the r-th power of Cn is given

by ϕ(Cr
n) =

r
r+1

((r− 1)n+ 2i) if n ≡ i (mod (r+ 1)).
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Proof. Let Cn : v1v2v3 . . . vnv1 be the given cycle on n vertices. The graph Cr
n

is a 2r-regular graph. Therefore, we have |E(Cr
n)| =

1
2

∑
v∈V d(v) = rn.

First, label the vertex v1 in Cr
n by a non-singleton set. Therefore, 2r vertices

v2, v3, . . . vr+1, vn, vn−1 . . . vn−r+1 can be labeled only by distinct singleton sets.
Next, we can label the vertex vr+2 by a non-singleton set, that is not already
used for labeling. Since the vertices v2, v3, . . . vr+1 have already been mono-
indexed, r vertices vr+3, vr+4, . . . v2r+2 that are adjacent to vr+2 in Cr

n must be
labeled by distinct singleton sets. Proceeding like this, we can label all the
vertices of the form v(r+1)k+1, where k is a positive integer less than ⌊n⌋, such
that (r+1)k+1 ≤ n− r (since the last vertex that remains unlabeled is vn−r).
If n ≡ i (mod (k+ 1)), then n− i = (r+ 1)k+ 1 for some positive integer k.

Then, vn−(r−i) can be labeled by a non-singleton set. Therefore, the number

of vertices that are labeled by non-singleton set is n−i
r+1

. Since Cr
n is 2r-regular,

the number of edges that are not mono-indexed in Cr
n is 2rn−i

r+1
. Hence, the

number of mono-indexed edges is rn− 2rn−i
r+1

= r
r+1

((r− 1)n+ 2i). �

Figure 6 illustrates the admissibility of weak IASIs by the squares of even
and odd cycles.

Figure 6: Cube of a cycle with a weak IASI defined on it.

4 Conclusion

In this paper, we have established some results on the admissibility of weak
IASIs by certain graphs and graph powers. The admissibility of weak IASI by
various graph classes, graph operations and graph products and finding the
corresponding sparing numbers are still open.
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In this paper, we have not addressed the following problems, which are
still open. The adjacency and incidence patterns of elements of the graph
concerned will matter in determining its admissibility of weak IASI and the
sparing number.

Problem 1 Find the sparing number of the r-th power of trees and in par-
ticular, binary trees for applicable values of r.

Problem 2 Find the sparing number of the r-th power of bipartite graph
and in general, graphs that don’t have a complete bipartite graphs as their
subgraphs, for applicable values of r.

Problem 3 Find the sparing number of the r-th power of an n-sun graph
that is not complete, for applicable values of r.

Problem 4 Find the sparing number of the square of a split graph that is
not complete.

Some other standard graph structures related to paths and cycles are lob-
ster graph, ladder graphs, grid graphs and prism graphs. Hence, the following
problems are also worth studying.

Problem 5 Find the sparing number of arbitrary powers of a lobster graph.

Problem 6 Find the sparing number of arbitrary powers of a ladder graphs
Ln.

Problem 7 Find the sparing number of arbitrary powers of grid graphs (or
lattice graphs) Lm,n.

Problem 8 Find the sparing number of arbitrary powers of prism graphs and
anti-prism graphs.

Problem 9 Find the sparing number of arbitrary powers of armed crowns
and dragon graphs.

More properties and characteristics of different IASIs, both uniform and
non-uniform, are yet to be investigated. The problems of establishing the nec-
essary and sufficient conditions for various graphs and graph classes to have
certain IASIs are also open.
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1 Introduction

Special functions have an indispensable role in many branches of mathematics
and applied mathematics. Thus, it is important to examine their properties
in many aspects. In the recent years, there has been a vivid interest on some
special functions from the point of view of geometric function theory. For
more details we refer to the papers [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18] and references therein. However, the origins of these studies
can be traced to Brown [20], to Kreyszig and Todd [22], and to Wilf [24].
These studies initiated investigation on the univalence of Bessel functions and
determining the radius of starlikeness for different kinds of normalization. In
other words, their results have a very important place on account of the fact
that they have paved the way for obtaining other geometric properties of Bessel
function such as univalence, starlikeness, convexity and so forth. Recently, in
2014, Baricz et al. [11], by considering a much simpler approach, succeeded
to determine the radius of starlikeness of the normalized Bessel functions. In
the same year, Baricz and Szász [15] obtained the radius of convexity of the
normalized Bessel functions. We see in their proofs that some properties of the
zeros of Bessel functions and the Mittag-Leffler expansions for Bessel function
of the first kind play a crucial role in determining the radii of starlikeness
and convexity of Bessel functions of the first kind. It is worth to mention that
some geometric properties of other special functions involving Bessel function
of first kind were investigated extensively by several authors. For instance,
in 2017, Deniz and Szász [21] studied on determining the radius of uniform
convexity of the normalized Bessel functions. And also, very recently, Bohara
and Ravichandran in [19] determined, by using the method of Baricz et al.

[11, 15, 16, 21], the radius of strong starlikeness and k−uniform convexity of
order α of the normalized Bessel functions.
Inspired by the above mentioned results and considering the approach of

Baricz et al. in this paper, we investigate the radius of strong starlikeness
and k−uniform convexity of order α of the normalized Wright and q−Bessel
functions.
This paper is organized as follows: The rest of this section contains some

basic definitions needed for the proof of our main results. Section 2 is divided
into three subsections: The first subsection is devoted to the radii of k−uniform
convexity of order α of normalized Wright functions. The second subsection
contains the study of the radii of k−uniform convexity of order α of normalized
q−Bessel functions. The third subsection is dedicated to the radius of strong
starlikeness of normalized Wright and q−Bessel functions.
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Before starting to present our main results we would like to call attention to
some basic concepts, which are used by us for building our main results. For
r > 0 we denote by Dr = {z ∈ C : |z| < r} the open disk with radius r centered
at the origin. Let f : Dr → C be the function defined by

f(z) = z+
∑

n≥2

anz
n, (1)

here r is less or equal than the radius of convergence of the above power series.
Let A be the class of analytic functions of the form (1), that is, normalized by
the conditions f(0) = f′(0) − 1 = 0. Let S denote the subclass of A consisting
of univalent functions.
In this paper, for k ≥ 0 and 0 ≤ α < 1 we study on more general class

UCV(k , α) of k−uniformly convex functions of order α. A function f ∈ A is
said to be in the class UCV(k , α) if

Re

(

1+
zf′′(z)

f′(z)

)

> k

∣

∣

∣

∣

zf′′(z)

f′(z)

∣

∣

∣

∣

+ α (z ∈ D).

The real number

ruck,α(f) = sup

{

r > 0

∣

∣

∣

∣

Re

(

zf′(z)

f(z)

)

> k

∣

∣

∣

∣

zf′′(z)

f′(z)

∣

∣

∣

∣

+ α for all z ∈ Dr

}

is called the radius of k−uniform convexity of order α of the function f.
Finally, let us take a look at the next lemma which is very useful in building

our main results. It is worth to mention that the following lemma was proven
by Deniz and Szász [21].

Lemma 1 (see [21]) If a > b > r ≥ |z| , and λ ∈ [0, 1], then

∣

∣

∣

∣

z

b− z
− λ

z

a− z

∣

∣

∣

∣

≤ r

b− r
− λ

r

a− r
. (2)

The followings can be obtained as a natural consequence of this inequality:

Re

(

z

b− z
− λ

z

a− z

)

≤ r

b− r
− λ

r

a− r
(3)

and

Re

(

z

b− z

)

≤
∣

∣

∣

∣

z

b− z

∣

∣

∣

∣

≤ r

b− r
. (4)

We are now in a position to present our main results.
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2 Main results

2.1 The radii of k-uniform convexity of order α of normalized

Wright functions

In this subsection, we will focus on the function

φ(ρ, β, z) =
∑

n≥0

zn

n!Γ(nρ+ β)
(ρ > −1 z, β ∈ C)

named after the British mathematician E.M. Wright. It is well known that
this function was introduced by him for the first time in the case ρ > 0 in
connection with his investigations on the asymptotic theory of partitions [26].
From [17, Lem. 1] we know that under the conditions ρ > 0 and β > 0,

the function z 7→ λρ,β(z) = φ(ρ, β,−z2) has infinitely many zeros which are
all real. Thus, in light of the Hadamard factorization theorem, the infinite
product representation of the function λρ,β(z) can be written as

Γ(β)λρ,β(z) =
∏

n≥1

(

1−
z2

λ2ρ,β,n

)

where λρ,β,n is the nth positive zero of the function λρ,β(z) (or the positive
real zeros of the function Ψρ,β). Moreover, let ζ ′ρ,β,n denote the nth positive

zero of Ψ ′
ρ,β, where Ψρ,β(z) = zβλρ,β(z), then the zeros satisfy the chain of

inequalities

ζ′ρ,β,1 < ζρ,β,1 = λρ,β,1 < ζ
′
ρ,β,2 < ζρ,β,2 = λρ,β,2 < . . ..

One can easily see that the function z 7→ φ(ρ, β,−z2) do not belong to
A, and thus first we perform some natural normalizations. We define three
functions originating from φ(ρ, β, .):

fρ,β(z) =
(

zβΓ(β)φ(ρ, β,−z2)
) 1

β
,

gρ,β(z) = zΓ(β)φ(ρ, β,−z
2),

hρ,β(z) = zΓ(β)φ(ρ, β,−z).

Clearly, these functions are contained in the class A.
Now, we would like to present our results regarding the k−uniform convexity

of order α of the functions fρ,β, gρ,β and hρ,β.
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Theorem 1 Let β, ρ > 0, α ∈ [0, 1) and k ≥ 0. Then, the following state-

ments are valid:

a. The radius of k-uniform convexity of order α of the function fρ,β is the

real number ruck,α(fρ,β) which is the smallest positive root of the equation

(1+ k)r
Ψ′′
ρ,β(r)

Ψ′
ρ,β

+ (
1

β
− 1)(1+ k)r

Ψ′
ρ,β(r)

Ψρ,β(r)
+ 1− α = 0

in the interval (0, ζ′ρ,β,1), where Ψρ,β(z) = z
βλρ,β(z) and ζ

′
ρ,β,1 stands for

the smallest positive zero of the function Ψ′
ρ,β(z).

b. The radius of k-uniform convexity of order α of the function gρ,β is the

real number ruck,α(gρ,β) which is the smallest positive root of the equation

(1+ k)r
g′′ρ,β(r)

g′ρ,β(r)
+ 1− α = 0

in the interval (0, ϑρ,β,1), where ϑρ,β,1 stands for the smallest positive

zero of the function g′ρ,β(z).

c. The radius of k-uniform convexity of order α of the function hρ,β is the

real number ruck,α(hρ,β) which is the smallest positive root of the equation

(1+ k)r
h′′ρ,β(r)

h′ρ,β(r)
+ 1− α = 0

in the interval (0, τρ,β,1), where τρ,β,1 stands for the smallest positive zero

of the function h′ρ,β(z)

Proof.

a. We note that

1+
zf′′ρ,β(z)

f′ρ,β(z)
= 1+

zΨ ′′
ρ,β(z)

Ψ′
ρ,β(z)

+

(

1

β
− 1

)

zΨ′
ρ,β(z)

Ψρ,β(z)
.

Using the following infinite product representations of Ψρ,β and Ψ′
ρ,β [17,

Theorem 5] given by

Γ(β)Ψρ,β(z) = z
β
∏

n≥1

(

1−
z2

ζ2ρ,β,n

)

, Γ(β)Ψ′
ρ,β(z) = z

β−1
∏

n≥1

(

1−
z2

ζ′2ρ,β,n

)

,
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where ζρ,β,n and ζ′ρ,β,n denote the nth positive roots of Ψρ,β and Ψ′
ρ,β,

respectively, we have

zΨ′
ρ,β(z)

Ψρ,β(z)
= β−

∑

n≥1

2z2

ζ2ρ,β,n − z
2
,

zΨ′′
ρ,β(z)

Ψ′
ρ,β(z)

= β− 1−
∑

n≥1

2z2

ζ′2ρ,β,n − z
2
.

Thus we arrive at

1+
zf′′ρ,β(z)

f′ρ,β(z)
= 1−

(

1

β
− 1

)∑

n≥1

2z2

ζ2ρ,β,n − z
2
−
∑

n≥1

2z2

ζ′2ρ,β,n − z
2
.

In order to prove the theorem we consider two cases β ∈ (0, 1] and β > 1
separately.

Case 1 β ∈ (0, 1] .

Then λ = 1
β − 1 > 0. By making use of inequality (4) stated in Lemma

1 we conclude that the following inequality

|z|2

ζ2ρ,β,n − |z|2
≥ Re

(

z2

ζ2ρ,β,n − z
2

)

holds true for every ρ > 0, β > 0, n ∈ N and |z| < ζρ,β,n. With the help
of (4), we get

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

≥ 1−
(

1

β
− 1

)∑

n≥1

2r2

ζ2ρ,β,n − r
2
−
∑

n≥1

2r2

ζ′2ρ,β,n − r
2

= 1+
rf′′ρ,β(r)

f′ρ,β(r)
,

(5)

where |z| = r and z ∈ Dζ′
ρ,β,1

.

Moreover, by using triangle inequality |z1 + z2| ≤ |z1|+ |z2| together with
the fact that 1

β − 1 > 0, we get
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∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n≥1

2z2

ζ′2ρ,β,n − z
2
+

(

1

β
− 1

)∑

n≥1

2z2

ζ2ρ,β,n − z
2

∣

∣

∣

∣

∣

∣

≤
∑

n≥1

∣

∣

∣

∣

∣

(

2z2

ζ′2ρ,β,n − z
2
+

(

1

β
− 1

)

2z2

ζ2ρ,β,n − z
2

)∣

∣

∣

∣

∣

≤
∑

n≥1

(

2r2

ζ′2ρ,β,n − r
2
+

(

1

β
− 1

)

2r2

ζ2ρ,β,n − r
2

)

= −
rf′′ρ,β(r)

f′ρ,β(r)
.

(6)

From (5) and (6), we obtain

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

− α ≥ 1+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
− α,

|z| ≤ r < ζ′ρ,β,1.
(7)

Case 2 β > 1. Then, we show that the same inequality is valid in this
case also. In this case, taking into consideration the inequality (3) stated
in 1 we get

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

≥ 1−
(

1

β
− 1

)∑

n≥1

2r2

ζ2ρ,β,n − r
2
−
∑

n≥1

2r2

ζ′2ρ,β,n − r
2

= 1+
rf′′ρ,β(r)

f′ρ,β(r)
.

(8)

Also, with the aid of (2) stated in the same lemma, we have

∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n≥1

2z2

ζ′2ρ,β,n − z
2
−

(

1−
1

β

)∑

n≥1

2z2

ζ2ρ,β,n − z
2

∣

∣

∣

∣

∣

∣

≤
∑

n≥1

∣

∣

∣

∣

∣

(

2z2

ζ′2ρ,β,n − z
2
−

(

1−
1

β

)

2z2

ζ2ρ,β,n − z
2

)∣

∣

∣

∣

∣

≤
∑

n≥1

(

2r2

ζ′2ρ,β,n − r
2
−

(

1−
1

β

)

2r2

ζ2ρ,β,n − r
2

)

= −
rf′′ρ,β(r)

f′ρ,β(r)
.

(9)
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From (8) and (9), we deduce

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

− α ≥ 1+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
− α,

|z| ≤ r < ζ′ρ,β,1.
(10)

Due to the minimum principle for harmonic functions, equality holds
if and only if z = r. Now, the above deduced inequalities imply for
r ∈ (0, ζ′ρ,β,1)

inf
z∈Dr

{

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

− α

}

= 1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
.

On the other hand, the function uρ,β : (0, ζ′ρ,β,1) → R is defined by

uρ,β(r) = 1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)

= 1− α+ (1+ k)

(

∑

n≥1

2r2

ζ′2ρ,β,n − r
2
−

(

1−
1

β

)∑

n≥1

2r2

ζ2ρ,β,n − r
2

)

.

Then,

u′ρ,β(r) = − 4(1+ k)

(

1

β
− 1

)∑

n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n − r
2)2

− 4(k+ 1)
∑

n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

< 0

for all β ∈ (0, 1] and z ∈ Dζ′
ρ,β,1

. Moreover, we consider that if β > 1,

then 0 < 1 − 1/β < 1 and taking into consideration the inequality
ζ2ρ,β,n(ζ

′2
ρ,β,n − r

2)2 < ζ′2ρ,β,n(ζ
2
ρ,β,n − r

2)2 for r < ζ′ρ,β,1, we get

u′ρ,β(r) = −4(1+ k)

(

1

β
− 1

)∑

n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n−r
2)2

− 4(k+1)
∑

n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

< 4(1+ k)

(

∑

n≥1

ζ2ρ,β,nr

(ζ2ρ,β,n − r
2)2

−
∑

n≥1

ζ′2ρ,β,nr

(ζ′2ρ,β,n − r
2)2

)

<0.
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Consequently, uρ,β is strictly decreasing function of r for all β > 0. Also,

lim
rց0

uρ,β(r) = 1− α and lim
rրζ′

ρ,β,1

uρ,β(r) = −∞.

This means that

Re

(

1+
zf′′ρ,β(z)

f′ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zf′′ρ,β(z)

f′ρ,β(z)

∣

∣

∣

∣

∣

− α > 0

for all z ∈ Druc
k,α

(fρ,β) where r
uc
k,α(fρ,β) is the unique root of the equation

1− α+ (1+ k)r
f′′ρ,β(r)

f′ρ,β(r)
= 0

or

(1+ k)r
Ψ′′
ρ,β(r)

Ψ′
ρ,β

+ (
1

β
− 1)(1+ k)r

Ψ′
ρ,β(r)

Ψρ,β(r)
+ 1− α = 0

in (0, ζ′ρ,β,1).

b. Let ϑρ,β,n be the nth positive zero of the function g′ρ,β(z). In view of the
Hadamard theorem we get the Weierstrassian canonical representation
(see [17])

g ′
ρ,β(z) =

∏

n≥1

(

1−
z2

ϑ2ρ,β,n

)

.

Logarithmic derivation of both sides yields

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

= 1−
∑

n≥1

2z2

ϑ2ρ,β,n − z
2
.

Application of the inequality (4) implies that

Re

(

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

)

≥ 1−
∑

n≥1

2r2

ϑ2ρ,β,n − r
2
, (11)

where |z| = r. Moreover,

∣

∣

∣

∣

∣

zg ′′
ρ,β(z)

g ′
ρ,β(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n≥1

2z2

ϑ2ρ,β,n − z
2

∣

∣

∣

∣

∣

∣

≤
∑

n≥1

∣

∣

∣

∣

∣

2z2

ϑ2ρ,β,n − z
2

∣

∣

∣

∣

∣

≤
∑

n≥1

2r2

ϑ2ρ,β,n − r
2

= −
rg ′′
ρ,β(r)

g ′
ρ,β(r)

, |z| ≤ r < ϑρ,β,1.

(12)
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Taking into considering the inequalities (11) and (12) we arrive at

Re

(

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

)

−k

∣

∣

∣

∣

∣

zg ′′
ρ,β(z)

g ′
ρ,β(z)

∣

∣

∣

∣

∣

−α≥1−α+(1+k)r
g ′′
ρ,β(r)

g ′
ρ,β(r)

|z| < r < ϑρ,β,1.

In light of the minimum principle for harmonic functions, equality holds
if and only if z = r. Thus, for r ∈ (0, ϑρ,β,1) we get

inf
|z|<r

{

Re

(

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zg ′′
ρ,β(z)

g ′
ρ,β(z)

∣

∣

∣

∣

∣

− α

}

= 1− α+ (1+ k)r
g ′′
ρ,β(r)

g ′
ρ,β(r)

.

The function wρ,β : (0, ϑρ,β,1) → R, defined by

wρ,β(r) = 1− α+ (1+ k)r
g ′′
ρ,β(r)

g ′
ρ,β(r)

,

is strictly decreasing and

lim
rց0

wρ,β(r) = 1− α > 0, lim
rրϑρ,β,1

wρ,β(r) = −∞.

Consequently,

Re

(

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zg ′′
ρ,β(z)

g ′
ρ,β(z)

∣

∣

∣

∣

∣

− α > 0

for all Druc
k,α

(gρ,β) where r
uc
k,α(gρ,β) is the unique root of the equation

1− α+ (1+ k)r
g ′′
ρ,β(r)

g ′
ρ,β(r)

= 0

in (0, ϑρ,β,1).

c. Let τρ,β,n denote the nth positive zero of the function h′ρ,β. By using
again the fact that the zeros of the Wright function λρ,β are all real and
in view of the Hadamard theorem we obtain

h ′
ρ,β(z) =

∏

n≥1

(

1−
z

τρ,β,n

)

,

which implies that

1+
zh ′′
ρ,β(z)

h ′
ρ,β(z)

= 1−
∑

n≥1

z

τρ,β,n − z
.
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By using again the inequaliy (4) we get

Re

(

1+
zh ′′
ρ,β(z)

h ′
ρ,β(z)

)

≥ 1−
∑

n≥1

r

τρ,β,n − r
= 1+ r

h ′′
ρ,β(r)

h ′
ρ,β(r)

. (13)

Also,
∣

∣

∣

∣

∣

zh ′′
ρ,β(z)

h ′
ρ,β(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−
∑

n≥1

z

τρ,β,n − z

∣

∣

∣

∣

∣

∣

≤
∑

n≥1

r

τρ,β,n − r
= −r

h ′′
ρ,β(r)

h ′
ρ,β(r)

. (14)

Considering the inequalities (13) and (14) we have

Re

(

1+
zg ′′
ρ,β(z)

g ′
ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zg ′′
ρ,β(z)

g ′
ρ,β(z)

∣

∣

∣

∣

∣

− α ≥ 1− α+ (1+ k)r
g ′′
ρ,β(r)

g ′
ρ,β(r)

.

In view of the minimum principle for harmonic functions, equality holds
if and only if z = r. Thus, for r ∈ (0, τρ,β,1) we have

inf
|z|<r

{

Re

(

1+
zh ′′
ρ,β(z)

h ′
ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zh ′′
ρ,β(z)

h ′
ρ,β(z)

∣

∣

∣

∣

∣

− α

}

= 1−α+ (1+ k)r
h ′′
ρ,β(r)

h ′
ρ,β(r)

.

Now define the function ϕρ,β : (0, ϑρ,β,1) → R,as

ϕρ,β(r) = 1− α+ (1+ k)r
h ′′
ρ,β(r)

h ′
ρ,β(r)

is strictly decreasing and

lim
rց0

ϕρ,β(r) = 1− α > 0, lim
rրϑρ,β,1

ϕρ,β(r) = −∞.

Consequently,

Re

(

1+
zh ′′
ρ,β(z)

h ′
ρ,β(z)

)

− k

∣

∣

∣

∣

∣

zh ′′
ρ,β(z)

h ′
ρ,β(z)

∣

∣

∣

∣

∣

− α > 0

for all Druc
k,α

(hρ,β) where r
uc
k,α(hρ,β) is the unique root of equation

1− α+ (1+ k)r
h ′′
ρ,β(r)

h ′
ρ,β(r)

= 0

in (0, τρ,β,1). This completes the proof. �

Remark 1 It is clear that by choosing k = 0 in the above theorem we obtain

the earlier results given in [17, Thm. 5, p. 107]. Moreover, for k = 1 and α = 0

in the above theorem we get the results given in [5, Thm. 2.2].
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2.2 The radii of k-uniform convexity of order α of normalized

q−Bessel functions

In this subsection, we shall concentrate on Jackson’s second and third (or
Hahn-Exton) q−Bessel functions which are defined by

J
(2)
ν (z;q) =

(qν+1;q)∞

(q;q)∞

∑

n≥0

(−1)n
(

z
2

)2n+ν

(q;q)n(qν+1;q)n
qn(n+ν)

and

J
(3)
ν (z;q) =

(qν+1;q)∞

(q;q)∞

∑

n≥0

(−1)nz2n+ν

(q;q)n(qν+1;q)n
q

1
2
n(n+1),

where z ∈ C, ν > −1, q ∈ (0, 1) and

(a;q)0 = 1, (a;q)n =

n∏

k=1

(

1− aqk−1
)

, (a, q)∞ =
∏

k≥1

(

1− aqk−1
)

.

These functions are q−analogue of the classical Bessel function of the first
kind [23]

Jv(z) =
(z

2

)ν∑

k≥0

(−1)k

k!Γ(ν+ k+ 1)

(z

2

)2k
,

since

lim
qր1

J
(2)
ν ((1− z)q;q) = Jν(z), lim

qր1
J
(3)
ν

(

1− q

2
z;q

)

= Jν(z).

Obviously, the functions J
(2)
ν (.;q) and J

(3)
ν (.;q) do not belong to A, and thus

first we perform some natural normalization. We consider the following six

normalized functions, as given by [10], originating from J
(2)
ν (.;q) and J

(3)
ν (.;q):

For ν > −1,

f
(2)
ν (z;q) =

(

2νcν(q)J
(2)
ν (z;q)

) 1
ν
, f

(3)
ν (z;q) =

(

cν(q)J
(3)
ν (z;q)

) 1
ν
, (ν 6= 0)

g
(2)
ν (z;q) = 2νcν(q)z

1−νJ
(2)
ν (z;q), g

(3)
ν (z;q) = cν(q)z

1−νJ
(3)
ν (z;q),

h
(2)
ν (z;q) = 2νcν(q)z

1−ν
2 J

(2)
ν (

√
z;q), h

(3)
ν (z;q) = cν(q)z

1−ν
2 J

(3)
ν (

√
z;q),

where cν(q) = (q;q)∞
/

(qν+1;q)∞. It is clear that each of the above functions
belong to the class A.
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In view of [10, Lem. 1, p.972], we know that the infinite product represen-

tations of the functions z 7→ j
(2)
ν (z;q) and z 7→ j

(3)
ν (z;q) are of the form

J
(2)
ν (z;q) =

zν

2νcν(q)

∏

n≥1

(

1−
z2

j2ν,n(q)

)

, J
(3)
ν (z;q) =

zν

cν(q)

∏

n≥1

(

1−
z2

l2ν,n(q)

)

where jν,n(q) and lν,n(q) denote the nth positive zeros of the functions j
(2)
ν (z;q)

and j
(3)
ν (z;q), respectively.

Also, from [10, Lem. 8] we observe that the functions z 7→ g
(2)
ν (z;q), z 7→

h
(2)
ν (z;q), z 7→ g

(3)
ν (z;q) and z 7→ h

(3)
ν (z;q) are of the form

dg
(2)
ν (z;q)

dz
=

∏

n≥1

(

1−
z2

α2ν,n(q)

)

,
dg

(3)
ν (z;q)

dz
=

∏

n≥1

(

1−
z2

γ2ν,n(q)

)

(15)

dh
(2)
ν (z;q)

dz
=

∏

n≥1

(

1−
z

β2ν,n(q)

)

,
dh

(3)
ν (z;q)

dz
=

∏

n≥1

(

1−
z

δ2ν,n(q)

)

(16)

where αν,n(q) and βν,n(q) represent the nth positive zeros of z 7→ z.dJ
(2)
ν (z;q)/

dz+ (1− ν)J
(2)
ν (z;q) and z 7→ z.dJ

(2)
ν (z;q)/dz+ (2− ν)J

(2)
ν (z;q), while γν,n(q)

and δν,n(q) are the nth positive zeros of z 7→ z.dJ
(3)
ν (z;q)/dz+(1−ν)J

(3)
ν (z;q)

and z 7→ z.dJ
(3)
ν (z;q)/dz+ (2− ν)J

(3)
ν (z;q).

Now, we are ready to present our results related with the radius of k−uniform
convexity of order α of the normalized q−Bessel functions:

Theorem 2 Let ν > −1, s ∈ {2, 3} and q ∈ (0, 1). Then, the following asser-

tions holds true

a. Suppose that ν > 0. Then, the radius of k−uniform convexity of order

α of the function z 7→ f
(s)
ν (z;q) is the real number ruck,α(f

(s)
ν ) which is the

smallest positive root of the equation

1− α+ (1+ k)r
(f

(s)
ν (r;q))′′

(f
(s)
ν (r;q))′

= 0

in (0, j′ν,1(q)).

b. The radius of k-uniform convexity of order α of the function z 7→ g
(s)
ν (z;q)

is the real number ruck,α(g
(s)
ν ) which is the smallest positive root of the

equation
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(

(1− ν)(1+ α− (1+ k)ν)

)

J
(s)
ν (r;q)

+

(

1− α+ 2(1+ k)(1− ν)

)

r
(

J
(s)
ν (r;q)

)′

+ (1+ k)r2
(

J
(s)
ν (r;q)

)′′

= 0

in (0, αν,1(q)).

c. The radius of k-uniform convexity of order α of the function z 7→ h
(s)
ν (z;q)

is the real number ruck,α(h
(s)
ν ) which is the smallest positive root of the

equation

(

(ν− 2) (ν(1+ k) − 2(1− α))

)

J
(s)
ν

+

(

(3− 2ν)(1+ k) + 2(1− α)

)√
r
(

J
(s)
ν

)′

+ (1+ k)r
(

J
(s)
ν

)′′

= 0

in (0, β2ν,1(q)), where J
(s)
ν = J

(s)
ν (

√
r;q).

Proof. Since the proofs for the cases s = 2 and s = 3 are almost the same we
are going to present the proof only for the case s = 2.

a. In [10, p. 979] it was proven that the following equality is valid

1+ z

(

f
(2)
ν (z;q)

)′′

(

f
(2)
ν (z;q)

)′ = 1−

(

1

ν
− 1

)∑

n≥1

2z2

j2ν,n(q) − z
2
−
∑

n≥1

2z2

j′2ν,n(q) − z
2
,

where jν,n(q) and j′ν,n(q) are the nth positive roots of the functions

z 7→ J
(2)
ν (z;q) and z 7→ dJ

(2)
ν (z;q)/dz, respectively.

Now, suppose that ν ∈ (0, 1]. Taking into account the inequality (4), for
z ∈ Dj′

1
(q) we obtain the inequality
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Re






1+ z

(

f
(2)
ν (z;q)

)′′

(

f
(2)
ν (z;q)

)′






≥ 1−

(

1

ν
− 1

)∑

n≥1

2r2

j2ν,n(q) − r
2

−
∑

n≥1

2r2

j′2ν,n(q) − r
2

= 1+ r

(

f
(2)
ν (r;q)

)′′

(

f
(2)
ν (r;q)

)′ ,

(17)

where |z| = r. Moreover, by using triangle inequality along with the fact
that 1

ν − 1 > 0, we get

∣

∣

∣

∣

∣

∣

∣

z

(

f
(2)
ν (z;q)

)′′

(

f
(2)
ν (z;q)

)′

∣

∣

∣

∣

∣

∣

∣

≤ −r

(

f
(2)
ν (r;q)

)′′

(

f
(2)
ν (r;q)

)′ . (18)

On the other hand, observe that if we use the inequality (3), then we
obtain that the above inequalities is also valid for ν > 1. Here we used
tacitly that the zeros jν,n(q) and j

′
ν,n(q) interlace according to [10, Lem.

9., p. 975]. The above inequalities imply for r ∈ (0, j′ν,1(q))

inf
|z|<r






Re






1 + z

(

f
(2)
ν (z;q)

)

′′

(

f
(2)
ν (z;q)

)

′






− k

∣

∣

∣

∣

∣

∣

∣

z

(

f
(2)
ν (z;q)

)

′′

(

f
(2)
ν (z;q)

)

′

∣

∣

∣

∣

∣

∣

∣

− α






=1 − α + (1 + k)r

(

f
(2)
ν (r;q)

)

′′

(

f
(2)
ν (r;q)

)

′
.

The function uν : (0, j
′
ν,1(q)) 7→ R defined by

uν(r) = 1− α+ (1+ k)r

(

f
(2)
ν (r;q)

)′′

(

f
(2)
ν (r;q)

)′

= 1− α− (1+ k)
∑

n≥1

(

2r2

j′2ν,n(q) − r
2
−

(

1−
1

ν

)

2r2

j2ν,n(q) − r
2

)

is strictly decreasing since

u′ν(r) = −(1+ k)
∑

n≥1

(

4rj′
2
ν,n(q)

(

j′2ν,n(q) − r
2
)2

−

(

1−
1

ν

)

4rj2ν,n(q)

(j2ν,n(q) − r
2)
2

)

< 0
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for r ∈ (0, j′ν,1(q)). Also, it can be observed that

lim
rց0

uν(r) = 1− α and lim
rրj′

ν,1
(q)
uν(r) = −∞.

Consequently, it is obvious that the equation

1− α+ (1+ k)r

(

f
(2)
ν (r;q)

)′′

(

f
(2)
ν (r;q)

)′ = 0

has a unique root ruck,α

(

f
(2)
ν (z;q)

)

in D(0,j′
ν,1

(q)), where r
uc
k,α

(

f
(2)
ν (z;q)

)

is the radius of k−uniform convexity of order α of the function z 7→
f
(2)
ν (z;q).

Taking into account Equ. (15) and (16), the rest of proof is obvious and follows
by considering a similar way of concluding process as in the previous theorem.
This is why we omit the rest of proof here. �

Remark 2 It is obvious that by taking k = 1 and α = 0 in the above theorem

we obtain the results given in [5, Thm. 2.1].

2.3 Radius of strong starlikeness of normalized Wright and

q−Bessel functions

In this subsection, our aim is to present the radius of strong starlikeness of
normalized Wright and q−Bessel functions. It is well known from [19] that a
function f ∈ A is said to be strong starlike of order γ, 0 < γ ≤ 1, if

∣

∣

∣

∣

arg
zf′(z)

f(z)

∣

∣

∣

∣

<
πγ

2
, z ∈ D

and the real number

rγ(f) = sup

{

r > 0 :

∣

∣

∣

∣

arg
zf′(z)

f(z)

∣

∣

∣

∣

<
πγ

2
, ∀z ∈ Dr

}

is called the radius of strong starlikeness of f.
The following lemma have an important place for finding our main results:

Lemma 2 [19] If a is any point in |argw| ≤ πγ
2 and if

Ra ≤ Re[a] sin
πγ

2
− Im[a] cos

πγ

2
, Im[a] ≥ 0,

the disk |w− a| ≤ Ra is contained in the sector |argw| ≤ πγ
2 , 0 < γ ≤ 1. In

particular when Im[a] = 0, the condition becomes Ra ≤ a sin πγ
2 .
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We are now in a position to present our main results related with the radii
of strong starlikeness of normalized Wright and q−Bessel functions. Upcoming
theorem is related with normalized Wright functions.

Theorem 3 Let ρ > 0 and β > 0. The following assertions are true:

a. The radius of strong starlikeness of fρ,β is the smallest positive root of

the equation

2

β

∑

n≥1

r2
(

λ2ρ,β,n + r
2 sin πγ

2

)

λ4ρ,β,n − r
4

− sin
πγ

2
= 0

in (0, λρ,β,1).

b. The radius of strong starlikeness of gρ,β is the smallest positive root of

the equation

2
∑

n≥1

r2
(

λ2ρ,β,n + r
2 sin πγ

2

)

λ4ρ,β,n − r
4

− sin
πγ

2
= 0

in (0, λρ,β,1).

c. The radius of strong starlikeness of hρ,β is the smallest positive root of

the equation

∑

n≥1

r
(

λ2ρ,β,n + r sin
πγ
2

)

λ4ρ,β,n − r
2

− sin
πγ

2
= 0

in (0, λ2ρ,β,1).

Proof. For |z| ≤ r < 1, |zk| = R > r, we have from [19]

∣

∣

∣

∣

z

z− zk
+

r2

R2 − r2

∣

∣

∣

∣

≤ Rr

R2 − r2
. (19)

Since the series
∑
n≥1

2r2

λ2
ρ,β,n

−r2
and

∑
n≥1

r
λ2
ρ,β,n

−r
are convergent, we arrive at

∣

∣

∣

∣

∣

∣

zf′ρ,β(z)

fρ,β(z)
−



1−
2

β

∑

n≥1

r4

λ4ρ,β,n − r
4





∣

∣

∣

∣

∣

∣

≤ 2

β

∑

n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4

(20)
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∣

∣

∣

∣

∣

∣

zg′ρ,β(z)

gρ,β(z)
−



1−
∑

n≥1

2r4

λ4ρ,β,n − r
4





∣

∣

∣

∣

∣

∣

≤ 2
∑

n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4

(21)

∣

∣

∣

∣

∣

∣

zh′ρ,β(z)

hρ,β(z)
−



1−
∑

n≥1

r2

λ4ρ,β,n − r
2





∣

∣

∣

∣

∣

∣

≤
∑

n≥1

λ2ρ,β,nr

λ4ρ,β,n − r
2

(22)

for z ∈ Dλρ,β,1
where |z| = r and λρ,β,n stands for the nth positive zero of the

function λρ,β. Thanks to Lemma 2, it is obvious that the disk given in (20) is
contained in the sector |argw| ≤ πγ

2 , if

2

β

∑

n≥1

λ2ρ,β,nr
2

λ4ρ,β,n − r
4
≤



1−
2

β

∑

n≥1

r4

λ4ρ,β,n − r
4



 sin
πγ

2

is satisfied. This inequality reduces to ψ(r) ≤ 0 where

ψ(r) =
2

β

∑

n≥1

r2
(

λ2ρ,β,n + r
2 sinπγ/2

)

λ4ρ,β,n − r
4

− sin
πγ

2
.

We note that

ψ′(r) =
2

β

∑

n≥1

2rλ6ρ,β,n + 2r5λ
2
ρ,β,n + 4r

3λ4ρ,β,n sinπγ/2

(λ4ρ,β,n − r
4)2

≥ 0.

Moreover, limrց0ψ(r) < 0 and limrրλρ,β,1
ψ(r) = ∞. Thus ψ(r) = 0 has a

unique root say Rfρ,β in (0, λρ,β,1). Hence the function fρ,β is strongly starlike
in |z| < Rfρ,β .

The disk given in (21) is contained in the sector |argw| ≤ πγ
2 , if

φ(r) = 2
∑

n≥1

r2
(

λ2ρ,β,n + r
2 sinπγ/2

)

λ4ρ,β,n − r
4

− sin
πγ

2
≤ 0.

Also, the proof of part (b) is completed by considering the limits limrց0φ(r) <

0 and limrրλρ,β,1
φ(r) = ∞.

The proof of part (c) is obvious and follows by considering the same con-
cluding process as in the proof of part (b).

�

Since it can be obtained desired results by repeating the same calculations
in the previous theorem we present the following theorem without proof.
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Theorem 4 Let ν > −1, s ∈ {2, 3} and q ∈ (0, 1). Moreover, let ην,n(q) be the

nth positive root of the function z 7→ J
(s)
ν (z;q). Then the following assertions

are true:

a. The radius of strong starlikeness of the function f
(s)
ν (z;q) is the smallest

positive root of the equation

2

ν

∑

n≥1

r2
(

η2ν,n(q) + r
2 sin πγ

2

)

η4ν,n(q) − r
4

− sin
πγ

2
= 0

in (0, ην,1(q)), where ην,1(q) is the smallest positive zero of the function

J
(s)
ν (z;q).

b. The radius of strong starlikeness of g
(s)
ν (z;q) is the smallest positive root

of the equation

2
∑

n≥1

r2
(

η2ν,n(q) + r
2 sin πγ

2

)

η4ν,n(q) − r
4

− sin
πγ

2
= 0

in (0, ην,1(q)).

c. The radius of strong starlikeness of h
(s)
ν (z;q) is the smallest positive root

of the equation

∑

n≥1

r
(

η2η,n(q) + r sin
πγ
2

)

η4ν,n(q) − r
2

− sin
πγ

2
= 0

in (0, η2ν,1(q)).
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Abstract. Let M be an R-module and I be an ideal of R. We say that M
is I-Rad-⊕-supplemented, provided for every submodule N of M, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK

and N ∩ K ⊆ Rad(K). The aim of this paper is to show new properties
of I-Rad-⊕-supplemented modules. Especially, we show that any finite
direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented.
We also prove that an R-moduleM is I-Rad-⊕-supplemented if and only if
K and M

K
are I-Rad-⊕-supplemented for a fully invariant direct summand

K of M. Finally, we determine the structure of I-Rad-⊕-supplemented
modules over a discrete valuation ring.

1 Introduction

Throughout the whole text, all rings are to be associative, unit and all modules
are left unitary. Let R be such a ring and M be an R-module. The notation
K ⊆ M (K ⊂ M) means that K is a (proper) submodule of M. A module M

is called extending if every submodule is essential in a direct summand of M
[4]. Here a submodule K ≤ M is said to be essential in M, denoted as KEM,
if K ∩N 6= 0 for every non-zero submodule N ≤ M. Dually, a submodule S of
M is called small (in M), denoted as S ≪ M, if M 6= S + L for every proper
submodule L of M [17]. If all non-zero submodules of M are essential in M,

2010 Mathematics Subject Classification: 16D10, 16D50, 16D25
Key words and phrases: supplement, Rad(-⊕-) supplemented module, I-Rad-⊕-
supplemented module

224
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then M is called uniform [4, 1.5]. The Jacobson radical of M will be denoted
by Rad(M). It is known that Rad(M) is the sum of all small submodules of M.
A non-zero module M is said to be hollow if every proper submodule of M

is small in M, and it is said to be local if it is hollow and is finitely generated.
A module M is local if and only if it is finitely generated and Rad(M) is the
maximal submodule of M (see [4, 2.12 §2.15]). A ring R is said to be local if J
is the maximal ideal of R, where J is the Jacobson radical of R.
An R-module M is called supplemented if every submodule of M has a

supplement in M. Here a submodule K ⊆ M is said to be a supplement of N in
M if K is minimal with respect toN+K = M, or equivalently, ifN+K = M and
N∩K ≪ K [17]. A supplement submodule X of M is then defined when X is a
supplement of some submodule of M. Every direct summand of a module M is
a supplement submodule ofM, and supplemented modules are a generalization
of semisimple modules. In addition, every factor module of a supplemented
module is again supplemented.
A module M is called lifting (or D1-module) if, for every submodule N of M,

there exists a direct summand K ofM such that K ≤ N and N
K ≪ M

K . Mohamed
and Müller have generalized the concept of lifting modules to ⊕-supplemented
modules. M is called ⊕-supplemented if every submodule N of M has a supple-
ment that is a direct summand of M [12]. Clearly every ⊕-supplemented mod-
ule is supplemented, but a supplemented module need not be ⊕-supplemented
in general (see [12, Lemma A.4 (2)]). It is shown in [12, Proposition A.7 and
Proposition A.8] that if R is a Dedekind domain, every supplemented R-module
is ⊕-supplemented. Hollow modules are ⊕-supplemented.
Weakening the notion of “supplement”, one calls a submodule K of M a

Rad-supplement of N in M if M = N+ K and N ∩ K ⊆ Rad(K) ([4, pp.100]).
Recall from [6] that a module M is called Rad-⊕-supplemented( or gener-

alized ⊕-supplemented in [5]) if for every N ⊆ M, there exists a direct sum-
mand K of M such that M = N + K and N ∩ K ⊆ Rad(K). In [15], various
properties of Rad-⊕-supplemented modules are given. In addition, a ring R is
semiperfect if and only if every finitely generated free R-module is generalized
⊕-supplemented (see [5]).
In this paper, we define I-Rad-⊕-supplemented modules which is special-

ized of Rad-⊕-supplemented modules. We obtain various properties of this
modules adapting by [14]. We show that every finite direct sum of I-Rad-
⊕-supplemented modules is a I-Rad-⊕-supplemented module. We prove that
the class of I-Rad-⊕-supplemented modules is closed under extension in some
constriction. Finally, we characterize I-Rad-⊕-supplemented modules over a
discrete valuation ring.
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2 Some results of I-Rad-⊕-supplemented modules

A module M is called semilocal if M
Rad(M)

is semisimple, and a ring R is called

semilocal if RR (or RR) is semilocal. Lomp proved in [11, Theorem 3.5] that a
ring R is semilocal if and only if every left R-module is semilocal. Using this
fact we obtain the following:

Lemma 1 Let M be a module over a semilocal ring R. Then M is Rad-⊕-
supplemented if and only if for every submodule N ⊆ M, there exists a direct
summand K of M such that M = N+ K, N ∩ K ⊆ JK.

Proof. Clear by [1, Corollary 15.18]. �

By using the above lemma, we have a specialized notion which is strong of
Rad-⊕-supplemented modules. Now we define this notion.

Definition 1 Let M be an R-module and I be an ideal of R. We say that M
is a I-Rad-⊕-supplemented module, provided for every submodule N of M,
there exists a direct summand K of M such that M = N+ K, N ∩ K ⊆ IK and
N ∩ K ⊆ Rad(K).

Lemma 2 Let M be an R-module and I be an ideal of R such that IM = 0.
Then, M is I-Rad-⊕-supplemented if and only if M is semisimple.

Proof. (⇒) Let N be a submodule of M. By the hypothesis, there exists a
direct summand K ofM such thatM = N+K,N∩K ⊆ IK andN∩K ⊆ Rad(K).
Since IK ⊆ IM = 0, we obtain that M = N⊕ K. Hence M is semisimple.
(⇐) Let N be a submodule of M. Then there exists a submodule N

′

of M
such that M = N⊕N

′

. So M = N+N
′

, N∩N
′

= 0 ⊆ IN
′

and N∩N
′

= 0 ⊆

Rad(N
′

). Therefore M is a I-Rad-⊕-supplemented module. �

Lemma 3 [14, Lemma 3.4] Let M be an R-module and I be an ideal of R. If
K is a direct summand of M, then we have IK = K ∩ IM.

Proposition 1 Let M be an arbitrary R-module and I be an ideal of R such
that Rad(M) ⊆ IM. Then M is I-Rad-⊕-supplemented if and only if M is
Rad-⊕-supplemented.

Proof. (⇒) It is clear.
(⇐) Suppose that M is I-Rad-⊕-supplemented. Let N be a submodule of

M. Then there exists a direct summand K of M such that M = N + K and
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N ∩ K ⊆ Rad(K). Note that IK = K ∩ IM by Lemma 3. Since Rad(M) ⊆ IM,
we have N ∩ K ⊆ Rad(K) ⊆ K ∩ Rad(M) ⊆ K ∩ IM = IK. Therefore M is
I-Rad-⊕-supplemented. This completes the proof. �

Recall from [17] that a ring R is called a left good ring if Rad(M) = JM for
every R-module M. A semilocal ring is an example of a left good ring.

Corollary 1 Let M be an R-module. Suppose further that either

(1) R is a left good ring, or

(2) M is a projective module.

If an ideal I of R contains the Jacobson radical J of R, then M is Rad-⊕-
supplemented if and only if M is I-Rad-⊕-supplemented.

Proof. Note that Rad(M) = JM by [1, Proposition 17.10]. The result follows
from Proposition 1. �

It is clear that every I-Rad-⊕-supplemented module is Rad-⊕-supplemented
module, but the following example shows that the converse is not be always
true. Firstly, we need the following crucial proposition.

Proposition 2 Let M be an indecomposable R-module with Rad(M) ≪ M

and I be an ideal of R. Then the following statements are equivalent.

(1) M is I-Rad-⊕-supplemented;

(2) M is local with IM = M or IM = Rad(M).

Proof. (1)=⇒(2) Let N be a proper submodule of M. By hypothesis, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and
N∩K ⊆ Rad(K). Since M is indecomposable, we have K = M. Hence, N ⊆ IM

and N ⊆ Rad(M). Since Rad(M) ≪ M, we have N ≪ M. Thus, M is a local
module. Moreover, note that if IM 6= M, then IM contains all other proper
submodules of M. Hence M is a local module and IM = Rad(M).
(2)=⇒(1) Let N be a proper submodule of M. Then M = N + M and

N ∩M = N ⊆ Rad(M) ⊆ IM. So M is I-Rad-⊕-supplemented. �

Example 1 (See [14, Example 3.8]) Let p and q be two different prime inte-
gers. Consider the local Z-module M = Z

Zp3
. We have Rad(M) = Zp

Zp3
≪ M.

Let I1 = Zp, I2 = Zq and I3 = Zp2. Then I1M = Rad(M), I2M = M and

I3M = Zp2

Zp3
. By Proposition 2, M is Ii-Rad-⊕-supplemented for each i = 1, 2

but not I3-Rad-⊕-supplemented. On the other hand, it is clear that M is Rad-
⊕-supplemented.
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Proposition 3 Let I be an ideal of R and M be an R-module. If M is an
I-Rad-⊕-supplemented R-module, then M

IM is semisimple.

Proof. Let N be a submodule of M such that IM ⊆ N. By assumption, there
exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and
N ∩ K ⊆ Rad(K). Then N

IM + K+IM
IM = M

IM . Clearly, we have N ∩ (K + IM) =

IM + N ∩ K = IM and so N
IM ∩ K+IM

IM = IM
IM . Therefore M

IM = N
IM ⊕ K+IM

IM . It

means that M
IM is semisimple. �

Corollary 2 Let M be a Rad-⊕-supplemented R-module such that IM = M,
where I is an ideal of R. Then M is I-Rad-⊕-supplemented.

Corollary 3 Let m be a maximal ideal of a commutative ring R and M be
an R-module. Assume that I is an ideal of R such that IM = mM. If M is a
Rad-⊕-supplemented R-module, then M is I-Rad-⊕-supplemented.

Proof. Note that Rad(M) ⊆ mM by [7, Lemma 3]. The result follows from
Proposition 1. �

Recall from [17] that an R-module M is called divisible in case rM = M for
each non-zero element r ∈ R, where R is a commutative domain.

Proposition 4 Let M be a divisible module over a commutative domain R. If
M is Rad-⊕-supplemented, then M is I-Rad-⊕-supplemented for every non-
zero ideal I of R.

Proof. This follows from Corollary 2. �

Corollary 4 Let R be a Dedekind domain and M be an injective R-module.
Then, M is I-Rad-⊕-supplemented for every non-zero ideal I of R.

Proof. Since every injective module over a Dedekind domain is divisible, the
proof follows from Proposition 4. �

Theorem 1 Let I be an ideal of R. Then any finite direct sum of I-Rad-⊕-
supplemented R-modules is I-Rad-⊕-supplemented.

Proof. Let n be any positive integer and Mi (1 ≤ i ≤ n) be any finite collec-
tion of I-Rad-⊕-supplemented R-modules. Let M = M1⊕M2⊕· · ·⊕Mn. Sup-
pose that n = 2, that is, M = M1 ⊕M2. Let K be any submodule of M. Then
M = M1+M2+K and so M1+M2+K has a Rad-supplement 0 in M. Since M1
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is I-Rad-⊕-supplemented, M1∩ (M2+K) has a Rad-supplement X in M1 such
that X is a direct summand of M1 and X∩(M2+K) = M1∩(M2+K)∩X ⊆ IX.
By [5, Lemma 3.2], X is a Rad-supplement of M2 + K in M. Since M2 is I-
Rad-⊕-supplemented, M2 ∩ (K+X) has a Rad-supplement Y in M2 such that
Y is a direct summand of M2 and Y ∩ (K+X) = M2 ∩ (K+X)∩ Y ⊆ IY. Again
applying [5, Lemma 3.2], we obtain that X + Y is a Rad-supplement of K in
M. Since X is a direct summand of M1 and Y is a direct summand of M2, it
follows that X⊕ Y is a direct summand of M. Note that

K ∩ (X+ Y) ⊆ X ∩ (Y + K) + Y ∩ (K+ X)

⊆ X ∩ (M2 + K) + Y ∩ (K+ X)

⊆ IX⊕ IY = I(X⊕ Y)

So M1 ⊕M2 is I-Rad-⊕-supplemented. The proof is completed by induction
on n. �

Recall from [17] that a submodule U of an R-module M is called fully in-
variant if f(U) is contained in U for every R-endomorphism f of M. Let M

be an R-module and τ be a preradical for the category of R-modules. Then
τ(M) is fully invariant submodule of M. A module M is called duo if every
submodule of M is fully invariant [13].

Proposition 5 Let I be an ideal of R and M = ⊕λ∈ΛMλ be a duo module
where M is a direct sum of submodules Mλ (λ ∈ Λ). Assume that Mλ is I-
Rad-⊕-supplemented for every λ ∈ Λ. Then M is I-Rad-⊕-supplemented.

Proof. By hypothesis, for every λ ∈ Λ, there exists a direct summand Kλ of
Mλ such that Mλ = (N ∩ Mλ) + Kλ, N ∩ Kλ ⊆ IKλ and N ∩ Kλ ⊆ Rad(Kλ).
Put K = ⊕λ∈ΛKλ. Clearly K is a direct summand of M and M = N+K. Also,
we have N ∩ K = ⊕λ∈Λ(N ∩ Kλ) ⊆ IK and N ∩ K ⊆ Rad(K). This completes
the proof. �

Now, we give an example showing that the I-Rad-⊕-supplemented property
doesn’t always transfer from a module to each of its factor modules.

Example 2 (see [2, Example 4.1]) Let F be a field. Consider the local ring

R =
F[x2,x3]

(x4)
and let m be the maximal ideal of R. Let n be an integer with

n ≥ 2 and M = R(n). By Proposition 2 and Theorem 1, M is m-Rad-⊕-
supplemented. Note that R is an artinian local ring which is not a principal
ideal ring. So, there exists a submodule K of M such that the factor module M

K

isn’t Rad-⊕-supplemented. Therefore M
K isn’t m-Rad-⊕-supplemented.
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Recall from [17, 6.4] that a module M is called distributive if (A + B) ∩

C = (A ∩ C) + (B ∩ C) for all submodules A,B,C of M (or equivalently,
(A ∩ B) + C = (A+ C) ∩ (B+ C) for all submodules A,B,C of M).
Now, we show that a factor module of an I-Rad-⊕-supplemented module is

I-Rad-⊕-supplemented under some conditions.

Proposition 6 Let I be an ideal of R and M be an I-Rad-⊕-supplemented
module.

(1) Let X ⊆ M be a submodule such that for every direct summand K of M,
X+K
X is a direct summand of M

X . Then M
X is I-Rad-⊕-supplemented;

(2) Let X ⊆ M be a submodule such that for every decomposition M =

M1 ⊕ M2, we have X = (X ∩ M1) ⊕ (X ∩ M2). Then M
X is I-Rad-⊕-

supplemented;

(3) If X is a fully invariant submodule of M, then M
X is I-Rad-⊕-supplemented;

(4) If M is a distributive module, then M
X is I-Rad-⊕-supplemented for every

submodule X of M.

Proof. (1) Let N be a submodule of M such that X ⊆ N. Since M is I-Rad-
⊕-supplemented, there exists a direct summand K of M such that M = N+K,
N ∩ K ⊆ IK and N ∩ K ⊆ Rad(K). Therefore M

X = N
X + X+K

X and N
X ∩ K+X

X =
X+(N∩K)

X ⊆ X+IK
X ⊆ I(X+K

X ). Consider the natural epimorphism π : K −→ X+K
X .

Since N ∩ K ⊆ Rad(K), we have π(N ∩ K) =
X+(N∩K)

X ⊆ Rad(X+K
X ). Note that

by assumption, X+K
X is a direct summand of M

X . It follows that M
X is I-Rad-⊕-

supplemented.
(2), (3) and (4) are consequences of (1). �

Proposition 7 Let M be an R-module, I be an ideal of R and K be a fully
invariant direct summand of M. Then the following statements are equivalent:

(1) M is I-Rad-⊕-supplemented;

(2) K and M
K are I-Rad-⊕-supplemented.

Proof. (1)⇒ (2) Let L be a submodule of K. By hypothesis, there exist sub-
modules A and B of M such that M = A ⊕ B, M = A + L, A ∩ L ⊆ IA

and A ∩ L ⊆ Rad(A). Clearly, we have K = (A ∩ K) + L. Since K is fully
invariant in M, we have K = (A ∩ K) ⊕ (B ∩ K). Hence A ∩ K is a direct
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summand of K. By Lemma 3, I(A ∩ K) = (A ∩ K) ∩ IM. It follows that
(A ∩ K) ∩ L = A ∩ L ⊆ (A ∩ K) ∩ IM = I(A ∩ K). Since A ∩ K is a direct
summand of K and K is a direct summand of M, A∩K is a direct summand of
M such that A∩L ⊆ A∩K. Since A∩L ⊆ Rad(M), we have A∩L ⊆ Rad(A∩K).
Therefore, K is I-Rad-⊕-supplemented. Moreover, M

K is I-Rad-⊕-supplemented
by Proposition 6 (3).
(2)⇒ (1) It follows from Theorem 1. �

Let I be an ideal of R. We call an R-module M is called completely I-Rad-⊕-
supplemented if every direct summand ofM is I-Rad-⊕-supplemented. Clearly,
semisimple modules are completely I-Rad-⊕-supplemented. Also, every I-Rad-
⊕-supplemented hollow module is completely I-Rad-⊕-supplemented.

Proposition 8 Let M = M1 ⊕ M2 be a direct sum of local submodules M1

and M2. Then the following statements are equivalent:

(1) M1 and M2 are I-Rad-⊕-supplemented modules;

(2) M is a completely I-Rad-⊕-supplemented module.

Proof. (1)⇒ (2) Let L be a non-zero direct summand of M. If L = M, then
L is I-Rad-⊕-supplemented by Theorem 1. Assume that L 6= M. Let K be
a submodule of M such that M = L ⊕ K. Then L is a local module by [4,
5.4 (1)]. Let us prove that L is I-Rad-⊕-supplemented. To see this, it suffices
to show that IL = L or IL = Rad(L) by Proposition 2. Since M is I-Rad-
⊕-supplemented, M

IM
∼= L

IL ⊕ K
IK is semisimple by Proposition 3. Then L

IL is
semisimple and so Rad(L) ⊆ IL. Since L is local, we get that L = IL or
Rad(L) = IL.
(2)⇒ (1) Obvious. �

Now, we determine the structure of all I-Rad-⊕-supplemented modules over
a discrete valuation ring.

Theorem 2 Assume that R is a discrete valuation ring with maximal ideal
m. Let I be an ideal of R and M be an R-module.

(1) If I = m or I = R, then the following statements are equivalent.

(i) M is I-Rad-⊕-supplemented;

(ii) M is Rad-⊕-supplemented;

(iii) M ∼= Ra ⊕D⊕ B, where a ∈ N, B is a bounded R-module and D is
an injective R-module.
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(2) If I /∈ {m,R}, then the following are equivalent:

(i) M is I-Rad-⊕-supplemented;

(ii) M ∼= D ⊕ B for some injective R-module D and some semisimple
R-module B.

Proof. It is well known that, for any module M over a discrete valuation ring,
we have Rad(M) = JM = mM.
(1) (i)⇔ (ii) Since local rings are a good ring, by Corollary 1 and assumption,
the proof follows.
(ii)⇔ (iii) Clear by [15, Corollary 3.3].

(2) (i)⇒ (ii) Suppose that M is I-Rad-⊕-supplemented. Applying [15, Corol-
lary 3.3], M ∼= Ra ⊕D⊕B for some bounded R-module B, some natural num-
bers a and an injective R-module D. Since D is a fully invariant submodule of
M, it follows from Proposition 7 that N = Ra ⊕ B is I-Rad-⊕-supplemented.
Using Lemma 3 and Proposition 3, we obtain that N

IN is semisimple. Since
I /∈ {m,R}, we get that a = 0. Now we will prove that B is semisimple. Since
B
IB is semisimple and I < m, we can write Rad(B) = JB = IB. Note that B

is bounded. Then, there exists an ideal H of R such that HB = 0. Therefore,
Rad(B) = JB = HB = 0 and so B is semisimple by Lemma 2. This completes
the proof.
(ii)⇒ (i) By Corollary 4,D is I-Rad-⊕-supplemented. Since B is semisimple,

B is I-Rad-⊕-supplemented. Applying Theorem 1, we obtain that M is I-Rad-
⊕-supplemented. �
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[3] E. Büyükaşık, Yılmaz M. Demirci, Weakly Distributive Modules. Appli-
cations to Supplement Submodules, Proc. Indian Acad. Sci. (Math. Sci.),
120 (5), (2010), 525–534.

[4] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules. Supplements
and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser,
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Abstract. In this paper, we introduce and investigate an interesting
subclass of meromorphic bi-univalent functions defined on ∆ = {z ∈ C :

1 < |z| < ∞}. For functions belonging to this class, estimates on the initial
coefficients are obtained. The results presented in this paper generalize
and improve some recent works.

1 Introduction

Let Σ be the family of meromorphic functions f of the form

f(z) = z+ b0 +

∞∑

n=1

bn
1

zn
, (1)

that are univalent in ∆ = {z ∈ C : 1 < |z| < ∞}. Since f ∈ Σ is univalent, it has
an inverse f−1 that satisfy

f−1(f(z)) = z (z ∈ ∆)

and

f(f−1(w)) = w (M < |w| < ∞, M > 0) .

2010 Mathematics Subject Classification: 30C45, 30C50
Key words and phrases: meromorphic functions, meromorphic bi-univalent functions,
coefficient estimates
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Furthermore, the inverse function f−1 has a series expansion of the form

f−1(w) = w+

∞∑

n=0

Bn
1

wn
, (2)

where M < |w| < ∞. A simple calculation shows that the function f−1, is
given by

f−1(w) = w− b0 −
b1

w
−

b2 + b0b1

w2
−

b3 + 2b0b1 + b2
0b1 + b2

1

w3
+ ... . (3)

A function f ∈ Σ is said to be meromorphic bi-univalent if f−1 ∈ Σ. The
family of all meromorphic bi-univalent functions is denoted by ΣB.
Estimates on the coefficient of meromorphic univalent functions were widely

investigated in the literature; for example, Schiffer [8] obtained the estimate
|b2| ≤ 2/3 for meromorphic univalent functions f ∈ Σ with b0 = 0 and Duren
[2] proved that |bn| ≤ 2/(n+ 1) for f ∈ Σ with bk = 0, 1 ≤ k ≤ n/2.
For the coefficients of inverses of meromorphic univalent functions, Springer

[10] proved that

|B3| ≤ 1 and |B3 +
1

2
B2
1| ≤

1

2

and conjectured that

|B2n−1| ≤
(2n− 2)!

n!(n− 1)!
(n = 1, 2, · · · ).

In 1977, Kubota [6] proved that the Springer conjecture is true for n = 3, 4, 5

and subsequently Schober [9] obtained a sharp bounds for the coefficients
B2n−1, 1 ≤ n ≤ 7.
A function f in the class ΣB is said to be memorphic bi-univalent starlike of

order β where 0 ≤ β < 1, if it satisfies the flowing inequalities

Re

(
zf ′(z)

f(z)

)
> β and Re

(
wg ′(w)

g(w)

)
> β (z,w ∈ ∆),

where g is the inverse of f given by (3). We denote by Σ∗

B(β) the class of all
meromorphic bi-univalent starlike functions of order β. Similarly, a function
f in the class ΣB is said to be meromorphic bi-univalent strongly starlike of
order α where 0 < α ≤ 1, if it satisfies the following conditions
∣∣∣∣ arg

(
zf ′(z)

f(z)

) ∣∣∣∣ <
απ

2
and

∣∣∣∣ arg
(
wg ′(w)

g(w)

)
arg

∣∣∣∣ <
απ

2
(z,w ∈ ∆),
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where g is the inverse of f given by (3). We denote by Σ̃∗

B(α) the class of all
meromorphic bi-univalent strongly starlike functions of order α. The classes
Σ∗

B(β) and Σ̃∗

B(α) were introduced and studied by Halim et al. [3].
Several researchers introduced and investigated some subclasses of mero-

morphically bi-univalent functions. (see, for detailes [3], [4], [5], [6], [9] and
[13]).
Recently, Srivastava at al. [11] introduced the following subclasses of the

meromorphic bi-univalent function and obtained non sharp estimates on the
initial coefficients |b0| and |b1| as follow.

Definition 1 [11, Definition 2] A function f(z) ∈ ΣB given by (1) is said to
be in the class ΣB,λ∗(α), if the following conditions are satisfied:

∣∣∣∣arg
(
z[f ′(z)]λ

f(z)

)∣∣∣∣ <
απ

2
(0 < α ≤ 1, λ ≥ 1, z ∈ ∆)

and

∣∣∣∣arg
(
w[g ′(w)]λ

g(w)

)∣∣∣∣ <
απ

2
(0 < α ≤ 1, λ ≥ 1, w ∈ ∆),

where the function g is the inverse of f given by (3).

Theorem 1 [11, Theorem 2.1] Let f(z) ∈ ΣB given by (1) be in the class
ΣB,λ∗(α). Then

|b0| ≤ 2α, |b1| ≤
2
√
5α2

1+ λ
.

Definition 2 [11, Definition 3] A function f(z) ∈ ΣB given by (1) is said to
be in the class ΣB∗(λ, β), if the following conditions are satisfied:

Re

(
z[f ′(z)]λ

f(z)

)
> β (0 ≤ β < 1, λ ≥ 1, z ∈ ∆)

and

Re

(
w[g ′(w)]λ

g(w)

)
> β (0 ≤ β < 1, λ ≥ 1, w ∈ ∆),

where the function g is the inverse of f given by (3).
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Theorem 2 [11, Theorem 3.1] Let f(z) given by (1) be in the class ΣB∗(λ, β).
Then

|b0| ≤ 2(1− β), |b1| ≤
2(1− β)

√
4β2 − 8β+ 5

1+ λ
.

The following subclass of the meromorphic bi-univalent functions was inves-
tigated by Hai-Gen Xiao and Qing-Hua Xu [12].

Definition 3 [12, Definition 3] A function f(z) ∈ ΣB given by (1) is said to
be in the class Σ∗

ϑ(µ, α), if the following conditions are satisfied:

∣∣∣∣arg
{

(1− µ)
zf ′(z)

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)}∣∣∣∣ <
απ

2
(0 < α ≤ 1, µ ∈ R, z ∈ ∆)

and
∣∣∣∣arg

{

(1−µ)
wg ′(w)

g(w)
+µ

(
1+

wg ′′(w)

g ′(w)

)}∣∣∣∣<
απ

2
(0<α ≤ 1, µ ∈ R, w ∈ ∆),

where the function g is the inverse of f given by (3).

Theorem 3 [12, Theorem 1] Let f(z) given by (1) be in the class Σ∗

ϑ(µ, α),
µ ∈ R−

{
1
2 , 1

}
. Then

|b0| ≤
2α

|1− µ|
, |b1| ≤

√
µ2 − 2µ+ 5

|1− µ||2µ− 1|
α2.

The object of the present paper is to introduce a new subclass of the function
class ΣB and obtain estimates on the initial coefficients for functions in this new
subclass which improve Theorem 1, Theorem 2 and Theorem 3. Our results
generalize and improve those in related works of several earlier authors.

2 Coefficient bounds for the function class Mh,p
ΣB

(λ, µ)

In this section, we introduce and investigate the general subclass Mh,p
ΣB

(λ, µ).

Definition 4 Let the functions h, p : ∆ → C be analytic functions and

h(z) = 1+
h1

z
+

h2

z2
+

h3

z3
+ · · · , p(z) = 1+

p1

z
+

p2

z2
+

p3

z3
+ · · · ,
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such that

min {Re(h(z)), Re (p(z))} > 0, z ∈ ∆.

A function f ∈ ΣB given by (1) is said to be in the class M
h,p
ΣB

(λ, µ) (λ ≥ 1,

µ ∈ R), if the following conditions are satisfied:

(1− µ)
z(f ′(z))λ

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)λ

∈ h(∆) (λ ≥ 1, µ ∈ R, z ∈ ∆) (4)

and

(1− µ)
w(g ′(w))λ

g(w)
+ µ

(
1+

wg ′′(w)

g ′(w)

)λ

∈ p(∆) (λ ≥ 1, µ ∈ R, w ∈ ∆), (5)

where the function g is the inverse of f given by (3).

Remark 1 There are many selections of the functions h(z) and p(z) which
would provide interesting subclasses of the meromorphic function class Σ. For
example, if we let

h(z) = p(z) =

(
1+ 1

z

1− 1
z

)α

= 1+
2α

z
+

2α2

z2
+ · · · (0 < α ≤ 1, z ∈ ∆),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of
Definition 4.
If f ∈ M

h,p
ΣB

(λ, µ), then

∣∣∣∣∣arg
{

(1− µ)
z(f ′(z))λ

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)λ
}∣∣∣∣∣ <

απ

2

(0 < α ≤ 1, λ ≥ 1, µ ∈ R, z ∈ ∆)

and
∣∣∣∣∣arg

{

(1− µ)
w(g ′(w))λ

g(w)
+ µ

(
1+

wg ′′(w)

g ′(w)

)λ
}∣∣∣∣∣ <

απ

2

(0 < α ≤ 1, λ ≥ 1, µ ∈ R, w ∈ ∆).

In this case, the function f is said to be in the class MΣB
(λ, µ, α) and in

special case λ = 1, it reduces to Definition 3. We note that, by putting µ = 0,
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the class MΣB
(λ, µ, α) reduces to Definition 1, the class ΣB,λ∗(α) introduced

and studied by Srivastava et al. [11].
If we let

h(z) = p(z) =
1+ 1−2β

z

1− 1
z

= 1+
2(1− β)

z
+

2(1− β)

z2
+

2(1− β)

z3
+ . . . (0 ≤ β < 1, z ∈ ∆),

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of
Definition 4.
If f ∈ M

h,p
ΣB

(λ, µ), then

Re

{

(1− µ)
z(f ′(z))λ

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)λ
}

> β

(0 ≤ β < 1, λ ≥ 1, µ ∈ R, z ∈ ∆)

and

Re

{

(1− µ)
w(g ′(w))λ

g(w)
+ µ

(
1+

wg ′′(w)

g ′(w)

)λ
}

> β

(0 ≤ β < 1, λ ≥ 1, µ ∈ R, w ∈ ∆).

Therefore for h(z) = p(z) =
1+ 1−2β

z

1− 1
z

and µ = 0, the class M
h,p
ΣB

(λ, µ) reduces

to Definition 2.

Now, we derive the estimates of the coefficients |b0| and |b1| for classM
h,p
ΣB

(λ, µ).

Theorem 4 Let f(z) ∈ ΣB given by (1) be in the class Mh,p
ΣB

(λ, µ) (λ ≥ 1, µ ∈
R− {1}, (3λµ+ µ− λ) 6= 1). Then

|b0| ≤ min

{√
|h1|2 + |p1|2

2(1− µ)2
,

√
|h2|+ |p2|

2|1− µ|

}

(6)

and

|b1| ≤ min

{

|h2| + |p2|

2|3λµ + µ − λ − 1|
,

1

|3λµ + µ − λ − 1|

√

|h2|2 + |p2|2

2
+

(|h1|2 + |p1|2)2

4(1 − µ)2

}

. (7)
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Proof. First of all, we write the argument inequalities in (4) and (5) in their
equivalent forms as follows:

(1− µ)
z(f ′(z))λ

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)λ

= h(z) (z ∈ ∆) (8)

and

(1− µ)
w(g ′(w))λ

g(w)
+ µ

(
1+

wg ′′(w)

g ′(w)

)λ

= p(w) (w ∈ ∆), (9)

respectively, where functions h(z) and p(w) satisfy the conditions of Defini-
tion 4.
Furtheremore, the functions h(z) and p(w) have the forms:

h(z) = 1+
h1

z
+

h2

z2
+

h3

z3
+ · · ·

and

p(w) = 1+
p1

w
+

p2

w2
+

p3

w2
+ · · · ,

respectively. Now, upon equating the coefficients of

(1− µ)
z(f ′(z))λ

f(z)
+ µ

(
1+

zf ′′(z)

f ′(z)

)λ

= 1−
(1− µ)b0

z
+

(1− µ)b2
0 + (3λµ+ µ− λ− 1)b1

z2
+ . . .

(10)

with those of h(z) and coefficients of

(1− µ)
w(g ′(w))λ

g(w)
+ µ

(
1+

wg ′′(w)

g ′(w)

)λ

= 1+
(1− µ)b0

w
+

(1− µ)b2
0 − (3λµ+ µ− λ− 1)b1

w2
+ . . .

(11)

with those of p(w), we get

−(1− µ)b0 = h1, (12)

(1− µ)b2
0 + (3λµ+ µ− λ− 1)b1 = h2, (13)

(1− µ)b0 = p1 (14)
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and

(1− µ)b2
0 − (3λµ+ µ− λ− 1)b1 = p2 (15)

From (12) and (14), we get

h1 = −p1 (b0 = −
h1

1− µ
)

and

2(1− µ)2b2
0 = h2

1 + p2
1. (16)

Adding (13) and (15), we get

2(1− µ)b2
0 = h2 + p2. (17)

Therefore, we find from the equations (16) and (17) that

|b0|
2 ≤ |h1|

2 + |p1|
2

2(1− µ)2
,

and

|b0|
2 ≤ |h2|+ |p2|

2|1− µ|

respectively. So we get the desired estimate on the coefficient |b0| as asserted
in (6).
Next, in order to find the bound on the coefficient |b1|, we subtract (15)

from (13). We thus get

2(3λµ+ µ− λ− 1)b1 = h2 − p2. (18)

By squaring and adding (13) and (15), using (16) in the computation leads to

b2
1 =

1

2(3λµ+ µ− λ− 1)2

(
h2
2 + p2

2 −
(h2

1 + p2
1)

2

2(1− µ)2

)
. (19)

Therefore, we find from the equations (18) and (19) that

|b1| ≤
|h2|+ |p2|

2|3λµ+ µ− λ− 1|

and

|b1| ≤
1

|3λµ+ µ− λ− 1|

√
|h2|2 + |p2|2

2
+

(|h1|2 + |p1|2)2

4(1− µ)2
.

This evidently completes the proof of Theorem 4. �
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3 Corollaries and consequences

By setting

h(z) = p(z) =
1+ 1−2β

z

1− 1
z

= 1+
2(1− β)

z
+

2(1− β)

z2
+ . . . (0 ≤ β < 1, z ∈ ∆)

and µ = 0 in Theorem 4, we conclude the following result.

Corollary 1 Let the function f(z) given by (1) be in the class ΣB∗(λ, β), (0 ≤
β < 1, λ ≥ 1). Then

|b0| ≤






√
2(1− β); β ≤ 1

2

2(1− β); β > 1
2

and

|b1| ≤ min

{
2(1− β)

1+ λ
,
2(1− β)

√
4β2 − 8β+ 5

1+ λ

}

=
2(1− β)

1+ λ
.

Remark 2 The bounds on |b0| and |b1| given in Corollary 1 are better than
those given in Theorem 2.

By setting λ = 1 in Corollary 1, we conclude the following result.

Corollary 2 Let the function f(z) given by (1) be in the class Σ∗

B(β) (0 ≤
β < 1). Then

|b0| ≤






√
2(1− β); β ≤ 1

2

2(1− β); β > 1
2

and

|b1| ≤ min{1− β, (1− β)

√
1+ 4(1− β)2} = 1− β.

Remark 3 The bounds on |b0| and |b1| given in Corollary 2 are better than
those given by Halim et al. [3, Theorem 1].

By setting

h(z) = p(z) =

(
1+ 1

z

1− 1
z

)α

(0 < α ≤ 1, z ∈ ∆),

in Theorem 4, we conclude the following result.
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Corollary 3 Let the function f(z) given by (1) be in the class MΣB
(λ, µ, α)

(0 < α ≤ 1, λ ≥ 1, µ ∈ R− {1}, (3λµ+ µ− λ) 6= 1). Then

|b0| ≤






α
√

2
|1−µ|

; |1− µ| ≤ 2

2α
|1−µ|

; |1− µ| > 2

and

|b1| ≤ min

{
2α2

|3λµ+ µ− λ− 1|
,

2α2

|3λµ+ µ− λ− 1|

√
1+

4

(1− µ)2

}

=
2α2

|3λµ+ µ− λ− 1|
.

By setting µ = 0 in Corollary 3, we conclude the following result.

Corollary 4 Let the function f(z) given by (1) be in the class ΣB,λ∗(α) (0 <

α ≤ 1, λ ≥ 1). Then

|b0| ≤
√
2α

and

|b1| ≤
2α2

λ+ 1
.

Remark 4 The bounds on |b0| and |b1| given in Corollary 4 are better than
those given in Theorem 2.

By setting λ = 1 in Corollary 3, we conclude the following result.

Corollary 5 Let the function f(z) given by (1) be in the class Σ∗

ϑ(µ, α) (0 <

α ≤ 1, µ ∈ R− {12 , 1}). Then

|b0| ≤






α
√

2
|1−µ|

; |1− µ| ≤ 2

2α
|1−µ|

; |1− µ| > 2

and

|b1| ≤ min

{
α2

|2µ− 1|
,

√
µ2 − 2µ+ 5

|1− µ||2µ− 1|
α2

}

=
α2

|2µ− 1|
.
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Remark 5 The bounds on |b0| and |b1| given in Corollary 5 are better than
those given in Theorem 3.

By setting µ = 0 in Corollary 5, we conclude the following result.

Corollary 6 Let the function f(z) given by (1) be in the class Σ̃∗

B(α) (0 <

α ≤ 1). Then

|b0| ≤
√
2α and |b1| ≤ min

{
α2,

√
5α2

}
= α2.

Remark 6 The bounds on |b0| and |b1| given in Corollary 6 are better than
those given by Halim et al. [3, Theorem 2].
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Main Editorial Board
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Laura NISTOR Emőd VERESS
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