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Abstract. The purpose of the present paper is to study the properties
of the ν-curvature tensor in C-reducible Finsler space and conformal ν-
curvature tensor in C3-like Finsler space Fn of dimension (n ≥ 4), in
which the conformal Cartan torsion tensor Cijk is said to be a conformal
C3-like Finsler space.

1 Preliminaries

Let Fn = (Mn, L) be a Finsler space on a differential manifold M endowed
with a fundamental function L(x,y).
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We use the following notations [2, 6]:

a) gij =
1

2
∂̇i∂̇jL

2, gij = (gij)
−1, ∂̇i =

∂

∂yi
,

b) Cijk =
1

2
∂̇kgij, Ck

ij =
1

2
gkm( ˙∂mgij),

c) hij = gij − lilj, hi
k = δi

k − lilk,

d) mi = bi − βL−1li, (1)

e) Ch
ijlh = 0,

f) hi
kmi = mk,

g) limi = 0,

where li, mi and ni are the unit vectors, and hij is a angular metric tensor.

Definition 1 Let Fn = (Mn, L(x, y)) and F
n

= (Mn, L(x, y)) be two Finsler
spaces on the same underlying manifold Mn. If the angle in Fn is equal to
that in F

n
for any tangent vectors, then Fn is called conformal to F

n
and the

change L → L = eσL of the metric is called a conformal change and σ(x) is a
conformal factor.

Example 1 We consider a Finsler space Fn = (Mn, L(α, β)), where α is a
Riemannian metric, β is a 1-form and a conformal change L(α, β) → L =

eσ(x)L(α, β). Since L(α, β) is assumed to be (1)p-homogeneous in α and β,
we get L = L(α, β), where α = eσ(x)α and β = eσ(x)β. Thus the conformal
change gives rise to the change (α, β) −→ (α, β) = (eσ(x)α, eσ(x)β) of the pair
(α, β) independently of the form of the function L(α, β). Thus we also get
the conformal change α → α = eσ(x)α of the associated Riemannian space
Rn = (Mn, α).

Under the conformal change, we get the following relations [3, 4]:

a) gij = e2σgij, gij = e−2σgij,

b) Cijk = e2σCijk, C
i

jk = Ci
jk, C

i

ik = Ck = Ci
ik = Ck,

c) l
i
= e−σli, li = eσli, yi = e2σyi, (2)

d) hij = e2σhij, h
i

j = hi
j,

e) L = eσL,

f) mk = eσmk.
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Definition 2 ([1]) A Finsler space is said to be C-reducible if it satisfies the
equation

Cijk = (Cihjk + Cjhki + Ckhij)/(n + 1). (3)

Definition 3 A conformal Finsler space F
n

is said to be a semi-C-reducible
conformal Finsler space if Cijk is of the form,

Cijk = e2σ

[

p

(n + 1)
{hijCk + hjkCi + hkiCj} +

q

C2
CiCjCk

]

.

There are three kinds of torsion tensors in Cartan theory of Finsler space Fn.
Two of them are (h)hν-torsion tensor Cijk and (ν)-torsion tensor Pijk, which
are symmetric in all its indices. It is obvious that Fn is Riemannian if the
tensor Cijk vanishes. For a three dimensional Finsler space F3, Cijk is always
written in the form [5]

LCijk = Hmimjmk − JU(ijk){mimjnk} + IU(ijk){minjnk} + Jninjnk, (4)

where U(ijk){} denotes the cyclic permutation of the indices i, j, k and addition
H, I and J are main scalars; we assume that they are invariant under conformal
change and (li, mi, ni) is Moor’s frame. Here li = ∂̇iL is the unit vector along
the element of support, mi is the unit vector along Ci, i.e., mi = Ci/C, where
C2 = gijCiCj and ni is a unit vector orthogonal to the vector li and mi.

Example 2 The C-reducible Finsler space (3) it is written for a three dimen-
sional case as

4Cijk = hijCk + hjkCi + hkiCj. (5)

The unit vector mi = Ci

C
is orthogonal to li, because Ciy

i = 0. Therefore
equation (5) can be written as

4LCijk = LC [3mimjmk + {mimjnk + minjmk + nimjmk}] , (6)

comparing equations (4) and (6) we have, 4H = 3LC, LC = (H + I) and
J = 0. So we get H = 3I. Conversely, H = 3I and LC = H + I lead to
the above. Therefore the necessary and sufficient condition for C-reducible is
H = 3I, LC = (H + I) and J = 0.

Under conformal change, equation (4) can be written as,

LCijk = Hmimjmk − JU(ijk){mimjnk} + IU(ijk){minjnk} + Jninjnk (7)
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Suppose H, I and J are conformal invariants, then equation (7) reduces to

LCijk = e3σLCijk.

The angular metric tensor hij in F3 can be written as [5]

hij = mimj + ninj. (8)

Under conformal change, equation (8) can be written as

hij = mimj + ninj,

hij = e2σ(mimj + ninj).

After simplification, equation (7) can be written as

Cijk = U(ijk)(hijak + CiCjbk), (9)

where

ak =
1

L

{

Imk +
J

3
nk

}

,

bk =
1

LC
2

{(

H

3
− I

)

mk −
4J

3
nk

}

.

Then – by using (2(e),(f)) – the above equation becomes

ak =
1

L

{

Imk +
J

3
nk

}

,

bk =
e2σ

LC2

[(

H

3
− I

)

mk −
4J

3
nk

]

.

Substitute ak and bk in (9), we get,

Cijk = U(ijk)(e
2σhijak + e2σCiCjbk),

Cijk = e2σU(ijk)(hijak + CiCjbk). (10)

The equation (10) can also be written in the form of

C
i

jk = e2σU(ijk)(hjkai + CjCkbi). (11)

A Finsler space Fn (n ≥ 4) is called a C3-like conformal Finsler space if there
exist two vector fields ak and bk, which are positively homogenous of degree
-1 and +1, respectively.
The purpose of the present paper is to find the ν-curvature tensor of the
conformal Finsler space F

n
when it satisfies (10).
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2 Properties of C3-like conformal Finsler space

Let Cijk be the indicatory tensor and contract equation (10) with gjk, we get

Cijkgjk = e2σ(hijak + CiCjbk + hjkai + CjCkbi + hkiaj + CkCibj)g
jk,

Ci = (CiCb + (n + 1)ai + C2bi + CiCb),

Ci − 2CiCb = ((n + 1)ai + C2bi),

Ci(1 − 2Cb) = (n + 1)ai + C2bi, (12)

where Cb = Cib
i.

Lemma 1 The three vectors ai, bi, Ci are linearly dependent vectors.

Contracting (12) with Ci, we get

(1 − 2Cb)CiC
i = (n + 1)aiC

i + C2biC
i,

(1 − 2Cb)C2 = (n + 1)Ca + C2Cb,

(1 − 2Cb)C2 − C2Cb = (n + 1)Ca,

(1 − 3Cb)C2 = (n + 1)Ca.

Lemma 2 If Ci is perpendicular to bi, then Ca = C2

(n+1)
, and if Ci is perpen-

dicular to ai, then Cb = 1
3
.

Now equation (12) can be written as

bi =
(1 − 2Cb)Ci

C2
−

(n + 1)ai

C2
. (13)

Substitute (13) in equation (10), we get

Cijk = e2σU(ijk) {hijak + CiCjbk} ,

Cijk = e2σU(ijk)

[

hijak + CiCj

{
(1 − 2Cb)Ck

C2
−

(n + 1)ak

C2

}]

,

Cijk = e2σU(ijk)

{

hijak −
(n + 1)

C2
CiCjak

}

+ e2σ3(1 − 2Cb)

C2
CiCjCk.

If ai is parallel to Ci, i.e. ai = p
n+1

Ci, where p is some scalar, then Cijk

reduces to

Cijk = e2σ p

(n + 1)
{hijCk + hjkCi + hkiCj} −

e2σ3P

C2
CiCjCk +

+
e2σ3(1 − 2Cb)

C2
CiCjCk,
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Cijk = e2σ p

(n + 1)
{hijCk + hjkCi + hkiCj} +

3e2σCiCjCk

C2
(1 − 2Cb − P),

Cijk = e2σ

[

p

(n + 1)
{hijCk + hjkCi + hkiCj} +

q

C2
CiCjCk

]

,

where q = 3(1 − 2Cb − p). Hence we state:

Theorem 1 A C3-like conformal Finsler space reduce to a semi-C-reducible
conformal Finsler space if the vectors ai and bi are parallel to Ci.

3 The ν-curvature tensor of C-redusible Finsler space

The ν-curvature tensor Shijk of Fn is given by

Shijk = ChkrC
r
ij − ChjrC

r
ik. (14)

Using (3), the above equation can be written as

Shijk = [CiCjhhk + ChCkhij − CiCkhhj − ChCjhik]/(n + 1)2. (15)

Therefore equation (15) reduces to,

Shijk = Ci[Cjhhk − Ckhhj]/(n + 1)2 + Ch[Ckhij − Cjhik]/(n + 1)2. (16)

Contracting (16) with respect to yi, and after some simplification, we get

0 = Ch[Ckyj − Cjyk]/(n + 1)2,

Ckyj = Cjyk. (17)

Theorem 2 The C-reducible Finsler space and ν-curvature tensor Shijk sa-
tisfies the symmetric property and it holds (17).

Corollary 1 Under conformal change, the C-reducible condition and υ-curvature
tensor also satisfy property (17).

Example 3 Let Tij be a tensor of (0,2)-type of a two dimensional Finsler
space and Tαβ be scalar components of Tij with respect to the Berwald frame:

Tij = T11lilj + T12limj + T21milj + T22mimj.

If Tij is symmetric, we have T12 = T21, and if Tij is skew-symmetric, then
T0j = 0, Tij = 0; therefore, by this condition, the υ-curvature tensor Shijk of
CΓ of any two dimensional Finsler space vanishes identically.
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4 The ν-curvature tensor of C3-like conformal Finsler

space

Under conformal change, equation (14) can be written as,

Shijk = e2σ[ChkrC
r
ij − ChjrC

r
ik],

using (10), (11), the above equation becomes

Shijk = e2σ [{hhkar + ChCkbr + hkrah + CkCrbh + hrhak + CrChbk} ×

{hija
r + CiCjb

r + hr
jai + CjC

rbi + hr
iaj + CrCibj} −

{hhjar + ChCjbr + hjrah + CjCrbh + hrhaj + CrChbj} ×

{hikar + CiCkbr + hr
kai + CkCrbi + hr

iak + CrCibk}] .

After some simplification and rearrangement, we get the following equation:

Shijk = e2σ

[{

hhk

(

a2

2
hij + aiaj + CiCjarb

r + (Cibj + Cjbi)Ca

)}

×

{

hij

(

a2

2
hhk + ahak + ChCkarb

r + (Ckbh + Chbk)Ca

)}

−

{

hhj

(

a2

2
hik + aiak + CiCkarb

r + (Ckbi + Cibk)Ca

)}

×

{

hik

(

a2

2
hhj + ahaj + ChCjarb

r + (Cjbh + Chbj)Ca

)}

+

C2(Cibh − Chbi)(Ckbj − Cjbk)
]

.

The above equation can be rewritten in the form:

Shijk = e2σ[hhkBij + hijBhkl − hhjBik − hikBhj

+C2(Cibh − Chbi)(Ckbj − Cjbk)], (18)

where Bij = a2

2
hij + aiaj + CiCjarb

r + (Cibj + Cjbi)Ca.

Theorem 3 The conformal ν-curvature tensor Shijk on a C3-like conformal
Finsler space reduces to equation (18).
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Multiple radially symmetric solutions for a

quasilinear eigenvalue problem
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Abstract. In this paper we study an eigenvalue problem in R
N, which

involves the p-Laplacian (1 < p < N), and the nonlinear term has a global
(p − 1)-sublinear growth. We guarantee an open interval of eigenvalues,
for which the eigenvalue problem has three distinct radially symmetric
solutions in a weighted Sobolev space. We use a compact embedding
result of Su, Wang and Willem ([6]) and a Ricceri-type three critical
points theorem of Bonanno ([1]).

1 Main result

Let V, Q : (0,∞) → (0,∞) be two continuous functions satisfying the following
hypotheses

(V) there exist real numbers a and a0 such that

lim inf
r→∞

V(r)

ra
> 0, lim inf

r→0

V(r)

ra0
> 0.

(Q) there exist real numbers b and b0 such that

lim inf
r→∞

Q(r)

rb
< ∞, lim inf

r→0

Q(r)

rb0
< ∞.
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Let C∞
0 (RN) denote the collection of smooth functions with compact support

and

C∞
0,r(R

N) = {u ∈ C∞
0 (RN)|u is radially symmetric}.

We recall that a function u ∈ C∞
0 (RN) is radially symmetric, if u(|x|) = u(x),

for any x ∈ R
N.

Let D
1,p
r (RN) be the completion of C∞

0,r(R
N) under

||u||p =

∫

RN

|∇u|pdx.

Define the Lebesgue spaces for p ≥ 1 and q ≥ 1:

Lp(RN; V) = {u : R
N → R|u is measurable,

∫

RN

V(|x|)|u|pdx < ∞}

Lq(RN; Q) = {u : R
N → R|u is measurable,

∫

RN

Q(|x|)|u|qdx < ∞}

with the corresponding norms

||u||Lp(RN ;V) =

(∫

RN

V(|x|)|u|pdx

)1/p

,

||u||Lq(RN ;Q) =

(∫

RN

Q(|x|)|u|qdx

)1/q

.

For these norms, we use the abbreviations: ||u||Lp(RN ;V) = ||u||p,V and
||u||Lq(RN ;Q) = ||u||q,Q.

Then define W
1,p
r (RN; V) = D

1,p
r (RN) ∩ Lp(RN; V), which is a Banach space

under

||u||
p
W =

∫

RN

(|∇u|p + V(|x|)|u|p)dx.

In order to state the embedding theorem used in our proofs, we need to intro-
duce the following notations:

q∗ =






p2(N − 1 + b) − ap

p(N − 1) + a(p − 1)
, b ≥ a > −p,

p(N + b)

N − p
, b ≥ −p ≥ a,

p, b ≤ max{a, −p}



Multiple radially symmetric solutions 111

q∗ =






p(N + b0)

N − p
, b0 ≥ −p, a0 ≥ −p,

p2(N − 1 + b0) − a0p

p(N − 1) + a0(p − 1)
, −p ≥ a0 > −N−1

p−1
p, b0 ≥ a0,

∞, a0 ≤ −N−1
p−1

p, b0 ≥ a0.

We shall use the following embedding theorem.

Theorem 1 [6, Theorem 1.] Let 1 < p < N. Assume (V) and (Q). Then we

have the embedding

W1,p
r (RN; V) →֒ Lq(RN; Q) (1)

for q∗ ≤ q ≤ q∗, when q∗ < ∞ and for q∗ ≤ q < ∞, when q∗ = ∞.

Furthermore, the embedding is compact for q∗ < q < q∗. And if b <

max{a, −p} and b0 > min{−p, a0}, the embedding is also compact for q = p.

Therefore, supposing besides (V) and (Q) the condition

(ab) b < max{a, −p} and b0 > min{−p, a0},

the embedding
W1,p

r (RN; V) →֒ Lp(RN; Q) (2)

is also compact.
The collection of those functions, which satisfy the conditions (V), (Q) and
(ab) is not empty. For example, taking

a = p, b = −p − 1, a0 = −p, b0 = −p + 1,

the functions V and Q defined by

V(r) = max

{

1,
1

rp

}

,

Q(x) = min

{
1

rp+1
,

1

rp−1

}

satisfy all three assumptions for every 1 < p < N.

For λ > 0, we consider the following problem:

(Pλ)






−∆pu + V(|x|)|u|p−2u = λQ(|x|)f(u) in R
N

|u(x)| → 0, as |x| → ∞
,
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where f : R → R is a continuous function.
We say that u ∈ W

1,p
r (RN; V) is a weak radial solution of the problem (Pλ)

if
∫

RN

(|∇u|p−2∇u∇v + V(|x|)|u|p−2uv)dx − λ

∫

RN

Q(|x|)f(u(x))v(x)dx = 0,

for every v ∈ W
1,p
r (RN; V).

We assume the following conditions on f :

(f1) there exists C > 0 such that |f(s)| ≤ C(1 + |s|p−1), for every s ∈ R;

(f2) lim
s→0

f(s)

|s|p−1
= 0;

(f3) there exists s0 ∈ R such that F(s0) > 0, where F(s) =
∫s

0
f(t)dt.

Our main result is the following

Theorem 2 Let f : R → R be a continuous function which satisfies (f1), (f2),

(f3), and assume that (V), (Q) and (ab) are verified. Then, there exists an

open interval Λ ⊂ (0,∞) and a constant µ > 0 such that for every λ ∈ Λ prob-

lem (Pλ) there are at least three distinct weak radial solutions in W
1,p
r (RN; V),

whose W
1,p
r (RN; V)–norms are less than µ.

2 Auxiliary results

In this section we give a few preliminary results. These will be used in the
proof of the main result in the next section.
We denote the best embedding constant of the embedding (1) by Cq, i.e. we
have the inequality:

||u||q,Q ≤ Cq||u||W.

We define the energy functional corresponding to (Pλ) as

Eλ : W1,p
r (RN; V) → R

Eλ(u) =
1

p
||u||

p
W − λJ(u),

where J : W
1,p
r (RN; V) → R is the functional defined by

J(u) =

∫

RN

Q(|x|)F(u(x))dx.
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The functional Eλ is of class C1 (see for instance [3, Lemma 4]), and its deriva-
tive is given by

〈E ′
λ(u), v〉 =

∫

RN

(|∇u|p−2∇u∇v+V(|x|)|u|p−2uv)dx−λ

∫

RN

Q(|x|)f(u(x))v(x)dx,

for every v ∈ W
1,p
r (RN; V). Therefore, the critical points of the energy func-

tional are exactly the weak radial solutions of the problem (Pλ).

Lemma 1 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R is sequen-

tially weakly lower semicontinuous.

Proof. Due to (f2), for arbitrary small ε > 0, there exists δ > 0 such that

|f(s)| ≤ εp|s|p−1, for every s ≤ |δ|. (3)

Combining this inequality with condition (f1), we obtain

|f(s)| ≤ εp|s|p−1 + K(δ)r|s|r−1, for every s ∈ R, (4)

where r ∈]q∗, q
∗[ is fixed and K(δ) > 0 does not depend on s.

Let {un} be a sequence from W
1,p
r (RN; V), which is weakly convergent to some

u ∈ W
1,p
r (RN; V). Then there exists a positive constant M > 0 such that

||un||W ≤ M, ||un − u||W ≤ M, ∀n ∈ N. (5)

We claim that |J(un)−J(u)| → 0 as n → ∞. Using inequality (4), the standard
mean value theorem for F and the Hölder’s inequality, we obtain:

|J(un) − J(u)| ≤

∫

RN

Q(|x|)|F(un(x)) − F(u(x))|dx ≤

≤

∫

RN

Q(|x|)|f(θun(x) − (1 − θ)u(x))||un(x) − u(x)|dx ≤

≤ εp

∫

RN

Q(|x|)|θun(x) − (1 − θ)u(x)|p−1|un(x) − u(x)|dx +

+ K(δ)r

∫

RN

Q(|x|)|θun(x) − (1 − θ)u(x)|r−1|un(x) − u(x)|dx ≤

≤ εp

∫

RN

Q(|x|)(|un(x)|p−1 + |u(x)|p−1)|un(x) − u(x)|dx +

+ K(δ)r

∫

RN

Q(|x|)|(|un(x)|r−1 + |u(x)|r−1)|un(x) − u(x)|dx ≤

≤ εp(||un||
p−1
p,Q + ||u||

p−1
p,Q)||un − u||p,Q +

+ K(δ)r(||un||r−1
r,Q + ||u||r−1

r,Q)||un − u||r,Q.
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Now, using the embeddings (1), (2) and the inequalities (5) we have

|J(un) − J(u)| ≤ εpCp
p(||un||

p−1
W + ||u||

p−1
W )||un − u||W +

+ K(δ)rCr−1
r (||un||r−1

W + ||u||r−1
W )||un − u||r,Q ≤

≤ 2εpCp
pMp + 2K(δ)rCr−1

r Mr−1||un − u||r,Q.

Since the embedding W
1,p
r (RN; V) →֒ Lr(RN; Q) is compact for r ∈]q∗, q

∗[,
we have that ||un − u||r,Q → 0, whenever n → ∞. Besides that, ε is chosen
arbitrarily, so the claim follows from the last inequality. �

Lemma 2 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R is coercive.

Proof. Let η be a constant such that

0 < η <
1

pC
p
p

, (6)

where Cp is the best embedding constant of the embedding W
1,p
r (RN; V) →֒

Lp(RN; V). Due to conditions (f1) and (f2), there is a function k ∈ L1(RN; Q)

such that
|F(s)| ≤ η|s|p + k(x),∀s ∈ R,∀x ∈ R

N. (7)

Then, we obtain

Eλ(u) ≥
1

p
||u||

p
W − η

∫

RN

Q(|x|)|u(x)|pdx −

∫

RN

Q(|x|)k(x)dx ≥

≥
1

p
||u||

p
W − ηCp

p||u||
p
W − ||k||1,Q =

=

(
1

p
− ηCp

p

)
||u||

p
W − ||k||1,Q

By the choice of the function k, we have that ||k||1,Q is bounded. Therefore,
using the inequality (6), we obtain that Eλ(u) → ∞, as ||u||W → ∞, concluding
the proof. �

Lemma 3 For every λ > 0, the functional Eλ : W
1,p
r (RN; V) → R satisfies the

Palais-Smale condition.

Proof. Let {un} ⊂ W
1,p
r (RN; V) be a (PS)-sequence for the function Eλ, i.e.

(1) {Eλ(un)} is bounded;
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(2) E ′
λ(un) → 0.

Since Eλ is coercive, we have that {un} is bounded. The reflexivity of the
Banach space W

1,p
r (RN; V) implies the existence of a subsequence (notated also

by {un}), such that {un} is weakly convergent to an element u ∈ W
1,p
r (RN; V).

Therefore, we have

〈E ′
λ(u), un − u〉 → 0 as n → ∞. (8)

Because the inclusion W
1,p
r (RN; V) →֒ Lp(RN; V) is compact, we have that

un → u strongly in Lp(RN; V). We would like to prove that un converges
strongly to u in W

1,p
r (RN; V). For this, we will use the following estimates

from [2, Lemma 4.10]

|ξ − ζ|p ≤ M1(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2 (9)

|ξ − ζ|2 ≤ M2(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ| + |ζ|)2−p, for p ∈]1, 2[, (10)

where M1 and M2 are some positive constants. We separate two cases. In the
first case let p ≥ 2. Then we have:

||un−u||
p
W =

∫

RN

|∇un(x) − ∇u(x)|pdx +

∫

RN

V(|x|)|un(x) − u(x)|pdx

≤ M1

∫

RN

[
|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x)

]
(∇un(x) − ∇u(x))dx

+ M1

∫

RN

V(|x|)
[
|un(x)|p−2un(x) − |u(x)|p−2u(x)

]
(un(x) − u(x))dx

= M1(〈E
′
λ(un), un − u〉 − 〈E ′

λ(u), un − u〉 + λ〈J ′(un) − J ′(u), un − u〉)

≤ M1

(
||E ′

λ(un)||
W

1,p
r (RN ;V)∗

+ λ||J ′(un) − J ′(u)||
W

1,p
r (RN ;V)∗

)
||un − u||W

− M1〈E
′
λ(u), un − u〉.

Since un → u weakly in W
1,p
r (RN; V) and J ′ are compact (see [3, Lemma 4]),

we have that ||J ′(un)− J ′(u)||
W

1,p
r (RN ;V)∗

→ 0 . Moreover ||E ′
λ(un)|| → 0, hence

using (8), we have that ||un − u||W → 0, as n → ∞.
In the second case, when 1 < p < 2, we recall the following result: for all
s ∈ (0,∞) there is a constant cs > 0 such that

(x + y)s ≤ cs(x
s + ys), for any x, y ∈ (0,∞). (11)

Then we obtain

||un − u||2W =

(∫

RN

|∇un(x) − ∇u(x)|pdx +

∫

RN

V(|x|)|un(x) − u(x)|pdx

) 2
p

(12)
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≤ cp

[(∫

RN

|∇un(x) − ∇u(x)|pdx

) 2
p

+

(∫

RN

V(|x|)|un(x) − u(x)|pdx

) 2
p

]
.

Now, using (10) and the Hölder inequalities, we get:

∫

RN

|∇un(x) − ∇u(x)|pdx =

∫

RN

(|∇un(x) − ∇u(x)|2)
p
2 dx ≤

≤ M2 ·

∫

RN

(
(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))

)p
2
·

·(|∇un(x)| + |∇u(x)|)
p(2−p)

2 dx =

= M2 ·

∫

Ω

[
(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))

]p
2
·

[(|∇un(x)| + |∇u(x)|)p]
2−p

2 dx =

≤ M̃2

(∫

RN

|∇un(x)|pdx +

∫

RN

|∇u(x)|pdx

) 2−p
2

·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

≤ M2

[(∫

RN

|∇un(x)|pdx

) 2−p
2

+

(∫

RN

|∇u(x)|pdx

) 2−p
2

]
·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

≤ M̂2 ·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)p
2

(
||un||

(2−p)p

2

W + ||u||
(2−p)p

2

W

)
.

Then, using again relation (11) and the above inequality, we have the estimate:

(∫

RN

|∇un(x) − ∇u(x)|pdx

) 2
p

≤ (13)

≤ M ′
2 ·

(∫

RN

(|∇un(x)|p−2∇un(x) − |∇u(x)|p−2∇u(x))(∇un(x) − ∇u(x))dx

)
·

(
||un||

2−p
W + ||u||

2−p
W

)
.
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We introduce the following notation: I(u) = 1
p
||u||

p
W. As we used before, the

directional derivative of I, in the direction v ∈ E is

〈I ′(u), v〉 =

∫

RN

|∇u(x)|p−2∇u(x)∇v(x)dx −

∫

RN

V(|x|)|u(x)|p−2u(x)v(x)dx.

Using the inequalities (12), (13) we have

||un − u||2W < M ′
2 · 〈I

′(un) − I ′(u), un − u〉 · (||un||
p−2
W + ||u||

2−p
W ).

Since un is bounded, the same argument as in the first case (when p ≥ 2)
shows that un converges to u strongly in W

1,p
r (RN; V).

Thus Eλ satisfies the (PS) condition for all λ > 0. �

Lemma 4

lim
t→0+

sup{J(u) : ||u||
p
W < pt}

t
= 0.

Proof. From inequality (4) we obtain:

|F(s)| ≤ ε|s|p + K(δ)|s|r, for every s ∈ R, (14)

where r ∈]q∗, q
∗[ is fixed and K(δ) does not depend on s. Then

J(u) ≤ ε||u||
p
p,Q + K(δ)||u||rr,Q.

Now, using emeddings (1), (2), we get:

J(u) ≤ εCp
p||u||

p
W + K(δ)Cr

r||u||rW.

Therefore,
sup{J(u) : ||u||

p
W < pt} ≤ εCp

ppt + K(δ)Cr
r(pt)

r
p .

Since ε is chosen arbitrarily and r > p, by dividing this last inequality with t

and taking the limit, whenever t → 0+, we conclude the proof. �

3 Proof of theorem 2

The main tool in the proof of Theorem 2 is a Ricceri-type critical points
theorem (see [4], [5]) refined by Bonanno in [1].

Theorem 3 (G. Bonanno [1]) Let X be a separable and reflexive real Banach

space, and let Φ, J : X → R be two continuously Gâteaux differentiable func-

tionals. Assume that
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(i) there exists x0 ∈ X, such that Φ(x0) = J(x0) = 0;

(ii) Φ(x) ≥ 0 for every x ∈ X;

(iii) there exists x1 ∈ X, ρ > 0, such that ρ < Φ(x1) and sup{J(x) : Φ(x) <

ρ} < ρ
J(x1)

Φ(x1)
.

(iv) the functional Φ − λJ is sequentially weakly lower semicontinuous, sa-

tisfies the Palais–Smale condition for every λ > 0 and it is coercive, for

every λ ∈ [0, ā], where ā =
ζρ

ρ
J(x1)

Φ(x1)
− sup

Φ(x)<ρ

J(x)

, with ζ > 1.

Then there is an open interval Λ ⊂ [0, ā] and a number σ > 0, such that for

each λ ∈ Λ, the equation Φ ′(x) − λJ ′(x) = 0 admits at least three distinct

solutions in X, having norm less than σ.

We also need the following result of Su, Wang, Willem.

Lemma 5 [6, Lemma 4] Assuming (V) with a > −N−1
p−1

p, there exists C > 0,

such that for all u ∈ W
1,p
r (RN; V)

|u(x)| ≤ C|x|
−

p(N−1)+a(p−1)

p2 ||u||W, |x| ≫ 1. (15)

Proof of Theorem 2. Let s0 ∈ R be from (f3), i.e. F(s0) > 0. We denote by
Br the N-dimensional closed ball with center 0 and radius r > 0.
Since Q and V are positive continuous functions, for an R > 0 there exist the
positive constants mQ, MQ, MV such that:

mQ = min
|x|≤R

Q(|x|), MQ = max
x≤R

Q(|x|);

MV = max
|x|≤R

V(|x|).

For a σ ∈]0, 1[ we define the function uσ : R
N → R by

uσ(x) =






0, if x ∈ R
N \ BR

s0, if x ∈ BσR
s0

R(1 − σ)
(R − |x|), if x ∈ BR \ BσR.
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It is clear that uσ belongs to W
1,p
r (RN; V). Denoting the volume of the ball

B1 by ωN, we obtain:

||uσ||
p
W =

∫

BσR

V(|x|)|s0|
pdx +

∫

BR\BσR

∣∣∣∣
s0

R(1 − σ)

∣∣∣∣
p

dx +

+

∫

BR\BσR

V(|x|)

∣∣∣∣
s0

R(1 − σ)

∣∣∣∣
p

(R − |x|)pdx ≤

≤ |s0|
pωNRN(σNMV + R−p(1 − σ)−p(1 − σN)) +

+|s0|
pR−p(1 − σ)−pMV

∫

BR\BσR

(R − |x|)pdx ≤

≤ |s0|
pωNRN(MV + R−p(1 − σ)−p(1 − σN))

and
J(uσ) ≥ ωNRN(mQF(s0)σ

N − MQ max
|t|≤|s0 |

F(t)(1 − σN)). (16)

By the choice of mQ and MQ, we have that 0 <
mQF(s0)

MQ max
|t|≤|s0 |

F(t)
< 1. Therefore,

we can choose a σ0 ∈





1 +

mQF(s0)

MQ max
|t|≤|s0 |

F(t)




− 1
N

, 1


 ⊆]0, 1[, such that

J(uσ0
) > 0. (17)

By Lemma 4 and inequality (16) it follows the existence of a positive constant
ρ0 > 0 so small that

ρ0 <
||uσ0

||
p
W

p
(18)

sup{J(u) : ||u||
p
W < ρ0}

ρ0

<
pJ(uσ0

)

||uσ0
||
p
W

. (19)

Using the Lemmas from the previous section and inequalities (18), (19), all the
assumptions of Theorem 3 are satisfied with the choices: E = W

1,p
r (RN; V),

Φ = 1
p
||u||

p
W, x1 = uσ0

, x0 = 0 and ζ = 1 + ρ0 and

a =
1 + ρ0

pJ(uσ0
)||uσ0

||
−p
W − sup{J(u) : ||u||

p
W < r}ρ−1

0

.

Then, there exists an open interval Λ ⊂ (0,∞) and a constant µ > 0 such
that for every λ ∈ Λ the equation Eλ = Φ − λJ admits at least three distinct
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critical points: u1
λ, u

2
λ, u

3
λ ∈ W

1,p
r (RN; V) such that

max{||u1
λ||W, ||u2

λ||W, ||u3
λ||W} < µ. (20)

It remains to show that |ui
λ(x)| → 0 as |x| → ∞, for i ∈ {1, 2, 3}. Using Lemma

5 and taking into account the estimate (20), the claim follows immediately. �
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Density of safe matrices
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Abstract. A binary matrix A of size m × n is called r-good if it con-
tains in each column at most r 1’s; the matrix is called r-schedulable if,
by deleting some zeros, the matrix becomes r-good ; A is called r-safe if
the first k (1 ≤ k ≤ n) columns of the matrix contain at most kr 1’s.

Let Z = [zij]m×n be a matrix of independent random variables, hav-
ing the common distribution P(zij = 1) = p and P(zij = 0) = 1 − p,
where 0 ≤ p ≤ 1. For m ≥ 1, lower and upper bounds are presented for
the asymptotic probability of the event that a concrete realization of Z

is 1-schedulable: the lower bound is connected with good, and the upper
bound with safe matrices. Further exact formula is given for the critical
probabilities scrit(m) defined as the supremum of probabilities, guaran-
teeing that the matrix Z is 1-safe with positive probability for arbitrary
value of n and m.

1 Introduction

Percolation is a very popular research area of combinatorics [2, 3, 5, 6, 9, 10,
11, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 52] and physics [15, 28, 36, 37, 38, 39,
42, 46].
In this paper we use and extend a mathematical model proposed by Peter
Winkler [53] and studied later among others in [13, 14, 19, 20, 33, 35, 46].
This model is also useful for the investigation of some scheduling problems of
parallel processes [40, 51] using resources requiring mutual exclusion [1, 7, 16,
21, 34, 45, 50].

AMS 2000 subject classifications: 60G50, 82B43, 68M20

Key words and phrases: random walk, percolation, scheduling of parallel processes
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According to the Winkler model, two processes share one unit of a resource.
We extend this model for m ≥ 2 processes and r > 0 units of the resource
requiring mutual exclusion. The rise of the number of processes results a
model describing the percolation in three or more dimensions.
Estimations of the probability of schedulability of processes are derived using
different methods, first of all by investigating of asymmetric random walks
across the x axis.

2 Formulation of the problem

Let m and n be positive integers, let r (0 ≤ r ≤ m) and p (0 ≤ p ≤ 1) be real
numbers and let

Z =









z11 z12 . . . z1n

z21 z22 . . . z2n

. . .

zm1 zm2 . . . zmn









be a matrix of independent random variables with the common distribution

P(zij = k) =

{
p, if k = 1 and 1 ≤ i ≤ m, 1 ≤ j ≤ n,

q = 1 − p, if k = 0 and 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Let

A =









a11 a12 . . . a1n

a21 a22 . . . a2n

. . .

am1 am2 . . . amn









be a concrete realization of Z.

The good, safe and schedulable matrices are defined as follows.
Matrix A is called r-good if the number of the 1’s is at most r in each column.
The number of different r-good matrices of size m×n is denoted by Gr(m, n),

and the probability that Z is good is denoted by gr(m, n, p).

Matrix A is called r-safe if

m∑

i=1

k∑

j=1

aij ≤ kr (k = 1, 2, . . . , n).

The number of different r-safe matrices of size m × n is denoted by Sr(m, n)

and the probability that Z is safe, is denoted by sr(m, n, p).
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If aij = 0, then it can be deleted from A. Deletion of aij means that we de-
crease the second indices of ai,j+1, . . . , aim and add aim = 0 to the ith row of
A.

Matrix A is called Winkler r-schedulable (shortly r-schedulable or r-
compatible) if it can be transformed into an r-good matrix B using dele-
tions. The number of different r-schedulable matrices of size m × n is de-
noted by Wr(m, n), and the probability that Z is r-schedulable is denoted by
wr(m, n, p). The function wr(m, n, p) is called r-schedulability function.

The functions gr(m, n, r), wr(m, n, r) and sr(m, n, r) are called the density of
the corresponding matrices. The asymptotic density of the good, safe and
schedulable matrices are defined as:

gr(m, p) = lim
n→∞

gr(m, n, p),

sr(m, p) = lim
n→∞

sr(m, n, p),

wr(m, p) = lim
n→∞

wr(m, n, p).

The critical probabilities defined as

wcrit,r(m) = sup{p | wr(m, p) > 0},

gcrit,r(m) = sup{p | gr(m, p) > 0},

and
scrit,r(m) = sup{p | sr(m, p) > 0}

represent special interest for some applications.
The aim of this paper is to characterise the density, asymptotic density and
critical probability of good, schedulable and safe matrices.
The starting point of our research is due to Péter Gács [20], proving that
w1(2, p) is positive for p small enough. His proof implies that wcrit,1(2) ≥
10−400.

2.1 Interpretation of the problem

Although the Winkler model was proposed to study the percolation, we de-
scribe a possible interpretation as a model of parallel processes. Let m pro-
cesses use r units of some resource R. The requirements of the process Pi are
modelled by the sequence ai1, ai2, . . . , aim. aij = 1 means that the process Pi

needs a unit of the given resource in the jth time unit. aij = 0 means that the
process Pi executes some background work in the jth time unit which can be
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delayed and executed after the last usage of R.
The special case m = 1 and r = 1 is the well-known ticket problem [52] or
ballot problem [17], while the special case m = 2 and r = 1 is the Winkler
model of percolation [20, 53].
The good matrices are schedulable without deletion of zeros. But some not
good matrices are schedulable, since they can be transformed into good matri-
ces using the permitted deletion operation. Safeness is a necessary condition
of schedulability. Therefore, the number of good matrices gives a lower bound
and the number of safe matrices results an upper bound for the number of
schedulable matrices.
Since we handle the model as a model of informatics, in the sequel we follow
the terminology used by Feller [17] in queueing theory.

3 Analysis

In this section first of all we investigate – using different methods – the function
of the asymptotic density of 1’s as the function of the probability p of the
appearance of 1’s and of the number of sequences m.

Some basic properties of the investigated functions (gr(m, n, p), wr(m, n, p)

and sr(m, n, p)) are the following:

• n ∈ N
+, r ∈ R and r ∈ [0, m], p ∈ R and p ∈ [0, 1];

• as the functions of n they are monotonically decreasing;

• as the functions of p they are monotonically decreasing;

• as the functions of m they are monotonically decreasing;

• as the functions of r they are monotonically increasing;

In the following we suppose that r = 1, that is in the column of the good
matrices at most one 1, and in the first k columns of the safe matrices at most
k 1’s are permitted. Since r everywhere equals 1, it is omitted as an index.

3.1 Preliminary results

In the further sections we need the following assertions.
Let Cn (n ∈ N

+) denote the number of binary sequences a1, a2, . . . , a2n,
containing n ones and n zeros in such a manner that each prefix a1, a2, . . . , ak

(1 ≤ k ≤ 2n) contains at most so many ones as zeros.
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Lemma 1 If n ≥ 0, then

Cn =
1

n + 1

(

2n

n

)

.

It is worth remark that Cn is the nth Catalan number, whose explicit form
appears in numerous books and papers [8, 30, 31, 32, 48, 52].

Lemma 2 If 0 ≤ x ≤ 1, then

f(x) = x

∞∑

k=0

1

k + 1

(

2k

k

)

(x(1 − x))k =

{ x

1 − x
, if 0 ≤ x < 1

2
,

1, if 1
2
≤ x ≤ 1.

Proof. See [47]. �

If m ≥ 2, then the columns containing only 0’s are called white (W), the
columns containing only 1’s are called black (B) and the remaining columns
are called gray (G).
If m ≥ 2, then each column of the matrix A is white or gray with probability
qm + mpqm−1, therefore g(m, n, p) =

(

qm + mpqm−1
)n

. If p > 0, then

g(m, p) = lim
n→∞

(

qm + pqm−1m
)n

= 0,

so the density of the good matrices tends to zero, when the number of the
columns tends to infinity.
If in the case m = 2 we delete the white columns from a good matrix, then
only gray columns remain in the matrix, that is, each row of the matrix is the

complementer of the other row.
The following simple assertion plays an important role in the following.

Lemma 3 If m ≥ 2, then the good matrices are schedulable, and the schedu-

lable matrices are safe.

Proof. If in every column of matrix A is at most one 1, then the first k

columns contain at most k 1’s.
If there is a k (1 ≤ k ≤ n), that the first k columns of matrix A contains more
1’s than k, then – according to the pigeonhole principle – there is at least one
column containing two 1’s. If we delete a zero from A, then the number of the
1’s in the first k columns does not decrease, therefore A is not schedulable. �

A useful consequence of this assertion is the following corollary.
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Corollary 1 If m ≥ 2, then

g(m, n, p) ≤ w(m, n, p) ≤ s(m, n, p),

g(m, p) ≤ w(m, p) ≤ s(m, p),

gcrit(m) ≤ wcrit(m) ≤ scrit(m).

3.2 Matrices with two rows

For the simplicity of the notations we analyse the function u(2, n, p) = 1 −

s(2, n, p) instead of s(2, n, p). At first we derive a closed formula for u(2, n, 0.5).

Lemma 4 If n ≥ 1, then

u(2, n, 0.5) =

n∑

i=1

⌊(i−1)/2⌋∑

j=0

2i−1−2jCj

(

i − 1

2j

)

4n−i. (1)

Proof. Let’s classify the possible matrices of size 2×n according to their first
such column, in which the cumulated number of 1’s became greater than the
number of 0’s. This column is called the deciding column of the matrix.
The index of the deciding column is 1, 2, . . . , n − 1 or n. The matrices of the
received classes can be further classified according to the number of black
columns before the deciding column: the possible values of this number are
0, 1, . . . , ⌊(n − 1)/2⌋.
The outer summing takes into account the deciding columns, while the inner
summing does the black columns before the deciding column. The binomial
coefficient mirrors the number of possibilities for the placement of the 2j black
and white columns in the i − 1 columns preceding the deciding column. The
jth Catalan number Cj gives the number of corresponding sequence of the
black and white columns. The power of base 2 gives the number of possible
arrangements of the gray columns. Finally the power of base 4 takes into
account the fact, that the columns after the deciding one can be filled in
arbitrary manner – the matrix will be unsafe in any case. �

It seems that it would be hard to handle the formula (1) for u(2, n, 0.5).
Therefore, we present a combinatorial method and three further ones based
on random walks to get the explicit form of s(2, p).

Lemma 5 If 0 ≤ p ≤ 1, then

1 − s(2, p) = u(2, p) =






p2

q2
, if 0 ≤ p < 1

2
,

1, if 1
2
≤ p ≤ 1.



Density of safe matrices 127

Proof. Some part of the unsafe matrices is unsafe due to the first black
column. The general form of such matrices is GaBAb, where a + b + 1 = n,

further G means a gray, B means a black and A means an arbitrary column.
The asymptotic fraction of such columns is

∞∑

a=0

C0(2pq)ap2 =
p2

1 − 2pq
C0.

The general form of the following group of the unsafe matrices is GaBGbW

GcBAd, where a+b+c+d+3 = n. The fraction of such matrices asymptotically
equals to

∞∑

a=0

(2pq)ap2
∞∑

b=0

(2pq)bq2
∞∑

c=0

(2pq)cp2 =
p2

1 − 2pq
C1

p2

1 − 2pq

q2

1 − 2pq
.

Generally, if the (i + 1)th black column is deciding, then the asymptotic con-
tribution of such matrices to the probability of the unsafe matrices equals
to

p2

1 − 2pq
Ci

(

p2

1 − 2pq

q2

1 − 2pq

)2

,

and so

u(2, p) =

∞∑

i=0

p2

1 − 2pq
Ci

(

p2

1 − 2pq

q2

1 − 2pq

)i

.

Lemma 2, gives the required formula with the substitutions p2/(p2 + q2) = x

and q2/(p2 + q2) = 1 − x. �

We get a useful method for the investigation of our matrices assigning to each
matrix a random walk [17, 43] on the real axis containing a sink at the point
−1.

Another proof of Lemma 5 is as follows. In the following proofs of Lemma 5
we consider only the case 0 ≤ p ≤ 1/2, since if 1/2 ≤ p ≤ 1, then the following
famous result of György Pólya [41, 43] implies our assertion.

Lemma 6 The probability that the moving point performing a random walk

over the real axis returns infinitely often to its initial position is equal to one.

Second proof of Lemma 5. Let’s assign a random walk to matrix A so that
a black column implies a step to left, a white column implies a step to right
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and a gray column results that the moving point preserves its position.
Let bk(A) denote the number of 1’s in the first k columns of matrix A. Then

bk =

k∑

i=1

(a1i+2i).

If bi ≤ k for i = 1, 2, . . . , k, then after k time units the moving point is in the
point (k − bk, 0) of the real axis, otherwise the point is absorbed by the sink
at −1.

We wish to determine the probability of the absorption of the moving point.
The probability of a step to left is p2, the probability of a step to right is
q2 and 2pq is the probability of the event that the point does not change its
position.
Using the notation u(2, p) = x we have

x = p2 + 2pqx + q2x2.

The roots of this equation are

x1,2 =
1 − 2pq ±

√

(1 − 2pq)2 − 4p2q2

2q2
=

p2 + q2 ±
√

(p2 − q2)2

2q2
,

from where we get

x1 =
p2

q2
and x2 = 1. (2)

This formula and s(2, p) = 1 − u(2, p) result the required formula. �

Since first of all we are interested in the probability of the absorption, we can
assign a random walk to matrix Z neglecting the gray columns, as the gray
columns have no influence on the limit probability of the absorption (they only
make the convergence slower).
Another proof of Lemma 5 is the following.
Third proof of Lemma 5. Dividing the probability of the gray columns
among the black and white columns in the corresponding ratio we get for the
probability a of the step to left and for the probability of the step to right
that

a =
p2

p2 + q2
és b =

q2

p2 + q2
. (3)

Using these probabilities, we get the equation

x = a + bx3.
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Substituting a and b into the roots of this equation, according to (3), we also
get here the roots corresponding to (2). �

Finally we present such a method, which later can be extended to arbitrary
m ≥ 2 sequences.
Fourth proof of Lemma 5. Let xk (k = −1, 0, 1, 2, . . .) denote the proba-
bility of the event that the point starting at point k will be absorbed by the
sink at x = −1. Let’s assign again a step to left to the columns containing
two 1’s, a step to right to the columns containing two 0’s and preserve of the
position to the mixed columns.
Then we can write the following system of equations.

x0 = q2x1 + 2qpx0 + p2,

x1 = q2x2 + 2qpx1 + p2x0,

x2 = q2x3 + 2qpx2 + p2x1,

x3 = q2x4 + 2qpx3 + p2x2,

· · ·

(4)

Let

G(z) =

∞∑

i=1

xiz
i

be the generator function of sequence x0, x1, x2, . . .. Multiplying the equation
beginning with xi I = 1, 2, . . . of the system of equations (4) by zi and summing
up the new equations, we get the equation:

G(z) = q
G(z) − x0

z
+ 2pqG(z) + p2(1 + zG(z)).

From this equation G(z) can be expressed in the form

G(z) =
P(z)

Q(z)
,

where
P(z) = q2x0 − p2z

and
Q(z) = p2z2 + 2pqz + q2 − z.

In the zero places zo with |z0| ≤ 1 of the polynomial Q(z), according to Cauchy-
Hadamard theorem [44, page 69] it must hold P(z) = 0. Writing the equation
Q(z) = 0 in the form

(pz + q)2 = z
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Figure 1: The curve of the schedulability function s(2, p, 1) in the interval
p ∈ [0, 0.5].

we directly get that z = 1 is a root of the polynomial Q(z). From the equation
P(1) = 0 we get the root

x0 =
p2

q2
,

implying

s(2, p) = 1−
p2

q2
, �

Figure 1 shows the part belonging to the interval p ∈ [0, 0.5] of the curve of
the function s(2, p, 1) defined in the interval [0, 1].
According to the properties of the functions g(2, p) and s(2, p), the critical
probabilities satisfy the following inequalities:

0 = gcrit(2) ≤ wcrit(2) ≤ scrit(2) =
1

2
.

Let’s remind that Gács proved wcrit(2) ≥ 10−400 [20].
Let T(m, n) denote the number of binary matrices of size m × n. Then
T(m, n) = 2mn.

Figure 2 contains the number and fraction of the good, schedulable and safe
matrices for the case m = 2, p = 0.5, and n = 1, 2, . . . , 15. In this case



Density of safe matrices 131

n G(2, n)
G(2,n)

T(2,n)
W(2, n)

W(2,n)

T(2,n)
S(2, n)

S(2,n)

T(2,n)

W(2,n)

S(2,n)

1 3 0.750 3 0.750 3 0.750 1

2 9 0.562 10 0.625 10 0.625 1

3 27 0.452 35 0.547 35 0.547 1

4 81 0.316 124 0.484 126 0.492 0.984

5 243 0.237 444 0.434 462 0.451 0.961

6 729 0.178 1592 0.389 1716 0.419 0.927

7 2187 0.133 5731 0.350 6435 0.393 0.890

8 6561 0.100 20671 0.315 24310 0.371 0.850

9 19683 0.075 74722 0.285 92378 0.352 0.808

10 59049 0.056 270521 0.258 352716 0.336 0.767

11 177147 0.042 980751 0.234 1352078 0.322 0.725

12 531441 0.032 3559538 0.212 5200300 0.310 0.684

13 1594323 0.022 12931155 0.193 20058300 0.299 0.646

14 4782969 0.018 47013033 0.175 77558760 0.289 0.606

15 14348907 0.013 171036244 0.159 300540195 0.280 0.568

Figure 2: Rounded data belonging to the parameters m = 2 and p = 0.5.

the fractions equal to the probability of the corresponding matrices. Ac-
cording to Lemma 5 in this case G(m, n)/T(m, n), W(m, n)/T(m, n), and
S(m, n)/T(m, n) tend to zero when n tends to infinity.
Figure 3 contains the fractions of the good, schedulable and safe matrices for
the case m = 2, p = 0.4, and n = 1, 2, . . . , 16. In column s(2, n, 0.4) of Table
3 the computed limit is 5/9 ∼ 0.555.
Figure 4 contains the fractions of the good, schedulable and safe matrices for
the case m = 2, p = 0.35, and n = 1, 2, . . . , 17. For the column s(2, n, 0.35)

of Table 4 the computed limit is 120/169 ∼ 0.710.

3.3 Matrices with three rows

If m = 3, then the possible ratios of the 1’s and 0’s are 3:0, 2:1, 1:2 or 0:3.
We assign such random walk to the investigated matrix, in which the walking
point jumps by two to left with the probability p3 of the column containing
three 1’s; the point makes a step to left with the probability 3p2q; the position
is preserved with the probability q3 of the column containing only zeros.
Using the notation xk introduced in the fourth proof of Lemma 5, we get the
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n T(2, n) g(2, n, 0.4) w(2, n, 0.4) s(2, n, 0.4)
w(2,n,0.4)

s(2,n,0.4)

1 4 0.8400 0.8400 0.8400 1

2 16 0.7056 0.7632 0.7632 1

3 64 0.5927 0.7171 0.7171 1

4 256 0.4979 0.6795 0.6862 0.9902

5 1024 0.4182 0.6487 0.6639 0.9771

6 4096 0.3513 0.6206 0.6470 0.9592

7 16384 0.2951 0.5957 0.6339 0.9397

8 65536 0.2479 0.5731 0.6234 0.9193

9 262144 0.2082 0.5524 0.6149 0.8984

10 1048576 0.1749 0.5332 0.6078 0.8773

11 4194304 0.1469 0.5155 0.6019 0.8565

12 16777216 0.1234 0.4988 0.5967 0.8359

13 67108864 0.1037 0.4832 0.5924 0.8157

14 268435456 0.0871 0.4685 0.5886 0.7960

15 1073741824 0.0731 0.4545 0.5854 0.7764

16 4294967296 0.0644 0.4412 0.5825 0.7574

17 169779869184 0.0516 0.4286 0.5800 0.7390

Figure 3: Rounded data belonging to the parameters m = 2 and p = 0.4.

following equations:

x0 = q3x1 + 3q2px0 + 3qp2 + p3,

x1 = q3x2 + 3q2px1 + 3qp2x0 + p3,

x2 = q3x3 + 3q2px2 + 3qp2x1 + p3x0,

x3 = q3x4 + 3q2px3 + 3qp2x2 + p3x1,

· · ·

(5)

Let

G(z) =

∞∑

i=0

xnzn

be the generator function of the sequence x0, x1, x2, . . .. Then multiplying the
equations of the system (5) with the corresponding powers of z and summing
up the received equations, we get:

G(z) = q3G(z) − x0

z
+ 3q2pG(z) + 3qp2(1 + zG(z)) + p3

(

1 + z + z2G(z)
)

,
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n T(2, n) g(2, 0.35) w(2, 0.35) s(2, n, 0.35)
w(2,0.35)

s(2,0.35)

1 4 0.8775 0.8775 0.8775 1

2 16 0.7700 0.8218 0.8218 1

3 64 0.6757 0.7901 0.7901 1

4 256 0.5929 0.7645 0.7699 0.9930

5 1024 0.5203 0.7441 0.7561 0.9841

6 4096 0.4565 0.7255 0.7462 0.9723

7 16384 0.4006 0.7094 0.7389 0.9601

8 65536 0.3515 0.6949 0.7334 0.9475

9 262144 0.3085 0.6817 0.7291 0.9350

10 1048576 0.2707 0.6696 0.7258 0.9226

11 4194304 0.2375 0.6585 0.7231 0.9107

12 16777216 0.2084 0.6481 0.7210 0.8989

13 67108864 0.1839 0.6383 0.7192 0.8875

14 268435456 0.1605 0.6291 0.7178 0.8764

15 1073741824 0.1401 0.6204 0.7166 0.8658

16 4294967296 0.1236 0.6122 0.7156 0.8555

Figure 4: Rounded data belonging to the parameters m = 2 and p = 0.35.

from where G(z) can be expressed as the fraction of two polynomials:

G(z) =
P(z)

Q(z)
,

where
P(z) = q3x0 − 3qp2z − p3(z + z2)

and
Q(z) = p3z3 + 3p2qz2 + 3pq2z + q3 − z.

The equation Q(z) = 0 can be transformed into the form

(q + pz)3 = z,

from where the root z1 = 1 follows immediately. Expressing x0 from the
equation P(1) = 0, we get:

x0 =
3p2

q2
+

2p3

q3
, (6)
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n T(3, n) g(3, n, 0.5) w(3, n, 0.5) s(3, n, 0.5)
w(3, n, 0.5)

s(3, n, 0.5)
1 8 0.5000 0.5000 0.5000 1.0000

2 64 0.2500 0.2969 0.2969 1.0000

3 512 0.1250 0.1914 0.1914 1.0000

4 4 096 0.0625 0.1282 0.1296 0.9892

5 32 768 0.0312 0.0880 0.0907 0.9702

6 262 144 0.0156 0.0612 0.0651 0.9401

7 2 097 152 0.0078 0.0429 0.0475 0.9032

8 16 777 216 0.0039 0.0303 0.0352 0.8594

Figure 5: Rounded data belonging to the parameters m = 3 and p = 0.5.

implying

s(3, p) = 1 −
3p2

q2
−

2p3

q3
, (7)

The value of the function 1−x0 = x0(p/q) is 1 at p/q = 0 and it is decreasing
if 0 ≤ p/q ≤ 1/2. With the multiplication by q = (1−p)3 we get the equation

3p2

(1 − p)2
+

2p3

(1 − p)3
= 1,

which – by algebraic manipulations – results the value p = 1/3, that is
scrit(3) = 1/3.

Figure 5 contains the fraction of the good, schedulable and safe matrices for
the case m = 3, p = 0.5, and n = 1, 2, . . . , 8.
In this table g(3, n, 0.5), w(3, n, 0.5), and s(3, n, 0.5) all have to tend to zero
when n tends to infinity.
Figure 6 contains fraction of the good, schedulable and safe matrices for the
case m = 3, p = 0.25, and n = 1, 2, . . . , 5.
In this table g(3, n, 0.25) has to tend to zero, if n tends to infinity, but accord-
ing to formula (7) 16/23 ∼ 0.593 is the computed limit for s(3, n, 0.25) when
n tends to infinity.
We remark that the master thesis of Rudolf Szendrei [49] contains further
simulation results.
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n T(3, m) g(3, n, 0.25) w(3, n, 0.25) s(3, n, 0.25)
w(3, n, 0.25)

s(3, n, 0.25)
1 8 0.8437 0.8437 0.8437 1.0000

2 64 0.7119 0.7712 0.7712 1.0000

3 512 0.6007 0.7286 0.7286 1.0000

4 4 096 0.5068 0.6981 0.7004 0.9967

5 32 768 0.4276 0.6748 0.6804 0.9917

Figure 6: Rounded data belonging to the parameters m = 3 and p = 0.25.

4 Main result

The analysis of the safe matrices of size m×n in the case of m ≥ 4 is similar.
If a column of matrix A contains at least b ≥ 3 1’s, then the walking point
jumps (b − 2) positions to left; if the column contains two 1’s then the point
makes a step to left; in the case of one 1 the point preserves its position and
if the column contains only 0’s, then the point makes a step to right. The
corresponding probabilities are

(

m
b

)

pb−2qn−b+2,
(

m
2

)

pm−2q2,
(

m
1

)

pqm−1 and
(

m
0

)

qm,. So we get the following equations:

x0 =
(

m
0

)

qmx1 +
(

m
1

)

pqm−1x0 +
(

m
2

)

p2qm−2

+
(

m
3

)

p3qm−3 + . . . +
(

m
m

)

pm,

x1 =
(

m
0

)

qmx2 +
(

m
1

)

pqm−1x1 +
(

m
2

)

p2qm−2x0

+
(

m
3

)

p3qm−3 + . . . +
(

m
m

)

pm,

x2 =
(

m
0

)

qmx3x3 +
(

m
1

)

pqm−1x2 +
(

m
2

)

p2qm−2x1

+
(

m
3

)

p3qm−3x0 + . . . +
(

m
m

)

pm,

· · ·

(8)

Let

G(z) =

∞∑

i=0

xnzn

be the generator function of the sequence x0, x1, x2, . . .. Then multiplying the
equations in (8) with the corresponding powers of z and summing up them,
we get:

G(z) =

(

m

0

)

qmG(z) − x0

z
+

(

m

1

)

pqm−1G(z) +

(

m

2

)

p2qm−2(1 + zG(z))

+

(

m

3

)

p3qm−3(1+z+z2G(z))+· · ·+

(

m

m

)

pm
(

1 + z + · · · + zm−2 + zm−1G(z)
)

,
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from where one can express G(z) as the fraction of two polynomials:

G(z) =
P(z)

Q(z)
,

where

P(z) =

(

m

0

)

qmx0 −

m∑

i=2





(

m

i

)

piqm−i
i−2∑

j=0

zj



 .

If the denominator has a root x with |x| ≤ 1, then the value of the nominator
at x must be zero.
Reordering the equation Q(z) = 0 to the form

(q + pz)m = 1

we get the root z1 = 1. Division of the equation P(1) = 0 by qm results the
equation

x0 =

m∑

i=2

(

m

i

)(

p

1 − p

)i

(i − 1).

The value of the function x0 = x0(p) is zero at p = 0, and the function is
increasing, if p is positive. From the equation x0 = 1 we get p = 1/m.
Taking into account the results received above for cases m = 2 and m = 3, we
received the following result.

Theorem 1 If m ≥ 2 and 0 ≤ p ≤ m, then

scrit(m) =
1

m
. (9)

and

s(m, p) =

{
1 −

∑m
i=2

(

m
i

)

(

p
1−p

)i

(i − 1), if 0 ≤ p < 1
m

,

0, if 1
m

≤ p ≤ 1.
(10)

Proof. a) The special case m = 2 is equivalent with Lemma 5.
b) The special case m = 3 is equivalent with formula (7).
c) For the case m ≥ 4, see the proof before the theorem. �
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5 Summary

We determined the explicit form of the asymptotic density s(m, p) for every
number of the rows m ≥ 2 and probability of 1’s p. Furthermore we gave
the exact values of the critical probabilities scrit(m) for m ≥ 2. The value of
scrit(2) is 0.5, which is characteristic to several other two dimensional critical
probabilities. The further critical probabilities are decresse when m grows.
According to the simulation experiments the critical probabilities are near to
the received upper bounds: Table 2 shows the data belonging to m = 2 and
p = 0.5, Table 3 the data belonging to m = 2 and p = 0.4, Table 4 the data
for m = 2 and p = 0.35, Table 5 the data belonging to m = 3 and p = 0.5,
and Table 6 presents the data belonging to m = 3 and p = 0.25.
On the base of the data of the figures we suppose that the bound p ≥
10−400 in [20] can be improved, but the analysis of the behaviour of frac-
tion w(m, p)/s(m, p) requires further work.
We are able to give a bit better lower and upper bounds of the investigated
wr(m, n, p) probabilities, but the more precise characterisation of the critical
probabilities requires more useful matrices than the good and safe ones.
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[44] W. Rudin, Principles of Mathematical Analysis, Third edition, McGraw
Hill, New York, 1976.

[45] N. Santoro, Design and Analysis of Distributed Algorithms, John Wiley
& Sons, Hoboken, 2007.

[46] D. Schauffer, Introduction to Percolation Theory, Taylor & Francis, Lon-
don, 1985.

[47] P. Simon, Proof of a useful lemma, manuscript, 2005.

[48] R. P. Stanley, Enumerative Combinatorics, Volume 2. Cambridge Studies

in Advanced Mathematics, 62. Cambridge University Press, Cambridge,
1999.

[49] R. Szendrei, Scheduling of parallel processes (in Hungarian), Master
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Abstract. In [3] Bege introduced the generalized Apostol’s Möbius
functions µk,m(n). In this paper we present new properties of these
functions. By introducing the special set of k-free numbers, we have ob-
tained some asymptotic formulas for the partial sums of these functions.

1 Introduction

Möbius function of order k, introduced by T. M. Apostol [1], is defined by the
following formula:

µk(n) =






1 if n = 1,

0 if pk+1 | n for some prime p,
(−1)r if n = pk

1 · · ·p
k
r

∏

i>r

p
αi

i , with 0 ≤ αi < k,

1 otherwise.

The generalized function is denoted by µk,m(n), where 1 < k ≤ m.
If m = k, µk,k(n) is defined to be µk(n), and if m > k the function is defined
as follows:

µk,m(n) =






1 if n = 1,

1 if pk ∤ n for each prime p,
(−1)r if n = pm

1 · · ·pm
r

∏

i>r

p
αi

i , with 0 ≤ αi < k,

0 otherwise.

(1)
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In this paper we show some relations that hold among the functions µk,m(n).
We introduce the new type of k-free integers and we make a connection be-
tween generalized Möbius function and the characteristic function q∗k,m(n)

of these. We use these to derive an asymptotic formula for the summatory
function of q∗k,m(n).

2 Basic lemmas

The generalization µk,m, like Apostol’s µk(n), is a multiplicative function of
n, so it is determined by its values at the prime powers. We have

µk(pα) =






1 if 0 ≤ α < k,

−1 if α = k,

0 if α > k,

whereas

µk,m(pα) =






1 if 0 ≤ α < k,

0 if k ≤ α < m,

−1 if α = m,

0 if α > m.

(2)

In [1] Apostol obtained the asymptotic formula

∑

n≤x

µk(n) = Akx+O(x
1
k log x), (3)

where

Ak =
∏

p

(

1−
2

pk
+

1

pk+1

)

.

Later, Suryanarayana [5] showed that, on the assumption of the Riemann
hypothesis, the error term in (3) can be improved to

O
(

x
4k

4k2+1ω(x)
)

, (4)

where
ω(x) = exp{A log x(log log x)−1}

for some positive constant k.
In 2001 A. Bege [3] proved the following asymptotic formulas.
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Lemma 1 ( [3], Theorem 3.1.) For x ≥ 3 and m > k ≥ 2, we have

∑

r ≤ x

(r, n) = 1

µk,m(r) =
xn2 αk,m

ζ(k)ψk(n)αk,m(n)
+ 0

(

θ(n)x
1
k δ(x)

)

(5)

uniformly in x, n and k, where θ(n) is the number of square-free divisors of

n,

αk,m =
∏

p

(

1−
1

pm−k+1 + pm−k+2 + · · · + pm

)

,

αk,m(n) = n
∏

p|n

(

1−
1

pm−k+1 + pm−k+2 + · · · + pm

)

,

ψk(n) = n
∏

p|n

(

1+
1

p
+ · · · +

1

pk−1

)

,

and

δk(x) = exp {−A k−8
5 log

3
5 x (log log x)−1

5 }, A > 0.

Lemma 2 ([3], Theorem 3.2.) If the Riemann hypothesis is true, then for

x ≥ 3 and m > k ≥ 2 we have

∑

r ≤ x

(r, n) = 1

µk,m(r) =
xn2 αk,m

ζ(k)ψk(n)αk,m(n)
+ 0

(

θ(n)x
2

2k+1ω(x)
)

(6)

uniformly in x, n and k.

Lemma 3 ([2]) If s > 0, s 6= 1, x ≥ 1, then

∑

n≤x

1

ns
= ζ(s) −

1

(s− 1)xs−1
+O

(

1

xs

)

.

3 Generalized k-free numbers

Let Qk denote the set of k-free numbers and let qk(n) to be the characteristic
function of this set. Cohen [4] introduced the Q∗

k set, the set of positive
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integers n with the property that the multiplicity of each prime divisor of n is
not a multiple of k. Let q∗k(n) be the characteristic function of these integers.

q∗k(n) =






1, if n = 1

1, if n = p
α1

1 . . . p
αk

k , αi 6≡ 0 (mod k)
0, otherwise.

We introduce the following special set of integers

Qk,m : = {n | n = n1 · n2, (n1, n2) = 1, n1 ∈ Qk,

n2 = 1 or n2 = (p1 . . . pi)
m, pi ∈ P},

with the characteristic function

qk,m(n) =

{
1, if n ∈ Qk,m

0, if n 6∈ Qk,m.

The function qk,m(n) is multiplicative and

qk,m(n) = |µk,m(n)|. (7)

We introduce the following set Q∗
k,m which, in the generalization of Q∗

k. The
integer n is in the set Q∗

k,m, 1 < k < m iff the power of each prime divisor
of n divided by m has the remainder between 1 and k− 1. The characteristic
functions of these numbers is

q∗k,m(n) =

{
1, if n = p

α1

1 . . . p
αk

k , ∃ℓ : ℓm < αi < ℓm+ k

0, otherwise.

If we write the generating functions for this functions, we have the following
result.

Theorem 1 If m ≥ k and the series converges absolutely, we have

∞∑

n=1

µk,m(n)

ns
= ζ(s)

∏

p

(

1−
1

pks
−

1

pms
+

1

p(m+1)s

)

, (8)

∞∑

n=1

q∗k,m(n)

ns
= ζ(s)ζ(ms)

∏

p

(

1−
1

pks
−

1

pms
+

1

p(m+1)s

)

, (9)

∞∑

n=1

qk,m(n)

ns
= ζ(s)

∏

p

(

1−
1

pks
+

1

pms
−

1

p(m+1)s

)

. (10)
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Proof. Because the function µk,m(n) is multiplicative, when the series con-
verges absolutely (s > 1), we have:

∞∑

n=1

µk,m(n)

ns
=

∏

p

(

1+
µk,m(p)

ps
+ . . .+

µk,m(pα)

pαs
+ . . .

)

=

=
∏

p

(

1+
1

ps
+ . . .+

1

p(k−1)s
−

1

pms

)

=

=
∏

p

1

1−
1

ps

∏

p

(

1−
1

pks
−

1

pms
+

1

p(m+1)s

)

=

= ζ(s)
∏

p

(

1−
1

pks
−

1

pms
+

1

p(m+1)s

)

.

In a similar way, because q∗k,m(n) is multiplicative, we have:

∞∑

n=1

q∗k,m(n)

ns
=

∏

p

(

1+
q∗k,m(p)

ps
+ . . .+

q∗k,m(pα)

pαs
+ . . .

)

=

=
∏

p

(

1+

(

1

ps
+

1

p2s
+ . . .+

1

p(k−1)s

)

+

+

(

1

p(m+1)s
+

1

p(m+2)s
. . .+

1

p(m+k−1)s

)

+ . . .

)

=

=
∏

p

(

1+

(

1

ps
+

1

p2s
+ . . .+

1

p(k−1)s

)(

1+
1

pms
+

1

p2ms
+ . . .

))

=
∏

p









1+

1

ps
−

1

pks

1−
1

ps

1

1−
1

pms









=

= ζ(s)ζ(ms)
∏

p

(

1−
1

pks
−

1

pms
+

1

p(m+1)s

)

.
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Because qk,m(n) is multiplicative and qk,m(n) = |µk,m(n)|, we have:

∞∑

n=1

qk,m(n)

ns
=

∏

p

(

1+
qk,m(p)

ps
+ . . .+

qk,m(pα)

pαs
+ . . .

)

=

=
∏

p

(

1+
1

ps
+ . . .+

1

p(k−1)s
+

1

pms

)

=

=
∏

p

1

1−
1

ps

∏

p

(

1−
1

pks
+

1

pms
−

1

p(m+1)s

)

=

= ζ(s)
∏

p

(

1−
1

pks
+

1

pms
−

1

p(m+1)s

)

.

�

In the particular case when m = k, we have µk,m(n) = µk(n), qk,m(n) =

qk+1(n) and

∞∑

n=1

µk(n)

ns
= ζ(s)

∏

p

(

1−
2

pks
+

1

p(k+1)s

)

,

∞∑

n=1

qk+1(n)

ns
=

ζ(s)

ζ
(

(k+ 1)s
) .

We have the following convolution type formulas.

Theorem 2 If m ≥ k

q∗k,m(n) =
∑

dmδ=n

µk,m(δ), (11)

µk,m(n) =
∑

dmδ=n

µ(d)q∗k,m(δ). (12)

Proof. Because qk,m(n) and µk,m(n) are multiplicative, it results that both
sides of (11) are multiplicative functions. Hence it is enough if we verify the
identity for n = pα, a prime power.
If α = ℓm+ i and 0 < i < k

∑

dmδ=pα

µk,m(δ) = µk,m(pℓm+i) + µk,m(p(ℓ−1)m+i) + . . .+ µk,m(pm+i) +

+ µk,m(pi) = 1 = qk,m(pα).
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If α = ℓm+ i and k < i < m, then

∑

dmδ=pα

µk,m(δ) = µk,m(pℓm+i) + µk,m(p(ℓ−1)m+i) + . . .+ µk,m(pm+i) +

+ µk,m(pi) = 0 = qk,m(pα).

If α = ℓm

∑

dmδ=pα

µk,m(δ) = µk,m(pℓm) + µk,m(p(ℓ−1)m) + . . .+ µk,m(pm) + µk,m(1) =

= −1+ 1 = 0 = qk,m(pα).

(12) results from the Möbius inversion formula.
�

4 Asymptotic formulas

Theorem 3 For x ≥ 3 and m > k ≥ 2, we have

∑

r ≤ x

q∗k,m(r) =
xαk,mζ(m)

ζ(k))
+ 0

(

x
1
k δ(x)

)

(13)

uniformly in x, n and k, where

αk,m =
∏

p

(

1−
1

pm−k+1 + pm−k+2 + · · · + pm

)

δ(x) = exp {−A log
3
5 x (log log x)−1

5 },

for some absolute constant A > 0.

Proof. Based on (11) and (5) with n = 1, we have

∑

r ≤ x

q∗k,m(n) =
∑

δdm ≤ x

µk,m(δ) =
∑

d ≤ x
1
m

∑

δ ≤ x
dm

µk,m(δ) =

=
∑

d ≤ x
1
m

{
(

x
dm

)

αk,m

ζ(k)
+ 0

(

x
1
k

d
m
k

δ
( x

dm

)

)}

=
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=
xαk,m

ζ(k)

∑

d ≤ x
1
m

1

dm
+O









δ(x)xǫx
1
k

−ǫ
∑

d ≤ x
1
m

1

d
m
k

−ǫm









.

Now we use (3), and the fact that δ(x)xǫ is increasing for all ǫ > 0, we choose
ǫ > 0, so that m

k
− ǫm > 1+ ǫ ′ and we obtain (13). �

Applying the method used to prove Theorem 1, and making use of Lemma 2,
we get

Theorem 4 If the Riemann hypothesis is true, then for x ≥ 3 and m > k ≥ 2

we have
∑

r ≤ x

q∗k,m(r) =
xαk,mζ(m)

ζ(k)
+ 0

(

x
2

2k+1ω(x)
)

(14)

uniformly in x, n and k.
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Abstract. In this paper we define the concept of weakly Ćirić-contractive
operator and give a fixed point result for this type of operators. Then
we study the data dependence for the fixed point set.

1 Introduction

Let (X, d) be a metric space. A singlevalued operator T from X into it-
self is called contractive if there exists a real number r ∈ [0, 1) such that
d(T(x), T(y)) ≤ rd(x, y) for every x, y ∈ X. It is well known that if X is a
complete metric space, then a contractive operator from x into itself has a
unique fixed point in X.

In 1996, Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi
introduced the w-distance (see [4]) and discussed some properties of this new
distance. Later, T. Suzuki and W. Takahashi, starting by the definition above,
gave some fixed points result for a new class of operators, weakly contractive
operators (see [8]).

The purpose of this paper is to give a fixed point theorem for a new class
of operators, namely the so-called weakly Ćirić-contractive operators. Then,
we present a data dependence result for the fixed point set.

AMS 2000 subject classifications: 47H10, 54H25
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2 Preliminaries

Let (X, d) be a complete metric space. We will use the following notations:
P(X) - the set of all nonempty subsets of X ;
P(X) = P(X)

⋃
∅

Pcl(X) - the set of all nonempty closed subsets of X ;
Pb(X) - the set of all nonempty bounded subsets of X ;
Pb,cl(X) - the set of all nonempty bounded and closed, subsets of X ;

For two subsets A, B ∈ Pb(X), we recall the following functionals:
D : P(X) × P(X) → R+,D(Z, Y) = inf{d(x, y) : x ∈ Z , y ∈ Y}, Z ⊂ X – the

gap functional.
δ : P(X) × P(X) → R+, δ(A, B) := sup{d(a, b)|x ∈ A, b ∈ B} – the diameter

functional ;
ρ : P(X) × P(X) → R+, ρ(A, B) := sup{D(a, B)|a ∈ A} – the excess func-

tional ;
H : P(X) × P(X) → R+, H(A, B) := max{sup

a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)} –

the Pompeiu-Hausdorff functional ;
Fix F := {x ∈ X | x ∈ F(x)} – the set of the fixed points of F;

The concept of w-distance was introduced by O. Kada, T. Suzuki and W.
Takahashi (see [4]) as follows:
Let (X,d) be a metric space, w : X × X → [0,∞) is called w-distance on X if
the following axioms are satisfied :

1. w(x, z) ≤ w(x, y) + w(y, z), for any x, y, z ∈ X;

2. for any x ∈ X : w(x, ·) : X → [0,∞) is lower semicontinuous;

3. for any ε > 0, there exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ

implies d(x, y) ≤ ε.

Let us give some examples of w-distances (see [4]).

Example 1 Let (X, d) be a metric space . Then the metric ”d” is a w-distance
on X.

Example 2 Let X be a normed liniar space with norm || · ||. Then the function
w : X × X → [0,∞) defined by w(x, y) = ||x|| + ||y|| for every x, y ∈ X is a w-
distance.
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Example 3 Let (X,d) be a metric space and let g : X → X a continuous
mapping. Then the function w : X × Y → [0,∞) defined by:

w(x, y) = max{d(g(x), y), d(g(x), g(y))}

for every x, y ∈ X is a w-distance.

For the proof of the main results we need the following crucial result for
w-distance (see [8]).

Lemma 1 Let (X, d) be a metric space, and let w be a w-distance on X. Let
(xn) and (yn) be two sequences in X, let (αn), (βn) be sequences in [0,+∞[

converging to zero and let x, y, z ∈ X. Then the following holds:

1. If w(xn, y) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then y = z.

2. If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then (yn) converges
to z.

3. If w(xn, xm) ≤ αn for any n, m ∈ N with m > n, then (xn) is a Cauchy
sequence.

4. If w(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

3 Existence of fixed points for multivalued weakly

Ćirić-contractive operators

At the beginning of this section let us define the notion of multivalued
weakly Ćirić-contractive operators.

Definition 1 Let (X, d) be a metric space and T : X → P(X) a multivalued
operator. Then T is called weakly Ćirić-contractive if there exists a w-distance
on X such that for every x, y ∈ X and u ∈ T(x) there is v ∈ T(y) with
w(u, v) ≤ q max{w(x, y), Dw(x, T(x), Dw(y, T(y)), 1

2
Dw(x, T(y))},

for every q ∈ [0, 1).

Let (X, d) be a metric space, w be a w-distance on X x0 ∈ X and r > 0.
Let us define:

Bw(x0; r) := {x ∈ X|w(x0, x) < r} the open ball centered at x0 with radius
r with respect to w;
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B̃w(x0; r) := {x ∈ X|w(x0, x) ≤ r} the closed ball centered at x0 with radius
r with respect to w;

B̃w

d
(x0; r)- the closure in (X, d) of the set Bw(x0; r).

One of the main results is the following fixed point theorem for weakly
Ćirić-contractive operators.

Theorem 1 Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and T :

B̃w(x0; r) → Pcl(X) a multivalued operator such that:
(i) T is weakly Ćirić-contractive operator;
(ii) Dw(x0, T(x0)) ≤ (1 − q)r.

Then there exists x∗ ∈ X such that x∗ ∈ T(x∗).

Proof. Since Dw(x0, T(x0)) ≤ (1 − q)r, then for every x0 ∈ X there exists
x1 ∈ T(x0) such that Dw(x0, T(x0)) ≤ w(x0, x1) ≤ (1 − q)r < r.

Hence x1 ∈ B̃w(x0; r).

For x1 ∈ B̃w(x0; r), there exists x2 ∈ T(x1) such that:
i. w(x1, x2) ≤ qw(x0, x1)

ii. w(x1, x2) ≤ qDw(x0, T(x0)) ≤ qw(x0, x1)

iii. w(x1, x2) ≤ qDw(x1, T(x1)) ≤ qw(x1, x2)

iv. w(x1, x2) ≤
q
2
Dw(x0, T(x1)) ≤

q
2
w(x0, x2)

w(x1, x2) ≤
q
2
[w(x0, x1) + w(x1, x2)]

(1 − q
2
)w(x1, x2) ≤

q
2
w(x0, x1)

w(x1, x2) ≤
q

2−q
w(x0, x1).

Then w(x1, x2) ≤ max {q, q
2−q

}w(x0, x1)

Since q > q
2−q

for every q ∈ [0, 1), then w(x1, x2) ≤ qw(x0, x1) ≤ q(1 − q)r.

Then w(x0, x2) ≤ w(x0, x1)+w(x1, x2) < (1−q)r+q(1−q)r = (1−q2)r < r.

Hence x2 ∈ B̃w(x0; r).

For x1 ∈ B̃w(x0; r) and x2 ∈ T(x1), there exists x3 ∈ T(x2) such that
i. w(x2, x3) ≤ qw(x1, x2)

ii. w(x2, x3) ≤ qDw(x1, T(x1)) ≤ qw(x1, x2)

iii. w(x2, x3) ≤ qDw(x2, T(x2)) ≤ qw(x2, x3)

iv. w(x2, x3) ≤
q
2
Dw(x1, T(x2)) ≤

q
2
w(x1, x3)

w(x2, x3) ≤
q
2
[w(x1, x2) + w(x2, x3)]

(1 − q
2
)w(x2, x3) ≤

q
2
w(x1, x2)

w(x2, x3) ≤
q

2−q
w(x1, x2).

Then w(x2, x3) ≤ max {q, q
2−q

}w(x1, x2).

Since q > q
2−q

for every q ∈ [0, 1), then w(x2, x3) ≤ qw(x1, x2) ≤ q2(x0, x1) ≤

q2(1 − q)r.
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Then w(x0, x3) ≤ w(x0, x2) + w(x2, x3) ≤ (1 − q2)r + q2(1 − q)r =

= (1 − q)(1 + q + q2)r = (1 − q3)r < r. Hence x3 ∈ B̃w(x0; r).
By this procedure we get a sequence (xn)n∈N ∈ X of successive applications
for T starting from arbitrary x0 ∈ X and x1 ∈ T(x0), such that

(1) xn+1 ∈ T(xn), for every n ∈ N;
(2) w(xn, xn+1) ≤ qnw(x0, x1) ≤ qn(1 − q)r, for every n ∈ N.

For every m, n ∈ N, with m > n, we have

w(xn, xm) ≤ w(xn, xn+1) + w(xn+1, xn+2) + ... + w(xm−1, xm) ≤

≤ qnw(x0, x1) + qn+1w(x0, x1) + ... + qm−1w(x0, x1) ≤

≤
qn

1 − q
w(x0, x1) ≤ qnr.

By Lemma 1(3) we have that the sequence (xn)n∈N ∈ B̃w(x0; r) is a Cauchy
sequence in (X, d). Since (X, d) is a complete metric space, then there exists

x∗ ∈ B̃d
w(x0; r) such that xn

d
→ x∗.

Fix n ∈ N. Since (xm)m∈N converge to x∗ and w(xn, ·) is lower semicontinuous,
we have

w(xn, x∗) ≤ lim
m→∞

inf w(xn, xm) ≤
qn

1 − q
w(x0, x1) ≤ qnr.

For x∗ ∈ B̃d
w(x0; r) and xn ∈ T(xn−1), there exists un ∈ T(x∗) such that

i. w(xn, un) ≤ qw(xn−1, x
∗) ≤ qn

1−q
w(x0, x1)

ii. w(xn, un) ≤ qDw(xn−1, T(xn−1)) ≤ qw(xn−1, xn) ≤ ... ≤ qnw(x0, x1)

iii. w(xn, un) ≤ qDw(x∗, T(x∗)) ≤ qw(x∗, un) ≤ qn

1−q
w(x0, x1)

iv. w(xn, un) ≤ q
2
Dw(xn−1, T(x∗)) ≤ q

2
w(xn−1, un) ≤ q

2
· qn−1

1−q
w(x0, x1)

= qn

2(1−q)
w(x0, x1).

Then w(xn, un) ≤ max{ qn

1−q
, qn, qn

2(1−q)
}w(x0, x1).

Since for q ∈ [0, 1) we have true qn

1−q
> qn and qn

1−q
> qn

2(1−q)
we get that

w(xn, un) ≤ qn

1−q
w(x0, x1) ≤ qnr.

So, for every n ∈ N we have:
w(xn, x∗) ≤ qnr

w(xn, un) ≤ qnr.

Then, from 1(2), we obtain that un
d
→ x∗. As un ∈ T(x∗) and using the

closure of T result that x∗ ∈ T(x∗). �

A global result for previous theorem is the following fixed point result for
multivalued weakly Ćirić-contractive operators.
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Theorem 2 Let (X, d) be a complete metric space, T : X → Pcl(X) a multi-
valued weakly Ćirić-contractive operator. Then there exists x∗ ∈ X such that
x∗ ∈ T(x∗).

4 Data dependence for weakly Ćirić-contractive mul-

tivalued operators

The main result of this section is the following data dependence theorem
with respect to the above global theorem 2.

Theorem 3 Let (X, d) be a complete metric space, T1, T2 : X → Pcl(X) be two
multivalued weakly Ćirić-contractive operators with qi ∈ [0, 1) with i = {1, 2}.
Then the following are true:

1. FixT1 6= ∅ 6= FixT2;

2. We suppose that there exists η > 0 such that for every u ∈ T1(x) there
exists v ∈ T2(x) such that w(u, v) ≤ η, (respectively for every v ∈ T2(x)

there exists u ∈ T1(x) such that w(v, u) ≤ η).

Then for every u∗ ∈ FixT1, there exists v∗ ∈ FixT2 such that

w(u∗, v∗) ≤ η
1−q

, where q = qi for i = {1, 2};

(respectively for every v∗ ∈ FixT2 there exists u∗ ∈ FixT1 such that

w(v∗, u∗) ≤ η
1−q

, where q = qi for i = {1, 2}).

Proof. From the above theorem we have that FixT1 6= ∅ 6= FixT2.
Let u0 ∈ FixT1, then u0 ∈ T1(u0). Using the hypothesis (2) we have that there
exists u1 ∈ T2(u0) such that w(u0, u1) ≤ η.
Since T1, T2 are weakly Ćririć-contractive with qi ∈ [0, 1) and i = {1, 2} we
have that for every u0, u1 ∈ X with u1 ∈ T2(u0) there exists u2 ∈ T2(u1) such
that

i. w(u1, u2) ≤ qw(u0, u1)

ii. w(u1, u2) ≤ Dw(u0, T2(u0)) ≤ qw(u0, u1)

iii. w(u1, u2) ≤ Dw(u1, T2(u1)) ≤ qw(u1, u2)

iv. w(u1, u2) ≤
q
2
Dw(u0, T2(u1)) ≤

q
2
w(u0, u2)

w(u1, u2) ≤
q
2
[w(u0, u1) + w(u1, u2)]

w(u1, u2) ≤
q

2−q
w(u0, u1).
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Then w(u1, u2) ≤ max{q, q
2−q

}w(u0, u1).

Since for q ∈ [0, 1) we have true q > q
2−q

, then we have

w(u1, u2) ≤ qw(u0, u1).

For u1 ∈ X and u2 ∈ T2(u1), there exists u3 ∈ T2(u2) such that
i. w(u2, u3) ≤ qw(u1, u2)

ii. w(u2, u3) ≤ Dw(u1, T2(u1)) ≤ qw(u1, u2)

iii. w(u2, u3) ≤ Dw(u2, T2(u2)) ≤ qw(u2, u3)

iv. w(u2, u3) ≤
q
2
Dw(u1, T2(u2)) ≤

q
2
w(u1, u3)

w(u2, u3) ≤
q
2
[w(u1, u2) + w(u2, u3)]

w(u2, u3) ≤
q

2−q
w(u1, u2)

Then w(u2, u3) ≤ max{q, q
2−q

}w(u1, u2).

Since for q ∈ [0, 1) we have true q > q
2−q

, then we have

w(u2, u3) ≤ qw(u1, u2) ≤ q2w(u0, u1).

By induction we obtain a sequence (un)n∈N ∈ X such that
(1) un+1 ∈ T2(un), for every n ∈ N;
(2) w(un, un+1) ≤ qnw(u0, u1).

For n, m ∈ N, with m > n we have the inequality

w(un, um) ≤ w(un, un+1) + w(un+1, un+2) + · · · + w(um−1, um) ≤

< qnw(u0, u1) + qn+1w(u0, u1) + · · · + qm−1w(u0, u1) ≤

≤ qn

1−q
w(u0, u1)

By Lemma 1(3) we have that the sequence (un)n∈N is a Cauchy sequence.
Since (X, d) is a complete metric space, we have that there exists v∗ ∈ X such

that un
d
→ v∗.

By the lower semicontinuity of w(x, ·) : X → [0,∞) we have

w(un, v∗) ≤ lim
m→∞

inf w(un, um) ≤
qn

1 − q
w(u0, u1).

For un−1, v
∗ ∈ X and un ∈ T2(un−1) there exists zn ∈ T2(v

∗) such that we
have

i. w(un, zn) ≤ qw(un−1, v
∗) ≤ qn

1−q
w(u0, u1)

ii. w(un, zn) ≤ qDw(un−1, T2(un−1)) ≤ qw(un−1, un) ≤ ... ≤ qnw(u0, u1)

iii. w(un, zn) ≤ qDw(v∗, T2(v
∗)) ≤ w(v∗, zn) ≤ qn

1−q
w(u0, u1)

iv. w(un, zn) ≤ q
2
Dw(un−1, T2(v

∗)) ≤ q
2
w(un−1, zn) ≤ qn

2(1−q)
w(u0, u1).
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Then w(un, zn) ≤ max{ qn

1−q
, qn, qn

2(1−q)
}w(u0, u1).

Since qn

1−q
> qn and qn

1−q
> qn

2(1−q)
for every q ∈ [0, 1) we have that

w(un, zn) ≤
qn

1 − q
w(u0, u1).

So, we have:
w(un, v∗) ≤ qn

1−q
w(u0, u1)

w(un, zn) ≤ qn

1−q
w(u0, u1).

Applying Lemma 1(2), from the above relations we have that zn
d
→ v∗.

Then, we know that zn ∈ T2(v
∗) and zn

d
→ v∗. In this case, by the closure

of T2, it results that v∗ ∈ T2(v
∗). Then, by w(un, v∗) ≤ qn

1−q
w(u0, u1), with

n ∈ N, for n = 0, we obtain

w(u0, v
∗) ≤

1

1 − q
w(u0, u1) ≤

η

1 − q
,

which completes the proof. �
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Math. Anal. Appl., 255 (1998), 630–640.

Received: May 18, 2009





Acta Univ. Sapientiae, Mathematica, 1, 2 (2009) 161–168

Experimental results on probable primality

Omar Khadir
University of Hassan II-Mohammedia

BP. 146, Mohammedia,
Morocco

email: khadir@hotmail.com

László Szalay
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Abstract. In this paper we present experimental results on probable
primality. More than four billion of randomly chosen integers having 256,
512 and 1024 bits were tested. We realized more experiments than Rivest
did in 1991, and can confirm his observation: Miller–Rabin test does not
ameliorate the small prime divisors test followed by Fermat test with the
only base 2.

1 Introduction

Prime integers play a fundamental role in mathematics. They have always
been a source of interest and fascination. Since the appearance of public key
cryptography at the end of 1970’s (see, for instance [1,9]), they have become
more and more useful. RSA, Rabin cryptosystem, elliptic curve method, dis-
crete logarithm problem and many digital signature protocols are completely
based on large prime integers. By large, we mean that the considered numbers
have at least 256 binary digits, or around 77 decimal digits.

It is well-known (see, for instance, [5]) that the running time of algorithms
for constructing cryptosystem keys is dominated by the running time for gen-
erating prime integers. Finding rapid procedures for this latter task has, there-
fore, great importance.
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It is also well known that there is no efficient and practical deterministic
algorithm for quickly producing prime integers. That is why we only look for
non deterministic algorithms which give us integers that are primes with a
strong probability. There is a new look at the primality concept: an integer is
taken as prime, not because it is really prime in an exact mathematical sense,
but instead of that, it is prime because one thinks that nobody can factorize
it. Recently, an integer is called industrial-grade prime (the term is due to
H. Cohen) if its primality has not been proven, but it has undergone probable
prime test(s).

The purpose of this work is to confirm what was concluded by Rivest in [10],
as we made more experiments than Rivest. By analyzing experimental results
on 4.13 billion randomly selected large integers, we show that a particular
probabilistic algorithm for generating large prime integers based on three tests
is likely equivalent to a similar algorithm, but based on only two tests. More
precisely, our experimental results tend to indicate that using only two tests,
division by small prime divisors followed by the Fermat test (see, for example
[3,12]) produces the same results as using three tests: division by small primes,
then the application of Fermat test, followed by Rabin-Miller test (see, for
example [7,8]) with eight random bases. The Miller–Rabin test seems to be a
waste of time when added as the third one to the first two aforesaid tests.

The paper is organized as follows. In section 2 we review the three tests
composing the main algorithm and specify their formal parameters. In section
3 we briefly recall Rivest experimental results, and then we describe our own
experiments, present and analyze the computing results. Section 4 contains
conclusion and suggestion on possible forthcoming work.

In the sequel, we will adopt classical notation. In particular, N is the set
of non-negative integers. Let a, b, c ∈ N. Then gcd(a, b) denotes the great
common divisor of a and b, while the remainder of a, when divided by b is
denoted by a mod b. We write a = b [c] if c divides the difference a − b.
As usual, let π(x) denote the number of primes less than or equal to the real
number x. Finally, the bit length lb of a positive integer n =

∑k−1
i=0 2i ai is

lb = k, where ak−1 = 1, and ai ∈ {0, 1} if i = 0, . . . k − 2.

2 Three known tests

In this section we review three known tests and specify their formal parame-
ters. Let n > 1 be an odd integer for which we want to test primality.
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2.1 Small division test T1

This test is the trial division by small divisors, namely by primes that are
less than a fixed bound B. We divide n by all primes less than B. If we
find one divisor, then n is composite, otherwise n is a candidate to be prime.
Eratostenes sieve is applied to generate all primes between 2 and the bound
B.

2.2 Fermat test T2

Here we use a test based on the little Fermat theorem (see, for example [3,12]).
If an integer a satisfies gcd(a, n) = 1, we calculate an−1 mod n and compare
it to 1. If an−1 6= 1 [n], then n is composite, otherwise n is a candidate to be
prime.

2.3 Miller–Rabin test T3

Miller–Rabin test (see, for example [7,8]) is more efficient than Solovay and
Strassen probabilistic test (see, for instance [11,6]). Since n is odd, we can
uniquely find two positive integers r and s such that n − 1 = 2rs. Let a be
any integer such that gcd(a, n) = 1. If as 6= 1 [n] and ∀ j ∈ {0, 1, . . . , r − 1} :

a2js 6= −1 [n], then n is composite.
If n passes all three tests, then it is probably a prime integer. In other

words, we believe in its primality.

3 Results of our experiments

In this section, first we recall Rivest experimental tests [10], and then describe
our own experiments providing the main results.

3.1 Rivest experiences

In 1991, Rivest examined 718 million randomly chosen 256-bit integers. Firstly
he tested them by small divisors with the upper bound B = 104. 43, 741, 404

passed this first test. Of those, 4, 058, 000 passed Fermat test with the base 2.
Of those, no one was eliminated by Miller–Rabin test with 8 random bases.



164 O. Khadir, L. Szalay

3.2 Our own experiments

Three kinds of experiments were realized with Maple software, versions 9.5

and 10, depending on the bit length: 256, 512 or 1024. We used ordinary
personal computers working with Pentium IV 3.4 GHz processor and 248 MB
of RAM. The main parameters were taken as in Rivest experiments:

• the upper limit of small primes is B = 104,
• the Fermat base is b = 2,
• the eight bases in the Miller–Rabin test are randomly chosen from the

set {3, 4, . . . , n − 2}.

In our case, we used blocks of integers and the number of randomly selected
integers in each block was mainly between 5 and 10 million. Sometimes we
used smaller or larger blocks as well.

We summarize the results in the next table where numbers N, N1, N2 and
N3 are defined as follows.

• N is the number of the randomly selected integers,
• N1 denotes the number of integers which passed the first test T1,
• N2 is the number of integers which passed both T1 and T2,
• N3 shows the number of integers which passed all the three tests.

Moreover, for i = 1, 2, and 3 let Ri = 100
Ni

N
.

We began to test more than one billion of integers whose bit lenght is 256,
more than what was tested by Rivest. We found that the time required by PCs
to run every range of 5 million of integers is around 40 minutes and around
80 minutes for every range of 10 million. For data see Table 1.

bit length N N1 N2 N3

256 1.13 × 109 68 781 054 6 381 145 6 381 145

512 109 60 875 654 2 820 804 2 820 804

512 109 60 893 522 2 822 109 2 822 109

1024 109 60 876 414 1 408 923 1 408 923

bit length N R1(%) R2(%) R3(%)

256 1.13 × 109 6.0868189 0.5647031 0.5647031

512 109 6.0875654 0.2820804 0.2820804

512 109 6.0893522 0.2822109 0.2822109

1024 109 6.0876414 0.1408923 0.1408923

Table 1.
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Then we tested two times one billion integers with bit lenght 512. And,
finally, we tested one billion of integers with lb = 1024. For comparison, see
again Table 1.

We emphasized that, in the three kinds of experiment, we found N3 = N2

implying R3 = R2.

4 Conclusions

I. In this work, we realized new experiments on large integers in order to
determine their primality. We tested more than four billion integers having
256, 512 and 1024 bits. They were all selected randomly. The main fact is
that, from those which passed the small divisor test and the Fermat test, no
one was blocked by the Miller–Rabin test. This result, based on more exper-
iments, confirms what was already observed by Rivest. With the parameters
mentioned above, the Miller–Rabin test does not improve the probabilistic
algorithm based on the two first tests. Hence it seems that the Miller–Rabin
test is unnecessary as the third stage of the three tests.

On the other hand, for future work, we suggest to replace the Miller–Rabin
test by an alternative one and to verify experimentally if this modification
brings any amelioration or not.
II. It seems that the upper bound on small primes is unnecessarily high. Both
Rivest and us first used B = 104, but now we suggest B = 300 or B = 3000

instead. Why? Because with B = 104 we filtered 93.91% of the attendants
independently from the bit length (supposing that lb is large enough). If we
have all the primes p1 = 2, p2 = 3, ..., pm ≤ B, then in the first step of the
3 tests they exclude expectedly

1 −

(

1 −
1

p1

) (

1 −
1

p2

)

· · ·

(

1 −
1

pm

)

(1)

part of the attendants. This formula gives 50% for B = 2, approximately
66.667% for B = 3, and so on, and provides 93, 911% for B = 104 (this was the
preferred case). But for B = 300 we already have 90, 245%, and going further,
for B = 3000 we obtain 93, 003%, which almost coincides with what we had
for B = 104 before.

The following table shows the comparison of running experiences of different
values B if lb = 256. One can observe, that if we decrease B, then the number
of random integers which failed the small prime divisor test also decreases,
but the final ratio of the integers survived all the three tests is approximately
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constant. Furthermore, the values in the third column of Table 2 coincide with
the values forecasted by (1).

B Size of sample Failed T1 Passed T1 ∧ T2 ∧ T3

10000 1.13 billion 93.913181 0.564703

3000 100 million 93.005612 0.564496

300 100 million 90.251749 0.564111

Table 2.
III. In the experiment we randomly chose a huge number of integers to clas-
sify them by three consecutive primality tests. Therefore, it is natural to
compare the number of integers passing through all three tests (the number
of industrial-grade primes) and the expected value of primes. Now we recall
the thesis of Dusart [2], providing good approximations of the function π(x).

Theorem 1 (Dusart, [2], p.36.) If x ≥ 1.332 · 1010, then

x

ln x

(

1 +
1

ln x
+

1.8

ln2 x

)

≤ π(x) ≤
x

ln x

(

1 +
1.0992

ln x

)

.

Let πn and dn =
πn

2n−1
denote the number of primes and the density of the

primes in the interval In = [2n−1; 2n − 1], respectively. By Theorem 1, we
obtain

0.0056 424 ≤ d256 =
π256

2255
≤ 0.0056 509 ,

0.0028 194 ≤ d512 =
π512

2511
≤ 0.0028 217 ,

0.001409 299 ≤ d1024 =
π1024

21023
≤ 0.001409 875 .

Note, that in the experiment we investigated 1.13 and 2 and 1 billion random
integers from the interval I256, I512 and I1024, respectively. Hence, with the
given cardinality of the samples, the expected values E256, E512 and E1024 of
primes, by Dusart’s theorem, satisfy the inequalities

6375919 ≤ E256 ≤ 6385530 ,

5638897 ≤ E512 ≤ 5643385 ,

1409299 ≤ E1024 ≤ 1409874 .
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The following table recalls the statistics about the candidates for primality
(the integers survived the three tests).

256 512 1024

cardinality of sample 1.13 billion 2 billion 1 billion

number of candidates 6381145 5642913 1408923

Table 3.

When the bit length is 256, then we gained 6381145 industrial-grade primes
and this number is in the interval [6375919 ; 6385530] bounding E256. Similarly
it is true when we choose random integers from I512. In the case of longest
bit length, 1408923 is not in the interval around E1024, but less then its lower
limit 1409299 (better case).

These data also reinforce the primality of integers passing through the three
tests.
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Approximating poles of complex rational

functions
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Abstract. In this paper we investigate the application of the Nelder–
Mead simplex method to approximate poles of complex rational func-
tions. To our knowledge, there isn’t any algorithm which is able to find
the poles of a function when only the values on the unit circle are given.
We will show that this method can accurately approximate 1, 2 or even
3 poles without any preliminary knowledge of their locations. The work
presented here has implications in the study of ECG signals.

1 Introduction

The research presented in this article is motivated primarily by the fact that
by combining a couple of simple complex rational functions and examining the
values on the unit circle, the result can be very similar to an ECG signal (see
Fig. 1). These functions can be applied for analysis, compression and denoising
of ECG signals. Diagnostic applications may also be possible.

Rational functions play an important role in control theory. The Malmquist–
Takenaka systems are often used to identify the transfer function of a system,
see [1], [2], [9], and [10]. However automatic approximation of the poles of
these functions proved not trivial when only the values on the unit circle are
given and we have no preliminary knowledge about the locations of the poles.

A function, such as the one in Fig. 1, can be defined by its poles and the
corresponding coefficients. The coefficients can be expressed by means of scalar

AMS 2000 subject classifications: 30E10, 33F05, 65E05, 65D15
Key words and phrases: Complex rational functions, Malmquist–Takenaka system, ap-
proximation of poles, Nelder–Mead simplex algorithm, ECG
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(a) An ECG signal from [3]. (Apnea-
ECG Database)

(b) An approximating function.

Figure 1: An ECG signal and a very similar function produced using complex
rational functions.

products when using an orthonormal system, so the main problem is to find
the poles generating an appropriate system.

In this paper we investigate the application of the Nelder–Mead simplex
method to approximate poles of generated complex rational functions given
by their values on the unit circle. The question of H∞ approximation (see [1]
and [2]) is also to be analyzed.

2 Mathematical background

In this section we will introduce our functions of interest and recall some
properties of related orthonormal systems. Then we give a summary of the
Nelder–Mead simplex method, a commonly used nonlinear optimization algo-
rithm.

2.1 Complex rational functions

Denote by C the set of complex numbers and let D := { z ∈ C : |z| < 1 } be the
open unit disk, T := { z ∈ C : |z| = 1 } the unit circle and D

∗ := C \ (D ∪ T).
The natural numbers will be considered as the set N := { 1, 2, 3, . . . }.

The disk algebra, i.e. the set of functions analytic on D and continuous on
D ∪ T, will be denoted by A. The scalar product on T is defined by:

〈f, g〉 =
1

2π

∫2π

0

f(eit)g(eit)dt.
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(a) a =
(

3
4
e

1

2
iπ
)

, c = (1) (b) a =
(

1
4
e

3

2
iπ
)

, c = (1)

(c) a =
(

1
2
e

1

2
iπ , 1

2
e

3

2
iπ
)

, c = (−1, 2) (d) a =
(

1
4
eiπ , 3

4
e

1

3
iπ
)

, c = (1, i)

Figure 2: Examples of complex rational functions.

We shall examine functions generated by the collection of

ϕn(z) :=
1

(1− anz)mn
(z ∈ C; m ∈ N; n = 1, . . . ,m),

where an ∈ D (n = 1, . . . ,m) and mn =
∑

i≤n,ai=an
1 the multiplicity of

the parameter an. We note that ϕn has a pole in a∗n = 1/an ∈ D
∗ and

Φ := (ϕn : n = 1, . . . ,m) ⊂ A.
Fig. 2 illustrates some rational functions of the form f =

∑m
n=1 cnϕn with

a = (a1, . . . , am), c = (c1, . . . , cm) and m = 1, 2. 1

By applying the Gram–Schmidt orthogonalization procedure to Φ, we ob-
tain an orthonormal system Ψ := (ψn : n = 1, . . . ,m) on T, the so-called
Malmquist–Takenaka system (introduced in [7] and [11], see also [6]), which
can be expressed by the Blaschke functions:

Bb(z) :=
z− b

1− bz
(b ∈ D; z ∈ C).

1The values on T are shown, i.e. for a function f we plot f(z) = f(eit), where t ∈ [0, 2π].
The solid line is the real part, the dashed line is the imaginary part of f(z).



172 L. Lócsi

Namely

ψn(z) =

√

1− |an|
2

1− anz

n−1∏

k=1

Bak
(z) (z ∈ C; n = 1, . . . ,m),

which suggests a convenient computation method for the values of ψn.
The orthonormality of the Malmquist–Takenaka functions is defined by

〈ψk, ψl〉 = δkl (k, l = 1, . . . ,m),

where δkl is the Kronecker symbol. Note that spanΦ = spanΨ, i.e. the systems
Φ and Ψ generate the same m-dimensional subspace.

Given a function f ∈ A we can compute PΨf = Pa1,...,amf, the orthogonal
projection of f on the subspace spanΨ by the formula

PΨf =

m∑

n=1

〈f, ψn〉ψn.

Let EΨf = Ea1,...,amf denote the best approximation of f in ||.||2, in spanΨ:

EΨf := ||f− PΨf||2 =
√

〈f− Pf, f− Pf〉.

Our aim is to minimize EΨf for a given function f ∈ A (f is given by its
values on T) and m ∈ N dimension by choosing the parameters a1, a2, . . . , am

of the Ψ (or Φ) system ’well’.

Naturally, in our computations we use the discrete approximation of the
scalar product:

[f, g] := [f, g]N =
1

2πN

N−1∑

k=0

f(e2πik/N)g(e2πik/N)

for a sufficiently large N. Let us choose e.g. N = 256. Furthermore a function
is given by its values on the set

TN :=
{
z ∈ T : z = e2πik/N; k = 0, . . . , N− 1

}
.
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2.2 The Nelder–Mead algorithm

The method introduced by Nelder and Mead in [8] is for the minimalization of
a function of n variables, which depends only on the comparison of function
values at the n+1 vertices of a general simplex, followed by the replacement of
the vertex with the highest value by another point. The simplex adapts itself
to the local landscape and contracts on to the final minimum. The method
has been shown to be effective and computationally compact. Though there
are very few proofs concerning its convergence properties (see [4] and [5]),
it is widely used in practice in natural sciences and engineering for function
optimization.

The method is described as follows. Let f : R
n → R be an arbitrary function

and x1, x2, . . . , xn+1 ∈ R
n the vertices of the current (nondegenerate) simplex

in n-dimensions. Usually the vertices are defined by an xs starting point and
w > 0:

x1 := xs, xi := xs +w · ei−1 (i = 2, . . . , n+ 1),

where ei is the ith element of the canonical basis in R
n.

Let yi := f(xi) (i = 1, . . . , n+ 1) and define the indices h and l such that

yh = max {yi : i = 1, . . . , n+ 1 } , yl = min {yi : i = 1, . . . , n+ 1 } ,

the highest and lowest values. Further define x the centroid of the points xi

with i 6= h.
At each stage in the process xh is replaced by a new point; three operations

are used: reflection, expansion and contraction with the following parameters:
α = 1, β = 1

2
and γ = 2, since the natural (’standard’) strategy given by these

values proved to be the best, see [8]. These are defined as follows:

• The reflection of xh is defined by the relation

xr := (1+ α)x− αxh, yr := f(xr).

If yl ≤ yr < yh, then xh is replaced by xr and we start again with the
new simplex.

• If yr < yl, i.e. the reflection has produced a new minimum, then we
expand xr to xe by the relation:

xe := γxr + (1− γ)x, ye := f(xe).

If ye < yr, we replace xh by xe and restart the process; but if ye ≥
yl, then we have a failed expansion, and we replace xh by xr before
restarting.
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• If on reflecting xh to xr we find that yr ≥ yi for all i 6= h, i.e. that
replacing xh by xr leaves yr the maximum, then we define a new xh to
be either the old xh or xr, whichever has the lower y value (when yh = yr

then choose xh), and form

xc := βxh + (1− β)x, yc := f(xc).

We then accept xc for xh and restart, unless xc > min { xh, xr }, i.e. the
contracted point is worse than the better of xh and xr. For such a failed
contraction we replace all xi points by 1

2
(xi+xl) and restart the process.2

We stop the iteration when the standard deviation is less then ε, a small
preset value:

(

1

n

n+1∑

i=1

(yi − y)2

)

1
2

< ε,

where

y =
1

n+ 1

n+1∑

i=1

yi.

Let us choose e.g. ε = 10−6.

The Nelder–Mead method is an effective and robust algorithm, but it often
stops near local minima ignoring better global solutions. In these cases a
reinitialization of the simplex at another starting point may prove helpful.

In Fig. 3 we illustrate the steps of a 2-dimensional simplex with starting
point xs = (4, 6) and w = 1 optimizing the quadratic function:

f(x) = f(x ′, x ′′) =
1

16
(x ′ − 2)2 + (x ′′ − 3)2 (x ′, x ′′ ∈ R).

The effects of reflection, expansion and contraction can be observed, as defined
above. It is clear that in this simple case the simplex contracts on the minimum
xmin = (2, 3).3

2This operation is called a shrink and a shrinking parameter δ can also be defined. The
standard choice is δ = 1

2
.

3This algorithm is also known as the amoeba method for the similarity of the simplex’s
moves to the named unicellular creature.
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Figure 3: Moves of a Nelder–Mead simplex optimizing a quadratic function.

3 Methodology

In this section we explain how the Nelder–Mead method can be applied to
find suitable parameters for the approximation. Furthermore, we describe our
experiments and measurements.

Our goal is to minimize the function EΨf = Ea1,...,amf introduced in Section
2.1 for a given f ∈ A function (f is given by its values on T) and m ∈ N dimen-
sion by choosing the parameters a1, a2, . . . , am of the Ψ system. For solving
this minimization problem, we shall use the Nelder–Mead simplex algorithm
described in Section 2.2.

The parameters of the Ψ system are to be chosen from D. The simplex
method requires vertices from R

n. So in order to allow the simplex to move
freely in R

n i.e. without any constraints to its steps, we set n = 2m and use
the map

R
2 ∋ (u, v) 7−→ z =

u√
1+ u2 + v2

+
v√

1+ u2 + v2
i ∈ D.

This map is a bijection between R
2 and D. Then a map from R

2m to D
m can

be easily given by considering pairs of coordinates in R
2m.

The traditional map used comes from the following idea. Imagine a half
sphere on the complex unit disk D and then lay a plane R

2 on the half sphere.
Then the corresponding z ∈ D to an (u, v) ∈ R

2 point is given by joining
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C
1

(u, v)

z0

Figure 4: Mapping (u, v) ∈ R
2 to z ∈ D.

the complex zero with (u, v) by a straight line and projecting its intersection
with the half sphere in C as seen in Fig. 4. The formula can be deduced from
properties of the similar triangles on the figure.

So to find the (a1, . . . , am) ∈ D
m parameter values minimizing EΨf, we

use a simplex in R
2m. Let the starting position xs be the zero of R

2m, and
w = 0.1. The iteration stops when the standard deviation of the EΨf values
in the vertices of the simplex descend below ε = 10−6.

For a given m ∈ N and function f ∈ A of the form

f(z) =

m∑

n=1

cnϕn(z) (z ∈ T; cn ∈ C)

with parameters a1, . . . , am ∈ D defining the functions ϕn (n = 1, . . . ,m) and
the approximations b1, . . . , bm ∈ D of the parameters an define

Df := max { |an − bn| : n = 1, . . . ,m } ,

the error of the approximation of the poles. (For convenience, we sometimes
refer to the an parameters of the rational system as poles although these are
actually not poles of the functions in focus. The 1/an values are.) Further
define

Hf :=
max { |f(t) − (Pb1,...,bm

f)(t)| : t ∈ T }

max { |f(t)| : t ∈ T }
,

the relative error of the approximation in H∞ norm. Naturally, in our com-
putations we use the discrete approximation of Hf. And finally define

N f ∈ N,

the number of calculations the simplex algorithm performs before terminating,
where one calculation means evaluating Eb1,...,bm

f for a given function and set
of parameters.



Approximating poles of complex rational functions 177

In our first experiments we used 1024 functions with one pole a1 randomly
chosen from the uniform distribution on D, forming f(z) = c1ϕ1(z) with c1
also randomly chosen from D. We avoided extreme values of a1 and c1 too
close to zero (less than 0.05), because these values would result in almost
constant function values on T. We also avoided a1 values too close to T

(greater than 0.95), because ϕ1 can no longer be defined with its parameter in
T and our discretization may prove insufficient to reflect the properties of these
extreme functions. For each function f we applied the Nelder–Mead algorithm
as described above to find its pole and measured the previously defined Df,
Hf and N f values.

Then we generated another 1024 functions with two poles i.e. functions of
the form f(z) = c1ϕ1(z) + c2ϕ2(z) with a1, a2, c1, c2 chosen similarly to the
previous case and measured the Df, Hf and N f values again.

This experiment has been repeated for another 1024 functions with three
random poles and coefficients: f(z) =

∑3
i=1 ciϕi(z).

Finally we investigated the iterated application of the simplex algorithm in
the case m = 3. This means that if the result was not good enough (e.g.
Df > 10−4), we reinitalized the simplex with w = 0.1 and xs in the position
reached in the previous iteration and started the optimization process again,
at most 5 times.

4 Results

The statistics of our measurement results of the Df, Hf and N f values are
summarized in Table 1. The histograms of these values are shown in Fig. 5,
6 and 7. Fig. 5 and 6 show the number of functions (out of 1024) with Df
and Hf approximation error values with an order of magnitude of 10−8, 10−7,
etc. Fig. 7 shows the number of functions (out of 1024) with N f values in the
intervals shown on the horizontal axis.

One can observe that in the case m = 1, i.e. the case of functions with one
pole, the algorithm always gives a very good approximation of the pole. The
order of the approximation error is better than 10−6 and so is the approx-
imation error in the H∞ norm. The algorithm is very effective and fast, it
requires 90 calculations on average. We also found that the algorithm needs
more steps when applied to a function with its pole closer to T. In these cases
the approximation is usually more accurate too.

In the case m = 2 (i.e. the case of functions with two poles) in most cases
the poles can be approximated with precision at least of order 10−6. The
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min max avg std. dev.

1 pole Df 2.83 · 10−8 2.10 · 10−5 4.74 · 10−7 1.15 · 10−6

Hf 7.20 · 10−8 2.19 · 10−5 6.52 · 10−7 1.34 · 10−6

Nf 56 116 89.92 8.30

2 poles Df 5.74 · 10−8 4.27 · 10−1 1.85 · 10−3 1.95 · 10−2

Hf 6.95 · 10−8 5.87 · 10−3 1.09 · 10−5 1.89 · 10−4

Nf 91 792 283.58 68.03

3 poles Df 7.46 · 10−8 1.78 · 100 1.13 · 10−1 2.71 · 10−1

Hf 8.53 · 10−8 3.37 · 10−1 1.82 · 10−3 1.49 · 10−2

Nf 181 2006 712.64 272.56

3 poles Df 7.46 · 10−8 5.94 · 10−1 3.91 · 10−3 3.03 · 10−2

iterated Hf 8.53 · 10−8 2.57 · 10−4 1.91 · 10−6 1.24 · 10−5

Nf 430 2782 944.54 361.27

Table 1: The measured minimum, maximum, average and standard deviation
values of Df, Hf and N f in the four investigated cases.

approximation in the H∞ norm is also very good. The algorithm requires
about 280 calculations on average. The cases when the Df value is in the order
of 10−1 or 10−2, are the ones when the two poles are very close to each other
and there is a significant difference in the absolute values of the coefficients.
In such cases the function could be almost as precisely approximated using
functions with only one pole as using functions with two poles.

For functions with three poles (m = 3), there are lot more cases when Df
is of the order 10−1, even if the H∞ error is small enough. We observed that
in these cases the algorithm finds two poles with high precision, but the third
one is far from the original. Then if we start again by initializing the simplex
in the point reached (we iterate the application of the algorithm), the third
pole is also find usually with an error less than 10−5 and the error of the H∞

approximation also decreases. Naturally the computation cost rises with m
and with the iterated application of the algorithm.

In the case of functions with even more poles, our few experiments show
that this algorithm is not as powerful as in the cases detailed above (See also
[4].) For instance, if the function is generated with 8 different poles, then the
simplex method usually finds 4 of the poles with very small errors, but the
others remain unknown.
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 5: Number of functions (out of 1024) vs. order of Df.

5 Conclusions

Our results show that the Nelder–Mead simplex algorithm can be applied
effectively to solve the problem of approximating poles of complex rational
functions with 1, 2 or even 3 poles, when the functions are given by their
values on T and we have no preliminary knowledge about the location of the
poles. We also get a satisfying approximation in H∞ norm.

The results presented here have proven sufficient to perform promising cal-
culations in the case of approximating ECG signals.

6 Further research

The main area of application of this research is the processing and analysis of
ECG signals. The representation using complex rational functions may give an
efficient way to compress and store these signals. We can gain a new method
for denoising too, because of the smoothness of the functions applied. The
potentials in diagnostics are also to be explored.
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 6: Number of functions (out of 1024) vs. order of Hf.

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 3, iterated

Figure 7: Histogram of N f.



Approximating poles of complex rational functions 181

The effect of adding noise to the examined functions may also be investi-
gated.

The direct use of D and hyperbolic coordinates instead of R
2 in the imple-

mentation of the algorithm also seems to be an interesting field of research.
The design of new algorithms or possible improvement of the Nelder–Mead

method for finding poles of functions with more singularities effectively is also
to be studied.
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Abstract. We study two extensions of notions related to perfect num-
bers. One is the extension of “superperfect” numbers, the other one is
a new notion called “aperfect” numbers. As particular cases, many re-
sults involving the arithmetical functions σ, σ∗, σ∗∗, ϕ, ϕ∗, ψ and their
compositions are presented in a unitary way.

1 Introduction

Let σ(n) denote the sum of distinct divisors of the positive integer n. It
is well-known that n is called perfect if σ(n) = 2n. Euclid and Euler have
determined all even perfect numbers (see [8] for history of this theorem) by
showing that they are of the form n = 2k · q, where q = 2k+1 − 1 is a prime
(k ≥ 1). Prime numbers of the form 2a − 1 are called Mersenne primes, and
it is one of the most difficult open problems of mathematics the proof of the
infinitude of such primes. Up to now, only 46 Mersenne primes are known
(see e.g. http://www.mersenne.org/). On the other hand, no odd perfect
number is known ([3]). In 1969 D. Suryanarayana [10] defined the so-called
superperfect numbers n, having the property σ(σ(n)) = 2n; and he and H. J.
Kanold [4] obtained the general form of even superperfect numbers. All odd
superperfect numbers must be perfect squares, but we do not know if there
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exists at least one such number.
In what follows we denote by N the non-zero positive integers: N = {1, 2, . . .}.
We call a g function multiplicative, if g(ab) = g(a)g(b) for all a, b ≥ 1, with
(a, b) = 1.
In what follows, we denote by σ∗(n) the sum of unitary divisors of n, i.e.
those divisors d|n, with the property (d, n/d) = 1. A divisor d of n is called
bi-unitary if the greatest common unitary divisor of d and n/d is 1. It is
well-known that (see e.g. [2], [8]) σ∗ and σ∗∗ are multiplicative functions, and

σ∗(pα) = pα + 1, (1)

σ∗∗(pβ) =

{
1+ p+ . . .+ p2α − pα, if β = 2α

1+ p+ . . .+ p2α+1 = σ(pα), if β = 2α+ 1
, (2)

where p is an arbitrary prime and α ≥ 1 is a positive integer.
Clearly, σ is also a multiplicative function and

σ(pα) = 1+ p+ . . .+ pα, (3)

for any prime p and α ≥ 1.
The Euler’s totient function is a multiplicative function with

ϕ(pα) = pα−1
· (p− 1), (4)

while its unitary analogue is a multiplicative function with

ϕ∗(pα) = pα − 1, (5)

(see e.g. [2], [9]).
Finally, Dedekind’s arithmetical function ψ is a multiplicative function with
the property

ψ(pα) = pα−1
· (p+ 1), (6)

(see e.g. [3], [7]).
In what follows, we shall call a number n “f-perfect”, if

f(n) = 2n (7)
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Thus the classical perfect numbers are the σ-perfect numbers, while the su-
perperfect numbers are in fact σ ◦ σ-perfect numbers.
In 1989 the first author [6] determined all even ψ◦σ-perfect numbers. In fact,
he proved that for all even n one has

ψ
(

σ(n)
)

≥ 2n, (8)

with equality only if n = 2k, where 2k+1 − 1 is a Mersenne prime. Since
σ(m) ≥ ψ(m) for all m, from (8) we get:

σ
(

σ(n)
)

≥ ψ
(

σ(n)
)

≥ 2n for n = even, (9)

an inequality, which refines in fact the Kanold-Suryanarayana theorem.
We note the contrary to the σ ◦ σ-perfect numbers; at least one odd solution
to ψ ◦ σ-perfect numbers is known, namely n = 3.

2 Extensions of even superperfect numbers

The main result of this section is contained in the following.

Theorem 1 Let f, g : N → N be two arithmetic functions having the following
properties:

1. g is multiplicative

2. f(ab) ≥ af(b) for all a, b ≥ 1

3. g(m) ≥ m, with equality only for m = 1

4. f
(

g(2k)
)

≥ 2k+1, with equality only if 2k+1 − 1 ∈ A, where A is a set of
positive integers

Then for all even n one has

f
(

g(n)
)

≥ 2n, (10)

and all even f ◦ g-perfect numbers are of the form 2k, where 2k+1 − 1 ∈ A.
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Proof. Let n = 2k ·m with m = odd, be an even integer. By condition 1. one
has g(n) = g(2k)g(m), so by 2. we can write that f

(

g(n)
)

= f
(

g(2k)g(m)
)

≥

g(m)f
(

g(2k)
)

. Since g(m) ≥ m (by 3.) and f
(

g(2k)
)

≥ 2k+1 (by 4.), we get
that f

(

g(m)
)

≥ 2n, so (10) follows. For equality we must have g(m) = 1

and f
(

g(2k)
)

= 2k+1, so m = 1 and 2k+1 − 1 ∈ A. This finishes the proof of
Theorem 1. �

Remark 1 If at least one of the inequalities 2.–4. is strict, then in (10) one
has strict inequality. As a consequence, n cannot be an even f ◦ g-perfect
number.

Corollary 1 (Sándor [6])
All even ψ ◦ σ-perfect numbers n have the form n = 2k, where 2k+1 − 1 is
prime.

– The first ψ ◦ σ-perfect numbers are: 2 = 21, 3, 4 = 22, 16 = 24, 64 = 26,
4096 = 212, 65536 = 216, 262144 = 218, where 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287

are Mersenne primes.
– Put f(n) = ψ(n) and g(n) = σ(n) in Theorem 1. Then property 2. is

known (see e.g. [7]), while 3. and 4. are well known. Since for t > 1 one has
ψ(t) ≥ t + 1, with equality only for t = prime, by σ(2k) = 2k+1 − 1, we get
A = set of primes of the form 2k+1 − 1.

Corollary 2 (Sándor [6])
The only even σ ◦ψ-perfect number n is n = 2.

– Put f(n) = σ(n) and g(n) = ψ(n) in Theorem 1. Then properties 1.–3.
are well-known; for 4. one has ψ(2k) = 2k−1 ·3; so σ(2k−1 ·3) = ((2k−1) ·4) ≥

2k+1 ⇔ 2k ≥ 2. Thus k = 1 and A = {3}.

Corollary 3 (Kanold-Suryanarayana [4])
All even σ ◦ σ-perfect numbers n have the form n = 2k, where 2k+1 − 1 is
prime.

– The first σ ◦ σ-perfect numbers are:
2 = 21, 4 = 22, 16 = 24, 64 = 26, 4096 = 212, 65536 = 216, 262144 = 218,
1073741824 = 230, 1152921504606846976 = 260, where 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287,
231 − 1 = 2147483647, 261 − 1 = 2305843009213693951 are Mersenne primes.

– This also follows from inequality (10) for f(n) = σ(n) and g(n) = ψ(n),
but a direct proof applies for f(n) = g(n) = σ(n).
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Corollary 4 (Sándor [6])
There is no even ψ ◦ψ-perfect number.

– Put f(n) = g(n) = ψ(n). Since inequality 4. will be strict, inequality (10)
holds true also with strict inequality.

Remark 2 In [6] it is proved also that the only odd ψ ◦ ψ-perfect number is
n = 3.

Corollary 5 The only even σ ◦ σ∗∗-perfect number n is n = 2.
– Let f(n) = σ(n) and g(n) = σ∗∗(n) in Theorem 1. Clearly 3. holds true,

as more generally it is known that (see e.g. [1], [8]):

σ∗∗(m) ≥ m+ 1 for m > 1, (11)

with equality only for m = p or m = p2 (p = prime).
Now, let k be odd. Then σ∗∗(2k) = σ(2k) = 2k+1 − 1 and σ(σ∗∗(2k)) =

σ(2k+1 − 1) ≥ 2k+1, with equality only if 2k+1 − 1 = prime. For k ≥ 3, as k is
odd, clearly k+ 1 is even, so it is immediate that 2k+1 − 1 ≡ 0 (mod 3). Thus
we must have k = 1, i.e. n = 2 is a solution.
When k is even, put k = 2a. Then σ∗∗(2k) = σ∗∗(22a) = 1+ 2+ . . .+ 2a−1 +

2a+1 + . . .+ 22a

︸ ︷︷ ︸
2a+1

·(1+2+...+2a−1)

= (1+2+ · · ·+2a−1) · (1+2a+1) = (2a−1)(2a+1+1). Thus,

σ(σ∗(2k)) = σ((2a − 1) · (2a+1 + 1)) ≥ (2a − 1)σ(2a − 1) ≥ (2a+1 + 1) · 2a >

22a+1 = 2k+1, so inequality 4) is strict for k even number.

3 Aperfect numbers

The equality f(n) = n + 2, for f(n) > n is a kind of additive analogue of
f(n) = n · 2, i.e. of classical perfect numbers. We shall call a number n f-plus
aperfect (aperfect = “additive perfect”), if

f(n) = n+ 2. (12)

This notion also extends the notion of perfect numbers. Put e.g. f(n) =

σ(n) − n+ 2. Then σ(n) = 2n, so we obtain again the perfect numbers.
Similary, for f(n) < n we have a similar notion. We call n f-minus aperfect, if

f(n) = n− 2. (13)
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We can state the following general result:

Theorem 2 Let f, g : N → N be two arithmetic functions such that g(n) ≥

n + 1 for n > 1, with equality only for n = pα (p prime, α ≥ 1 integer) and
f(m) ≥ m + 1, for m > 1, with equality only for m = qβ (q prime, β ≥ 1

integer). Then one has the inequality

f
(

g(n)
)

≥ n+ 2 (14)

for all n, and n is f ◦ g-plus aperfect only if the prime powers pα and qβ

satisfy the equation

g(pα) = qβ. (15)

Proof. From the stated conditions, one can write f
(

g(n)
)

≥ g(n) + 1 ≥

(n + 1) + 1 = n + 2. One has equality only if n = pα and g(n) = qβ, i.e.
g(pα) = qβ, which means equality (15). �

Corollary 6 (Sándor [6])
All σ ◦ σ∗-plus aperfect numbers n have form n = 2s, where 2s + 1 is a prime
(i.e. Fermat prime, s = 2a ).

– The first σ ◦ σ∗-plus aperfect numbers are: 2 = 21, 4 = 22, 16 = 24,
256 = 28, 65536 = 216, where 21+1 = 3, 22+1 = 5, 24+1 = 17, 28+1 = 257,
216 + 1 = 65537 are Fermat primes.

– Let f(n) = σ(n), g(n) = σ∗(n). Then (15) may be written as σ∗(pα) = qβ.
Since σ(m) = m + 1 only for m = prime, we have β = 1, thus pα + 1 = q.
For p ≥ 3, pα + 1 is even number, so we must have p = 2, i.e. q = 2α + 1.
Since n = pα = 2α, then result follows.

Corollary 7 All σ∗ ◦ σ-plus aperfect numbers are n = 2, or have the form
n = 2k − 1, where 2k − 1 is a Mersenne prime.

– The first σ∗ ◦ σ-plus aperfect numbers are: 2, 22 − 1 = 3, 23 − 1 = 7,
25 − 1 = 31, 27 − 1 = 127, 213 − 1 = 8191, 217 − 1 = 131071, 219 − 1 = 524287

(Mersenne primes).
– Let f(n) = σ∗(n), g(n) = σ(n) in Theorem 2. Then (15) has the form

σ(pα) = qβ. Since α = 1, one has p+ 1 = qβ, i.e. p = qβ− 1. For q ≥ 3 this
is even, so we must have q = 2, when p = 2β − 1 is Mersenne prime. When
q = 3 for β = 1 we get the prime 2, the first σ∗ ◦ σ-plus aperfect number.
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Corollary 8 The only σ ◦ σ-plus aperfect number n is n = 2.
– Let f(n) = g(n) = σ(n). Then we get α = β = 1 so σ(p) = q, i.e.

p+ 1 = q with p, q This is possible only for p = 2, q = 3.

Corollary 9 The only σ∗∗ ◦ σ∗∗-plus aperfect numbers n are n = 2, 3, 4.
– Since the equality σ∗∗(n) = n + 1 is satisfied only if n = p or n = p2 (p

prime), we must study the equality:

σ∗∗(pα) = qβ (16)

for α,β ∈ {1, 2}.
If α = 1, then β = 1 implies p+1 = q, which is possible only for p = 2, q = 3.
Now for α = 1, β = 2 we get p+ 1 = q2, so p = q2− 1 = (q− 1)(q+ 1), which
is possible only for q = 2 and p = 3. Thus p = 3 is acceptable too.
If α = 1, β = 2, we get q2+ 1 = p, i.e. q2 = p− 1. Here p = 2 is not possible,
while for p ≥ 3, p − 1 is even, thus 2|q2. This means q = 2. So p = 5 is
another solution. For q2 + 1 = p2 we get q2 = (p− 1)(p+ 1), which for p = 2

gives q2 = 3, which is impossible. For p ≥ 3 we get q = 3, so 5 = p2, which
is again impossible. Then result follows.

Similarly to Theorem 2, we may prove the following:

Theorem 3 Let f, g : N → N be two arithmetic functions, such that g(n) ≤

n − 1 for n > 1, with equality only for n = pα (p prime, α ≥ 1 integer) and
f(m) ≤ m − 1, for m > 1, with equality only for m = qβ (q prime, β ≥ 1

integer). Then one has the inequality:

f
(

g(n)
)

≤ n− 2 (17)

for all n > 2, and n is f ◦g-minus aperfect only if the prime powers pα and
qβ satisfy the equation

g(pα) = qβ. (18)

Proof. From the stated properties one can write f
(

g(n)
)

≤ g(n) − 1 ≤

(n − 1) − 1 = n − 2, with equality only if n = pα and g(n) = qβ, so (18)
follows. �
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Corollary 10 All ϕ ◦ ϕ∗-minus aperfect numbers n are n = 3, or have the
form n = 2a, where 2a − 1 is a Mersenne prime.

– The first ϕ ◦ϕ∗-minus aperfect numbers are: 3, 4 = 22, 8 = 23, 32 = 25,
128 = 27, 8192 = 213, where 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, 27 − 1 = 127,
213 − 1 = 8191 are Mersenne primes.

– Let f(n) = ϕ(n), g(n) = ϕ∗(n) in Theorem 3. As ϕ(m) = m− 1 only for
m = prime, we have β = 1, so (18) becomes ϕ∗(pα) = q, i.e. pα − 1 = q.
Then p = 2, so q = 2α − 1 is a Mersenne prime. Here n = 2α, so the
result follows. When p = 3 and α = 1, then q = 1, and we obtain the first
ϕ ◦ϕ∗-minus aperfect number: 3.

Corollary 11 All ϕ∗◦ϕ-minus aperfect numbers n have the form n = 2a+1 =

Fermate prime.
– The first ϕ∗ ◦ ϕ-minus aperfect numbers are: 3 = 21 + 1, 5 = 22 + 1,

17 = 24 + 1, 257 = 28 + 1 Fermat primes.
– Put f(n) = ϕ∗(n), g(n) = ϕ(n) in Theorem 3. Now α = 1, so ϕ(p) = qβ,

i.e. p − 1 = qβ, implying p = qβ + 1. Since p, q are primes, one must have
q = 2. Thus p = 2β + 1 and n = p, which implies the assertion.

Remark 3 At the present state of the science, there are only 5 Fermat primes
known, namely n = 3, 5, 17, 257, 65537 (see [5], [3]).

Corollary 12 All ϕ∗ ◦ϕ∗-minus aperfect numbers are n = 9 or n = 2α with
2α − 1 is Mersenne prime, or n = 2β + 1 is Fermat prime.

– The first ϕ∗ ◦ ϕ∗-minus aperfect numbers are: 3, 4, 5, 8, 9, 17, 32, 128,
257, 8192.

– We have ϕ∗(n) = n − 1 only if n = pα, so we must solve the equation
ϕ∗(pα) = pα − 1 = qβ.

Case 1) If q ≥ 3, then as pα = qβ + 1 = even, we get 2|pα, so p = 2. We
get the equation:

qβ = 2α − 1. (19)

Equation (19) has been studied in [9] (Lemma 6’), so we get β = 1, q = 2α−1

is Mersenne prime.
Case 2) If q = 2, then we get the equation:

pα = 2β + 1, (20)
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studied in [9] (Lemma 4). Thus we have: a) p = 3, α = 2, β = 3, in which
case n = pα = 32 = 9; b) α = 1, p = 2β + 1 is Fermat prime.
This finishes the proof of Corollary 12.

Remark 4 It is easy to see that the only ϕ ◦ ϕ-minus aperfect number is
n = 3.

Remark 5 Since the result of Corollary 7 is a characterisation of odd solu-
tions, it could be used as a Mersenne prime test, too; and Corollary 11 could
be used as a Fermat prime test, too.
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Abstract. The goal of this paper is to study the parametric vector
equilibrium problems governed by vector topologically pseudomonotone
maps. The main result gives sufficient conditions for closedness of the
solution map defined on the set of parameters.

1 Introduction

M. Bogdan and J. Kolumbán [3] gave sufficient conditions for closedness of
the solution map defined on the set of parameters. They considered the para-
metric equilibrium problems governed by topological pseudomonotone maps
depending on a parameter. In this paper we extend this result for parametric
vector equilibrium problems.

Let X be a Hausdorff topological space and let P (the set of parameters) be
another Hausdorff topological space. Let Z be a real topological vector space
with an ordering cone C, where C is a closed convex cone in Z with IntC 6= ∅

and C 6= Z.
We consider the following parametric vector equilibrium problem, in short

(VEP)p:
Find ap ∈ Dp, such that

fp (ap, b) /∈ −C\ {0} , ∀b ∈ Dp,
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where Dp is a nonempty subset of X and fp : X × X → Z is a given function.
It is well-known that VEP contains several problems as special cases, namely,

vector optimization problem, vector saddle point problem, vector variational
inequality problem, vector complementarity problem, etc.

Denote by S (p) the set of the solutions for a fixed p. Suppose that S (p) 6= ∅,
for all p ∈ P. For sufficient conditions for the existence of solutions see [8],
[13].

The paper is organized as follows. In Section 2, we introduce a new notion
of the vector topological pseudomonotonicity and we recall the notion of the
Mosco convergence of the sets. Section 3 is devoted to the closedness of the
solution map for parametric vector equilibrium problems.

2 Preliminaries

In this section, we will introduce a new definition of the vector topologically
pseudomonotone bifunctions with values in Z. First, the definition of the
suprema and the infima of subsets of Z are given. Following [1], for a subset
A of Z the suprema of A with respect to C is defined by:

SupA =
{
z ∈ Ā : A ∩ (z + IntC) = ∅

}
,

and the infima of A with respect to C is defined by:

Inf A =
{
z ∈ Ā : A ∩ (z − IntC) = ∅

}
.

Let (zi)i∈I be a net in Z. Let Ai = {zj : j ≥ i} for every i in the index set I.

The limit inferior of (zi) is given by:

Liminf zi = Sup

(

⋃

i∈I

Inf Ai

)

.

Similarly, the limit superior of (zi) can be defined as

Limsup zi = Inf

(

⋃

i∈I

SupAi

)

.

Theorem 1 ([7], Theorem 2.1) Let (zi)i∈I be a net in Z convergent to z,

and let Ai = {zj : j ≥ i}.

i) If there is an i0 such that, for every i ≥ i0, there exists j ≥ i with Inf Aj 6= ∅,
then z ∈ Liminf zi.
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ii) If there is an i0 such that, for every i ≥ i0, there exists j ≥ i with SupAj 6=

∅, then z ∈ Limsup zi.

We introduce the definition of vector topologically pseudomonotonicity, which
plays a central role in our main results.

Definition 1 Let (X, σ) be a Hausdorff topological space, and let D be a
nonempty subset of X. A function f : D × D → Z is called vector topolog-
ically pseudomonotone if for every b ∈ D, v ∈ C and for each net (ai)i∈I in

D satisfying ai
σ
→ a ∈ D and

Liminf f (ai, a) ∩ (− IntC) = ∅, (1)

then for every i in the index set I

{f (aj, b) : j ≥ i} ∩ [f (a, b) + v − C] 6= ∅.

In Definition 1, if Z = R, and if C is the set of all non-negative real numbers,
then we get back the well-known topological pseudomonotonicity introduced
by Brézis [4].

Let us consider σ and τ two topologies on X. Suppose that τ is stronger
than σ on X.

For the parametric domains in (VEP)p, we shall use a slight generalization
of Mosco’s convergence [14].

Definition 2 ([3], Definition 2.2.) Let Dp be subsets of X for all p ∈ P.

The sets Dp converge to Dp0
in the Mosco sense (Dp

M
→ Dp0

) as p → p0 if:

a) for every subnet (api
)i∈I with api

∈ Dpi
, pi → p0 and api

σ
→ a implies

a ∈ Dp0
;

b) for every a ∈ Dp0
, there exists ap ∈ Dp such that ap

τ
→ a as p → p0.

3 Closedness of the solution map

This section is devoted to prove the closedness of the solution map for para-
metric vector equilibrium problems.

Theorem 2 Let X be a Hausdorff topological space with σ and τ two topolo-
gies, where τ is stronger than σ. Let Dp be nonempty sets of X, and let p0 ∈ P

be fixed. Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions
hold:
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i) Dp
M
→ Dp0

;

ii) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a,

bpi
∈ Dpi

, b ∈ Dp0
,and bpi

τ
→ b, then

Liminf (fpi
(api

, bpi
) − fp0

(api
, b)) ∩ (− IntC) 6= ∅.

iii) fp0
: X × X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0, i.e. for each net of

elements (pi, api
) ∈ GraphS, pi → p0 and api

σ
→ a imply (p0, a) ∈ GraphS.

Proof. Let (pi, api
)i∈I be a net of elements (pi, api

) ∈ GraphS, i.e.

fpi
(api

, b) /∈ −C\ {0} , ∀b ∈ Dpi
, (2)

with pi → p0 and api

σ
→ a. By the Mosco convergence of the sets Dp, we get

a ∈ Dp0
. Moreover, there exists a net (bpi

)
i∈I

, bpi
∈ Dpi

such that bpi

τ
→ a.

From the assumption ii) we obtain that

Liminf (fpi
(api

, bpi
) − fp0

(api
, a)) ∩ (− IntC) 6= ∅. (3)

Since − IntC is an open cone, it follows that there exists a subnet (api
)

denoted by the same indexes such that

fpi
(api

, bpi
) − fp0

(api
, a) ∈ − IntC for all i ∈ I. (4)

By replacing b with bpi
in (2), we get

fpi
(api

, bpi
) /∈ −C\ {0} . (5)

From (5) and (4) we obtain that

fp0
(api

, a) ∈ (−C)c ⊂ (− IntC)c , for all i ∈ I,

since (− IntC)c is closed, it follows

Liminf fp0
(api

, a) ∩ (− IntC) = ∅.

Now, we can apply iii) and we obtain that for every b ∈ Dp0
, v ∈ C, and

for every i ∈ I we have

{
fp0

(

apj
, b
)

: j ≥ i
}
∩
[

fp
0

(a, b) + v − C
]

6= ∅. (6)
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We have to prove that

fp0
(a, b) /∈ −C\ {0} , ∀b ∈ Dp0

.

Assume the contrary, that there exists b ∈ Dp0
such that

fp0

(

a, b
)

∈ −C\ {0} .

Let be fp0

(

a, b
)

= −v, where v ∈ C\ {0} . From (6) we obtain that for every
i ∈ I we have {

fp0

(

apj
, b
)

: j ≥ i
}
∩ (−C) 6= ∅, (7)

i.e. there exists a subnet (api
) denoted by the same indexes such that

fp0

(

api
, b
)

∈ −C for all i ∈ I, (8)

or
fp0

(

api
, b
)

converges to a point in − ∂C. (9)

Since b ∈ Dp0
from the Mosco convergence of the sets Dp, we have that

there exists
(

bpi

)

i∈I
⊂ Dpi

such that bpi

τ
→ b. By using again the assumption

ii), it follows that there exists a subnet (api
) denoted by the same indexes,

for which

fpi

(

api
, bpi

)

− fp0

(

api
, b
)

∈ − IntC, for all i ∈ I. (10)

From (8), (9) and (10) it follows that there exists an index i0 ∈ I such that

fpi

(

api
, bpi

)

∈ − IntC, i ≥ i0, (11)

but on the other side (pi, api
) ∈ GraphS, and

fpi

(

api
, bpi

)

/∈ −C\ {0} ,

which is a contradiction. Hence (p0, a) ∈ GraphS. �

M. Bogdan and J. Kolumbán [3] showed that the topological pseudomono-
tonicity and the assumption ii) are essential in scalar case.

Remark 1 The assigment ii) can not be replaced by

ii’) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a,

bpi
∈ Dpi

, b ∈ Dp0
,and bpi

τ
→ b, then

Liminf (fpi
(api

, bpi
) − fp0

(api
, b)) ∩ (− IntC ∪ {0}) 6= ∅.

Therefore Theorem 2 does not imply Theorem 1 in [3].
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The following example confirms this statement.

Example 1 Let P = N ∪ {∞}, p0 = ∞ (∞ means +∞ from real analysis),
where we consider the topology induced by the metric given by d(m, n) =

|1/m − 1/n|, d(n, ∞) = d(∞, n) = 1/n, for m, n ∈ N, and d(∞, ∞) = 0. Let
X = [0, 1] where σ, τ are natural topologies, Z = R

2, Dp = [0, 1], p ∈ P, the
real vector functions fn : [0, 1] × [0, 1] → R

2. The ordering cone C is the third
quadrant, i.e. C =

{
(a, b) ∈ R

2 : a ≤ 0, b ≤ 0
}
.

Let fn(a, b) = (a − b − 2/n, 1 − 2a), n ∈ N and the function f∞ be defined
by

f∞(a, b) =

{
(a − b, 1 − a) if a > 0

(b, 1) if a = 0
.

The f∞ is vector topologically pseudomonotone. Indeed, for a > 0, f∞ is
continuous, therefore it is vector topologically pseudomonotone. Let us study
the case when a = 0.

We have to prove that for every b ∈ [0, 1], v ∈ C for each (an)n, an ∈ [0, 1]

with an → 0 satisfying

Liminf f∞ (an, 0) ∩ (− IntC) = ∅,

then for every m ∈ N we have

{f∞ (an, b) : n ≥ m} ∩ [f∞ (a, b) + v − C] 6= ∅.

If an = 0, for all n ∈ N, one has the obvious relation for every b ∈ [0, 1], v ∈ C

{f∞ (0, b) : n ≥ m} ∩ [f∞ (0, b) + v − C] 6= ∅, ∀m ∈ N.

If there exists a k ∈ N such that ak 6= 0, then one has that

f∞ (ak, 0) ∈ Liminf f∞ (an, 0) . (12)

Indeed, f∞ (ak, 0) is an inferior point, because otherwise it has to exist an
j > k such that

(aj, 1 − aj) ∈ (ak, 1 − ak) − IntC.

This implies that {
aj > ak

1 − aj > 1 − ak,

which is a contradiction. Similarly we can prove that f∞ (ak, 0) is a superior
point.
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Since f∞ (ak, 0) ∈ (− IntC), it follows from (12), that

Liminf f∞ (an, 0) ∩ (− IntC) 6= ∅,

so f∞ is vector topologically pseudomonotone.
If an = 1/n for all n ∈ N, the assumption ii′) holds. Indeed, from Theorem

1, it follows that

(0, 0) ∈ Liminf (fn (an, bn) − f∞ (an, b)) ,

where bn → b. We have (n, 1/n) ∈ GraphS for each n ∈ N, S (∞) = {1}, so
0 /∈ S(∞). Hence S is not closed at ∞.

If the (VEP)p is defined on constant domains, Dp = X for all p ∈ P, we can
omit the Mosco convergence. In this case condition ii) can be weakened.

Theorem 3 Let (X, σ) be a Hausdorff topological space, and let p0 ∈ P be
fixed. Suppose that S(p) 6= ∅, for each p ∈ P, and

i) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ
→ a, and

b ∈ X, then

Liminf (fpi
(api

, b) − fp0
(api

, b)) ∩ (− IntC) 6= ∅.

ii) fp0
: X × X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S(p) is closed at p0.
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Kálmán GYŐRY (University of Debrecen, Hungary)
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Adrian PETRUŞEL (Babeş-Bolyai University, Romania)

Contact address and subscription:

Acta Universitatis Sapientiae, Mathematica
RO 400112 Cluj-Napoca
Str. Matei Corvin nr. 4.

Email: acta-math@acta.sapientia.ro

This volume contains two issues

Sapientia University Scientia Publishing House

ISSN 1844-6086

http://www.acta.sapientia.ro



Information for authors

Acta Universitatis Sapientiae, Mathematica publishes original papers and sur-
veys in various fields of Computer Science. All papers are peer-reviewed.

Papers published in current and previous volumes can be found in Portable Document
Format (pdf) form at the address: http://www.acta.sapientia.ro.

The submitted papers should not be considered for publication by other journals. The
corresponding author is responsible for obtaining the permission of coauthors and of
the authorities of institutes, if needed, for publication, the Editorial Board disclaims
any responsibility.

Submission must be made by email (acta-math@acta.sapientia.ro) only, using the
LATEX style and sample file at the address: http://www.acta.sapientia.ro. Beside
the LATEX source a pdf format of the paper is needed too.

Prepare your paper carefully, including keywords, AMS Subject Classification codes
(http://www.ams.org/msc/), and the reference citation should be written in brackets
in the text as [3]. References should be listed alphabetically using the following
examples:

For papers in journals:
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