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Abstract. We study submanifolds of a quaternionic projective space, it
is of great interest how to pull down some formulae deduced for subman-
ifolds of a sphere to those for submanifolds of a quaternionic projective
space.

1 Introduction

It is well known that an odd-dimensional sphere is a circle bundle over the
quaternionic projective space. Consequently, many geometric properties of the
quaternionic projective space are inherited from those of the sphere.
Let M be a connected real n-dimensional submanifold of real codimension

p of a quaternionic Kähler manifoldM
n+p

with quaternionic Kähler structure
{F,G,H}. If there exists an r-dimensional normal distribution ν of the normal
bundle TM⊥ such that

Fνx ⊂ νx, Gνx ⊂ νx, Hνx ⊂ νx,
Fν⊥x ⊂ TxM, Gν⊥x ⊂ TxM, Hν⊥x ⊂ TxM,
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at each point x in M, then M is called a QR-submanifold of r QR-dimension,
where ν⊥ denotes the complementary orthogonal distribution to ν in TM
[2, 14, 16].
Equivalently, there exists distributions (Dx, D

⊥
x ) of the tangent bundle TM,

such that

FDx ⊂ Dx, GDx ⊂ Dx, HDx ⊂ Dx,
FD⊥

x ⊂ TxM
⊥, GD⊥

x ⊂ TxM
⊥, HD⊥

x ⊂ TxM
⊥,

where D⊥
x denotes the complementary orthogonal distribution to Dx in TM.

Real hypersurfaces, which are typical examples of QR-submanifold with r = 0,
have been investigated by many authors [3, 9, 14, 16, 18, 20] in connection
with the shape operator and the induced almost contact 3-structure. Recently,
Kwon and Pak have studied QR-submanifolds of (p − 1) QR-dimension iso-

metrically immersed in a quaternionic projective space QP
n+p
4 [14, 16].

Pak and Sohn studied n-dimensional QR-submanifold of (p−1) QR-dimension

in a quaternionic projective space QP
(n+p)

4 [19].
Kim and Pak studied n-dimensionalQR-submanifold of maximalQR-dimension
isometrically immersed in a quaternionic projective space [13].

2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kähler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1, 1) overM satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U , there is a local basis {F,G,H} of V such
that

F2 = −I, G2 = −I, H2 = −I, (1)

FG = −GF = H, GH = −HG = F, HF = −FH = G.

(b) There is a Riemannian metric g which is hermite with respect to all of F,G
and H.
(c) For the Riemannian connection ∇ with respect to g





∇F

∇G

∇H



 =





0 r −q

−r 0 p

q −p 0









F

G

H



 (2)

where p, q and r are local 1-forms defined in U . Such a local basis {F,G,H} is
called a canonical local basis of the bundle V in U (cf. [11, 12]).
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For canonical local basis {F,G,H} and {F ′, G ′, H ′} of V in coordinate neighbor-

hoods of U and U
′
, it follows that in U ∩ U

′





F ′

G ′

H ′



 =
(

sxy
)





F

G

H



 (x, y = 1, 2, 3)

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a conse-
quence of (1). As is well known [11, 12], every quaternionic Kähler manifold
is orientable.
Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p − 1) QR-dimension isometrically immersed in M. Then by def-
inition there is a unit normal vector field ξ such that ν⊥x = span{ξ} at each
point x in M. We set

Fξ = −U, Gξ = −V, Hξ = −W. (3)

Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM,

of TxM, we have D⊥
x ⊃ Span{U,V,W}, where D⊥

x means the complementary
orthogonal subspace to Dx in TxM. But, using (1), we can prove that D⊥

x =

Span{U,V,W} [2, 16]. Thus we have

TxM = Dx ⊕ Span{U,V,W}, ∀x ∈M,

which together with (1) and (3) imply

FTxM,GTxM,HTxM ⊂ TxM⊕ Span{ξ}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{ξα}α=1,...,p (ξ1 := ξ) of normal vectors to M, we have

FX = ϕX+ u(X)ξ, GX = ψX+ v(X)ξ, HX = θX+ω(X)ξ, (4)

Fξα = −Uα + P1ξα, Gξα = −Vα + P2ξα,

Hξα = −Wα + P3ξα, (α = 1, . . . , p). (5)

Then it is easily seen that {ϕ,ψ, θ} and {P1, P2, P3} are skew-symmetric endo-
morphisms acting on TxM and TxM

⊥, respectively.
Also, from the hermitian properties

g(FX, ξα) = −g(X, Fξα), g(GX, ξα) = −g(X,Gξα),

g(HX, ξα) = −g(X,Hξα), (α = 1, . . . , p).
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It follows that

g(X,Uα) = u(X)δ1α, g(X,Vα) = v(X)δ1α, g(X,Wα) = w(X)δ1α,

and hence

g(X,U1) = u(X), g(X,V1) = v(X), g(X,W1) = w(X),

Uα = 0, Vα = 0, Wα = 0, (α = 2, . . . p). (6)

On the other hand, comparing (3) and (5) with α = 1, we have U1 = U,V1 =
V,W1 =W, which together with (3) and (6) imply

g(X,U) = u(X), g(X,V) = v(X), g(X,W) = w(X),

u(U) = 1, v(V) = 1, w(W) = 1,

Fξ = −U, Gξ = −V, Hξ = −W

Fξα=P1ξα , Gξα=P2ξα Hξα=P3ξα , (α = 2, . . . , p).

Now, let ∇ be the Levi-Civita connection onM and ∇⊥ the normal connection
induced from ∇ in the normal bundle TM⊥ ofM. The Gauss and Weingarten
formula are given by

∇XY = ∇XY + h(X, Y), ∇Xξα = −AαX+∇⊥

Xξα, (α = 1, . . . , p), (7)

for any X, Y ∈ χ(M) and ξα ∈ Γ∞(T(M)⊥), (α = 1, . . . , p). h is the second
fundamental form and Aα are shape operator corresponding to ξα.
We have the following Gauss equation

g(R(X, Y)Z,W) = g(R(X, Y)Z,W)

−

p∑

i=1

{g(AaY, Z)g(AaX,W) − g(AaX,Z)g(AaY,W)},
(8)

and Codazzi and Ricci equations

g(R(X, Y)Z, ξa) = (∇XAa)Y − (∇YAa)X

−

p∑

b=1

{sba(X)g(AaY, Z) − sba(Y)g(AaX,Z)},

g(R(X, Y)ξa, ξb) = g([Ab, Aa]X, Y) + g(R
⊥(X, Y)ξa, ξb), (9)

where R and R are the curvature tensors of M and M, respectively. sab are
called the coefficients of the third fundamental form of M in M, such that
satisfy

sab = −sba.
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3 The principal circle bundle S4n+3(QPn, S3)

Let Qn+1 be the (n+ 1)-dimensional quaternionic space with natural quater-
nionic Kähler structure ({F ′, G ′, H ′}, 〈, 〉) and let S4n+3 be the unit sphere de-
fined by

S4n+3 = {(w1, . . . , wn+1) ∈ Qn+1|
n+1∑

i=1

wi(wi)∗ = 1}

= {(x11, x
1
2, x

1
3, x

1
4, . . . , x

n+1
1 , xn+12 , xn+13 , xn+14 ) ∈ R

4n+4|

n+1∑

i=1

(xi1)
2 + (xi2)

2 + (xi3)
2 + (xi4)

2 = 1}.

such that w∗ = (x1,−x2,−x3,−x4).
The unit normal vector field ξ to S4n+3 is given by

ξ = −

n+1∑

i=1

(xi1
∂

∂xi1
+ xi2

∂

∂xi2
+ xi3

∂

∂xi3
+ xi4

∂

∂xi4
).

From

〈F ′ξ, ξ〉 = 〈F ′2ξ, F ′ξ〉 = −〈ξ, F ′ξ〉,

〈G ′ξ, ξ〉 = 〈G ′2ξ,G ′ξ〉 = −〈ξ,G ′ξ〉,

〈H ′ξ, ξ〉 = 〈H ′2ξ,H ′ξ〉 = −〈ξ,H ′ξ〉,

it follows 〈F ′ξ, ξ〉 = 0, 〈G ′ξ, ξ〉 = 0, 〈H ′ξ, ξ〉 = 0, that is, F ′ξ,G ′ξ,H ′ξ ∈
T(S4n+3). We put

F ′ξ = −ιU ′, G ′ξ = −ιV ′, H ′ξ = −ιW ′, (10)

where ι denotes the immersion of S4n+3 into Qn+1. From the Hermitian prop-
erty of 〈, 〉, it is easily seen that U ′, V ′,W ′ are unit tangent vector field of
S4n+3.
We put

Hp(S
4n+3) = {X ′ ∈ Tp(S

4n+3)|u ′(X ′) = 0, v ′(X ′) = 0,w ′(X ′) = 0}.

Then u ′, v ′, w ′ define a connection form of the principal bundle S4n+3(QPn, S3)
and we have

Tp(S
4n+3) = Hp(S

4n+3)⊕ span{U ′

p, V
′

p,W
′

p}.
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We call Hp(S
4n+3) and span{U ′

p, V
′
p,W

′
p} the horizontal subspace and verti-

cal subspace of Tp(S
4n+3), respectively. By definition, the horizontal subspace

Hp(S
4n+3) is isomorphic to Tπ(p)(QP

n), where π is the natural projection from

S4n+3 onto QPn. Therefore, for a vector field X on QPn, there exists unique
horizontal vector field X ′ of S4n+3 such that π(X ′) = X. The vector field X ′ is
called the horizontal lift of X and we denote it by X∗.

Proposition 1 As a subspace of Tp(Q
n+1), Hp(S

4n+3) is {F ′, G ′, H ′}-invariant

subspace.

Proof. By definition (10) of the vertical vector field {U ′, V ′,W ′}, for X ′ ∈
Hp(S

4n+3), it follows

〈F ′ιX ′, ξ〉 = −〈ιX ′, F ′ξ〉 = 〈ιX ′, ιU ′〉 = 0,

〈G ′ιX ′, ξ〉 = −〈ιX ′, G ′ξ〉 = 〈ιX ′, ιV ′〉 = 0,

〈H ′ιX ′, ξ〉 = −〈ιX ′, H ′ξ〉 = 〈ιX ′, ιW ′〉 = 0.

This shows that F ′ιX ′, G ′ιX ′, H ′ιX ′ ∈ Tp(S
4n+3). In entirely the same way we

compute

〈F ′ιX ′, ιU ′〉 = −〈ιX ′, F ′ιU ′〉 = 〈ιX ′,−ξ〉 = 0,

〈G ′ιX ′, ιV ′〉 = −〈ιX ′, G ′ιV ′〉 = 〈ιX ′,−ξ〉 = 0,

〈H ′ιX ′, ιW ′〉 = −〈ιX ′, H ′ιW ′〉 = 〈ιX ′,−ξ〉 = 0.

By use from relations

F ′V ′ = −H ′ξ, F ′W ′ = G ′ξ, G ′U ′ = H ′ξ,

G ′W ′ = F ′ξ, H ′U ′ = −G ′ξ, H ′V ′ = F ′ξ,

we have

〈F ′ιX ′, ιV ′〉 = −〈ιX ′, F ′ιV ′〉 = 〈ιX ′, H ′ξ〉 = −〈ιX ′, ιW ′〉 = 0,

〈F ′ιX ′, ιW ′〉 = −〈ιX ′, F ′ιW ′〉 = 〈ιX ′, G ′ξ〉 = −〈ιX ′, ιV ′〉 = 0,

〈G ′ιX ′, ιU ′〉 = −〈ιX ′, G ′ιU ′〉 = 〈ιX ′, H ′ξ〉 = −〈ιX ′, ιW ′〉 = 0,

〈G ′ιX ′, ιW ′〉 = −〈ιX ′, G ′ιW ′〉 = 〈ιX ′, F ′ξ〉 = −〈ιX ′, ιU ′〉 = 0,

〈H ′ιX ′, ιV ′〉 = −〈ιX ′, H ′ιV ′〉 = 〈ιX ′, F ′ξ〉 = −〈ιX ′, ιU ′〉 = 0,

〈H ′ιX ′, ιU ′〉 = −〈ιX ′, H ′ιU ′〉 = 〈ιX ′, G ′ξ〉 = −〈ιX ′, ιV ′〉 = 0.

and hence F ′ιX ′, G ′ιX ′, H ′ιX ′ ∈ Hp(S
4n+3), which completes the proof. �
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Therefore, the almost quaternionic structure {F,G,H} can be induced on Tπ(p)
(QPn) and we set

(FX)∗ = F ′ιX∗, (GX)∗ = G ′ιX∗, (HX)∗ = H ′ιX∗. (11)

Next, using the Gauss formula (7) for the vertical vector field {U ′, V ′,W ′} and
a horizontal vector fields X ′ of Tp(S

4n+3), we compute

∇E
X ′U ′ = ∇ ′

X ′U ′ + g ′(A ′X ′, U ′)ξ = ∇ ′

X ′U ′ + 〈X ′, U ′〉ξ = ∇ ′

X ′U ′, (12)

by similar computation for vector fields {V ′,W ′} we have

∇E
X ′V ′ = ∇ ′

X ′V ′,

∇E
X ′W ′ = ∇ ′

X ′W ′,
(13)

where ∇E denotes the Euclidean connection of E4n+4, ∇ ′ denotes the connec-
tion of S4n+3 and A ′ denotes the shape operator with respect to ξ. Now, using
relations (10), (12) and (13) and the Weingarten formula (7), we conclude

∇ ′

X ′U ′ = −∇E
X ′F ′ξ ′ = −(∇E

X ′F ′)ξ− F ′∇E
X ′ξ

= −(r(X ′)G ′ξ− q(X ′)H ′ξ) − F ′∇E
X ′ξ

= r(X ′)V ′ − q(X ′)W ′ + F ′(ιA ′X ′)

= r(X ′)V ′ − q(X ′)W ′ + F ′ιX ′

(14)

by similar computation for vector fields {V ′,W ′} we have

∇ ′

X ′V ′ = −∇E
X ′G ′ξ ′ = −r(X ′)U ′ + p(X ′)W ′ +G ′ιX ′,

∇ ′

X ′W ′ = −∇E
X ′H ′ξ ′ = q(X ′)U ′ − p(X ′)V ′ +H ′ιX ′.

(15)

Consequently, according to notation (11), relations (14) and (15) can be writ-
ten as

∇ ′

X∗U ′ = r(X∗)V ′ − q(X∗)W ′ + (FX)∗,

∇ ′

X∗V ′ = −r(X∗)U ′ + p(X∗)W ′ + (GX)∗,

∇ ′

X∗W ′ = q(X∗)U ′ − p(X∗)V ′ + (HX)∗.

(16)

We note that, since by definition, the Lie derivative of a horizontal lift of a
vector field with respect to a vertical vector field is zero, it follows

0 = LU ′X∗ = [U ′, X∗] = ∇ ′

U ′X∗ −∇ ′

X∗U ′,

0 = LV ′X∗ = [V ′, X∗] = ∇ ′

V ′X∗ −∇ ′

X∗V ′

0 = LW ′X∗ = [W ′, X∗] = ∇ ′

W ′X∗ −∇ ′

X∗W ′
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and using (16), we conclude

∇ ′

U ′X∗ = r(X∗)V ′ − q(X∗)W ′ + (FX)∗,

∇ ′

V ′X∗ = −r(X∗)U ′ + p(X∗)W ′ + (GX)∗,

∇ ′

W ′X∗ = q(X∗)U ′ − p(X∗)V ′ + (HX)∗.

(17)

We define a Riemannian metric g and a connection ∇ in QPn respectively by

g(X, Y) = g ′(X∗, Y∗), (18)

∇XY = π(∇ ′

X∗Y∗). (19)

Then (∇ ′

XY)
∗ is the horizontal part of ∇ ′

X∗Y∗ and therefore

∇ ′

X∗Y∗ = (∇ ′

XY)
∗ + g ′(∇ ′

X∗Y∗, U ′)U ′

+ g ′(∇ ′

X∗Y∗, V ′)V ′ + g ′(∇ ′

X∗Y∗,W ′)W ′.
(20)

Using relations (16) and (18), we compute

g ′(∇ ′

X∗Y∗, U ′) = −g ′(Y∗,∇ ′

X∗U ′)

= −g ′(Y∗, r(X∗)V ′ − q(X∗)W ′ + (FX)∗) = −g(Y, FX),

g ′(∇ ′

X∗Y∗, V ′) = −g(Y,GX),

g ′(∇ ′

X∗Y∗, V ′) = −g(Y,HX),

and, using (20), we conclude

∇ ′

X∗Y∗ = (∇XY)
∗ − g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′. (21)

Proposition 2 ∇ is the Levi-Civita connection for g.

Proof. Let T be the torsion tensor field of ∇. Then we have

T(X, Y) = ∇XY −∇YX− [X, Y] = π(∇ ′

X∗Y∗) − π(∇ ′

Y∗X
∗) − [πX∗, πY∗]

= π(∇ ′

X∗Y∗ −∇ ′

Y∗X
∗ − [X∗, Y∗]) = π(T ′(X∗, Y∗)) = 0,

hence ∇ is torsion free. We now show that ∇ is a metric connection.

(∇Xg)(Y, Z) = X(g(Y, Z)) − g(∇XY, Z) − g(Y,∇XZ)

= X∗(g ′(Y∗, Z∗)) − g ′((∇XY)
∗, Z∗) − g ′(Y∗, (∇XZ)

∗).



On submersion and immersion submanifolds of a quaternionic 13

Since Z∗ is horizontal vector field, from relation (20), it follows that

g ′((∇XY)
∗, Z∗) = g ′(∇ ′

X∗Y∗, Z∗) − g ′(∇ ′

X∗Y∗, U ′)g ′(U ′, Z∗)

− g ′(∇ ′

X∗Y∗, V ′)g ′(V ′, Z∗) − g ′(∇ ′

X∗Y∗, U ′)g ′(U ′, Z∗)

= g ′(∇ ′

X∗Y∗, Z∗)

and we compute

(∇Xg)(Y, Z) = X∗(g ′(Y∗, Z∗)) − g ′(∇ ′

X∗Y∗, Z∗) − g ′(∇ ′

X∗Z∗, Y∗)

= (∇ ′

X∗g ′)(Y∗, Z∗),

where we have used the fact that ∇ ′ is the Levi-Civita connection for g ′. Thus
∇ is the Levi-Civita connection for g and the proof is complete. �

Now, by (21), it follows

[X∗, Y∗] = [X, Y]∗ + g ′([X∗, Y∗], U ′)U ′

+ g ′([X∗, Y∗], V ′)V ′ + g ′([X∗, Y∗],W ′)W ′

= [X, Y]∗ + g ′(∇ ′

X∗Y∗ −∇ ′

Y∗X
∗, U ′)U ′

+ g ′(∇ ′

X∗Y∗ −∇ ′

Y∗X
∗, V ′)V ′ + g ′(∇ ′

X∗Y∗ −∇ ′

Y∗X
∗,W ′)W ′

= [X, Y]∗ + g ′((∇ ′

XY)
∗ − g(Y, FX)U ′ − g(Y,GX)V ′

− g(Y,HX)W ′, U ′)U ′ − g ′((∇YX)
∗ − g(FY, X)U ′

− g(GY,X)V ′ − g(HY,X)W ′, U ′)U ′ + g ′((∇XY)
∗

− g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′, V ′)V ′

− g ′((∇YX)
∗ − g(FY, X)U ′ − g(GY,X)V ′ − g(HY,X)W ′, V ′)V ′

+ g ′((∇XY)
∗ − g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′,W ′)W ′

− g ′((∇YX)
∗ − g(FY, X)U ′ − g(GY,X)V ′ − g(HY,X)W ′,W ′)W ′

= [X, Y]∗ − 2g(Y, FX)U ′ − 2g(Y,GX)V ′ − 2g(Y,HX)W ′.

(22)

Consequently, using (16), (17), (21) and (22), the curvature tensor R of QPn

is calculated as follows:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z

= π{∇ ′

X∗(∇YZ)
∗) −∇ ′

Y∗(∇XZ)
∗) −∇ ′

[X,Y]∗Z
∗)}

= π{∇ ′

X∗(∇ ′

Y∗Z
∗ + g(Z, FY)U ′ + g(Z,GY)V ′ + g(Z,HY)W ′)

−∇ ′

Y∗(∇
′

X∗Z∗ + g(Z, FX)U ′ + g(Z,GX)V ′ + g(Z,HX)W ′)

−∇ ′

[X∗,Y∗]+2g(Y,FX)U ′+2g(Y,GX)V ′+2g(Y,HX)W ′Z
∗)}
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= π{∇ ′

X∗∇ ′

Y∗Z
∗ + g(Z, FY)∇ ′

X∗U ′ + g(Z,GY)∇ ′

X∗V ′

+ g(Z,HY)∇ ′

X∗W ′ −∇ ′

Y∗∇
′

X∗Z∗ − g(Z, FX)∇ ′

Y∗U
′

− g(Z,GX)∇ ′

Y∗V
′ − g(Z,HX)∇ ′

X∗W ′ −∇ ′

[X∗,Y∗]Z
∗

− 2g(Y, FX)∇ ′

U ′Z∗ − 2g(Y,GX)∇ ′

V ′Z∗ − 2g(Y,HX)∇ ′

W ′Z∗}

= π{R ′(X∗, Y∗)Z∗ + g(Z, FY)(r(X∗)V ′ − q(X∗)W ′ + (FX)∗)

+ g(Z,GY)(−r(X∗)U ′ + p(X∗)W ′ + (GX)∗)

+ g(Z,HY)(q(X∗)U ′ − p(X∗)V ′ + (HX)∗)

+ g(Z, FX)(r(Y∗)V ′ − q(Y∗)W ′ + (FY)∗)

+ g(Z,GX)(−r(Y∗)U ′ + p(Y∗)W ′ + (GY)∗)

+ g(Z,HX)(q(Y∗)U ′ − p(Y∗)V ′ + (HY)∗)

+ 2g(Y, FX)(r(Z∗)V ′ − q(Z∗)W ′ + (FZ)∗)

+ 2g(Y,GX)(−r(Z∗)U ′ + p(Z∗)W ′ + (GZ)∗)

+ 2g(Y,HX)q(Z∗)U ′ − p(Z∗)V ′ + (HZ)∗}.

Since the curvature tensor R ′ of S4n+3 satisfies

R ′(X∗, Y∗)Z∗ = g ′(Y∗, Z∗)X∗ − g ′(X∗, Z∗)Y∗ = g(Y, Z)X∗ − g(X,Z)Y∗, (23)

we conclude that the curvature tensor of QPn is given by

R(X, Y)Z = g(Y, Z)X− g(X,Z)Y

+ g(FY, Z)FX− g(FX, Z)FY − 2g(FX, Y)FZ

+ g(GY,Z)GX− g(GX,Z)GY − 2g(GX, Y)GZ

+ g(HY,Z)HX− g(HX,Z)HY − 2g(HX, Y)HZ.

(24)

4 Submanifolds of quaternionic manifolds

Let M be an n-dimensional submanifold of QP
n+p
4 and π−1(M) be the circle

bundle over M which is compatible with the Hopf map

π : Sn+p+3 −→ QP
n+p
4 .

Then π−1(M) is a submanifold of Sn+p+3. The compatibility with the Hopf
map is expressed by πoι ′ = ιoπ where ι ′ and ι are the immersions of M into

QP
n+p
4 and π−1(M) into Sn+p+3, respectively.

Let ξa, a = 1, . . . , p be orthonormal normal local fields to M in QP
n+p
4 and



On submersion and immersion submanifolds of a quaternionic 15

ξ∗a be the horizontal lifts of ξa. Then ξ
∗
a are mutually orthonormal normal

local fields to π−1(M) in Sn+p+3. At each point y ∈ π−1(M) we compute

gS(ι ′X∗, ξ∗a) = g
S((ιX)∗, ξ∗a) = g(ιX, ξa) = 0,

gS(ι ′U, ξ∗a) = g
S(U ′, ξ∗a) = 0,

gS(ι ′V, ξ∗a) = g
S(V ′, ξ∗a) = 0,

gS(ι ′W,ξ∗a) = g
S(W ′, ξ∗a) = 0,

gS(ξ∗aξ
∗

b) = g(ξa, ξb) = δab,

where gS and g denote the Riemannian metric on Sn+p+3 and QP
n+p
4 , respec-

tively. Here U ′ = ι ′U,V ′ = ι ′V,W ′ = ι ′W are unit tangent vector field of
Sn+p+3 defined by relation (10).
Now, let ∇S,∇ ′,∇ and ∇ be the Riemannian connections of Sn+p+3, π−1(M),

QP
n+p
4 and M, respectively. By means of the Gauss formula (7) and relations

(4) and (21), we compute

∇S
X∗ι ′Y∗ = ∇S

X∗(ιY)∗ = (∇XιY)
∗ − g(FιX, ιY)ι ′U

− g(GιX, ιY)ι ′V − g(HιX, ιY)ι ′W

= (ι∇XY + h(X, Y))∗ − g(ιϕX, ιY)U ′

− g(ιψX, ιY)V ′ − g(ιθX, ιY)W ′

= ι ′(∇XY)
∗ + (h(X, Y))∗

− g(ϕX, Y)U ′ − g(ψX, Y)V ′ − g(θX, Y)W ′

(25)

where g is the metric on M. On the other hand, we also have

∇S
X∗ι ′Y∗ = ι ′∇ ′

X∗Y∗ + h ′(X∗, Y∗) = ι ′((∇XY)
∗ − g(ϕX, Y)U

− g(ψX, Y)V − g(θX, Y)W) + h ′(X∗, Y∗)
(26)

where h and h ′ denote the second fundamental form of M and π−1(M), re-
spectively. Comparing the vertical part and horizontal part of relations (25)
and (26), we conclude

(h(X, Y))∗ = h ′(X∗, Y∗), (27)

that is,

p∑

a=1

g ′(A ′

aX
∗, Y∗)ξ∗a = (

p∑

a=1

g(AaX, Y)ξa)
∗ =

p∑

a=1

g(AaX, Y)ξ
∗

a,
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where Aa and A ′
a are the shape operators with respect to normal vector fields

ξa and ξ∗a of M and π−1(M), respectively. Consequently, we have

g ′(A ′

aX
∗, Y∗) = g(AaX, Y), (a = 1, ..., p).

Next, using the weingarten formula, we calculate ∇S
X∗ξ∗a as follows

∇S
X∗ξ∗a = −ι ′A ′

aX
∗ +∇ ′⊥

X∗ξ∗a = −ι ′A ′

aX
∗ +

p∑

b=1

s ′ab(X
∗)ξ∗b. (28)

where ∇ ′⊥ is normal connection π−1(M) in Sn+p+3.
On the other hand, from relation (21), it follows

∇S
X∗ξ∗a = (∇Xξa)

∗ − g(FιX, ξa)ι
′U− g(GιX, ξa)ι

′V − g(HιX, ξa)ι
′W

= (−ιAaX+∇⊥

Xξa)
∗ −

p∑

b=1

{ub(X)g(ξa, ξb)U
′

+ vb(X)g(ξa, ξb)V
′ +wb(X)g(ξa, ξb)W

′}

= −ι ′(AaX)
∗ +

p∑

b=1

(sab(X
∗)ξb)

∗ − ua(X)U ′

− va(X)V ′ −wa(X)W ′,

(29)

where ∇⊥ is normal connection M in QP
n+p
4 .

We have put

Fιx = ιϕX+

p∑

a=1

ua(X)ξa,

Gιx = ιψX+

p∑

a=1

va(X)ξa,

Hιx = ιθX+

p∑

a=1

wa(X)ξa. (30)

Comparing relations (28) and (29), we obtain

A ′

aX
∗ = (AaX)

∗ + ua(X)U ′ + va(X)V ′ +wa(X)W ′

= (AaX)
∗ + g(Ua, X)U

′ + g(Va, X)V + g(Wa, X)W
′,

∇ ′⊥

X∗ξ∗a = (∇⊥

Xξa)
∗, (31)
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that is, s ′ab(X
∗) = sab(X)

∗, where Ua, Va,Wa are defined by

Fξa = −Ua +

p∑

b=1

P1abξb,

Gξa = −Va +

p∑

b=1

P2abξb,

Hξa = −Wa +

p∑

b=1

P3abξb. (32)

where,
∑p
b=1 Piabξb = Piξa, (i = 1, 2, 3). Now, we consider ∇S

Uξ
∗
a and using

relations (17) and (32) imply

∇S
Uξ

∗

a = (Fξa)
∗ = −ιUa∗ + P1ξ

∗

a,

∇S
Vξ

∗

a = (Gξa)
∗ = −ιVa∗ + P2ξ

∗

a,

∇S
Wξ

∗

a = (Hξa)
∗ = −ιWa∗ + P3ξ

∗

a. (33)

On the other hand, from the Weingarten formula, it follows

∇S
Uξ

∗

a = −ι ′A ′

aU+∇ ′⊥

U ξ
∗

a = −ι ′A ′

aU+

p∑

b=1

s ′ab(U)ξ
∗

b,

∇S
Vξ

∗

a = −ι ′A ′

aV +∇ ′⊥

V ξ
∗

a = −ι ′A ′

aV +

p∑

b=1

s ′ab(V)ξ
∗

b,

∇S
Wξ

∗

a = −ι ′A ′

aW +∇ ′⊥

W ξ
∗

a = −ι ′A ′

aW +

p∑

b=1

s ′ab(W)ξ∗b. (34)

Consequently, using (33) and (34), we obtain

A ′

aU = U∗

a, A
′

aV = V∗

a, A
′

aW =W∗

a,

s ′ab(U) = P1, s
′

ab(V) = P2, s
′

ab(W) = P3, (35)

∇ ′⊥

U ξ
∗

a = (FX)∗ + ιUa∗ ,

∇ ′⊥

V ξ
∗

a = (GX)∗ + ιVa∗ ,

∇ ′⊥

W ξ
∗

a = (HX)∗ + ιWa∗ . (36)

The first relations of (31) and (35), we get

g ′(A ′

aA
′

bX
∗, Y∗) = g(AaAbX, Y) + u

b(X)ua(Y)

+ vb(X)va(Y) +wb(X)wa(Y),
(37)
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and especially,

g ′(A ′2
a X

∗, Y∗) = g(A2aX, Y) + u
a(X)ua(Y)

+ va(X)va(Y) +wa(X)wa(Y),
(38)

For x ∈M, let {e1, . . . , en}be an orthonormal basis of TxM and y be a point of
π−1(M) such that π(y) = x. We take an orthonormal basis {e∗1, . . . , e

∗
n, U, V,W}

of Ty(π
−1(M)). Then, using the first relations (35) and (39), we compute

p∑

a=1

traceA ′2
a =

p∑

a=1

{ n∑

i=1

g ′(A ′2
a e

∗

i , e
∗

i ) + g
′(A ′2

a U,U)

+ g ′(A ′2
a V,V) + g

′(A ′2
aW,W)}

=

p∑

a=1

{ n∑

i=1

g(A ′2
a ei, ei) + u

a(ei)u
a(ei)

+ va(ei)v
a(ei) +w

a(ei)w
a(ei)

+ g ′(A ′

aU,A
′

aU) + g
′(A ′

aV,A
′

aV) + g
′(A ′

aW,A
′

aW)}

=

p∑

a=1

{traceA2a + 2g(Ua, Ua) + 2g(Va, Va) + 2g(Wa,Wa)},

(39)

we conclude

Proposition 3 Under the above assumptions, the following inequality

p∑

a=1

traceA ′2
a ≥

p∑

a=1

traceA2a

is always valid. The equality holds, if and only if M is a {F,G,H}- invariant

submanifold.

Corollary 1 [8] M is a totally geodesic submanifold if and only if relation

Aξ = 0 holds for any normal vector field ξ of M. Particularly, M is totally

geodesic if and only if A1 = . . . = Ap = 0 for an orthonormal frame field

ξ1, . . . , ξp of T⊥(M)

Proposition 4 Under the condition stated above, if π−1(M) is a totally geodesic

submanifold of Sn+p+3, then M is a totally geodesic {F,G,H}- invariant sub-

manifold.
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Proof. Since π−1(M) is a totally geodesic submanifold of Sn+p+3, using Corol-
lary (26), it follows A ′

a = 0. The first Relation (31) then implies Aa = 0 and
Ua = Va =Wa = 0, which, using relation (32), completes the proof. �

Further, for the normal curvature ofM in QP
n+p
4 , using relation (24) and the

second relation (9), we obtain

g(R⊥(X, Y)ξa, ξb) = g([Aa, Ab]X, Y) + u
b(X)ua(Y)

− ua(X)ub(Y) + vb(X)va(Y) − va(X)vb(Y)

+wb(X)wa(Y) −wa(X)wb(Y)

− 2g(ϕX, Y)P1 − 2g(ψX, Y)P2 − 2g(θX, Y)P3

(40)

Therefore, if M be a totally geodesic submanifold of {F,G,H}- invariant
submanifold, we conclude

g(R⊥(X, Y)ξa, ξb) = −2g(ϕX, Y)P1 − 2g(ψX, Y)P2 − 2g(θX, Y)P3 (41)

In this case the normal space T⊥x (M) is also {F,G,H}- invariant and P1, P2, P3
never vanish. We have thus proved

Proposition 5 The normal curvature of a totally geodesic submanifold of

{F,G,H}- invariant submanifold of a quaternionic projective space never van-

ishes.

This proposition show that the normal connection of the quaternionic projec-
tive space which is immersed standardly in a higher dimensional quaternionic
projective space not flat.
Finally, we give a relation between the normal curvature R⊥ and R ′⊥ of M

and π−1(M), respectively, whereM is a n-dimensional submanifold of QP
n+p
4

and π−1(M) is the circle bundle over M which is compatible with the Hopf
map π. Using relation (37), we obtain

g ′([A ′

a, A
′

b]X
∗, Y∗) = g([Aa, Ab]X, Y) + u

b(X)ua(Y) − ua(X)ub(Y)

+ vb(X)va(Y) − va(X)vb(Y) +wb(X)wa(Y) −wa(X)wb(Y),

and therefore, from the second relation (9), it follows

−gS(R ′S(ι ′X∗, ι ′Y∗)ξ∗a, ξ
∗

b) + g
S(R ′⊥(X∗, Y∗)ξ∗a, ξ

∗

b)

= −g(R(ιX, ιY)ξa, ξb) + g(R
⊥(X, Y)ξa, ξb) + u

b(X)ua(Y) − ua(X)ub(Y)

+ vb(X)va(Y) − va(X)vb(Y) +wb(X)wa(Y) −wa(X)wb(Y).
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Using the expression (23) and (24) , for curvature of Sn+p+3 and QP
n+p
4 (C),

respectively and relations (30) and (32) imply

gS(R⊥(X∗, Y∗)ξ∗a, ξ
∗

b) = g(R
⊥(X, Y)ξa, ξb) + 2g(ϕX, Y)P1

+ 2g(ψX, Y)P2 + 2g(θX, Y)P3
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Abstract. In this note we point out interesting connections among Lah
numbers, Laguerre polynomials of order negative one, and exponential
polynomials. We also discuss several different expressions for the nth
derivative of exp(1/x). A new representation of this derivative is given in
terms of exponential polynomials.

1 Introduction

The Lah numbers L(n, k) (named after Ivo Lah, a Slovenian mathematician)
can be defined by the formula

L(n, k) =
n!

k!

(

n− 1

k− 1

)

, 1 ≤ k ≤ n, L(0, 0) = 1, (1)

or, by the generating function

1

k!

(

t

1− t

)k

=

∞∑

n=k

L(n, k)
tn

n!
.
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The Lah numbers convert the falling factorial to the rising factorial and vise-
versa

x(x+ 1) . . . (x+ n− 1) =

n∑

k=1

L(n, k) x(x− 1) . . . (x− k+ 1),

x(x− 1) . . . (x− n+ 1) =

n∑

k=1

(−1)n−kL(n, k) x(x+ 1) . . . (x+ k− 1)

(these are the fundamental identities obtained by Ivo Lah).
The Lah numbers have many other interesting applications in analysis and

combinatorics (see [1, 2, 9, 12, 16]). They have appeared recently in several
papers concerning the consecutive derivatives of the function exp ( 1/x). In [10]
five proofs were given of the following formula:

Dne 1/x = (−1)ne1/xx−n
n∑

k=1

L(n, k) x−k. (2)

where D = d
dx and n ≥ 1. This formula was obtained also by Feng Qi (see [13]

and the remarks in Section 5 there). The formula is a nice application of Lah
numbers to a problem in analysis.
At the same time, entry 1.1.3.2 on p. 4 in Brychkov’s handbook [6] says that

dn

dxn
[xλe−a/x] = (−1)nn!e−a/xxλ−n L

(−λ−1)
n (a/x)

where L
(α)
n (x) are the generalized (or associated) Laguerre polynomials of order

α (see [14], [16]). The same formula appears as entry 18.5.6. on page 446 in
the handbook [15]. With λ = 0 and a = −1 this becomes

Dne 1/x = (−1)nn!e1/xx−n L
(−1)
n (−1/x). (3)

As a matter of fact, the derivatives Dne 1/x have been evaluated long time
ago. For example, the nth derivative can be found in the nice little book of
Schwatt [18], first published in 1924. The formula on top of page 22 in [18]
reads

Dne cxp

= n!e cxp

x−n
n∑

k=1

(−1)k

k!
ckxpk

k∑

j=1

(−1)j
(

k

j

)(

pj

n

)

(4)
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where c, p are arbitrary parameters. The same formula appears also on page
27. With c = 1 and p = −1 this becomes

Dne 1/x = (−1)nn!e 1/xx−n
n∑

k=1

(−1)k

k!
x−k






k∑

j=1

(−1)j
(

k

j

)(

n+ j− 1

n

)





(5)

since

(

−j

n

)

= (−1)n
(

n+ j− 1

n

)

.

In the next three sections we discuss the relations among the three formulas
for Dne 1/x, namely, equations (2), (3), and (5). This will reveal interest-
ing connections of Lah numbers to Laguerre polynomials and also to Stirling
numbers. In Section 4 we present a new formula for Dne cxp

in terms of the
exponential polynomials ϕn(x) considered in [4] and [5].

2 Laguerre polynomials

The generalized Laguerre polynomials can be defined by the generating func-
tion

1

(1− t)α+1
e

−xt
1− t =

∞∑

n=0

L
(α)
n (x) tn, |t| < 1,

or by the Rodriguez formula

L
(α)
n (x) =

exx−α

n!
Dn(e−xxn+α) =

x−α

n!
(D− 1)nxn+α, n = 0, 1, . . .

(see [14]). When α = 0 these are the usual Laguerre polynomials L
(0)
n (x) =

Ln(x). Usually, in the theory of L
(α)
n (x) the restriction Re α > −1 is imposed.

In fact, the case α = −1 is very interesting and most of the theory holds true

for α = −1 . We shall focus here on the polynomials L
(−1)
n (x) defined by

L
(−1)
n (x) =

xex

n!
Dn(e−xxn−1) =

x

n!
(D− 1)nxn−1, n = 0, 1, . . .

or, by the generating function, |t| < 1

e
−xt
1− t =

∞∑

n=0

L
(−1)
n (x) tn. (6)
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We have

L
(−1)
0 (x) = 1,

L
(−1)
1 (x) = −x,

L
(−1)
2 (x) =

x2

2
− x,

L
(−1)
3 (x) =

−x3

6
+ x2 − x,

etc. The coefficients of these polynomials are very close to the Lah number
and we can see the exact connection when we compare (2) to (3). However,
we shall give an independent proof of this connection in order to justify the
value α = −1 in (3).

Proposition 1 For any n ≥ 0,

L
(−1)
n (x) =

1

n!

n∑

k=0

L(n, k) (−x)k. (7)

This reveals the connection between the Lah numbers and the Laguerre poly-

nomials L
(−1)
n (x)and it becomes clear now that formulas (2) and (3) are the

same. We also notice that (2) is true also for n = 0 with the summation
starting from k = 0, that is,

Dne 1/x = (−1)ne1/xx−n
n∑

k=0

L(n, k) x−k.

Proof. From the Rodriguez formula for L
(α)
n (x) one derives easily the repre-

sentation

L
(α)
n (x) = Γ(n+ α+ 1)

n∑

k=0

(−x)k

Γ(k+ α+ 1)k!(n− k)!

where we cannot set α = −1 directly. However, when n = 0 this becomes

L
(α)
0 (x) =

Γ(α+ 1)

Γ(α+ 1)
= 1

and any restriction on α can be dropped. For n ≥ 1 we separate the first term
with k = 0 and write

L
(α)
n (x) =

Γ(n+ α+ 1)

Γ(α+ 1)
+ Γ(n+ α+ 1)

n∑

k=1

(−x)k

Γ(k+ α+ 1)k! (n− k)!
.
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Setting α → −1 we find for n ≥ 1

L
(−1)
n (x) = Γ(n)

n∑

k=1

(−x)k

Γ(k)k! (n− k)!
,

since

lim
α→ −1

1

Γ(α+ 1)
= 0.

This representation can be written in the form

L
(−1)
n (x) =

n∑

k=1

(

n− 1

k− 1

)

(−x)k

k!
(8)

which is (7). The proof is completed. �

The representation (7) also shows an important difference between L
(−1)
n (x)

and L
(α)
n (x) for n ≥ 1 . While

L
(α)
n (0) =

Γ(n+ α+ 1)

Γ(α+ 1)

is different from zero when α 6= −1, we have L
(−1)
n (0) = 0. At the same time,

many properties of L
(α)
n (x) are shared also by L

(−1)
n (x). For example, we have

the orthogonally relation ([14, p. 84], [17, p. 204–205])

∫
∞

0

xαe−xL
(α)
n (x)L

(α)
m (x)dx =

Γ(n+ α+ 1)

n!
δn,m

for all n,m ≥ 0 and α > −1. Analyzing the proof of this equation in [17] we
conclude that it extends to α = −1 when n,m ≥ 1,

∫
∞

0

x−1e−xL
(−1)
n (x)L

(−1)
m (x)dx =

δn,m

n
. (9)

This and other properties of L
(−1)
n (x) can be used to derive properties for the

Lah numbers. Here we have the following:

Proposition 2 For any integers n,m ≥ 1, n 6= m

n∑

k=1

(−1)kL(n, k)

m∑

j=1

(−1)jL(m, j)(k+ j− 1)! = 0 (10)
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and when m = n

n∑

k=1

n∑

j=1

(−1)k+jL(n, k)L(n, j) (k+ j− 1)! =
(n!)2

n
. (11)

Proof. Substituting (7) in (9) we arrive at (10) and (11) after simple compu-
tation. �

3 The Todorov - Charalambides identity

Here we shall discuss equation (4). Let s(n, k) and S(n, k) be the Stirling
numbers of the first kind and the second kind correspondingly (see [9]). It is
known that these numbers satisfy the orthogonality relation

n∑

k=0

s(n, k)S(k,m) = δmn =

{
0 m 6= n

1 m = n

while the alternating sums are related to the Lah numbers (see [9, p. 156]):

L(n,m) = (−1)n
n∑

k=0

s(n, k)S(k,m) (−1)k. (12)

The following identity extends this representation.

Proposition 3 For any two nonnegative integers n,m, and every complex

number z we have

m!

n!

n∑

k=0

s(n, k) S(k,m) zk = (−1)m
m∑

j=0

(

m

j

)

(−1)j
(

zj

n

)

(13)

This identity was obtained by Todorov [19], who showed that both sides equal
Taylor’s coefficients of the function f(t) = ((1+ t)z − 1)m. It was also found
independently by Charalambides in his study of the generalized factorial co-
efficients (see [7] and [8]). A short proof of (13) is given in the recent paper
[3].
Now we show that equation (12) follows from (13). Setting z = −1 in (13)

we find

m!

n!

n∑

k=0

s(n, k) S(k,m) (−1)k = (−1)m
m∑

j=0

(

m

j

)

(−1)j
(

−j

n

)

. (14)
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The RHS becomes

(−1)m+n
m∑

j=0

(

m

j

)

(−1)j
(

n+ j− 1

n

)

since
(

−j

n

)

= (−1)n
(

n+ j− 1

n

)

.

Next we use a well-known identity from [11]

m∑

j=0

(

m

j

)

(−1)j
(

y+ j

n

)

= (−1)m
(

y

n−m

)

(15)

and choosing y = n− 1 we find

(−1)m+n
m∑

j=0

(

m

j

)

(−1)j
(

n+ j− 1

n

)

= (−1)n
(

n− 1

n−m

)

= (−1)n
(

n− 1

m− 1

)

.

(16)

Now from (14)

m!

n!

n∑

k=0

s(n, k) S(k,m) (−1)k = (−1)n
(

n− 1

m− 1

)

,

or
n∑

k=0

s(n, k) S(k,m) (−1)k = (−1)nL(n,m)

which proves (12).
At the same time we can apply (16) to equation (5). This gives

Dne 1/x = (−1)nn!e 1/xx−n
n∑

k=1

(−1)k

k!
x−k






k∑

j=1

(−1)j
(

k

j

)(

n+ j− 1

n

)






= (−1)nn!e 1/xx−n
n∑

k=1

(−1)k

k!
x−k

{

(−1)k
k!

n!
L(n, k)

}

= (−1)ne 1/xx−n
n∑

k=1

L(n, k)x−k

which is exactly (2). We see that the formula for the derivatives Dne 1/x was
practically found by Schwatt.
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4 Schwatt’s formula in terms of exponential poly-

nomials

With the help of the Todorov - Charalambides identity, Schwatt’s formula (4)
can be written in terma of Stirling numbers and exponential polynomials.
The polynomials ϕn(x) , n = 0, 1, . . . , defined by

ϕm(x) =

m∑

k=0

S(m,k) xk

are known as the exponential polynomials (or single-variable Bell polynomials)
– see [4] and [5]. They have the generating function

e x(e t−1) =

∞∑

n=0

ϕn(x)
tn

n!
,

and can be defined also by the important property (xD)nex = ϕn(x) e
x, n =

0, 1, . . .

Proposition 4 For any n ≥ 0 and any two numbers c, p we have

Dne cxp

= e cxp

x−n
n∑

j=0

s (n, j)pjϕj(c x
p) (17)

and in particular, when c = 1 and p = −1 ,

Dne 1/x = e 1/xx−n
n∑

j=0

s (n, j) (−1)jϕj(1/x). (18)

Proof. Substituting (13) in (4) we obtain

Dne cxp

= n!e cxp

x−n
n∑

k=1

(−1)k

k!
ckxpk





(−1)k

k!

n!

k∑

j=0

s(n, j) S(j, k)pj






= e cxp

x−n
n∑

k=1

ckxpk






k∑

j=0

s(n, j) S(j, k)pj






= e cxp

x−n
n∑

j=0

s(n, j) pj

{
j∑

k=1

ckxpkS(j, k)

}

= e cxp

x−n
n∑

j=0

s (n, j)pjϕj(c x
p).



30 K. N. Boyadzhiev

Comparing this to (2) we arrive at the identity

n∑

k=1

L(n, k) xk = (−1)n
n∑

j=0

s (n, j) (−1)jϕj(x). (19)

Also, from (8),

L
(−1)
n (x) =

(−1)n

n!

n∑

j=0

s (n, j) (−1)jϕj(−x). (20)

With p = 1/2 in (17) we have

Dne c
√

x = e c
√

xx−n
n∑

j=0

1

2j
s (n, j)ϕj(c

√
x). (21)

�
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[16] M. Petkovšek, T. Pisanski, Combinatorial interpretation of unsigned Stir-
ling and Lah numbers, Preprint 40 (2002), Univ. of Ljubljana. (Available
on the internet.)

[17] E. D. Rainville, Special Functions, Chelsea, 1971.

[18] I. J. Schwatt, An Introduction to the Operations with Series, Chelsea,
1924.

[19] P. G. Todorov, Taylor expansions of analytic functions related to
(1+ z)x − 1, J. Math. Anal. Appl., 132 (1988), 264–280.

Received: May 4, 2015



Acta Univ. Sapientiae, Mathematica, 8, 1 (2016) 32–52

DOI: 10.1515/ausm-2016-0003

On some classes of mixed-super

quasi-Einstein manifolds

Santu Dey
Department of Mathematics,
Jadavpur University, India

email: santu.mathju@gmail.com

Buddhadev Pal
Department of Mathematics,

Institute of Science,
Banaras Hindu University, India
email: pal.buddha@gmail.com

Arindam Bhattacharyya
Department of Mathematics,
Jadavpur University, India.

email: bhattachar1968@yahoo.co.in

Abstract. Quasi-Einstein manifold and generalized quasi-Einstein man-
ifold are the generalizations of Einstein manifold. The purpose of this pa-
per is to study the mixed super quasi-Einstein manifold which is also the
generalizations of Einstein manifold satisfying some curvature conditions.
We define both Riemannian and Lorentzian doubly warped product on
this manifold. Finally, we study the completeness properties of doubly
warped products on MS(QE)4 for both the Riemannian and Lorentzian
cases.

1 Introduction

The notion of quasi-Einstein manifold was introduced by M. C. Chaki and R.
K. Maity [7]. A non-flat Riemannian manifold (Mn, g), (n ≥ 3) is a quasi-
Einstein manifold if its Ricci tensor S satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) (1)
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Key words and phrases: mixed super quasi-Einstein manifold, Ricci-pseudosymmetric

manifold, Ricci semisymmetric manifold, concircular curvature tensor, quasi-conformal cur-

vature tensor, warped product, doubly warped product
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and is not identically zero, where a, b are scalars, b 6= 0 and A is a non-zero
1-form such that

g(X,U) = A(X), ∀ X ∈ χ(M), (2)

where, U being a unit vector field and χ(M) is the set of all differentiable
vector fields on M.
Here a and b are called the associated scalars, A is called the associated

1-form and U is called the generator of the manifold. Such an n-dimensional
manifold will be denoted by (QE)n.
As a generalization of quasi-Einstein manifold, in [8], U. C. De and G. C.

Ghosh defined the generalized quasi-Einstein manifold. A non-flat Riemannian
manifold is called generalized quasi-Einstein manifold if its Ricci-tensor is non-
zero and satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y), (3)

where a, b and c are non-zero scalars and A, B are two 1-forms such that

g(X,U) = A(X) and g(X,V) = B(X), (4)

U and V being unit vectors which are orthogonal, i.e.,

g(U,V) = 0. (5)

The vector fields U and V are called the generators of the manifold. This type
of manifold will be denoted by G(QE)n.
In [6], M. C. Chaki introduced the super quasi-Einstein manifold, denoted

by S(QE)n, where the Ricci tensor is not identically zero and satisfies the
condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + c[A(X)B(Y)

+A(Y)B(X)] + dD(X, Y),
(6)

where a, b, c and d are scalars such that b, c, d are nonzero, A, B are
two nonzero 1-forms defined as (4) and U, V are mutually orthogonal unit
vector fields, D is a symmetric (0, 2) tensor with zero trace which satisfies the
condition

D(X,U) = 0, ∀X ∈ χ(M). (7)

Here a, b, c and d are called the associated scalars, A, B are called the asso-
ciated main and auxiliary 1-forms respectively, U, V are called the main and
the auxiliary generators and D is called the associated tensor of the manifold.
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In [3], A. Bhattacharyya and T. De introduced the notion of mixed general-
ized quasi-Einstein manifold. A non-flat Riemannian manifold is called mixed
generalized quasi-Einstein manifold if its Ricci tensor is non-zero and satisfies
the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y)

+ d[A(X)B(Y) +A(Y)B(X)],
(8)

where a, b, c, d are non-zero scalars,

g(X,U) = A(X) and g(X,V) = B(X), ∀ X ∈ χ(M), (9)

and also

g(U,V) = 0. (10)

A, B are two non-zero 1-forms, U and V are unit vector fields corresponding
to the 1-forms A and B respectively. If d = 0, then the manifold becomes to a
G(QE)n. This type of manifold is denoted by MG(QE)n.
In [4], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion

of MS(QE)n.
A non-flat Riemannian manifold (Mn, g), (n ≥ 3) is called mixed super quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y) + d[A(X)B(Y)

+A(Y)B(X)] + eD(X, Y),
(11)

where a, b, c, d, e are scalars of which b 6= 0, c 6= 0, d 6= 0, e 6= 0 and A, B
are two non zero 1-forms such that

g(X,U) = A(X) and g(X,V) = B(X), ∀ X ∈ χ(M), (12)

U, V being mutually orthogonal unit vector fields, D is a symmetric (0, 2)

tensor with zero trace which satisfies the condition

D(X,U) = 0, ∀ X ∈ χ(M). (13)

Here a, b, c, d, e are called the associated scalars, A, B are called the associ-
ated main and auxiliary 1-forms, U, V are called the main and the auxiliary
generators and D is called the associated tensor of the manifold. We denote
this type of manifold MS(QE)n.
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The notation of warped product generalizes that of a surface of revolution.
Warped products were first defined by O’Neill and Bishop in [5]. They used
this concept to construct Riemannian manifolds with negative sectional cur-
vature. Then Beem, Ehrlich and Powell pointed out that many exact solutions
in Einstein’s field equation can be expressed in terms of Lorentzian warped
products [2].
In general, doubly warped product was studied by Btilent Unal in [12], can

be considered as a generalization of singly warped product. A doubly warped
product (M,g) is a product manifold which is of the form M =f B×b F with
the metric g = f2gB ⊕ b2

gF
where b : B −→ (0,∞) and f : F −→ (0,∞) are

smooth map.
So if (B, gB) and (F, gF) be pseudo-Riemannian manifolds and also b : B −→
(0,∞) and f : F −→ (0,∞) be smooth functions, then the doubly warped
product is the product manifold B×F furnished with the metric tensor f2gB⊕b2

gF

defined by

g = (f ◦ σ)2π∗(gB)⊕ (b ◦ π)2σ∗(gF).

The functions b : B −→ (0,∞) and f : F −→ (0,∞) are called warping
functions and π : B× F −→ B and σ : B× F −→ F are usual projections map.
If (F, gF) and (B, gB) are both Riemannian manifolds, then (fB×bF, f

2
gB
⊕b2

gF
)

is also a Riemannian manifold. We call (fB×b F, f
2
gB

⊕b2
gF
) a Loretzian doubly

warped product if (F, gF) is Riemannian and either (B, gB) is Lorentzian or else
(B, gB) is a one-dimensional manifold with a negative definite metric −dt2. If
neither b nor f is constant, then we have a proper doubly warped product.
Global hyperbolicity is the most important condition on Causality, which

lies at the top of the so-called causal hierarchy of spacetimes and is involved
in problems as Cosmic Censorship, predictability etc.
A connected Lorentzian manifold is called time-orientable iff it admits a

nowhere-vanishing timelike vector field (defining future causal directions). A
piecewise C1 curve c : I −→ M in a time-oriented manifold (M,g) is called
future iff c ′(t) is future for every t ∈ I. For any point p ∈ M, the future of
p (resp. past of p), denoted by J+(p) (resp. J−(p)), is the set of all points q

s.t.there is a future curve from p to q (resp. from q to p).
There are different alternative definitions of what global hyperbolicity means,

but perhaps the most standard one is the following. A spacetime (M,g) is said
globally hyperbolic if and only if it satisfies two conditions: (A) compactness
of J+(p) ∩ J−(q) for all p, q ∈ M (i.e. no “naked” singularity can exist) and
(B) strong causality (no “almost closed” causal curve exists).
Global hyperbolicity is also discussed in the theorem (34), (36) and the
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corollary (36) in [13].
In this paper we find that a Riemannian manifold is a manifold of mixed

super quasi constant curvature iff it is conformally flat MS(QE)n. Also we
have studied Ricci-pseudosymmetric MS(QE)n. Next we have obtained some
expressions for Riemannian curvature tensor when MS(QE)n satisfies the cur-
vature conditions C.S = 0, C̃.S = 0 and C1.S = 0, where C is the Weyl con-
formal curvature tensor, C̃ is the concircular curvature tensor and C1 quasi-
conformal curvature tensor. We have also proved that in a conformally flat
MS(QE)n (n ≥ 3) with R(X, Y).S = 0, the vector fields U, V corresponding
to 1-forms A, B are co-directional. Finally in the last two sections, we discuss
about the doubly warped product on MS(QE)n and completeness of doubly
warped products on MS(QE)4 with examples.

2 Preliminaries

In this section we considerMS(QE)n, (n ≥ 3) with associated scalars a, b, c, d, e,
associated main and auxiliary 1-formsA,B,main and auxiliary generatorsU,V

and associated symmetric (0, 2) tensor D.
So (11), (12) and (13) will hold. Since U and V are mutually orthogonal

unit vector fields, we have

g(U,U) = 1, g(V, V) = 1 and g(U,V) = 0, (14)

traceD = 0 (15)

D(X,U) = 0, ∀ X ∈ χ(M). (16)

Also using (14) in (12), we get

A(V) = B(U) = 0. (17)

Now setting X = Y = ei, where {ei} be an orthonormal basis of the tangent
space at each point of the manifold, in (11) and taking summation over i,
1 ≤ i ≤ n, we obtain

r = na+ b+ c, (18)

where r is the scalar curvature of the manifold.
Also, from (11), we have

S(U,U) = a+ b (19)

S(V, V) = a+ c+ eD(V, V) (20)

S(U,V) = d. (21)
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If X is a unit vector field, then S(X,X) is the Ricci-curvature in the direction
of X. Hence from (19) and (20) we can state that a+ b and a+ c+ eD(V, V)

are the Ricci curvature in the directions of U and V respectively.
Let Q be the Ricci operator, i.e.,

g(QX, Y) = S(X, Y) ∀ X, Y ∈ χ(M). (22)

Also we have

g(lX, Y) = D(X, Y). (23)

Another notion of curvature called mixed super quasi constant curvature was
introduced in [4]. A Riemannian manifold is said to be a manifold of mixed
super quasi-constant curvature if it is conformally flat and the curvature tensor
R of type (0, 4) satisfies the condition

R̃(X, Y, Z,W) = m[g(Y, Z)g(X,W) − g(X,Z)g(Y,W)] + p[g(X,W)A(Y)

A(Z) − g(Y,W)A(X)A(Z) + g(Y, Z)A(X)A(W) − g(X,Z)

A(Y)A(W)] + q[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)] + s[{A(Y)B(Z)

+ B(Y)A(Z)}g(X,W) − {A(X)B(Z) + B(X)

A(Z)}g(Y,W) + {A(X)B(W) + B(X)A(W)}g(Y, Z)

− {A(Y)B(W) + B(Y)A(W)}g(X,Z)] + t[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(X,W)D(Y, Z) − g(Y,W)D(X,Z)].

(24)

An n-dimensional Riemannian manifold (Mn, g) is called Ricci-pseudosymmetric
[9] if the tensors R.S and Q(g, S) are linearly dependent, where

(R(X, Y).S)(Z,W) = −S(R(X, Y)Z,W) − S(Z, R(X, Y)W), (25)

Q(g, S)(Z,W;X, Y) = −S((X∧ Y)Z,W) − S(Z, (X∧ Y)W) (26)

and
(X∧ Y)Z = g(Y, Z)X− g(X,Z)Y

for vector fields X, Y, Z,W on Mn, R denotes the curvature tensor of Mn. The
condition of Ricci-pseudosymmetry is equivalent to the relation

(R(X, Y).S)(Z,W) = LSQ(g, S)(Z,W;X, Y) (27)

holding on the set

US = {x ∈ M : S 6= r

n
g at x}, (28)
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where LS is some function on US. If R.S = 0 then Mn is called Ricci-semi-
symmetric. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric but
the converse is not true [9].
The Weyl conformal curvature tensor C of type (1, 3) of an n-dimensional
Riemannian manifold (Mn, g), (n ≥ 3) is defined by [15]

C(X, Y)Z = R(X, Y)Z−
1

n− 2
[S(Y, Z)X− S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY] +
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(29)

The concircular curvature tensor C̃ of type (1, 3) of n-dimentional Riemanian
manifold (Mn, g),(n ≥ 3) is defined by [15]

C̃(X, Y)Z = R(X, Y)Z−
r

n(n− 1)
[g(Y, Z)X− g(X,Z)Y] (30)

for any vector fields X, Y, Z ∈ χ(M).
The quasi-conformal curvature tensor was defined by Yano and Sawaki [14] as

C1(X, Y)Z = λR(X, Y)Z+ µ{S(Y, Z)X+ S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY}−
r

n

[

λ

(n− 1)
+ 2µ

]

[g(Y, Z)X− g(X,Z)Y],
(31)

where λ and µ are nonzero constants. If λ = 1 and µ = 1
n−2 , then quasi-

conformal curvature tensor is reduced to the conformal curvature tensor.

3 Relation between manifold of mixed super quasi

constant curvature and MS(QE)n

Let M be a Riemannian manifold with mixed super quasi constant curvature
and {ei} be an orthonormal basis of the tangent space at each point of the
manifold. Taking X = W = {ei} and summing over i, 1 ≤ i ≤ n in (24) and
using (23), we obtain

S(Y, Z) = m(n− 2)g(Y, Z) + p(n− 2)A(Y)A(Z) + q(n− 2)B(Y)B(Z)

+ s(n− 2)[A(Y)B(Z) +A(Z)B(Y)] + t(n− 2)D(Y, Z),
(32)

which imply

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y) + d[A(X)B(Y)

+A(Y)B(X)] + eD(X, Y),
(33)



On some classes of mixed-super quasi-Einstein manifolds 39

where a = m(n− 2), b = p(n− 2), c = q(n− 2), d = s(n− 2), e = t(n− 2).
So, (Mn, g) is a MS(QE)n.

Conversely, suppose (Mn, g) is conformally flat MS(QE)n. Then

R(X, Y)Z =
1

n− 2
{g(Y, Z)QX− g(X,Z)QY + S(Y, Z)X− S(X,Z)Y}

−
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(34)

Now using (11), (18) and (19), we get

R̃(X, Y, Z,W) = [g(Y, Z)g(X,W)

− g(X,Z)g(Y,W)]

{
2a

n− 2
−

na+ b+ c

(n− 1)(n− 2)

}

+ [g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)

+ g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)]

{
b

n− 2

}

+ [g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)]

{
c

n− 2

}

+ [{A(Y)B(Z) + B(Y)A(Z)}g(X,W) − {A(X)B(Z)

+ B(X)A(Z)}g(Y,W) + {A(X)B(W) + B(X)A(W)}g(Y, Z)

− {A(Y)B(W) + B(Y)A(W)}g(X,Z)]

{
d

n− 2

}

+ [g(Y, Z)D(X,W) − g(X,Z)D(Y,W)

+ g(X,W)D(Y, Z) − g(Y,W)D(X,Z)]

{
e

n− 2

}

.

(35)

So,

R̃(X, Y, Z,W) = m1[g(Y, Z)g(X,W) − g(X,Z)g(Y,W)]

+ p1[g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)

+ g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)]

+ q1[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)]

+ s1[{A(Y)B(Z) + B(Y)A(Z)}g(X,W)

− {A(X)B(Z) + B(X)A(Z)}g(Y,W) + {A(X)B(W)

+ B(X)A(W)}g(Y, Z) − {A(Y)B(W)

(36)
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+ B(Y)A(W)}g(X,Z)] + t[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(X,W)D(Y, Z) − g(Y,W)D(X,Z)],

where, m =
a(n−2)−b−c
(n−1)(n−2)

, p = b
n−2 , q = c

n−2 , s =
d

n−2 , t =
e

n−2 .

So, (Mn, g) is a manifold of mixed super quasi constant curvature.
Then we have the following theorem:

Theorem 1 A Riemannian manifold is a manifold of mixed super quasi con-
stant curvature iff it is conformally flat MS(QE)n.

4 Ricci-pseudosymmetric MS(QE)n

In this section we consider a Ricci-pseudosymmetric MS(QE)n and prove the
following theorem:

Theorem 2 Let (Mn, g), (n ≥ 3), be a MS(QE)n. If M
n is Ricci-pseudosym

metric then the following conditions hold on Mn :

R(X, Y,U, V) = LS{A(Y)B(X) −A(X)B(Y)} (37)

D(R(X, Y)U,V) = LS{A(Y)D(X,V) −A(X)D(Y, V)} (38)

D(R(X, Y)V, V) = LS{B(Y)D(X,V) − B(X)D(Y, V)} (39)

for all vector fields X, Y on Mn, where U,V are the generators of the manifold
Mn.

Proof. Assume that Mn is Ricci-pseudosymmetric. Then by the use of (25)
to (28), we can obtain

S(R(X, Y)Z,W) + S(Z, R(X, Y)W) = LS{g(Y, Z)S(X,W) − g(X,Z)S(Y,W)

+ g(Y,W)S(X,Z) − g(X,W)S(Y, Z)}.
(40)

Since Mn is also MS(QE)n, using the well-known properties of the curvature
tensor R we get

b[A(R(X, Y)Z)A(W) +A(Z)A(R(X, Y)W)] + c[B(R(X, Y)Z)B(W)

+ B(Z)B(R(X, Y)W)] + d[A(R(X, Y)Z)B(W) +A(W)B(R(X, Y)Z)

+A(Z)B(R(X, Y)W) +A(R(X, Y)W)B(Z)] + e[D(R(X, Y)Z,W)

+D(Z, R(X, Y)W)] = LS{b[g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)

+ g(Y,W)A(X)A(Z) − g(X,W)A(Y)A(Z)] + c[g(Y, Z)B(X)B(W)

− g(X,Z)B(Y)B(W) + g(Y,W)B(X)B(Z) − g(X,W)B(Y)B(Z)]

(41)
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+ d[g(Y, Z)A(X)B(W) + g(Y, Z)A(W)B(X) − g(X,Z)A(Y)B(W)

− g(X,Z)A(W)B(Y) + g(Y,W)A(X)B(Z) + g(Y,W)A(Z)B(X)

− g(X,W)A(Y)B(Z) − g(X,W)A(Z)B(Y)] + e[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(Y,W)D(X,Z) − g(X,W)D(Y, Z)]}.

Putting Z = U and W = V in (41), we get

b[R(X, Y, V,U) − LS{A(X)B(Y) −A(Y)B(X)}] + c[R(X, Y,U, V)

− LS{A(Y)B(X) −A(X)B(Y)}] + e[D(R(X, Y)U,V)

− LS{A(Y)D(X,V) −A(X)D(Y, V)}] = 0.

(42)

Taking Z = W = U in (41), we get

d[R(X, Y,U, V) − LS{A(Y)B(X) −A(X)B(Y)}] = 0.

Since d 6= 0, we get

R(X, Y,U, V) − LS{A(Y)B(X) −A(X)B(Y)} = 0. (43)

Which gives (37). Similarly, if we take Z = W = V in (41), we get

d[R(X, Y, V,U) − LS{A(X)B(Y) −A(Y)B(X)}] + e[D(R(X, Y)V, V)

− LS{B(Y)D(X,V) − B(X)D(Y, V)}] = 0.
(44)

From (42) and (43), we get

e[D(R(X, Y)U,V) − LS{A(Y)D(X,V) −A(X)D(Y, V)}] = 0.

Since e 6= 0,

D(R(X, Y)U,V) − LS{A(Y)D(X,V) −A(X)D(Y, V)} = 0.

Which gives (38).
Again from (43) and (44), we obtain (39). So our theorem is proved. �

5 MS(QE)n satisfying the condition C.S = 0

In this section we consider a MS(QE)n)(n ≥ 3) satisfying the condition C.S =

0. Then we have

S(C(X, Y)Z,W) + S(Z,C(X, Y)W) = 0. (45)
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Now using (11) in (45), we get,

ag(C(X, Y)Z,W) + bA(C(X, Y)Z)A(W) + cB(C(X, Y)Z)B(W)

d[A(C(X, Y)Z)B(W) + B(C(X, Y)Z)A(W)] + eD(C(X, Y)Z,W)

ag(Z,C(X, Y)W) + bA(Z)A(C(X, Y)W) + cB(Z)B(C(X, Y)W)

d[A(Z)B(C(X, Y)W) + B(Z)A(C(X, Y)W)] + eD(Z,C(X, Y)W) = 0.

(46)

From (46),

b[A(C(X, Y)Z)A(W) +A(Z)A(C(X, Y)W)] + c[B(C(X, Y)Z)B(W)

+ B(Z)B(C(X, Y)W)] + d[A(C(X, Y)Z)B(W) + B(C(X, Y)Z)A(W)

+A(Z)B(C(X, Y)W) + B(Z)A(C(X, Y)W)] + e[D(C(X, Y)Z,W)

+D(Z,C(X, Y)W)] = 0.

(47)

Putting Z = W = U in (47), we get

2b[A(C(X, Y)U] + 2d[B(C(X, Y)U] = 0. (48)

So, we obtain

2d[B(C(X, Y)U] = 0

As d 6= 0, we get,

B(C(X, Y)U = 0. (49)

That is

C(X, Y,U, V) = 0. (50)

So, from (29), we obtain

R(X, Y,U, V) =
1

n− 2
[A(QY)B(X) −A(X)B(QY) +A(Y)B(QX)

−A(QX)B(Y)] −
r

(n− 1)(n− 2)
{A(Y)B(X) −A(X)B(Y)}

(51)

So, we can state that

Theorem 3 In a MS(QE)n (n ≥ 3) with C.S = 0, the curvature tensor R of
the manifold satisfies the relation (51).
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6 MS(QE)n satisfying the condition C̃.S = 0

In this section we consider a MS(QE)n (n ≥ 3) satisfying the condition C̃.S =

0.Then we have,

S(C̃(X, Y)Z,W) + S(Z, C̃(X, Y)W) = 0. (52)

From (11) in (52), we get,

ag(C̃(X, Y)Z,W) + bA(C̃(X, Y)Z)A(W) + cB(C̃(X, Y)Z)B(W)

d[A(C̃(X, Y)Z)B(W) + B(C̃(X, Y)Z)A(W)] + eD(C̃(X, Y)Z,W)

ag(Z, C̃(X, Y)W) + bA(Z)A(C̃(X, Y)W) + cB(Z)B(C̃(X, Y)W)

d[A(Z)B(C̃(X, Y)W) + B(Z)A(C̃(X, Y)W)] + eD(Z, C̃(X, Y)W) = 0.

(53)

Putting Z = W = U in (53), we get

d[B(C(X, Y)U] = 0.

As d 6= 0,

B(C̃(X, Y)U = 0. (54)

That is,

C̃(X, Y,U, V) = 0. (55)

So, from (30), we get

R(X, Y,U, V) =
r

n(n− 1)
[A(Y)B(X) −A(X)B(Y)]. (56)

Thus, we have

Theorem 4 In a MS(QE)n (n ≥ 3) with C̃.S = 0, the curvature tensor R of
the manifold satisfies the relation (56).

7 MS(QE)n satisfying the condition C1.S = 0

In this section we consider a MS(QE)n (n ≥ 3) satisfying the condition C1.S =

0. Then we have,

S(C1(X, Y)Z,W) + S(Z,C1(X, Y)W) = 0 (57)

for any vector fields X, Y, Z,W ∈ χ(M). Then we have the following theorem:
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Theorem 5 Let (Mn, g) (n ≥ 3) be a MS(QE)n. If the condition C1.S = 0

holds on Mn then the curvature tensor R of Mn satisfies the following property:

λR(X, Y,U, V) =

[

na+ b+ c

n

(

λ

n− 1
+ 2µ

)

− µ(2a+ b+ c)

]

{A(Y)B(X)

−A(X)B(X)}− µe{D(X,V)A(Y) −D(Y, V)A(X)}

(58)

for all vector fields X, Y on Mn, where U,V are the generators of the manifold
Mn.

Proof. Since, C1.S = 0 holds on Mn we have,

S(C1(X, Y)Z,W) + S(Z,C1(X, Y)W) = 0.

Since Mn be a MS(QE)n, using (11) in (57), we obtain

ag(C1(X, Y)Z,W) + bA(C1(X, Y)Z)A(W) + cB(C1(X, Y)Z)B(W)

d[A(C1(X, Y)Z)B(W) + B(C1(X, Y)Z)A(W)] + eD(C1(X, Y)Z,W)

ag(Z,C1(X, Y)W) + bA(Z)A(C1(X, Y)W) + cB(Z)B(C1(X, Y)W)

d[A(Z)B(C1(X, Y)W) + B(Z)A(C1(X, Y)W)] + eD(Z,C1(X, Y)W) = 0.

(59)

From (59),

b[A(C1(X, Y)Z)A(W) +A(Z)A(C1(X, Y)W)] + c[B(C1(X, Y)Z)B(W)

+ B(Z)B(C1(X, Y)W)] + d[A(C1(X, Y)Z)B(W) + B(C1(X, Y)Z)A(W)

+A(Z)B(C1(X, Y)W) + B(Z)A(C1(X, Y)W)] + e[D(C1(X, Y)Z,W)

+D(Z,C1(X, Y)W)] = 0.

(60)

Putting Z = W = U in (60), we get

2b[A(C1(X, Y)U] + 2d[B(C1(X, Y)U] = 0. (61)

So, we obtain
2d[B(C1(X, Y)U] = 0.

As d 6= 0, we get

B(C1(X, Y)U = 0. (62)

That is
C1(X, Y,U, V) = 0.
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Now using (31), we obtain

λR(X, Y,U, V) = µ{S(X,U)g(Y, V) − S(Y,U)g(X,V) − g(Y,U)S(X,V)

+ g(X,U)S(Y, V)}+
r

n

[

λ

(n− 1)
+ 2µ

]

[g(Y,U)g(X,V)

− g(X,U)g(Y, V)].

(63)

Using (11) and (18) in (63), we get,

λR(X, Y,U, V) =

[

na+ b+ c

n

(

λ

n− 1
+ 2µ

)

− µ(2a+ b+ c)

]

{A(Y)B(X)

−A(X)B(X)}− µe{D(X,V)A(Y) −D(Y, V)A(X)}.

Hence the proof. �

8 Conformally flat MS(QE)n (n ≥ 3) with

R(X, Y).S = 0

Let us consider a conformally flat MS(QE)n (n ≥ 3). Then, from (29), we get

R(X, Y)Z =
1

n− 2
[S(Y, Z)X− S(X,Z)Y + g(Y, Z)QX− g(X,Z)QY]

+
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(64)

Since the manifold satisfies R(X, Y).S = 0, we get

S(R(X, Y)Z,W) + S(Z,C(X, Y)W) = 0. (65)

Using (64) in (65) we obtain

g(Y, Z)S(QX,W) − g(X,Z)S(QY,W) + g(Y,W)S(QX,Z)

− g(X,W)S(QY,Z) =
r

n− 1
[g(Y, Z)S(X,W)

− g(X,Z)S(Y,W) + g(Y,W)S(X,Z)

− g(X,W)S(Y, Z)].

(66)

Let λ be the eigen value of Q corresponding to the eigen vector X. Then
QX = λX, i.e., S(X,W) = λg(X,W) (where the manifold is not Einstein) and
hence

S(QX,W) = λS(X,W). (67)
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Now using (67) in (66) we get,
(

λ−
r

n− 1

)

[g(Y, Z)S(X,W) − g(X,Z)S(Y,W) + g(Y,W)S(X,Z)

− g(X,W)S(Y, Z) = 0.

Which gives

g(Y, Z)S(X,W)−g(X,Z)S(Y,W)+g(Y,W)S(X,Z)−g(X,W)S(Y, Z) = 0, (68)

provided λ− r
n−1 6= 0. Now using (11) in (68) we get

g(Y, Z)[ag(X,W) + bA(X)A(W) + cB(X)B(W) + d{A(X)B(W)

+ B(X)A(W)}+ eD(X,W)] − g(X,Z)[ag(Y,W) + bA(Y)A(W)

+ cB(Y)B(W) + d{A(Y)B(W) + B(Y)A(W)}+ eD(Y,W)] + g(Y,W)

[ag(X,Z) + bA(X)A(Z) + cB(X)B(Z) + d{A(X)B(Z) + B(X)A(Z)}

+ eD(X,Z)] − g(X,W)[ag(Y, Z) + bA(Y)A(Z) + cB(Y)B(Z)

+ d{A(Y)B(Z) + B(Y)A(Z)}+ eD(Y, Z)] = 0.

(69)

Now putting Z = W = U in (69), we obtain,

2d[A(Y)B(X) − B(Y)A(X)] = 0.

As d 6= 0, so

A(Y)B(X) − B(Y)A(X) = 0, (70)

that is, the vector fields U and V are co-directional. Thus we can state the
following:

Theorem 6 If, in a conformally flat Ricci-semisymmetric MS(QE)n (n ≥ 3)
r

n−1 is not an eigenvalue of the Ricci-operator Q, the vector fields U and V

corresponding to the 1-forms A and B respectively are co-directional.

9 Example of doubly warped product on MS(QE)n

In [10], B. Pal, A. Bhattacharyya and M. Tarafdar defined warped product
on MS(QE)4. Here, we define doubly warped product on four dimensional
MS(QE)n. Let (M

4, g) be a 4-dimensional Lorentzian manifold endowed with
the metric given by

ds2 = gijdx
idxj = (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2 − (dx4)2], (71)
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where p > 0 is a smooth function and i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the
standard coordinates of M4.
In [11], A. A. Shaikh and S. K. Hui have shown that (71) becomes G(QE)n.
As it is non-Einstein metric, so one can easily show that (71) is MS(QE)n.
We know that (fB ×b F, f2gB ⊕ b2

gF
) is a Lorentzian doubly warped prod-

uct if (F, gF) is Riemannian and either (B, gB) is Lorentzian or else (B, gB) is
a one-dimensional manifold with a negative definite metric −dt2. To define
Lorentzian doubly warped product onMS(QE)n, we take the line element on
R× R3 where we consider R is the B and R3 is the F. If we consider the above
example, we have the metric gF , where (F, gF) is Riemannian and the metric
gB, where (B, gB) is a one-dimensional manifold with a negative definite metric
ds2B = −(dx4)2. Here, the metric gF on R3 is

ds2F =
1

1+ 2p
[(dx1)2 + (dx2)2 + (dx3)2]

and the warping function
f : R3 −→ (0,∞)

is defined by
f(x1, x2, x3) =

√

(1+ 2p)

and the other warping function is

b : R −→ (0,∞),

which is defined by
b(x4) = (1+ 2p).

Here, we see that the warping functions f =
√

(1+ 2p) > 0 and b = (1+2p) >

0, both are also smooth functions. Therefore the metric

ds2M = f2ds2B + b2ds2F

which is

ds2 = gijdx
idxj = −(1+ 2p)(dx4)2 + (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2].

This is the example of Lorentzian doubly warped product on MS(QE)4.
Next we consider the another example. Let (M4, g) be a Riemannian man-

ifold endowed with the metric given by

ds2 = gijdx
idxj = e2x

1

(dx1)2 + sin2 x1[(dx2)2 + (dx3)2 + (dx4)2], (72)
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where 0 < x1 < π
2 but x1 6= π

4 and i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the
standard coordinates of M4. Then it can be easily shown that it is a mixed
super quasi-Einstein manifold with non-vanishing scalar curvature.
We know that (fB×b F, f

2
gB

⊕ b2
gF
) is a Riemannian doubly warped product

if (F, gF) and (B, gB) are both Riemannian manifolds. To define Riemannian
doubly warped product on MS(QE)4, we take the line element on L2 × L2,
where B = F = L2 = R × R. If we consider the example (72), we have the
metric gB, where (B, gB) is Riemannian and the metric gF , where (F, gF) is
also Riemannian with metrices

ds2B = (dx1)2 +
1

e2x
1
sin2 x1(dx2)2,

ds2F =
1

sin2 x1
[(dx3)2 + (dx4)2]

and the warping function
f : L2 −→ (0,∞)

is defined by

f(x1, x2) =
√

e2x
1

and the other warping function is

b : L2 −→ (0,∞),

which is defined by
b(x3, x4) = sin2 x1.

Here, we see that the warping functions f =
√
e2x

1

> 0 and b = sin2 x1 > 0

both are also smooth functions. Therefore the metric

ds2M = f2ds2B + b2ds2F

which is

ds2M = e2x
1

[

(dx1)2 +
1

sin2 x1
(dx2)2

]

+ sin4 x1
[

1

sin2 x1
(dx3)2 +

1

sin2 x1
(dx4)2

]

,

is the example of Riemannian doubly warped product on MS(QE)4.

10 Completeness of doubly warped products on

MS(QE)4

In this section, we obtain some results on completeness properties of Rie-
mannian doubly warped products and Lorentzian doubly warped products on
MS(QE)4.
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The Riemannian case

In this subsection, we state some results about completeness of Riemannian
doubly warped products. Here we want to investigate about the completeness
properties of Riemannian doubly warped products with respect to the example
(72), which is MS(QE)4. Now it is clear that inf(f) > 0 and inf(b) > 0 and
B = F = L2 = R × R. Therefore (B, gB) and (F, gF) are complete Riemannian
manifolds. Hence by proposition (32) of [12], we can state that

Example 1 Let M = B × F be a Riemannian doubly warped product on
MS(QE)4 endowed with the metric given by

ds2M = e2x
1

[

(dx1)2 +
1

sin2 x1
(dx2)2

]

+ sin4 x1
[

1

sin2 x1
(dx3)2 +

1

sin2 x1
(dx4)2

]

,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then (M4, g) is a
complete Riemannian manifold.

Here we want to discuss about global hyperbolicity of mixed super quasi-
Einstein space-time with doubly warped product fibers by using [1]. Let us
consider the example. Let (M4, g) be a Riemannian manifold endowed with
the metric given by

ds2M = −(dx4)2 + x1
[

(x3)4{(dx1)2}+
2d

(x3)4

{

(dx2)2 +
(x3)4

2dx1
(dx3)2

}]

,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then it can be easily
shown that it is a mixed super quasi-Einstein manifold with non vanishing
scalar curvature. Now this manifold is of the form

M = (c, d)×h (Bf ×b F),

a Lorentzian singly warped product with the metric

g = −(dx4)2 ⊕ h2(f2gB + b2gF),

where −∞ ≤ c ≤ d ≤ ∞,

h : (c, d) −→ (0,∞)

is defined by h =
√
x1, which is strictly positive and smooth. Also (B, gB) and

(F, gF) are complete Riemannian manifolds and inf(b) that is inf(
√
2d

(x3)2
) > 0

or inf(f) that is inf((x3)2) > 0. Then we have the following:
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Example 2 Let M = (c, d)×h(Bf×bF), be a Lorentzian singly warped product
on MS(QE)4 endowed with the metric given by

ds2M = −(dx4)2 + x1
[

(x3)4{(dx1)2}+
2d

(x3)4

{

(dx2)2 +
(x3)4

2dx1
(dx3)2

}]

,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then (M4, g) is glob-
ally hyperbolic.

Lorentzian case

We now consider the nonspacelike geodesic completeness of Lorentzian warped
products of the form

M =f (c, d)×b F

with the metric

g = f2dt2 ⊕ b2gF,

where −∞ ≤ c ≤ d ≤ ∞. Here a space-time is said to be null (respectively,
timelike) geodesically incomplete if some future directed null (respectively,
timelike) geodesic can not be extended for arbitrary negative and positive
values of an affine parameter. Let us consider (M4, g) be a 4-dimensional
Lorentzian manifold endowed with the metric given by

ds2 = e2x
1

(dx1)2 + (sin2)x1[(dx2)2 + (dx3)2 − (dx4)2],

where, x1, x2, x3, x4 are the standard coordinates of M4. Then it is clear that
it is mixed super quasi-Einstein manifold with non vanishing scalar curvature.
Now, this metric can be written as

ds2 = e2x
1

[

(dx1)2 +
1

sin2 x1
(dx2)2

]

+ sin4 x1
[

1

sin2 x1
(dx3)2 −

1

sin2 x1
(dx4)2

]

.

Take B = F = L2 = R× R and define

f : L2 −→ (0,∞)

is defined by

f(x1, x2) =
√

e2x
1

and the another function

b : L2 −→ (0,∞)
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is defined by

b(x3, x4) = sin2 x1.

Let us define

α : (−∞,∞) −→ B

is defined by

α(t) = (t, t)

and

β : (−∞,∞) −→ B

is defined by

β(t) = (t, t).

Clearly, α and β are complete null geodesics of B and F. Also, if γ = (α,β)

then it is a null pre-geodesic in M and γ′′ = γ by equation in proposition 2.3

in [12]. Now using the example (3.8) in [12], we get γ is incomplete. Then we
can state

Example 3 If (B, gB) and (F, gF) are null complete pseudo-Riemannian man-
ifolds then M =f B ×b f is not a null complete pseudo-Riemannian doubly
warped product with the metric gM = f2gB ⊕ b2gF on MS(QE)4.
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Abstract. In this paper, we study the geometry of the pseudo-slant
submanifolds of a cosymplectic space form. Necessary and sufficient con-
ditions are given for a submanifold to be a pseudo-slant submanifold,
pseudo-slant product, mixed geodesic and totally geodesic in cosymplec-
tic manifolds. Finally, we give some results for totally umbilical pseudo-
slant submanifold in a cosymplectic manifold and cosymplectic space
form.

1 Introduction

The differential geometry of slant submanifolds has shown an increasing devel-
opment since B. Y. Chen [3, 4] defined slant submanifolds in complex manifolds
as a natural generalization of both the invariant and anti-invariant subman-
ifolds. Many research articles have been appeared on the existence of these
submanifolds in different knows spaces. The slant submanifols of an almost
contact metric manifolds were defined and studied by A. Lotta [2]. After, this
type submanifolds were studied by J.L Cabrerizo et. al [7] of Sasakian mani-
folds. Recently, in [8] M. Atçeken studied slant and pseudo-slant submanifold
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in (LCS)n-manifolds. The notion of semi-slant submanifolds of an almost Her-
mitian manifold was introduced by N. Papagiuc [12]. Recently, A. Carriazo [1]
defined and studied bi-slant immersions in almost Hermitian manifolds and
simultaneously gave the notion of pseudo-slant submanifolds in almost Her-
mitian manifolds. The contact version of pseudo-slant submanifolds has been
defined and studied by V. A. Khan and M. A. Khan [15].
In this paper, we study pseudo-slant submanifolds of a cosymplectic mani-

fold. In section 2, we review basic formulas and definitions for a cosymplectic
manifold and their submanifolds. In section 3, we recall the definition and
some basic results of a pseudo-slant submanifold of an almost contact metric
manifold. In section 4, we give some new results for totally umbilical pseudo-
slant submanifold in a cosymplectic manifold M̃ and cosymplectic space form
M̃(c).

2 Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary fact and formulas from the theory of Cosymplectic manifolds
and their submanifols.
Let M̃ be a (2m+ 1)-dimensional almost contact metric manifold together

with a metric tensor g, a tensor field φ of type (1, 1), a vector field ξ and a

1-form η on M̃ which satisfy

φ2X = −X+ η(X)ξ, (1)

φξ = 0, η(φX) = 0, η(ξ) = 1, η(X) = g(X, ξ) (2)

and

g(φX,φY) = g(X, Y) − η(X)η(Y), g(φX, Y) = −g(X,φY) (3)

for any vector fields X, Y on M̃. An almost contact structure (φ, ξ, η) is said

to be normal if the almost complex structure J on the product manifold M̃×R

given by

J(X, f
d

dt
) = (φX− fξ, η(X)

d

dt
),

where f is the C∞− function on M̃ × R. The condition for normality in
terms of φ, ξ and η is [φ,φ] + 2dη ⊗ ξ = 0 on M̃, where [φ,φ] (X, Y) = φ2

[X, Y] + [φX,φY] − φ [φX, Y] − φ [X,φY] is the Nijenhuis tensor of φ. Finally
the fundamental 2−form Φ is defined by Φ(X, Y) = g(X,φY).
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An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic,
if it is normal and both Φ and are η closed. So we have on a cosymplectic
manifold M̃

(∇̃Xφ)Y = 0 (4)

for any vector fields X, Y on M̃. (4) implies that

∇̃Xξ = 0 (5)

for any X ∈ Γ(TM̃), that is ξ is a killing vector field.

Let R̃ be the curvature tensor of the connection ∇̃. The sectional curvature
of a φ- sectional is called a φ- sectional curvature. A cosymplectic manifold
with constant φ- sectional curvature c is said to be a cosymplectic space form
and it is denoted by M̃(c). The curvature tensor R̃ of a cosymplectic space

form M̃(c) is given by

R̃(X, Y)Z =
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(φY,Z)φX

+ g(X,φZ)φY + 2g(X,φY)φZ}

(6)

for any vector fields X, Y, Z tangent to M̃[13].
Now, let M be an isometrical immersed submanifold of a contact metric

manifold M̃ and denote by the same symbol g the Riemanian metric induced
on M. Let Γ(TM) and Γ(T⊥M) be the diferential vector fields set tangent and
normal to M, respectively. Also we denote by ∇ and ∇⊥ induced connections
on Γ(TM) and Γ(T⊥M), respectively. Then the Gauss and Weingarten formulas
are, respectively, given by

∇̃XY = ∇XY + h(X, Y) (7)

and

∇̃XV = −AVX+∇⊥

XV, (8)

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are the second funda-

mental form and shape operator for the immersed of M into M̃, respectively.
They are related as

g(AVX, Y) = g(h(X, Y), V). (9)
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We put

hr
ij = g(h(ei, ej), er) and ‖h‖2 =

n
∑

i,j=1

g(h(ei, ej), h(ei, ej)) ,

where, {e1, e2, . . . , en} is an orthonormal basis of Γ(TM) and {en+1, . . . , e2m+1}

is also orthonormal basis of Γ(T⊥M).
The mean curvature vector H of M is given by

H =
1

n
trace(h) =

1

n

n
∑

i=1

h(ei, ei). (10)

A submanifold M of an contact metric manifold M̃ is said to be totally um-
bilical if

h(X, Y) = g(X, Y)H, (11)

where H is the mean curvature vector. A submanifold M is said to be totally
geodesic submanifold if h(X, Y) = 0, for each X, Y ∈ Γ(TM) and M is said to
be minimal submanifold if H = 0.

For any submanifold M of a Riemannian manifold M̃, the equation of Gauss
is given by

R̃(X, Y)Z = R(X, Y)Z+Ah(X,Z)Y −Ah(Y,Z)X+ (∇Xh)(Y, Z) − (∇Yh)(X,Z), (12)

where R̃ and R denote the Riemannian curvature tensor of M̃ and M, respec-
tively, where the covariant derivative ∇h of h is defined by

(∇Xh)(Y, Z) = ∇⊥

Xh(Y, Z) − h(∇XY, Z) − h(∇XZ, Y) (13)

for any X, Y, Z ∈ Γ(TM).
The normal component of (12) is said to be the Codazzi equation is given

by

(R̃(X, Y)Z)
⊥

= (∇Xh)(Y, Z) − (∇Yh)(X,Z), (14)

where (R̃(X, Y)Z)
⊥

denotes the normal part of R̃(X, Y)Z. If (R̃(X, Y)Z)
⊥

= 0,

then M is said to be curvature-invariant submanifold of M̃. The Ricci equation
is given by

g( R̃(X, Y)V,U) = g(R̃
⊥

(X, Y)V,U) + g([AU, AV ]X, Y), (15)
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for any X, Y,∈ Γ(TM) and V,U ∈ Γ(T⊥M), where R̃
⊥

denotes the Rieman-

nian curvature tensor of the normal T⊥M and if R̃
⊥

= 0, then the normal
connection of M is called flat.
A cosymplectic manifold M̃ is said to be η-Einstein if its Ricci tensor S of

type (0, 2) is of the from

S(X, Y) = ag(X, Y) + bη(X)η(Y) (16)

where a, b are smooth functions on M̃. If b = 0, then the manifold is called
Einstein.

3 Pseudo-slant submanifolds of a cosymplectic

manifold

In this section, we study pseudo-slant submanifolds in a cosymplectic manifold
and we give some characterization results.
Let M be a submanifold of an almost contact metric manifold M̃. Then for

any X ∈ Γ(TM), we can set

φX = TX+NX, (17)

where TX and NX denote the tangential and the normal components of φX,
respectively. In the same way, for any V ∈ Γ(T⊥M), we can write

φV = tV + nV, (18)

where tV(resp.nV) are tangential(resp. normal) components of φV .
A submanifold M is said to be invariant if N is identically zero, that is,

φX ∈ Γ(TM) for all X ∈ Γ(TM). On the other hand, M is said to be anti-

invariant if T is identically zero, that is, φX ∈ Γ(T
⊥

M) for all X ∈ Γ(TM).
Thus by using (1), (17) and (18), we obtain

T 2 = −I− tN+ η⊗ ξ, NT + nN = 0 (19)

and
n2 = −I−Nt, Tt+ tn = 0. (20)

Furthermore, the covariant derivatives of the tensor field T , N, t and n are,
respectively, defined by

(∇XT)Y = ∇XTY − T∇XY (21)

(∇XN)Y = ∇⊥
XNY −N∇XY (22)

(∇Xt)V = ∇XtV − t∇⊥
XV (23)
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and
(∇Xn)V = ∇⊥

XnV − n∇⊥
XV. (24)

Furthermore, for any X, Y ∈ Γ(TM), we have g(TX, Y) = −g(X, TY) and V,U ∈
Γ(T⊥M). By using (3), (17) and (18), we have g(U,nV) = −g(nU,V). These
show that T and n are also skew-symmetric tensor fields. Moreover, for any
X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have

g(NX,V) = −g(X, tV), (25)

which gives the relation between N and t.
Taking into account (6) and (15), we have

g(R̃
⊥

(X, Y)V,U) =
c

4
{g(X, tV)g(U,NY) − g(Y, tV)g(NX,U)

+ 2g(X, TY)g(nV,U)}+ g([AV , AU]X, Y)
(26)

for any X, Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M).

By using (6) and (12), the Riemanian curvature tensor R of an immersed

submanifold M of a cosymplectic space form M̃(c) is given by

R(X, Y)Z =
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X,φZ)φY

+ g(φY,Z)φX+ 2g(X,φY)φZ}+Ah(Y,Z)X−Ah(X,Z)Y

+ (∇Yh)(X,Z) − (∇Xh)(Y, Z).

(27)

Comparing the tangential and normal parts of the both sides of this equation,
we have, following equations of Gauss and Codazzi equation respectively:

(R(X, Y)Z)
T

=
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X, TZ)TY

+ g(TY, Z)TX+ 2g(X, TY)TZ}+Ah(Y,Z)X−Ah(X,Z)Y

(28)

and

(∇Xh)(Y, Z) − (∇Yh)(X,Z) =
c

4
{g(X, TZ)NY + g(TY, Z)NX

+ 2g(X, TY)NZ}.
(29)

By an easy computation, we obtain the following formulas

(∇XT)Y = ANYX+ th(X, Y) (30)
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and

(∇XN)Y = nh(X, Y) − h(X, TY). (31)

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(∇Xt)V = AnVX− TAVX (32)

and

(∇Xn)V = −h(tV, X) −NAVX. (33)

Since M is tangent to ξ, making use of (5), (7), ( 9) and (17), we obtain

∇Xξ = 0, h(X, ξ) = 0, AVξ = 0 (34)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).

Definition 1 A submanifold M of an almost contact metric manifold M̃ is
said to be slant submanifold if for any x ∈ M and X ∈ TxM − ξ the angle
between TxM and φX is constant. The constant angle [0, π2 ] is then called slant
angle of M. If θ = 0, the submanifold is invariant submanifold, if θ = π

2 then,
it is anti-invariant submanifold, if θ ∈ (0, π2 ) then it is proper slant submanifold
[2].

In almost contact metric manifolds, J. L Cabrerizo [7] proved the following
theorem.

Theorem 1 Let M be a slant submanifold of an almost contact metric mani-
fold M̃ such that ξ ∈ Γ(TM). Then, M is slant submanifold if and only if there
exists a constant λ ∈ [0, 1] such that

T 2 = −λ(I− η⊗ ξ) (35)

furthermore, in this case, if θ is the slant angle of M, then λ = cos2 θ [7].

Corollary 1 Let M be a slant submanifold of an almost contact metric man-
ifold M̃ with slant angle θ. Then for any X, Y ∈ Γ(TM), we have

g(TX, TY) = cos2 θ {g(X, Y) − η(X)η(Y)} (36)

and

g(NX,NY) = sin2 θ {g(X, Y) − η(X)η(Y)} [7]. (37)
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Let M be a slant submanifold of an almost contact metric manifold M̃ with
slant angle θ. Then for any X ∈ Γ(TM), from (19) and (35), we have

− cos2 θ(X− η(X)ξ) = −X+ η(X)ξ− tNX

from which
tNX = − sin2 θ(X− η(X)ξ) (38)

by using (37),
N2X = − sin2 θ(X− η(X)ξ) (39)

from (38) and (39) we, obtain

N2 = tN.

It is well known that th = 0 plays an important role in the geometry of sub-
manifolds. This means that the induced structure T is a cosymplectic structure
on M.
By using (30) and (34), we obtain

η((∇XT)Y) = 0,

for X, Y ∈ Γ(Dθ).

Definition 2 We say that M is a pseudo-slant submanifold of an almost con-
tact metric manifold M̃ if there exist two orthogonal distributions Dθ and D⊥

on M such that

(a) TM admits the orthogonal direct decomposition TM = D⊥ ⊕ Dθ, ξ ∈
Γ(Dθ),

(b) The distribution D⊥ is anti-invariant(totally-real) i.e., φD⊥ ⊂ (T⊥M),

(c) The distribution Dθ is a slant, that is, the slant between of Dθ and φ(Dθ)

is a constant [15].

Let d1 =dim(D⊥) and d2 = dim(Dθ). We distinguish the following five cases.

(i) If d2 = 0 or θ = π
2 , then M is an anti-invariant submanifold.

(ii) If d1 = 0 and θ = 0, then M is invariant submanifold.

(iii) If d1 = 0 and θ 6= {0, π2 }, then M is a proper slant submanifold.

(iv) If d2d1 6= 0 and θ = 0, then M is a semi-invariant submanifold.

(v) If d2d1 6= 0 and θ 6= {0, π2 }, then M is a proper pseudo-slant submanifold.



Pseudo-slant submanifold in cosymplectic space forms 61

By µ we denote the orthogonal complementary of φ(TM) in T⊥M, then we
have the following sum

T⊥M = N(D⊥)⊕N(Dθ)⊕ µ.

Let M be a proper pseudo-slant submanifold of a cosymplectic manifold M̃.
Then for any Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), also by using (4), (7) and (9),
we have

g(ANZW −ANWZ,U) = g(h(W,U), NZ) − g(h(Z,U), NW)

= g(∇̃UW,φZ) − g(∇̃UZ,φW)

= g(φ∇̃UZ,W) − g(φ∇̃UW,Z)

= g(∇̃UφZ− (∇̃Uφ)Z,W) + g((∇̃Uφ)W − ∇̃UφW,Z)

= g(∇̃UφZ,W) − g(∇̃UφW,Z)

= −g(ANZU,W) + g(ANWU,Z)

= g(ANWZ−ANZW,U).

It follows that
ANZW = ANWZ.

Theorem 2 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor N is parallel if and only if the tensor t is parallel.

Proof. By using (9), (31) and (32), we have

g((∇XN)Y, V) = g(nh(X, Y), V) − g(h(X, TY), V)

= −g(h(X, Y), nV) − g(AVX, TY)

= −g(AnVX, Y) + g(TAVX, Y)

= g(−AnVX+ TAVX, Y) = g((∇Xt)V, Y),

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). This proves our assertion. �

Theorem 3 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor N is parallel if and only if

AVTY = −AnVY

for any Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
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Proof. By using (9) and (31), we have

g((∇XN)Y, V) = g(nh(X, Y), V) − g(h(X, TY), V)

= −g(h(X, Y), nV) − g(AVTY, X)

= −g(AnVX, Y) − g(AVTY, X)

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). This proves our assertion. �

Theorem 4 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. The covariant derivation of T is skew-symmetric, that is

g((∇XT)Y, Z) = −g((∇XT)Z, Y),

for any X, Y, Z ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (9), (25) and (30), we obtain

g((∇XT)Y, Z) = g(ANYX+ th(X, Y), Z)

= g(h(X,Z), NY) − g(h(X, Y), NZ)

= −g(th(X,Z), Y) − g(ANZX, Y)

= −g(ANZX+ th(X,Z), Y)

= −g((∇XT)Z, Y).

This complete the proof. �

Theorem 5 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor T is parallel if and only if

ANYX = ANXY

for any X, Y ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (9), (25) and (30), we obtain

g((∇XT)Y, Z) = g(ANYX+ th(X, Y), Z)

= g(h(X,Z), NY) − g(h(X, Y), NZ)

= g(ANYZ,X) − g(ANZY, X)

This complete the proof. �
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Theorem 6 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. The covariant derivation of n is skew-symmetric, that is,

g((∇Xn)V,U) = −g((∇Xn)U,V),

for any X ∈ Γ(TM) and V,U ∈ Γ(T⊥M).

Proof. For any X ∈ Γ(TM) and V,U ∈ Γ(T⊥M), from (9), (25) and (33), we
reach

g((∇Xn)V,U) = g(−h(tV, X) −NAVX,U)

= g(−AUX, tV) + g(AVX, tU)

= g(NAUX,V) + g(h(X, tU), V)

= −g(−NAUX− h(X, tU), V)

= −g((∇Xn)U,V).

This proves our assertion. �

Theorem 7 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor n is parallel if and only if the shape operator AV

of M satisfies the condition

AVtU = AUtV, (40)

for all U,V ∈ Γ(T⊥M).

Proof. From (9), (25) and (33), we have

g((∇Xn)V,U) = −g(h(tV, X), U) − g(NAVX,U)

= −g(AUtV, X) + g(AVX, tU)

= g(AVtU−AUtV, X),

for all X ∈ Γ(TM). The proof is complete. �

Theorem 8 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. If tensor n is parallel then, M is totally geodesic submanifold of
M̃.
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Proof. Since n is parallel, from (33) and (17), we have

h(tV, X) + φAVX = 0 (41)

for all X ∈ Γ(TM) and V ∈ Γ(T⊥M). Applying φ to (41) and taking into
account (1) and (34), we obtain

0 = φ2AVX+ φh(tV, X)

= −AVX+ η(AVX)ξ+ th(tV, X) + nh(tV, X).

This yields to

−AVX+ th(tV, X) = 0.

On the other hand, also by using (9), (19), (25) and (40), we conclude that

g(AVX,Z) = g(th(tV, X), Z) = −g(h(tV, X), NZ)

= −g(ANZtV, X) = −g(AVtNZ,X),

for Z ∈ Γ(TM). Taking into account of tNZ = −Z+ η(Z)ξ− T 2Z, we obtain

g(AVZ,X) = −g(−AVZ+ η(Z)AVξ−AVT
2Z,X)

= g(AVZ,X) + g(AVX, T
2Z)

that is,

g(T 2AVX,Z) = 0.

Here, by using (36), we conclude

0 = −g(TAVX, TZ) = − cos2 θg(AVX,Z)

for all Z ∈ Γ(TM). Since M is a proper pseudo-slant submanifold, we arrive at

AV = 0, that is, M is totally geodesic in M̃. �

Definition 3 A pseudo-slant submanifold M of cosymplectic manifold M̃ is
said to be Dθ-geodesic (resp. D⊥-geodesic) if h(X, Y) = 0 for X, Y ∈ Γ(Dθ)

(resp. h(Z,W) = 0 for Z,W ∈ Γ(D⊥)). If h(X,Z) = 0, M is called mixed
geodesic submanifold, for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Theorem 9 Let M be a proper pseudo-slant submanifold of a Cosymplectic
manifold M̃. If t is parallel, then either M is a mixed-geodesic or an anti-
invariant submanifold.
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Proof. From Theorem 2 and (31) we obtain

nh(X, Y) = 0,

for any X ∈ Γ(Dθ) and Y ∈ Γ(D⊥). Also by using (31) and (34), we conclude
that

nh(Y, TX) − h(Y, T 2X) = cos2 θh(X, Y) = 0.

This proves our assertion. �

Theorem 10 Let M be a proper pseudo-slant submanifold of a cosymplec-
tic manifold M̃. If t is parallel, then either M is a D⊥-geodesic or an anti-
invariant submanifold of M̃.

Proof. If t is parallel, then making use of (32), we obtain

TANYZ = 0,

for any Y, Z ∈ Γ(D⊥). This implies thatM is either anti-invariant or ANYZ = 0.
So we obtain

g(h(Z,W), NY) = 0,

for any Y, Z,W ∈ Γ(D⊥). Also by using (32), we conclude that

g(AnVZ, Y) − g(TAVZ, Y) = g(h(Y, Z), nV) = 0,

for any V ∈ Γ(T⊥M). This tells us that M is either D⊥-geodesic or it is an
anti-invariant submanifold. �

Given a proper pseudo-slant submanifold M of a Cosymplectic manifold M̃,
if the distributions Dθ and D⊥ are totally geodesic in M, then M is said to
be contact pseudo-slant product.

Theorem 11 Let M be a pseudo-slant submanifold of a cosymplectic manifold
M̃. Then M is a contact pseudo-slant product if and only if the shape operator
of M satisfies

AND⊥TDθ = ANTDθ
D⊥.

Proof. Since the ambient space M̃ is a cosymplectic manifold, for any X, Y ∈
Γ(Dθ) and Z ∈ Γ(D⊥), we have

g(∇XY, Z) = g(∇̃XφY,φZ) = g(∇̃XTY,φZ) + g(∇̃XNY,φZ)

= −g(∇̃XφTY, Z) + g(∇⊥
XNY,NZ)

= −g(∇XT
2Y, Z) − g(∇̃XNTY,Z) + g(∇⊥

XNY,NZ)

= cos2 θg(∇XY, Z) + g(ANTYX,Z) + g(N∇XY,NZ) − g(h(X, TY), NZ),
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which implies that

cos2 θg(∇XY, Z) = g(ANTYZ−ANZTY, X). (42)

On the other hand, for any Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ), we reach at

g(∇ZW,X) = −g(∇̃ZX,W) = −g(∇̃ZφX,φW)

= −g(∇̃ZTX,φW) − g(∇̃ZNX,φW)

= g(∇̃ZφTX,W) − g(∇⊥
ZNX,NW)

= g(∇ZT
2X,W) + g(∇ZNTX,W) − g(∇⊥

ZNX,NW)

= − cos2 θg(∇ZX,W) − g(ANTXZ,W) − g(N∇ZX,NW)

− g((∇ZN)X,NW)

= cos2 θg(∇ZW,X) − g(ANTXZ,W) − g(N∇ZX,NW)

+ g(h(Z, TX), NW).

This implies that

cos2θg(∇ZW,X) = g(ANTXW −ANWTX, Z). (43)

From (42) and (43), we get desired result. �

4 Pseudo-slant submanifolds in cosymplectic space

forms

In this section, we will study pseudo-slant submanifolds in a cosymplectic
space form, give some characterization and submanifold will be characterized.

Theorem 12 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c) such that c 6= 0. If M is a curvature-invariant pseudo-slant sub-
manifold, then M is either semi-invariant or anti-invariant submanifold.

Proof. We suppose that M is a curvature-invariant pseudo-slant submanifold
of a cosymplectic space form M̃(c) such that c 6= 0. Then from (29) and (14),
we have

g(X, TZ)NY + g(TY, Z)NX+ 2g(X, TY)NZ = 0, (44)

for any X, Y, Z ∈ Γ(TM). Taking X = Z and Y = TZ in (44), we have

g(TZ, TZ)NZ = 0.
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Here, by using (36) and (37), we obtain

cos2 θ sin2 θ
{

g(Z,Z) − η2(Z)
}2

= 0.

This implies that sin 2θ{g(Z,Z) − η2(Z)} = 0, that is, M is either a semi-
invariant or an anti-invariant submanifold. Thus the proof is complete. �

Theorem 13 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c) with flat normal connection such that c 6= 0. If TAV = AVT for
any vector V normal to M, then M is either an anti- invariant or it is a
generic submanifold of M̃(c).

Proof. If the normal connection of M is flat, then from (26), we have

g([AU, AV ]X, Y) =
c

4
{g(X,φV)g(U,φY) − g(Y,φV)g(φX,U)

+2g(X,φY)g(φV,U)}

for any X, Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). Here, choosing U = nV and
Y = TX, by direct calculations, we can state

g([AV , AnV ]X, TX) = −
c

2
{g(TX, TX)g(nV,nV)},

that is,

g(AnVAVTX−AVAnVTX, X) = −
c

2
{g(TX, TX)g(nV,nV)} ,

from which

tr(AnVAVT) − tr(AVAnVT) =
c

2
tr(T 2)g(nV,nV).

If TAV = AVT , then we conclude that tr(AnVAVT) = tr(AVAnVT) and thus

c

2
tr(T 2)g(nV,nV) = 0,

from here dim(TM) = 2q+ q+ 1, then we can easily to see that

(2p+ q+ 1)cos2θg(nV,nV) = 0.

Thus θ is either π
2 or n = 0. This implies that M is either an anti-invariant or

it is a generic submanifold. �
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Theorem 14 Let M be a proper pseudo-slant submanifold of a cosymplectic
space form M̃(c). Then the Ricci tensor S of M is given by

S(X,W) =
c

4

{

2p+ q− 1+ 3 cos2 θ
}

(g(X,W) − η(X)η(W)) (45)

+(2p+ q+ 1)g(h(X,W), H) −

2p+q+1
∑

l=1

g(h(el,W), h(X, el))

for any X,W ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (6) and (12), we have

g(R(X, Y)Z,W) =
c

4
{g(Y, Z)g(X,W) − g(X,Z)g(Y,W)

+ η(X)η(Z)g(Y,W) − η(Y)η(Z)g(X,W)

+ η(Y)η(W)g(X,Z) − η(X)η(W)g(Y, Z)

+ g(X,φZ)g(φY,W) − g(Y,φZ)g(φX,W)

+ 2g(X,φY)g(φZ,W)}+ g(h(X,W), h(Y, Z))

− g(h(Y,W), h(X,Z)).

(46)

Now, let e1, e2, . . . , ep, ep+1 = sec θTe1, ep+2 = sec θTe2, . . . , e2p = sec θTep, e2p+1

= ξ, e2p+2, e2p+3, . . . , e2p+q+1 be an orthonormal basis of Γ(TM) such that
e1, e2, . . . , ep, ep+1 = sec θTe1, ep+2 = sec θTe2, . . . , e2p = sec θTep, e2p+1 =

ξ are tangent to Γ(Dθ) and e2p+2, e2p+3, . . . , e2p+q+1 are tangent to Γ(D⊥).
Hence, from (46) taking Y = Z = ei, ej, ek and 1 ≤ i ≤ p, 1 ≤ j ≤ p, ξ, 2p+2 ≤
k ≤ 2p+ q+ 1 then, we obtain

S(X,W) =

p
∑

i=1

g(R(X, ei)ei,W) +

2p
∑

j=p+1

g(R(X, sec θTej) sec θTej,W)

+ g(R(X, ξ)ξ,W) +

2p+q+1
∑

k=2p+2

g(R(X, ek)ek,W)

=
c

4
{(2p+ q)g(X,W)}−

c

4
{(2p+ q− 1)η(X)η(W)

+ 3 cos2 θ[g(X,W) − η(X)η(W)] − g(X,W)}

+ (2p+ q+ 1)g(h(X,W), H) −

p
∑

i=1

g(h(ei,W), h(X, ei))
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−

2p
∑

j=p+1

g(h(sec θTej,W), h(X, sec θTej)) + g(h(ξ,W), h(X, ξ))

−

2p+q+1
∑

k=2p+2

g(h(ek,W), h(X, ek)).

Here
2p+q+1
∑

l=1

g(h(el,W), h(X, el) =

p
∑

i=1

g(h(ei,W), h(X, ei)

+

2p
∑

j=p+1

g(h(sec θTej,W), h(X, sec θTej))

+

2p+q+1
∑

k=2p+2

g(h(ek,W), h(X, ek))

hance, we have

S(X,W) =
c

4

{

2p+ q− 1+ 3 cos2 θ
}

(g(X,W) − η(X)η(W))

+(2p+ q+ 1)g(h(X,W), H) −

2p+q+1
∑

l=1

g(h(el,W), h(X, el))

the proof is complete. �

Theorem 15 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c). Then the scalar curvature ρ of M is given by

ρ =
c

4
{2p+ q− 1+ 3 cos2 θ}(2p+ q) + (2p+ q+ 1)2 ‖H)‖2 − ‖h‖2 . (47)

Proof. By using (45), we have

ρ =

2p+q+1
∑

l=1

S(el, el)

which gives (47). Thus the proof is complete. �
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Theorem 16 Let M be a proper pseudo-slant submanifold of a cosymplectic
space form M̃(c) such that c 6= 0. Every totally umbilical pseudo-slant sub-

manifold M in a cosymplectic space form M̃(c) is a semi-invariant or anti-
invariant submanifold.

Proof. We suppose that M is totally umbilical pseudo-slant submanifold in
cosymplectic space form M̃(c). Since M is totally geodesic, we have

g(R̃(X, Y)Z,φZ) = g((∇Xh)(Y, Z) − (∇Yh)(X,Z), φZ) = 0,

or

g(R̃(X, Y)Z,φZ) = g(∇⊥

Xg(Y, Z)H− g(∇XY, Z)H− g(∇XZ, Y)H,φZ)

−g(∇⊥

Y g(X,Z)H− g(∇YX,Z)H− g(∇YZ,X)H,φZ) = 0

for any X, Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Since the ambient space M is a cosym-
plectic space form, from (6) we infer

g(R̃(X, Y)Z,φZ) =
c

2
g(X,φY)g(NZ,NZ) = 0. (48)

Taking Y = TX in equation (48), we have

g(X,φTX)g(NZ,NZ) = 0.

Here, by using (36) and (37), we obtain

cos2 θ sin2 θg(Z,Z){g(X,X) − η2(X)} = 0.

This implies that sin 2θ = 0, that is, M is either a semi-invariant or an anti-
invariant submanifold. This proves our assertion. �

Theorem 17 Let M be a totally umbilical pseudo-slant submanifold of a Cosym-
plectic space form M̃(c). Then the Ricci tensor S of M is given by

S(X,W) =
c

4

{

2p+ q− 1+ 3 cos2 θ
}

(g(X,W) − η(X)η(W)) (49)

for any X,W ∈ Γ(TM).

Proof. From by using (11) and (45), we obtain

S(X,W) =
c

4

{

2p+ q− 1+ 3 cos2 θ
}

(g(X,W) − η(X)η(W))

+(2p+ q+ 1)g(g(X,W)H,H) −

2p+q+1
∑

l=1

g(g(el,W)H, g(X, el)H)

this complete the proof. Thus we have the following corollary. �
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Corollary 2 Every totally umbilical pseudo-slant submanifold M of a cosym-
plectic space form M̃(c) is an η-Einstein submanifold.

Theorem 18 Let M be a totally umbilical pseudo-slant submanifold of a cosym-
plectic space form M̃(c). Then the scalar curvature ρ of M is given by

ρ =
c

4
{2p+ q− 1+ 3 cos2 θ}(2p+ q). (50)

Proof. By using (49), we have

ρ =

2p+q+1
∑

l=1

S(el, el)

which gives (50). Thus the proof is complete. �

Example 1 Let M be a submanifold of R9 defined by

x(u, v, s,w, z) = (u,−
√
2v, v sinα, v cosα, s cosw,− cosw, s sinw,− sinw, z).

We can easily to see that the tangent bundle of M is spanned by the tangent
vectors

e1 =
∂

∂x1
, e5 = ξ =

∂

∂z
,

e2 = −
√
2

∂

∂y1
+ sinα

∂

∂x2
+ cosα

∂

∂y2
,

e3 = cosw
∂

∂x3
+ sinw

∂

∂x4
,

e4 = −s sinw
∂

∂x3
+ sinw

∂

∂y3
+ s cosw

∂

∂x4
− cosw

∂

∂y4
.

We define the almost contact structure φ of R9, by

φ

(
∂

∂xi

)
=

∂

∂yi
, φ

(
∂

∂yj

)
= −

∂

∂xj
, φ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 4.

For any vector field X = λi
∂
∂xi

+ µj
∂

∂yi
+ ν ∂

∂z ∈ Γ(TR9), then we have

g(X,X) = λ2i + µ2
j + ν2, g(φX,φX) = λ2i + µ2

j
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and

φ2X = −λi
∂

∂xi
− µj

∂

∂yi
= −X+ η(X)ξ,

for any i, j = 1, 2, 3, 4. It follows that g(φX,φX) = g(X,X) − η2(X). Thus
(φ, η, ξ, g) is an almost contact metric structure on R

9. Thus we have

φe1 =
∂

∂y1
,

φe2 =
√
2

∂

∂x1
+ sinα

∂

∂y2
− cosα

∂

∂x2
,

φe3 = cosw
∂

∂y3
+ sinw

∂

∂y4
,

φe4 = −s sinw
∂

∂y3
− sinw

∂

∂x3
+ s cosw

∂

∂y4
+ cosw

∂

∂x4
.

By direct calculations, we can infer Dθ = span{e1, e2} is a slant distribution

with slant angle cos θ =
g(e1,φe2)
‖e1‖‖φe2‖ =

√
6
3 , θ = cos−1(

√
6
3 ). Since g(φe3, ei) = 0,

i = 1, 2, 4, 5 and g(φe4, ej) = 0, j = 1, 2, 3, 5, φe3, φe4 are orthogonal
to M, D⊥ = span{e3, e4} is an anti-invariant distribution. Thus M is a 5-
dimensional proper pseudo-slant submanifold of R9 with its usual almost con-
tact metric structure.
Let ∇ be the Levi-Civita connection on R

9. Then we have

0 = [e1, e1] = [e2, e2] = [e3, e3] = [e4, e4] = [e5, e5]

= [e1, e2] = [e1, e3] = [e1, e4] = [e1, e5] = [e2, e3]

= [e2, e4] = [e2, e5] = [e3, e5] = [e4, e5],

[e3, e4] =

(
cos 2w

sinw

)
∂

∂x3
+

(
1

s sinw

)
∂

∂y3
−

(
1

cosw

)
∂

∂x4

+

(
(s− 1)

s
cosw

)
∂

∂y4
,

and

g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = 3, g(e4, e4) = s2 + 1, g(e5, e5) = 1,
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g(e1, e2) = g(e1, e3) = g(e1, e4) = g(e1, e5) = 0,

g(e2, e3) = g(e2, e4) = g(e2, e5) = 0,

g(e3, e4) = g(e3, e5) = g(e4, e5) = 0.

Using Koszul’s formula, the Riemannian connection ∇ of the metric g is given
by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z,X) − Zg(X,Z)

− g(X, [Y, Z]) − g(Y, [X,Z]) − g(Z, [X, Y])

Koszul’s formula yields, we can find

0 = ∇e1e1 = ∇e1e2 = ∇e1e3 = ∇e1e4 = ∇e1e5

= ∇e2e2 = ∇e2e4 = ∇e2e5 = ∇e3e1 = ∇e3e2

= ∇e3e5 = ∇e4e5 = ∇e5e5, ∇e4e4 = −se3, ∇e3e3 =
1

s
e3,

∇e3e4 =
s

s2 + 1

(
1− s2 + (1− s− s2) cos2w+ s2 sin2w

)
e4

+

(
cos 2w− tan2w

tanw

)
e3.

Thus we can say that M is Dθ-geodesic and mixed- geodesic. But it is not D⊥-
geodesic.
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Abstract. In this paper we establish some vector inequalities for two op-
erators related to Schwarz and Buzano results. We show amongst others
that in a Hilbert space H we have the inequality

1

2

[〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉∣

∣

∣

∣

]

≥ |〈Re (B∗A) x, y〉|

for A,B two bounded linear operators on H such that Re (B∗A) is a
nonnegative operator and any vectors x, y ∈ H.

Applications for norm and numerical radius inequalities are given as
well.

1 Introduction

Let (H, 〈·, ·〉) be an inner product space over the real or complex numbers
field K. The following inequality is well known in literature as the Schwarz
inequality

‖x‖ ‖y‖ ≥ |〈x, y〉| for any x, y ∈ H. (1)

2010 Mathematics Subject Classification: 46C05, 26D15, 26D1

Key words and phrases: inner product spaces, Schwarz’s inequality, Buzano’s inequality,

projection, selfadjoint operators, unitary operators, operator norm, numerical radius
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The equality case holds in (1) if and only if there exists a constant λ ∈ K such
that x = λy.

In 1985 the author [5] (see also [24]) established the following refinement of
(1):

‖x‖ ‖y‖ ≥ |〈x, y〉− 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉| ≥ |〈x, y〉| (2)

for any x, y, e ∈ H with ‖e‖ = 1.

Using the triangle inequality for modulus we have

|〈x, y〉− 〈x, e〉 〈e, y〉| ≥ |〈x, e〉 〈e, y〉|− |〈x, y〉|

and by (2) we get

‖x‖ ‖y‖ ≥ |〈x, y〉− 〈x, e〉 〈e, y〉|+ |〈x, e〉 〈e, y〉|
≥ 2 |〈x, e〉 〈e, y〉|− |〈x, y〉| ,

which implies the Buzano inequality [2]

1

2

[

‖x‖ ‖y‖+ |〈x, y〉|
]

≥ |〈x, e〉 〈e, y〉| (3)

that holds for any x, y, e ∈ H with ‖e‖ = 1.

A family {ej}j∈J of vectors in H is called orthonormal if

ej ⊥ ek for any j, k ∈ J with j 6= k and ‖ej‖ = 1 for any j, k ∈ J.

If the linear span of the family {ej}j∈J is dense in H, then we call it an or-
thonormal basis in H.

It is well known that for any orthonormal family {ej}j∈J we have Bessel’s
inequality ∑

j∈J

|〈x, ej〉|2 ≤ ‖x‖2 for any x ∈ H.

This becomes Parseval’s identity

∑

j∈J

|〈x, ej〉|2 = ‖x‖2 for any x ∈ H,

when {ej}j∈J an othonormal basis in H.

For an othonormal family E = {ej}j∈J we define the operator PE : H → H by

PEx :=
∑

j∈J

〈x, ej〉 ej , x ∈ H. (4)
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We know that PE is an orthogonal projection and

〈PEx, y〉 =
∑

j∈J

〈x, ej〉 〈ej, y〉 , x, y ∈ H and 〈PEx, x〉 =
∑

j∈J

|〈x, ej〉|2 , x ∈ H.

The particular case when the family reduces to one vector, namely E = {e} ,

‖e‖ = 1, is of interest since in this case Pex := 〈x, e〉 e, x ∈ H,

〈Pex, y〉 = 〈x, e〉 〈e, y〉 , x, y ∈ H (5)

and Buzano’s inequality can be written as

1

2

[

‖x‖ ‖y‖+ |〈x, y〉|
]

≥ |〈Pex, y〉| (6)

that holds for any x, y, e ∈ H with ‖e‖ = 1.

In an effort to generalize the inequality (6) for general projection, in [21] we
obtained the following result

1

2

[

‖x‖ ‖y‖+ |〈x, y〉|
]

≥ |〈Px, y〉| (7)

for any x, y ∈ H and P : H → H a projection on H.

In particular, we then have the inequality

1

2

[

‖x‖ ‖y‖+ |〈x, y〉|
]

≥
∣

∣

∣

∣

∣

〈

∑

j∈J

〈x, ej〉 〈ej, y〉
〉
∣

∣

∣

∣

∣

(8)

for any orthonormal family {ej}j∈J and any x, y ∈ H.

Motivated by the above results we establish in this paper some vector in-
equalities for two operators A,B for which the operator Re (B∗A) is nonnega-
tive in the operator order that are related to the inequality (6). Applications
for norm and numerical radius inequalities are provided as well.
For other Schwarz and Buzano related inequalities in inner product spaces,

see [1]-[4], [5]-[14], [22]-[26], [30]-[39], and the monographs [16], [17] and [18].

2 Vector inequalities for two operators

For a bounded linear operator T we use the concepts of absolute value and real
part of T defined as

|T | = (T∗T)1/2 and Re (T) =
T + T∗

2
. (9)

We have the following vector inequality:
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Theorem 1 Let A,B two bounded linear operators on H such that Re (B∗A)

is a nonnegative operator. Then for any x, y ∈ H we have the inequality

〈

|A|
2 + |B|2

2
x, x

〉1/2〈
|A|

2 + |B|2

2
y, y

〉1/2

≥ 〈Re (B∗A) x, x〉1/2 〈Re (B∗A)y, y〉1/2

+

∣

∣

∣

∣

〈

|A|
2 + |B|2

2
x, y

〉

− 〈Re (B∗A) x, y〉
∣

∣

∣

∣

.

(10)

Proof. Using Schwarz inequality we have

‖Ax− Bx‖2 ‖Ay− By‖2 ≥ |〈Ax− Bx,Ay− By〉|2 (11)

for any x, y ∈ H.

Observe that

‖Ax− Bx‖2 = 〈Ax,Ax〉− 〈Ax,Bx〉− 〈Bx,Ax〉+ 〈Bx, Bx〉
= 〈A∗Ax, x〉− 〈B∗Ax, x〉− 〈A∗Bx, x〉+ 〈B∗Bx, x〉
=

〈

|A|
2 x, x

〉

+
〈

|B|2 x, x
〉

− 〈(B∗A+A∗B) x, x〉

= 2

[〈

|A|
2 + |B|2

2
x, x

〉

− 〈Re (B∗A) x, x〉
]

≥ 0

(12)

and, similarly,

‖Ay− By‖2 = 2

[〈

|A|
2 + |B|2

2
y, y

〉

− 〈Re (B∗A)y, y〉
]

≥ 0 (13)

for any x, y ∈ H.

We also have

〈Ax− Bx,Ay− By〉 = 2

[〈

|A|
2 + |B|2

2
x, y

〉

− 〈Re (B∗A) x, y〉
]

(14)

for any x, y ∈ H.

Using the inequality (11) and the equalities (12)-(14) we get
[〈

|A|2 + |B|2

2
x, x

〉

− 〈Re (B∗A) x, x〉
]

×
[〈

|A|
2 + |B|2

2
y, y

〉

− 〈Re (B∗A)y, y〉
]

≥
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉

− 〈Re (B∗A) x, y〉
∣

∣

∣

∣

2

(15)
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for any x, y ∈ H.

Since Re (B∗A) ≥ 0, then we have

〈

|A|
2 + |B|2

2
x, x

〉

≥ 〈Re (B∗A) x, x〉 ≥ 0

and
〈

|A|2 + |B|2

2
y, y

〉

≥ 〈Re (B∗A)y, y〉 ≥ 0

for any x, y ∈ H.

Using the elementary inequality that holds for any real numbers a, b, c, d

(ac− bd)2 ≥ (a2 − b2)(c2 − d2),

we have
(〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

− 〈Re(B∗A)x, x〉1/2〈Re(B∗A)y, y〉1/2)2

≥
[〈

|A|2 + |B|2

2
x, x

〉

− 〈Re(B∗A)x, x〉
]

×
[〈

|A|2 + |B|2

2
y, y

〉

− 〈Re(B∗A)y, y〉
]

(16)

for any x, y ∈ H.

Making use of (15) and (16) we get

(〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

− 〈Re(B∗Ax, x〉1/2〈Re(B∗A)y, y〉1/2)2

≥
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉

− 〈Re (B∗A) x, y〉
∣

∣

∣

∣

2

(17)

for any x, y ∈ H.

Since
〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

≥ 〈Re(B∗A)x, x〉1/2〈Re(B∗A)y, y〉1/2

for any x, y ∈ H, then by taking the square root in (17) we get the desired
result from (10). �
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Corollary 1 With the assumptions in Theorem 1 we have

〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

−

∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉
∣

∣

∣

∣

≥ 〈Re(B∗A)x, x〉1/2〈Re(B∗A)y, y〉1/2 − |〈Re(B∗A)x, y〉| ≥ 0

(18)

and
〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉∣

∣

∣

∣

≥ 〈Re(B∗A)x, x〉1/2〈Re(B∗A)y, y〉1/2 + |〈Re(B∗A)x, y〉|
(19)

for any x, y ∈ H.

Proof. From the triangle inequality we have
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉

− 〈Re(B∗A)x, y〉
∣

∣

∣

∣

≥
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉
∣

∣

∣

∣

− |〈Re(B∗A)x, y〉|

and
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉

− 〈Re(B∗A)x, y〉
∣

∣

∣

∣

≥ |〈Re(B∗A)x, y〉|−
∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉
∣

∣

∣

∣

for any x, y ∈ H, which together with (10) produce the inequalities (18) and
(19). �

Remark 1 With the assumptions in Theorem 1 we have

1

2

[〈

|A|2 + |B|2

2
x, x

〉1/2〈
|A|2 + |B|2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉∣

∣

∣

∣

]

≥ |〈Re(B∗A)x, y〉|
(20)

for any x, y ∈ H.

If we assume that A is a bounded linear operator such that Re
(

A2
)

≥ 0,

then by taking B = A∗ above, we have the inequalities

〈

|A|2 + |A∗|2

2
x, x

〉1/2〈
|A|2 + |A∗|2

2
y, y

〉1/2

≥ 〈Re(A2)x, x〉1/2〈Re(A2)y, y〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |A∗|2

2
x, y〉− 〈Re(A2)x, y〉

∣

∣

∣

∣

,

(21)
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〈

|A|2 + |A∗|
2

2
x, x

〉1/2〈
|A|2 + |A∗|

2

2
y, y

〉1/2

−

∣

∣

∣

∣

∣

〈

|A|2 + |A∗|
2

2
x, y

〉

∣

∣

∣

∣

∣

≥ 〈Re(A2)x, x〉1/2〈Re(A2)y, y〉1/2 − |〈Re(A2)x, y〉| ≥ 0,

(22)

〈

|A|2 + |A∗|
2

2
x, x

〉1/2〈
|A|2 + |A∗|

2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |B|2

2
x, y

〉∣

∣

∣

∣

≥ 〈Re(A2)x, x〉1/2〈Re(A2)y, y〉1/2 + |〈Re(A2)x, y〉|
(23)

and

1

2

[〈

|A|2 + |A∗|
2

2
x, x

〉1/2〈
|A|2 + |A∗|

2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |A∗|2

2
x, y

〉∣

∣

∣

∣

]

≥ |〈Re(A2)x, y〉|
(24)

for any x, y ∈ H.

Assume that A is invertible, then by selecting B = (A−1)∗ above and taking
into account that

|B|2 = B∗B = A−1(A−1)∗ = A−1 (A∗)−1
= (A∗A)−1

= |A|
−2

then from the above we get the inequalities

〈

|A|2 + |A|
−2

2
x, x

〉1/2〈
|A|2 + |A|

−2

2
y, y

〉1/2

≥ ‖x‖ ‖y‖+
∣

∣

∣

∣

∣

〈

|A|2 + |A|
−2

2
x, y

〉

− 〈x, y〉
∣

∣

∣

∣

∣

,

(25)

〈

|A|2 + |A|
−2

2
x, x

〉1/2〈
|A|2 + |A|

−2

2
y, y

〉1/2

−

∣

∣

∣

∣

∣

〈

|A|2 + |A|
−2

2
x, y

〉

∣

∣

∣

∣

∣

≥ ‖x‖ ‖y‖− |〈x, y〉| ≥ 0,

(26)

〈

|A|2 + |A|
−2

2
x, x

〉1/2〈
|A|2 + |A|

−2

2
y, y

〉1/2

+

∣

∣

∣

∣

∣

〈

|A|2 + |A|
−2

2
x, y

〉

∣

∣

∣

∣

∣

≥ ‖x‖ ‖y‖+ |〈x, y〉|
(27)
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and

1

2

[〈

|A|2 + |A|
−2

2
x, x

〉1/2〈
|A|2 + |A|

−2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |A|−2

2
x, y

〉
∣

∣

∣

∣

]

≥
∣

∣〈x, y〉
∣

∣

(28)

for any x, y ∈ H.

If A,B ≥ 0 with AB = BA, then from (10) we have
〈

A2 + B2

2
x, x

〉1/2〈
A2 + B2

2
y, y

〉1/2

≥ 〈ABx, x〉1/2〈ABy, y〉1/2 +
∣

∣

∣

∣

〈

A2 + B2

2
x, y

〉

− 〈ABx, y〉
∣

∣

∣

∣

,

(29)

〈

A2 + B2

2
x, x

〉1/2〈
A2 + B2

2
y, y

〉1/2

−

∣

∣

∣

∣

〈

A2 + B2

2
x, y

〉∣

∣

∣

∣

≥ 〈ABx, x〉1/2〈ABy, y〉1/2 − |〈ABx, y〉| ≥ 0,

(30)

〈

A2 + B2

2
x, x

〉1/2〈
A2 + B2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

A2 + B2

2
x, y

〉
∣

∣

∣

∣

≥ 〈ABx, x〉1/2〈ABy, y〉1/2 + |〈ABx, y〉|
(31)

and

1

2

[〈

A2 + B2

2
x, x

〉1/2〈
A2 + B2

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

A2 + B2

2
x, y

〉
∣

∣

∣

∣

]

≥ |〈ABx, y〉|
(32)

for any x, y ∈ H.

We observe that if A = 1H and B = P, with P a projection on H, then we
obtain from (32)

1

2

[〈

1H + P

2
x, x

〉1/2〈
1H + P

2
y, y

〉1/2

+

∣

∣

∣

∣

〈

1H + P

2
x, y

〉∣

∣

∣

∣

]

≥ |〈Px, y〉| (33)

for any x, y ∈ H.

If e ∈ H, ‖e‖ = 1 then by taking P = Pe defined in the introduction, we get
the inequality

1

4

[

[

‖x‖2 + |〈x, e〉|2
]1/2[ ‖y‖2 + |〈y, e〉|2

]1/2
+ |〈x, y〉+ 〈x, e〉〈e, y〉|

]

≥ |〈x, e〉〈e, y〉|
(34)
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for any x, y ∈ H.

Since
|〈x, y〉+ 〈x, e〉〈e, y〉| ≤ |〈x, y〉|+ |〈x, e〉〈e, y〉|

then by (34) we have

1

4

[

[

‖x‖2+|〈x, e〉|2
]1/2[ ‖y‖2+|〈y, e〉|2

]1/2
+|〈x, y〉|+|〈x, e〉〈e, y〉|

]

≥ |〈x, e〉〈e, y〉| ,

which implies that

1

3

(

[

‖x‖2 + |〈x, e〉|2
]1/2[‖y‖2 + |〈y, e〉|2

]1/2
+ |〈x, y〉|

)

≥ |〈x, e〉〈e, y〉| (35)

for any x, y ∈ H.

We recall that U : H → H is a unitary operator if U∗U = UU∗ = 1H. If U
and V are unitary operators with Re (V∗U) ≥ 0, then by (20) we have

1

2

[

‖x‖ ‖y‖+ |〈x, y〉|
]

≥
∣

∣〈Re (V∗U) x, y〉
∣

∣ (36)

for any x, y ∈ H.

In particular, if U is a unitary operator with Re (U) ≥ 0 then by taking
V = 1H in (36) we get

1

2

[

‖x‖‖y‖+ |〈x, y〉|
]

≥
∣

∣〈Re(U)x, y〉
∣

∣ (37)

for any x, y ∈ H.

3 Inequalities for norm and numerical radius

Let
(

H; 〈·, ·〉
)

be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [27, p. 1]:

W(T) =
{
〈Tx, x〉, x ∈ H, ‖x‖ = 1

}
.

The numerical radius w (T) of an operator T on H is defined by [27, p. 8]:

w (T) = sup
{
|λ| , λ ∈ W (T)

}
= sup

{
|〈Tx, x〉|, ‖x‖ = 1

}
.

It is well known that w (·) is a norm on the Banach algebra B (H) and the
following inequality holds true

w (T) ≤ ‖T‖ ≤ 2w (T) , for any T ∈ B (H) .

Utilising Buzano’s inequality (3) we obtained the following inequality for the
numerical radius [13] or [14]:
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Theorem 2 Let
(

H; 〈·, ·〉
)

be a Hilbert space and T : H → H a bounded linear
operator on H. Then

w2(T) ≤ 1

2

[

w(T 2 + ‖T‖2
]

. (38)

The constant 1
2 is best possible in (38).

The following general result for the product of two operators holds [27, p.
37]:

Theorem 3 If U,V are two bounded linear operators on the Hilbert space
(

H, 〈·, ·〉
)

, then w (UV) ≤ 4w (U)w (V) . In the case that UV = VU, then
w (UV) ≤ 2w (U)w (V) . The constant 2 is best possible here.

The following results are also well known [27, p. 38].

Theorem 4 If U is a unitary operator that commutes with another operator
V, then

w (UV) ≤ w (V) . (39)

If U is an isometry and UV = VU, then (39) also holds true.

We say that U and V double commute if UV = VU and UV∗ = V∗U. The
following result holds [27, p. 38].

Theorem 5 If the operators U and V double commute, then

w (UV) ≤ w (V) ‖U‖ . (40)

As a consequence of the above, we have [27, p. 39]:

Corollary 2 Let U be a normal operator commuting with V. Then

w (UV) ≤ w (U)w (V) . (41)

A related problem with the inequality (40) is to find the best constant c for
which the inequality

w (UV) ≤ cw (U) ‖V‖
holds for any two commuting operators U,V ∈ B (H) . It is known that 1.064 <

c < 1.169, see [3], [35] and [36].
In relation to this problem, it has been shown in [25] that:
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Theorem 6 For any U,V ∈ B (H) we have

w

(

UV + VU

2

)

≤
√
2w (U) ‖V‖ . (42)

For other numerical radius inequalities see the recent monograph [18] and
the references therein.

Theorem 7 Let A,B two bounded linear operators on H such that Re(B∗A)

is a nonnegative operator. Then for any U,V ∈ B (H) we have

‖VRe(B∗A)U‖ ≤ 1

2

∥

∥

∥

∥

∥

(

|A|2 + |B|2

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

V

(

|A|2 + |B|2

2

)1/2
∥

∥

∥

∥

∥

+
1

2

∥

∥

∥

∥

V

(

|A|2 + |B|2

2

)

U

∥

∥

∥

∥

,

(43)

w (VRe(B∗A)U) ≤ 1

2

∥

∥

∥

∥

∥

(

|A|2 + |B|2

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

V

(

|A|2 + |B|2

2

)1/2
∥

∥

∥

∥

∥

+
1

2
w

(

V

(

|A|2 + |B|2

2

)

U

)

(44)

and

w (VRe(B∗A)U) ≤ 1

4

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

U

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

V∗

∣

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∥

+
1

2
w

(

V

(

|A|2 + |B|2

2

)

U

)

.

(45)

Proof. From the inequality (20) we have

∣

∣〈Re(B∗A)Ux, V∗y〉
∣

∣ ≤ 1

2

[〈

|A|2 + |B|2

2
Ux,Ux

〉1/2〈
|A|2 + |B|2

2
V∗y, V∗y

〉1/2

+

∣

∣

∣

∣

〈

|A|2 + |B|2

2
Ux, V∗y

〉
∣

∣

∣

∣

]

for any x, y ∈ H, which is equivalent to
∣

∣〈VRe(B∗A)Ux, y〉
∣

∣

≤ 1

2

[〈

U∗ |A|
2 + |B|2

2
Ux, x

〉1/2〈

V
|A|2 + |B|2

2
V∗y, y

〉1/2

+

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, y

〉
∣

∣

∣

∣

]

(46)
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for any x, y ∈ H.

Taking the supremum over x, y ∈ H, ‖x‖ = ‖y‖ = 1 we have

‖VRe(B∗A)U‖ = sup
‖x‖=‖y‖=1

∣

∣〈VRe(B∗A)Ux, y〉
∣

∣

≤ 1

2
sup

‖x‖=‖y‖=1

[〈

U∗ |A|2 + |B|2

2
Ux, x

〉1/2〈

V
|A|2 + |B|2

2
V∗y, y

〉1/2

+

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, y

〉∣

∣

∣

∣

]

≤ 1

2

[

sup
‖x‖=1

〈

U∗ |A|2 + |B|2

2
Ux, x

〉1/2

sup
‖y‖=1

〈

V
|A|2 + |B|2

2
V∗y, y

〉1/2

+ sup
‖x‖=‖y‖=1

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, y

〉
∣

∣

∣

∣

]

=
1

2

[

∥

∥

∥

∥

∥

U∗ |A|
2 + |B|2

2
U

∥

∥

∥

∥

∥

1/2 ∥
∥

∥

∥

V
|A|2 + |B|2

2
V∗

∥

∥

∥

∥

1/2

+

∥

∥

∥

∥

V
|A|2 + |B|2

2
U

∥

∥

∥

∥

]

.

(47)

Since

U∗ |A|2 + |B|2

2
U =

∣

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

U

∣

∣

∣

∣

∣

2

and

V
|A|2 + |B|2

2
V∗ =

∣

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

V∗

∣

∣

∣

∣

∣

2

then
∥

∥

∥

∥

U∗ |A|2 + |B|2

2
U

∥

∥

∥

∥

1/2

=

∥

∥

∥

∥

∥

(

|A|2 + |B|2

2

)1/2

U

∥

∥

∥

∥

∥

and
∥

∥

∥

∥

V
|A|2 + |B|2

2
V∗

∥

∥

∥

∥

1/2

=

∥

∥

∥

∥

∥

(

|A|2 + |B|2

2

)1/2

V∗

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

V

(

|A|2 + |B|2

2

)1/2
∥

∥

∥

∥

∥

.

Using (46) we also have

∣

∣〈VRe(B∗A)Ux, x〉
∣

∣ ≤ 1

2

[〈

U∗ |A|
2 + |B|2

2
Ux, x

〉1/2〈

V
|A|2 + |B|2

2
V∗x, x

〉1/2

+

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, x

〉
∣

∣

∣

∣

]

(48)
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for any x ∈ H, ‖x‖ = 1.

Taking the supremum over x ∈ H, ‖x‖ = 1 we have

w(VRe(B∗A)U) = sup
‖x‖=1

∣

∣〈VRe(B∗A)Ux, x〉
∣

∣

≤ 1

2

[

sup
‖x‖=1

〈

U∗ |A|2 + |B|2

2
Ux, x

〉1/2

sup
‖x‖=1

〈

V
|A|2 + |B|2

2
V∗x, x

〉1/2

+ sup
‖x‖=1

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, x

〉∣

∣

∣

∣

]

=
1

2

[

∥

∥

∥

∥

(

|A|2 + |B|2

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

V

(

|A|2 + |B|2

2

)1/2∥
∥

∥

∥

+w

(

V
|A|2 + |B|2

2
U

)

]

(49)

and the inequality (44) is proved.
By the arithmetic mean – geometric mean inequality we have

〈

U∗ |A|2 + |B|2

2
Ux, x

〉1/2〈

V
|A|2 + |B|2

2
V∗x, x

〉1/2

≤ 1

2

[〈

U∗ |A|
2 + |B|2

2
Ux, x

〉

+

〈

V
|A|2 + |B|2

2
V∗x, x

〉]

=
1

2

〈[
∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

U

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

V∗

∣

∣

∣

∣

2]

x, x

〉

(50)

for any x ∈ H, ‖x‖ = 1.

From (48) we have

∣

∣〈VRe(B∗A)Ux, x〉
∣

∣

≤ 1

4

〈[∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

U

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

|A|2 + |B|2

2

)1/2

V∗

∣

∣

∣

∣

2]

x, x

〉

+
1

2

∣

∣

∣

∣

〈

V
|A|2 + |B|2

2
Ux, x

〉
∣

∣

∣

∣

(51)

for any x ∈ H, ‖x‖ = 1.

Taking the supremum over x ∈ H, ‖x‖ = 1 in (51) we get the desired
inequality (45). �
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Corollary 3 If A,B ≥ 0 with AB = BA, then for any U,V ∈ B (H) we have

‖VABU‖ ≤ 1

2

∥

∥

∥

∥

(

A2 + B2

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

V

(

A2 + B2

2

)1/2 ∥
∥

∥

∥

+
1

2

∥

∥

∥

∥

V

(

A2 + B2

2

)

U

∥

∥

∥

∥

,

(52)

w (VABU) ≤ 1

2

∥

∥

∥

∥

(

A2 + B2

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

V

(

A2 + B2

2

)1/2 ∥
∥

∥

∥

+
1

2
w

(

V

(

A2 + B2

2

)

U

)

(53)

and

w (VABU) ≤ 1

4

∥

∥

∥

∥

∥

∣

∣

∣

∣

(

A2 + B2

2

)1/2

U

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

A2 + B2

2

)1/2

V∗

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

+
1

2
w

(

V

(

A2 + B2

2

)

U

)

.

(54)

Remark 2 If we take in Corollary 3 A = 1H and B = P, a projection on H,

then we get

‖VPU‖ ≤ 1

2

∥

∥

∥

∥

∥

(

1H + P

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

V

(

1H + P

2

)1/2
∥

∥

∥

∥

∥

+
1

2

∥

∥

∥

∥

V

(

1H + P

2

)

U

∥

∥

∥

∥

,

(55)

w (VPU) ≤ 1

2

∥

∥

∥

∥

∥

(

1H + P

2

)1/2

U

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

V

(

1H + P

2

)1/2
∥

∥

∥

∥

∥

+
1

2
w

(

V

(

1H + P

2

)

U

)

(56)

and

wVPU) ≤ 1

4

∥

∥

∥

∥

∥

∣

∣

∣

∣

(

1H + P

2

)1/2

U

∣

∣

∣

∣

2

+

∣

∣

∣

∣

(

1H + P

2

)1/2

V∗

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

+
1

2
w

(

V

(

1H + P

2

)

U

)

.

(57)

Finally, we have:
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Corollary 4 Let T be a unitary operator with Re (T) ≥ 0. Then for any U,V ∈
B (H) we have

‖VRe (T)U‖ ≤ 1

2

[

‖U‖ ‖V‖+ ‖VU‖
]

, (58)

w (VRe (T)U) ≤ 1

2

[

‖U‖ ‖V‖+w (VU)
]

(59)

and

w (VRe (T)U) ≤ 1

4

∥

∥ |U|
2 + |V∗|

2
∥

∥+
1

2
w (VU) . (60)
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Abstract. In the paper, the authors find necessary and sufficient con-
ditions such that a function related to the Catalan-Qi function, which is
an alternative generalization of the Catalan numbers, is logarithmically
complete monotonic.

1 Introduction

It is stated in [11, 40] that the Catalan numbers Cn for n ≥ 0 form a sequence
of natural numbers that occur in tree enumeration problems such as “In how
many ways can a regular n-gon be divided into n − 2 triangles if different
orientations are counted separately?” whose solution is the Catalan number
Cn−2. The Catalan numbers Cn can be generated by
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2

1+
√
1− 4x

=
1−

√
1− 4x

2x
=

∞∑

n=0

Cnx
n = 1+x+2x2+5x3+14x4+ · · · .

One of explicit formulas of Cn for n ≥ 0 reads that

Cn =
4nΓ(n+ 1/2)√
π Γ(n+ 2)

,

where

Γ(z) =

∫
∞

0

tz−1e−t d t, ℜ(z) > 0

is the classical Euler gamma function. In [8, 11, 40, 43], it was mentioned that
there exists an asymptotic expansion

Cx ∼
4x√
π

(

1

x3/2
−
9

8

1

x5/2
+
145

128

1

x7/2
+ · · ·

)

(1)

for the Catalan function Cx.
A generalization of the Catalan numbers Cn was defined in [9, 10, 16] by

pdn =
1

n

(

pn

n− 1

)

=
1

(p− 1)n+ 1

(

pn

n

)

for n ≥ 1. The usual Catalan numbers Cn = 2dn are a special case with p = 2.
In combinatorics and statistics, the Fuss-Catalan numbers An(p, r) are de-

fined [6, 45] as numbers of the form

An(p, r) =
r

np+ r

(

np+ r

n

)

= r
Γ(np+ r)

Γ(n+ 1)Γ(n(p− 1) + r+ 1)
.

It is easy to see that

An(2, 1) = Cn, n ≥ 0 and An−1(p, p) = pdn, n ≥ 1.

There have existed some literature, such as [2, 4, 5, 7, 12, 14, 18, 19, 20, 21,
41, 42, 45], on the investigation of the Fuss-Catalan numbers An(p, r).

In [31, Remark 1], an alternative and analytical generalization of the Catalan
numbers Cn and the Catalan function Cx was introduced by

C(a, b; z) =
Γ(b)

Γ(a)

(

b

a

)z
Γ(z+ a)

Γ(z+ b)
, ℜ(a),ℜ(b) > 0, ℜ(z) ≥ 0.

For the uniqueness and convenience of referring to the quantity C(a, b; x),
we call the quantity C(a, b; x) the Catalan-Qi function and, when taking
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x = n ≥ 0, call C(a, b;n) the Catalan-Qi numbers. In the recent papers [13,
15, 22, 24, 25, 29, 30, 31, 32, 33, 34, 39], among other things, some proper-
ties, including the general expression and a generalization of the asymptotic
expansion (1), the monotonicity, logarithmic convexity, (logarithmically) com-
plete monotonicity, minimality, Schur-convexity, product and determinantal
inequalities, exponential representations, integral representations, a generating
function, connections with the Bessel polynomials and the Bell polynomials
of the second kind, and identities, of the Catalan numbers Cn, the Cata-
lan function Cx, the Catalan-Qi numbers C(a, b;n), the Catalan-Qi function
C(a, b; x), and the Fuss-Catalan numbers An(p, r) were established. Very re-
cently, we discovered in [25, Theorem 1.1] a relation between the Fuss-Catalan
numbers An(p, r) and the Catalan-Qi numbers C(a, b;n), which reads that

An(p, r) = r
n

∏p
k=1C

(

k+r−1
p , 1;n

)

∏p−1
k=1 C

(

k+r
p−1 , 1;n

)

for integers n ≥ 0, p > 1, and r > 0.
Recall from [3, 26, 28, 38] that an infinitely differentiable and positive func-

tion f is said to be logarithmically completely monotonic on an interval I if it
satisfies 0 ≤ (−1)k[ln f(x)](k) <∞ on I for all k ∈ N.

From the viewpoint of analysis, motivated by the idea in the papers [27,
35, 36, 37] and closely-related references cited therein, the author considered
in [23] the function Ca,b;x(t) = C(a + t, b + t; x) for t, x ≥ 0 and a, b > 0 and
obtained the following conclusions:

1. the function Ca,b;x(t) is logarithmically completely monotonic on [0,∞)

if and only if either 0 ≤ x ≤ 1 and a ≤ b or x ≥ 1 and a ≥ b,

2. the function 1
Ca,b;x(t)

is logarithmically completely monotonic on [0,∞)

if and only if either 0 ≤ x ≤ 1 and a ≥ b or x ≥ 1 and a ≤ b.

This implies the logarithmically complete monotonicity of [Ca,b;x(t)]
±1 in t ≥ 0

along with the ray

{
u(t) = a+ t

v(t) = b+ t
on the plane (u, v), where x ≥ 0 and

a, b > 0. Then one may ask a question: how about its logarithmically complete

monotonicity along the ray

{
u(t) = a+ αt

v(t) = b+ βt
for α,β ≥ 0 with (α,β) 6= (0, 0)

when x, t ≥ 0 and a, b > 0? In other words, is the function

Ca,b;x;α,β(t) = C(a+ αt, b+ βt; x), x ≥ 0, a, b > 0
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of logarithmically complete monotonicity in t ∈ [0,∞)? When α = β 6= 0, this
question has been answered essentially by the above-mentioned conclusions
in [23]; when α = 0 or β = 0, this question has been answered virtually by [34,
Theorem 1.2] which states that the function [C(a, b; x)]±1 is logarithmically
completely monotonic

1. with respect to a > 0 if and only if x ≷ 1,

2. with respect to b > 0 if and only if x ≶ 1.

In this paper, we will discuss the rest cases α,β > 0 and α 6= β of the above
question. Our main results can be formulated as the following theorem.

Theorem 1 If and only if α = 0 and β > 0, or α > 0 and β = 0, or α = β >

0, the function Ca,b;x;α,β(t) is of some logarithmically complete monotonicity.
Concretely speaking,

1. the function [C(a, b; x)]±1 is logarithmically completely monotonic

(a) with respect to a > 0 if and only if x ≷ 1,

(b) with respect to b > 0 if and only if x ≶ 1,

2. the function Ca,b;x(t) is logarithmically completely monotonic on [0,∞)

if and only if either 0 ≤ x ≤ 1 and a ≤ b or x ≥ 1 and a ≥ b,

3. the function 1
Ca,b;x(t)

is logarithmically completely monotonic on [0,∞) if

and only if either 0 ≤ x ≤ 1 and a ≥ b or x ≥ 1 and a ≤ b.

2 Proof of Theorem 1

Taking the logarithm of Ca,b;x;α,β(t) and differentiating with respect to t give

[lnCa,b;x;α,β(t)]
′ = ψ(βt+ b) −ψ(αt+ a) + x

(

1

βt+ b
−

1

αt+ a

)

+ψ(αt+ x+ a) −ψ(βt+ x+ b).

Making use of

ψ(z) =

∫
∞

0

(

e−u

u
−

e−zu

1− e−u

)

du, ℜ(z) > 0
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in [1, p. 259, 6.3.21] leads to

[lnCa,b;x;α,β(t)]
′ =

∫
∞

0

e−(a+αt)u − e−(b+βt)u

1− e−u
du

+ x

∫
∞

0

[

e−(b+βt)u − e−(a+αt)u
]

du

+

∫
∞

0

e−(b+βt)u − e−(a+αt)u

1− e−u
e−xu du

=

∫
∞

0

[

e−xu − 1+ x
(

1− e−u
)]e−(b+βt)u − e−(a+αt)u

1− e−u
du

= x

∫
∞

0

(

1− e−u

u
−
1− e−xu

xu

)

e−(b+βt)u − e−(a+αt)u

1− e−u
udu.

It is easy to see that the function 1−e−u

u is positive and strictly decreasing on
(0,∞). Hence,

1− e−u

u
−
1− e−xu

xu
R 0 (2)

for u ∈ (0,∞) if and only if x ⋚ 1.
Recall from [17, Chapter XIII], [38, Chapter 1], and [44, Chapter IV] that

an infinitely differentiable function f is said to be completely monotonic on
an interval I if it satisfies 0 ≤ (−1)kf(k)(x) < ∞ on I for all k ≥ 0. It is
not difficult to see that a positive function f is logarithmically completely
monotonic if and only if the function −(ln f) ′ is completely monotonic. The
famous Bernstein-Widder theorem, [44, p. 160, Theorem 12a], states that a
necessary and sufficient condition that f(x) should be completely monotonic
in 0 ≤ x < ∞ is that f(x) =

∫
∞

0
e−xt dα(t), where α is bounded and non-

decreasing and the above integral converges for 0 ≤ x < ∞. Therefore, it is
sufficient to find necessary and sufficient conditions on a, b > 0 and α,β > 0
with α 6= β for the function

e−(b+βt)u − e−(a+αt)u =

∫ (a+αt)u

(b+βt)u

e−v d v

=

∫ 1

0

[(a− b) + (α− β)t]ue−[(1−s)(b+βt)+s(a+αt)]u d s

=

∫ 1

0

[(a− b) + (α− β)t]e−[(1−s)β+sα]utue−[(1−s)b+sa]u d s

to be completely monotonic in t ∈ [0,∞) for all u ∈ (0,∞).
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By induction, we obtain

[

(A+ Bt)e−Dt
](k)

= (−1)kDk−1(BDt+AD− kB)e−Dt, k ≥ 0,

where A,B,D are real constants. Accordingly, the function (A + Bt)e−Dt is
completely monotonic in t ∈ [0,∞) if and only if A,B ≥ 0, D > 0, and

Dk−1(BDt+AD− kB) ≥ 0, k ≥ 0, t ∈ [0,∞). (3)

Simply speaking, the function (A + Bt)e−Dt is completely monotonic in t ∈
[0,∞) if and only if A ≥ 0, B = 0, and D > 0. Applying A to a − b, B to
α−β, and D to [(1− s)β+ sα]u yields that the function e−(b+βt)u− e−(a+αt)u

is completely monotonic in t ∈ [0,∞) if and only if a ≥ b, α = β, and α,β ≥ 0
with (α,β) 6= (0, 0). Combining this result with the inequality (2) and with the
proofs of [23, Theorem 1.1] and [34, Theorem 1.2] concludes that, if and only
if α = 0 and β > 0, or α > 0 and β = 0, or α = β > 0, the function Ca,b;x;α,β(t)

is of some logarithmically complete monotonicity. The proof of Theorem 1 is
thus complete.
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Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter
de Gruyter, Berlin, Germany, 2012; Available online at http://dx.doi.
org/10.1515/9783110269338.

[39] X. -T. Shi, F. -F. Liu, F. Qi, An integral representation of the Catalan
numbers, Glob. J. Math. Anal., 3 (2015), 130–133; Available online at
http://dx.doi.org/10.14419/gjma.v3i3.5055.

[40] R. Stanley, E. W. Weisstein, Catalan number, From MathWorld–A Wol-
fram Web Resource; Available online at http://mathworld.wolfram.

com/CatalanNumber.html.

[41] C. Stump, q, t-Fuß-Catalan numbers for complex reflection groups, 20th
Annual International Conference on Formal Power Series and Algebraic
Combinatorics, 2008, 295–306, Discrete Math. Theor. Comput. Sci. Proc.,
AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008.

[42] C. Stump, q, t-Fuß-Catalan numbers for finite reflection groups, J. Al-
gebraic Combin., 32 (2010), 67–97; Available online at http://dx.doi.

org/10.1007/s10801-009-0205-0.

[43] I. Vardi, Computational Recreations in Mathematica, Addison-Wesley,
Redwood City, CA, 1991.

[44] D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6,
Princeton University Press, Princeton, N. J., 1941.

[45] Wikipedia, Fuss-Catalan number, From the Free Encyclopedia; Available
online at https://en.wikipedia.org/wiki/Fuss-Catalan_number.

Received: October 22, 2015



Acta Univ. Sapientiae, Mathematica, 8, 1 (2016) 103–126

DOI: 10.1515/ausm-2016-0007

Generalizations of Steffensen’s inequality

via some Euler-type identities

Josip Pečarić
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Abstract. Using Euler-type identities some new generalizations of Stef-
fensen’s inequality for n−convex functions are obtained. Moreover, the
Ostrowski-type inequalities related to obtained generalizations are given.
Furthermore, using inequalities for the Čebyšev functional in terms of the
first derivative some new bounds for the remainder in identities related
to generalizations of Steffensen’s inequality are proven.

1 Introduction

Firstly, we recall the well-known Steffensen inequality which reads (see [11]):

Theorem 1 Suppose that f is nonincreasing and g is integrable on [a, b] with

0 ≤ g ≤ 1 and λ =
∫b
a
g(t)dt. Then we have

∫b

b−λ

f(t)dt ≤
∫b

a

f(t)g(t)dt ≤
∫a+λ

a

f(t)dt. (1)

2010 Mathematics Subject Classification: 26D15; 26D20

Key words and phrases: Steffensen’s inequality, Euler-type identities, Bernoulli polyno-

mials, Ostrowski-type inequalities, Čebyšev functional
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The inequalities are reversed for f nondecreasing.

Mitrinović stated in [8] that the inequalities in (1) follow from the identities

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

=

∫a+λ

a

[f(t) − f(a+ λ)][1− g(t)]dt+

∫b

a+λ

[f(a+ λ) − f(t)]g(t)dt

(2)

and

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

=

∫b−λ

a

[f(t) − f(b− λ)]g(t)dt+

∫b

b−λ

[f(b− λ) − f(t)][1− g(t)]dt.

(3)

In [4] Dedić, Matić and Pečarić derived Euler-type identities which extend
the well known formula for the expansion of an arbitrary function in Bernoulli
polynomials.

Theorem 2 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 1. Then for every x ∈ [a, b] we have

f(x) =
1

b− a

∫b

a

f(t)dt+ Tn(x) + R
1
n(x) (4)

and

f(x) =
1

b− a

∫b

a

f(t)dt+ Tn−1(x) + R
2
n(x), (5)

where T0(x) = 0, and for 1 ≤ m ≤ n

Tm(x) =

m∑

k=1

(b− a)k−1

k!
Bk

(

x− a

b− a

)

[

f(k−1)(b) − f(k−1)(a)
]

,

R1n(x) = −
(b− a)n−1

n!

∫

[a,b]

B∗
n

(

x− t

b− a

)

df(n−1)(t),

R2n(x) = −
(b− a)n−1

n!

∫

[a,b]

[

B∗
n

(

x− t

b− a

)

− Bn

(

x− a

b− a

)]

df(n−1)(t).
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Here, Bk(x), k ≥ 0 are the Bernoulli polynomials, Bk, k ≥ 0 are the Bernoulli
numbers and B∗

k(x), k ≥ 0 are periodic functions of period one, related to the
Bernoulli polynomials as

B∗
k(x) = Bk(x), 0 ≤ x < 1

and
B∗
k(x+ 1) = B

∗
k(x), x ∈ R.

Let us recall some properties of the Bernoulli polynomials. The first three
Bernoulli polynomials are

B0(x) = 1, B1(x) = x−
1

2
, B2(x) = x

2 − x+
1

6
,

and
B ′
n(x) = nBn−1(x), n ∈ N.

B∗
0(x) is a constant equal to 1, while B∗

1(x) is a discontinuous function with
a jump of −1 at each integer. For k ≥ 2, B∗

k(x) is a continuous function.
For more details on Bernoulli polynomials and Bernoulli numbers see [1] or

[7].
Next, let us recall the definition of the divided difference.

Definition 1 Let f be a real-valued function defined on the segment [a, b]. The
n−th order divided difference of the function f at distinct points x0, . . . , xn ∈
[a, b], is defined recursively by

[xi; f] = f(xi), (i = 0, . . . , n)

and

[x0, . . . , xn; f] =
[x1, . . . , xn; f] − [x0, . . . , xn−1; f]

xn − x0
.

The value [x0, . . . , xn; f] is independent of the order of the points x0, . . . , xn.
The previous definition can be extended to include the case in which some or
all of the points coincide by assuming that x0 ≤ · · · ≤ xn and letting

[x, . . . , x
︸ ︷︷ ︸
(j+1) times

; f] =
f(j)(x)

j!
, (6)

provided that f(j) exists.
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In this paper we use Euler-type identities given in Theorem 2 to obtain some
new identities related to Steffensen’s inequality. Using these new identities we
obtain new generalizations of Steffensen’s inequality for n−convex functions.
In Section 3 we give the Ostrowski-type inequalities related to obtained gen-
eralizations. In Section 4 we prove some new bounds for the remainder in
obtained identities using inequalities for the Čebyšev functional in terms of
the first derivative. Further, in Section 5 we give mean value theorems for
functionals related to obtained new generalizations of Steffensen’s inequality
for n−convex functions. In Section 6 we use previously defined functionals to
construct n−exponentially convex functions. We conclude this paper with the
applications to Stolarsky-type means.
Throughout the paper, it is assumed that all integrals under consideration

exist and that they are finite.

2 Generalizations of Steffensen’s inequality via Euler-

type identities

The aim of this section is to obtain generalizations of Steffensen’s inequality
for n−convex functions using the identities (4) and (5). We begin with the
following result:

Theorem 3 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an

integrable function. Let λ =
∫b
a
g(t)dt and let the function G1 be defined by

G1(x) =

{∫x
a
(1− g(t))dt, x ∈ [a, a+ λ],

∫b
x
g(t)dt, x ∈ [a+ λ, b].

(7)

Then

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

× [f(k−1)(b) − f(k−1)(a)]

=
(b− a)n−2

(n− 1)!

∫b

a

(∫b

a

G1(x)B
∗
n−1

(

x− t

b− a

)

dx

)

f(n)(t)dt.

(8)
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Proof. Applying integration by parts and then using the definition of the
function G1, the identity (2) becomes

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

= −

∫a+λ

a

(∫x

a

(1− g(t)dt

)

df(x) −

∫b

a+λ

(∫b

x

g(t)dt

)

df(x)

= −

∫b

a

G1(x)f
′(x)dx.

Now applying the identity (4) on the function f ′ we obtain

f ′(x) =
f(b) − f(a)

b− a
+

n∑

k=1

(b− a)k−1

k!
Bk

(

x− a

b− a

)

[f(k)(b) − f(k)(a)]

−
(b− a)n−1

n!

∫b

a

B∗
n

(

x− t

b− a

)

f(n+1)(t)dt

=

n∑

k=0

(b− a)k−1

k!
Bk

(

x− a

b− a

)

[f(k)(b) − f(k)(a)]

−
(b− a)n−1

n!

∫b

a

B∗
n

(

x− t

b− a

)

f(n+1)(t)dt.

(9)

Hence, using (9) we obtain

∫b

a

G1(x)f
′(x)dx

=

n∑

k=0

(b− a)k−1

k!

(∫b

a

G1(x)Bk

(

x− a

b− a

)

dx

)

[f(k)(b) − f(k)(a)]

−
(b− a)n−1

n!

∫b

a

G1(x)

(∫b

a

B∗
n

(

x− t

b− a

)

f(n+1)(t)dt

)

dx.

(10)

Applying Fubini’s theorem on the last term in (10) and replacing n with n−1
we obtain (8). This identity is valid for n− 1 ≥ 1, i.e. n ≥ 2. �

Similarly, using the identity (5) the following theorem holds.

Theorem 4 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an
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integrable function. Let λ =
∫b
a
g(t)dt and let the function G1 be defined by

(7). Then

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

=
(b− a)n−2

(n− 1)!

∫b

a

(∫b

a

G1(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx

)

f(n)(t)dt.

(11)

We continue with the results related to the identity (3).

Theorem 5 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an

integrable function. Let λ =
∫b
a
g(t)dt and let the function G2 be defined by

G2(x) =

{∫x
a
g(t)dt, x ∈ [a, b− λ],

∫b
x
(1− g(t))dt, x ∈ [b− λ, b].

(12)

Then

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

× [f(k−1)(b) − f(k−1)(a)]

=
(b− a)n−2

(n− 1)!

∫b

a

(∫b

a

G2(x)B
∗
n−1

(

x− t

b− a

)

dx

)

f(n)(t)dt.

(13)

Proof. Similar to the proof of Theorem 3 applying integration by parts on
the identity (3) and then using the identity (4) on the function f ′. �

Theorem 6 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an

integrable function. Let λ =
∫b
a
g(t)dt and let the function G2 be defined by
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(12). Then
∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

=
(b− a)n−2

(n− 1)!

∫b

a

(∫b

a

G2(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx

)

f(n)(t)dt.

(14)

Proof. Similar to the proof of Theorem 5 using the identity (5) on the function
f ′. �

Using previously obtained identities we can obtain the following generaliza-
tions of Steffensen’s inequality for n−convex functions.

Theorem 7 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an

integrable function. Let λ =
∫b
a
g(t)dt and let the function G1 be defined by

(7).

(i) If f is n−convex and
∫b

a

G1(x)B
∗
n−1

(

x− t

b− a

)

dx ≥ 0, t ∈ [a, b], (15)

then
∫b

a

f(t)g(t)dt ≤
∫a+λ

a

f(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)].

(16)

(ii) If f is n−convex and
∫b

a

G1(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx ≥ 0, t ∈ [a, b], (17)

then
∫b

a

f(t)g(t)dt ≤
∫a+λ

a

f(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)].

(18)
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Proof. If the function f is n-convex, without loss of generality we can assume
that f is n−times differentiable and f(n) ≥ 0 see [10, p. 16 and p. 293]. Now
we can apply Theorem 3 to obtain (16) and Theorem 4 to obtain (18). �

Similarly, applying Theorems 5 and 6 we obtain the following generalizations
of Steffensen’s inequality for n−convex functions.

Theorem 8 Let f : [a, b] → R be such that f(n−1) is continuous function of
bounded variation on [a, b] for some n ≥ 2 and let g : [a, b] → R be an

integrable function. Let λ =
∫b
a
g(t)dt and let the function G2 be defined by

(12).

(i) If f is n−convex and

∫b

a

G2(x)B
∗
n−1

(

x− t

b− a

)

dx ≥ 0, t ∈ [a, b], (19)

then

∫b

a

f(t)g(t)dt ≥
∫b

b−λ

f(t)dt

−

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)].

(20)

(ii) If f is n−convex and

∫b

a

G2(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx ≥ 0, t ∈ [a, b], (21)

then

∫b

a

f(t)g(t)dt ≥
∫b

b−λ

f(t)dt

−

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)].

(22)

3 Ostrowski-type inequalities

In this section we give the Ostrowski-type inequalities related to generaliza-
tions obtained in the previous section.



Generalizations via some Euler-type identities 111

Theorem 9 Suppose that all assumptions of Theorem 3 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Let
∣

∣f(n)
∣

∣

p
: [a, b] → R be an R-integrable function for some n ≥ 2. Then we have

∣

∣

∣

∣

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

∣

∣

∣

∣

∣

≤ (b− a)n−2

(n− 1)!

∥

∥f(n)
∥

∥

p

(∫b

a

∣

∣

∣

∣

∫b

a

G1(x)B
∗
n−1

(

x− t

b− a

)

dx

∣

∣

∣

∣

q

dt

) 1
q

.

(23)

The constant on the right-hand side of (23) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. Let us denote

C(t) =
(b− a)n−2

(n− 1)!

∫b

a

G1(x)B
∗
n−1

(

x− t

b− a

)

dx.

Using the identity (8) and applying Hölder’s inequality we obtain
∣

∣

∣

∣

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫b

a

C(t)f(n)(t)dt

∣

∣

∣

∣

≤
∥

∥f(n)
∥

∥

p

(∫b

a

|C(t)|q dt

)

1
q

.

For the proof of the sharpness of the constant
(∫b

a
|C(t)|q dt

) 1
q
let us find a

function f for which the equality in (23) is obtained.
For 1 < p <∞ take f to be such that

f(n)(t) = sgnC(t) |C(t)|
1

p−1 .

For p = ∞ take f(n)(t) = sgnC(t).
For p = 1 we prove that

∣

∣

∣

∣

∫b

a

C(t)f(n)(t)dt

∣

∣

∣

∣

≤ max
t∈[a,b]

|C(t)|

(∫b

a

∣

∣

∣f(n)(t)
∣

∣

∣dt

)

(24)
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is the best possible inequality. Suppose that |C(t)| attains its maximum at
t0 ∈ [a, b]. First we assume that C(t0) > 0. For ε small enough we define fε(t)
by

fε(t) =






0, a ≤ t ≤ t0,
1
ε n!(t− t0)

n, t0 ≤ t ≤ t0 + ε,
1
n!(t− t0)

n−1, t0 + ε ≤ t ≤ b.
Then for ε small enough

∣

∣

∣

∣

∫b

a

C(t)f(n)(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t0+ε

t0

C(t)
1

ε
dt

∣

∣

∣

∣

=
1

ε

∫ t0+ε

t0

C(t)dt.

Now from the inequality (24) we have

1

ε

∫ t0+ε

t0

C(t)dt ≤ C(t0)
∫ t0+ε

t0

1

ε
dt = C(t0).

Since,

lim
ε→0

1

ε

∫ t0+ε

t0

C(t)dt = C(t0)

the statement follows. In the case C(t0) < 0, we define fε(t) by

fε(t) =






1
n!(t− t0 − ε)

n−1, , a ≤ t ≤ t0,
− 1
εn!(t− t0 − ε)

n, t0 ≤ t ≤ t0 + ε,
0, t0 + ε ≤ t ≤ b,

and the rest of the proof is the same as above. �

Using the identity (11) we obtain the following result.

Theorem 10 Suppose that all assumptions of Theorem 4 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Let
∣

∣f(n)
∣

∣

p
: [a, b] → R be an R-integrable function for some n ≥ 2. Then we have

∣

∣

∣

∣

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

∣

∣

∣

∣

∣

≤ (b− a)n−2

(n− 1)!

∥

∥f(n)
∥

∥

p

( ∫b

a

∣

∣

∣

∣

∫b

a

G1(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx

∣

∣

∣

∣

q

dt

) 1
q

.

(25)
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The constant on the right-hand side of (25) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Similarly, we obtain the following Ostrowski-type inequalities related to re-
sults given in Theorems 5 and 6.

Theorem 11 Suppose that all assumptions of Theorem 5 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Let
∣

∣f(n)
∣

∣

p
: [a, b] → R be an R-integrable function for some n ≥ 2. Then we have

∣

∣

∣

∣

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

∣

∣

∣

∣

∣

≤ (b− a)n−2

(n− 1)!

∥

∥f(n)
∥

∥

p

(∫b

a

∣

∣

∣

∣

∫b

a

G2(x)B
∗
n−1

(

x− t

b− a

)

dx

∣

∣

∣

∣

q

dt

) 1
q

.

(26)

The constant on the right-hand side of (26) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Theorem 12 Suppose that all assumptions of Theorem 6 hold. Assume (p, q)

is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Let
∣

∣f(n)
∣

∣

p
: [a, b] → R be an R-integrable function for some n ≥ 2. Then we have

∣

∣

∣

∣

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

∣

∣

∣

∣

∣

≤ (b− a)n−2

(n− 1)!

∥

∥f(n)
∥

∥

p

( ∫b

a

∣

∣

∣

∣

∫b

a

G2(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx

∣

∣

∣

∣

q

dt

) 1
q

.

(27)

The constant on the right-hand side of (27) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.
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4 Generalizations related to the bounds for the

Čebyšev functional

Let f, h : [a, b] → R be two Lebesgue integrable functions. By T(f, h) we
denote the Čebyšev functional

T(f, h) :=
1

b− a

∫b

a

f(t)h(t)dt−
1

b− a

∫b

a

f(t)dt · 1

b− a

∫b

a

h(t)dt.

In [3] Cerone and Dragomir proved the following bound for the Čebyšev
functional.

Theorem 13 Let f : [a, b] → R be a Lebesgue integrable function and h :

[a, b] → R be an absolutely continuous function with (·−a)(b−·)[h ′]2 ∈ L[a, b].
Then we have the inequality

|T(f, h)| ≤ 1√
2
[T(f, f)]

1
2

1√
b− a

(∫b

a

(x− a)(b− x)[h ′(x)]2dx

)

1
2

. (28)

The constant 1√
2
in (28) is the best possible.

Also, Cerone and Dragomir [3] proved the following inequality of Grüss type.

Theorem 14 Assume that h : [a, b] → R is monotonic nondecreasing on
[a, b] and f : [a, b] → R is absolutely continuous with f ′ ∈ L∞[a, b]. Then we
have the inequality

|T(f, h)| ≤ 1

2(b− a)
‖f ′‖∞

∫b

a

(x− a)(b− x)dh(x). (29)

The constant 12 in (29) is the best possible.

In the sequel we use the aforementioned bound for the Čebyšev functional
to obtain generalizations of the results proved in Section 2.
Firstly, let us denote

H1(t) =

∫b

a

G1(x)B
∗
n−1

(

x− t

b− a

)

dx. (30)



Generalizations via some Euler-type identities 115

Theorem 15 Let f : [a, b] → R be such that f(n) is absolutely continuous
function for some n ≥ 2 with (· − a)(b − ·)[f(n+1)]2 ∈ L[a, b] and let g be an

integrable function on [a, b]. Let λ =
∫b
a
g(t)dt and let the functions G1 and

H1 be defined by (7) and (30). Then

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

−
(b− a)n−3[f(n−1)(b) − f(n−1)(a)]

(n− 1)!

∫b

a

H1(t)dt = S
1
n(f;a, b)

(31)

where the remainder S1n(f;a, b) satisfies the estimation

∣

∣

∣
S1n(f;a, b)

∣

∣

∣
≤ (b− a)n−

3
2

√
2(n− 1)!

[T(H1, H1)]
1
2

∣

∣

∣

∣

∫b

a

(t− a)(b− t)[f(n+1)(t)]2dt

∣

∣

∣

∣

1
2

.

(32)

Proof. Applying Theorem 13 for f→ H1 and h→ f(n) we obtain

∣

∣

∣

∣

1

b− a

∫b

a

H1(t)f
(n)(t)dt−

1

b− a

∫b

a

H1(t)dt ·
1

b− a

∫b

a

f(n)(t)dt

∣

∣

∣

∣

≤ 1√
2
[T(H1, H1)]

1
2

1√
b− a

∣

∣

∣

∣

∫b

a

(t− a)(b− t)[f(n+1)(t)]2dt

∣

∣

∣

∣

1
2

.

(33)

Hence, if we subtract

(b− a)n−1

(n− 1)!
· 1

b− a

∫b

a

H1(t)dt ·
1

b− a

∫b

a

f(n)(t)dt

=
(b− a)n−3

(n− 1)!
[f(n−1)(b) − f(n−1)(a)]

∫b

a

H1(t)dt

from both side of the identity (8) and use the inequality (33) we obtain the
representation (31). �

Similarly, using the identity (11) we obtain the following result. Let us de-
note

Φ1(t) =

∫b

a

G1(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx. (34)
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Theorem 16 Let f : [a, b] → R be such that f(n) is absolutely continuous
function for some n ≥ 2 with (· − a)(b − ·)[f(n+1)]2 ∈ L[a, b] and let g be an

integrable function on [a, b]. Let λ =
∫b
a
g(t)dt and let the functions G1 and

Φ1 be defined by (7) and (34). Then

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

−
(b− a)n−3[f(n−1)(b) − f(n−1)(a)]

(n− 1)!

∫b

a

Φ1(t)dt = S
2
n(f;a, b)

(35)

where the remainder S2n(f;a, b) satisfies the estimation

∣

∣

∣S2n(f;a, b)
∣

∣

∣ ≤ (b− a)n−
3
2

√
2(n− 1)!

[T(Φ1,Φ1)]
1
2

∣

∣

∣

∣

∫b

a

(t− a)(b− t)[f(n+1)(t)]2dt

∣

∣

∣

∣

1
2

.

We continue with the results related to the identities (13) and (14). Let us
denote

H2(t) =

∫b

a

G2(x)B
∗
n−1

(

x− t

b− a

)

dx (36)

and

Φ2(t) =

∫b

a

G2(x)

[

B∗
n−1

(

x− t

b− a

)

− Bn−1

(

x− a

b− a

)]

dx. (37)

Theorem 17 Let f : [a, b] → R be such that f(n) is absolutely continuous
function for some n ≥ 2 with (· − a)(b − ·)[f(n+1)]2 ∈ L[a, b] and let g be an

integrable function on [a, b]. Let λ =
∫b
a
g(t)dt and let the functions G2, H2

and Φ2 be defined by (12), (36) and (37) respectively. Then

(i)

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

−
(b− a)n−3[f(n−1)(b) − f(n−1)(a)]

(n− 1)!

∫b

a

H2(t)dt = S
3
n(f;a, b)

(38)
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where the remainder S3n(f;a, b) satisfies the estimation

∣

∣

∣S3n(f;a, b)
∣

∣

∣ ≤ (b− a)n−
3
2

√
2(n− 1)!

[T(H2, H2)]
1
2

∣

∣

∣

∣

∫b

a

(t− a)(b− t)[f(n+1)(t)]2dt

∣

∣

∣

∣

1
2

.

(ii)

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

−
(b− a)n−3[f(n−1)(b) − f(n−1)(a)]

(n− 1)!

∫b

a

Φ2(t)dt = S
4
n(f;a, b)

(39)

where the remainder S4n(f;a, b) satisfies the estimation

∣

∣

∣S4n(f;a, b)
∣

∣

∣ ≤ (b− a)n−
3
2

√
2(n− 1)!

[T(Φ2,Φ2)]
1
2

∣

∣

∣

∣

∫b

a

(t− a)(b− t)[f(n+1)(t)]2dt

∣

∣

∣

∣

1
2

.

Proof. Similar to the proof of Theorem 15. �

The following Grüss type inequalities also hold.

Theorem 18 Let f : [a, b] → R be such that f(n) (n ≥ 2) is absolutely contin-
uous function and f(n+1) ≥ 0 on [a, b]. Let the function H1 be defined by (30).
Then we have the representation (31) and the remainder S1n(f;a, b) satisfies
the bound

!
∣

∣

∣S1n(f;a, b)
∣

∣

∣ ≤ (b− a)n−1

(n− 1)!
‖H ′

1‖∞
{
f(n−1)(b) + f(n−1)(a)

2
−
[

a, b; f(n−2)
]

}

.

(40)

Proof. Applying Theorem 14 for f→ H1 and h→ f(n) we obtain

∣

∣

∣

∣

1

b− a

∫b

a

H1(t)f
(n)(t)dt−

1

b− a

∫b

a

H1(t)dt ·
1

b− a

∫b

a

f(n)(t)dt

∣

∣

∣

∣

≤ 1

2(b− a)
‖H ′

1‖∞
∫b

a

(t− a)(b− t)f(n+1)(t)dt.

(41)
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Since
∫b

a

(t− a)(b− t)f(n+1)(t)dt =

∫b

a

[2t− (a+ b)]f(n)(t)dt

= (b− a)
[

f(n−1)(b) + f(n−1)(a)
]

− 2
(

f(n−2)(b) − f(n−2)(a)
)

.

Using the representation (8) and the inequality (41) we deduce (40). �

Theorem 19 Let f : [a, b] → R be such that f(n) (n ≥ 2) is absolutely contin-
uous function and f(n+1) ≥ 0 on [a, b]. Let H1, Φ1 and Φ2 be defined by (30),
(34) and (37), respectively. Then we have the representations (35), (38) and
(39) where the remainders Sin(f;a, b), i = 2, 3, 4 satisfy the bounds

∣

∣

∣S2n(f;a, b)
∣

∣

∣ ≤ (b− a)n−1

(n− 1)!
‖Φ ′

1‖∞
{
f(n−1)(b) + f(n−1)(a)

2
−
[

a, b; f(n−2)
]

}

,

∣

∣

∣S3n(f;a, b)
∣

∣

∣ ≤ (b− a)n−1

(n− 1)!
‖H ′

2‖∞
{
f(n−1)(b) + f(n−1)(a)

2
−
[

a, b; f(n−2)
]

}

and

∣

∣

∣S4n(f;a, b)
∣

∣

∣ ≤ (b− a)n−1

(n− 1)!
‖Φ ′

2‖∞
{
f(n−1)(b) + f(n−1)(a)

2
−
[

a, b; f(n−2)
]

}

.

5 Mean value theorems

Motivated by inequalities (16), (18), (20) and (22), under the assumptions of
Theorems 7 and 8 we define the following linear functionals:

L1(f) =

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

(42)

L2(f) =

∫a+λ

a

f(t)dt−

∫b

a

f(t)g(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G1(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

(43)
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L3(f) =

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)]

(44)

L4(f) =

∫b

a

f(t)g(t)dt−

∫b

b−λ

f(t)dt

+

n−1∑

k=1

(b− a)k−2

(k− 1)!

(∫b

a

G2(x)Bk−1

(

x− a

b− a

)

dx

)

[f(k−1)(b) − f(k−1)(a)].

(45)

Remark 1 We have Li(f) ≥ 0, i = 1, . . . , 4 for all n−convex functions f.

Now, we give the Lagrange-type mean value theorem related to defined
functionals.

Theorem 20 Let f : [a, b] → R be such that f ∈ Cn[a, b]. If the inequalities
in (15) (i = 1), (17) (i = 2), (19) (i = 3) and (21) (i = 4) hold, then there
exist ξi ∈ [a, b] such that

Li(f) = f
(n)(ξi)Li(ϕ), i = 1, . . . , 4 (46)

where ϕ(x) = xn

n! and Li, i = 1, . . . , 4 are defined by (42)-(45).

Proof. Let us denote

m = min
x∈[a,b]

f(n)(x) and M = max
x∈[a,b]

f(n)(x).

For a given function f ∈ Cn[a, b] we define the functions F1, F2 : [a, b] → R

with
F1(x) =Mϕ(x) − f(x) and F2(x) = f(x) −mϕ(x).

Now F
(n)
1 (x) =M− f(n)(x) ≥ 0, so from Remark 1 we conclude Li(F1) ≥ 0, i =

1, . . . , 4 and then Li(f) ≤M·Li(ϕ). Similarly, from F
(n)
2 (x) = f(n)(x)−m ≥ 0 we

conclude m · Li(ϕ) ≤ Li(f). Hence, m · Li(ϕ) ≤ Li(f) ≤M · Li(ϕ), i = 1, . . . , 4.
If Li(ϕ) = 0, then (46) holds for all ξi ∈ [a, b]. Otherwise,

m ≤ Li(f)

Li(ϕ)
≤M, i = 1, . . . 4.
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Since f(n) is continuous on [a, b] there exist ξi ∈ [a, b], i = 1, . . . , 4 such that
(46) holds and the proof is complete. �

We continue with the Cauchy-type mean value theorem.

Theorem 21 Let f, F : [a, b] → R be such that f, F ∈ Cn[a, b] and F(n) 6= 0.
If the inequalities in (15) (i = 1), (17) (i = 2), (19) (i = 3) and (21) (i = 4)

hold, then there exist ξi ∈ [a, b] such that

Li(f)

Li(F)
=
f(n)(ξ)

F(n)(ξ)
, i = 1, . . . , 4 (47)

where Li, i = 1, . . . , 4 are defined by (42)-(45).

Proof. We define functions φi(x) = f(x)Li(F) − F(x)Li(f), i = 1, . . . , 4. Ac-
cording to Theorem 20 there exist ξi ∈ [a, b] such that

Li(φi) = φ
(n)
i (ξi)Li(ϕ), i = 1, . . . , 4.

Since Li(φi) = 0 it follows that f(n)(ξi)Li(F) − F
(n)(ξi)Li(f) = 0 and (47) is

proved. �

6 n−exponential convexity

Let us begin by recalling some definitions and results related to n−exponential
convexity. For more details see e.g. [2], [6] and [9].

Definition 2 A function ψ : I → R is said to be n-exponentially convex in
the Jensen sense on I if

n∑

i,j=1

ξiξjψ

(

xi + xj

2

)

≥ 0,

holds for all choices of ξi ∈ R and xi ∈ I, i = 1, . . . , n.
A function ψ : I → R is said to be n-exponentially convex if it is n-

exponentially convex in the Jensen sense and continuous on I.

Remark 2 It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n-exponentially
convex functions in the Jensen sense are k-exponentially convex in the Jensen
sense for every k ∈ N, k ≤ n.
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Definition 3 A function ψ : I→ R is said to be exponentially convex in the
Jensen sense on I if it is n-exponentially convex in the Jensen sense for all
n ∈ N.
A function ψ : I→ R is said to be exponentially convex if it is exponentially

convex in the Jensen sense and continuous.

Remark 3 It is known that ψ : I → R is log-convex in the Jensen sense if
and only if

α2ψ(x) + 2αβψ

(

x+ y

2

)

+ β2ψ(y) ≥ 0,

holds for every α,β ∈ R and x, y ∈ I. It follows that a positive function is
log-convex in the Jensen sense if and only if it is 2-exponentially convex in the
Jensen sense.
A positive function is log-convex if and only if it is 2-exponentially convex.

Proposition 1 If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality is valid

f(x2) − f(x1)

x2 − x1
≤ f(y2) − f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

We use defined functionals Li, i = 1, . . . , 4 to construct exponentially con-
vex functions. An elegant method of producing n− exponentially convex and
exponentially convex functions is given in [9]. In the sequel the notion log
denotes the natural logarithm function.

Theorem 22 Let Ω = {fp : p ∈ J}, where J is an interval in R, be a fam-
ily of functions defined on an interval I in R such that the function p 7→
[x0, . . . , xm; fp] is n−exponentially convex in the Jensen sense on J for every
(m+ 1) mutually different points x0, . . . , xm ∈ I. Let Li, i = 1, . . . , 4 be linear
functionals defined by (42)−(45). Then p 7→ Li(fp) is n−exponentially convex
function in the Jensen sense on J.
If the function p 7→ Li(fp) is continuous on J, then it is n−exponentially con-
vex on J.

Proof. For ξj ∈ R and pj ∈ J, j = 1, . . . , n, we define the function

Ψ(x) =

n∑

j,k=1

ξjξkfpj+pk
2

(x).
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Using the assumption that the function p 7→ [x0, . . . , xm; fp] is n-exponentially
convex in the Jensen sense, we have

[x0, . . . , xm, Ψ] =

n∑

j,k=1

ξjξk[x0, . . . , xm; fpj+pk
2

] ≥ 0,

which in turn implies that Ψ is a m-convex function on J, so Li(Ψ) ≥ 0,
i = 1, . . . , 4. Hence

n∑

j,k=1

ξjξkLi

(

fpj+pk
2

)

≥ 0.

We conclude that the function p 7→ Li(fp) is n-exponentially convex on J in
the Jensen sense.
If the function p 7→ Li(fp) is also continuous on J, then p 7→ Li(fp) is n-

exponentially convex by definition. �

As an immediate consequence of the above theorem we obtain the following
corollary:

Corollary 1 Let Ω = {fp : p ∈ J}, where J is an interval in R, be a fam-
ily of functions defined on an interval I in R, such that the function p 7→
[x0, . . . , xm; fp] is exponentially convex in the Jensen sense on J for every
(m+ 1) mutually different points x0, . . . , xm ∈ I. Let Li, i = 1, . . . , 4, be linear
functionals defined by (42)-(45). Then p 7→ Li(fp) is an exponentially convex
function in the Jensen sense on J. If the function p 7→ Li(fp) is continuous on
J, then it is exponentially convex on J.

Corollary 2 Let Ω = {fp : p ∈ J}, where J is an interval in R, be a fam-
ily of functions defined on an interval I in R, such that the function p 7→
[x0, . . . , xm; fp] is 2-exponentially convex in the Jensen sense on J for every
(m+ 1) mutually different points x0, . . . , xm ∈ I. Let Li, i = 1, . . . , 4 be linear
functionals defined by (42)-(45). Then the following statements hold:

(i) If the function p 7→ Li(fp) is continuous on J, then it is 2-exponentially
convex function on J. If p 7→ Li(fp) is additionally strictly positive, then
it is also log-convex on J. Furthermore, the following inequality holds
true:

[Li(fs)]
t−r ≤ [Li(fr)]

t−s [Li(ft)]
s−r , i = 1, . . . , 4

for every choice r, s, t ∈ J, such that r < s < t.
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(ii) If the function p 7→ Li(fp) is strictly positive and differentiable on J,
then for every p, q, u, v ∈ J, such that p ≤ u and q ≤ v, we have

µp,q(Li,Ω) ≤ µu,v(Li,Ω), (48)

where

µp,q(Li,Ω) =






(

Li(fp)
Li(fq)

) 1
p−q

, p 6= q,

exp

(

d
dp
Li(fp)

Li(fp)

)

, p = q,
(49)

for fp, fq ∈ Ω.

Proof.

(i) This is an immediate consequence of Theorem 22 and Remark 3.

(ii) Since p 7→ Li(fp) is positive and continuous, by (i) we have that p 7→
Li(fp) is log-convex on J, that is, the function p 7→ log Li(fp) is convex
on J. Applying Proposition 1 we get

log Li(fp) − log Li(fq)

p− q
≤ log Li(fu) − log Li(fv)

u− v
, (50)

for p ≤ u, q ≤ v, p 6= q, u 6= v. Hence, we conclude that

µp,q(Li,Ω) ≤ µu,v(Li,Ω).

Cases p = q and u = v follow from (50) as limit cases.

�

Remark 4 Results from the above theorem and corollaries still hold when two
of the points x0, . . . , xm ∈ I coincide, say x1 = x0, for a family of differentiable
functions fp such that the function p 7→ [x0, . . . , xm; fp] is n-exponentially con-
vex in the Jensen sense (exponentially convex in the Jensen sense, log-convex
in the Jensen sense), and furthermore, they still hold when all m + 1 points
coincide for a family of n differentiable functions with the same property. The
proofs use (6) and suitable characterization of convexity.
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7 Applications to Stolarsky type means

In this section, we present some families of functions which fulfil the conditions
of Theorem 22, Corollary 1, Corollary 2 and Remark 4. This enables us to
construct a large families of functions which are exponentially convex. For a
discussion related to this problem see [5].

Example 1 Let us consider a family of functions

Ω1 = {fp : R → R : p ∈ R}

defined by

fp(x) =

{ epx

pn , p 6= 0,
xn

n! , p = 0.

Since
dnfp
dxn (x) = epx > 0, the function fp is n-convex on R for every p ∈ R

and p 7→ dnfp
dxn (x) is exponentially convex by definition. Using analogous ar-

guing as in the proof of Theorem 22 we also have that p 7→ [x0, . . . , xn; fp] is
exponentially convex (and so exponentially convex in the Jensen sense). Now,
using Corollary 1 we conclude that p 7→ Li(fp), i = 1, . . . , 4, are exponentially
convex in the Jensen sense. It is easy to verify that this mapping is continuous
(although the mapping p 7→ fp is not continuous for p = 0), so it is exponen-
tially convex. For this family of functions, µp,q(Li,Ω1), i = 1, . . . , 4, from (49),
becomes

µp,q(Li,Ω1) =






(

Li(fp)
Li(fq)

) 1
p−q

, p 6= q,
exp

(

Li(id·fp)
Li(fp)

− n
p

)

, p = q 6= 0,
exp

(

1
n+1

Li(id·f0)
Li(f0)

)

, p = q = 0,

where id is the identity function. By Corollary 2 µp,q(Li,Ω1), i = 1, . . . , 4 are
monotonic functions in parameters p and q.
Since

(

dnfp
dxn

dnfq
dxn

) 1
p−q

(log x) = x,

using Theorem 21 it follows that:

Mp,q(Li,Ω1) = logµp,q(Li,Ω1), i = 1, . . . , 4

satisfy
a ≤Mp,q(Li,Ω1) ≤ b, i = 1, . . . , 4.

So, Mp,q(Li,Ω1), i = 1, . . . , 4 are monotonic means.
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Example 2 Let us consider a family of functions

Ω2 = {gp : (0,∞) → R : p ∈ R}

defined by

gp(x) =






xp

p(p− 1) · · · (p− n+ 1)
, p /∈ {0, 1, . . . , n− 1},

xj log x

(−1)n−1−jj!(n− 1− j)!
, p = j ∈ {0, 1, . . . , n− 1}.

Since
dngp
dxn (x) = xp−n > 0, the function gp is n−convex for x > 0 and p 7→

dngp
dxn (x) is exponentially convex by definition. Arguing as in Example 1 we get
that the mappings p 7→ Li(gp), i = 1, . . . , 4 are exponentially convex. Hence,
for this family of functions µp,q(Li,Ω2), i = 1, . . . , 4, from (49), is equal to

µp,q(Li,Ω2) =






(

Li(gp)

Li(gq)

) 1
p−q

, p 6= q,

exp

(

(−1)n−1(n− 1)!
Li(g0gp)

Li(gp)
+

n−1∑

k=0

1

k− p

)

,

p = q /∈ {0, 1, . . . , n− 1},

exp









(−1)n−1(n− 1)!
Li(g0gp)

2Li(gp)
+

n−1∑

k=0
k6=p

1

k− p









,

p = q ∈ {0, 1, . . . , n− 1}.

Again, using Theorem 21 we conclude that

a ≤
(

Li(gp)

Li(gq)

) 1
p−q

≤ b, i = 1, . . . , 4. (51)

So, µp,q(Li,Ω2), i = 1, . . . , 4 are means and by (48) they are monotonic.
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Abstract. The maximum of the conditional hazard function is a param-
eter of great importance in seismicity studies, because it constitutes the
maximum risk of occurrence of an earthquake in a given interval of time.
Using the kernel nonparametric estimates of the first derivative of the
conditional hazard function, we establish uniform convergence properties
and asymptotic normality of an estimate of the maximum in the context
of independence data.

1 Introduction

The statistical analysis of functional data studies the experiments whose re-
sults are generally the curves. Under this supposition, the statistical analysis
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focuses on a framework of infinite dimension for the data under study. This
field of modern statistics has received much attention in the last 20 years, and
it has been popularised in the book of Ramsay and Silverman (2005). This
type of data appears in many fields of applied statistics: environmetrics (Da-
mon and Guillas, 2002), chemometrics (Benhenni et al., 2007), meteorological
sciences (Besse et al., 2000), etc.
From a theoretical point of view, a sample of functional data can be in-

volved in many different statistical problems, such as: classification and princi-
pal components analysis (PCA) (1986,1991) or longitudinal studies, regression
and prediction (Benhenni et al., 2007; Cardo et al., 1999). The recent mono-
graph by Ferraty and Vieu (2006) summarizes many of their contributions to
the nonparametric estimation with functional data; among other properties,
consistency of the conditional density, conditional distribution and regression
estimates are established in the i.i.d. case under dependence conditions (strong
mixing). Almost complete rates of convergence are also obtained, and differ-
ent techniques are applied to several examples of functional data samples.
Related work can be seen in the paper of Masry (2005), where the asymp-
totic normality of the functional nonparametric regression estimate is proven,
considering strong mixing dependence conditions for the sample data. For au-
tomatic smoothing parameter selection in the regression setting, see Rachdi
and Vieu (2007).

Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest,
especially to inventory theorists, medical researchers, logistics planners, relia-
bility engineers and seismologists. The non-parametric estimation of the haz-
ard function has been extensively discussed in the literature. Beginning with
Watson and Leadbetter (1964), there are many papers on these topics: Ahmad
(1976), Singpurwalla and Wong (1983), etc. We can cite Quintela (2007) for a
survey.
The literature on the estimation of the hazard function is very abundant,

when observations are vectorial. Cite, for instance, Watson and Leadbetter
(1964), Roussas (1989), Lecoutre and Ould-Säıd (1993), Estvez et al. (2002)
and Quintela-del-Rio (2006) for recent references. In all these works the au-
thors consider independent observations or dependent data from time series.
The first results on the nonparametric estimation of this model, in functional
statistics were obtained by Ferraty et al. (2008). They studied the almost
complete convergence of a kernel estimator for hazard function of a real ran-
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dom variable dependent on a functional predictor. Asymptotic normality of
the latter estimator was obtained, in the case of α- mixing, by Quintela-del-
Rio (2008). We refer to Ferraty et al. (2010) and Mahhiddine et al. (2014)
for uniform almost complete convergence of the functional component of this
nonparametric model.
When hazard rate estimation is performed with multiple variables, the re-

sult is an estimate of the conditional hazard rate for the first variable, given
the levels of the remaining variables. Many references, practical examples and
simulations in the case of non-parametric estimation using local linear approx-
imations can be found in Spierdijk (2008).
Our paper presents some asymptotic properties related with the non-para-

metric estimation of the maximum of the conditional hazard function. In a
functional data setting, the conditioning variable is allowed to take its values
in some abstract semi-metric space. In this case, Ferraty et al. (2008) define
non-parametric estimators of the conditional density and the conditional dis-
tribution. They give the rates of convergence (in an almost complete sense)
to the corresponding functions, in a independence and dependence (α-mixing)
context. We extend their results by calculating the maximum of the condi-
tional hazard function of these estimates, and establishing their asymptotic
normality, considering a particular type of kernel for the functional part of
the estimates. Because the hazard function estimator is naturally constructed
using these two last estimators, the same type of properties is easily derived
for it. Our results are valid in a real (one- and multi-dimensional) context.
If X is a random variable associated to a lifetime (ie, a random variable with

values in R
+, the hazard rate of X (sometimes called hazard function, failure

or survival rate ) is defined at point x as the instantaneous probability that
life ends at time x. Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)
dx

, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy
to see that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F(x)
, for all x such that F(x) < 1,

where F denotes the distribution function of X and S = 1 − F the survival
function of X.
In many practical situations, we may have an explanatory variable Z and
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the main issue is to estimate the conditional random rate defined as

hZ(x) = lim
dx→0

P (X ≤ x+ dx|X > x, Z)
dx

, for x > 0,

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
=

fZ(x)

1− FZ(x)
, once FZ(x) < 1. (1)

Study of functions h and hZ is of obvious interest in many fields of science
(biology, medicine, reliability , seismology, econometrics, ...) and many authors
are interested in construction of nonparametric estimators of h.
In this paper we propose an estimate of the maximum risk, through the

nonparametric estimation of the conditional hazard function.
The layout of the paper is as follows. Section 2 describes the non-parametric

functional setting: the structure of the functional data, the conditional density,
distribution and hazard operators, and the corresponding non-parametric ker-
nel estimators. Section 3 states the almost complete convergence1 (with rates
of convergence2) for nonparametric estimates of the derivative of the condi-
tional hazard and the maximum risk. In Section 4, we calculate the variance of
the conditional density, distribution and hazard estimates, the asymptotic nor-
mality of the three estimators considered is developed in this Section. Finally,
Section 5 includes some proofs of technical Lemmas.

2 Nonparametric estimation with dependent func-

tional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed
as (Z,X), where the variable Z is of functional nature and X is scalar. For-
mally, we will consider that Z is a random variable valued in some semi-metric
functional space F , and we will denote by d(·, ·) the associated semi-metric.
The conditional cumulative distribution of X given Z is defined for any x ∈ R

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely
to some variable T , if for any ǫ > 0, we have

∑
n
P(|Tn − T | > ǫ) < ∞. This mode of

convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, (1987)).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ǫ > 0 for which

∑
n
P(|Tn| > ǫun) <∞. This is denoted

by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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and any z ∈ F by
FZ(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fZ(x) is defined as the density of
this distribution with respect to the Lebesgue measure on R. The conditional
hazard is defined as in the non-infinite case (1).
In a general functional setting, f, F and h are not standard mathematical

objects. Because they are defined on infinite dimensional spaces, the term
operators may be a more adjusted in terminology.

The functional kernel estimates

We assume the sample data (Xi, Zi)1≤i≤n is i.i.d.
Following in Ferraty et al. (2008), the conditional density operator fZ(·) is

defined by using kernel smoothing methods

f̂Z(x) =

n∑

i=1

h−1H K
(
h−1K d(z, Zi)

)
H ′
(
h−1H (x− Xi)

)

n∑

i=1

K
(
h−1K d(z, Zi)

) ,

where k and H ′ are kernel functions and hH and hK are sequences of smoothing
parameters. The conditional distribution operator FZ(·) can be estimated by

F̂Z(x) =

n∑

i=1

K
(
h−1K d(z, Zi)

)
H
(
h−1H (x− Xi)

)

n∑

i=1

K
(
h−1K d(z, Zi)

) ,

with the function H(·) defined by H(x) =
∫x
−∞H

′(t)dt. Consequently, the
conditional hazard operator is defined in a natural way by

ĥZ(x) =
f̂Z(x)

1− F̂Z(x)
.

For z ∈ F , we denote by hZ(·) the conditional hazard function of X1 given
Z1 = z. We assume that hZ(·) is unique maximum and its high risk point is
denoted by θ(z) := θ, which is defined by

hZ(θ(z)) := hZ(θ) = max
x∈S

hZ(x). (2)
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A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which
maximizes a kernel estimator ĥZ(·), that is,

ĥZ(θ̂(z)) := ĥZ(θ̂) = max
x∈S

ĥZ(x), (3)

where hZ and ĥZ are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid

for any choice satisfying (3). We point out that we can specify our choice by
taking

θ̂(z) = inf

{
t ∈ S such that ĥZ(t) = max

x∈S
ĥZ(x)

}
.

As in any non-parametric functional data problem, the behavior of the esti-
mates is controlled by the concentration properties of the functional variable
Z.

φz(h) = P(Z ∈ B(z, h)),
where B(z, h) being the ball of center z and radius h, namely B(z, h) =

P (f ∈ F , d(z, f) < h) (for more details, see Ferraty and Vieu (2006), Chap-
ter 6 ).
In the following, z will be a fixed point in F , Nz will denote a fixed neigh-

borhood of z, S will be a fixed compact subset of R
+. We will led to the

hypothesis below concerning the function of concentration φz

(H1) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and lim
h→0

φz(h) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting on
the distribution of the f.r.v. of Z.
Our nonparametric models will be quite general in the sense that we will

just need the following simple assumption for the marginal distribution of Z,
and let us introduce the technical hypothesis necessary for the results to be
presented. The non-parametric model is defined by assuming that

(H2)

{
∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0
|Fz1(x1) − F

z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|
b2),

(H3)

{ ∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2
z , for some j = 0, 1, ν > 0, β > 0

|fz1 (j)(x1) − f
z2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|

β),

(H4) ∃γ <∞, f ′Z(x) ≤ γ, ∀ (z, x) ∈ F × S,
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(H5) ∃ τ > 0, FZ(x) ≤ 1− τ, ∀ (z, x) ∈ F × S.

(H6) H ′ is twice differentiable such that






(H6a) ∀ (t1, t2) ∈ R
2; |H(j)(t1) −H

(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1, 2

and H(j)are bounded for j = 0, 1, 2;

(H6b)

∫

R

t2H ′2(t)dt <∞;

(H6c)

∫

R

|t|β(H ′′(t))2dt <∞.

(H7) The kernel K is positive bounded function supported on [0, 1] and it is
of class C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K

′(t) < C2 < 0 for
0 < t < 1.

(H8) There exists a function ζz0(·) such that for all t ∈ [0, 1]

lim
hK→0

φz(thK)

φz(hK)
= ζz0(t) and nhHφx(hK) → ∞ as n→ ∞.

(H9) The bandwidth hH and hK and small ball probability φz(h) satisfying






(H9a) lim
n→∞

hK = 0, lim
n→∞

hH = 0;

(H9b) lim
n→∞

logn

nφx(hK)
= 0;

(H9c) lim
n→∞

logn

nh
2j+1
H φx(hK)

= 0, j = 0, 1.

Remark 1 Assumption (H1) plays an important role in our methodology. It is
known as (for small h) the ”concentration hypothesis acting on the distribution
of X” in infi- nite-dimensional spaces. This assumption is not at all restric-
tive and overcomes the problem of the non-existence of the probability density
function. In many examples, around zero the small ball probabilityφz(h) can
be written approximately as the product of two independent functions ψ(z)
and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry
(2005) who reformulated the Gasser et al. (1998) one. The increasing proprety
of φz(·) implies that ζzh(·) is bounded and then integrable (all the more so ζz0(·)
is integrable).
Without the differentiability of φz(·), this assumption has been used by many

authors where ψ(·) is interpreted as a probability density, while ϕ(·) may be
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interpreted as a volume parameter. In the case of finite-dimensional spaces,
that is S = R

d, it can be seen that φz(h) = C(d)h
dψ(z)+ohd), where C(d) is

the volume of the unit ball in R
d. Furthermore, in infinite dimensions, there

exist many examples fulfilling the decomposition mentioned above. We quote
the following (which can be found in Ferraty et al. (2007)):

1. φz(h) ≈ ψ(h)hγ for som γ > 0.

2. φz(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.

3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for all
fixed h. Its pointwise limit ζz0(·) also plays a determinant role. It intervenes in
all asymptotic properties, in particular in the asymptotic variance term. With
simple algebra, it is possible to specify this function (with ζ0(u) := ζz0(u) in
the above examples by:

1. ζ0(u) = u
γ,

2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,

3. ζ0(u) = 1]0,1](u).

Remark 2 Assumptions (H2) and (H3) are the only conditions involving the
conditional probability and the conditional probability density of Z given X. It
means that F(·|·) and f(·|·) and its derivatives satisfy the Hölder condition with
respect to each variable. Therefore, the concentration condition (H1) plays an
important role. Here we point out that our assumptions are very usual in the
estimation problem for functional regressors (see, e.g., Ferraty et al. (2008)).

Remark 3 Assumptions (H6), (H7) and (H9) are classical in functional es-
timation for finite or infinite dimension spaces.

3 Nonparametric estimate of the maximum of the

conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hZ

on S. We will suppose that hZ is sufficiently smooth ( at least of class C2) and
verifies that h ′Z(θ) = 0 and h

′′ Z(θ) < 0.
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Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and
that θ satisfies the uniqueness condition, that is; for any ε > 0 and µ(z), there
exists ξ > 0 such that |θ(z)−µ(z)| ≥ ε implies that |hZ(θ(z))−hZ(µ(z))| ≥ ξ.
We can write an estimator of the first derivative of the hazard function

through the first derivative of the estimator. Our maximum estimate is defined
by assuming that there is some unique θ̂ on S◦.
It is therefore natural to try to construct an estimator of the derivative

of the function hZ on the basis of these ideas. To estimate the conditional
distribution function and the conditional density function in the presence of
functional conditional random variable Z.
The kernel estimator of the derivative of the function conditional random

functional hZ can therefore be constructed as follows:

ĥ ′
Z
(x) =

f̂ ′
Z
(x)

1− F̂Z(x)
+ (ĥZ(x))2, (4)

the estimator of the derivative of the conditional density is given in the fol-
lowing formula:

f̂ ′
Z
(x) =

n∑

i=1

h−2H K(h
−1
K d(Z,Zi))H

′′(h−1H (x− Xi))

n∑

i=1

K(h−1K d(Z,Zi))

. (5)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′,

hH and hK are little restrictive. Indeed, on one hand, they are not specific to
the problem estimate of hZ (but inherent problems of FZ, fZ and f ′Z estima-
tion), and secondly they consist with the assumptions usually made under
functional variables.
We state the almost complete convergence (withe rates of convergence) of

the maximum estimate by the following results:

Theorem 1 Under assumption (H1)-(H7) we have

θ̂− θ→ 0 a.co. (6)

Remark 4 The hypothesis of uniqueness is only established for the sake of
clarity. Following our proofs, if several local estimated maxima exist, the asymp-
totic results remain valid for each of them.
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Proof. Because h ′Z(·) is continuous, we have, for all ǫ > 0. ∃ η(ǫ) > 0 such
that

|x− θ| > ǫ⇒ |h ′Z(x) − h ′Z(θ)| > η(ǫ).

Therefore,

P{|θ̂− θ| ≥ ǫ} ≤ P{|h ′Z(θ̂) − h ′Z(θ)| ≥ η(ǫ)}.
We also have

|h ′Z(θ̂)−h ′Z(θ)| ≤ |h ′Z(θ̂)− ĥ ′Z(θ̂)|+ |ĥ ′Z(θ̂)−h ′Z(θ)| ≤ sup
x∈S

|ĥ ′Z(x)−h ′Z(x)|,

(7)
because ĥ ′Z(θ̂) = h ′Z(θ) = 0.

Then, uniform convergence of h ′Z will imply the uniform convergence of θ̂.
That is why, we have the following lemma.

Lemma 1 Under assumptions of Theorem 1, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)| → 0 a.co. (8)

�

The proof of this lemma will be given in Appendix.

Theorem 2 Under assumption (H1)-(H7) and (H9a) and (H9c), we have

sup
x∈S

|θ̂− θ| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (9)

Proof. By using Taylor expansion of the function h ′Z at the point θ̂, we obtain

h ′Z(θ̂) = h ′Z(θ) + (θ̂− θ)h ′′Z(θ∗n), (10)

with θ∗ a point between θ and θ̂. Now, because h ′Z(θ) = ĥ ′Z(θ̂)

|θ̂− θ| ≤ 1

h ′′Z(θ∗n)
sup
x∈S

|ĥ ′Z(x) − h ′Z(x)|. (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 2 Under the assumptions of Theorem 2, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (12)

The proof of lemma will be given in the Appendix.
�
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4 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to
add the following assumptions:

(H6d)

∫

R

(H ′′(t))2dt <∞,

(H10) 0 = ĥ ′
Z
(θ̂) < |ĥ ′

Z
(x)|), ∀x ∈ S, x 6= θ̂

The following result gives the asymptotic normality of the maximum of the
conditional hazard function. Let

A =
{
(z, x) : (z, x) ∈ S × R, ax2F

Z(x)
(
1− FZ(x)

)
6= 0

}
.

Theorem 3 Under conditions (H1)-(H10) we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0) (

nh3Hφz(hK)
)1/2 (

ĥ
′Z(θ) − h

′Z(θ)
)

D→N
(
0, σ2h ′(θ)

)

where →D denotes the convergence in distribution,

axl = K
l(1) −

∫ 1

0

(
Kl(u)

) ′

ζx0(u)du for l = 1, 2

and

σ2h ′(θ) =
ax2h

Z(θ)
(
ax1
)2

(1− FZ(θ))

∫
(H ′′(t))2dt.

Proof. Using again (17), and the fact that

(
1− FZ(x)

)

(1− F̂Z(x)) (1− FZ(x))
−→ 1

1− FZ(x)
;

and
f̂ ′Z(x)(

1− F̂Z(x)
)
(1− FZ(x))

−→ f ′Z(x)

(1− FZ(x))
2
.

The asymptotic normality of
(
nh3Hφz(hK)

)1/2 (
ĥ ′
Z
(θ) − h ′Z(θ)

)
can be de-

duced from both following lemmas,
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Lemma 3 Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφz(hK))
1/2
(
F̂Z(x) − FZ(x)

)
D→N

(
0, σ2FZ(x)

)
, (13)

where

σ2FZ(x) =
ax2F

Z(x)
(
1− FZ(x)

)
(
ax1
)2 .

Lemma 4 Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhHφz(hK))
1/2
(
ĥZ(x) − hZ(x)

)
D→N

(
0, σ2hZ(x)

)
, (14)

where

σ2hZ(x) =
ax2h

Z(x)
(
ax1
)2

(1− FZ(x))

∫

R

(H ′(t))2dt.

Lemma 5 Under Assumptions of Theorem 3, we have

(
nh3Hφz(hK)

)1/2 (
f̂ ′
Z
(x) − f ′Z(x)

)
D→N

(
0, σ2f ′Z(x)

)
; (15)

where

σ2f ′Z(x) =
ax2f

Z(x)
(
ax1
)2

∫

R

(H ′′(t))2dt.

Lemma 6 Under the hypotheses of Theorem 3, we have

Var
[
f̂ ′
Z

N(x)
]
=

σ2
f ′Z(x)

nh3Hφz(hK)
+ o

(
1

nh3Hφz(hK)

)
,

Var
[
F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)
;

and

Var
[
F̂ZD

]
= o

(
1

nhHφz(hK)

)
.

Lemma 7 Under the hypotheses of Theorem 3, we have

Cov(f̂ ′
Z

N(x), F̂
Z
D) = o

(
1

nh3Hφz(hK)

)
,
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Cov(f̂ ′
Z

N(x), F̂
Z
N(x)) = o

(
1

nh3Hφz(hK)

)

and

Cov(F̂ZD, F̂
Z
N(x)) = o

(
1

nhHφz(hK)

)
.

Remark 5

It is clear that, the results of lemmas, Lemma 6 and Lemma 7 allows to
write

Var
[
F̂ZD − F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)

The proofs of lemmas, Lemma3 can be seen in Belkhir et al. (2015), Lemma
lem2-4 and Lemma lem3-4 see Rabhi et al. (2015).

�

Finally, by this last result and (10), the following theorem follows:

Theorem 4 Under conditions (H1)-(H10), we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0)

(
nh3Hφz(hK)

)1/2(
θ̂− θ

) D→N

(
0,

σ2h ′(θ)

(h ′′Z(θ))2

)
;

with σ2h ′(θ) = hZ(θ)
(
1− FZ(θ)

) ∫
(H ′′(t))2dt.

5 Proofs of technical lemmas

Proof. Proof of Lemma 1 and Lemma 2. Let

ĥ ′Z(x) =
f̂ ′Z(x)

1− F̂Z(x)
+ (ĥZ(x))2, (16)

with

ĥ ′Z(x) − h ′Z(x) =

{(
ĥZ(x)

)2
−
(
hZ(x)

)2}

︸ ︷︷ ︸
Γ1

+

{
f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

}

︸ ︷︷ ︸
Γ2

; (17)

for the first term of (17) we can write

∣∣∣
(
ĥZ(x)

)2
−
(
hZ(x)

)2 ∣∣∣ ≤
∣∣∣ĥZ(x) − hZ(x)

∣∣∣.
∣∣∣ĥZ(x) + hZ(x)

∣∣∣, (18)
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because the estimator ĥZ(·) converge a.co. to hZ(·) we have

sup
x∈S

∣∣∣
(
ĥZ(x)

)2
−
(
hZ(x)

)2 ∣∣∣ ≤ 2
∣∣∣hZ(θ)

∣∣∣ sup
x∈S

∣∣∣ĥZ(x) − hZ(x)
∣∣∣; (19)

for the second term of (17) we have

f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)
=

1

(1− F̂Z(x))(1− FZ(x))

{
f̂ ′Z(x) − f ′Z(x)

}

+
1

(1− F̂Z(x))(1− FZ(x))

{
f ′Z(x)

(
F̂Z(x) − FZ(x)

)}

+
1

(1− F̂Z(x))(1− FZ(x))

{
FZ(x)

(
f̂ ′Z(x) − f ′Z(x)

)}
.

Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

∣∣∣ ≤

C

{
sup
x∈S

∣∣∣f̂ ′Z(x) − f ′Z(x)
∣∣∣+ sup

x∈S

∣∣∣F̂Z(x) − FZ(x)
∣∣∣
}

inf
x∈S

∣∣∣1− F̂Z(x)
∣∣∣

. (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S

|F̂Z(x) − FZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nφz(hK)

)
, (21)

sup
x∈S

|f̂ ′Z(x) − f ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
, (22)

sup
x∈S

|ĥZ(x) − hZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nhHφz(hK)

)
, (23)

∃ δ > 0 such that

∞∑

1

P

{
inf
y∈S

|1− F̂Z(x)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2006), and (23) is
proven in Ferraty et al. (2008).
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• Concerning (24) by equation (21), we have the almost complete conver-
gence of F̂Z(x) to FZ(x). Moreover,

∀ε > 0
∞∑

n=1

P

{
|F̂Z(x) − FZ(x)| > ε

}
<∞.

On the other hand, by hypothesis we have FZ < 1, i.e.

1− F̂Z ≥ FZ − F̂Z,

thus,

inf
y∈S

|1−F̂Z(x)| ≤ (1−sup
x∈S

FZ(x))/2⇒ sup
x∈S

|F̂Z(x)−FZ(x)| ≥ (1−sup
x∈S

FZ(x))/2.

In terms of probability is obtained

P

{
inf
x∈S

|1− F̂Z(x)| < (1− sup
x∈S

FZ(x))/2

}

≤ P

{
sup
x∈S

|F̂Z(x) − FZ(x)| ≥ (1− sup
x∈S

FZ(x))/2

}
<∞.

Finally, it suffices to take δ = (1 − sup
x∈S

FZ(x))/2 and apply the results

(21) to finish the proof of this Lemma.

�

Proof. Proof of Lemma 4. We can write for all x ∈ S

ĥZ(x) − hZ(x) =
f̂Z(x)

1− F̂Z(x)
−

fZ(x)

1− FZ(x)

=
1

D̂Z(x)

{(
f̂Z(x) − fZ(x)

)
+ fZ(x)

(
F̂Z(x) − FZ(x)

)

−FZ(x)
(
f̂Z(x) − fZ(x)

)}
, (25)

=
1

D̂Z(x)

{(
1− FZ(x)

)(
f̂Z(x) − fZ(x)

)

−fZ(x)
(
F̂Z(x) − FZ(x)

)}
;

with D̂Z(x) =
(
1− FZ(x)

) (
1− F̂Z(x)

)
.
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As a direct consequence of the Lemma 3, the result (26) (see Belkhir et al.
(2015)) and the expression (25), permit us to obtain the asymptotic normality
for the conditional hazard estimator.

(nhHφz(hK))
1/2
(
f̂Z(x) − fZ(x)

)
D→N

(
0, σ2fZ(x)

)
; (26)

where

σ2fZ(x) =
ax2f

Z(x)
(
ax1
)2

∫

R

(H ′(t))2dt.

�

Proof. Proof of Lemma 5. For i = 1, . . . , n, we consider the quantities Ki =

K
(
h−1K d(z, Zi)

)
, H ′′

i (x) = H
′′
(
h−1H (x− Xi)

)
and let f̂ ′

Z

N(x) (resp. F̂
Z
D) be defined

as

f̂ ′
Z

N(x) =
h−2H
nEK1

n∑

i=1

KiH
′′
i (x)

(
resp. F̂ZD =

1

nEK1

n∑

i=1

Ki

)
.

This proof is based on the following decomposition

f̂ ′
Z
(x) − f ′Z(x) =

1

F̂ZD

{(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)
−
(
f ′Z(x) − Ef̂ ′

Z

N(x)
)}

+

f ′Z(x)

F̂ZD

{
EF̂ZD − F̂ZD

}
, (27)

and on the following intermediate results.

√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)

D→N
(
0, σ2f ′Z(x)

)
; (28)

where σ2
f ′Z

(x) is defined as in Lemma 5.

lim
n→∞

√
nh3Hφz(hK)

(
Ef̂ ′

Z

N(x) − f
′Z(x)

)
= 0. (29)

√
nh3Hφz(hK)

(
F̂ZD(x) − 1

)
P→ 0, as n→ ∞. (30)
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• Concerning (28).

By the definition of f̂ ′
Z

N(x), it follows that

Ωn =

√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)

=

n∑

i=1

√
φz(hK)√
nhHEK1

(
KiH

′′
i − EKiH

′′
i

)

=

n∑

i=1

∆i,

which leads

Var(Ωn) = nh
3
Hφz(hK)Var

(
f̂ ′
Z

N(x) − E

[
f̂ ′
Z

N(x)
])
. (31)

Now, we need to evaluate the variance of f̂ ′
Z

N(x). For this we have for all
1 ≤ i ≤ n, ∆i(z, x) = Ki(z)H ′′

i (x), so we have

Var(f̂ ′
Z

N(x)) =
1

(
nh2HE[K1(z)]

)2
n∑

i=1

n∑

j=1

Cov (∆i(z, x), ∆j(z, x))

=
1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) .

Therefore

Var (∆1(z, x)) ≤ E

(
H ′′2
1 (x)K21(z)

)
≤ E

(
K21(z)E

[
H ′′2
1 (x)|Z1

])
.

Now, by a change of variable in the following integral and by applying
(H4) and (H7), one gets

E

(
H ′′2
1 (y)|Z1

)
=

∫

R

H ′′2

(
d(x− u)

hH

)
fZ(u)du

≤ hH

∫

R

H ′′2(t)
(
fZ(x− hHt, z) − f

Z(x)
)
dt

+hHf
Z(x)

∫

R

H ′′2(t)dt (32)

≤ h1+b2H

∫

R

|t|b2H ′′2(t)dt+ hHf
Z(x)

∫

R

H ′′2(t)dt

= hH

(
o(1) + fZ(x)

∫

R

H ′′2(t)dt

)
.
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By means of (32) and the fact that, as n→ ∞, E
(
K21(z)

)
−→ ax2φz(hK),

one gets

Var (∆1(z, x)) = a
x
2φz(hK)hH

(
o(1) + fZ(x)

∫

R

H ′′2(t)dt

)
.

So, using (H8), we get

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x))

=
ax2φz(hK)

n
(
ax1h

2
Hφz(hK)

)2hH
(
o(1) + fZ(x)

∫

R

H ′′2(t)dt

)

= o

(
1

nh3Hφz(hK)

)
+

ax2f
Z(x)

(ax1)
2nh3Hφz(hK)

∫

R

H ′′2(t)dt.

Thus as n→ ∞ we obtain

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) −→
ax2f

Z(x)

(ax1)
2nh3Hφz(hK)

∫

R

H ′′2(t)dt. (33)

Indeed

n∑

i=1

E∆2i =
φz(hK)

hHE2K1
EK21(H

′′
1 )
2 −

φz(hK)

hHE2K1

(
EK1H

′′
1

)2
= Π1n − Π2n. (34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hK)

E2K1
E

{
K21

∫
H ′′2(t)

(
f ′Z(x− thH) − f

′Z(x) + f ′Z(x)
)
dt

}
.

Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φz(hK)EK
2
1

E2K1
−→
n→∞

ax2
(ax1)

2
,

which leads

Π1n −→
n→∞

ax2f
Z(x)

(ax1)
2

∫
(H ′′(t))2dt, (35)
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Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞

0. (36)

This result, combined with (34) and (35), allows us to get

lim
n→∞

n∑

i=1

E∆2i = σ
2
f ′Z(x) (37)

Therefore, combining (33) and (36)-(37), (28) is valid.

• Concerning (29).

The proof is completed along the same steps as that of Π1n. We omit it
here.

• Concerning (30). The idea is similar to that given by Belkhir et al. (2015).

By definition of F̂ZD(x), we have

√
nh3Hφz(hK)(F̂

Z
D(x) − 1) = Ωn − EΩn,

whereΩn =

√
nh3

H
φz(hK)

∑
n

i=1
Ki

nEK1
. In order to prove (30), similar to Belkhir

et al. (2015), we only need to proov Var Ωn → 0, as n → ∞. In fact,
since

Var Ωn =
nh3Hφz(hK)

nE2K1
(nVarK1)

≤ nh3Hφz(hK)

E2K1
EK21

= Ψ1,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3Hφz(hK) → 0, as n→ ∞.

It is clear that, the results of (21), (22), (24) and Lemma 6 permits us

E

(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0,

and
Var

(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0;
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then
F̂xD − F̂ZN(x) − 1+ F

Z(x)
P−→ 0.

Moreover, the asymptotic variance of F̂ZD − F̂ZN(x) given in Remark 5
allows to obtain

nhHφz(hK)

σ2
FZ
(x)

Var
(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
−→ 0.

By combining result with the fact that

E

(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this result is completed.

Therefore, the proof of this Lemma is completed.
�
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Abstract. In this paper, with use of Lyapunov functional, we investigate
asymptotic stability of solutions of some nonlinear differential equations
of third order with delay. Our results include and improve some well-
known results in the literature.

1 Introduction

The investigation of qualitative behavior of solutions such as stability, conver-
gence, boundedness, asymptotic behavior to mention few, are very important
problems in the theory and applications of differential equations. For instance,
in applied sciences some practical problems concerning mechanics, engineering
technique fields, economy, control theory, physical sciences and so on are asso-
ciated with third, fourth and higher order nonlinear differential equations. In
recent years, there has been increasing interest in obtaining sufficient condi-
tions for the asymptotic stability and boundedness of solutions of the nonlinear
third order differential equations. Many results relative to the stability, bound-
edness of solutions of third order differential equations with delays or without
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delays have been obtained. We refer the reader to the papers (Burton [1, 2],
Swick [10] and Yoshizawa [16] and references therein) to discuss the qualitative
properties of various form of nonlinear differential equations without delay.
The Lyapunov second method had also been found useful and applicable to

study the qualitative properties of the equation with delay. Many interesting
results, on the qualitative behavior of solutions of the third order differential
equations have been obtained by Omeike [4, 5], Remili and Oudjedi [7], Sadek
[8, 9], Tunç [11, 12, 13, 14] and Zhu [17] and references therein.
In 2009, the author [5] adapted [10] and used a suitable Lyapunov function

to establish criteria which guarantee asymptotic stability of solution of non-
autonomous delay differential equation of the third order that is bounded
together with its derivatives on the real line, and boundedness under explicit
conditions on the nonlinear terms of the equation

x′′′ + a(t)x′′ + b(t)g(x′) + c(t)h(x(t− r)) = p(t).

Recently, in 2013 Tunç and Gözen [15] considered the non autonomous differ-
ential equation of the third order with multiple deviating arguments:

x′′′ + a(t)x′′ + nb(t)g(x′) + c(t)

n∑

i=1

hi(x(t− r)) = p(t).

He discussed the stability and boundedness of solutions of this equation.
Our aim in this paper, by using Lyapunov second method is to study the

asymptotic stability of third-order nonlinear differential equation with multiple
deviating arguments

[

ψ(x′(t))x′(t)
]

′′
+ a(t)x′′(t) + nb(t)g(x′(t)) + c(t)

n∑

i=1

hi(x(t− ri)) = 0, (1)

and the boundedness of solutions of the equation

[

ψ(x′(t))x′(t)
]

′′
+a(t)x′′(t)+nb(t)g(x′(t))+c(t)

n∑

i=1

hi(x(t−ri)) = q(t), (2)

where ri are certain positive constants. It is supposed that the derivatives,

a′(t), b′(t), c′(t), ψ′(y) =
dψ

dy
, and h′i(x) =

dhi
dx , exist and are continuous.

In this work, we want to adopt the approach in Omeike [5] and Tunç [15] to
extend the result in Swick [10] to the equation (1) and give sufficient criteria
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which guarantee the existence of uniform asymptotic stability of the solution
with their derivatives on the real line. Obviously, the equations discussed in
[5] and [15], are particular cases of our equation (2). Here, by this work, we
improve the boundedness result obtained in [5, 15].

2 Preliminaries

First, we will give some basic definitions and important stability criteria for
the general non-autonomous delay differential system. Consider the general
non-autonomous delay differential system

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (3)

where f : I × CH → R
n is a continuous mapping, f(t, 0) = 0, CH := {φ ∈

C([−r, 0], R
n) : ‖φ‖ ≤ H}, and for H1 < H, there exists L(H1) > 0, with

|f(t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 1 [2] An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ),
if x(t, 0, φ) is defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as
n→ ∞, with ‖xtn(φ) −ψ‖ → 0 as n→ ∞ where xtn(φ) = x(tn + θ, 0, φ) for
−r ≤ θ ≤ 0.

Definition 2 [2] A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the
solution of (3), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 1 [1] If φ ∈ CHis such that the solution xt(φ) of (3) with x0(φ) = φ
is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a
non-empty, compact, invariant set and

dist(xt(φ),Ω(φ)) → 0 as t→ ∞.

Lemma 2 [1] let V(t, φ) : I× CH → R be a continuous functional satisfying
a local Lipschitz condition. V(t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V(t, φ) ≤W2(|φ(0)|) +W3(‖φ‖2) where

‖φ‖2 =
(∫t

t−r
‖φ(s)‖2ds

)
1
2
.

(ii) V̇(3)(t, φ) ≤ −W4(|φ(0)|), where, Wi (i = 1, 2, 3, 4) are wedges. Then the
zero solution of (3) is uniformly asymptotically stable.
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3 Assumptions and main results

The following assumptions will be needed throughout the paper. Let a0, b0, c0,
d,m, d0, d1, A,B,C, L,M, and ε, δi, ρi be an arbitrary but fixed positives num-
bers and suppose that a(t), b(t), c(t) ∈ C1(IR+), h ∈ C1(IR), g ∈ C(IR) and let
ψ be a twice continuously differential function on I R, such that the following
assumptions are satisfied:

i) 0 < a0 ≤ a(t) ≤ A; 0 < b0 ≤ b(t) ≤ B; 0 < c0 ≤ c(t) ≤ C.

ii) c(t) ≤ b(t), b′(t) ≤ c′(t) ≤ 0 for t ∈ [0,∞).

iii) 0 < m ≤ ψ(u) ≤M; 0 < d0 ≤
g(y)

y
≤ d1 for y 6= 0 .

iv) hi(0) = 0,
hi(x)

x
≥ δi > 0 (x 6= 0), and |h′i(x)| ≤ ρi for all x.

v)
Mρi

d0
< d < a0.

vi)
1

2
da′(t) − b0(dd0 −M

n∑

i=1

ρi) ≤ −ε < 0.

vii)

∫+∞

−∞

∣

∣ψ′(u)
∣

∣du <∞.

viii) inf
u∈R

uΨ′(u) = η > −m.

ix) Q(t) =

∫ t

0

|q(s)|ds <∞.

For ease of exposition throughout this paper we will adopt the following no-
tation

P(t) = ψ(x′(t)), R(t) =
ψ′(x′(t))

ψ2(x′(t))
x′′(t).

Theorem 1 In addition to conditions (i)-(vii) being satisfied, suppose that the
following is also satisfied

n∑

i=1

ri < min {αi, βi} ,
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where

αi =
2(a0 − d)

MCρi
, and βi =

2m3ε

CρiM2(d+ dm2 +m)
.

Then every solution of (1) is uniformly asymptotically stable.

Proof. We write the equation (1) as the following equivalent system

x′ =
1

P(t)
y

y′ = z

z′ = −
a(t)

P(t)
z+ a(t)R(t)y− nb(t)g

(

y

P(t)

)

− c(t)

n∑

i=1

hi(x)

+ c(t)

n∑

i=1

∫ t

t−ri

y(s)

P(t)
h′i(x(s))ds.

(4)

Note that the continuity of the functions a(t), b(t), c(t), q(t) on [0,+∞[, and
ψ(x′), g(x′), hi(x) in their respective arguments on IR with h(0) = g(0) = 0,
guarantee the existence of the solution of (4) (see [3]). It is assumed that the
right hand side of the system (4) satisfies a Lipschitz condition in x(t), x′(t), x′′(t)
and x(t − ri). This assumption guarantees the uniqueness of solutions of (4)
(see [3], pp.15).
We shall use as a tool to prove our main results a Lyapunov function U =

U(t, xt, yt, zt) defined by

U(t, xt, yt, zt) = exp

(

−
γ(t)

µ

)

V(t, xt, yt, zt) = exp

(

−
γ(t)

µ

)

V, (5)

where

γ(t) =

∫ t

0

|R(s)|ds,

and

V = dc(t)H(x) + c(t)y

n∑

i=1

hi(x) + nb(t)P(t)G

(

y

P(t)

)

+
1

2
z2

+
d

P(t)
yz+

da(t)

2P2(t)
y2 +

n∑

i=1

λi

∫ 0

−ri

∫ t

t+s

y2(ξ)dξds,

(6)

where H(x) =
n∑

i=1

∫x

0

hi(u)du and G(y) =

∫y

0

g(u)du. µ and λi are certain pos-

itive constants, which will be specified later in the proof. From the definition
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of V in (6), we observe that the above Lyapunov functional can be rewritten
as follows

V = V1 + V2 +

n∑

i=1

λi

∫ 0

−ri

∫ t

t+s

y2(ξ)dξds,

with

V1 = dc(t)H(x) + c(t)y

n∑

i=1

hi(x) + nb(t)P(t)G(
y

P(t)
),

and

V2 =
1

2
z2 +

d

P(t)
yz+

da(t)

2P2(t)
y2.

First consider

V2 =
1

2

{

z2 +
2d

P(t)
yz+

da(t)

P2(t)
y2

}

=
1

2

(

z+
d

P(t)
y

)2

+
d(a(t) − d)

2P2(t)
y2.

Using the conditions on a(t) in (v),
d(a(t) − d)

2P2(t)
≥
d(a0 − d)

2P2(t)
> 0, it follows

that there exists sufficiently small positive constant δ2 such that

V2 ≥ δ2(y
2 + z2). (7)

V1 ≥ dc(t)H(x) + c(t)y
n∑

i=1

hi(x) +
nd0b(t)

2P(t)
y2,

since
g(y)

y
≥ d0 > 0 implies that G

(

y

P(t)

)

≥
d0

2P2(t)
y2. We wish to arrange

V1, and using the assumptions (i)-(v), we get,

V1 ≥ dc(t)H(x) +
d0b(t)

2P(t)

n∑

i=1

{

y+
c(t)hi(x)P(t)

d0b(t)

}2

−

n∑

i=1

c2(t)P(t)h2i (x)

2d0b(t)

≥ dc(t)
n∑

i=1

∫x

0

(

1−
c(t)P(t)h′i(u)

dd0b(t)

)

hi(u)du

≥ dc(t)
n∑

i=1

∫x

0

(

1−
Mρi

dd0

)

hi(u)du
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≥ dc(t)
n∑

i=1

∫x

0

(

1−
Mρi

dd0

)

hi(u)

u
udu

≥ dc(t)

n∑

i=1

∫x

0

(

1−
Mρi

dd0

)

δiudu

≥
dc(t)

2

n∑

i=1

(

1−
Mρi

dd0

)

δix
2,

so that

V1 ≥
δ3

2
x2, (8)

where δ3 = dc0

n∑

i=1

δi

(

1−
Mρi

dd0

)

> dc0

n∑

i=1

δi

(

1−
d

d

)

= 0. From (8), (7)

and (6), It is easy to check that

V ≥ δ2y
2 + δ2z

2 +
δ3

2
x2 +

n∑

i=1

λi

∫ 0

−ri

∫ t

t+s

y2(ξ)dξds.

Subject to the conditions of Theorem 1, V(0, 0, 0) = 0 and there exists suffi-
ciently small positive constant k such that

V ≥ k(x2 + y2 + z2), (9)

since the integral

∫ t

t+s

y2(ξ)dξ is positive, where k = min

(

δ2,
δ3

2

)

.

Assumptions (iii) and (vii) imply the following:

γ(t) =

∫ t

0

|R(s)|ds

≤

∫α2(t)

α1(t)

|ψ′(τ)|

ψ2(τ)
dτ

≤
1

m2

∫+∞

−∞

∣

∣ψ′(τ)
∣

∣dτ ≤ N <∞,

where α1(t) = min{x′(0), x′(t)}, and α2(t) = max{x′(0), x′(t)}. Now, we can
deduce that there exists a continuous function W1 with W1(|Φ(0)|) ≥ 0 such
that W1(|Φ(0)|) ≤ U(t,Φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality
U(t, φ) ≤W2(‖φ‖), is easily verified.
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Now, let (x, y, z) = (x(t), y(t), z(t)) be any solution of differential system
(4).
Differentiating the function V , defined in (6), along system (4) with respect
to the independent variable t, we have

d

dt
V = dc′(t)H(x) + c′(t)y

n∑

i=1

hi(x) + nb
′(t)P(t)G

(

y

P(t)

)

+
d− a(t)

P(t)
z2

+ R(t)

[

(a(t) − d)zy− nb(t)P(t)

(

g

(

y

P(t)

)

y− P(t)G

(

y

P(t)

))]

+

n∑

i=1

λiriy
2

+

[

da′(t) + 2c(t)P(t)
∑n
i=1 h

′

i(x)

2P2(t)
y2 − ndb(t)

y

P(t)
g

(

y

P(t)

)]

+ c(t)

(

z+
dy

P(t)

) n∑

i=1

∫ t

t−ri

y(s)

P(s)
h′i(x(s))ds−

n∑

i=1

λi

∫ t

t−ri

y2(ξ)dξ.

Consequently by the hypothesis (i)-(vi), it follows that

d

dt
V ≤ dc′(t)H(x) + c′(t)y

n∑

i=1

hi(x) +
nd0b

′(t)

2P(t)
y2 −

(

ε

M2
−

n∑

i=1

λiri

)

y2

+ |R(t)|

[

(A− d) |zy|+
3

2
nBd1y

2

]

−
1

M
(a0 − d)z

2

+ c(t)

(

z+
dy

P(t)

) n∑

i=1

∫ t

t−ri

y(s)

P(s)
h′i(x(s))ds−

n∑

i=1

λi

∫ t

t−ri

y2(ξ)dξ.

We claim that

θ(t, x, y) = dc′(t)H(x) + c′(t)y

n∑

i=1

hi(x) +
nd0b

′(t)

2P(t)
y2 ≤ 0,

for all x, y and t ≥ 0. First suppose that c′(t) = 0, then

θ(t, x, y) =
nd0b

′(t)

2P(t)
y2 ≤ 0.

Finally, suppose that c′(t) < 0, the quantity in the brackets above can be
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written as,

θ(t, x, y) = dc′(t)

[

H(x) +
1

d
y

n∑

i=1

hi(x) +
nd0b

′(t)

2dc′(t)P(t)
y2

]

= dc′(t)

[

H(x) +
d0b

′(t)

2dc′(t)P(t)

n∑

i=1

{

y+
c′(t)P(t)hi(x)

d0b′(t)

}2
]

− dc′(t)

[

n∑

i=1

c′(t)P(t)h2i (x)

2dd0b′(t)

]

,

moreover, assumption (ii) implies
c′(t)

b′(t)
≤ 1, thus

θ(t, x, y) ≤ dc′(t)
n∑

i=1

∫x

0

(1−
P(t)h′i(u)

dd0
)hi(u)du

≤ dc′(t)
n∑

i=1

∫x

0

(1−
Mρi

dd0
)hi(u)du

≤ c′(t)
δ3

2c0
x2 ≤ 0.

Hence, on combining the two cases, we have θ(t, x, y) ≤ 0 for all t ≥ 0, x and y.
Utilizing the assumptions of theorem and Schwartz inequality |uv| ≤ 1

2(u
2+v2),

the following inequalities are obtained

dc(t)

P(t)
y

n∑

i=1

∫ t

t−ri

y(s)

P(s)
h′i(x(s))ds ≤

n∑

i=1

dCρiri

2m
y2 +

Cd

2m3

n∑

i=1

∫ t

t−ri

ρiy
2(ξ)dξ

≤
n∑

i=1

dCρiri

2m
y2 +

Cdρi

2m3

n∑

i=1

∫ t

t−ri

y2(ξ)dξ,

c(t)z

n∑

i=1

∫ t

t−ri

y(s)

P(s)
h′i(x(s))ds ≤

n∑

i=1

Cρiri

2
z2 +

C

2m2

n∑

i=1

∫ t

t−ri

ρiy
2(ξ)dξ

≤

n∑

i=1

Cρiri

2
z2 +

Cρi

2m2

n∑

i=1

∫ t

t−ri

y2(ξ)dξ,
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and

W1 = |R(t)|

[

(A− d) |zy|+
3

2
nBd1y

2

]

≤ |R(t)|

[

A− d

2
z2 +

A− d+ 3nBd1

2
y2
]

≤ k1 |R(t)| (y
2 + z2),

where k1 =
A− d+ 3nBd1

2
. These estimates imply that

d

dt
V ≤−

[

ε

M2
−

n∑

i=1

(

λi +
dCρi

2m

)

ri

]

y2

−

[

a0 − d

M
−

n∑

i=1

Cρiri

2

]

z2

+

n∑

i=1

[

Cρi

2m2

(

1+
d

m

)

− λi

] ∫ t

t−ri

y2(ξ)dξ

+ k1|R(t)|(y
2 + z2).

If we take
Cρi

2m2

(

1+
d

m

)

= λi, the last inequality becomes

d

dt
V ≤−

[

ε

M2
−

n∑

i=1

Cρi

2m

(

d+
1

m
+
d

m2

)

ri

]

y2

−

[

a0 − d

M
−

n∑

i=1

Cρiri

2

]

z2 + k1|R(t)|(y
2 + z2

)

.

Using (9), (5) and taking µ =
k

k1
we obtain:

d

dt
U = exp

(

−
k1γ(t)

k

)(

d

dt
V −

k1|R(t)|

k
V

)

≤ exp

(

−
k1γ(t)

k

)[

−

(

ε

M2
−

n∑

i=1

Cρiri

2m

(

d+
1

m
+
d

m2

))

y2

−

(

a0 − d

M
−

n∑

i=1

Cρiri

2
)z2
]

.

(10)
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Provided that
n∑

i=1

ri < min

{
2(a0 − d)

MCρi
,

2m3ε

CρiM2(d+ dm2 +m)

}

.

The inequality (10) becomes

d

dt
U(t, xt, yt, zt) ≤ −β exp

(

−
k1N

k
)(y2 + z2

)

, for some β > 0.

It is clear that the largest invariant set in Z is Q = {0} , where

Z =

{

φ ∈ CH :
d

dt
U(φ) = 0

}

.

Namely, the only solution of system (4) for which
d

dt
U(t, xt, yt, zt) = 0 is the

solution x = y = z = 0. Thus, we conclude that every solution of system (4)
is uniformly asymptotically stable. Now from (4) we have

x′(t)Ψ(x′(t)) = y(t), (11)

Furthermore, it follows from (iii) that

|y(t)|

M
≤
∣

∣x′(t)
∣

∣ =
|y(t)|

Ψ(x′(t))
≤

|y(t)|

m
,

which implies that lim
t→∞

x′(t) = 0. Differentiating (11) we obtain

x′′(t)
[

Ψ(x′(t)) + Ψ′(x′(t))x′(t)
]

= z(t), (12)

then lim
t→∞

x′′(t) = 0 since lim
t→∞

Ψ(x′(t)) + Ψ′(x′(t))x′(t) = Ψ(0).

Thus, under the above discussion, we conclude that every solution of equation
(1) is uniformly asymptotically stable. �

For the case q(t) 6= 0, we consider the equivalent system of (2)

x′ =
1

P(t)
y

y′ = z

z′ = −
a(t)

P(t)
z+ a(t)R(t)y− nb(t)g

(

y

P(t)

)

− c(t)

n∑

i=1

hi(x)

+ c(t)

n∑

i=1

∫ t

t−ri

y(s)

P(t)
h′i(x(s))ds+ q(t).

(13)

The following result is introduced.



Stability of solutions 161

Theorem 2 In addition to the assumptions of Theorem 1, we assume that
(viii) and (ix) hold. Then, there exists a finite positive constant C such that
every solution x(t) of equation (2) defined by the initial functions

x(0) = φ(t), x′(0) = φ′(t), x′′(0) = φ′′(t),

satisfies the inequalities

|x(t)| ≤ C, |x′(t)| ≤ C, |x ′′(t)| ≤ C ∀t ≥ 0,

where φ ∈ C2([−r, 0],R).

Proof. An easy calculation from (13) and (5) yields that

d

dt
U(11) =

d

dt
U(4) + (z+

d

P(t)
y)q(t).

Since
d

dt
U(4) ≤ 0, then it follows that

d

dt
U(11) ≤

(

|z|+
d

P(t)
|y|

)

|q(t)|.

Noting that |x| ≤ 1+ x2, which implies that

(

|z|+
d

P(t)
|y|

)

|q(t)| ≤ k2(|z|+ |y|)|q(t)|

≤ k2(2+ z
2 + y2)|q(t)|

≤ k2‖X‖
2|q(t)|+ 2k2|q(t)|

≤
k2

δe
−N

µ

|q(t)|U+ 2k2|q(t)|,

where k2 = max

{

1,
d

m

}

, recalling that

δe
−N

µ ‖X‖2 ≤ U(t, xt, yt, zt).

Let η = max

{

2k2,
k2

δe
−N

µ

}

, then

d

dt
U(11) ≤ η|q(t)|+ η|q(t)|U.
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Multiplying each side of this inequality by the integrating factor e−ηQ(t), we
get

e−ηQ(t) d

dt
U(11) ≤ e

−ηQ(t)ηQ′(t) + e−ηQ(t)ηQ′(t)U.

Integrating each side of this inequality from 0 to t, we get, where X0 =

(x(0), y(0), z(0)),
e−ηQ(t)U−U(0, X0) ≤ 1− e

−ηQ(t).

Since Q(t) ≤ L for all t, we have

U(t, xt, yt, zt) ≤ U(0, X0)e
ηL + [eηL − 1] for t ≥ 0.

Now, since the right-hand side is a constant, and since U(t, xt, yt, zt) → ∞ as
x2 + y2 + z2 → ∞, it follows that there exists a D > 0 such that

|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D ∀t ≥ 0.

From (11) and (iii) we obtain

|x′| =

∣

∣

∣

∣

y

Ψ(x′)

∣

∣

∣

∣

≤
D

m
,

it follows from condition (viii) that

K(x′) = ψ(x′) + x′ψ′(x′) ≥ m+ η,

but (12) implies
∣

∣x′′
∣

∣ =
|z|

K(x′)
≤

D

η+m
,

thus we can deduce

|x(t)| ≤ C, |x′(t)| ≤ C, |x′′(t)| ≤ C ∀t ≥ 0,

where C = sup

(

D,
D

m
,
D

η+m

)

. This completes the proof of theorem. �

Example 1

((

x ′

1+ x ′2
+ n(n+ 1)

)

x ′
)

′′

+

(

4n2(n+ 1)2 −
1

2
e−2t +

1

2

)

x ′′

+ n

(

1

1+ t
+ 1

)(

2x ′ +
x ′

1+ x ′2

)

+

(

1

2(1+ t)
+
1

2

) n∑

i=1

[

ix(t− ri) +
ix(t− ri)

1+ |x(t− ri)|

]

= e−t.

(14)
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We can simply verify that

i) 4n2(n+1)2 = a0 ≤ a(t) = 4n
2(n+1)2− 1

2e
−2t+ 1

2 ≤ 4n
2(n+1)2+ 1

2 , t ≥ 0,

c0 =
1
2 ≤ c(t) =

1
2(1+t)

+ 1
2 ≤ C = 1 = b0 ≤ b(t) =

1
1+t + 1 ≤ 2, t ≥ 0,

ii) From (i) we have b(t) > c(t) and b ′(t) ≤ c ′(t) ≤ 0, ∀ t ≥ 0,

iii) ψ(x ′) = x ′

1+x ′2
+ n(n+ 1). Now, it is easy to see that

inf
u∈R

Ψ(u) = −
1

2
+ n(n+ 1) > m = −1+ n(n+ 1),

sup
u∈R

Ψ(u) =
1

2
+ n(n+ 1) < M = 1+ n(n+ 1),

d0 = 2 ≤
g(y)

y
= 2+

1

1+ y2
≤ 3 = d1 with y 6= 0.

Also

iv) δi = i ≤
hi(x)
x =

(

i+ i
1+|x|

)

with x 6= 0, and |h′i(x)| ≤ ρi = 2i,

then

n∑

i=1

ρi =

n∑

i=1

2i = n(n+ 1).

v) For d = 2Mn(n+ 1) we have

Mi =
Mρi

d0
< Mn < d < a0 = 4n

2(n+ 1)2,

vi) a ′(t) = e−2t ≤ 1, and

1

2
da′(t) − b0

(

dd0 −M

n∑

i=1

ρi

)

≤ −
3

2
d+Mn(n+ 1) < 0.

vii) An explicit calculation shows that

∫+∞

−∞

∣

∣ψ′(u)
∣

∣du =

∫+∞

−∞

∣

∣

∣

∣

u2 + 1− 2

(1+ u2)2

∣

∣

∣

∣

du ≤

∫+∞

−∞

[∣

∣

∣

∣

1

1+ u2

∣

∣

∣

∣

+

∣

∣

∣

∣

2

(1+ u2)2

∣

∣

∣

∣

]

du

≤ 2π,

viii) inf
u∈R

uΨ′(u) = η = − 1
4 > −n(n+ 1) + 1,
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ix) Q(t) =
∫t
0
e−sds <∞.

If we take ri =
2k
π2i2

, with k = min {αn, βn}. Then

i=n∑

i=1

ri <

∞∑

i=1

2k

π2i2
= k < min {αi, βi} .

All the assumptions (i) through (ix) are satisfied, we can conclude using
Theorem 3.2 that every solution of (14) is uniformly bounded.
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Abstract. In this paper, we focus on the time-varying shortest path
problem, where the transit costs are fuzzy numbers. Moreover, we con-
sider this problem in which the transit time can be shortened at a fuzzy
speedup cost. Speedup may also be a better decision to find the shortest
path from a source vertex to a specified vertex.

1 Introduction

Time-varying shortest path problem may arise in the applications of math-
ematics such as transportation, telecommunication and computer networks.
The problem is to find the shortest path from a source vertex to a target ver-
tex, so that the total costs of path is minimized subject to the total times of
path is at most T, where T is the time horizon and a given positive integer.
The shortest path problem with fuzzy numbers has been studied by Kelvin
[7], where a new model based on fuzzy number was presented. Lin and Chern
[10] and Li and Gen [9] surveyed this subject, separately. Gent et al. in [3]
solved the shortest path problem by genetic algorithm. Shirdel and Rezapour
in [15] studied a k-objective time-varying shortest path problem, which cannot

2010 Mathematics Subject Classification: 90C35, 90B10

Key words and phrases: time-varying optimization, shortest path, fuzzy numbers,

speedup

166
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be combined into a single overall objective. Okada and Gen [13] concentrated
on the problem with interval numbers. Then, Okada and Soper maintained
their work on the shortest path in network with fuzzy number in [14]. We
encourage the reader to consult [2, 4, 6, 8, 11, 12] for historical background,
computational techniques and mathematical properties of the fuzzy shortest
path problem. In this paper, we consider time-varying shortest path, where
transit costs are triangular fuzzy numbers. Moreover, we assume that the tran-
sit times and the transit costs are dependent on discrete time T , where T is
the time horizon. The preliminary and definitions are given in Section 2. The
problem is discussed in Section 3 and two theorems are proved for solving of
problem. An algorithm is presented in Section 4 for the mentioned problem.

2 Preliminary

Consider a time-varying network G(V,A, b, c), where V and A are the set
of vertices and the set of arcs, respectively, with |V | = n, |A| = m. The
transit time b(i, j, t) and the fuzzy transit cost c̃(i, j, t) are associated with
each arc (i, j), respectively, such that t is the departure time of a vertex i.
Moreover, c̃(i, j, t) is assumed to be triangular fuzzy number. The transit time
b(i, j, t) and the fuzzy transit cost c̃(i, j, t) are the functions of discrete time
t = 0, 1, ..., T , where T is a given positive integer. The waiting time at vertex
i from t to t + 1 is shown by w(i) and the associated fuzzy waiting cost is
presented by c̃(i, t).

Definition 1 [5] The membership function µA(x) : X → [0, 1] allocates a value

between 0 or 1 to each member in X, where X is a universal set and A ⊆ X.

The assigned values point out the membership grade of the element in the set

A, and moreover the set
{
(

x, µA(x)
)

: x ∈ X
}

is named fuzzy set.

Definition 2 [5] A fuzzy number Ã = (α,β, γ) is called to be a triangular

fuzzy number, when it has the following membership function:

µÃ(x) =






x− α

β− α
α ≤ x ≤ β

1 x = β

γ− x

γ− β
β ≤ x ≤ γ

0 otherwise
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where, α ∈ R, β ∈ R and γ ∈ R.

Definition 3 [6] Let Ã = (α1, β1, γ1) be a triangular fuzzy number, then its

ranking function Ã is a function ℜ : ℜ(Ã) → R, where ℜ(Ã) is the set of

all fuzzy numbers. For a triangular fuzzy number Ã = (α1, β1, γ1), the ranking

function ℜ is calculated by ℜ(Ã) = 1
4
(α1 + 2β1 + γ1).

Definition 4 [6] Assume Ã = (α1, β1, γ1) and B̃ = (α2, β2, γ2) are two trian-

gular fuzzy numbers, then:

• Ã⊕ B̃ = (α1 + α2, β1 + β2, γ1 + γ2),

• Ã > B̃ if and only if ℜ(Ã) > ℜ(B̃),

• Ã = B̃ if and only if ℜ(Ã) = ℜ(B̃),

• Ã < B̃ if and only if ℜ(Ã) < ℜ(B̃),

• A triangular fuzzy number Ãk is the maximum triangular fuzzy numbers

Ãi such that ℜ(Ãk ≥)ℜ(Ãi) for all 1 ≤ i ≤ n,

• Minimum triangular fuzzy numbers Ãi is similarly defined,

• Moreover, let 0̃ = Ã ⇔ α1 = 0, β1 = 0, γ1 = 0 and Ã = ∞̃ ⇔ ℜ(Ã) = ∞̃.

Definition 5 [1] Suppose a time-varying path from i1 to ik is specified by

P (i1 − i2 − · · ·− ik). Consider α(ir) be the arrival time of a vertex ir on P

such that α(i1) = t1 > 0 and we have:

α(ir) = α(ir−1) +w(ir−1) + b
(

ir−1, ir, τ(ir−1)
)

for 2 ≤ r ≤ k

where, τ(ir−1) is the departure time of a vertex ir−1 for for2 ≤ r ≤ k on P and

we have:

τ(ir−1) = α(ir−1) +w(ir−1) for 2 ≤ r ≤ k.

Moreover, let α(s) = 0 for the source vertex s.

Definition 6 [1] Let P (i1 = s− i2 − · · ·− ik) be a time-varying path from s

to ik, then the time of time-varying path P is determined by α(ik) +w(ik).

Definition 7 The fuzzy cost of the time-varying path P (i1 − i2 − · · ·− ik) is

defined as follow:

ζ̃(P) = ζ̃(ik) = ζ̃(ik−1) + c̃
(

ik−1, ik, τ(ik−1)
)

+ Σ
w(ik)−1
t′=0 c̃

(

ik, t
′ + α(ik)

)

Moreover, the path P is the shortest path within time t if for each path P′

within time t, we have: ζ(P) ≤ ζ(P′).



Speedup on the fuzzy time-varying shortest path problem 169

3 The fuzzy shortest path problem with speed up

Consider that the transit time b(i, j, t) can be reduced at a fuzzy speedup cost
c̃γ(i, j, t) i.e. an arc (i, j) is traversed in shorter time and b(i, j, t) is rebated
by paying the speedup cost c̃γ(i, j, t). Speedup on one or several arcs may be
leaded to a better solution; especially it may be necessary when the deadline
T is tight. Let γ(i, j, t) be the amount of time reduced from the transit time
b(i, j, t) with fuzzy speedup cost c̃γ(i, j, t), such that b(i, j, t) − γ(i, j, t) > 0.

Theorem 1 Define ds
A(j, t) as the fuzzy cost of a time-varying shortest path

from s to j of time exactly t with speed up. Then ds
A(j, 0) = ∞̃ for all j 6= s,

ds
A(s, 0) = 0̃ and if t > 0 have:

ds
A(j, t) = min

{
ds
A(j, t− 1) + c̃(j, t−

1),min(i,j)∈Aminu+b(i,j,u)−γ(i,j,t)=t

{
ds
A(i, u) + c̃(i, j, u) + c̃γ(i, j, u)

}}

Proof. It is clear that ds
A(j, 0) = ∞̃ for all j 6= s and ds

A(s, 0) = 0̃, since
all transit times are positives. The theorem is proved by induction on t > 0.
Consider t = 1, for j = s the theorem clearly holds. If j 6= s, for (s, j) ∈ A

and b(s, j, 0) = 1, the theorem holds with ds
A(s, 0) + c̃(s, j, 0) + c̃γ(s, j, 0).

Assume that the theorem is correct for t′ < t and ds
A(j, t) is finite. If d

s
A(j, t) =

ds
A(j, t− 1) + c̃(j, t− 1), by induction, there is a path from s to j within time

t − 1, by waiting at j one unit of time more, the time of path is exactly t . If
ds
A(j, t) = ds

A(i, u) + c̃(i, j, u) + c̃γ(i, j, u), since b(i, j, t) − γ(i, j, t) > 0, then
u < t, therefore by induction, there is a path from s to i within time u and cost
ds
A(i, u). We can extend this path to j, obtaining a path from s to j within time

u+ b(i, j, u) − γ(i, j, t) = t and cost ds
A(j, t) = ds

A(i, u) + c̃(i, j, u) + c̃γ(i, j, u).
It is easy to see that ds

A(j, t) is the fuzzy cost of shortest path from s to j. �

Theorem 2 Define ds∗

A (j) as the cost of a time-varying shortest path form s

to j of time at most T with speed-up, then we have:

ds∗

A (j) = min0≤t≤T d
s
A(j, t).

Proof. The proof is Straightforward. �

4 The algorithm for solving fuzzy shortest path prob-

lem with speed up

The key idea in the below algorithm is to first sort the values of u+b(i, j, u)−

γ(i, j, t) = t for all u = 0, 1, 2, . . . , T and all arcs (i, j) ∈ A, before the recursive
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relation as given in theorem 1 is applied to compute ds
A(j, t) for all j ∈ V and

t = 0, 1, 2, . . . , T .

Algorithm

1. Begin

2. Let ds
A(j, 0) = ∞̃ for all j 6= s, ds

A(s, 0) = 0̃;

3. Sort all values u + b(i, j, u) − γ(i, j, t) = t for all u = 0, 1, 2, . . . , T and
all arcs (i, j) ∈ A;

4. For t = 0, 1, 2, . . . , T , do;

For j ∈ V , do;

For each (i, j) ∈ A, and each u and γ, do;

ds
A(j, t) = min

{
ds
A(j, t− 1) + c̃(j, t−

1),min(i,j)∈Aminu+b(i,j,t)−γ(i,j,t)=t

{
ds
A(i, u) + c̃(i, j, u) + c̃γ(i, j, u)

}}

5. Let ds∗

A (j) = min0≤t≤T d
s
A(j, t);

6. End

Example 1 Consider a given time-varying network G in Figure 1, where

T = 6.

1 

3 5 

6 

2 4 

Figure1. A network for example 1

Assume that the waiting at vertices are not allowed, i.e. w(i) = 0 for all i ∈ V.

Furthermore, for arcs (1, 2), (1, 3) and (2, 4) and for each time t = 0, 1, . . . , 6

let:
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b(i, j, t) = 3, c̃(i, j, t) = (2, 3, 4)

for arcs (4, 6) and (5, 6) and for each time t = 0, 1, . . . , 6 let:

b(i, j, t) = 3, c̃(i, j, t) = (1, 3, 5)

Other transit times and fuzzy transit costs are shown in Table 1.

Table 1. Information for network G

Arcs (2,5) (3,4) (3,5) 

       
b,

        

t
                  

  b                     b                   b                 

0
   

1             (1,2,3)
   2              (2,4,6)  3             (1,4,5) 

1
   

4            (1,3,4)
   

2              (2,4,5)
  

2             (1,4,6)
 

2
   

3            (1,3,4)
   

1              (3,4,5)
  

3             (2,3,4)
 

3
   

3            (2,3,5)
   

4    
          

(3,4,6)
  

5             (2,4,6)
 

4
   

2            (1,3,6)
   

3              (1,3,5)
  

4             (3,5,6)
 

5
   

3           
 
(1,3,5)

   
2               (1,3,4)

  
3             (4,5,6)

 

6
   

4            (1,3,4)
   

3              (1,2,4)  2             (2,5,7) 

There is not any feasible path from source vertex 1 to vertex 6 with T = 6,

because each path has time more than time horizon T = 6. Let γ(i, j, t) = 1,

corresponding to each γ, consider that there is a speedup cost c̃γ(i, j, t) =

(2, 4, 6). After applying the described algorithm to find the shortest path between

the vertex 1 and the vertex 6, we can obtain a path 1-2-5-6 with fuzzy cost

ds∗

A (j) = (10, 20, 31).

5 Conclusion

In the time-varying shortest path problem, speedup may be a better decision
for the solution, although it incurs an extra cost. In particular, speedup may
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become necessary when the deadline T is tight. In this paper, we have consid-
ered one class of the time-varying shortest path, where the transit costs are
fuzzy numbers and speedups on all arcs along the path are decision variables.
Moreover, we have presented an algorithm for solving the problem.
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Abstract. In this paper, we establish some common random fixed point
theorems for contractive type conditions in the setting of cone random
metric spaces. Our results unify, extend and generalize many known re-
sults from the current existing literature.

1 Introduction

Random nonlinear analysis is an important mathematical discipline which is
mainly concerned with the study of random nonlinear operators and their
properties and is needed for the study of various classes of random equations.
The study of random fixed point theory was initiated by the Prague school of
Probabilities in the 1950s [9, 10, 24]. Common random fixed point theorems
are stochastic generalization of classical common fixed point theorems. The
machinery of random fixed point theory provides a convenient way of model-
ing many problems arising from economic theory (see e.g. [19]) and references
mentioned therein. Random methods have revolutionized the financial mar-
kets. The survey article by Bharucha-Reid [7] attracted the attention of several
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mathematicians and gave wings to the theory. Itoh [14] extended Spacek’s and
Hans’s theorem to multivalued contraction mappings. Now this theory has be-
come the full fledged research area and various ideas associated with random
fixed point theory are used to obtain the solution of nonlinear random system
(see [4, 5, 6, 11, 22]). Papageorgiou [17, 18], Beg [2, 3] studied common random
fixed points and random coincidence points of a pair of compatible random
operators and proved fixed point theorems for contractive random operators
in Polish spaces.
In 2007, Huang and Zhang [12] introduced the concept of cone metric spaces

and establish some fixed point theorems for contractive mappings in normal
cone metric spaces. Subsequently, several other authors [1, 13, 21, 23] studied
the existence of fixed points and common fixed points of mappings satisfying
contractive type condition on a normal cone metric space.
In 2008, Rezapour and Hamlbarani [21] omitted the assumption of normality

in cone metric space, which is a milestone in developing fixed point theory in
cone metric space. Recently, Mehta et al. [16] introduced the concept of cone
random metric space and proved an existence of random fixed point under
weak contraction condition in the setting of cone random metric spaces.
In this paper, we establish some common random fixed point theorems for

contractive type conditions in the setting of cone random metric spaces. Our
results extend the corresponding results of [16] and some others from the
current existing literature.

2 Preliminaries

Definition 1 (See [16]) Let (E, τ) be a topological vector space. A subset P of
E is called a cone whenever the following conditions hold:
(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P;
(c3) If x ∈ P and −x ∈ P implies x = 0.

For a given cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y− x ∈ P. We shall write x < y to indicate that x ≤ y but
x 6= y, while x ≪ y will stand for y− x ∈ P0, where P0 stands for the interior
of P.

Definition 2 (See [12, 25]) Let X be a nonempty set. Suppose that the map-
ping d : X× X → E satisfies:
(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
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(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric [12] or K-metric [25] on X and (X, d) is called

a cone metric space [12].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 1 (See [12]) Let E = R
2, P = {(x, y) ∈ R

2 : x ≥ 0, y ≥ 0}, X = R

and d : X × X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a
constant. Then (X, d) is a cone metric space with normal cone P where K = 1.

Example 2 (See [20]) Let E = ℓ2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ)
a metric space, and d : X× X → E defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then
(X, d) is a cone metric space.

Clearly, the above examples show that the class of cone metric spaces con-
tains the class of metric spaces.

Definition 3 (See [12]) Let (X, d) be a cone metric space. We say that {xn}
is:
(i) a Cauchy sequence if for every ε in E with 0 ≪ ε, then there is an N

such that for all n,m > N, d(xn, xm) ≪ ε;
(ii) a convergent sequence if for every ε in E with 0 ≪ ε, then there is an N

such that for all n > N, d(xn, x) ≪ ε for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X

is convergent in X.
In the following (X, d) will stands for a cone metric space with respect to a

cone P with P0 6= ∅ in a real Banach space E and ≤ is partial ordering in E

with respect to P.

Definition 4 (Measurable function) (See [16]) Let (Ω,Σ) be a measurable
space with Σ-a sigma algebra of subsets of Ω and M be a nonempty subset
of a metric space X = (X, d). Let 2M be the family of nonempty subsets of
M and C(M) the family of all nonempty closed subsets of M. A mapping
G : Ω → 2M is called measurable if for each open subset U of M, G−1(U) ∈ Σ,
where G−1(U) =

{
ω ∈ Ω : G(ω) ∩U 6= ∅

}
.
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Definition 5 (Measurable selector) (See [16]) A mapping ξ : Ω → M is
called a measurable selector of a measurable mapping G : Ω → 2M if ξ is
measurable and ξ(ω) ∈ G(ω) for each ω ∈ Ω.

Definition 6 (Random operator) (See [16]) The mapping T : Ω×M → X

is said to be a random operator if and only if for each fixed x ∈ M, the mapping
T(., x) : Ω → X is measurable.

Definition 7 (Continuous random operator) (See [16]) A random oper-
ator T : Ω×M → X is said to be continuous random operator if for each fixed
x ∈ M and ω ∈ Ω, the mapping T(ω, .) : M → X is continuous.

Definition 8 (Random fixed point) (See [16]) A measurable mapping ξ : Ω
→ M is a random fixed point of a random operator T : Ω×M → X if and only
if T(ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

Definition 9 (Cone Random Metric Space) Let M be a nonempty set
and let the mapping d : Ω×M → P, where P is a cone, ω ∈ Ω be a selector,
satisfy the following conditions:
(i) d(x(ω), y(ω)) ≥ 0 and d(x(ω), y(ω)) = 0 if and only if x(ω) = y(ω)

for all x(ω), y(ω) ∈ Ω×M,

(ii) d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈ M, ω ∈ Ω and x(ω), y(ω)

∈ Ω×M,

(iii) d(x(ω), y(ω)) ≤ d(x(ω), z(ω))+d(z(ω), y(ω)) for all x, y, z ∈ M and
ω ∈ Ω be a selector,

(iv) for any x, y ∈ M, ω ∈ Ω, d(x(ω), y(ω)) is non-increasing and left
continuous.
Then d is called cone random metric on M and (M,d) is called a cone

random metric space.

Definition 10 Let (X, d) be a metric space. A mapping T : X → X is called
an a-contraction if

d(Tx, Ty) ≤ ad(x, y) for all x, y ∈ X, (1)

where a ∈ (0, 1).
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Definition 11 The mapping T is called Kannan contraction mapping [15] if
there exists b ∈ (0, 12) such that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)] for all x, y ∈ X. (2)

Definition 12 The mapping T is called Chatterjea contraction mapping [8] if
there exists c ∈ (0, 12) such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)] for all x, y ∈ X. (3)

Generalized contraction condition for two mappings

Let (X, d) be a metric space and let S, T : X → X be two mappings satisfying
the condition:

d(Sx, Ty) ≤ ad(x, y) + b [d(x, Sx) + d(y, Ty)]

+ c [d(x, Ty) + d(y, Sx)],
(4)

for all x, y ∈ X and a+ 2b+ 2c < 1, where a, b, c > 0 are constants.

Remark 1 (i) If we take S = T and b = c = 0, then condition (4) reduces to
the contraction condition (1).
(ii) If we take S = T and a = c = 0, then condition (4) reduces to the

Kannan contraction condition (2).
(iii) If we take S = T and a = b = 0, then condition (4) reduces to the

Chatterjea contraction condition (3).

Thus it is clear from Remark 1 that the generalized contraction condition for
one or two mappings is weaker than Banach contraction, Kannan contraction
and Chatterjea contraction conditions.

3 Main results

In this section we shall prove some common random fixed point theorems under
generalized contractive condition (4) in the setting of cone random metric
spaces.

Theorem 1 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let S and
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T be two continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T(ω, .) : Ω×M → M satisfying the condition:

d(S(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω))

+ b(ω) [d(x(ω), S(x(ω))) + d(y(ω), T(y(ω)))]

+ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), S(x(ω)))]

(5)

for all x, y ∈ M, a(ω)+2b(ω)+2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and
ω ∈ Ω. Then S and T have a unique common random fixed point in X.

Proof. For each x0(ω) ∈ Ω×M and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω) ∈

Ω×M such that x1(ω) = S(x0(ω)) and x2(ω) = T(x1(ω)). In general we define
sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and x2n+2(ω) =

T(x2n+1(ω)). Then from (5), we have

d(x2n+1(ω), x2n(ω)) = d(S(x2n(ω)), T(x2n−1(ω)))

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), S(x2n(ω)))

+ d(x2n−1(ω), T(x2n−1(ω)))]

+ c(ω) [d(x2n(ω), T(x2n−1(ω)))

+ d(x2n−1(ω), S(x2n(ω)))]

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω) [d(x2n(ω), x2n(ω))

+ d(x2n−1(ω), x2n+1(ω))]

= a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω)d(x2n−1(ω), x2n+1(ω))

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω) [d(x2n−1(ω), x2n(ω))

+ d(x2n(ω), x2n+1(ω))]

=
(

a(ω) + b(ω) + c(ω)
)

d(x2n(ω), x2n−1(ω))

+ (b(ω) + c(ω))d(x2n+1(ω), x2n(ω))

Therefore,

d(x2n+1(ω), x2n(ω)) ≤

(

a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)

d(x2n(ω), x2n−1(ω))

= λd(x2n(ω), x2n−1(ω)),

(6)
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where

λ =

(

a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)

.

By the assumption of the theorem

a(ω) + 2b(ω) + 2c(ω) < 1 ⇒ a(ω) + b(ω) + c(ω) < 1− b(ω) − c(ω)

⇒ λ =
(a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)

< 1.

Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ λd(x2n−1(ω), x2n−2(ω)).

Hence

d(x2n+1(ω), x2n(ω)) ≤ λ2 d(x2n−1(ω), x2n−2(ω)).

On continuing this process, we get

d(x2n+1(ω), x2n(ω)) ≤ λ2n d(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + . . .

+ d(xm+1(ω), xm(ω))

≤ (λn−1 + λn−2 + · · ·+ λm)d(x1(ω), x0(ω))

≤
( λm

1− λ

)

d(x1(ω), x0(ω)).

Let 0 ≪ ε be given. Choose a natural numberN such that
(

λm

1−λ

)

d(x1(ω), x0(ω))

≪ ε for every m ≥ N. Thus

d(xn(ω), xm(ω)) ≤
( λm

1− λ

)

d(x1(ω), x0(ω)) ≪ ε,

for every n > m ≥ N. This shows that the sequence {xn(ω)} is a Cauchy
sequence in Ω×M. Since (X, d) is complete, there exists z(ω) ∈ Ω× X such
that xn(ω) → z(ω) as n → ∞. Choose a natural number N1 such that

d(x2n+1(ω), x2n+2(ω)) ≪
ε (1− b(ω) − c(ω))

2(a(ω) + b(ω) + c(ω))
, (7)
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and

d(z(ω), x2n+2(ω)) ≪
ε (1− b(ω) − c(ω))

2(1+ a(ω) + 2c(ω))
, (8)

for every n ≥ N1. Hence for n ≥ N1, we have

d(z(ω), S(z(ω))) ≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω), T(x2n+1(ω))

≤ d(z(ω), x2n+2(ω)) + a(ω)d(z(ω), x2n+1(ω))

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), T(x2n+1(ω)))]

+ c(ω) [d(z(ω), T(x2n+1(ω))) + d(x2n+1(ω), S(z(ω)))]

= d(z(ω), x2n+2(ω)) + a(ω)d(z(ω), x2n+1(ω))

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ c(ω) [d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))]

≤ d(z(ω), x2n+2(ω))

+ a(ω) [d(z(ω), x2n+2(ω)) + d(x2n+2(ω), x2n+1(ω))]

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ c(ω) [d(z(ω), x2n+2(ω)) + d(x2n+1(ω), x2n+2(ω))

+ d(x2n+2(ω), z(ω)) + d(z(ω), S(z(ω)))]

= (1+ a(ω) + 2c(ω))d(z(ω), x2n+2(ω))

+ (b(ω) + c(ω))d(z(ω), S(z(ω)))

+ (a(ω) + b(ω) + c(ω))d(x2n+1(ω), x2n+2(ω)).

The above inequality gives

d(z(ω), S(z(ω))) ≤

(

1+ a(ω) + 2c(ω)

1− b(ω) − c(ω)

)

d(z(ω), x2n+2(ω))

+

(

a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)

d(x2n+1(ω), x2n+2(ω)).

(9)

Using (7) and (8) in (9), we get

d(z(ω), S(z(ω))) ≪
ε

2
+

ε

2
= ε. (10)

Thus d(z(ω), S(z(ω))) ≪ ε
m for all m ≥ 1. So ε

m − d(z(ω), S(z(ω))) ∈ P for
all m ≥ 1. Since ε

m → 0 as m → ∞ and P is closed, −d(z(ω), S(z(ω))) ∈ P.
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But d(z(ω), S(z(ω))) ∈ P. Therefore by definition 1(c3), d(z(ω), S(z(ω))

= 0 and so S(z(ω)) = z(ω).
In an exactly the similar way we can prove that for all ω ∈ Ω, T(z(ω)) =

z(ω). Hence S(z(ω)) = T(z(ω)) = z(ω). This shows that z(ω) is a common
random fixed point of S and T .

Uniqueness

Let v(ω) be another random fixed point common to S and T , that is, for
ω ∈ Ω, S(v(ω)) = T(v(ω)) = v(ω). Then for ω ∈ Ω, we have

d(z(ω), v(ω)) = d(S(z(ω)), T(v(ω)))

≤ a(ω)d(z(ω), v(ω)) + b(ω) [d(z(ω), S(z(ω)))

+ d(v(ω), T(v(ω)))] + c(ω) [d(z(ω), T(v(ω))

+ d(v(ω), S(z(ω)))]

≤ (a(ω) + 2c(ω))d(z(ω), v(ω))

< d(z(ω), v(ω)), since 0 < a(ω) + 2c(ω) < 1,

a contradiction. Hence z(ω) = v(ω) and so z(ω) is a unique common random
fixed point of S and T . This completes the proof. �

Corollary 1 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operator defined on M such that for ω ∈ Ω, T(ω, .) : Ω×

M → M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω))

+ b(ω) [d(x(ω), T(x(ω))) + d(y(ω), T(y(ω)))]

+ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), T(x(ω)))]

for all x, y ∈ M, a(ω)+2b(ω)+2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and
ω ∈ Ω. Then T has a unique random fixed point in X.

Proof. The proof of the corollary immediately follows by putting S = T in
Theorem 1. This completes the proof. �

If we take S = T and b(ω) = c(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.
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Corollary 2 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be
a random operator defined on M such that for ω ∈ Ω, T(ω, .) : Ω×M → M

satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω)),

for all x, y ∈ M, a(ω) ∈ (0, 1) and ω ∈ Ω. Then T has a unique random fixed
point in X.

If we take S = T and a(ω) = c(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.

Corollary 3 ([16], Corollary 3.2) Let (X, d) be a complete cone random met-
ric space with respect to a cone P and let M be a nonempty separable closed
subset of X. Let T be a continuous random operator defined on M such that
for ω ∈ Ω, T(ω, .) : Ω×M → M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ b(ω) [d(x(ω), T(x(ω))) + d(y(ω), T(y(ω)))]

for all x, y ∈ M, b(ω) ∈ (0, 12) and ω ∈ Ω. Then T has a unique random fixed
point in X.

If we take S = T and a(ω) = b(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.

Corollary 4 ([16], Corollary 3.3) Let (X, d) be a complete cone random met-
ric space with respect to a cone P and let M be a nonempty separable closed
subset of X. Let T be a continuous random operator defined on M such that
for ω ∈ Ω, T(ω, .) : Ω×M → M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), T(x(ω)))]

for all x, y ∈ M, c(ω) ∈ (0, 12) and ω ∈ Ω. Then T has a unique random fixed
point in X.

Theorem 2 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let S and
T be two continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T(ω, .) : Ω×M → M satisfying the condition:

d(S(x(ω)), T(y(ω))) ≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), S(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), S(x(ω)))
}

(11)
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for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then S and T have a unique
common random fixed point in X.

Proof. For each x0(ω) ∈ Ω×M and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω)

∈ Ω × M such that x1(ω) = S(x0(ω)) and x2(ω) = T(x1(ω)). In general
we define sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and
x2n+2(ω) = T(x2n+1(ω)). Then from (11), we have

d(x2n+1(ω), x2n(ω)) = d(S(x2n(ω)), T(x2n−1(ω)))

≤ h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), S(x2n(ω))), d(x2n−1(ω), T(x2n−1(ω))),

d(x2n(ω), T(x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))
}

= h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n(ω), x2n(ω)), d(x2n−1(ω), x2n+1(ω))
}

= h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n−1(ω), x2n+1(ω))
}

≤ h(ω)d(x2n(ω), x2n−1(ω)).

(12)

Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ h(ω)d(x2n−1(ω), x2n−2(ω)).

Hence
d(x2n+1(ω), x2n(ω)) ≤ h(ω)2 d(x2n−1(ω), x2n−2(ω)).

On continuing this process, we get

d(x2n+1(ω), x2n(ω)) ≤ h(ω)2n d(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + . . .

+ d(xm+1(ω), xm(ω))

≤ (h(ω)n−1 + h(ω)n−2 + · · ·+ h(ω)m)d(x1(ω), x0(ω))
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≤
( h(ω)m

1− h(ω)

)

d(x1(ω), x0(ω)).

Let 0 ≪ ε be given. Choose a natural number N such that
(

h(ω)m

1−h(ω)

)

d(x1(ω),

x0(ω)) ≪ ε for every m ≥ N. Thus

d(xn(ω), xm(ω)) ≤
( h(ω)m

1− h(ω)

)

d(x1(ω), x0(ω)) ≪ ε,

for every n > m ≥ N.

This shows that the sequence {xn(ω)} is a Cauchy sequence in Ω×M. Since
(X, d) is complete, there exists z(ω) ∈ Ω × X such that xn(ω) → z(ω) as
n → ∞. Hence, we have

d(z(ω), S(z(ω))) ≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω)), T(x2n+1(ω)))

≤ d(z(ω), x2n+2(ω)) + h(ω) max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))), d(x2n+1(ω), T(x2n+1(ω))),

d(z(ω), T(x2n+1(ω))), d(x2n+1(ω), S(z(ω)))
}

= d(z(ω), x2n+2(ω)) + h(ω) max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))), d(x2n+1(ω), x2n+2(ω)),

d(z(ω), x2n+2(ω)), d(x2n+1(ω), S(z(ω)))
}
.

Taking the limit as n → ∞ in the above inequality, we get

d(z(ω), S(z(ω))) ≤ h(ω)d(z(ω), S(z(ω)))

or,
(1− h(ω))d(z(ω), S(z(ω))) ≤ 0

⇒ d(z(ω), S(z(ω))) ≤ 0, since 0 < (1− h(ω)) < 1.

Thus −d(z(ω), S(z(ω))) ∈ P. But d(z(ω), S(z(ω))) ∈ P. Therefore by defi-
nition 1(c3), we have d(z(ω), S(z(ω)) = 0 and so S(z(ω)) = z(ω).
In an exactly the similar way we can prove that for all ω ∈ Ω, T(z(ω)) =

z(ω). Hence S(z(ω)) = T(z(ω)) = z(ω). This shows that z(ω) is a common
random fixed point of S and T . Rest of the proof is same as that of Theorem
1. This completes the proof. �

If we take S = T in Theorem 2 we get the following result as corollary.
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Corollary 5 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operators defined on M such that for ω ∈ Ω, T(ω, .) : Ω×

M → M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), T(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), T(x(ω)))
}

(13)

for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then T has a unique random
fixed point in X.

Proof. The proof of corollary 5 immediately follows by putting S = T in
Theorem 2. This completes the proof. �

The following corollary is a special case of Corollary 5.

Corollary 6 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operators defined on M such that for ω ∈ Ω, T(ω, .) : Ω×

M → M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ h(ω)d(x(ω), y(ω)) (14)

for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then T has a unique random
fixed point in X.

Condition (14) is called Banach contractive condition.
Proof. (Proof of corollary 6) The proof of corollary 6 immediately follows
from Corollary 5 by taking

max
{
d(x(ω), y(ω)), d(x(ω), T(x(ω))), d(y(ω), T(y(ω))),

d(x(ω), T(y(ω))), d(y(ω), T(x(ω)))
}
= d(x(ω), y(ω)).

This completes the proof. �

Example 3 Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measur-
able subset of [0, 1]. Take X = R with d(x, y) = |x − y| for x, y ∈ R. Define
random mapping T from Ω× X to X as T(ω, x) = ω − x. Then a measurable
mapping ξ : Ω → X defined as ξ(ω) = ω

2 for all ω ∈ Ω, serve as a unique
random fixed point of T .
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Example 4 Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and Σ be
the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X = [0,∞) and
define a mapping d : (Ω×X)×(Ω×X) → M by d(x(ω), y(ω)) = |x(ω)−y(ω)|.
Then (X, d) is a cone random metric space. Define random operator T form

(Ω × X) to X as T(ω, x) = 1−ω2+2x
3 . Also sequence of mapping ξn : Ω → X

is defined by ξn(ω) = (1 − ω2)1+(1/n) for every ω ∈ Ω and n ∈ N. Define
measurable mapping ξ : Ω → X as ξ(ω) = (1 −ω2) for every ω ∈ Ω. Hence
(1−ω2) is the random fixed point of the random operator T .

Example 5 Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and Σ be
the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X = [0,∞) and
define a mapping d : (Ω×X)×(Ω×X) → M by d(x(ω), y(ω)) = |x(ω)−y(ω)|.
Then (X, d) is a cone random metric space. Define random operators S and T

form (Ω×X) to X as S(ω, x) = 1−ω2+x
2 and T(ω, x) = 1−ω2+2x

3 . Also sequence

of mapping ξn : Ω → X is defined by ξn(ω) = (1−ω2)1+(1/n) for every ω ∈ Ω

and n ∈ N. Define measurable mapping ξ : Ω → X as ξ(ω) = (1 − ω2) for
every ω ∈ Ω. Hence (1−ω2) is a common random fixed point of the random
operators S and T .

Example 6 Let E = {0, 1, 2, 3, 4} ⊂ R with the usual metric d. Consider
Ω = {0, 1, 2, 3, 4} and let Σ be the sigma algebra of Lebesgue’s measurable
subset of Ω. Define S, T : Ω× E → E by

{
S(ω, x) = 3, where x = 0 and ω ∈ Ω

= 1, otherwise,

and {
T(ω, x) = 2, where x = 0 and ω ∈ Ω

= 1, otherwise.

Let us take x(ω) = 0, y(ω) = 1. Then from condition (11), we have

2 = d(S(x(ω)), T(y(ω)))

≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), S(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), S(x(ω)))
}

= h(ω) max{1, 3, 0, 1, 2}
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which implies h(ω) ≥ 2
3 . Now if we take 0 < h(ω) < 1, then condition (11)

is satisfied. The measurable function ξ : Ω → E with ξ(ω) = 1 is a unique
common random fixed point of S and T , that is, S(ω, x) = T(ω, x) = 1 = ξ(ω).

Example 7 Let E = {0, 1, 2, 3, 4} ⊂ R with the usual metric d. Consider
Ω = {0, 1, 2, 3, 4} and let Σ be the sigma algebra of Lebesgue’s measurable
subset of Ω. Define S, T : Ω× E → E by

{
S(ω, x) = 4, where x = 0 and ω ∈ Ω

= 3, otherwise,

and {
T(ω, x) = 2, where x = 0 and ω ∈ Ω

= 3, otherwise.

Let us take x(ω) = 0 and y(ω) = 1. Then condition (5) of Theorem 3.1 is
satisfied with a(ω) = b(ω) = c(ω) = 1

12 and a(ω) + 2b(ω) + 2c(ω) = 5
12 ∈

(0, 1). The measurable function ξ : Ω → E with ξ(ω) = 3 is a unique common
random fixed point of S and T , that is, S(ω, x) = T(ω, x) = 3 = ξ(ω).

Remark 2 Our results extend and generalize many known results from the
current existing literature.

Acknowledgements

The authors are grateful to the anonymous referee for his careful reading and
useful suggestions on the manuscript.

References

[1] M. Abbas, G. Jungck, Common fixed point results for non commuting
mappings without continuity in cone metric spaces, J. Math. Anal. Appl.,
341 (2008), 416–420.

[2] I. Beg, Random fixed points of random operators satisfying semicontrac-
tivity conditions, Math. Jpn., 46 (1) (1997), 151–155.

[3] I. Beg, Approximation of random fixed points in normed spaces, Nonlinear
Anal., 51 (8) (2002), 1363–1372.



Some common random fixed point theorems for . . . 189

[4] I. Beg, M. Abbas, Equivalence and stability of random fixed point iterative
procedures, J. Appl. Math. Stochas. Anal., 2006 (2006), Article ID 23297,
19 pages.

[5] I. Beg, M. Abbas, Iterative procedures for solutions of random operator
equations in Banach spaces, J. Math. Anal. Appl., 315 (1) (2006), 181–
201.

[6] A. T. Bharucha-Reid, Random Integral equations, Mathematics in Science
and Engineering, vol. 96, Academic Press, New York, 1972.

[7] A. T. Bharucha-Reid, Fixed point theorems in Probabilistic analysis, Bull.
Amer. Math. Soc., 82(5) (1976), 641–657.

[8] S. K. Chatterjee, Fixed point theorems compactes, Rend. Acad. Bulgare
Sci., 25 (1972), 727–730.
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Laura NISTOR Emőd VERESS
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