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Abstract. The intuition according to which an infinite word is “com-
plicated” all the more as it has many distinct factors can be translated
into terms of “complexity function” of this word. In this paper, some
properties of a new notion of complexity called “window complexity”
are studied. A characterization of modulo-recurrent words via window
complexity is given.

1 Introduction

The study of factors of infinite words goes back at least to the work of Thue [13,
14]. Among questions which have been addressed, is the problem of computing
the complexity function P, where P(n) is the number of distinct factors of
length n; it was introduced in 1975 by Ehrenfeucht et al. [6]. And since then,
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it has been abundantly used to study infinite words; in particular it allowed the
classification of certain families of infinite words (see for instance [1, 4, 10]).

As is shown in [12], this classical definition of complexity does not always
show how complicated an infinite word is. That is why other notions of com-
plexity were introduced by many authors, such as arithmetic complexity [3]
and palindromic complexity [2].

Our aim in this paper is to give some properties of the window complexity.
This new complexity was introduced by two of the authors in [8].

2 Preliminaries

Let A∗ be the free monoid generated by a non-empty finite set A called al-
phabet. The elements of A are called letters and those of A∗, words. For any
word v in A∗, |v| denotes the length of v, namely the number of its letters.
The identity element of A∗ denoted by ε is the empty word; it is the word of
length 0.

An infinite word is a sequence of letters in A indexed by N. We denote by
Aω the set of infinite words in A and we set A∞ = A∗ ∪ Aω.

An infinite word u is said τ-periodic if τ is the least positive integer such
that ui+τ = ui for all i ≥ 0.

A finite word u of length n formed by repeating a single letter x is typically
denoted xn. We define the nth power of a finite word v as being the concate-
nation of n copies of v; we denote it vn. We say that an infinite word u is even-
tually periodic if there exist two finite words v and w such that u = wvvv · · · ;
then u is simply denoted wvω.

Let u ∈ A∞ and v ∈ A∗. The word v is said to be a factor of u if there exist
u1 ∈ A∗ and u2 ∈ A∞ such that u = u1vu2.

For any infinite word u in Aω, we shall write u = u0u1u2u3 · · · where
ui ∈ A for all i ≥ 0. Let u ∈ Aω. The language of length n of u, denoted by
Ln(u), is the set of factors of u of length n:

Ln(u) = {ukuk+1 · · ·uk+n−1 : k ≥ 0} .

The set of all the factors of u is simply denoted by L(u). A factor v of length n

of a word u = u0u1u2 · · · appears in u at position k if v = ukuk+1 · · ·uk+n−1.
A word u is said to be recurrent if every factor of u appears infinitely many
times in u.

The complexity function of the infinite word u is the map from N to N
∗

defined by P(u, n) = #Ln(u), where #Ln(u) is the number of elements in
Ln(u).
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A Sturmian word is an infinite word u such that P(u, n) = n + 1 for every
integer n ≥ 0. Sturmian words are non-eventually periodic infinite words of
minimal complexity, for more details see for instance [9, 11].

Let us recall the definition of window complexity, which was introduced
in [8].

Definition 1 Let u = u0u1u2 · · · be an infinite word. The window complexity
function of u is the map Pf(u, .) : N −→ N

∗ defined by1

Pf(u, n) = #
{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}
.

Factors of length n occurring in u at a position multiple of n, as above, will
be called “window factors of length n of u”. The decomposition of u into such
factors will be called the “window decomposition of size n of u” or simply
“n-window decomposition of u”.

3 Properties of the window complexity

3.1 Comparison of Pf(u, .) and P(u, .)

Let us first compare the window complexity function with the usual complexity
function.

Proposition 1 For any infinite word u, we have:

∀n ≥ 0, Pf(u, n) ≤ P(u, n) .

Proof. For any infinite word u, we have

{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}
⊆ Ln(u) .

Thus Pf(u, n) ≤ P(u, n). �

We shall see in the next section that this proposition is sharp, i.e., there
exist infinite words for which Pf(u, n) = P(u, n) for all n ∈ N.

Proposition 2 For any infinite word u, we have:

∀n ≥ 2, P(u, n) ≤ (n − 1) (Pf(u, n − 1))2
.

1f in Pf is from ”fenêtre”, window in French
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Proof. For all n ≥ 2, let v, w be two window factors of length n − 1 in u

such that vw appears in the n-decomposition of u. Then, there are at most
n − 1 factors of u of length n contained in vw, and all factors of length n are
obtained this way. The result follows. �

We deduce from this proposition that if Pf is bounded, then P is at most
linear. Such infinite words actually exist, as we shall see in Proposition 7.

3.2 Window complexity and modulo-recurrent words

Let us now study the window complexity of a particular class of infinite words,
introduced in [7]: modulo-recurrent words.

Definition 2 An infinite word u = u0u1u2 · · · is said to be modulo-recurrent
if, for any k ≥ 1, every factor w of u appears in u at every position modulo
k, i.e.,

∀i ∈ {0, 1, . . . , k − 1} , ∃li ∈ N : w = ukli+iukli+i+1 · · ·ukli+i+|w|−1 .

Note that all modulo-recurrent words are recurrent. The class of modulo-
recurrent words includes words of diverse complexity, for instance Sturmian
words or words with maximal complexity:

Proposition 3 [7] Sturmian words are modulo-recurrent.

Proposition 4 Let u ∈ Aω be an infinite word such that P(u, n) = (#A)n

for all n ∈ N. Then u is modulo-recurrent.

Proof. If P(u, n) = (#A)n for all n ∈ N, then L(u) = A∗. Let w ∈ A∗ and
k ≥ 1. Choose j ∈ N such that |w|+ j ≡ 1 (mod k), and a ∈ A. Then the word
(waj)k occurs at some position n in u. It follows that w occurs at positions
n + i(|w| + j) in u for i ∈ {0, 1, . . . , k − 1}, hence at every position modulo k.

�

A consequence of Proposition 4 is that almost every infinite word is modulo-
recurrent, in the following sense: choose an infinite word u in Aω at random,
each letter being independently chosen in A according to a uniform law; then,
with probability 1, the word u is modulo-recurrent. Indeed, it is known that
L(u) = A∗ for almost every u.

Modulo-recurrent words can be characterized in terms of window complex-
ity:
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Theorem 1 Let u be a recurrent infinite word. Then, the following assertions
are equivalent:

1. The word u is modulo-recurrent.

2. ∀n ≥ 0, Pf(u, n) = P(u, n).

Proof. Let u be a modulo-recurrent word. Since Pf(u, n) ≤ P(u, n) by
Proposition 1, we need only to check that P(u, n) ≤ Pf(u, n). Let w be a
factor of length n in u. Then, w appears in u at any position modulo n,
in particular at a position ≡ 0 (mod n). So, there exists k ∈ N such that
w = uknukn+1 · · ·u(k+1)n−1. Hence, we have the inclusion

Ln(u) ⊆
{
uknukn+1 · · ·u(k+1)n−1 : k ≥ 0

}

and thus
P(u, n) ≤ Pf(u, n).

Conversely, suppose that

∀n ≥ 0, Pf(u, n) = P(u, n).

Then, for every integer n, any factor of u of length n appears in u at least at
one position ≡ 0 (mod n). Let w be a factor of u of length n and k a positive
integer. Let us consider an integer i such that 0 ≤ i < k. We have to show
that w appears in u at a certain position ≡ i (mod k). As u is a recurrent
infinite word, we can find some words x and y such that xwy is a factor of u

of length |xwy| ≡ 0 (mod k), with |x| = i.
It follows that there exists an integer l such that xwy appears in u at

position l|xwy|, i.e., xwy = ul|xwy|ul|xwy|+1 · · ·u(l+1)|xwy|−1. Thus,

w = ul|xwy|+iul|xwy|+i+1 · · ·ul|xwy|+i+n−1.

Therefore, w appears at a position ≡ i (mod k). �

Note that Theorem 1 does not hold for non-recurrent words. Indeed, the
word u = abω satisfies Pf(u, n) = P(u, n) = 2 for all n ≥ 1 (and of course
Pf(u, 0) = P(u, 0) = 1), but it is not modulo-recurrent.

3.3 Window complexity and automatic words

One very interesting way to generate infinite words is to proceed by iterating
a substitution on a letter.
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A substitution is a map f : A −→ A∗. It can be naturally extended to a
morphism from A∗ to A∗, and to a map from A∞ to A∞ .

If there exists a constant σ such that |f(a)| = σ for all a ∈ A, then we
say that f is σ-uniform (or just uniform, if σ is clear from the context). A
1-uniform morphism is called a coding.

Let f be a substitution on A∗. A word w on the alphabet A such that
f(w) = w is said to be a fixed point of f. If f is a non-erasing morphism and
there exists a letter a ∈ A such that f(a) = am with |m| > 0, then we say that
f is prolongable on a. In this case, the sequence a, f(a), f2(a),... converges to
the infinite word

u = amf(m)f2(m) . . . fk(m) . . .

which is a fixed point of f.
An infinite word is said to be σ-automatic if it is the image under a coding

of a fixed point of a σ-uniform morphism, for σ ≥ 2. Indeed, such a word is
recognizable by a σ-automaton [5].

Proposition 5 Let u be a σ-automatic infinite word. Then the sequence of
integers (Pf(u, n))n∈N

is not strictly increasing.

Proof. Let u = g(v), where v is a fixed point of the σ-uniform morphism f

and g is a coding. Then, for all n ∈ N, we have Pf(u, σn) ≤ Pf(v, 1) since the
window factors of length σn of u are the words g(fn(a)) for a ∈ L1(v). Since
the sequence (Pf(u, n))n∈N

contains a bounded subsequence, it is not strictly
increasing. �

3.4 Bounded window complexity

We know that the complexity function of an eventually periodic word is
bounded. By Proposition 1, it follows that the window complexity of an even-
tually periodic word is also bounded. More precisely:

Proposition 6

1. If u is a τ-periodic word, then Pf(u, n) ≤
τ

gcd(n, τ)
.

2. If u is eventually τ-periodic, then for n large enough,

Pf(u, n) ≤ 1 +
τ

gcd(n, τ)
.
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Proof.

1. Let n ∈ N. A window factor of length n of u can be written as

uknukn+1 · · ·u(k+1)n−1,

and it is entirely determined by kn mod τ, which takes exactly
τ

gcd(n, τ)
different values.

2. If n is large enough, then u = wv where |w| = n and v is τ-periodic.
Then Pf(u, n) ≤ 1 + Pf(v, n).

�

Since the window complexity of any eventually periodic word is bounded,
a natural question is what happens for non-eventually periodic infinite words.
Contrarily to the situation with the usual complexity function, bounded win-
dow complexity does not imply eventual periodicity. We present below a non-
eventually periodic infinite word whose window complexity is bounded.

Consider the sequence (ni)i≥0 such that n0 = 0 and for all i ≥ 0, ni+1 =

ni! + ni; and let t = t0t1t2 · · · be the infinite word defined by tn = 1 if there
exists i ∈ N such that n = ni and tn = 0 otherwise.

The first few terms of (ni) and t are:

i 0 1 2 3 4 5 · · ·

ni 0 1 2 4 28 28! + 28 · · ·

t = 11101000000000000000000000001000 . . . .

Let us note that t is neither eventually periodic nor recurrent.

Proposition 7 The window complexity of the infinite word t defined above
satisfies Pf(t, 0) = 1, Pf(t, 1) = 2, and

∀n ≥ 2, Pf(t, n) = 3 .

Proof. Obviously, Pf(t, 0) = 1 and Pf(t, 1) = #A = 2.
We see from the first terms of t that 11, 10, 00 all occur in the 2-window

decomposition of t. Morever, since all ni are even except n1 = 1, we have
t2l+1 = 0 for l ≥ 1, therefore t2lt2l+1 cannot be equal to 01. So Pf(t, 2) = 3.

More generally, let n ≥ 2, let i be the smallest integer such that n ≤ ni, and
let r = ni mod n. Then ni−1 < n ≤ ni and i ≥ 2. We first prove by induction
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on j that nj ≡ r (mod n) for all j ≥ i. This obviously holds for j = i. Assume
that nj ≡ r (mod n) for some j ≥ i. Then nj+1 − r = nj! + (nj − r), which is
a multiple of n since nj ≥ n.

There are at least 3 window factors of length n: t0t1 · · · tn−1, with 11 as a
prefix, occurring at position 0; 0n, occurring at position ni+1 + n − r (since
ni+1 < ni+1 + n − r < ni+1 + n − r + n − 1 < ni+2); and 0r10n−r−1, occurring
at position ni − r.

Assume now that w = tlntln+1 · · · t(l+1)n−1 is a window factor of length n of
t. If it starts with 11, then it must be the prefix of length n, since 11 does not
occur in t after position 1. Otherwise, l ≥ 1. For 0 ≤ k ≤ n − 1, ln + k = nj is
only possible if k = r, since nj ≡ r (mod n) if j ≥ i, and nj < n if j < i. Hence
w is either 0n or 0r10n−r−1. We have shown that there is not other window
factor of length n, i.e., Pf(t, n) = 3. �

By Proposition 2, and since the word t is non-eventually periodic, we have
n + 1 ≤ P(t, n) ≤ 9(n − 1) for n ≥ 2. Actually, one can prove that P(t, n) =

n + o(log n).

4 Some questions

We conclude with a few open questions.

• By Proposition 6, we know that if u is an eventually periodic infinite
word then its window complexity function Pf(u, ·) is bounded. Also, we
have presented (Proposition 7) an infinite word, non-eventually periodic
and non-recurrent, such that its window complexity function is bounded.
Does there exist some infinite recurrent and non-eventually periodic word
for which the window complexity function is bounded?

• Among infinite words with bounded window complexity, a subclass of
particular interest is that of words with eventually constant window
complexity, i.e., verifying the following property:

∃n0, c ∈ N : ∀n ≥ n0, Pf(u, n) = c. (1)

Eventually constant words have eventually constant window complex-
ity. The example constructed in Proposition 7 shows that even non-
eventually periodic words may have eventually constant window com-
plexity.

It would be interesting to see if there exist recurrent words, or better
automatic words, that possess Property (1).



On a new notion of complexity on infinite words 135

• We know by Proposition 5 that the window complexity function of an
automatic word is not strictly increasing, and even contains a bounded
subsequence. On the other hand, by Theorem 1, modulo-recurrent words
have strictly increasing window complexity. Do there exist non-modulo-
recurrent words with strictly increasing window complexity?
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[14] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Norske Vid. Selsk. Skr. I. Math. Nat. Kl. Christiana, 1 (1912), 1–67.

Received: October 4, 2010



Acta Univ. Sapientiae, Mathematica, 2, 2 (2010) 137–145

Imbalances in directed multigraphs

S. Pirzada
Department of Mathematics,

University of Kashmir, Srinagar, India
email: sdpirzada@yahoo.co.in

T. A. Naikoo
Department of Mathematics,

University of Kashmir, Srinagar, India
email: tariqnaikoo@rediffmail.com

U. Samee
Department of Mathematics,

University of Kashmir, Srinagar, India
email: pzsamee@yahoo.co.in

A. Iványi
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Abstract. In a directed multigraph, the imbalance of a vertex vi is
defined as bvi

= d+

vi
− d−

vi
, where d+

vi
and d−

vi
denote the outdegree

and indegree respectively of vi. We characterize imbalances in directed
multigraphs and obtain lower and upper bounds on imbalances in such
digraphs. Also, we show the existence of a directed multigraph with a
given imbalance set.

1 Introduction

A directed graph (shortly digraph) without loops and without multi-arcs is
called a simple digraph [2]. The imbalance of a vertex vi in a digraph as bvi

(or simply bi) = d+
vi

− d−
vi

, where d+
vi

and d−
vi

are respectively the outdegree
and indegree of vi. The imbalance sequence of a simple digraph is formed by
listing the vertex imbalances in non-increasing order. A sequence of integers
F = [f1, f2, . . . , fn] with f1 ≥ f2 ≥ . . . ≥ fn is feasible if the sum of its elements

is zero, and satisfies
k∑

i=1

fi ≤ k(n − k), for 1 ≤ k < n.

2010 Mathematics Subject Classification: 05C20
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The following result [5] provides a necessary and sufficient condition for a
sequence of integers to be the imbalance sequence of a simple digraph.

Theorem 1 A sequence is realizable as an imbalance sequence if and only if
it is feasible.

The above result is equivalent to saying that a sequence of integers B =

[b1, b2, . . . , bn] with b1 ≥ b2 ≥ . . . ≥ bn is an imbalance sequence of a simple
digraph if and only if

k∑

i=1

bi ≤ k(n − k),

for 1 ≤ k < n, with equality when k = n.
On arranging the imbalance sequence in non-decreasing order, we have the

following observation.

Corollary 1 A sequence of integers B = [b1, b2, . . . , bn] with b1 ≤ b2 ≤ . . . ≤

bn is an imbalance sequence of a simple digraph if and only if

k∑

i=1

bi ≥ k(k − n),

for 1 ≤ k < n with equality when k = n.

Various results for imbalances in simple digraphs and oriented graphs can
be found in [6], [7].

2 Imbalances in r-graphs

A multigraph is a graph from which multi-edges are not removed, and which
has no loops [2]. If r ≥ 1 then an r-digraph (shortly r-graph) is an orientation
of a multigraph that is without loops and contains at most r edges between the
elements of any pair of distinct vertices. Clearly 1-digraph is an oriented graph.
Let D be an f-digraph with vertex set V = {v1, v2, . . . , vn}, and let d+

v and d−
v

respectively denote the outdegree and indegree of vertex v. Define bvi
(or

simply bi) = d+
vi

−d−
ui

as imbalance of vi. Clearly, −r(n−1) ≤ bvi
≤ r(n−1).

The imbalance sequence of D is formed by listing the vertex imbalances in
non-decreasing order.
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We remark that r-digraphs are special cases of (a, b)-digraphs containing
at least a and at most b edges between the elements of any pair of vertices.
Degree sequences of (a, b)-digraphs are studied in [3, 4].

Let u and v be distinct vertices in D. If there are f arcs directed from
u to v and g arcs directed from v to u, we denote this by u(f − g)v, where
0 ≤ f, g, f + g ≤ r.

A double in D is an induced directed subgraph with two vertices u, and v

having the form u(f1f2)v, where 1 ≤ f1, f2 ≤ r, and 1 ≤ f1 + f2 ≤ r, and f1 is
the number of arcs directed from u to v, and f2 is the number of arcs directed
from v to u. A triple in D is an induced subgraph with tree vertices u, v,
and w having the form u(f1f2)v(g1g2)w(h1h2)u, where 1 ≤ f1, f2, g1, g2, h1,
h2 ≤ r, and 1 ≤ f1 + f2, g1 + g2, h1 + h2 ≤ r, and the meaning of f1, f2, g1,
g2, h1, h2 is similar to the meaning in the definition of doubles. An oriented
triple in D is an induced subdigraph with three vertices. An oriented triple is
said to be transitive if it is of the form u(1 − 0)v(1 − 0)w(0 − 1)u, or u(1 −

0)v(0−1)w(0−0)u, or u(1−0)v(0−0)w(0−1)u, or u(1−0)v(0−0)w(0−0)u,
or u(0 − 0)v(0 − 0)w(0 − 0)u, otherwise it is intransitive. An r-graph is said
to be transitive if all its oriented triples are transitive. In particular, a triple
C in an r-graph is transitive if every oriented triple of C is transitive.

The following observation can be easily established and is analogues to The-
orem 2.2 of Avery [1].

Lemma 1 If D1 and D2 are two r-graphs with same imbalance sequence,
then D1 can be transformed to D2 by successively transforming (i) appropriate
oriented triples in one of the following ways, either (a) by changing the intran-
sitive oriented triple u(1 − 0)v(1 − 0)w(1 − 0)u to a transitive oriented triple
u(0−0)v(0−0)w(0−0)u, which has the same imbalance sequence or vice versa,
or (b) by changing the intransitive oriented triple u(1 − 0)v(1 − 0)w(0 − 0)u

to a transitive oriented triple u(0 − 0)v(0 − 0)w(0 − 1)u, which has the same
imbalance sequence or vice versa; or (ii) by changing a double u(1 − 1)v to a
double u(0 − 0)v, which has the same imbalance sequence or vice versa.

The above observations lead to the following result.

Theorem 2 Among all r-graphs with given imbalance sequence, those with
the fewest arcs are transitive.

Proof. Let B be an imbalance sequence and let D be a realization of B that
is not transitive. Then D contains an intransitive oriented triple. If it is of
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the form u(1−0)v(1−0)w(1−0)u, it can be transformed by operation i(a) of
Lemma 3 to a transitive oriented triple u(0−0)v(0−0)w(0−0)u with the same
imbalance sequence and three arcs fewer. If D contains an intransitive oriented
triple of the form u(1−0)v(1−0)w(0−0)u, it can be transformed by operation
i(b) of Lemma 3 to a transitive oriented triple u(0 − 0)v(0 − 0)w(0 − 1)u

same imbalance sequence but one arc fewer. In case D contains both types of
intransitive oriented triples, they can be transformed to transitive ones with
certainly lesser arcs. If in D there is a double u(1 − 1)v, by operation (ii) of
Lemme 4, it can be transformed to u(0 − 0)v, with same imbalance sequence
but two arcs fewer. �

The next result gives necessary and sufficient conditions for a sequence of
integers to be the imbalance sequence of some r-graph.

Theorem 3 A sequence B = [b1, b2, . . . , bn] of integers in non-decreasing
order is an imbalance sequence of an r-graph if and only if

k∑

i=1

bi ≥ rk(k − n), (1)

with equality when k = n.

Proof. Necessity. A multi subdigraph induced by k vertices has a sum of
imbalances rk(k − n).

Sufficiency. Assume that B = [b1, b2, . . . , bn] be the sequence of integers
in non-decreasing order satisfying conditions (1) but is not the imbalance
sequence of any r-graph. Let this sequence be chosen in such a way that n is
the smallest possible and b1 is the least with that choice of n. We consider
the following two cases.

Case (i). Suppose equality in (1) holds for some k ≤ n, so that

k∑

i=1

bi = rk(k − n),

for 1 ≤ k < n.
By minimality of n, B1 = [b1, b2, . . . , bk] is the imbalance sequence of some

r-graph D1 with vertex set, say V1. Let B2 = [bk+1, bk+2, . . . , bn].
Consider,
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f∑

i=1

bk+i =

k+f∑

i=1

bi −

k∑

i=1

bi

≥ r(k + f)[(k + f) − n] − rk(k − n)

= r(k2 + kf − kn + fk + f2 − fn − k2 + kn)

≥ r(f2 − fn)

= rf(f − n),

for 1 ≤ f ≤ n−k, with equality when f = n−k. Therefore, by the minimality
for n, the sequence B2 forms the imbalance sequence of some r-graph D2 with
vertex set, say V2. Construct a new r-graph D with vertex set as follows.

Let V = V1 ∪ V2 with, V1 ∩ V2 = φ and the arc set containing those arcs
which are in D1 and D2. Then we obtain the r-graph D with the imbalance
sequence B, which is a contradiction.
Case (ii). Suppose that the strict inequality holds in (1) for some k < n, so
that

k∑

i=1

bi > rk(k − n),

for 1 ≤ k < n. Let B1 = [b1 − 1, b2, . . . , bn−1, bn + 1], so that B1 satisfy
the conditions (1). Thus by the minimality of b1, the sequences B1 is the
imbalances sequence of some r-graph D1 with vertex set, say V1). Let bv1

=

b1 − 1 and bvn = an + 1. Since bvn > bv1
+ 1, there exists a vertex vp ∈ V1

such that vn(0−0)vp(1−0)v1, or vn(1−0)vp(0−0)v1, or vn(1−0)vp(1−0)v1,
or vn(0 − 0)vp(0 − 0)v1, and if these are changed to vn(0 − 1)vp(0 − 0)v1,
or vn(0 − 0)vp(0 − 1)v1, or vn(0 − 0)vp(0 − 0)v1, or vn(0 − 1)vp(0 − 1)v1

respectively, the result is an r-graph with imbalances sequence B, which is
again a contradiction. This proves the result. �

Arranging the imbalance sequence in non-increasing order, we have the fol-
lowing observation.

Corollary 2 A sequence B = [b1, b2, . . . , bn] of integers with b1 ≥ b2 ≥ . . . ≥

bn is an imbalance sequence of an r-graph if and only if

k∑

i=1

bi ≤ rk(n − k),

for 1 ≤ k ≤ n, with equality when k = n.
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The converse of an r-graph D is an r-graph D′, obtained by reversing ori-
entations of all arcs of D. If B = [b1, b2, . . . , bn] with b1 ≤ b2 ≤ . . . ≤ bn is
the imbalance sequence of an r-graph D, then B′ = [−bn, −bn−1, . . . ,−b1] is
the imbalance sequence of D.

The next result gives lower and upper bounds for the imbalance bi of a
vertex vi in an r-graph D.

Theorem 4 If B = [b1, b2, . . . , bn] is an imbalance sequence of an r-graph D,
then for each i

r(i − n) ≤ bi ≤ r(i − 1).

Proof. Assume to the contrary that bi < r(i − n), so that for k < i,

bk ≤ bi < r(i − n).

That is,
b1 < r(i − n), b2 < r(i − n), . . . , bi < r(i − n).

Adding these inequalities, we get

i∑

k=1

bk < ri(i − n),

which contradicts Theorem 3.
Therefore, r(i − n) ≤ bi.
The second inequality is dual to the first. In the converse r-graph with

imbalance sequence B = [b′

1, b
′

2, . . . , b
′

n] we have, by the first inequality

b′

n−i+1 ≥ r[(n − i + 1) − n]

= r(−i + 1).

Since bi = −b′

n−i+1, therefore

bi ≤ −r(−i + 1) = r(i − 1).

Hence, bi ≤ r(i − 1). �

Now we obtain the following inequalities for imbalances in r-graphs.

Theorem 5 If B = [b1, b2, . . . , bn] is an imbalance sequence of an r-graph
with b1 ≥ b2 ≥ . . . ≥ bn, then

k∑

i=1

b2
i ≤

k∑

i=1

(2rn − 2rk − bi)
2,

for 1 ≤ k ≤ n with equality when k = n.
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Proof. By Theorem 3, we have for 1 ≤ k ≤ n with equality when k = n

rk(n − k) ≥

k∑

i=1

bi,

implying

k∑

i=1

b2
i + 2(2rn − 2rk)rk(n − k) ≥

k∑

i=1

b2
i + 2(2rn − 2rk)

k∑

i=1

bi,

from where

k∑

i=1

b2
i + k(2rn − 2rk)2 − 2(2rn − 2rk)

k∑

i=1

bi ≥

k∑

i=1

b2
i ,

and so we get the required

b2
1 + b2

2 + . . . + b2
k + (2rn − 2rk)2 + (2rn − 2rk)2 + . . . + (2rn − 2rk)2

− 2(2rn − 2rk)b1 − 2(2rn − 2rk)b2 − . . . − 2(2rn − 2rk)bk

≥

k∑

i=1

b2
i ,

or
k∑

i=1

(2rn − 2rk − bi)
2
≥

k∑

i=1

b2
i .

�

The set of distinct imbalances of vertices in an r-graph is called its imbalance
set. The following result gives the existence of an r-graph with a given im-
balance set. Let (p1, p2, . . . , pm, q1, q2, . . . , qn) denote the greatest common
divisor of p1, p2, . . . , pn, q1, q2, . . . , qn.

Theorem 6 If P = {p1, p2, . . . , pm} and Q = {−q1, −q2, . . . ,−qn} where
p1, p2, . . . , pm, q1, q2, . . . , qn are positive integers such that p1 < p2 < . . . <

pm and q1 < q2 < . . . < qn and (p1, p2, . . . , pm, q1, q2, . . . , qn) = t, 1 ≤ t ≤

r, then there exists an r-graph with imbalance set P ∪ Q.

Proof. Since (p1, p2, . . . , pm, q1, q2, . . . , qn) = t, 1 ≤ t ≤ r, there exist
positive integers f1, f2, . . . , fm and g1, g2, . . . , gn with f1 < f2 < . . . < fm and
g1 < g2 < . . . < gn such that

pi = tfi
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for 1 ≤ i ≤ m and
qi = tgi

for 1 ≤ j ≤ n.
We construct an r-graph D with vertex set V as follows.
Let

V = X1
1∪X1

2∪ . . .∪X1
m∪X2

1∪X3
1∪ . . .∪Xn

1 ∪Y1
1∪Y1

2∪ . . .∪Y1
m∪Y2

1∪Y3
1∪ . . .∪Yn

1 ,

with X
j
i ∩ Xl

k = φ, Y
j
i ∩ Yl

k = φ, X
j
i ∩ Yl

k = φ and
|X1

i | = g1, for all 1 ≤ i ≤ m,
|Xi

1| = gi, for all 2 ≤ i ≤ n,
|Y1

i | = fi, for all 1 ≤ i ≤ m,
|Yi

1| = f1, for all 2 ≤ i ≤ n.
Let there be t arcs directed from every vertex of X1

i to each vertex of Y1
i ,

for all 1 ≤ i ≤ m and let there be t arcs directed from every vertex of Xi
1

to each vertex of Yi
1, for all 2 ≤ i ≤ n so that we obtain the r-graph D with

imbalances of vertices as under.
For 1 ≤ i ≤ m, for all x1

i ∈ X1
i

bx1
i

= t|Y1
i | − 0 = tfi = pi,

for 2 ≤ i ≤ n, for all xi
1 ∈ Xi

1

bxi
1

= t|Yi
1| − 0 = tf1 = p1,

for 1 ≤ i ≤ m, for all y1
i ∈ Y1

i

by1
i

= 0 − t|X1
i | = −tgi = −qi,

and for 2 ≤ i ≤ n, for all yi
1 ∈ Yi

1

byi
1

= 0 − t|Xi
1| = −tgi = −qi.

Therefore imbalance set of D is P ∪ Q. �

Acknowledgement

The research of the fourth author was supported by the project TÁMOP-
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Abstract. For a connected graph G of order p ≥ 2 and a vertex x of G,

a set S ⊆ V(G) is an x-detour set of G if each vertex v ∈ V(G) lies on an
x − y detour for some element y in S. The minimum cardinality of an x-
detour set of G is defined as the x-detour number of G, denoted by dx(G).

An x-detour set of cardinality dx(G) is called a dx-set of G. A connected
x-detour set of G is an x-detour set S such that the subgraph G[S] induced
by S is connected. The minimum cardinality of a connected x-detour set
of G is defined as the connected x-detour number of G and is denoted by
cdx(G). A connected x-detour set of cardinality cdx(G) is called a cdx-
set of G. We determine bounds for the connected x-detour number and
find the same for some special classes of graphs. If a, b and c are positive
integers such that 3 ≤ a ≤ b+1 < c, then there exists a connected graph
G with detour number dn(G) = a, dx(G) = b and cdx(G) = c for some
vertex x in G. For positive integers R,D and n ≥ 3 with R < D ≤ 2R,

there exists a connected graph G with radDG = R, diamDG = D and
cdx(G) = n for some vertex x in G. Also, for each triple D,n and p of
integers with 4 ≤ D ≤ p − 1 and 3 ≤ n ≤ p, there is a connected graph
G of order p, detour diameter D and cdx(G) = n for some vertex x of G.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q

2010 Mathematics Subject Classification: 05C12

Key words and phrases: detour, vertex detour number, connected vertex detour number
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respectively. For basic graph theoretic terminology we refer to Harary [6]. For
vertices x and y in a connected graph G, the distance d(x, y) is the length of
a shortest x − y path in G. An x − y path of length d(x, y) is called an x − y

geodesic. For a cut-vertex v in a connected graph G and a component H of
G − v, the subgraph H and the vertex v together with all edges joining v and
V(H) is called a branch of G at v. The closed interval I[x, y] consists of all
vertices lying on some x − y geodesic of G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y].

A set S of vertices is a geodetic set if I[S] = V, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
g(G) is called a g-set. The geodetic number of a graph was introduced in [1,
7] and further studied in [3].

The concept of vertex geodomination number was introduced by Santhaku-
maran and Titus in [8] and further studied in [9]. Let x be a vertex of a
connected graph G. A set S of vertices of G is an x-geodominating set of G

if each vertex v of G lies on an x − y geodesic in G for some element y in S.

The minimum cardinality of an x-geodominating set of G is defined as the
x-geodomination number of G and is denoted by gx(G). An x-geodominating
set of cardinality gx(G) is called a gx-set. The connected vertex geodomina-
tion number was introduced and studied by Santhakumaran and Titus in [11].
A connected x-geodominating set of G is an x-geodominating set S such that
the subgraph G[S] induced by S is connected. The minimum cardinality of a
connected x-geodominating set of G is the connected x-geodomination number
of G and is denoted by cgx(G). A connected x-geodominating set of cardinality
cgx(G) is called a cgx-set of G.

For vertices x and y in a connected graph G, the detour distance D(x, y)

is the length of a longest x − y path in G. For any vertex u of G, the detour
eccentricity of u is eD(u) = max {D(u, v) : v ∈ V}. A vertex v of G such that
D(u, v) = eD(u) is called a detour eccentric vertex of u. The detour radius R

and detour diameter D of G are defined by R = radDG = min {eD(v) : v ∈ V}

and D = diamDG = max {eD(v) : v ∈ V} respectively. An x−y path of length
D(x, y) is called an x − y detour. The closed interval ID[x, y] consists of all
vertices lying on some x − y detour of G, while for ID[S] =

⋃

x,y∈S

ID[x, y]. A

set S of vertices is a detour set if ID[S] = V, and the minimum cardinality of a
detour set is the detour number dn(G). A detour set of cardinality dn(G) is
called a minimum detour set. The detour number of a graph was introduced
in [4] and further studied in [5].

The concept of vertex detour number was introduced by Santhakumaran
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and Titus in [10]. Let x be a vertex of a connected graph G. A set S of
vertices of G is an x-detour set if each vertex v of G lies on an x − y detour in
G for some element y in S. The minimum cardinality of an x-detour set of G

is defined as the x-detour number of G and is denoted by dx(G). An x-detour
set of cardinality dx(G) is called a dx-set of G.

Figure 1

For the graph G given in Figure 1, {a, y} and {a, z} are the minimum x-
detour sets of G and so dx(G) = 2. It was proved in [10] that for any vertex
x in G, 1 ≤ dx(G) ≤ p − 1. An elaborate study of results in vertex detour
number with several interesting applications is given in [10].

The following theorems will be used in the sequel.

Theorem 1 [6] Let v be a vertex of a connected graph G. The following state-
ments are equivalent:

(i) v is a cut vertex of G.

(ii) There exist vertices u and w distinct from v such that v is on every
u − w path.

(iii) There exists a partition of the set of vertices V − {v} into subsets U and
W such that for any vertices u ∈ U and w ∈ W, the vertex v is on every u−w

path.

Theorem 2 [4] Every end-vertex of a nontrivial connected graph G belongs
to every detour set of G.

Theorem 3 [4] If T is a tree with k end-vertices, then dn(T) = k.

Theorem 4 [10] Let x be any vertex of a connected graph G. Then every end-
vertex of G other than the vertex x (whether x is end-vertex or not) belongs to
every dx-set.
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Theorem 5 [10] Let T be a tree with k end-vertices. Then dx(T) = k − 1 or
dx(T) = k according as x is an end-vertex or not.

Theorem 6 [10] For any vertex x in G, dn(G) ≤ dx(G) + 1.

Theorem 7 [10] If G is the complete graph Kp (p ≥ 2), the cycle Cp (p ≥ 3),

the complete bipartite graph Km,n (m, n ≥ 2), the n-cube Qn (n ≥ 2) or the
wheel Wn = K1 + Cn−1 (n ≥ 4), then dx(G) = 1 for every vertex x in G.

Throughout this paper G denotes a connected graph with at least two ver-
tices.

2 Connected vertex detour number

Definition 1 Let x be any vertex of a connected graph G. A connected x-
detour set of G is an x-detour set S such that the subgraph G[S] induced by S

is connected. The minimum cardinality of a connected x-detour set of G is the
connected x-detour number of G and is denoted by cdx(G). A connected
x-detour set of cardinality cdx(G) is called a cdx-set of G.

Example 1 For the graph G given in Figure 2, the minimum vertex detour
sets, the vertex detour numbers, the minimum connected vertex detour sets
and the connected vertex detour numbers are given in Table 1.

It is observed in [10] that x is not an element of any dx-set of G. However,
x may belong to a cdx-set of G. For the graph G given in Figure 2, the vertex
v is an element of a cdv-set and the vertex t is not an element of any cdt-set.

Figure 2
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Table 1

Vertex x dx-sets dx(G) cdx-sets cdx(G)

t {y, w}, {z, w}, {u, w} 2 {y, v, w}, {u, v, w} 3
y {w} 1 {w} 1
z {w} 1 {w} 1
u {w} 1 {w} 1
v {y, w}, {z, w}, {u, w} 2 {y, v, w}, {u, v, w} 3
w {y}, {z}, {u} 1 {y}, {z}, {u} 1

Theorem 8 Let x be any vertex of a connected graph G. If y 6= x is an end
vertex of G, then y belongs to every x-detour set of G.

Proof. Let x be any vertex of G and let y 6= x be an end-vertex of G. Then
y is the terminal vertex of an x − y detour and y is not an internal vertex of
any detour so that y belongs to every x-detour set of G. �

Theorem 9 Let G be a connected graph with cut vertices and let Sx be a
connected x-detour set of G. If v is a cut vertex of G, then every component
of G − {v} contains an element of Sx

⋃
{x}.

Proof. Suppose that there is a component B of G − {v} such that B contains
no vertex of Sx

⋃
{x}. Then clearly, x ∈ V − V(B). Let u ∈ V(B). Since Sx is

a connected x-detour set, there exists an element y ∈ Sx such that u lies in
some x − y detour P : x = u0, u1, . . . , u, . . . , un = y in G. By Theorem 1, the
x − u subpath of P and the u − y subpath of P both contain v, it follows that
P is not a path, contrary to assumption. �

Corollary 1 Let G be a connected graph with cut vertices and let Sx be a
connected x-detour set of G. Then every branch of G contains an element of
Sx

⋃
{x}.

Theorem 10 (i) If T is any tree, then cdx(T) = p for any cut vertex x of T.

(ii) If T is any tree which is not a path, then for an end vertex x, cdx(T) =

p − D(x, y), where y is the vertex of T with deg y ≥ 3 such that D(x, y) is
minimum.

(iii) If T is a path, then cdx(T) = 1 for any end vertex x of T.
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Proof. (i) Let x be a cut vertex of T and let S be any connected x-detour
set of T. By Theorem 8, every connected x-detour set of T contains all end
vertices. If S 6= V(T), there exists a cut vertex v of T such that v /∈ S. Let u

and w be two end vertices belonging to different components of T − {v}. Since
v lies on the unique path joining u and w, it follows that the subgraph G[S]

induced by S is disconnected, which is a contradiction. Hence cdx(T) = p.

(ii) Let T be a tree which is not a path and x an end vertex of T. Let
S = (V(T) − ID[x, y])

⋃
{y}. Clearly S is a connected x-detour set of T and so

cdx(T) ≤| S |= p − D(x, y). We claim that cdx(T) = p − D(x, y). Otherwise,
there is a connected x-detour set M of T with | M |< p−D(x, y). By Theorem
8, every connected x-detour set of T contains all end vertices except possibly
x and hence there exists a cut vertex v of T such that v ∈ S and v /∈ M. Let
B1, B2, . . . , Bm(m ≥ 3) be the components of T − {y}. Assume that x belongs
to B1.

Case 1. Suppose v = y. Let z ∈ B2 and w ∈ B3 be two end vertices of T.

By Theorem 1, v lies on the unique z − w detour. Since z and w belong to M

and v /∈ M, G[M] is not connected, which is a contradiction.
Case 2. Suppose v 6= y. Let v ∈ Bi(i 6= 1). Now, choose an end vertex u ∈ Bi

such that v lies on the y−u detour. Let a ∈ Bj(j 6= i, 1) be an end vertex of T.

By Theorem 1, y lies on the u − a detour. Hence it follows that v lies on the
u − a detour. Since u and a belong to M and v /∈ M, G[M] is not connected,
which is a contradiction.

(iii) Let T be a path. For an end vertex x in T, let y be the eccentric vertex
of x. Clearly every vertex of T lies on the x−y detour and so {y} is a connected
x-detour set of T so that cdx(T) = 1. �

Corollary 2 For any tree T, cdx(T) = p if and only if x is a cut vertex of T.

Proof. This follows from Theorem 10. �

Theorem 11 For any vertex x in a connected graph G,

1 ≤ dx(G) ≤ cdx(G) ≤ p.

Proof. It is clear from the definition of x-detour number that dx(G) ≥ 1.

Since every connected x-detour set is also an x-detour set, it follows that
dx(G) ≤ cdx(G). Also, since V(G) induces a connected x-detour set of G, it is
clear that cdx(G) ≤ p. �
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Remark 1 The bounds in Theorem 11 are sharp. For the cycle Cn, dx(Cn) =

1 for every vertex x in Cn. For any non-trivial tree T with p ≥ 3, cdx(T) = p

for any cut vertex x in T. For the graph G given in Figure 3, dx(G) = cdx(G) =

2 for the vertex x. Also, all the inequalities in the theorem are strict. For an
end vertex x in the star G = K1,n(n ≥ 3), dx(G) = n − 1, cdx(G) = n and
p = n + 1 so that 1 < dx(G) < cdx(G) < p.

Figure 3

Figure 4

The following theorem gives a characterization for cdx(G) = 1. For this,
we introduce the following definition. Let x be any vertex in G. A vertex
y in G is said to be an x-detour superior vertex if for any vertex z with
D(x, y) < D(x, z), z lies on an x − y detour. For the graph G given in Figure
4, x9 and x10 are the only x1-detour superior vertices.

Theorem 12 Let x be any vertex of a connected graph G. Then the following
are equivalent:
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(i) cdx(G) = 1

(ii) dx(G) = 1

(iii) There exists an x-detour superior vertex y in G such that every vertex
of G is on an x − y detour.

Proof.

(i) ⇒ (ii) Let cdx(G) = 1. Then it follows from Theorem 11 that dx(G) = 1.

(ii) ⇒ (iii) Let dx(G) = 1 and Sx = {y} be a dx-set of G. If y is not an
x-detour superior vertex, then there is a vertex z in G with D(x, y) < D(x, z)

and z does not lie on any x − y detour. Thus Sx is not a dx-set of G, which is
a contradiction.

(iii) ⇒ (i) Let y be an x-detour superior vertex of G such that every vertex
of G is on an x − y detour. Then {y} is a connected x-detour set of G so that
cdx(G) = 1. �

Corollary 3 (i) For the complete graph Kp, cdx(Kp) = 1 for any vertex x in
Kp.

(ii) For any cycle Cp, cdx(Cp) = 1 for any vertex x in Cp.

(iii) For the wheel Wp = K1 + Cp−1(p ≥ 5), cdx(Wp) = 1 for any vertex x

in Wp.

(iv) For any cube Qn, cdx(Qn) = 1 for any vertex x in Qn.

(v) For the complete bipartite graph Km,n(m, n ≥ 2), cdx(Km,n) = 1 for any
vertex x in Km,n.

Proof. This follows from Theorems 7 and 12. �

Theorem 13 For any vertex x in a connected graph G, dn(G) ≤ dx(G)+1 ≤

cdx(G) + 1.

Proof. This follows from Theorem 6 and Theorem 11. �

The following theorem gives a realization for the detour number, the vertex
detour number and the connected vertex detour number when

3 ≤ a ≤ b + 1 < c.

Theorem 14 For any three integers a, b and c with 3 ≤ a ≤ b + 1 < c, there
exists a connected graph G with dn(G) = a, dx(G) = b and cdx(G) = c for
some vertex x in G.
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Proof. We prove this theorem by considering two cases.
Case 1. 3 ≤ a = b + 1 < c. Let k > c be any integer and let Pk−a+2 :

u1, u2, . . . , uk−a+2 be a path of order k − a + 2. Add a − 2 new vertices
v1, v2, . . . , va−2 to Pk−a+2 and join these to uk−c+1, thereby producing the
graph G of Figure 5. Then G is a tree of order k with a end vertices. By
Theorem 3, dn(G) = a and it follows from Theorem 5 and Theorem 10 (ii)
that dx(G) = b and cdx(G) = c respectively, for the vertex x = u1.

Figure 5

Case 2. 3 ≤ a < b + 1 < c. Let F = (K3

⋃
P2

⋃
(b − a + 1)K1) + K2, where

U = V(K3) = {u1, u2, u3}, W = V(P2) = {w1, w2}, X = V((b − a + 1)K1) =

{x1, x2, . . . , xb−a+1} and V(K2) = {x, y}. Let Pc−b−1 : v1, v2, . . . , vc−b−1 be the
path of order c − b − 1. Let H be the graph obtained from Pc−b−1 by adding
a − 1 new vertices z1, z2, . . . , za−1 and joining each zi(1 ≤ i ≤ a − 1) to v1.

Now, let G be the graph obtained from F and H by identifying u1 in F and
vc−b−1 in H. The graph G is shown in Figure 6. Let Z = {z1, z2, . . . , za−1} be
the set of all end vertices of G.

First, we show that dn(G) = a. By Theorem 2, every detour set of G con-
tains Z. Since ID[Z] = Z

⋃
{v1} 6= V(G), it follows that Z is not a detour set of G

and so dn(G) >| Z |= a−1. On the other hand, let S = Z
⋃

{w1}. Then, for each
i with 1 ≤ i ≤ b − a + 1, the path P : z1, v1, v2, . . . , vc−b−2, u1, u2, u3, y, xi, x,

w2, w1 is a z1 − w1 detour in G of length c − b + 6. Hence S is a detour set of
G and so dn(G) ≤| S |= a. Therefore, dn(G) = a.

Next, we show that dx(G) = b for the vertex x. Let Sx be any x-detour set of
G. By Theorem 8, Z ⊆ Sx. It is clear that D(x, zi) = c−b+5 for 1 ≤ i ≤ a−1

and no xj(1 ≤ j ≤ b − a + 1) lies on an x − zi detour for any zi ∈ Z. Thus Z is
not an x-detour set of G. Now we claim that X ⊆ Sx. Assume, to the contrary,
X ⊃ Sx. Then there exists an xi ∈ X such that xi /∈ Sx(1 ≤ i ≤ b − a + 1).

Now, it is clear that this xi does not lie on any x − v detour for any v ∈ Sx,

which is a contradiction to Sx is an x-detour set. Hence X ⊆ Sx. Thus we see
that every x-detour set Sx contains X

⋃
Z. Now, since X

⋃
Z is an x-detour set
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Figure 6

of G, it follows that X
⋃

Z is the unique minimum x-detour set of G so that
dx(G) =| X

⋃
Z |= b.

Now, we show that cdx(G) = c. Let Tx be any connected x-detour set of
G. Since any connected x-detour set of G is also an x-detour set of G, it
follows that Tx contains X

⋃
Z as in the above paragraph. Now, since the

induced subgraph G[Tx] is connected, M = {v1, v2, . . . , vc−b−1} ⊆ Tx. Thus
M

⋃
X

⋃
Z ⊆ Tx. It is clear that M

⋃
X

⋃
Z is an x-detour set of G and the

induced subgraph G[M
⋃

X
⋃

Z] is not connected. Let T = M
⋃

X
⋃

Z
⋃

{x}. It
is clear that T is a minimum connected x-detour set of G and so cdx(G) = c.

�

For every connected graph G, radDG ≤ diamDG ≤ 2radDG. Chartrand,
Escuadro and Zhang [2] showed that every two positive integers a and b with
a ≤ b ≤ 2a are realizable as the detour radius and detour diameter, respec-
tively, of some connected graph. This theorem can also be extended so that
the connected vertex detour number can be prescribed when a < b ≤ 2a.

Theorem 15 For positive integers R, D and n ≥ 3 with R < D ≤ 2R, there
exists a connected graph G with radDG = R, diamDG = D and cdx(G) = n

for some vertex x in G.

Proof. If R = 1, then D = 2. Let G = K1,n. Then by Theorem 10 (ii),
cdx(G) = n for an end vertex x in G. Now, let R ≥ 2. We construct a graph
G with the desired properties as follows:

Let CR+1 : v1, v2, . . . , vR+1, v1 be a cycle of order R + 1 and let PD−R+1 :

u0, u1, . . . , uD−R be a path of order D − R + 1. Let H be the graph obtained
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from CR+1 and PD−R+1 by identifying v1 in CR+1 and u0 in PD−R+1. Now, add
n−2 new vertices w1, w2, . . . , wn−2 to H and join each vertex wi(1 ≤ i ≤ n−2)

to the vertex uD−R−1 to obtain the graph G of Figure 7.

Figure 7

Now radDG = R, diamDG = D and G has n − 1 end vertices. Let S =

{w1, w2, . . . , wn−2, uD−R} be the set of all end vertices of G. Then by Theorem
8, every connected x-detour set of G contains S for the vertex x = v2. It is clear
that S is an x-detour set of G and the induced subgraph G[S] is not connected
so that cdx(G) > n−1. Let S ′ = S

⋃
{uD−R−1}. Then S ′ is a connected x-detour

set of G and so cdx(G) = n. �

The graph G of Figure 7 is the smallest graph with the properties described
in Theorem 15. We leave the following problem as an open question.

Problem 1 For positive integers R and n ≥ 3, does there exist a connected
graph G with radDG = diamDG = R and cdx(G) = n for some vertex x of
G?

In the following, we construct a graph of prescribed order, detour diameter
and vertex detour number under suitable conditions.

Theorem 16 For each triple D, n and p of integers with 4 ≤ D ≤ p − 1 and
3 ≤ n ≤ p, there is a connected graph G of order p, detour diameter D and
cdx(G) = n for some vertex x of G.

Proof. We prove this theorem by considering three cases.
Case 1. Suppose 3 ≤ n ≤ p − D + 2. Let G be a graph obtained from

the cycle CD : u1, u2, . . . , uD, u1 of order D by (i) adding n − 2 new vertices
v1, v2, . . . , vn−2 and joining each vertex vi(1 ≤ i ≤ n−2) to u1 and (ii) adding
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p − D − n + 2 new vertices w1, w2, . . . , wp−D−n+2 and joining each vertex
wi(1 ≤ i ≤ p − D − n + 2) to both u1 and u3. The graph G has order p and
detour diameter D and is shown in Figure 8. Let S = {v1, v2, . . . , vn−2} be the
set of all end vertices of G. Then by Theorem 8, every connected x-detour set
of G contains S for the vertex x = u1. It is clear that S is not an x-detour
set of G. Also any connected x-detour set of G must contain S

⋃
{u1}. Since

S
⋃

{u1} is not an x-detour set of G, cdx(G) > n − 1. Let S ′ = S
⋃

{u1, uD}.

Then S ′ is a connected x-detour set of G and so cdx(G) = n.

Figure 8

Case 2. Suppose p − D + 3 ≤ n ≤ p − 1. Let PD+1 : u0, u1, u2, . . . , uD be
a path of length D. Add p − D − 1 new vertices v1, v2, . . . , vp−D−1 to PD+1

and join each vi(1 ≤ i ≤ p − D − 1) to up−n, so by producing the graph G of
Figure 9. The graph G has order p and detour diameter D. Then by Theorem
10 (ii), cdx(G) = p − (p − n) = n for the vertex x = u0.

Figure 9

Case 3. Suppose n = p. Let G be any tree of order p and detour diameter



158 A. P. Santhakumaran, P. Titus

D. Then by Theorem 10 (i), cdx(G) = p for any cut vertex x in G. �

Theorem 17 For any two integers n and p with 3 ≤ n ≤ p, there exists a
connected graph G with order p and cdx(G) = n for some vertex x of G.

Proof. We prove this theorem by considering two cases.
Case 1. Let 3 ≤ n ≤ p − 2. Then p − n + 1 ≥ 3. Let G be the graph

obtained from the cycle Cp−n+1 : u1, u2, . . . , up−n+1, u1 by adding the n − 1

new vertices v1, v2, . . . , vn−1 and joining these to u1. The graph G has order
p and is shown in Figure 10. Let S = {v1, v2, . . . , vn−1} be the set of all end
vertices of G. Then by Theorem 8, every connected x-detour set of G contains S

for the vertex x = u2. It is clear that S is an x-detour set of G and the induced
subgraph G[S] is not connected so that cdx(G) > n − 1. Let S ′ = S

⋃
{u1}. It

is clear that S ′ is a connected x-detour set of G and so cdx(G) = n.

Case 2: Let n = p−1 or p. Let G = K1,p−1. Then by Theorem 10, cdx(G) =

p − 1 or p according as x is an end vertex or the cut vertex. �

Figure 10
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Abstract. Let f be an arithmetical function. The matrix [f(i, j)]n×n

given by the value of f in greatest common divisor of (i, j), f
(

(i, j)
)

as
its i, j entry is called the greatest common divisor (GCD) matrix. We
consider the generalization of this matrix where the elements are in the
form f

(

i, (i, j)
)

.

1 Introduction

The classical Smith determinant was introduced in 1875 by H. J. S. Smith [14]
who also proved that

det[(i, j)]n×n =

∣

∣

∣

∣

∣

∣

∣

∣

(1, 1) (1, 2) · · · (1, n)

(2, 1) (2, 2) · · · (2, n)

· · · · · · · · · · · ·

(n, 1) (n, 2) · · · (n, n)

∣

∣

∣

∣

∣

∣

∣

∣

= ϕ(1)ϕ(2) · · ·ϕ(n), (1)

where (i, j) represents the greatest common divisor of i and j, and ϕ(n) denotes
the Euler’s totient function.
The GCD matrix with respect to f is

[f(i, j)]n×n =









f((1, 1)) f((1, 2)) · · · f((1, n))

f((2, 1)) f((2, 2)) · · · f((2, n))

· · · · · · · · · · · ·

f((n, 1)) f((n, 2)) · · · f((n, n))









.
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If we consider the GCD matrix [f(i, j)]n×n, where

f(n) =
∑

d|n

g(d),

H. J. Smith proved that

det[f(i, j)]n×n = g(1) · g(2) · · ·g(n).

For g = ϕ

f(i, j) =
∑

d|(i,j)

ϕ(d) = (i, j),

this formula reduces to (1). Many generalizations of Smith determinants have
been presented in literature, see [1, 5, 7, 10, 13].
If we consider the GCD matrix [f(i, j)]n×n where f(n) =

∑

d|n g(d) Pólya and
Szegő [12] proved that

[f(i, j)]n×n = G · CT, (2)

where G and C are lower triangular matrices given by

gij =

{

g(j), j | i

0, otherwise

and

cij =

{

1, j | i

0, otherwise
.

L. Carlitz [4] in 1960 gave a new form of (2)

[f(i, j)]n×n = Cn diag
(

g(1), g(2), . . . , g(n)
)

CT
n, (3)

where Cn = [cij]n×n,

cij =

{

1, j | i

0, j 6 | i
,

D = [dij]n×n diagonal matrix

dij =

{

g(i), i = j

0, i 6= j
.

From (3) it follows that the value of the determinant is

det[f(i, j)]n×n = g(1)g(2) · · ·g(n). (4)
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There are quite a few generalized forms of GCD matrices, which can be found
in several references [2, 3, 6, 8, 9, 11].
In this paper we study matrices which have as variables the gratest common
divisor and the indices:

[f(i, j)]n×n =









f(1, (1, 1)) f(1, (1, 2)) · · · f(1, (1, n))

f(2, (2, 1)) f(2(2, 2)) · · · f(2, (2, n))

· · · · · · · · · · · ·

f(n, (n, 1)) f(n, (n, 2)) · · · f(n, (n, n))









.

2 Generalized GCD matrices

Theorem 1 For a given arithmetical function g let

f(n, m) =
∑

d|n

g(d) −
∑

d|(n,m)

g(d).

Then

[f(i, j)]n×n = Cn diag[g(1), g(2), . . . , g(n)]DT
n,

where Cn = [cij]n×n,

cij =

{

1, j | i

0, j 6 | i
,

Dn = [dij]n×n,

dij =

{

1, j 6 | i

0, j | i
.

Proof. After multiplication, the general element of

A = [aij]n×n = C diag[g(1), g(2), . . . , g(n)]DT

is
aij =

∑

k | i

k 6 | j

g(k) =
∑

d|n

g(d) −
∑

d|(n,m)

g(d) = f(i, j).

�

Particular cases

1. If g(n) = ϕ(n) then

f(n, m) =
∑

d|n

ϕ(d) −
∑

d|(n,m)

ϕ(d) = n − (n, m).
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We have the following decomposition:

[i − (i, j)]n×n =









1 − (1, 1) 1 − (1, 2) · · · 1 − (1, n)

2 − (2, 1) 2 − (2, 2) · · · 2 − (2, n)

· · · · · · · · · · · ·

n − (n, 1) n − (n, 2) · · · n − (n, n)









.

2. If g(n) = 1 then
f(n, m) = τ(n) − τ(n, m)

and
[τ(i) − τ(i, j)]n×n = Cn diag

(

1, 1, . . . , 1
)

DT
n.

3. Let g(n) = µ(n). From

f(n, m) =
∑

d|n

µ(d) −
∑

d|(n,m)

µ(d) =







0, n = 1

0, n > 1, m > 1, (n, m) > 1

−1, othewise
.

we have
[f(i, j)]n×n = Cn diag

(

µ(1), µ(2), . . . , µ(n)
)

DT
n.

4. For g(n) = n, f(n, m) = σ(n) − σ((n, m)) and

[f(i, j)]n×n = Cn diag
(

1, 2, . . . , n
)

DT
n.

Remarks

1. Due to the fact that the first line of the matrix [f(i, j)]n×n contains only
0-s, the determinant of the matrix will always be 0.

2. We can determine the value of the matrix associated with f, if the function
f is of the form

f(n, m) = h(n) − h
(

(n, m)
)

.

By using the Möbius inversion formula, we get

g(n) =
∑

d|n

µ(d)h
(n

d

)

,

consequently by using Theorem 1, the matrix can be decomposed according
to the function h(n):

[f(i, j)]n×n = Cn diag[(µ ∗ h)(1), (µ ∗ h)(2), . . . , (µ ∗ h)(n)]DT
n.
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Theorem 2 For a given arithmetical function g let

f(i, j) =

n
∑

k=1

g(k) −
∑

d|i

g(d) −
∑

d|j

g(d) +
∑

d|(i,j)

g(d).

Then

[f(i, j)]n×n = Dn diag[g(1), g(2), . . . , g(n)]DT
n,

where Dn = [dij]n×n,

dij =

{

1, j 6 | i

0, j | i
.

Proof. After multiplication, the general element of the matrix

A = [aij]n×n = Dn diag[g(1), g(2), . . . , g(n)]DT
n

is

aij =
∑

k 6 | n

k 6 | m

g(k) =

n
∑

k=1

g(k) −
∑

k|n or k|m

g(k) =

=

n
∑

k=1

g(k) −
∑

k|n

g(k) −
∑

k|m

g(k) +
∑

k|(n,m)

g(k) = f(i, j).

�

Particular cases

1. If g(n) = ϕ(n) then

f(i, j) =

n
∑

k=1

ϕ(k) − i − j + (i, j),

[f(i, j)]n×n = Dn diag[ϕ(1), ϕ(2), . . . , ϕ(n)]DT
n.

2. If g(n) = 1 then

f(i, j) = n − τ(i) − τ(j) + τ(i, j)

and

[f(i, j)]n×n = Dn diag
(

1, 1, . . . , 1
)

DT
n.
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3. g(n) = n. Then

f(i, j) =
n(n + 1)

2
− σ(n) − σ(m) + σ((n, m))

and
[f(i, j)]n×n = Dn diag

(

1, 2, . . . , n
)

DT
n.

Another generalization is the following:

Theorem 3 For a given arithmetical function g let

f(i, j) =

n
∑

k=1

g(k) −
∑

d|i

g(d) −
∑

d|j

g(d) +
∑

d|(i,j)

g(d).

We define the following A = [aij]n×n matrix

aij =

{

f(i, j), i, j > 1

g(1) + f(i, j), i = 1 or j = 1
.

Then

A = D ′

n diag[g(1), g(2), . . . , g(n)]D ′T
n ,

where D ′

n = [d ′

ij]n×n,

d ′

ij =

{

1, i = j = 1

dij, ij 6= 1
.

Proof.

We calculate the general element of the matrix

B = [aij]n×n = D ′

n diag[g(1), g(2), . . . , g(n)]D ′T
n .

If i > 1 or j > 1 we have

bij =
∑

k 6 | n

k 6 | m

g(k) =

n
∑

k=1

g(k) −
∑

k|n or k|m

g(k) =

=

n
∑

k=1

g(k) −
∑

k|n

g(k) −
∑

k|m

g(k) +
∑

k|(n,m)

g(k) = aij.

If i = j = 1

b11 = g(1) = a11.
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�

Particular cases

1. If g(n) = ϕ(n) then

aij =























n
∑

k=1

ϕ(k) − i − j + (i, j), i, j > 1

n
∑

k=1

ϕ(k) − i − j + (i, j) + 1, i = 1 or j = 1

.

2. If g(n) = 1 then

aij =

{

n − τ(i) − τ(j) + τ(i, j), i, j > 1

n − τ(i) − τ(j) + τ(i, j) + 1, i = 1 or j = 1
.

The following problems remain open:

Problem 1 Let F(n, m) be an arithmetical function with two vriables. Deter-

mine the structure and the determinant of modified GCD matrices

A = [a(i, j)]n×n, where

aij = F(i, (i, j)).

Problem 2 Determine the structure and the determinant of modified GCD

matrices A = [a(i, j)]n×n, where

aij = F(n, i, j, (i, j)).
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[5] B. Gyires, Über eine Verallgemeinerung des Smith’schen Determinanten-
satzes, Publ. Math. Debrecen, 5 (1957), 162–171.

[6] P. Haukkanen, Higher-dimensional GCD matrices, Linear Algebra Appl.,
170 (1992), 53–63.

[7] P. Haukkanen, J. Wang and J. Sillanpää, On Smiths determinant, Linear
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Abstract. Making use of a convolution structure, we introduce a
new class of complex valued harmonic functions which are orientation
preserving and univalent in the open unit disc. The results presented
in this paper include the coefficient bounds, distortion inequality and
covering property, extreme points and certain inclusion results for this
generalized class of functions

1 Introduction and preliminaries

A continuous function f = u + iv is a complex-valued harmonic function in a
complex domain G if both u and v are real and harmonic in G. In any simply-
connected domain D ⊂ G, we can write f = h + g, where h and g are analytic
in D. We call h the analytic part and g the co-analytic part of f. A necessary
and sufficient condition for f to be locally univalent and orientation preserving
in D is that |h ′(z)| > |g ′(z)| in D (see [3]).

Denote by H the family of functions

f = h + g (1)

2010 Mathematics Subject Classification: 30C45, 30C50

Key words and phrases: harmonic univalent functions, distortion bounds, extreme points,

convolution, inclusion property.
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which are harmonic, univalent and orientation preserving in the open unit disc
U = {z : |z| < 1} so that f is normalized by f(0) = f′(0) − 1 = 0. Thus, for
f = h + g ∈ H, the functions h and g analytic U can be expressed in the
following forms:

h(z) = z +

∞∑

n=2

anz
n, g(z) =

∞∑

n=1

bnz
n (0 ≤ b1 < 1),

and f(z) is then given by

f(z) = z +

∞∑

n=2

anz
n+

∞∑

n=1

bnzn (0 ≤ b1 < 1). (2)

We note that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well-known class S of normalized univalent
functions if the co-analytic part of f is identically zero, i.e. g ≡ 0.

For functions f ∈ H given by (1) and F ∈ H given by

F(z) = H(z) + G(z) = z +

∞∑

n=2

Anz
n+

∞∑

n=1

Bnzn, (3)

we recall the Hadamard product (or convolution) of f and F by

(f ∗ F)(z) = z +

∞∑

n=2

anAnz
n+

∞∑

n=1

bnBnzn (z ∈ U). (4)

In terms of the Hadamard product (or convolution), we choose F as a fixed
function in H such that (f∗F)(z) exists for any f ∈ H, and for various choices
of F we get different linear operators which have been studied in recent past.
To illustrate some of these cases which arise from the convolution structure
(4), we consider the following examples.

(1) If

F(z) = z +

∞∑

n=2

σn(α1) zn+

∞∑

n=1

σn(α1) zn (5)

and σn(α1) is defined by

σn(α1) =
ΘΓ(α1+ A1(n − 1)) . . . Γ(αp+ Ap(n − 1))

(n − 1)!Γ(β1+ B1(n − 1)) . . . Γ(βq+ Bq(n − 1))
, (6)
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where Θ is given by

Θ =

(

p∏

m=0

Γ(αm)

)

−1( q∏

m=0

Γ(βm)

)

(7)

and then the convolution(4) gives the Wright’s generalized hypergeometric
function (see [17])

pΨq[(α1, A1), . . . ; (β1, B1), . . . ; z] =p Ψq[(αn, An)1,p(βn, Bn)1,q; z]

defined by

pΨq[(αn, An)1,p(βn, Bn)1,q; z] =

∞∑

n=0

{

p∏

m=1

Γ(αm+nAm}{

q∏

m=1

Γ(βm+nBm}−1
zm

n!

which was initially studied by Murugusundaramoorthy and Vijaya (see [10]).
(2) If Am = 1 (m = 1, . . . , p) and Bm = 1 (m = 1, . . . , q), then we have the

following relationship

F(z) = z +

∞∑

n=2

Γnz
n+

∞∑

n=1

Γnz
n, (8)

where

Γn =
(α1)n−1 . . . (αp)n−1

(β1)n−1 . . . (βq)n−1

1

(n − 1)!
,

and the convolution (4) gives the Dziok–Srivastava operator (see [5]):

Λ(α1, . . . , αp; β1, . . . , βq; z)f(z) ≡ Hpq(α1, β1)f(z),

where α1, . . . , αp; β1, . . . , βq are positive real numbers, p ≤ q+1; p, q ∈ N∪{0} ,

and (α)n denotes the familiar Pochhammer symbol (or shifted factorial).

Remark 1 When p = 1, q = 1; α1 = a, α2 = 1; β1 = c, then (8) corresponds
to the operator due to Carlson-Shaffer (see [2]) given by

L(a, c)f(z) := (f ∗ F)(z),

where

F(z) := z +

∞∑

n=2

(a)n−1

(c)n−1

zn+

∞∑

n=1

(a)n−1

(c)n−1

zn (c 6= 0,−1,−2, . . . ). (9)
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Remark 2 When p = 1, q = 0; α1 = k+1 (k > −1), α2 = 1; β1 = 1, then (8)
yields the Ruscheweyh derivative operator (see [8]) given by Dkf(z) := (f∗F)(z)

where

F(z) = z +

∞∑

n=2

(

k + n − 1

n − 1

)

zn+

∞∑

n=1

(

k + n − 1

n − 1

)

zn, (10)

which was initially studied by Jahangiri et al. (see [8]).

(3) If Dlf(z) = f ∗ F where

F(z) = z +

∞∑

n=2

nlzn+ (−1)l
∞∑

n=1

nlzn ( l ≥ 0) , (11)

was initially studied by Jahangiri et al. (see [9]).

(4) Lastly, if Sαf(z) = f ∗ F we have

F(z) = z +

∞∑

m=2

|Cn(α)|zn+

∞∑

n=1

|Cn(α)|zn, (12)

and

Cn(α) =

∏n
j=2(j − 2α)

(n − 1)!
(n ∈ N \ {1}, N := {1, 2, 3, . . . }) (13)

which is decreasing in α and satisfies

lim
n→∞

Cn(α) =






∞ if α < 1
2

1 if α = 1
2

0 if α > 1
2

. (14)

For the purpose of this paper, we introduce here a subclass of H denoted
by RH(F; λ, γ) which involves the convolution (3) and consist of all functions
of the form (1) satisfying the inequality:

Re

{

(1 + eiψ)
z(f(z) ∗ F(z)) ′

(1 − λ)z + λ(f(z) ∗ F(z))
− eiψ

}

≥ γ. (15)

Equivalently

Re

{

(1 + eiψ)
z(h(z) ∗ H(z)) ′ − z(g(z) ∗ G(z)) ′

(1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]
− eiψ

}

≥ γ (16)
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where z ∈ U , 0 ≤ λ ≤ 1.
Also denote TH(F; λ, γ) = RH(F; λ, γ)

⋂

TH where TH is the subfamily of H
consisting of harmonic functions f = h + g of the form

f(z) = z −

∞∑

n=2

anz
n+

∞∑

n=1

bnzn (0 ≤ b1 < 1). (17)

called the class of harmonic functions with negative coefficients (see [14]).
It is of special interest to note that for suitable choices of λ = 0 and λ = 1

the classes USD [13] and Sp [11] to include the following harmonic functions

Re
{

(1 + eiψ)(f(z) ∗ F(z)) ′ − eiψ
}
≥ γ,

Re

{

(1 + eiψ)
z(f(z) ∗ F(z)) ′

(f(z) ∗ F(z))
− eiψ

}

≥ γ.

We mention below some of the function classes which emerge from the func-
tion class RH(F; λ, γ) defined above. Indeed, we observe that if we specialize
the function F by (5) to (11), and denote the corresponding reducible classes
of functions of RH(F; λ, γ), respectively, by W

p
q(λ, γ), G

p
q(λ, γ) Lac(λ, γ),

R(k, λ, γ), Ω(λ, γ) and S(l, λ, γ).

It is of special interest because for suitable choices of F from (15) we can
define the following subclasses:
(i) If F is given by (5) we have (f ∗ F)(z) = W

p
q[α1]f(z) hence we define a class

W
p
q(λ, γ) satisfying the criteria

Re

{

(1 + eiψ)
z(W

p
q[α1]f(z))

′

(1 − λ)z + λW
p
q[α1]f(z)

− eiψ
}

≥ γ

where W
p
q[α1] is the Wright’s generalized operator on harmonic functions (see

[10]) .
(ii) If F is given by (8) we have (f ∗ F)(z) = H

p
q[α1]f(z) hence we define a class

G
p
q(λ, γ) satisfying the criteria

Re

{

(1 + eiψ)
z(H

p
q[α1]f(z))

′

(1 − λ)z + λH
p
q[α1]f(z)

− eiψ
}

≥ γ

where H
p
q[α1] is the Dziok - Srivastava operator (see [5]).

(iii) H21([a, 1; c]) = L(a, c)f(z), hence we define a class Lac(λ, γ)satisfying the
criteria

Re

{

(1 + eiψ)
zL(a, c)f(z)) ′

(1 − λ)z + λL(a, c)f(z)
− eiψ

}

≥ γ
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where L(a, c) is the Carlson - Shaffer operator (see [2]).
(iv) H21([k + 1, 1; 1]) = Dkf(z), hence we define a class R(k, λ, γ) satisfying
the criteria

Re

{

(1 + eiψ)
z(Dkf(z)) ′

(1 − λ)z + λDkf(z)
− eiψ

}

≥ γ

where Dkf(z)(k > −1) is the Ruscheweyh derivative operator (see [12]) (also
see [8]).
(v) H21([2, 1; 2 − µ]) = Ω

µ
zf(z) we define another class Ω(λ, γ) satisfying the

condition

Re

{

(1 + eiψ)
z(Ω

µ
zf(z))

′

(1 − λ)z + λΩ
µ
zf(z)

− eiψ
}

≥ γ

given by

Ωµzf(z) = Γ(2 − µ)zµDµzf(z); (0 ≤ µ < 1) ,

where Ω
µ
z is the Srivastava-Owa fractional derivative operator (see [15]).

(vi) If F is given by (12), we have Sα(z) ∗ f(z) = (f ∗ F)(z), hence we define a
class PGH(α, γ) satisfying the criteria

Re

{

(1 + eiψ)
z(Sα(z) ∗ f(z)) ′

(1 − λ)z + λ(Sα(z) ∗ f(z))
− eiψ

}

≥ γ, (18)

this class was introduced and studied by Vijaya [16] for λ = 1.

(vii) If F is given by (11), we have Dlf(z) = (f ∗ F)(z), hence we define a class
S(l, λ, γ) satisfying the criteria

Re

{

(1 + eiψ)
z(Dlf(z)) ′

(1 − λ)z + λDlf(z)
− eiψ

}

≥ γ

where Dlf(z); (l ∈ N) is the Sălăgean derivative operator for harmonic func-
tions (see [9]) λ = 1.

Motivated by the earlier works of (see [6, 9, 17]) on the subject of harmonic
functions, in this paper we obtain a sufficient coefficient condition for functions
f given by (2) to be in the class SH(F; λ, γ). It is shown that this coefficient
condition is necessary also for functions belonging to the class TH(F; λ, γ).

Further, distortion results and extreme points for functions in TH(F; λ, γ) are
also obtained.

For the sake of brevity we denote the corresponding coefficient of F as Cn
throughout our study unless otherwise stated.
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2 Coefficient bounds

In our first theorem, we obtain a sufficient coefficient condition for harmonic
functions in RH(F; λ, γ).

Theorem 1 Let f = h + g be given by (2). If

∞∑

n=1

[

2n − (1 + γ)λ

1 − γ
|an| +

2n + (1 + γ)λ

1 − γ
|bn|

]

Cn (19)

where a1 = 1 and 0 ≤ γ < 1, then f ∈ RH(F; λ, γ).

Proof. We first show that if (19) holds for the coefficients of f = h + g, the
required condition (19) is satisfied. From (16) we can write

Re

{

(1 + eiψ)
z(h(z) ∗ H(z)) ′ − z(g(z) ∗ G(z)) ′

(1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]
− eiψ

}

≥ γ

= Re

{
(1 + eiψ)[z(h(z) ∗ H(z)) ′ − z(g(z) ∗ G(z)) ′]

(1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]
−

−
eiψ[(1 − λ)z + λ(h(z) ∗ H(z) + g(z) ∗ G(z))]

(1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]

}

=

= Re
A(z)

B(z)
≥ γ

where

A(z) = (1 + eiψ)[z(h(z) ∗ H(z)) ′ − z(g(z) ∗ G(z)) ′]−

− eiψ[(1 − λ)z + λ(h(z) ∗ H(z) + g(z) ∗ G(z))] =

= z +

∞∑

n=2

[n + (n − λ)eiψ]Cnanzn −

∞∑

n=1

[n + (n − λ)eiψ]Cnbnzn

and B(z) = (1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]

= z +

∞∑

n=2

λCnanzn +

∞∑

n=1

λCnbnzn.

Using the fact that Re {w} ≥ γ if and only if |1 − γ + w| ≥ |1 + γ − w|, it suffices to
show that

|A(z) + (1 − γ)B(z)| − |A(z) − (1 + γ)B(z)| ≥ 0. (20)
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Substituting for A(z) and B(z) in (20), we get

|A(z) + (1 − γ)B(z)| − |A(z) − (1 + γ)B(z)| −

=

∣

∣

∣

∣

∣

(2 − γ)z +

∞∑

n=2

[n + (n − λ)eiψ + (1 − γ)λ]Cnanzn−

−

∞∑

n=1

[n + (n − λ)eiψ − (1 − γ)λ]Cnbn zn

∣

∣

∣

∣

∣

−

−

∣

∣

∣

∣

∣

−γz +

∞∑

n=2

[n + (n − λ)eiψ − (1 + γ)λ]Cnanzn−

−

∞∑

n=1

[n + (n − λ)eiψ + (1 + γ)λ]Cnbnzn

∣

∣

∣

∣

∣

≥

≥ (2 − γ)|z| −

∞∑

n=2

[n + (n − λ) + (1 − γ)λ]Cn|an||z|n −

−

∞∑

n=1

[n + (n − λ) − (1 − γ)λ]Cn|bn| |z|n −

−γ|z| −

∞∑

n=2

[n + (n − λ) − (1 + γ)λ]Cn|an| |z|n −

−

∞∑

n=1

[n + (n − λ) + (1 + γ)λ]Cn|bn| |z|n ≥

≥ 2(1 − γ)|z|

{

2 −

∞∑

n=1

[

2n − (1 + γ)λ

1 − γ
|an| +

2n + (1 + γ)λ

1 − γ
|bn|

]

Cn|z|n−1

}

≥ 2(1 − γ)

{

2 −

∞∑

n=1

[

2n − (1 + γ)λ

1 − γ
|an| +

2n − (1 + γ)λ

1 − γ
|bn|

]

Cn

}

.

The above expression is non negative by (19), and so f ∈ RH(F; λ, γ). �

The harmonic function

f(z) = z +

∞∑

n=2

1 − γ

[2n − (1 + γ)λ]Cn
xnz

n+

∞∑

n=1

1 − γ

[2n + (1 + γ)λ]Cn
yn(z)

n (21)

where
∞∑

n=2

|xn| +
∞∑

n=1

|yn| = 1 shows that the coefficient bound given by (19) is

sharp.
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The functions of the form (21) are in RH(F; λ, γ) because

∞∑

n=1

(

[2n − (1 + γ)λ]Cn

1 − γ
|an| +

[2n − (1 + γ)λ]Cn

1 − γ
|bn|

)

=

= 1 +

∞∑

n=2

|xn| +

∞∑

n=1

|yn| = 2.

Next theorem establishes that such coefficient bounds cannot be improved
further.

Theorem 2 For a1 = 1 and 0 ≤ γ < 1, f = h + g ∈ TH(F; λ, γ) if and only if

∞∑

n=1

[

2n − (1 + γ)λ

1 − γ
|an| +

2n + (1 + γ)λ

1 − γ
|bn|

]

Cn ≤ 2. (22)

Proof. Since TH(F; λ, γ) ⊂ RH(F; λ, γ), we only need to prove the ”only if”
part of the theorem. To this end, for functions f of the form (17), we notice
that the condition

Re

{

(1 + eiψ)
z(h(z) ∗ H(z)) ′ − z(g(z) ∗ G(z)) ′

(1 − λ)z + λ[h(z) ∗ H(z) + g(z) ∗ G(z)]
− (eiψ+ γ)

}

≥ 0

The above inequality is equivalent to

Re






(1 − γ)z −
∞∑

n=2

[n(1 + eiψ) − (1 + γ + eiψ)λ]Cnanz
n

z −
∞∑

n=2

λCnanzn+
∞∑

n=1

λCnbnz
n

−

−

∞∑

n=1

[n(1 + eiψ) + (1 + γ + eiψ)λ]Cnbnz
n

z −
∞∑

n=2

λCnanzn+
∞∑

n=1

λCnbnz
n





≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, and noting that
Re(−eiψ) ≥ −|eiψ| = −1, we must have

(1 − γ) −
∞∑

n=2

[2n − (1 + γ)λ]Cnanrn−1 −
∞∑

n=1

[2n − (1 + γ)λ]Cnbnrn−1

1 −
∞∑

n=2

λCnanrn−1 +
∞∑

n=1

λCnbnrn−1

≥ 0. (23)



Starlike harmonic functions in parabolic region 177

If the condition (22) does not hold, then the numerator in (23) is negative for r

sufficiently close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient of
(23) is negative. This contradicts the required condition for f ∈ TH(F; λ, γ). This
completes the proof of the theorem. �

3 Distortion bounds and extreme points

The following theorem gives the distortion bounds for functions in TH(F; λ, γ)

which yields a covering result for the class TH(F; λ, γ).

Theorem 3 Let f ∈ TH(F; λ, γ). Then for |z| = r < 1, we have

(1 − b1)r −
1

C2

(

1 − γ

4 − (1 + γ)λ
−

1 + γ

4 − (1 + γ)λ
b1

)

r2 ≤ |f(z)|

≤ (1 + b1)r +
1

C2

(

1 − γ

4 − (1 + γ)λ
−

1 + γ

4 − (1 + γ)λ
b1

)

r2.

Proof. We only prove the right hand inequality. Taking the absolute value of
f(z), we obtain

|f(z)| =

∣

∣

∣

∣

∣

z +

∞∑

n=2

anz
n+

∞∑

n=1

bnz
n

∣

∣

∣

∣

∣

≤ (1 + b1)|z| +

∞∑

n=2

(an+ bn)|z|
n ≤

≤ (1 + b1)r +

∞∑

n=2

(an+ bn)r
2 ≤ (1 + b1)r +

(1 − γ)

[4 − (1 + γ)λ]C2

∞∑

n=2

(

[4 − (1 + γ)λ]C2

(1 − γ)
an+

[4 − (1 + γ)λ]C2

(1 − γ)
bn

)

r2 ≤

≤ (1 + b1)r +
(1 − γ)1

[4 − (1 + γ)λ]C2

(

1 −
1 + γ

1 − γ
b1

)

r2 ≤

≤ (1 + b1)r +
1

C2

(

1 − γ

4 − (1 + γ)λ
−

1 + γ

4 − (1 + γ)λ
b1

)

r2.

The proof of the left hand inequality follows on lines similar to that of the
right hand side inequality. �

The covering result follows from the left hand inequality given in Theorem 3.

Corollary 1 If f(z) ∈ TH(F; λ, γ), then
{

w : |w| <
[4 − (1 + γ)λ]C2 − (1 − γ)

[4 − (1 + γ)λ]C2
−

[4 − (1 + γ)λ]C2 − (1 + γ)

[4 − (1 + γ)λ]C2
|b1|

}

⊂ f(U).
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Proof. Using the left hand inequality of Theorem 3 and letting r → 1, we
prove that

(1 − b1) −
1

C2

(

1 − γ

4 − (1 + γ)λ
−

1 + γ

4 − (1 + γ)λ
b1

)

=

= (1 − b1) −
1

C2[4 − (1 + γ)λ]
[1 − γ − (1 + γ)b1] =

=
(1 − b1)C2[4 − (1 + γ)λ] − (1 − γ) + (1 + γ)b1

C2[4 − (1 + γ)λ]
=

=

{
[4 − (1 + γ)λ]C2− (1 − γ)

[4 − (1 + γ)λ]C2
−

[4 − (1 + γ)λ]C2− (1 + γ)

[4 − (1 + γ)λ]C2
|b1|

}

⊂ f(U).

�

Next we determine the extreme points of closed convex hulls of TH(F; λ, γ)

denoted by clcoTH(F; λ, γ).

Theorem 4 A function f(z) ∈ TH(F; λ, γ) if and only if

f(z) =

∞∑

n=1

(Xnhn(z) + Yngn(z))

where

h1(z) = z, hn(z) = z −
1 − γ

[2n − (1 + γ)λ]Cn
zn; (n ≥ 2),

gn(z) = z +
1 − γ

[2n − (1 + γ)λ]Cn
zn; (n ≥ 2),

∞∑

n=1

(Xn+ Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of TH(F; λ, γ) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =

∞∑

n=1

(Xnhn(z) + Yngn(z)) =

=

∞∑

n=1

(Xn+ Yn)z −

∞∑

n=2

1 − γ

[2n − (1 + γ)λ]Cn
Xnz

n+

+

∞∑

n=1

1 − γ

[2n − (1 + γ)λ]Cn
Ynz

n
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Then

∞∑

n=2

[2n − (1 + γ)λ]Cn

1 − γ
|an| +

∞∑

n=1

[2n − (1 + γ)λ]Cn

1 − γ
|bn| =

=

∞∑

n=2

Xn+

∞∑

n=1

Yn = 1 − X1 ≤ 1,

and so f(z) ∈ clcoTH(F; λ, γ).

Conversely, suppose that f(z) ∈ clcoTH(F; λ, γ). Setting

Xn =
[2n − (1 + γ)λ]Cn

1 − γ
|an|, (0 ≤ Xn ≤ 1, n ≥ 2)

Yn =
[2n − (1 + γ)λ]Cn

1 − γ
|bn|, (0 ≤ Yn ≤ 1, n ≥ 1)

and X1 = 1 −
∞∑

n=2

Xn−
∞∑

n=1

Yn. Therefore, f(z) can be rewritten as

f(z) = z −

∞∑

n=2

anz
n+

∞∑

n=1

bnz
n =

= z −

∞∑

n=2

1 − γ

[2n − (1 + γ)λ]Cn
Xnz

n+

∞∑

n=1

1 − γ

[2n + (1 + γ)λ]Cn
Ynz

n =

= z +

∞∑

n=2

(hn(z) − z)Xn+

∞∑

n=1

(gn(z) − z)Yn =

= z{1 −

∞∑

n=2

Xn−

∞∑

n=1

Yn} +

∞∑

n=2

hn(z)Xn+

∞∑

n=1

gn(z)Yn =

=

∞∑

n=1

(Xnhn(z) + Yngn(z)) as required.

�

4 Inclusion results

Now we show that TH(F; λ, γ) is closed under convex combinations of its
member and also closed under the convolution product.
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Theorem 5 The family TH(F; λ, γ) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ TH(F; λ, γ) where

fi(z) = z −

∞∑

n=2

ai,nz
n+

∞∑

n=2

bi,nz
n.

Then, by Theorem 2

∞∑

n=2

[2n − (1 + γ)λ]Cn

(1 − γ)
ai,n+

∞∑

n=1

[2n − (1 + γ)λ]Cn

(1 − γ)
bi,n ≤ 1. (24)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑

i=1

tifi(z) = z −

∞∑

n=2

(

∞∑

i=1

tiai,n

)

zn+

∞∑

n=1

(

∞∑

i=1

tibi,n

)

zn.

Using the inequality (22), we obtain

∞∑

n=2

[2n − (1 + γ)λ]Cn

1 − γ

(

∞∑

i=1

tiai,n

)

+

∞∑

n=1

[2n − (1 + γ)λ]Cn

1 − γ

(

∞∑

i=1

tibi,n

)

=

=

∞∑

i=1

ti

(

∞∑

n=2

[2n − (1 + γ)λ]Cn

1 − γ
ai,n +

∞∑

n=1

[2n − (1 + γ)λ]Cn

1 − γ
bi,n

)

≤

∞∑

i=1

ti = 1,

and therefore
∞∑

i=1

tifi ∈ TH(F; λ, γ). �

Now, we will examine the closure properties of the class TH(F; λ, γ) under
the generalized Bernardi-Libera -Livingston integral operatorLc(f) which is
defined by

Lc(f) =
c + 1

zc

z∫

0

tc−1f(t)dt, c > −1.

Theorem 6 Let f(z) ∈ TH(F; λ, γ). Then Lc(f(z)) ∈ TH(F; λ, γ)
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Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c + 1

zc

z∫

0

tc−1
[

h(t) + g(t)
]

dt =

=
c + 1

zc





z∫

0

tc−1

(

t −

∞∑

n=2

ant
n

)

dt +

z∫

0

tc−1

(

∞∑

n=1

bntn

)

dt



 =

= z −

∞∑

n=2

c + 1

c + n
anz

n+

∞∑

n=1

c + 1

c + n
bnz

n.

Using the inequality (22), we get

∞∑

n=1

(

[2n − (1 + γ)λ]

1 − γ
(
c + 1

c + n
|an|) +

[2n + (1 + γ)λ]

1 − γ
(
c + 1

c + n
|bn|)

)

Cn ≤

≤

∞∑

n=1

(

[2n − (1 + γ)λ]

1 − γ
|an| +

[2n + (1 + γ)λ]

1 − γ
|bn|

)

Cn ≤

≤ 2(1 − γ), since f(z) ∈ TH(F; λ, γ).

Hence by Theorem 2, Lc(f(z)) ∈ TH(F; λ, γ). �

Concluding remarks

For suitable choices of F(z), as we pointed out the RH(F; λ, γ) contains, various
function class defined by linear operators such as the Carlson-Shaffer opera-
tor, the Ruscheweyh derivative operator, the Sălăgean operator, the fractional
derivative operator, and so on. When λ = 0 and λ = 1 the various results
presented in this paper would provide interesting extensions and generaliza-
tions of those considered earlier for simpler harmonic function classes[1] and
[8, 9, 10] respectively. The details involved in the derivations of such spe-
cializations of the results presented in this paper are fairly straight- forward,
hence omitted.
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Abstract. For some classes of family of real valued functions defined in
a unit disk, we use a linear operator to obtain some interesting differential
subordination results.

1 Introduction and preliminaries

Let E+
α denote the family of all functions F(z), in the unit disk U, of the form

F(z) = 1+

∞∑

n=1

anz
n−n/α, α = {2, 3, 4 . . . } (1)

satisfying F(0) = 1.
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Let E−
α denote the family of all functions F(z), in the unit disk U, of the

form

F(z) = 1−

∞∑

n=1

anz
n−n/α, α = {2, 3, 4 . . . } (2)

which satisfy the condition F(0) = 1.
We know that if functions f and g are analytic in U, then f is called sub-

ordinate to g if there exists a Schwarz function w(z), analytic in U such that
f(z) = g(w(z)), and z ∈ U = {z : z ∈ C, |z| < 1} .

Then we denote this subordination by f(z) ≺ g(z) or simply f ≺ g, but in
a special case if g is univalent in U then above subordination is equivalent to
f(0) = g(0), and f(U) ⊂ g(U).

Let φ : C3×U → C and let h analytic in U. Assume that p, φ are analytic
and univalent in U and p satisfies the differential superordination

h(z) ≺ φ(p(z), zp ′(z), z2p ′′(z); z). (3)

Then p is called a solution of the differential superordination.
An analytic function q is called a subordinant if q ≺ p, for all p satisfying

equation (3). A univalent function q such that p ≺ q for all subordinants p of
equation (3) is said to be the best subordinant.

Let E+ be the class of analytic functions of the form

f(z) = 1+

∞∑

n=1

anz
n, z ∈ U , an, bn ≥ 0.

Let f, g ∈ E+ where

f(z) = 1+

∞∑

n=1

anz
n and g(z) = 1+

∞∑

n=1

bnz
n,

then their convolution or Hadamard product f(z) ∗ g(z) is defined by

f(z) ∗ g(z) = 1+

∞∑

n=1

anbnz
n, z ∈ U .

Juneja et al. [1] define the family ε(φ,ψ) so that

Re

(

f(z) ∗ φ(z)

f(z) ∗ψ(z)

)

> 0, z ∈ U
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where

φ(z) = 1+

∞∑

n=1

φnz
n

and

ψ(z) = 1+

∞∑

n=1

ψnz
n

are analytic in U with the conditions φn, psin ≥ 0, φn ≥ ψn and
φ(z) ∗ψ(z) 6= 0.

Definition 1 Let ζ+
α(ϕ, ϑ) be the class of family of all F(z) ∈ E+

α such that

Re

(

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)

)

> 0, z ∈ U

where

ϕ(z) = 1+
∞∑

n=2

ϕnz
n−n/α and ϑ(z) = 1+

∞∑

n=2

ϑnz
n−n/α

are analytic in U with specific conditions, ϕn, ϑn ≥ 0, ϕn ≥ ϑn and
F(z) ∗ ϑ(z) 6= 0 and for all n ≥ 0.

Definition 2 Let ζ−
α(ϕ, ϑ) be the class of family of all F(z) ∈ E−

α such that

Re

(

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)

)

> 0, z ∈ U

where

ϕ(z) = 1−
∞∑

n=2

ϕnz
n−n/α and ϑ(z) = 1−

∞∑

n=2

ϑnz
n−n/α

are analytic in U with specific conditions, ϕn, ϑn ≥ 0, ϕn ≥ ϑn and
F(z) ∗ ϑ(z) 6= 0 and for all n ≥ 0.

The aim of the present paper is to propose some sufficient conditions for all
functions F(z) belongs to the new classes E+

α and E−
α to satisfy

F(z) ∗ϕ(z)

F(z) ∗ ϑ(z)
≺ q(z), z ∈ U.

Where q(z) is a given univalent function in U such that q(0) = 1.
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Define the function ϕα(a, c; z) by

ϕα(a, c; z) = 1+

∞∑

1

(a)n

(c)n
zn−n/α, z ∈ U, c ∈ ℜ \ {0,−1,−2 . . . }

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(n+ a)

Γ(a)
=

{
1 if n = 0

a(a+ 1)(a+ 2) · · · (a+ n− 1) if n ∈ N

Corresponding to the function ϕα(a, c; z), define a linear operator Iα(a, c) ,
by

Iα(a, c)F(z) = Iα(a, c; z) ∗ F(z), F(z) ∈ E+

α,

or equivalently by

Iα(a, c)F(z) = 1+

∞∑

1

(a)n

(c)n
zn−n/α, z ∈ U, c ∈ ℜ \ {0,−1,−2 . . . }

Different authors have used this linear operator for various types of classes
of univalent functions namely, Uralgaddi and Somanatha [4], Cho, Kwon and
Srivastava [5], Saitoh [6], and Sokol and Spelina [7], respectively.

The classes E+

α and E−

α defined above exhibit some interesting properties.
We need the following lemmas.

Lemma 1 [3]. Let q(z) be univalent in the unit U disk and θ(z) be analytic
in a domain D containing q(U). If zq ′(z)θ(q) is starlike in U , and

zp ′(z)θ(p(z)) ≺ zq ′(z)θ(q(z))

then p(z) ≺ q(z) and q(z) is the best dominant.

Theorem 1 Let the function q(z) be univalent in the unit disk U such that

q ′(z) 6= (0) and
zq ′(z)

q(z)
6= 0 is starlike in U, if F(z) ∈ E+

α satisfies the subordi-

nation

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺
bzq ′(z)

q(z)

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

Then is q(z) the best dominant.
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Proof. First we defined the function p(z),

p(z) =

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

then,
bzp ′(z)

p(z)
= b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

(4)

By setting, θ(ω) =
b

ω
, it can easily observed that θ(ω) is analytic in C \ {0}.

Then we obtain that,

θ(p(z)) =
b

p(z)
and θ(q(z)) =

b

q(z)
.

So from equation (4), we have

zp ′(z)θ(p(z)) � b
q ′(z)

q(z)
= zq ′(z)θ(q(z)),

this implies,

zp ′(z)θ(p(z)) ≺ zq ′(z)θ(q(z))

from lemma (1), we have

p(z) ≺ q(z)

this implies,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

�

Corollary 1 If F(z) satisfies the subordination

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

[

b(A− B)z

(1+Az)(1+ BZ)

]

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

1+Az

1+ Bz

]

, −1 ≤ A ≤ B ≤ 1,

and
(1+Az)

(1+ Bz)
is the best dominant.
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Corollary 2 If F(z) satisfies the subordination

b

[

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

[

2bz

(1+ z)(1+ z)

]

then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

1+ z

1− z

]

, −1 ≤ A ≤ B ≤ 1,

and
(1+ z)

(1+ z)
is the best dominant.

Lemma 2 [2]. Let q(z) be convex in the unit disk U with q(0) = 1 and ℜ(q) >

1/2, z ∈ U. If 0 ≤ U < 1, p is analytic function in with p(0) = 1 and if

(1− µ)p2(z) + (2µ− 1)p(z) − µ+ (1− µ)zp ′(z)

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

then p(z) ≺ q(z) and q(z) is the best dominant.

Theorem 2 Let q(z) be convex in the unit disk U with q(0) = 1 and ℜ(q) >

1/2. If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U satisfies the

subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

and q(z) is the best dominant.

Proof. Let the function p(z) be defined by

p(z) =

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

, z ∈ U



190 M. Darus, I. Faisal and M. A. M. Nasr

since p(0) = 1, therefore

(1− µ)p2(z) + (2µ− 1)p(z) − µ+ (1− µ)zp ′(z) =

= (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)z

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

′

=

= [1− µ]

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ [2µ− 1]

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− [µ] +

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)q2(z) + (2µ− 1)q(z) − µ+ (1− µ)zq ′(z)

now by using the Lemma 2, we have

p(z) ≺ q(z)

implies that,

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺ q(z)

and q(z) is the best dominant. �

Corollary 3 If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U

satisfying the subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)

[

1+Az

1+ Bz

]2

+ (2µ− 1)

[

1+Az

1+ Bz

]

− µ+

+ (1− µ)

[

1+Az

1+ Bz

] [

(A− B)z

(1+Az)(1+ Bz)

]

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺

[

(1+Az)

(1+ Bz)

]
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and

[

1+Az

1+ Bz

]

is the best dominant.

Proof. Let us define q(z) by

q(z) =

[

1+Az

1+ Bz

]

, z ∈ U

this implies that q(0) = 1 and ℜ(q) > 1/2 for arbitrary A,B, z ∈ U where

zq ′(z)

q(z)
=

(A− B)z

(1+Az)(1+ Bz)

Then applying the Theorem 2, we obtain the result. �

Corollary 4 If F(z) ∈ E+
α and

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

is an analytic function in U

satisfying the subordination

(1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]2

+ (2µ− 1)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

− µ+

+ (1− µ)

[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

] [

z(Iα(a, c)φ(z)) ′

Iα(a, c)φ(z)
−
z(Iα(a, c)ψ(z)) ′

Iα(a, c)ψ(z)

]

≺

≺ (1− µ)

[

1+ z

1− z

]2

+ (2µ− 1)

[

1+ z

1− z

]

− µ+ (1− µ)

[

1+ z

1− z

] [

2z

(1+ z)(1− z)

]

Then,
[

Iα(a, c)φ(z)

Iα(a, c)ψ(z)

]

≺
(1+ z)

(1− z)

and
1+ z

1− z
is the best dominant.

Proof. Let the function q(z) be defined by

q(z) =

[

1+ z

1− z

]

, z ∈ U,

then in view of Theorem 2 we obtain the result. �
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Definition 3 The fractional integral of order α is defined, for a function f(z)
by

Iαz f(z) =
1

Γ(α)

∫z

0

f(z)(z− ζ)α−1dζ, 0 ≤ α < 1

where, the function f(z) is analytic in simply-connected region of the complex
z-plane containing the origin and the multiplicity of (z − ζ)α−1 is removed by
requiring log(z − ζ) to be real when (z − ζ) > 0. Note that Iαz f(z) = f(z) ×

zα−1/Γ(α) for z > 0 and 0 (see [8, 9, 10, 11]). Let

f(z) =

∞∑

0

φnz
n−n/β+1−α,

this implies that,

Iαz f(z) = f(z) × zα−1/Γ(α) = zα−1/Γ(α)

∞∑

0

φnz
n−n/β+1−α for z > 0

=

∞∑

o

anz
n−n/β, where an = φn/Γ(α),

thus,

1± Iαz f(z) ∈M
+

α(M−

α)

then we have the following results.

Theorem 3 Let q(z) be convex in the unit disk U with q(0) = 1 and R(q(z)) >

1/2. If F(z) ∈ E+
α and

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)
is an analytic function in U satisfies

the subordination

(1− u)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]2

(z) + (2u− 1)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]

− u+

+ (1− u)

[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

] [

z(1+ Iαz f(z)) ∗ϕ(z)) ′

(1+ Iαz f(z)) ∗ϕ(z))
−
z(1+ Iαz f(z)) ∗ ϑ(z))

′

(1+ Iαz f(z)) ∗ ϑ(z))

]

≺ (1− u)q2(z) + (2u− 1)q(z) − u+ (1− u)zq ′(z)

then,
[

(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)

]

≺ q(z).
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Proof. Let the function p(z) be defined by

F(z) =
(1+ Iαz f(z)) ∗ϕ(z)

(1+ Iαz f(z)) ∗ ϑ(z)
, z ∈ U

then in view of Theorem 2 we obtain the result. �

Theorem 4 Let the function q(z) be univalent in the unit disk U such that

q ′(z) 6= 0 and
zq ′(z)

q(z)
6= 0 is starlike in U, if (1 − Iαz f(z)) ∈ E−

α satisfies the

subordination

b

[

(1− Iαz f(z)) ∗ϕ(z)) ′

(1− Iαz f(z)) ∗ϕ(z))
−

(1− Iαz f(z)) ∗ ϑ(z))
′

(1− Iαz f(z)) ∗ ϑ(z))

]

≺
bzq ′(z)

q(z)

then,

b

[

(1− Iαz f(z)) ∗ϕ(z)

(1− Iαz f(z)) ∗ ϑ(z)

]

≺ q(z)

then q(z) is the best dominant.

Proof. Let the function p(z) be defined by

(1− Iαz f(z)) ∗ϕ(z)

(1− Iαz f(z)) ∗ ϑ(z)
, z ∈ U

then in view of Theorem 2 we obtain the result. �
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Abstract. In this paper, we derive some subordination results for
certain classes of analytic functions defined by a generalized differen-
tial operator using the principle of subordination and a subordination
theorem. Relevant connections of the results presented here with those
obtained in earlier works are also pointed out.

1 Introduction and preliminaries

Let A denote the class of functions f(z) of the form

f(z) = z +

∞∑

n=2

anzn, (1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}. We
denote by S, S∗, K and C, the class of all functions in A which are, respectively,
univalent, starlike, convex and close-to-convex in U . For functions f given by
(1) and g given by

g(z) = z +

∞∑

n=2

bnzn,

2010 Mathematics Subject Classification: 30C45, 30C80
Key words and phrases: analytic functions, univalent functions, Hadamard product (or
convolution), subordination between analytic functions
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the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +

∞∑

n=2

anbnzn.

Let T (γ, α) denote the class of functions in A satisfying the inequality

R

(
zf ′(z) + γz2f ′′(z)

(1 − γ)f(z) + γzf ′(z)

)
> α, z ∈ U ,

for some α (0 ≤ α < 1) and γ (0 ≤ γ < 1), and let C(γ, α) denote the class of
functions in A satisfying the inequality

R

(
γz3f ′′′(z) + (2γ + 1)z2f ′′(z) + zf ′(z)

γz2f ′′(z) + zf ′(z)

)
> α, z ∈ U ,

for some α (0 ≤ α < 1) and γ (0 ≤ γ < 1). We note that

f ∈ C(γ, α) ⇐⇒ zf ′ ∈ T (γ, α).

The classes T (γ, α) and C(γ, α) were introduced and investigated by O. Altıntaş
[2], and M. Kamali and S. Akbulut [4], respectively.

Let M(β) be the subclass of A consisting of functions f which satisfy the
inequality

R

(
zf ′(z)

f(z)

)
< β, z ∈ U ,

for some β (β > 1), and let N (β) be the subclass of A consisting of functions
f which satisfy the inequality

R

(
1 +

zf ′′(z)

f ′(z)

)
< β, z ∈ U ,

for some β (β > 1). The classes M(β) and N (β) were introduced and
investigated by S. Owa and H. M. Srivastava [6] (see also J. Nishiwaki and S.
Owa [5], S. Owa and J. Nishiwaki [7], H. M. Srivastava and A. A. Attiya [9]).

Let α1, α2, . . . , αq and β1, β2, . . . , βs (q, s ∈ N ∪ {0}, q ≤ s + 1) be complex
numbers such that βk 6= 0,−1,−2, . . . for k ∈ {1, 2, . . . , s}. The generalized
hypergeometric function qFs is given by

qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z) =

∞∑

n=0

(α1)n(α2)n . . . (αq)n

(β1)n(β2)n . . . (βs)n

zn

n!
, (z ∈ U),
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where (x)n denotes the Pochhammer symbol defined by

(x)n = x(x + 1)(x + 2) · · · (x + n − 1) for n ∈ N and (x)0 = 1.

Corresponding to a function Gp
q,s(α1; β1; z) defined by

Gq,s(α1, β1; z) := z qFs(α1, α2, . . . , αq; β1, β2, . . . , βs; z),

we now define the following generalized differential operator:

D0
λµ(α1, β1)f(z) = f(z) ∗ Gq,s(α1, β1; z),

D1
λµ(α1, β1)f(z) = Dλµ(α1, β1)f(z) = λµz2(f(z) ∗ Gq,s(α1, β1; z))

′′+

+ (λ − µ)z(f(z) ∗ Gq,s(α1, β1; z))
′+

+ (1 − λ + µ)(f(z) ∗ Gq,s(α1, β1; z)), and

Dm
λµ(α1, β1)f(z) = Dλµ(Dm−1

λ (α1, β1)f(z)),

where 0 ≤ µ ≤ λ ≤ 1 and m ∈ N0 = N ∪ {0}.

If f(z) ∈ A, then we have

Dm
λµ(α1, β1)f(z) = z +

∞∑

n=2

ϑm
n σnanzn, (2)

where
ϑn = 1 + (λµn + λ − µ)(n − 1) (3)

and

σn =
(α1)n−1(α2)n−1 . . . (αq)n−1

(β1)n−1(β2)n−1 . . . (βs)n−1 (n − 1)!
. (4)

It can be seen that, by specializing the parameters the operator Dm
λµ(α1, β1)f(z)

reduces to many known and new differential operators. In particular, when
m = 0 the operator Dm

λµ(α1, β1)f(z) reduces to the well- known Dziok-Srivastava
operator [3] and for µ = 0, q = 2, s = 1, α1 = β1, and α2 = 1, it reduces to
the operator introduced by F. M. Al-Oboudi [1]. Further we remark that, when
λ = 1, µ = 0, q = 2, s = 1, α1 = β1, and α2 = 1 the operator Dm

λµ(α1, β1)f(z)

reduces to the operator introduced by G. S. Sălăgean [8].

For simplicity, in the sequel, we will write Dm
λµf(z) instead of Dm

λµ(α1, β1)f(z).

Motivated by the above mentioned function classes, we now introduce the
following subclasses of A involving the generalized differential operator Dm

λµf(z).
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Definition 1 A function f ∈ A is said to be in the class Sm
λµ(γ, α) if it satisfies

the following inequality

R

{
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)

}
> α, z ∈ U ,

where
m ∈ N0, 0 ≤ γ ≤ 1, 0 ≤ α < 1.

It is easy to see that the classes T (γ, α) and C(γ, α) are special cases of the
class Sm

λµ(γ, α).

Definition 2 A function f ∈ A is said to be in the class Mm
λµ(γ, β) if it

satisfies the following inequality

R

{
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)

}
< β, z ∈ U ,

where
m ∈ N0, 0 ≤ γ ≤ 1, β > 1.

It is also easy to see that the classes M(β) and N (β) are special cases of the
class Mm

λµ(γ, β).

We now provide some coefficient inequalities associated with the function
classes Sm

λµ(γ, α) and Mm
λµ(γ, β).

2 Coefficient inequalities

Theorem 1 Let 0 ≤ α < 1 and 0 ≤ γ ≤ 1. If f ∈ A satisfies the following
coefficient inequality

∞∑

n=2

(1 − γ + γϑn)(ϑn − α) ϑm
n σn |an| ≤ 1 − α, (5)

where ϑn and σn are given by (3) and (4) respectively, then f ∈ Sm
λµ(γ, α).

Proof. It is suffices to show that
∣∣∣∣
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)
− 1

∣∣∣∣ < 1 − α, z ∈ U .
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Now we note that for any z ∈ U ,

∣∣∣∣
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∞∑

n=2

(1 − γ + γϑn)(ϑn − 1)ϑm
n σnanzn−1

1 +
∞∑

n=2

(1 − γ + γϑn)ϑm
n σnan zn−1

∣∣∣∣∣∣∣∣

≤

∞∑

n=2

(1 − γ + γϑn)(ϑn − 1)ϑm
n σn|an|

1 −
∞∑

n=2

(1 − γ + γϑn)ϑm
n σn|an|

.

It follows from (5) that the last expression is bounded by 1 − α. This completes the
proof of the theorem. �

Theorem 2 Let β > 1 and 0 ≤ γ ≤ 1. If f ∈ A satisfies the following
coefficient inequality

∞∑

n=2

(1 − γ + γϑn)(ϑn + |ϑn − 2β|) ϑm
n σn |an| ≤ 2(β − 1), (6)

where ϑn and σn are given by (3) and (4) respectively, then f ∈ Mm
λµ(γ, β).

Proof. It is sufficient to show that

∣∣∣∣
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)

∣∣∣∣ <

∣∣∣∣
(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

(1 − γ)Dm
λµf(z) + γDm+1

λµ f(z)
− 2β

∣∣∣∣,

(7)
where z ∈ U .

Now, we define M ∈ R by

M : =
∣∣(1 − γ)Dm+1

λµ f(z) + γDm+2
λµ f(z)

∣∣−
−

∣∣(1 − γ)Dm+1
λµ f(z) + γDm+2

λµ f(z) − 2β
(
(1 − γ)Dm

λµf(z) + γDm+1
λµ f(z)

)∣∣ =

=

∣∣∣∣z +

∞∑

n=2

[
(1 − γ)ϑm+1

n + γϑm+2
n

]
σnanzn

∣∣∣∣−

−

∣∣∣∣z +

∞∑

n=2

[
(1 − γ)ϑm+1

n + γϑm+2
n

]
σnanzn−

− 2β

{
z +

∞∑

n=2

[
(1 − γ)ϑm

n + γϑm+1
n

]
σnanzn

}∣∣∣∣.
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Thus, for |z| = r < 1, we have

M ≤ r +

∞∑

n=2

(1 − γ + γϑn)ϑm+1
n σn|an|rn−

−

[
(2β − 1)r −

∞∑

n=2

(1 − γ + γϑn)|ϑn − 2β|ϑm
n σn|an|rn

]
<

<

( ∞∑

n=2

(1 − γ + γϑn)(ϑn + |ϑn − 2β|)ϑm
n σn|an| − 2(β − 1)

)
r.

It follows from (6) that M < 0, which implies that (7) holds. This completes
the proof of the theorem. �

In view of Theorem (1) and Theorem (2), we now introduce the subclasses

S̃m
λµ(γ, α) ⊂ Sm

λµ(γ, α) and M̃m
λµ(γ, β) ⊂ Mm

λµ(γ, β),

which consist of functions f ∈ A whose Taylor-Maclaurin coefficients satisfy
the inequalities (5) and (6) respectively. We now derive some subordination

results for the function classes S̃m
λµ(γ, α) and M̃m

λµ(γ, β).

3 Subordination result for the class S̃m
λµ(γ, β)

We will use of the following definitions and lemma to prove our result.

Definition 3 (Subordination Principle) Let f(z) and g(z) be analytic in U .
Then we say that the function f(z) is subordinate to g(z) in U , and write

f ≺ g or f(z) ≺ g(z)

if there exists a Schwarz function w(z), analytic in U with

w(0) = 0, |w(z)| < 1 (z ∈ U),

such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g(z) is univalent in U , then

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).
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Definition 4 (Subordinating Factor Sequence) A sequence {bn}∞n=1 of complex
numbers is said to be a subordinating factor sequence if, whenever f(z) of the
form (1) is analytic, univalent and convex in U , we have the subordination
given by

∞∑

n=1

an bn zn ≺ f(z) (z ∈ U ; a1 := 1).

Lemma 1 (See Wilf [11]) The sequence {bn}∞n=1 is a subordinating factor
sequence if and only if

R

(
1 + 2

∞∑

n=1

bn zn

)
> 0 (z ∈ U).

Theorem 3 Let the function f(z) defined by (1) be in the class S̃m
λµ(γ, α). If

g(z) ∈ K, then

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

(f ∗ g)(z) ≺ g(z) (8)

(z ∈ U , m ∈ N0, 0 ≤ γ ≤ 1, 0 ≤ α < 1)

and

R(f) > −
(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

, (9)

where ϑn and σn are given by (3) and (4) respectively. The constant factor in
the subordination result (8)

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

cannot be replaced by a larger one.

Proof. Let f(z) ∈ S̃m
λµ(γ, α) and suppose that

g(z) = z +

∞∑

n=2

cnzn ∈ K.

Then we readily have

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

(f ∗ g)(z) =

=
(1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

(
z +

∞∑

n=2

ancnzn

)
.
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Thus, by Definition 4, the subordination result (8) will holds if

{
(1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

an

}∞

n=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1 this is
equivalent to the following inequality:

R

{
1 +

∞∑

n=1

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

an zn

}
> 0 (z ∈ U).

(10)
Since (1−γ+γϑn)(ϑn−α) ϑm

n σn (n ≥ 2, m ∈ N0) is an increasing function
of n, we have

R

{
1 +

∞∑

n=1

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

an zn

}

= R

{
1 +

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

z

+
1

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

·

·

∞∑

n=2

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2 an zn

}

≥ 1−
(1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

r

−
1

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

·

·

∞∑

n=2

(1 − γ + γϑn)(ϑn − α)ϑm
n σn |an| rn

> 1−
(1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

r

−
1 − α

(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

r

= 1−r > 0 (|z| = r < 1),

where we have also made use of the assertion (5) of Theorem 1. This evidently
proves the inequality (10), and hence also the subordination result (8) asserted
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by Theorem 3. The inequality (9) follows from (8) upon setting

g(z) =
z

1 − z
= z +

∞∑

n=2

zn ∈ K.

Next we consider the function

q(z) := z −
1 − α

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

z2, (11)

(m ∈ N0, 0 ≤ γ ≤ 1, 0 ≤ α < 1),

where ϑn and σn are given by (3) and (4) respectively, which is a member of
the class S̃m

λµ(γ, α). Then, by using (8), we have

(1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

q(z) ≺
z

1 − z
(z ∈ U).

One can easily verify for the function q(z) defined by (11) that

min

{
R

(
(1 − γ + γϑ2)(ϑ2 − α)ϑm

2 σ2

2[(1 − α) + (1 − γ + γϑ2)(ϑ2 − α)ϑm
2 σ2]

q(z)

)}
= −

1

2
(z ∈ U),

which completes the proof of Theorem 3. �

Remark 1 Setting γ = 0, λ = 1, µ = 0, q = 2, s = 1, α1 = β1, and α2 = 1

in Theorem 3, we get the corresponding result obtained by S. Sümer Eker et
al. [10].

4 Subordination result for the class M̃m
λµ(γ, β)

The proof of the following subordination result is similar to that of Theorem
3. We, therefore, omit the analogous details involved.

Theorem 4 Let the function f(z) defined by (1) be in the class M̃m
λµ(γ, β).

If g(z) ∈ K, then

(1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm
2 σ2

2[2(β − 1) + (1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm
2 σ2]

(f ∗ g)(z) ≺ g(z) (12)

(z ∈ U , m ∈ N0, 0 ≤ γ ≤ 1, 0 ≤ α < 1)
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and

R(f) > −
2(β − 1) + (1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm

2 σ2

(1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm
2 σ2

,

where ϑn and σn are given by (3) and (4) respectively. The constant factor

(1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm
2 σ2

2[2(β − 1) + (1 − γ + γϑ2)(ϑ2 + |ϑ2 − 2β|)ϑm
2 σ2]

in the subordination result (12) cannot be replaced by a larger one.

Remark 2 Setting m = 0, or γ = 0, λ = 1, µ = 0, q = 2, s = 1, α1 =

β1 and α2 = 1 in Theorem 3, we get the corresponding results obtained by H.
M. Srivastava and A. A. Attiya. [9].
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Abstract. The coin tossing experiment is studied. The length of
the longest head run can be studied by asymptotic theorems [3, 4], by
recursive formulae [7, 11] or by computer simulations [1]. The aim of
the paper is to compare numerically the asymptotic results, the recursive
formulae, and the simulation results. Moreover, we consider also the
longest run (i.e. the longest pure heads or pure tails). We compare the
distribution of the longest head run and that of the longest run.

1 Introduction

The success-run in a sequence of Bernoulli trials has been studied in a large
number of papers. Consider the well-known coin tossing experiment. Let Rn

denote the length of the longest run of consecutive heads (longest head run).
Moreover, let R

′

n denote the longest run of consecutive heads or consecutive
tails (longest run). The asymptotic distribution of Rn is studied in several
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Key words and phrases: coin tossing, longest run, probability distribution, recursion,

simulation, asymptotic distribution
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papers (see, e.g. [3, 4, 5, 6, 9, 10]). However, these results give approximations
being accurate for large enough n. Precise values of the distributions can be
calculated by certain recursive formulae (see, e.g. [2, 7, 11]). However it is
difficult and slow to calculate them numerically for large n. The distributions
of Rn and R

′

n can be calculated by simulations, as well. Simulations can be
applied both for small and large values of n, but they offer only approximations
(which can be improved by using large number of repetitions). The comparison
of the asymptotic theorems and the simulations are given in [1].

In this paper we compare numerically the asymptotic theorems, the recursive
formulae and the simulations. As the case of a fair coin is well-known, we focus
on a biased coin (i.e. when P(head) = p 6= 1

2
). Moreover, as our aim is to

obtain precise numerical results, we emphasize the importance of the recursive
formulae. We give detailed proofs for the (known) recursive formulae. Finally,
we remark that most results in the literature concern the longest head run
(i.e. Rn) but in practice people are interested in the longest run (i.e. R

′

n).
Therefore, we concentrate mainly on R

′

n.
The numerical results show that the asymptotic theorems give bad results

for small n (i.e. n ≤ 250) and give practically precise results for large n (i.e.
n ≥ 3000). It can also be seen that for large n the distribution of R

′

n is close
to that of Rn if p > 1

2
(p is the probability of a head).

We present recursion formulae offering the exact distribution of the longest
run of heads (Section 2), and the distribution of the longest whatever run
(Section 3). We consider the situation in which the probability of a head can
take any value in (0, 1).

2 The longest head run

Consider n independent tosses of a (biased) coin, and let Rn denote the length
of the longest head run. The (cumulative) distribution function of Rn is the
following

Fn(x) = P(Rn ≤ x) =

n∑

k=0

C
(k)
n (x)pkqn−k, (1)

where C
(k)
n (x) is the number of strings of length n where exactly k heads

occur, but not more than x heads occur consecutively. We have the following

recursive formula for C
(k)
n (x).



Longest runs in coin tossing 217

Proposition 1 (See [11])

C
(k)
n (x) =






x∑

j=0

C
(k−j)

n−1−j(x), if x < k < n,

(

n
k

)

, if 0 ≤ k ≤ x,

0, if x < k = n.

(2)

Proof. If x < k = n, then Ck
n(x) = 0, because in this case all elements (being

more than x) are heads, so there is no series containing less than or equal to
x heads consecutively.

If 0 ≤ k ≤ x, then the value of Ck
n(x) is equal to the binomial coefficient. In

this case there are less than or equal to x heads among n elements and we have
to count those cases when the length of the longest head run is less than or

equal to x. All possible sequences have this property, therefore C
(k)
n (x) =

(

n
k

)

.

If x < k < n, then we need to consider the following. Our series may start
with j = 0, 1, 2, . . . , x heads, then must be one tail, then a sequence follows
containing k− j heads among the remaining n− j−1 objects. In this sequence
the length of the longest head run must be less than or equal to x. The number

of these sequences equals exactly C
(k−j)

n−1−j(x).

H . . . H︸ ︷︷ ︸
j heads

T . . . H . . . T . . .︸ ︷︷ ︸

n− j−1 elements, containing k− j heads,

and the length of the longest head run is less than or equal to x

�

The following table displays the values of Ck
n(3) for n ≤ 8.

8 0

7 0 0

6 0 1 10

5 0 2 12 40

4 0 3 12 31 65

3 1 4 10 20 35 56

2 1 3 6 10 15 21 28

1 1 2 3 4 5 6 7 8

0 1 1 1 1 1 1 1 1 1

k�n 0 1 2 3 4 5 6 7 8

The first four rows of the table (k = 0, 1, 2, 3) are part of Pascal’s triangle.
Entries above that four rows are computed by taking diagonal sums of four
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entries from the rows and columns below and to the left. The ’hockey stick’

(printed in boldface in the table) illustrates the case C
(5)

7 (3) = 2+3+4+3 = 12.

Tossing a biased coin 8 times, we now have the probability of obtaining not

more than three consecutive heads: F8(3) = C
(0)

8 (3)p0q8 + C
(1)

8 (3)p1q7 + . . . +

C
(7)

8 (3)p7q1+C
(8)

8 (3)p8q0 = 1q8+8pq7+28p2q6+56p3q5+65p4q4+40p5q3+

10p6q2 + 0 + 0. Knowing the value of p we can calculate the exact result.

The asymptotic behaviour is described by the following theorem.

Theorem 1 (See [5].) Let µ(n) = − log n
log p

, q = 1 − p and let W have a double
exponential distribution (i.e. P(W ≤ t) = exp(− exp(−t))), then uniformly
in t:

P (Rn − µ(qn) ≤ t) − P

([

W

− log p
+ {µ(qn)}

]

− {µ(qn)} ≤ t

)

→ 0 (3)

as n → ∞ where [a] denotes the integer part of a and {a} = a − [a].

We emphasize that the above theorem does not offer a limiting law for
Rn − µ(qn) but it gives a sequence of accompanying laws. The distances
of the laws in the two sequences converge to 0 (as n → ∞). So the above
theorem is a merge theorem. Observe, the periodic property in the sequence
of the accompanying laws.

3 The longest run

For a coin with p 6= 0.5 the (cumulative) distribution function F ′
n(x) is com-

plicated. Let R ′
n denote the length of the longest run in the sequence of n coin

tossings. That is the maximum of the longest head run and the longest tail
run. Let F ′

n be the distribution function of R ′
n.

F ′
n(x) = P(R ′

n ≤ x) =

n∑

k=0

C
(k)

n (x)pkqn−k (4)

where C
(k)

n (x) is the number of strings of length n with exactly k heads, but
not more than x of heads and not more than x of tails occur consecutively (p
is the probability of a head and q = 1 − p). First consider

C
(k)

m+k(x) = Cx+1(m, k). (5)
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Here Ct(m, k) denotes the number of strings of m indistinguishable objects
of type A and k indistinguishable objects of type B in which no t-clump (run
of length t) occurs. (A and B may interpret head and tail, respectively.) We
have the following recursive formulas for Ct(m, k).

Proposition 2 (See [2].)

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) −

t−1∑

i=1

Ct(m − t, k − i) + et(m, k), (6)

where

et(m, k) =






1, if m = 0 and 0 ≤ k < t,

−1, if m = t and 0 ≤ k < t,

0, in all other cases
,

moreover if m = k = 0, then Ct(0, 0) = 1, if m or k is negative, then
Ct(m, k) = 0.

We give a detailed proof which is not contained in [2].

Proof.

Case m = 0.
If 0 ≤ k < t, then Ct(0, k) = 1, because this means that there is only one

type of the elements but the number of objects is less than the length of the
run. So there can not be any t run. As the elements are indistinguishable,
this means only one order. In this case (6) means 1 = 0 − 0 + 1. For example:
C3(0, 2) = C3(−1, 2) + C3(−1, 1) + C3(−1, 0) − [C3(−3, 1) + C3(−3, 0)] + 1 =

0 + 0 + 0 − [0 + 0] + 1 = 1.

If k ≥ t, then Ct(0, k) = 0, because there is only one type of the elements,
but the number of objects is greater or equal to the length of the run. So
there is no one sequence in which there is no t run. For example: C3(0, 4) =

C3(−1, 4) + C3(−1, 3) + C3(−1, 2) − [C3(−3, 3) + C3(−3, 2)] + 0 = 0 + 0 + 0 −

[0 + 0] + 0 = 0.

In case of 0 < m < t our formula (6) is the following.

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) − 0 + 0.

Because this case means the following

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run among them
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The number of these sequences is: Ct(m,−1, k − i). As m < t, so there can
not be t run from A, so we do not need to subtract anything. For example:
C3(2, 2) = C3(1, 2)+C3(1, 1)+C3(1, 0)− [C3(−1, 1)+C3(−1, 0)]+ 0 = 3+ 2+

1 − [0 + 0] + 0 = 6.

The case of m = t and 0 ≤ k < t.

This means that there are less than t of B elements, and the number of A
elements is equal to t. In this case our formula is the following: Ct(m, k) =∑t−1

i=0 Ct(m − 1, k − i) −
∑t−1

i=1 Ct(0, k − i) − 1. The first sum consists of k + 1

positive terms (not t), when the i-th term starts with i of B objects, then
follows A, then follows a sequence consisting of m − 1 A and k − i B and not
containing t run.

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run

But there is a ’bad’ term in each of them, when the m = t A objects are
consecutive. As the second sum consists of k terms, so the above k + 1 bad
cases are subtracted. For example: C3(3, 2) = C3(2, 2) + C3(2, 1) + C3(2, 0) −

[C3(0, 1) + C3(0, 0)] − 1 = 6 + 3 + 1 − [1 + 1] − 1 = 7.

In the case of m = t and k ≥ t, our formula is the following

Ct(m, k) =

t−1∑

i=0

Ct(m − 1, k − i) −

t−1∑

i=1

Ct(0, k − i) + 0.

If i = 0 in the first sum, then our possibility is the following

A . . . A . . . B . . .︸ ︷︷ ︸

k of B, (m−1) of A

and there is no t-run

The number of these sequences is Ct(m − 1, k). Seemingly there is one ’bad’
event among them, when in the second part starts with m − 1 A objects and
they make a t run with the very first A object. But the k B objects are in
the end of the second part and they would make a t run, so the above ’bad’
situation is not included in Ct(m − 1, k).

If i = 1, 2, . . . , t − 1, then we have

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run
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The number of these sequences is Ct(m − 1, k − i). But there can be a ’bad’
event in this situation, when all objects A (m = t) are next to each other, so
we have to subtract Ct(0, k − i) (it can be equal to 0 as well). For example:
C3(3, 4) = C3(2, 4) + C3(2, 3) + C3(2, 2) − [C3(0, 3) + C3(0, 2)] + 0 = 6 + 7 +

6 − [0 + 1] + 0 = 18.

Case m > 0 and m > t.
Our sequence may start with i (i is less than t) same type objects (for

example with B) then follows a different one (A) and ends with a string without
t run.

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−1) of A,

and there is no t-run

The number of these sequences is:
∑t−1

i=1 Ct(m − 1, k − i).
But among them there may be sequences when there are same A objects

after the individual A, so that together there are t consecutive A objects and
after them there is no t run

B . . . B︸ ︷︷ ︸
i of B

A . . . A︸ ︷︷ ︸
t of A

. . . B . . . A . . .︸ ︷︷ ︸

(k− i) of B, (m−t) of A and

there is no t-run

The number of these strings is
∑t−1

i=1 Ct(m− t, k− i), that we have to subtract
from the previous sum. But in these there can be such sequences, when A
object stands after the t run of A, so there can be another t run. The number
of these can be denoted by

∑t−1
i=1 C∗

t(m − t, k − i).
What happens is if i = 0, so our sequence starts with A? In this case the

first object is A and then there is no t run

A . . . A . . . B . . .︸ ︷︷ ︸

k of B, (m−1) of A

and there is no t-run

The number of these strings is Ct(m − 1, k). But in these strings there can be
some sequences starting with t run and then there is no t run

A . . . A︸ ︷︷ ︸
t of A,

B . . . B︸ ︷︷ ︸
i of B

A . . . B . . . A . . .︸ ︷︷ ︸

(m−t) of A, (k− i) of B

and there is no t-run

(1 ≤ i ≤ (t−1))
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The numbers of these strings is
∑t−1

i=1 C∗
t(m−t, k−i), that we have to subtract

from the previous sum.
Summarizing our results we get the following

Ct(m, k) =

t−1∑

i=1

Ct(m−1, k−i)−

{
t−1∑

i=1

Ct(m − t, k − i) −

t−1∑

i=1

C∗
t(m − t, k − i)

}

+

+

{

Ct(m − 1, k) −

t−1∑

i=1

C∗
t(m − t, k − i)

}

+ et(m, k).

For example: C3(5, 2) = C3(4, 2)+C3(4, 1)+C3(4, 0)−[C3(2, 1)+C3(2, 0)]+0 =

6 + 1 + 0 − [3 + 1] + 0 = 3.

So recursive formula (6) is satisfied. �

Proposition 3 (See [2].) Let t ≥ 2. Then

Ct(m, k) = Ct(m−1, k)+Ct(m, k−1)−Ct(m−t, k−1)−Ct(m−1, k−t) (7)

+Ct(m − t, k − t) + e∗t(m, k),

where

e∗t(m, k) =






1, if (m, k) = (0, 0) or (m, k) = (t, t),

−1, if (m, k) = (0, t) or (m, k) = (t, 0),

0, in all other cases,

moreover if m = k = 0, then Ct(0, 0) = 1, if m or k is negative, then
Ct(m, k) = 0.

Here we give a proof being different from the one in [2].
Proof. Our sequence may start either with A or B

A . . . A . . . B . . .︸ ︷︷ ︸
(m−1) of A and k of B





The number of these sequences is Ct(m − 1, k).

B . . . A . . . B . . .︸ ︷︷ ︸
m of A and (k−1) of B





The number of these sequences is Ct(m, k − 1).
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We have to subtract the number of those sequences in which after the first A
element there are t − 1 consecutive A’s (so there is a t-clump) and then there
is a different element and there is a string with no t-clump

A . . . A︸ ︷︷ ︸
t of A

B . . . A . . . B . . .︸ ︷︷ ︸
(m−t) of A and (k−1) of B






The number of these sequences is
Ct(m − t, k − 1).

B . . . B︸ ︷︷ ︸
t of B

A . . . A . . . B . . .︸ ︷︷ ︸
(m−1) of A and (k−t) of B






The number of these sequences is
Ct(m − 1, k − t).

But these cases contain the following sequences as well.
The sequence starts with t consecutive A’s followed with t consecutive B’s

and ends with a string containing m − t A and k − t B elements and not
containing t clump but starting with A. The number of these sequences is

C
(A)
t (m−t, k−t). Changing the role of A and B we get again C

(B)
t (m−t, k−t)

sequences. But for the sum of them we have C
(A)
t (m − t, k − t) + C

(B)
t (m −

t, k − t) = Ct(m − t, k − t).

Summarizing the above statements we can get our formula

Ct(m, k) = Ct(m − 1, k) + Ct(m, k − 1)−

− {Ct(m − t, k − 1) + Ct(m − 1, k − t) − Ct(m − t, k − t)} + e∗t(m, k).

�

To see how these work, let us calculate some data in case where t = 3 and
m and k are less than 10:

m�k 0 1 2 3 4 5 6 7 8 9

0 1 1 1 0 0 0 0 0 0 0

1 1 2 3 2 1 0 0 0 0 0

2 1 3 6 7 6 3 1 0 0 0

3 0 2 7 14 18 16 10 4 1 0

4 0 1 6 18 34 45 43 30 15 5

5 0 0 3 16 45 84 113 114 87 50

6 0 0 1 10 43 113 208 285 300 246

7 0 0 0 4 30 114 285 518 720 786

8 0 0 0 1 15 87 300 720 1296 1823

9 0 0 0 0 5 50 246 786 1823 3254



224 I. Fazekas, Zs. Karácsony, Zs. Libor

For example C3(6, 5) = (84 + 45 + 16) − (18 + 14) = 113. (See the numbers
in bold style in the above table.)

The number of terms on the right hand side of (6), increases with t, but in
formula (7), the right hand side has only six terms no matter how large t is.

Let p denote the probability of a head. To find the asymptotic behaviour of
R ′

n, denote by Vn(p) the probability that the longest run in n trials is formed
by heads. Then, by Theorem 5 of [8],

lim
n→∞

Vn(p) =

{
0, if 0 ≤ p < 1/2,

1, if 1/2 < p ≤ 1.
(8)

Therefore, if p > 1/2, the asymptotic behaviour of R ′
n is the same as that of

Rn.
It means that ”the one with lower chances” will not intervene in the for-

mation of the longest run. When n is sufficiently large, the values that
F ′

n(x) are well approximated by the values of Fn(x) calculated for the case
of P(head) = max{p, 1−p}. The longest run will almost certainly be composed
of whichever is more likely between heads and tails.

4 Numerical results, simulations

For numerical calculation we used MATLAB software. The data of the com-
puter are INTEL Core2 Quad Q9550 processor, 4Gb, memory DDR3. The
following table shows some running times

p = 0.6

n repetition running time
3,100 20.000 172.6209 sec
1,000 20.000 15.4258 sec

250 20.000 2.8452 sec
30 20.000 2.0678 sec

We calculated the distributions of Rn and R ′
n. We considered the precise

values obtained by recursion, the asymptotic values offered by asymptotic
theorems, and used simulation with 20.000 repetitions. On the figures below
× denotes the result of the recursion, o belongs to the asymptotic result,
while the histogram shows the relative frequencies calculated by simulation.
If n is small, the recursive algorithm is fast, but it slows down if n increases.
For biased coin we used p = 0.6. We show the results for short trials (n = 30),
medium trials (n = 250), and long trials (n = 1000 and n = 3100). We can
see from the results that the asymptotic theorem does not give good (close to
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the recursive) results for small n. But we should say that if n > 3000, then the
results of the recursion and the results of the asymptotic theorem are almost
the same. As the algorithm is slowing down, we offer to use the asymptotic
theorem instead of the recursion in case of large n. The asymptotic value is a
good approximation if n ≥ 1000. The figures below show that the distribution
of R ′

n is far from that of Rn for small n (n = 30). However, they are practically
the same if n is large.

If p is much larger than 1/2, the distribution of R
′

n is quite close to Rn for
moderate values of n as well. These facts give numerical evidence of (8).

0 5 10 15 2000.050.10.150.20.25
f requency

simulationrecursiveasymptotic

0 5 10 15 20 2500.050.10.150.20.25
f requency

simulationrecursiveasymptotic

Distribution of the longest head run Distribution of the longest run
p = 0.6, n = 30. p = 0.6, n = 30.
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