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Abstract

The power mean Mp(a, b) of order p of two positive real values a and b
is defined by Mp(a, b) = ((ap + bp)/2)1/p, for p 6= 0 and Mp(a, b) =

√
ab, for

p = 0. In this short note we prove that the power mean Mp(a, b) is convex in
p for p ≤ 0, log-convex for p ≤ 0 and log-concave for p ≥ 0.

Keywords: power mean, logarithmic mean

MSC: 26E60, 26D20

1. Introduction

For p ∈ R, the power mean Mp(a, b) of order p of two positive real numbers, a and
b, is defined by

Mp(a, b) =

{(
ap+bp

2

) 1
p , p 6= 0√

ab, p = 0.

Within the past years, the power mean has been the subject of intensive research.
Many remarkable inequalities for Mp(a, b) and other types of means can be found
in the literature.

It is well known that Mp(a, b) is continuous and strictly increasing with respect
to p ∈ R for fixed a, b > 0 with a 6= b.

∗The second and the third author was supported by VEGA Grant no. 1/1022/12, Slovak
Republic.
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Note that Mp(a, b) = aMp(1,
b
a ). Mildorf [3] studied the function

f(p, a) =Mp(1, a) =

(
1 + ap

2

) 1
p

and proved that for any given real number a > 0 the following assertions hold:

(A) for p ≥ 1 the function f(p, a) is concave in p,

(B) for p ≤ −1 the function f(p, a) is convex in p.

The aim of this note is to study the log-convexity of the power mean Mp(a, b) in
variable p. As a consequence we get several known inequalities and their general-
ization.

2. Main results

Theorem 2.1. Let f(p, a) =Mp(1, a). We have

(i) for p ≤ 0 the function f(p, a) is log-convex in p,

(ii) for p ≥ 0 the function f(p, a) is log-concave in p,

(iii) for p ≤ 0 the function f(p, a) is convex in p.

Proof. Observe that for any real number t there holds

f(pt, a)t = f(p, at). (2.1)

Let
g(p, a) = ln f(p, a).

Taking the logarithm in (2.1) we have

tg(pt, a) = g(p, at).

Calculating partial derivatives of both sides of the above equation we get

t2g′1(pt, a) = g′1(p, a
t)

and
t3g′′11(pt, a) = g′′11(p, a

t). (2.2)

Specially, taking p = 1 in (2.2), we have

t3g′′11(t, a) = g′′11(1, a
t). (2.3)

Taking into account that the function f(p, a) is increasing and concave in p for
p ≥ 1 (see (A)), the function g(p, a) is also increasing and concave in p for p ≥ 1.
For this reason

g′′11(1, a
t) ≤ 0

4 A. Bege, J. Bukor, J. T. Tóth



for an arbitrary a > 0 and real t. Let us consider the left hand side of (2.3). We
have

t3g′′11(t, a) ≤ 0

which yields to the facts that the function g(p, a) is concave for p > 0, therefore
the function f(p, a) is log-concave in this case and the function g(p, a) is convex
for p < 0. Hence the assertions (i), (ii) follow. Clearly, the assertion (iii) follows
immediately from (i).

The following result is a consequence of the assertion (iii) Theorem 2.1.

Corollary 2.2. Inequality

αMp(a, b) + (1− α)Mq(a, b) ≥Mαp+(1−α)q(a, b) (2.4)

holds for all a, b > 0, α ∈ [0, 1] and p, q ≤ 0.

Let us denote by G(a, b) =
√
ab and H(a, b) = 2ab

a+b the arithmetic mean and
harmonic mean of a and b, respectively. For α = 2

3 , p = 0, q = 1 in (2.4) we get
the inequality

2

3
G(a, b) +

1

3
H(a, b) ≥M− 1

3
(a, b)

which was proved in [6].
The next result is a consequence of (ii) in Theorem 2.1.

Corollary 2.3. For α ∈ [0, 1], p, q ≥ 0 the inequality

Mα
p (a, b)M

(1−α)
q (a, b) ≤Mαp+(1−α)q(a, b) (2.5)

holds for all a, b > 0.

Let us denote by A(a, b) = a+b
2 , G(a, b) =

√
ab,

L(a, b) =

{
b−a

ln b−ln a , a 6= b

a, a = b.

the arithmetic mean, geometric mean and logarithmic mean of two positive numbers
a and b, respectively. Taking into account the result of Tung-Po Lin [2]

L(a, b) ≤M 1
3
(a, b) (2.6)

together with (2.5) we have

Mα
p (a, b)L

(1−α)(a, b) ≤Mαp+(1−α) 1
3
(a, b). (2.7)

Specially, for p = 1 and p = 0 in (2.7) we get the inequalities

Aα(a, b)L(1−α)(a, b) ≤M 1+2α
3

(a, b)

On (log-) convexity of power mean 5



and
Gα(a, b)L(1−α)(a, b) ≤M 1−α

3
(a, b)

respectively, which results were published in [5].
Denote by

I(a, b) =

{
1
e

(
aa

bb

) 1
a−b , a 6= b

a, a = b.

the identric mean of two positive integers. It was proved by Pittenger [4] that

M 2
3
(a, b) ≤ I(a, b) ≤Mln 2(a, b). (2.8)

Using (2.5) together with (2.6) and (2.8) we immeditely have

Iα(a, b)L(1−α)(a, b) ≤Mα ln 2+(1−α) 1
3
.

Note, in the case of α = 1
2 our result does not improve the inequality
√
I(a, b)L(a, b) ≤M 1

2
(a, b)

which is due to Alzer [1], but our result is a more general one.
With the help of using Theorem 2.1 more similar inequalities can be proved.

3. Open problems

Finally, we propose the following open problem on the convexity of power mean.
The problem is to prove our conjecture, namely

inf
a,b>0

{p :Mp(a, b) is concave for variable p} = ln 2

2
,

sup
a,b>0

{p :Mp(a, b) is convex for variable p} = 1

2
.
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Abstract

Our goal is to develop techniques for using distributed computing re-
sources to efficiently solve instances of the propositional satisfiability problem
(SAT). We claim that computational grids provide a distributed computing
environment suitable for SAT solving. In this paper we apply the Cube and
Conquer approach to SAT solving on grids and present our parallel SAT solver
CCGrid (Cube and Conquer on Grid) on computational grid infrastructure.

Our solver consists of two major components. The master application runs
march_cc, which applies a lookahead SAT solver, in order to partition the in-
put SAT instance into work units distributed on the grid. The client applica-
tion executes an iLingeling instance, which is a multi-threaded CDCL SAT
solver. We use BOINC middleware, which is part of the SZTAKI Desktop
Grid package and supports the Distributed Computing Application Program-
ming Interface (DC-API). Our preliminary results suggest that our approach
can gain significant speedup and shows a potential for future investigation
and development.

Keywords: grid, SAT, parallel SAT solving, lookahead, march_cc, iLingeling,
SZTAKI Desktop Grid, BOINC, DC-API

∗Supported by Austro-Hungarian Action Foundation, project ID: 83öu17.

Annales Mathematicae et Informaticae
42 (2013) pp. 9–21
http://ami.ektf.hu

9



1. Introduction

Propositional satisfiability is the problem of determining, for a formula of the propo-
sitional logic, if there is an assignment of truth values to its variables for which
that formula evaluates to true. By SAT we mean the problem of propositional
satisfiability for formulas in conjunctive normal form (CNF). SAT is one of the
most-researched NP-complete problems [8] in several fields of computer science,
including theoretical computer science, artificial intelligence, hardware design, and
formal verification [5]. Also it should be noted that the hardness of the problem is
caused by the possibly increasing number of the variables, since by a fixed set of
variables SAT and n-SAT are regular languages and therefore there is a determin-
istic (theoretical) linear time algorithm to solve them, see, [21, 23].

Modern sequential SAT solvers are based on the Davis-Putnam-Logemann-
Loveland (DPLL) [9] algorithm. This algorithm performs Boolean constraint prop-
agation (BCP) and backtrack search, i.e., at each node of the search tree it selects
a decision variable, assigns a truth value to it, and steps back when conflict oc-
curs. Conflict-driven clause learning (CDCL) [5, Chpt. 4] is based on the idea
that conflicts can be exploited to reduce the search space. If the method finds a
conflict, then it analyzes this situation, determines a sufficient condition for this
conflict to occur, in form of a learned clause, which is then added to the formula,
and thus avoids that the same conflict occurs again. This form of clause learning
was first introduced in the SAT solver GRASP [19] in 1996. Besides clause learning,
lazy data structures are one of the key techniques for the success of CDCL SAT
solvers, such as “watched literals” as pioneered in 2001, by the CDCL solver Chaff
[20, 18] . Another important technique is the use of the VSIDS heuristics and the
first-UIP backtracking scheme. In the state-of-the-art CDCL solvers, like PrecoSAT
and Lingeling [3, 4], several other improvements are applied. Besides enhanced
preprocessing techniques like e.g. failed literal detection, variable elimination, and
blocked clause elimination, clause deletion strategies and restart policies have a
great impact to the performance of the CDCL solver.

Lookahead SAT solvers [5, Chpt. 5] combine the DPLL algorithm with looka-
heads, which are used in each search node to select a decision variable and at the
same time to simplify the formula. One popular way of lookahead measures the
effect of assigning a certain variable to a certain truth value: BCP is applied, and
then the difference between the original clause set and the reduced clause set is
measured (by using heuristics). In general, the variable for which the lookahead
on both truth values results in a large reduction of the clause set is chosen as the
decision variable. The first lookahead SAT solver was posit [10] in 1995. It al-
ready applied important heuristics for pre-selecting the “important” variables, for
selecting a decision variable, and for selecting a truth value for it. The lookahead
solvers satz [17] and OKsolver [16] further optimized and simplified the heuristics,
e.g., satz does not use heuristics for selecting a truth value (rather prefers true),
and OKsolver does not apply any pre-selection heuristics. Furthermore, OKsolver
added improvements like local learning and autarky reasoning. In 2002, the solver

10 Cs. Biró, G. Kovásznai, A. Biere, G. Kusper, G. Geda



march [13] further improved the data structures and introduced preprocessing tech-
niques. As a variant of march, march_cc [14] can be considered as a case splitting
tool. It produces a set of cubes, where each cube represents a branch cutoff in the
DPLL tree constructed by the lookahead solver. It is also worth to mention that
march_cc outputs learnt clauses as well, which represent refuted branches in the
DPLL tree. The resulting set of cubes represents the remaining part of the search
tree, which was not refuted by the lookahead solver itself.

There are two types of basic appearance of parallelism in computations, the
“and-parallelism” and the “or-parallelism” [22]. The first is used in high perfor-
mance computing, while the latter is more similar to nondeterministic guesses
(data parallel). SAT can (theoretically effectively) be solved by several new com-
puting paradigms using or-parallelism and by using, roughly speaking, exponential
number of threads. Since multi-core architectures are common today, the need for
parallel SAT solvers using multiple cores has increased considerably.

In essence, there are two approaches to parallel SAT solving [12]. The first group
of solvers typically follow a divide-and-conquer approach. They split the search
space into several subproblems, sequential DPLL workers solve the subproblems,
and then these solutions are combined in order to create a solution to the original
problem. This first group uses relatively intensive communication between the
nodes. They do for example load balancing, and dynamic sharing of learned clauses.

The second group apply portfolio-based SAT solving. The idea is to run inde-
pendent sequential SAT solvers with different restart policies, branching heuristics,
learning heuristics, etc. ManySAT [11] was the first portfolio-based parallel SAT
solver. ManySAT applies several strategies to the sequential SAT solver MiniSAT.
Plingeling [3, 4] follows a similar approach, and uses the sequential SAT solver
Lingeling. In most of the state-of-the-art portfolio-based parallel SAT solvers
(e.g. ppfolio, pfolioUZK, SATzilla) not only different strategies, but even dif-
ferent sequential solvers compete and, to a limited extent, cooperate on the same
formula. In such approaches there is no load balancing and the communication is
limited to the sharing of learned clauses.

GridSAT [7, 6] was the first complete and parallel SAT solver employing a grid.
It belongs to the divide-and-conquer group. It is based on the sequential SAT solver
zChaff. Besides achieving significant speedup in the case of some (satisfiable and
even unsatisfiable) instances, GridSAT is able to solve some problems for which
sequential zChaff exceeds time out. GridSAT distributes only the short learned
clauses over the nodes, therefore it minimizes the communication overhead. Search
space splitting is based on the selection of a so-called pivot variable x on the
second decision level, and then creating two subproblems by adding a new decision
on x resp. ¬x to the first decision level. If sufficient resources are available, the
subproblems can further be partitioned recursively. Each new subproblem is defined
by a clause set, including learned clauses, and a decision stack.

[15] proposes a more sophisticated approach, based on using “partition func-
tions”, in order to split a problem into a fixed number of subproblems. Two par-
tition functions were compared, a scattering-based and a DPLL-based one with

Cube-and-Conquer approach for SAT solving on grids 11



lookahead. A partition function can be applied even in a recursive way, by repar-
titioning difficult subproblems (e.g., the ones that exceeds time out). For some of
the experiments, an open source grid infrastructure called Nordugrid was used.

SAT@home [25] is a large volunteer SAT-solving project on grid, which involves
more than 2000 clients. The project is based on the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [1], which is an open source middleware
system for volunteer grid computing. On top of BOINC, the project was imple-
mented by using the SZTAKI Desktop Grid [24], which provides the Distributed
Computing Application Programming Interface (DC-API), in order to simplify the
development, and then also to deploy and distribute applications to multiple grid
environments. [25] proposes a rather simple partitioning approach: given a set of
n selected variables, called a decomposition, a set of 2n subproblems is generated.
The key issue is how to select a decomposition. One way to solve this issue, is
to derive the set of “important” decomposition variables from the original problem
formulation, which, however, then is problem-specific, and needs human guidance.
For instance, in the context of SAT-based cryptoanalysis of keystream generators,
a decomposition set can be obtained from the encoding of the initial state of the
linear feedback shift registers [25]. SAT@home uses no data exchange among clients.

Our approach, called CCGrid, also uses BOINC and the SZTAKI Desktop Grid,
as it is detailed in Sect. 3, but is based on the Cube and Conquer approach [14].
For partitioning the input problem, we use march_cc. Our approach differs from
the previous ones in the fact that it uses a parallel SAT solver, iLingeling, for
solving the particular subproblems, on each client. In Sect. 4 we present some
experiments and preliminary results.

2. Preliminaries

Given a Boolean variable x, there exist two literals, the positive literal x and the
negative literal x. A clause is a disjunction of literals, a cube is a conjunction of
literals. Either a clause or a cube can be considered as a finite set of literals.

A truth assignment for a (finite) clause set or cube set F is a function φ that
maps literals in F to {0, 1}, such that if φ(x) = v, then φ(x) = 1 − v. A clause
resp. cube C is satisfied by φ if φ(l) = 1 for some resp. every l ∈ C. A clause set
resp. cube set F is satisfied by φ if φ satisfies C for every resp. some C ∈ F .

For representing the input clause set for a SAT solver, the DIMACS CNF format
is commonly used, which references a Boolean variable by its (1-based) index. A
negative literal is referenced by the negated reference to its variable. A clause
is represented by a sequence of the references to its literals, terminated by a “0”.
The iCNF format extends the CNF format with a cube set.1 A cube, called an
assumption, is represented by a leading character “a” followed by the references to
its literals and a terminating “0”.

1http://users.ics.tkk.fi/swiering/icnf/
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3. Architecture

Our application is a variant of the Cube and Conquer approach [14] and consists of
two major components: a master application and a client application. The master
is responsible for dividing the global input data into smaller chunks and distributing
these chunks in the form of work units. Interpreting the output generated by the
clients out of the work units and combining them to form a global output is also
the job of the master. The architecture is depicted in Fig. 1. Similar to [25],
the environment for running our system is the SZTAKI Desktop Grid [24] and
BOINC [1], and was implemented by the use of the DC-API.

database

BOINC
Server

march_cc

BOINC
deamons
work units

BOINC
Client

iLingeling

PC1

BOINC
Client

iLingeling

PC2

. . .

BOINC
Client

iLingeling

PCn

Figure 1: CCGrid architecture

The master
The master executes a partitioning tool called march_cc [14], which is based on
the lookahead SAT solver march. Given a CNF file, march_cc primarily tries to
refute the input clause set. If this does not succeed, march_cc outputs a set of
assumptions (cubes) that describe the cutoff branches in the DPLL tree. These
assumptions cover all subproblems of the input clause set that have not been refuted
during the partitioning procedure. Given these assumptions, the master application
creates work units, each of which consists of the input CNF file and a slice of the
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assumption set. As it can be seen in Fig. 2, if one of the clients reports one of
the work units to be satisfiable, then the master outputs the satisfying model and
destroys all the running work units. If every clients report unsatisfiability, then the
master outputs unsatisfiability.

SATRunning

. . .

Running UNSATUNSAT

. . .

UNSAT

Figure 2: (a) If the problem is SAT, it is enough to find a SAT
derived instance. (b) If the problem is UNSAT, one must show all

derived instances UNSAT.

The pseudocode below shows how the master application works. It is divided
into three procedures; the Main procedure is shown in Algorithm 1. It shares
two constants with the other procedures: (i) maxAsmCount defines the maximum
number of assumptions per work unit; (ii) rfsInterval gives a refresh interval at
which DC-API events are processed. The master application uses several global
variables; all of them are self-explanatory. In loop 6-9, work units are created,
by calling the procedure CreateWorkUnit. Loop 10-13 then processes DC-API
events generated by those work units that have finished solving their subproblems.
Processing DC-API events is done by calling a callback function which has been
previously set to ProcessWorkUnitResult in line 3. The loop stops if either
one of the work units returns a SAT result or all the work units completed.

CreateWorkUnit, shown in Algorithm 2, creates and submits a work unit
to the grid. First, the CNF file is added to the new work unit. Then, in the
loop, at most maxAsmCount assumptions from asmFile are copied into the new
file asmChunkFile. Note that asmFile is global, it has been opened by the Main
procedure (Algorithm 1, line 4), and therefore its current file position is held.
Finally, asmChunkFile is added to the work unit, which is then submitted to the
grid.

As already mentioned, ProcessWorkUnitResult, shown in Algorithm 3,
works as a callback function for DC-API events. It processes the result returned
by a work unit.
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Algorithm 1 Master: main procedure
Require: global constants maxAsmCount, rfsInterval
Require: global variables cnfFile, asmFile, wuCount, res, resFile
1: procedure Main
2: initialize DC-API master
3: set ProcessWorkUnitResult as result callback
4: open asmFile
5: wuCount← 0
6: while not EOF(asmFile) do
7: CreateWorkUnit
8: wuCount← wuCount+ 1
9: end while

10: while res 6= SAT and wuCount > 0 do
11: wait rfsInterval
12: process DC-API events
13: end while
14: if res 6= SAT then
15: res← UNSAT
16: cancel all work units
17: end if
18: end procedure

Algorithm 2 Master: creating work units
1: procedure CreateWorkUnit
2: wu← new work unit
3: wu.cnfFile← cnfFile
4: asmChunkFile← new file
5: for i← 1 to maxAsmCount do
6: if EOF(asmFile) then
7: break
8: end if
9: copy next assumption from asmFile to asmChunkFile

10: i← i+ 1
11: end for
12: wu.asmFile← asmChunkFile
13: submit wu to the grid
14: end procedure

Algorithm 3 Master: processing work unit result
1: procedure ProcessWorkUnitResult(wu)
2: if wu.res = SAT then
3: res← SAT
4: copy wu.resFile to resFile
5: end if
6: wuCount← wuCount− 1
7: end procedure
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The client

Each client executes the parallel CDCL solver iLingeling [14, 4], for a fixed num-
ber of threads. Each thread executes a separate lingeling instance. iLingeling
expects as input an iCNF file, including 1 or more assumptions, which is then
loaded into a working queue. Each lingeling instance reads the input clause set,
and then, in each iteration, gets the first assumption from the working queue.

If one of the lingeling instances can prove that the clause set is satisfiable
under the given assumptions, then iLingeling reports that the clause set itself is
satisfiable, the satisfying model is returned, and hence the remaining assumptions
in the working queue can be ignored. Otherwise, i.e., if a lingeling instance
reports unsatisfiability, then the assumption is retrieved from the working queue
and the same SAT solver instance continues with the solving procedure. If the
working queue becomes empty, then iLingeling reports that the clause set under
the given set of assumptions is unsatisfiable.

Algorithm 4 shows the client’s main procedure. It uses one global constant,
thrCount, which specifies the number of worker threads to use. First, the procedure
creates an iLingeling instance with thrCount worker threads, loads both the CNF
and the assumption files, and runs iLingeling. In loop 7-12, the results by all
the threads are checked: if any of them is SAT then the result for the work unit
is SAT; otherwise it is UNSAT (line 14). The result, as well as the satisfying
model, is written into a result file by the procedure CreateResultFile, shown
in Algorithm 5.

Algorithm 4 Client: main procedure
Require: global constant thrCount
1: procedure Main(wu)
2: initialize DC-API client
3: iLingeling ← new iLingeling instance using thrCount threads
4: load wu.cnfFile into iLingeling
5: load wu.asmFile into iLingeling
6: run iLingeling
7: for i← 1 to thrCount do
8: if ith thread’s result is SAT then
9: wu.res← SAT

10: break
11: end if
12: end for
13: if i > thrCount then
14: wu.res← UNSAT
15: end if
16: CreateResultFile(wu, iLingeling)
17: end procedure
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Algorithm 5 Client: creating result file
1: procedure CreateResultFile(wu, iLingeling)
2: resFile← new file
3: write wu.res into resFile
4: if wu.res = SAT then
5: model← satisfying assignment from iLingeling
6: write model into wu.resFile
7: end if
8: wu.resFile← resFile
9: end procedure

4. Results and testing environment

Our implementation consists of a quad-core SUN server with 6 GB memory, used
as a master, and 20 quad-core PCs with 2 GB memory, used as clients. In our
experiments, we used instances from the SAT Challenge 2012, from the Application
(SAT + UNSAT) and the Hard Combinatorial (SAT + UNSAT) tracks. Results are
presented in Tab. 1 and Tab. 2. The 1st column represents the instance’s name.
In the 2nd column, A resp. HC denotes Application resp. Hard Combinatorial
problems. The 4th column shows the number of cubes, generated by march_cc.
The 3rd resp. 5th column shows the runtime of march_cc resp. iLingeling, being
executed on the master. The 6th column contains the sum of the previous two
numbers, which represents the overall runtime of the cube-and-conquer approach
running on a single (quad-core) machine. The total runtime of CCGrid is shown
in the 7th column, while the 8th column measures the speedup as the ratio of the
runtimes in the 6th and 7th columns.

In our approach, CCgrid have been executed without any communication among
clients. Even though they do not cooperate and do not exchange learnt clauses,
CCGrid shows a wide range of speedups. We achieved speedup up to ca. 8.5 on
UNSAT instances (QG-gensys-icl003.sat05-2715.reshuffled-07 ) and up to ca. 7 on
SAT instances (sgen1-sat-160-100 ).

Since the master has to distribute quite large work units over the network, com-
munication overhead matters in the case of small instances, where communication
costs are significant compared to the input size. Therefore, although we used a
1Gbps LAN in our experiments, cube-and-conquer running on a single machine
outperformed CCgrid on some instances. If we look at the battleship-16-31-sat row
in Tab. 1, we can see that march_cc and iLingeling can solve this problem on 1
client a bit faster than CCGrid on 20 clients.

In the case of satisfiable instances, we might be lucky, finding a model quickly,
or unlucky. If there are many satisfying models, then it is not worth to distribute
the problem over many clients. However, if there exist only a few models, then it is
a good idea to use many clients, since the more clients we use, the more probable it
is for a client to be lucky enough to find one of those few solutions. Unfortunately,
we have no information about how many models the instances in Tab. 1 have.
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vmpc_26 A 8.38 296 40.22 48.6 13.64 3.56
AProVE09-07 A 65.93 4245 19.12 85.05 79.16 1.07
clauses-4 A 29.68 25 59.01 88.69 81.98 1.08
gss-16-s100 A 155.28 6292 201.21 356.49 171.71 2.08
IBM_FV_
2004_rule_
batch_22
_SAT_dat. k65

A 17.93 361 148.95 166.88 154.02 1.08

ezfact64_3. sat05-
450. reshuffled-07

HC 458.71 469428 63.71 522.42 505.72 1.03

sgen1-sat-160-100 HC 10.65 210168 419.92 430.57 62.28 6.91
em_7_4 _8_exp HC 20.06 19419 170.9 190.96 46.47 4.11
battleship-16-31-
sat

HC 174.89 91757 2.69 177.58 180.89 0.98

Hidoku_ enu_6 HC 125.02 256225 91.61 216.63 159.31 1.36

Table 1: Runtimes and speedup
all instances are SAT

CCGrid seems to be much better in distributing satisfiable instances from the
HC track than the ones from the A track, since march_cc seems to generate much
more cubes for the previous ones.

In the case of unsatisfiable instances, we cannot be lucky to find an early solution
since there is no satisfying model. When comparing the speedups in Tab. 1 and
Tab. 2, we can see that speedups around 1 are more frequent on satisfiable instances.

This shows that in the case of unsatisfiable instances there is less risk of wasting
resources without any speedup.

5. Future work and conclusion

This paper presents a first attempt of applying the Cube and Conquer approach [14]
to computational grids. We presented the parallel SAT solver CCGrid, which runs
on the MTA SZTAKI Grid using BOINC. In this version, the master application
applies march_cc, using a lookhead solver, to split a SAT instance. The client ap-
plication uses the parallel SAT solver iLingeling to deal with several assumptions.
The client creates a separate iLingeling instance for each work unit, and destroys
it after completing the work unit. For the sake of improving our current results, in
future work, we would like to preserve the state of iLingeling instances, including
learnt clauses.

In our experience, the cube generation phase implemented in march_cc makes
up a significant part of the runtime. As a consequence, we were mostly able to
achieve significant speedup on such instances on which the cube generation phase
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counting-clqcolor-
unsat-set-b-
clqcolor-08-06-
07.sat05-1257.
reshuffled-07

A 5.77 112757 12.77 18.54 8.71 2.13

gensys-
ukn002.sat05-
2744. reshuffled-07

A 12.70 21408 230.01 242.71 71.55 3.39

Q32inK09 A 12.15 5279 35.89 48.04 14.38 3.34
QG6-dead-
dnd002.sat05-
2713. reshuffled-07

A 2.38 12147 35.79 38.17 4.74 8.05

QG-gensys-
icl003.sat05-2715.
reshuffled-07

A 25.43 38466 291.05 316.48 37.24 8.49

instance_n6
i7_pp_ci_ce

A 103.78 29290 111.72 215.50 117.20 1.84

AProVE07-09.cnf A 34.43 86048 4.55 37.98 37.46 1.01

battleship-10-10-
unsat

HC 0.36 2317 15.47 15.83 4.48 3.53

rand_net60-40-
10.shuffled

HC 111.23 130227 13.24 124.47 115.62 1.08

smtlib-qfbv-aigs-
ext_con_032
008_0256-tseitin

HC 67.24 22384 7.29 74.53 71.47 1.04

Table 2: Runtimes and speedup
all instances are UNSAT

took a relatively short time. Therefore, our further aim to reduce the time spent on
cube generation by parallelizing the look-ahead solver. We plan to adapt march_cc
to a cluster infrastructure and to investigate the possibility of merging our BOINC-
based approach with a cluster-based master application. We expect further im-
provement by analyzing the generated cubes and then, based on the result of the
analysis, partitioning the cube set in a more sophisticated way.

In order to achieve larger speedup on unsatisfiable instances, it might be useful
to call march_cc not only while partitioning the original problem, but also for
repartitioning difficult subproblems, e.g., those on which a client exceeds a certain
time limit. Finally, it might be interesting to apply similar techniques not only to
clusters resp. grids, but also to cloud computing platforms.
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Abstract

In the paper the regular hyper-zones in the multi-dimensional non-Eucli-
dean space are discussed. The determined bijection between the normals of
the first and second kind for the hyper-zone makes it possible to construct
the bundle of normals of second-kind for the hyper-zone with assistance of
certain bundle of normals of first-kind and vice versa. And hence the bundle
of the normals of second-kind is constructed in the third-order differential
neighbourhood of the forming element for hyper-zone. Research of hyper-
zones and zones in multi-dimensional spaces takes up an important place in
intensively developing geometry of manifolds in view of its applications to
mechanics, theoretical physics, calculus of variations, methods of optimiza-
tion.

Keywords: non-Euclidean space, regular hyper-zone, bundle of normals, bi-
jection
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1. Introduction

In this article we analyze the theory of regular hyper-zone in the extended non-
Euclidean space. We derive differential equations that define the hyper-zone SHr
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with regards to a self-polar normalised frame of space λSn. The tensors which
determine the equipping planes in the third-order neighborhood of the hyper-zone
are introduced. The bundles of the normals of the first and second kind are con-
structed by an inner invariant method in the third-order differential neighbourhood
of the forming element for hyper-zone. The bijection between the normals of the
first and second kind for the hyper-zone SHr is determined.

The concept of zone was introduced by W. Blaschke [1]. V. Wagner [7] was
the first who proposed to consider the surface equipped with the field of tangent
hyper-planes in the n-dimensional centro-affine space.

We apply the group-theoretical method for research in differential geometry
developed by professor G.F. Laptev [4]. At present the method of Laptev remains
the most efficient way of research for manifolds, immersed in generalized spaces.
We use results obtained in the article [3].

For the past years the methods of generalizations of Theory of regular and sin-
gular hyper-zones (zones) with assistance of the Theory of distributions in multidi-
mensional affine, projective spaces and in spaces with projective connections were
studied by A.V. Stolyarov, Y.I. Popov and M.M. Pohila. In this article we analyze
the theory of regular hyper-zone in the extended non-Euclidean space. We derive
differential equations that define the hyper-zone SHr with regards to a self-polar
normalised frame of space λSn. The tensors which determine the equipping planes
in the third-order neighborhood of the hyper-zone are introduced. The bundles
of the normals of the first and second kind are constructed by an inner invariant
method in the third-order differential neighbourhood of the forming element for
hyper-zone. The bijection between the normals of the first and second kind for the
hyper-zone SHr is determined.

Before M. Grebenyuk and J. Mikeš in the article [2] discussed the theory of
the linear distribution in affine space. The bundles of the projective normals of
the first kind for the equipping distributions are constructed by an inner invariant
method in second and third differential neighbourhoods of the forming element.
In the article we apply the group-theoretical method for research in differential
geometry developed by G.F. Laptev [4]. At present the method of Laptev remains
the most efficient way of research for manifolds, immersed in generalized spaces.
We use results obtained in the article [3].

2. Definition of the hyper-zone in the extended non-
Euclidean space

Let a non-degenerated hyper-quadric be given in a projective n-dimensional space
Pn as

q′IJx
IxJ = 0, q′IJ = q′JI , det ‖q′IJ‖ 6= 0, I, J = 0, 1, . . . , n,

where the smallest number of the coefficients of the same sign is equal to λ. Thus, it
is possible to determine a subgroup of collineations for space Pn, which are preserv-
ing this hyper-quadric and, hence, it is possible to introduce a projective metrics.
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Let us name the obtained in this way metric space with this fundamental group
as the extended non-Euclidian space λSn with index λ [5], and the corresponding
hyper-quadric as the absolute of the space λSn.

Let us consider a plane element (A, τ) in the space λSn which is composed of a
point A and a hyper-plane τ , where point A belongs to plane τ .

Definition 2.1. Suppose that the point A defines an r-dimensional surface Vr
and the hyper-plane τ(A) is tangent to the surface Vr in the corresponding points
A ∈ Vr. Then the r-parametric manifold of the plane elements (A, τ) is called
r-parametric hyper-zone SHr ⊂ λSn. The surface Vr is called the base surface
and the hyper-planes τ(A) are called the principal tangent hyper-planes to the
hyper-zone SHr.

Definition 2.2. The characteristic plane Xn−r−1(A) for the tangent hyper-plane
τ = τ(u1, . . . , ur) is called the characteristic plane for the hyper-zones SHr at the
point A(u1, . . . , ur).

Definition 2.3. The hyper-zone SHr is called regular if the characteristic plane
Xn−r−1(A) and the tangent plane Tr(A) for directing surface Vr for hyper-zone
SHr at each point A ∈ Vr have no common straight lines.

The regular hyper-zone SHr in a self-polar normalized basis {A0, A1, . . . , An}
in the space λSn is defined as follows:

ωno = 0, ωαo = 0, ωnα = 0, ωon = 0, ωαn = 0, ωoα = 0,

ωni = aijω
j , ωiα = biαjω

j , ωαi = bαijω
j , ωoi = −εoiωi, ωin = εinaijω

j ,

∇aij = −aijωnn − aijkωk, ∇biαj = biαjkω
k, ∇bαij = bαijkω

k,

where
biαjai` = biα`aij , bαik = −εαibija ajk, biαk = bijα ajk,

and functions biαjk are symmetric according to indices j and k.
Systems of objects

Γ2 = {aij , biαj}, Γ3 = {Γ2, aijk, b
i
αjk}

make up fundamental objects of second and third orders respectively for hyper-zone
SHr ⊂ λSn.

3. Canonical bundle of projective normals for the
hyper-zone

With the help of the components of fundamental geometric object of the third
order for hyper-zone SHr ⊂ λSn let us construct the quantities

di =
1

r + 2
aijka

jk, ∇δdi = 0,

di =
1

r + 2
aijkajk, ∇δdi = diπnn .
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The tensors di and di define dual equipping planes in the third-order neighborhood
of the hyper-zone SHr

Er−1 ≡ [Mi] = [Ai + diAo], En−r ≡ [σi] = [τ i + diτn].

Using the Darboux tensor

Lijk = aijk − a(ijdk),

one builds the symmetric tensor

Lij = ak`ampLikmLj`p, ∇δLij = 0,

which is non-degenerate in general case.
Let us consider a field of straight lines associated with the hyper-zone SHr

h(Ao) = [Ao, P ], P = An + xiAi + xαAα,

where each line passes through the respective point A of the directing surface Vr
and do not belong to the tangent hyper-plane τ(Ao).

Let us require that straight line h = [Ao, P ] is an invariant line, i.e. δh = θh.
The last condition is equivalent to the differential equations:

∇δχα = χαπnn and ∇δχi = χiπnn .

First equations are realized on the condition that xα = Bα, and second equations
have two solutions:

xi = −di, xi = Bi.

Hence, the system of the differential equations has a general solution of the following
form:

xi = −di + σ(Bi + di),

where σ is the absolute invariant.
Thus, we obtain the bundle of straight lines, which is associated with the hyper-

zone SHr by inner invariant method:

h(σ) = [Ao, P (σ)] = [Ao, An + {(σ − 1)di + σBi}Ai +BαAα],

where σ is the absolute invariant.
The constructed projective invariant bundle of straight lines makes it possible

to construct the invariant bundle of first-kind normals En−r, which is associated
by the inner method with the hyper-zone SHr in the differential neighborhood of
the third order of its generatrix element.

Consequently, it is possible to represent each invariant first kind normalEn−r(Ao)
as the (n− r)-plane that encloses the invariant straight line h(Ao) and the charac-
teristic Xn−r−1(Ao) for hyper-zone SHr [6].

En−r(σ)
def
= [Xn−r−1(Ao); An + {(σ − 1)di + σBi} Ai +BαAα,

where σ is the absolute invariant.
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4. Bijection between first- and second-kind normals
of the hyper-zone SHr

Let us introduce the correspondence between the normals of the first- and second-
kind for the hyper-zone SHr. For that, let us construct a tensor:

Pi = −aijνj + di, ∇δPj = 0 (4.1)

where νj is the tensor satisfying the condition ∇δνj = νjπnn .
The tensor Pi defines the normal of second-kind for hyper-zone SHr that is

determined by the points

Mi = Ai + χiAo, ∇δχi = 0.

Further, the tensor νj can be represented using the components of the tensor
Pi as follows

νj = −Piaij + dj .

Therefore, the bijection between the normals of the first- and second-kind for
the hyper-zone SHr is obtained using the relations (4.1). The constructed bijection
makes it possible to determine the bundle of second-kind normals, using the bundle
of first-kind normals and vice versa. Therefore, we got constructed the bundle of
second-kind normals, which is associated by the inner method with the hyper-zone
SHr in the differential neighborhood of the third order of its generating element.
So true the following theorem.

Theorem 4.1. Tensor Pi defines the bijection between the normals of the first-
and second-kind for the hyper-zone SHr.

Finally, we get the theorem.

Theorem 4.2. Tensor νj = −Piaij+di defines the bundle of second- kind normals,
which is associated by inner method with the hyper-zone SHr in the differential
neighborhood of the third order of its generating element.
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Abstract

In this paper we are going to present how to use an analyzer, which is
a part of the RefactorErl [10, 12, 13], that reveals inadequate programming
style or overcomplicated erlang [14, 15] program constructs during the whole
lifecycle of the code using complexity measures describing the program. The
algorithm [13], which we present here is also based upon the analysis of the
semantic graph built from the source code, but at this stage we can define
default complexity measures, and these defaults are compared to the actual
measured values of the code, and so the differences can be indicated. On
the other hand we show the algorithm measuring code complexity in Er-
lang programs, that provides automatic code transformations based on these
measures. We created a script language that can calculate the structural com-
plexity of Erlang source codes, and based on the resulting outcome providing
the descriptions of transformational steps. With the help of this language we
can describe automatic code transformations based on code complexity mea-
surements. We define the syntax [11] of the language that can describe those
series of steps in these automatic code refactoring that are complexity mea-
surement [7, 9] based, and present the principle of operation of the analyzer
and run-time providing algorithm. Besides the introduction of the syntax
and use cases, We present the results we can achieve using this language.

Keywords: software metrics, complexity, source code, refactorerl

∗This research was supported by the European Union and the State of Hungary, co-financed
by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 ‘National
Excellence Program’.

Annales Mathematicae et Informaticae
42 (2013) pp. 29–44
http://ami.ektf.hu

29



1. Introduction

Functional programming languages, thus Erlang as well, contain several special pro-
gram constructs, that are unheard of in the realm of object-oriented and imperative
languages.

The special syntactic elements make functional languages different, these at-
tributes contribute to those being interesting or extraordinary, but also due to
these, some of the known complexity measures are not, or only through modifica-
tions usable to measure code.

This does not mean that complexity measures are not developed to these lan-
guages, but very few of the existing ones are generic enough to be used with any
functional language [3, 4, 8] language-independently, therefore with Erlang as well,
because most of these only work well with one specific language, thus have low
efficiency with Erlang codes.

For all of this I needed to define the measures of complexity that can be utilized
with this paradigm, and create new ones as necessary.

There are tools for measuring software complexity, like Eclipse [6], or the soft-
ware created by Simon, Steinbrückner and Lewerentz, that implements several
complexity measures that help the users in measurement.

The aim of the Crocodile [5] project is to create a program that helps to ef-
ficiently analyze source code, therefore it can be used quite well to makes mea-
surements after code transformations. Tidier [17, 18] is an automatic source code
analyzer, and transformer tool, that is capable of automatically correcting source
code, eliminating the syntactic errors static analysis can find, but neither soft-
ware/method uses complexity measures for source code analysis and transforma-
tion.

This environment raised the demand for a complex and versatile tool, that is
capable of measuring the complexity of Erlang codes, and based on these measure-
ments localize as well as automatically or semi-automatically correct unmanageably
complex parts.

We have developed a tool RefactorErl [12, 10, 13] which helps to performing
refactoring steps. In the new version of the tool we implemented the algorithm and
the transformation script language, which enables to write automatic metric based
source code transformations.

Problem 1.1 (Automated program transformations). In this article we examined
the feasibility of automated transformation of (functional) Erlang [14, 15] programs’
source codes based on some software complexity measures, and if it is possible to
develop transformation scheme to improve code quality based on the results of these
measurements.

In order to address the problem we have created an algorithm that can measure
the structural complexity of Erlang programs, and can provide automatic code
transformations based on the results, we have also defined a script language that
offers the description of the transformation steps for the conversion of different
program designs.
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In our opinion the analysis of complexity measures on the syntax tree created
from the source code and the graph including semantic information built from this
[12, 16] allows automatic improvement of the quality of the source code.

To confirm this statement, we attempt to make a script that improves a known
McCabe complexity measure, namely the cyclomatic number (defined in Chapter
2.), in the language described in the first section of Chapter 4., and run this on
known software components integrated in Erlang distributions.

We chose McCabe’s cyclomatic number for testing, because this measure is well
enough known to provide sufficient information on the complexity of the program’s
source code not only to programmers that are familiar with Erlang or other func-
tional languages.

With the examination of the results of measurements performed in order to
validate our hypothesis, and with the analysis of the impact of the transformations
we addressed the following questions:

• The modules’ cyclomatic number is characterized by the sum of the cyclo-
matic numbers of the functions. This model cannot take into account the
function’s call graph, which distorts the resulting value. Is it worthwhile to
examine this attribute during the measurements, and to add it to the result?

• Also in relation with the modules, the question arises as to which module is
more complex: one that contains ten functions, all of whose McCabe value is
1, or one that has a function bearing a McCabe value of 10?

• The cyclomatic number for each function is at least one, because it contains a
minimum of one path. Then if we extract the more deeply embedded selection
terms from within the function, in a way that we create a new function
from the selected expression (see Chapter 2.) the cyclomatic number that
characterizes the module increases unreasonably (each new function increases
it by one). Therefore, each new transformation step is increasingly distorting
the results. The question in this case is that this increase should or should
not be removed from the end result?

• Taking all these into account, what is the relationship between the cyclomatic
number of the entire module, and the sum of the cyclomatic numbers of the
functions measured individually?

• How can we best improve the cyclomatic number of Erlang programs, also
what modifications should be carried out to improve the lexical structure,
the programming style, of the program?

• If a function contains more consecutive selections and another one embeds
these into each other, should the cyclomatic numbers of the two functions be
regarded as equivalent?
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2. Used complexity metrics

In this chapter, for the sake of clarity, we define the complexity metrics that are
used during the application of the scripts that manage the transformations. Out
of the applicable metrics of the analytical algorithm we have made, in the present
writing we only use the McCabe cyclomatic number, the case statements’ maximum
embeddedness metric, and the measuring of the number of functions, therefore we
only describe these in detail.

The McCabe McCabe complexity measure is equivalent to the number of basic
routes defined in the control graph [1] constructed by Thomas J. McCabe, namely
how many types of outputs can a function have not counting the number of the
traversal paths of the additionally included functions.

The McCabe cyclomatic number was originally developed for the measurement
of subprograms in procedural languages. This metric is also suitable for the mea-
surement of functions implemented within modules in functional languages, such
as Erlang [14]. Thomas J. McCabe defines the cyclomatic number of programs as
follows:

Definition 2.1 (McCabe cyclomatic number). The G = (v, e) control flow graph’s
V (G) cyclomatic number is V (G) = e− v + 2p, where p represents the number of
the graph’s components, which corresponds to the number of linearly connected
loops that are located in the strongly connected graph [9].

The McCabe number to measure the functions of Erlang programs can be spec-
ified as follows:

Definition 2.2 (McCabe in Erlang). Let fi be the branches (overload versions)
of the fc(fi), function, let ifcl(fi), and casecl(fi) denote the branches of the if ’s,
and case’s within the branches. Then the result of theMcCabe cyclomatic number
measured for functions is MCB(fi) = |fc(fi)|+ |casecl(fi)|+ |ifcl(fi)|.

The measure can be applied to a group of functions:

MCB(f1, ..., fk) =
k∑

j=1

MCB(fj).

The results measured on the module’s functions mi ∈ M are equal to the sum of
the results measured on all the function from within the module:

MCB(mi) =MCB(F (mi))

The next measure of complexity we use measures the maximum embedding of the
case statements within the functions.

MCB(M) =
∑

m∈M
MCB(F (m))
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The next measure of complexity we use measures the maximum embedding of the
case statements within the functions.

c0:
case e of
p1 [when g1]→ e11, . . . , e

1
l1
;

...
pn [when gn]→ en1 , . . . , e

n
ln

end

denotes an Erlang case case statement, where e, ands ei ∈ E are Erlang expres-
sions, p ∈ P are patterns, gi ∈ G are guards in the branches. The eij expressions in
branches of the case statements may contain nested control structures, including
further case expressions.

Definition 2.3 (Max depth of cases). In order to measure the embeddedness
T (fi) be the set of all case expression located in the fi function. Let t(c1, c2)
denote any branch of the case expression c1 that contains case expression c2 and
@c3 case expression that t(c1, c3)∧ t(c3, c2). Let ts(c, cx) denote the case that case
expression c contains in one of its branches, at some depth case expression cx that
is ∃ c1, ..., cn case expressions so that

t(c, c1), t(c1, c2), ..., t(cn−1, cn), t(cn, cx).

The |ts(c, cx)|’s embeddedness depth in this case is n + 1. Let T0(fi) be the set
of those case expressions which are not contained in any of the T (fi) set’s case
expressions (top-level case statement). Then the

MDC(fi) = max{|ts(c, cx)| |c ∈ T0(fi), cx ∈ T (fi)}.
After defining the embeddedness depth let us inspect the third metric we have

applied, which measures the number of functions in the modules. This measure
is particularly relevant in the characterization of functional programs, since these
contain a large number of function-constructions, so in addition to the number of
rows, by using this metric we can infer the size of the modules. The general defi-
nition of the functions in Erlang can be described by the following formula:

f0:
fc1(p1) when g1 →
e11, . . . , e

1
l1
;

...
fcn(pn) when gn →
en1 , . . . , e

n
ln
.

where f ci is the ith function’s branch, ei ∈ E are Erlang expressions gi ∈ G are
guards belonging to the branches, and pi ∈ P are patterns that form the function’s
formal parameter list.
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Definition 2.4 (Number of functions). The result of the measurement for all the
modules in the semantic graph [12, 16] used to store the source code is NOF (M) =
|F (M)|, where F (M) denotes all functions in all modules.

In addition to the metrics presented here the analytical algorithms is capable
of assessing several other complexity measures, and can apply these measurement
results in the construction of various transformations.

3. Transformations used to improve code quality

This chapter describes the operation of the transformation steps from the scripts
used to improve the quality of the source code. The scripts automatically transform
the program constructions located in the source code, based on the complexity
measures presented in Chapter 2.

To improve the McCabe cyclomatic number and the programming style we apply
the extraction of deeply embedded case statements, and in some cases, where, as
the effect of the transformations, the number of functions becomes too high, the
transformation steps carrying out the movement of functions.

3.1. Conversion of a case expression into a function
This transformation step converts the case statement designated for extraction into
a function, then places a call to the new function in place of the original expression
in the way that the bound variables in the expression are converted into parameters
(see: Figure 1.).

case statement
e0:
case e of
p1 when g1 → e11, . . . , e

1
l1
;

...
pn when gn → en1 , . . . , e

n
ln

end

→

function statement
e0:
m : f(e) or
f(e)

where the definition of the
function is:

f(p1) when g1 →
e11, . . . , e

1
l1
;

...
f(pn) when gn →
en1 , . . . , e

n
ln
.

Figure 1: The extraction of a case expression

The transformation in terms of impact affects the complexity of the transformed
function, and its modules. The number of functions, of rows, and of characters
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may increase in the module, but along with this decreases in the function. The
transformation is local to the module.

It has a beneficial effect on the rates of embeddedness. As long as when ap-
plying, the extractions are kept at bay by limiting the number of functions, good
results can be achieved regarding the McCabe number and the rate of embedded-
ness.

3.2. Movement of functions between modules

The moving of functions transformation transfers the selected functions to an-
other module. Of course, these transformation steps (in compliance with pre- and
well-defined rules) perform the necessary compensatory measures such as ensuring
availability of related records, and macros, and managing or replacing the calls
from the function. The transformation is complex, so the structural complexity
levels are also markedly changed.

The original code

-module(movefun).
-export([f/1, g/1]).

f(X)->
X + 1.

g(X) ->
X -1.

→

The result code

-module(movefun).
-export([f/1]).

f(X)->
X + 1.

----movefun_new.erl-----

-module(movefun_new).
-export([g/1]).

g(X)->
X - 1.

Figure 2: Move function to another module

It has an impact on the participating function, but only in the event if it calls
other functions or it contains qualified function calls. It affects the function’s
module, the functions and modules that are linked via function calls, and of course
the module that is designated as the intended destination of the move. There is
a change in the number of measured values of the relationships between modules,
and the inbound and outbound function calls.
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4. Transformation scripts

In this chapter, we present a language [19, 20, 21] suitable for automatic program
transformations that we have developed and implemented to create scripts aimed
to improve the code complexity measurements.

We present the syntax of the language, and also present the operation of the
algorithm that was prepared to run it. We show the ways in which the quality of
the program code can be improved based on the complexity metrics.

Based on measurements, and taking into account the predefined conditions the
transformation language is suited to automatically convert source code stored in the
semantic graph [12, 16] constructed from the program code and afterwards restore
the code from the modified graph. By using the optimizer scripts and taking into
account the changes in the complexity measures, the quality of the source code can
be automatically transformed.

Query → MetricQuery | OptQuery
OptQuery → Opti Where Limit

Opti → optimize Transformation
Transformation → TransformationName

| TransformationName Params
Params → (Attr , ValueList)
Where → where Cond
Cond → Metric Rel CondValue

| Cond LogCon Cond
Limit → limit Int

Figure 3: Language of the transformation scripts

In the specification of the syntax Transformation denotes a transformation (e.g.
move_fun), Rel stands for a relation or other operator (e.g. <,<=, >=, >, like),
LogCon denotes a logical operator (e.g. “and”, “or”), the CondValue can be an
integer or a designated lexical item (for example, using a modules name with like).
Int in the limit section a can be substituted with a positive integer. (The non-
terminal elements are with capital initials whereas the keywords of the language
begin with small letters.)

In the optimize section the applied conversion’s transformation steps and its
parameters can be specified. The complex condition that can be defined after
the where keyword, is the one that initiates the measurements, and controls the
execution of transformations, namely under what conditions a given transformation
step should be re-execute, and also which nodes of the semantic graph should be
transformed.

Therefore the “basic condition” that can be specified, which is a logical expres-
sion, must contain at least one partial expression, which includes a measurable
level of complexity on the modules or functions designated for transformation, an
arithmetic operator, as well as a constant value.
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The selected elements, which are the subject of the transformation, are not
directly defined software constructions or expressions, but program slices that are
selected automatically based on the given terms. With this method, the designation
of the program parts that need to be transformed is transferred from the lexical
level to the level of semantic analysis [11].

During the execution of the script written in the transformation language the
analyzer searches for the program parts that fit the conditions, then performs the
transformation given in the optimize section after which it measures the values of
the complexity metrics specified in the criteria for all semantic graph node. The
nodes that do not need to be included in further transformations based on the
operator, and the constant, are drop out from the scope of the script. If there
are no nodes on which the transformation must be re-executed, the script stops
running.

Using the transformations we do not always reach the set objective, that is, by
executing the script over and over again it always finds graph nodes awaiting an-
other transformation (sometimes the script itself creates these with the application
of the transformations).

Under these conditions, there may be cases when the execution does not ter-
minate. To avoid this problem, the maximum number of executable iterations
can be defined with the constant given after the limit keyword. Therefore if the
transformation step does not produce the desired results, the constant of limit will
definitely stop the execution after the given number of steps.

5. Measurement results

The measured software is the Dialyzer, that is part of the Erlang language; it is
complex enough to produce results for each of the analyzed measures.

Overall, it consists 19 modules, and the modules contain 1023 functions in total.
The number of function’s branches is 1453. The most functions within a module
is 163, and the highest number of function’s branches in one module is 238.

The sum of the measured cyclomatic numbers on the modules was 3024, and
with the same measurement the highest value for an individual module was 704,
which is an outstanding result. (The source code will not be shared, since it is
included in the Erlang distributions, and thus freely available.

The results apply to the release available at time of writing of the article).
These figures make the software suitable to test the transformation algorithm on
it. In the first experiment, we measured the number of functions, from a module
and the McCabe number, and then we took the ratio of the two values:

mcCabe(src)

number_of_fun(src)
,

where mcCabe(src) is McCabe’s cyclomatic number measured in the source code,
src the measured source code, while nof is the number of all the functions in the
module.
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Mc Cabe number

optimize
extract_function (exprtype, case_expr)

where
f_mcCabe > 6
and

f_max_depth_of_structures > 2
and

f_max_depth_of_cases > 1
limit

7;

Figure 4: The code quality improving script

The result is: x1 = 704
165 = 4.26666666667. This value was taken as the base and

we tried to improve it with the help of the script; that is we tried to improve the
module’s cyclomatic number in some way.

x

y

0 1 2 3 4 5

1

2

3

4

5

6

7

MDC (max)

MDS (max)

Figure 5: The maximum embeddedness of structures (MDS) and
of case statements (MDC) (y-axis) during the transformation steps

(x-axis)

We divided the cyclomatic number by the number of functions during the test,
because the distorting effect that developed due to the increase in the number of
functions had to be eliminated.
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After running the script on the source code, whose exact task is to extract case
expressions nested deeper than a given depth and insert in their place a call to
functions generated by it, the following results were obtained:

x2 =
mcCabe(src′)

number_of_fun(src′)
=

794

255
= 3, 1137254901960785

x2
x1

= 0.8473122889758293 = 84% = 16% ↑(limit=1)

x2
x1

= 0.729779411764706 = 72% = 28% ↑(limit=2)

To obtain better results, we measured the maximum embeddedness levels of the
case expressions in the module (max_depth_of_cases). The measurement result
indicated seven levels, that is the value that we should specify in the script’s limit
section, as this instructs the script to perform the extraction at least seven times.

x3 =
mcCabe(src′′)

number_of_fun(src′′)
=

868

329
= 2.6382978723404

x3
x1

= 0.6183510638297872 = 61% = 39% ↑(limit=7)

By examining the new results we can draw some important conclusions. The
first of which is that the measured values of the modules’ cyclomatic number have
increased because of the new functions.

Comparing the number of functions, and the cyclomatic number before and after
the transformation, it is clear that mcCabe(src) = mcCbae(src′) − (nof(src) −
nof(src′)), so with the extractions the cyclomatic number of modules does not
change, in the case the degree of embeddedness and the number of functions are
not included in the calculated value.

This is so because the “decisions” from the expressions of the functions remain
in the module, that is, whether or not a decision inside a function is extracted to a
new function it does not disappear from the module (hence earlier we have divided
the value by the number of functions).

In addition to the measured values of the modules we have to consider the
cyclomatic number of each function in the module measured individually, as well
as the maximum and the minimum from these values. If the changes of these results
are compared with the values before and after the transformation, only then can
we get a clear picture of the impact of the transformation. (Otherwise the average
values of the module cannot be called accurate and the number of functions in the
original module can greatly influence the results, as each new function adds at least
one to this value...)

Analyzing the performed measurements we can see that the sum of cyclomatic
numbers measured before the transformations is 704, and 794 after, if it is not
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divided by the number of functions; also prior to the transformation, the number
of functions is 165, and 225 thereafter. Since 794−704 = 255−165, it is clear that
the newly created functions bring the increase in value.

In light of these we can make the suggestion that when measuring McCabe)’s
cyclomatic number the values measured in the module should not be taken into ac-
count, but rather the highest reading obtained from the module’s functions should
be compared before the execution of the transformation, and thereafter.

max(mcCabef (src)) > max(mcCabef (src
′))

We should consider the extent of the nestedness of different control structures, and
so we should calculate according to the following formula, also we need to develop
the appropriate transformation scripts based on this. Calculation of the result for
the initial source code is as follows:

mcCabe(src) + sum(max_dept_of_struct(src))− z

+number_of_exceptions(src)

From the maximum of the embeddedness value the number of those functions
where the degree of embeddedness is one (or the value we optimized the script to)
can be subtracted as they also distort the value (in the formula this value is denoted
by z). The +(number_of_exceptions) section, which accounts for choices brought
in by the exception handlers is optional, but if we use it for the initial condition, we
cannot omit it from the calculation of the post-transformation state. (We would
have even more accurate results if we would also included the branches of the
exception handlers, that is the possible outcomes of exceptions, in the results. At
this point, we have introduced a new measurement, but only in order to achieve
better results. This metric returns the number of exception handlers located in
programs in the module and function type nodes. To implement this measurement
the function realising the measuring of the function expressions was converted so
that it does not only return the number of expressions (fun_expr), but also the
number of exception handlers(try_expr).

In the Erlang language, the exception handling try block can contain branches
based on pattern matching that are customary for case control structures, also
in a catch block the program’s control can branch in multiple directions. So the
solution does not find the decisions in the exception handlers, but rather it only
returns the number of exception handlers, therefore it is not entirely accurate, but
it is still convenient.) For the transformed text the result can be calculated with
the following formula:

mcCabe(src′) + sum(max_dept_of_struct(src′))− z

+number_of_exceptions(src′)

Thereafter from the measured maximum value of the functions and from the val-
ues calculated with the formula it can be decided with a high degree of certainty
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whether the result is better or not than the initial value. The calculation method
already takes into account the depth of embeddedness, by increasing the cyclomatic
number of a given function or module with each level.

Unfortunately this method together with the additional elements is still not
perfect, because with regard to the measured values of the module it does not take
into account the relationships between functions, and the resulting decision-making
situations, which can be mapped to the call graph, but it is definitely better than
the previous ones.
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Figure 6: The maximum McCabe number of functions (y-axis)
after each transformation step (x-axis)

In order to obtain more representative results than the previous one we had to
analyze the complete source code of the Dialyzer software, with the source code
scanning algorithm and then we transformed it. To perform the sequence of steps
the previously used script was applied however, we took into account the proposed
changes, so the embeddedness is added to the result, and the minimums and the
maximums measured for the functions are also examined when the conclusions are
deducted. The measured maximum value of the cyclomatic number of the func-
tions before the transformation max(mcCabef (src)) = 96, and after restructuring
max(mcCabef (src

′)) = 73, that is max(mcCabef (src)) > max(mcCabef (src
′)).

The results show an improvement, but the script performs the extraction on
all the function of each module that has an embeddedness greater than one. This
embeddedness depth is not necessarily bad. As far as possible extractions should
only be applied to areas where this is absolutely necessary, that is, in those modules
in which the measured maximum cyclomatic numbers of the functions is high.
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6. Conclusion

We introduced the language we have developed and the operation of the analysis
algorithm. The language enables us to write automated program transformation
scripts based on the measuring of complexity rates. In Chapter 2 we presented
those structural complexity measures that were used to measure the complexity of
Erlang source codes.

In Chapters 3 and 4 we examined the possibility of implementing an auto-
mated program for transformations based on the measurement and analysis of the
complexity levels.

We defined the syntax of the language suitable for describing and executing the
sequence of automated transformation steps based on software complexity mea-
surements and described the operating principle of the analyzing and execution
conducting algorithm that was constructed for the language.

In Chapter 5 using example programs, and their execution results we demon-
strated the operability of automatic code quality improvement.

Beside the syntax and the descriptions of use cases we showed what results can
be achieved by using a simple script made up of only a couple of lines.

In summary, the analyzing and the optimizing algorithm based on complexity
measurements, which can be used to automatically or semi-automatically improve
the source code of software written in Erlang language as well as previously pub-
lished programs that are awaiting conversion, operated properly during the trans-
formation of large-scale software.

The sequences of transformational steps improved the complexity rates which
were designated for optimization. During the transformation the meaning of the
source code did not change, and the program worked as expected following the
re-translation.

In the following by using the results presented here we would like to test the
parser and the transformational language constructed for it, on working client-
server based software and programs from the industrial environment, for analyzing
and also improving the quality of the source code. In addition we attempt to prove
that following the execution of the transformation script, the modified source code’s
meaning conservation properties and correctness by using mathematical methods.
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Abstract

We can use a variety of encryption standards to encrypt data traffic to
ensure the safety of wireless networks. The question is to what extent the
security of the network affects network performance. For answering this ques-
tion, experiments were performed without data encryption, and the use of
various encryption standards. IEEE 802.11g and 802.11n wireless network-
ing standards were used in the experiment. The answer of the question is
that encryption should be used because it does not cause significantly slower
speed.

Keywords: Wireless networking, security, encryption, WEP, WPA/TKIP,
WPA2/AES
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1. Introduction

Wireless networks are increasingly exposed to the risk of unauthorized access. The
reason for this is that the information runs instead of cable into the air. So it is
enough to be in radio signal propagation range, and eavesdropping is easy (password
and file contents can be stolen). You can use other internet subscriptions, and
perform various illegal activities.

Avoiding illegal access to our network, we can encrypt the data flow. We can
read about various wireless security tools in books [6, 7]. Wireless network security
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was examined in [2, 3, 5]. Paper [1] discovers the effects of the IEEE802.11i secu-
rity specification on the performance of wireless networks. In [4], the throughput
performance of IPv4 and IPv6 using UDP for wireless LAN networks with 802.11n
and with and without security for two client-server networks were compared.

The question arises as to the security of wireless networks influences the speed
of data transfer, that is, the network performance. To answer this question, exper-
iments were performed without data encryption, and the use of various encryption
standards.

At first, a wireless router was connected directly (USB 2.0) to hard disk and the
file transfer speeds between client and disk were measured, than the file transfer
speeds between two wireless clients were tested using a modern wireless router for
home use.

The number of clients was increased for further examination of the network
performance. In experiments, the number and type of clients were changing and
the ftp service speed was measured in conjunction with encryption.

The following encryption standards were used in the experiments:
WEP (Wired Equivalent Privacy) is a security algorithm for IEEE 802.11 wire-

less networks. Obsolete, it is not safe in today’s circumstances. Each 802.11 packet
is encrypted separately with an RC4 cipher stream generated by a 64-bit RC4 key.

WPA/TKIP (Wi-Fi Protected Access, Wi-Fi Protected Access), which is similar
to the WEP uses RC4 coder 128-bit key and 48-bit initialization vector, but this
has been introduced in accessing the TKIP (Temporal Key Integrity Protocol,
temporary secure key protocol), which continuously rotates keys used in the link.

WPA2/AES (Advanced Encryption Standard) uses a new coder instead of the
old RC4.

2. The effect of encryption for the wireless network
speed

During the experiments ca. 50 MB (50 298 448 bytes) transfer file was used.

2.1. First experiment

Copy to laptop from hard drive and back.
The laptop was placed close to the router, a SATA hard disk was connected to

the router with USB port. We set up the router smb share. The wireless settings
2.4 GHz band and b / g / n mixed mode were used.

laptop 1: dell studio 1557 (Dell 1520 wireless N card, Core i720Qm, 8GB
RAM, windows7 x64 operating system
router: TP-LINK WR2543ND wireless router (Atheros AR7242@400MHz
CPU 64MB RAM)

The following speeds were measured:
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1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
copy to laptop
(sec)

17,16 16,94 16,88 16,81 17,03 16,96

copy back to USB
hdd (sec)

29,05 29,12 28,97 29,67 29,93 29,35

copy to laptop
(MB/sec)

2,93114 2,96921 2,97977 2,99217 2,95352 2,96501

copy back to USB
hdd (MB/sec)

1,73144 1,72728 1,73623 1,69526 1,68054 1,71386

Table 1: Without encryption

1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
copy to laptop
(sec)

27,33 25,94 26,18 25,77 26,84 26,412

copy back to USB
hdd (sec)

38,06 38,74 38,11 37,92 38,55 38,276

copy to laptop
(MB/sec)

1,84041 1,93903 1,92125 1,95182 1,87401 1,90438

copy back to USB
hdd (MB/sec)

1,32156 1,29836 1,31982 1,32644 1,30476 1,3141

Table 2: WEP 64 bit encryption (no n)

1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
copy to laptop
(sec)

29,49 28,81 28,11 29,22 28,79 28,884

copy back to USB
hdd (sec)

39,67 38,49 39,12 39,08 39,53 39,178

copy to laptop
(MB/sec)

1,70561 1,74587 1,78934 1,72137 1,74708 1,74139

copy back to USB
hdd (MB/sec)

1,26792 1,30679 1,28575 1,28706 1,27241 1,28384

Table 3: WPA/TKIP (no n)

1. m. 2. m. 3. m. 4. m. 5. m. average
copy to laptop
(sec)

19,29 18,31 18,95 19,75 18,54 18,968

copy back to USB
hdd (sec)

32,13 31,94 32,75 32,76 32,48 32,412

copy to laptop
(MB/sec)

2,60749 2,74705 2,65427 2,54676 2,71297 2,65175

copy back to USB
hdd (MB/sec)

1,56547 1,57478 1,53583 1,53536 1,5486 1,55185

Table 4: WPA2/AES
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Figure 1: Copy to laptop (MB/sec)

Figure 2: Copy back to USB (MB/sec)

3. Second experiment

In the second experiment, we copied the file between the two laptops using the
TP-LINK WR2543ND wireless router.

laptop 1: dell studio 1557 (Dell 1520 wireless N card, Core i720Qm, 8GB
RAM, window7 x64 operating system

laptop 2: fujisu amilo Pa1538 ( TP-Link TL-W722N usb wireless card, AMD
turion xl-50 processor 4GB RAM, windows 7 x64 operating system)

router: TP-link wr2543ND wireless router (Atheros AR7242@400MHz CPU
64MB RAM)

The following speeds were measured:
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1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
from laptop1 to
laptop2 (sec)

13,87 14,05 14,69 14,13 14,54 14,256

from laptop2 to
laptop1 (sec)

17,61 17,92 16,99 17,51 17,44 17,494

from laptop1 to
laptop2 (MB/sec)

3,62642 3,57996 3,42399 3,55969 3,45932 3,52823

from laptop2 to
laptop1 (MB/sec)

2,85624 2,80683 2,96047 2,87256 2,88409 2,87518

Table 5: Without encryption

1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
from laptop1 to
laptop2 (sec)

41,69 39,98 40,22 40,89 40,92 40,74

from laptop2 to
laptop1 (sec)

39,5 39,88 40,13 39,64 40,02 39,834

from laptop1 to
laptop2 (MB/sec)

1,20649 1,25809 1,25058 1,23009 1,22919 1,23462

from laptop2 to
laptop1 (MB/sec)

1,27338 1,26124 1,25339 1,26888 1,25683 1,2627

Table 6: WEP

1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
from laptop1 to
laptop2 (sec)

46,07 45,16 45,54 45,93 46,12 45,764

from laptop2 to
laptop1 (sec)

45,03 44,59 45,15 45,37 45,42 45,112

from laptop1 to
laptop2 (MB/sec)

1,09178 1,11378 1,10449 1,09511 1,0906 1,09908

from laptop2 to
laptop1 (MB/sec)

1,117 1,12802 1,11403 1,10863 1,10741 1,11497

Table 7: WPA/TKIP

1. meas. 2. meas. 3. meas. 4. meas. 5. meas. average
from laptop1 to
laptop2 (sec)

15,87 16,17 16,43 16,01 16,23 16,142

from laptop2 to
laptop1 (sec)

19,89 20,32 20,51 20,88 19,97 20,314

from laptop1 to
laptop2 (MB/sec)

3,1694 3,1106 3,06138 3,14169 3,0991 3,116

from laptop2 to
laptop1 (MB/sec)

2,52883 2,47532 2,45239 2,40893 2,5187 2,47605

Table 8: WPA2/AES
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Figure 3: Copy from laptop1 to laptop2 (MB/sec)

Figure 4: Copy from laptop2 to laptop1 (MB/sec)

3.1. Conclusions
Based on the first measurement, WPA2/AES causes slowdown of 10-30 percent,
depending on the direction of the copy.

The 802.11n does not allow WEP and WPA/TKIP encryption, so the router
will switch back to 802.11 g mode, so despite the weaker encryption much slower
speeds are obtained. The WEP is no longer secure only marginally faster than the
WPA/TKIP encryption.

On modern devices, WPA2/AES encryption should be used because it does not
cause too significantly slower speed when transferring files.

In the second experiment, WPA2/AES encryption with the 802.11n causes 10-
15 percent slowdown of copying in both directions. WPA/TKIP is 12-13 percent
slower than WEP because the stronger encryption makes more load on the network
card and the router.

4. FTP speed change depending on the number of
clients and encryption

In these experiments, increasing the number of clients, we have examined the data
traffic rate in the context of encryption. We have used TP-LINK WR2543nd router
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built-in FTP server to which USB 2.0 hard drive was connected. The transfer file
was approximately 100 MB (100 769 606 bytes). The wireless router setting was
2.4 GHz band and b / g / n mixed mode.

During the measurements, the following devices were used:
laptop 1: Lenovo R500 (Atheros AR5006X wireless a/b/g card, Core2 Dou
P8400 CPU, 4GB RAM Windows7 x64 operating system)

laptop 2: Dell studio 1557 (Dell 1520 wireless N card, Core i720Qm 8GB
RAM, Windows7 x64 operating system)

desktop: Pentium dual core E6500 (TL-WN721N 150 MB usb wireless card,
4GB RAM, window8 x64 operating system)

router: TP-Link WR2543ND wireless router (Atheros AR7242@400MHz CPU
64MB RAM)

The following speeds were measured:

4.1. Download

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

55 27 24 40 39 39,5 73 66 65 68,0

transmission
rate
(KB/sec)

1832 3732 4199 2519 2584 2551 1380 1527 1550 1482

Table 9: WPA2/AES encryption

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

45 23 22 38 38 38,0 69 53 54 58,7

transmission
rate(KB/sec)

2239 4381 4580 2652 2652 2652 1460 1901 1866 1718

Table 10: Download without encryptions

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

48 63 57 80 79 79,5 119 120 119 119,3

transmission
rate(KB/sec)

2099 1600 1768 1260 1276 1268 847 840 847 844

Table 11: WEP 64 bit download
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4.2. Upload

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

86 68 96 115 116 115,5 178 177 178 177,7

transmission
rate(KB/sec)

1172 1482 1050 876 869 872 566 569 566 567

Table 12: WPA2/AES upload

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

69 65 93 109 115 112,0 176 176 175 175,7

transmission
rate(KB/sec)

1460 1550 1084 924 876 900 573 573 576 574

Table 13: No encryption upload

Lenovo Dell deskt Dell + desktop all three
Dell deskt avg Lenovo Dell deskt avg

transmission
time (sec)

73 78 57 125 112 118,5 184 184 180 182,7

transmission
rate(KB/sec)

1380 1292 1768 806 900 850 548 548 560 552

Table 14: WEP 64 bit upload

4.3. Download speed rates

download speed Lenovo Dell desktop Dell + desktop
average

all three
average

WPA2/AES 1832 3732 4199 2551 1482
no encryption 2239 4381 4580 2652 1718
WEP 64 bit 2099 1600 1768 1268 844

Table 15: Download speed rates
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Figure 5: Download transfer speeds

Compared to the unencrypted case, the download speeds are slowed somewhat
by increasing the number of clients at WPA2/AES case. The rate reduction of
computers with 802.11n card is bigger if the computers are used alone compared
to the case when we use them together. The three computers one-time download
speed loss is similar to that of the single download.

4.4. Upload speed rates

In case of 802.11n there is no significant difference among the speed of type of
encryption, because the upload speed is slow. Lenovo uses 802.11g speed in the
upload. WPA2/AES is 24 percent slower than unencrypted. When all three com-
puters upload simultaneously the speed was slow and therefore it did not signifi-
cantly slow down.

upload speeds Lenovo Dell desktop Dell + desktop
average

all three
average

WPA2/AES
upload

1172 1482 1050 872 567

no encryption up-
load

1460 1550 1084 900 574

WEP 64 bit up-
load

1380 1292 1072 850 552

Table 16: Upload speed rates
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Figure 6: Upload transfer speeds

4.5. Conclusions

The WEP security is poor and 802.11n switches back to 802.11g, and therefore
the speed is significantly reduced. The only exception from this is Lenovo, which
originally used the 802.11g standard.

Using the FTP service when security matters, WPA2/AES encryption should
always be used. If speed is more important than safety (such as anonymous FTP
service), you can disable the encryption and speed of 10-20 per cent gain can be
obtained.

5. Summary

We got similar result to paper [1] using more modern hardware and operating
system with 802.11n wireless standard. The encryption and decryption takes time
so that is the main cause of slowing down the traffic. (The packet size does not
change significantly.)

In wireless networks where devices on the network are compatible and security
matters, WPA2/AES encryption should always be used. The weaker encryptions
switch back the more modern devices, on the older devices do not give a significantly
better rate, but their security is worse. If speed is more important than safety (e.g.,
media playback with wireless), with disabling the encryption 10-30 percent speed
gain can be obtained.

After these results we can raise the question what is more responsible for slowing
down the transmission speed, either the encryption or the full bandwidth of the
device.
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1. Introduction

A. P. Norden developed the theory of normalization which appeared useful in ap-
plications to conformal, non-Euclidean and linear geometry [4]. By means of the
normalization theory, A. P. Shirokov [8] succeeded to construct conformal models
of non-Euclidean spaces. We show here basic steps of this construction.
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Let a real non-degenerate hyperquadric Q be given in the projective space Pn+1.
Let us choose a projective frame (E0, . . . , En+1) such that En+1 is the pole of the
hyperplane yn+1 = 0, and the straight line EnEn+1 intersects the hyperquadric Q
in two real points N and N ′, and the points E0, . . . , En−1 belong to the polar of
the straight line EnEn+1.

Then the analytic expression of the hyperquadric Q reads

y2 = apqy
pyq + (yn)2 − (yn+1)2 = 0, (1.1)

where p, q = 0, . . . , n−1. The hyperquadric (1.1) intersects the hyperplane yn+1 =
0 in a hypersphere Q̃

apqy
pyq + (yn)2 = 0,

which can be either real or imaginary.
Let us construct the stereographic projection with the pole N(0 : . . . : 0 : 1 : 1)

of the hyperplane Pn : yn+1 = 0 into the hyperquadricQ. If U(y0 : . . . : yn : 0) ∈ Pn
take the straight line

λU + µN = (λy0 : . . . : λyn−1 : λyn + µ : µ);

coordinates of its intersection point with Q satisfy

λ2apqy
pyq + (λyn + µ)2 − µ2 = 0, λ 6= 0.

Setting k = µ
λ we can write the previous equation as

apqy
pyq + (yn)2 + 2kyn = 0.

If yn 6= 0, i. e. the point U 6∈ Pn−1, then

k = −apqy
pyq + (yn)2

2yn
.

Hence the intersection point of the straight line UN with the hyperquadric Q is
uniquely determined. In the hyperplane yn+1 = 0, consider the (n−1)–plane Pn−1:
yn = 0 as an ideal hyperplane; we obtain the structure of affine space An on the
rest. In An, we can introduce Cartesian coordinates ui = yi/yn. Moreover, in An
there exists the structure of Euclidean space En with the metric form

ds2
0 = ±apqdupduq. (1.2)

The point U(u0 : u1 : . . . : un−1 : 1 : 0) is mapped into the point

X1(2u0 : · · · : 2un−1 : 1− apqupuq : −1− apqupuq).

Let us normalize the hyperquadric (1.1) self-polar, taking the lines of the sheaf
of lines with a fixed center Z = En+1 as normals of the first-order, and their polar
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(n−1)–planes belonging to the hyperplane yn+1 = 0 as second-order normals. The
straight line En+1X1 intersects the hyperplane yn+1 = 0 in the point

X(2u0 : . . . : 2un−1 : 1− apqupuq : 0).

Note that the polar of the point X related to the hyperquadric (1.1) intersects the
hyperplane yn+1 = 0 exactly in the (n−1)–dimensional second-order normal which
corresponds to the first-order normal X1En+1. Hence in the hyperplane yn+1 = 0,
a point X in general position is in correspondence with an (n− 1)–plane, and the
hyperplane yn+1 = 0 appears to be a polary normalized projective space Pn with
the same geometry as the quadric itself.

Let us define a second-order normal by basic points Yi = ∂iX−liX. We find the
scalar product (X,X) = (1 + apqu

puq)2. The points X and Yi are polar conjugate,
i. e. the scalar product (X,Yi) = 0. From these conditions we calculate the
normalizator li:

li =
2aisu

s

1 + apqupuq
.

The decompositions
∂jYi = ljYi + ΓsijYs + pijX

determine components of the projective-Euclidean connection Γkij and the tensor
pij [4]. Then the differential equations of the normalized space Pn : yn+1 = 0 read

∂iX = Yi + liX, ∇jYi = ljYi + pijX. (1.3)

Covariant differentiation of the equation (X,Yi) = 0 gives

(∂jX,Yi) + (X,∇jYi) = 0.

By (1.3) we get

(X,∇jYi) = −(∂jX,Yi) = −(Yj , Yi)− lj(X,Yi)
= −(∂iX − liX, ∂jX − ljX) = −(∂iX, ∂jX)− lilj(X,X).

Therefore

pij =
(X,∇jYi)

(X,X)
= − (∂iX, ∂jX)

(X,X)
+ lilj = − 4aij

(1 + apqupuq)2
. (1.4)

Hence considering in An the structure of the Euclidean space En with the Cartesian
coordinates ui we obtain a conformal model of a polar normalized projective space
Pn, i.e. a non-Euclidean space with the metric tensor

ds2 = gijdu
iduj =

±aijduiduj
(1 + apqupuq)2

. (1.5)

As we can see from (1.2) and (1.5), the obtained non-Euclidean space is conformally
equivalent to the Euclidean space.

Quadrics of a special type in the projective spaces have been also studied in
[1, 2].
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2. On pseudoconformal models of fibrations deter-
mined by the algebra of antiquaternions and pro-
jectivization of them

Consider the associative unital 4-dimensional algebra A of antiquaternions [5, 6]
with the basis 1, f, e, i and the multiplication table

1 f e i
1 1 f e i
f f 1 i e
e e −i 1 −f
i i −e f −1

As well known, any antiquaternion can be uniquely expressed as x = x0 +x1f+
x2e+ x3i, conjugation is given by x 7→ x̄ = x0 − x1f − x2e− x3i, xy = ȳx̄ holds,
the number xx̄ = (x0)2 − (x1)2 − (x2)2 + (x3)2 is real, and x 7→ |x| =

√
xx̄ defines

a norm corresponding to the scalar product xy = 1
2 (xȳ+yx̄) that turns A into the

four-dimensional Pseudoeuclidean space E4
2. |1| = |i| = 1, |e| = |f | = i. For any x

with |x| 6= 0 there exists the inverse element x−1 = x̄
|x|2 . The set of all invertible

elements from A

Ã = {x | |x|2 6= 0}

is a Lie group [7].
The group of antiquaternions of the unit norm xx̄ = 1 can be interpreted as

the unit sphere S3
2(1)

(x0)2 − (x1)2 − (x2)2 + (x3)2 = 1 (2.1)

in the Pseudoeuclidean space E4
2.

We extend E4
2 into P4; taking

x0 =
y0

y4
, x1 =

y1

y4
, x2 =

y2

y4
, x3 =

y3

y4
,

we introduce homogeneous coordinates (y0 : y1 : y2 : y3 : y4). The quadric S3
2(1)

has coordinate expression

y2 = (y0)2 − (y1)2 − (y2)2 + (y3)2 − (y4)2 = 0. (2.2)

The quadric (2.2) intersects the hyperplane y0 = 0 in the sphere S2
1

(y1)2 + (y2)2 − (y3)2 + (y4)2 = 0.

The point E0 of the projective frame (E0, . . . , E4) is the pole of the hyperplane
y0 = 0, the straight line E0E4 intersects the quadric in two real points N(1 : 0 : 0 :
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0 : 1) and N ′(−1 : 0 : 0 : 0 : 1), and the points E1, E2, E3 belong to the polar P2

of the straight line E0E4.
The tangent plane at the point N has the equation y0 − y4 = 0 and intersects

the sphere in the real cone −(y1)2 − (y2)2 + (y3)2 = 0. Also it intersects P3 in
the 2-plane P2: y0 = 0, y4 = 0. Hence in the hyperplane P3 there is a structure
of affine space A3 for which P2 is the improper plane. Consequently, under the
assumption y4 6= 0 we can introduce Cartesian coordinates

ui =
yi

y4
, i = 1, 2, 3.

The sphere S2
1 determines in A3 the structure of Pseudoeuclidean space E3

1 with
the metric form

ds2
0 = −(du1)2 − (du2)2 + (du3)2. (2.3)

Consider the stereographic projection of the hyperplane y0 = 0 from the pole
N(1 : 0 : 0 : 0 : 1) onto the quadric (2.2). The point U(0 : u1 : u2 : u3 : 1) is
mapped into the point

X1(−1 + r2 : 2u1 : 2u2 : 2u3 : 1 + r2),

where r2 = −(u1)2 − (u2)2 + (u3)2 is the square of distance of the point U from
the origin of the Pseudoeuclidean metric of the space E3

1.
Let us normalize the quadric (2.2) self-polar, taking as the first-order normals

straight lines passing through E0, and as second-order normals their polar two-
planes belonging to the hyperplane y0 = 0. The straight line E0X1 intersects the
hyperplane y0 = 0 in the point

X(0 : 2u1 : 2u2 : 2u3 : 1 + r2).

The polar of the point X related to the quadric (2.2) intersects the hyperplane
y0 = 0 in the normal of the second order. Hence in the hyperplane y0 = 0, a point
X in general position corresponds to a two-plane, and the hyperplane y0 = 0 is the
normalized projective space P3.

Let us define the second-order normal by basic points Yi = ∂iX − liX. Points
X and Yi are polar conjugate, i. e. (X,Yi) = 0. From this condition and since
(X,X) = −(r2 − 1)2 we find coordinates of the normalizer:

l1 = − 2u1

r2 − 1
, l2 = − 2u2

r2 − 1
, l3 =

2u3

r2 − 1
.

Then by (1.4) we obtain finally

p11 = p22 = − 4

(r2 − 1)2
, p33 =

4

(r2 − 1)2
.

Now introducing in A3 the structure of Pseudoeuclidean space E3
1 with ui as Carte-

sian coordinates we find the pseudoconformal model of the sphere S3
2(1) with the

metric form

ds2 = gijdu
iduj =

−(du1)2 − (du2)2 + (du3)2

(r2 − 1)2
. (2.4)
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The corresponding Riemannian (Levi-Civita) connection of this Pseudoriemannian
metric form appears. Non-vanishing components (Christoffel symbols) of it are

Γ1
11 = −Γ1

22 = Γ1
33 = Γ2

21 = Γ3
13 =

2u1

r2 − 1
,

Γ2
22 = Γ1

12 = −Γ2
11 = Γ2

33 = Γ3
32 =

2u2

r2 − 1
,

−Γ3
33 = −Γ3

22 = −Γ1
13 = −Γ3

11 = −Γ2
23 =

2u3

r2 − 1
.

The connection is of constant curvature K = −1.
As an example, we obtain equations of fibres in model of the fibration defined

by the subalgebra of complex numbers.

3. Example

Let us write an antiquaternion in the form

x = x0 + x3i+ f(x1 + x2i) = z1 + fz2, z1, z2 ∈ R(i),

where R(i) is a 2–dimensional subalgebra of complex numbers with basis {1, i}.
The set of its invertible elements

R̃(i) = {λ = a+ bi |λ 6= 0}, a, b ∈ R

turns out to be a Lie subgroup of the group Ã, a 2–plane with exception of one
point.

The canonical projection π : Ã→ Ã/R̃(i) takes the form

π(x) = (z̄1 : z2).

The factorspace Ã/R̃(i) is a subset M of a complex projective line P (i) and

M = {[z1 : z2] ∈ P (i) | z1z̄1 − z2z̄2 6= 0}.

It is covered by two charts

U1 = {[z1 : z2] | z2 6= 0} with the coordinate z =
z̄1

z2
,

where |z|2 6= 1, since z1z̄1 − z2z̄2 6= 0;

U2 = {[z1 : z2] | z1 6= 0} with the coordinate z̃ =
z2

z̄1
,

where |z̃|2 6= 1 by the same reason.
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Let the point z = u+ iv ∈M ⊂ P (i) is in U1. Then the coordinate expression
of the projection π in real coordinates is

π(z1, z2) = z =

(
x0x1 − x2x3

(x1)2 + (x2)2
,
−(x0x2 + x1x3)

(x1)2 + (x2)2

)
. (3.1)

Then z = z̄1
z2
, where in homogeneous coordinates

z1 =
y0 + y3i

y4
, z2 =

y1 + y2i

y4
.

The projection π(y) = z can be written as

π(y) =

(
y0y1 − y2y3

(y1)2 + (y2)2
,
−(y0y2 + y1y3)

(y1)2 + (y2)2

)
,

which is equivalent to (3.1), and 2–planes L2 : z̄1 − zz2 = 0 are given by a system
of equations

{
y0 − uy1 + vy2 = 0,

y3 + vy1 + uy2 = 0.
(3.2)

These 2–planes are the fibres of this fibration. By intersection with the sphere
(2.2), we obtain a 2–parameter family of second order curves





(y0)2 − (y1)2 − (y2)2 + (y3)2 − (y4)2 = 0,

y0 − uy1 + vy2 = 0,

y3 + vy1 + uy2 = 0,

which define the fibration. Excluding y0 we find the projection of the family of
fibres into the space E3

1. Passing to the Cartesian coordinates we obtain
{
−(x1)2 − (x2)2 + (x3)2 + (ux1 − vx2)2 = 1,

x3 + vx1 + ux2 = 0.
(3.3)

There is a correspondence of these equations with the equations (21) ([3, p. 89]).
If y is a point on the quadric distinct from N (i.e. y0 − y4 6= 0 holds), the cor-
responding point ξ in E3: y0 = 0 is uniquely determined by the homogeneous
coordinates (0 : y1 : y2 : y3 : y4 − y0), that is

ξ(0 :
y1

y4 − y0
:

y2

y4 − y0
:

y3

y4 − y0
: 1),

and in the space A3: y4 6= 0 the point ξ has the Cartesian coordinates

u1 =
x1

1− x0
, u2 =

x2

1− x0
, u3 =

x3

1− x0
.
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The inverse mapping is characterized by the formulas

x0 =
ξ2 − 1

ξ2 + 1
, x1 =

2u1

ξ2 + 1
, x2 =

2u2

ξ2 + 1
, x3 =

2u3

ξ2 + 1
,

ξ2 = −(u1)2 − (u2)2 + (u3)2, ξ2 + 1 6= 0,

similar to the formulas (18) (cf. [3, p. 88]). Hence the coordinates of the points y
and ξ are related by the conformal mapping. Substituting these expressions into
(3.3) we obtain the equations of the family of fibres in the form

{
(u1)2 + (u2)2 − (u3)2 + 2(uu1 − vu2)2 + 1 = 0,

vu1 + uu2 + u3 = 0.
(3.4)

These equations coincide with the system (21) (cf. [3, p. 89]). So, we have the
following result.

Theorem 3.1. In the projective model the equations of fibres of the fibration defined
by the subalgebra of complex numbers are (3.4).
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Abstract

In computer graphics and geometric modeling for good quality displaying
of an object it is required that the object must fit on the screen. It often
happens, for example when we are using modeling software, that the object
we would like to rotate around an axis, or edit from another point of view,
is partly out of the screen, and thus some parts are not visible. In two
dimensions the isoptic curve of a curve is constructed by involving lines with
a given angle intersect each other at a certain point of the isoptic curve.
In three dimensions the points of an isoptic curve may be the admissible
positions of the camera. So from these points we can watch the object with
respect to the given viewing angle. The purpose of this paper is to find a
general method and computational algorithm that helps to locate the closest
possible position of the camera, which positions form a closed curve around
the surface. The developed algorithm produces this curve for a special case.

Keywords: isoptic curve, Bézier surface

MSC: 65D17, 68U07

1. Introduction

Let us overview briefly the planar case of the isoptic problem.
∗This research was supported by the European Union and the State of Hungary, co-financed

by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 ‘National
Excellence Program’.

Annales Mathematicae et Informaticae
42 (2013) pp. 65–70
http://ami.ektf.hu

65



Definition 1.1. For a given curve C, consider the locus of points from where the
tangents to C meet at a fixed given angle.

The isoptic of quadratic curves can be determined from the definition by calcu-
lation based on elementary geometric results [5] and several further results are also
known, mainly about classical curves [6, 7]. For freeform curves, the intersections
of the appropriate tangents of the given curve determine the points of the isoptic
curve. In this case we need to derivate the given curve to find the involving lines.
With this algorithm we can find the set of points which form the isoptic curve of
convex curves (see Figure 1).

Figure 1: The isoptic curve with 90◦ (red one) of a Bézier curve

In case of Bézier curves there is a calculation for obtaining an exact formula of
the isoptic curve based on [1]. This method defines the isoptic as the envelope of
envelopes of families of isoptic circles over the chords of the Bézier curve. Although
it cannot always be resolved exactly, the numerical algorithms can provide sufficient
results as well.

In this paper we provide a way of generalization of isoptics in 3D and compute
a curve around a convex surface from which the surface can be seen under a given
angle.

2. Isoptic of surfaces

The first difficulty is that the generalization of the two-dimensional definition is not
straightforward and not unique in the three dimensional space. It is not evident
how to define the angle of view in 3D. One possibility is looking for points, from
where we can draw tangent lines to the surface, which intersect each other at the
given angle, but this computation is not uniquely determined. So we are looking
for points in a special case for Bézier surfaces.

Figure 2 shows the special circumstances. At first, we suppose that the surface
is convex and it is entirely above (but as close as possible to) the base plane which is
given by the equation Y = 0 in the coordinate system. Moreover, we suppose that
the origin of the coordinate system is in the orthogonal projection of the surface
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onto the base plane. We will search for points of this plane around the surface,
from which the viewing angle, that is the angle of the plane Y = 0 and the deepest
tangent line to the surface from this point is a predefined angle. We will call these
points isoptic points of the surface. To locate an isoptic point we use two vectors:
m and v. The vector m is parallel to the X-axis; the vector v is rotated around
the X-axis. This angle of the rotation needs to be selected as follows. If we look
from one isoptic point to the origin, the surface should fit on the viewing screen
on the top. For all points it is true that vector v and one of the normal vectors of
the surface are orthogonal. It is also true for the vector m. There are two ways to
do the scan: by rotating the surface and by rotating vectors m and v around the
Y -axis. With this condition, we can find several points on the plane Y = 0, and
based on these points we can produce a curve around the surface (see Figure 3)
interpolating these points by a closed B-spline curve [2]. In the next subsections
details of the two computational approach are provided.

Figure 2: The special case for finding isoptic points of Bézier sur-
face

Figure 3: Result of the algorithm
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2.1. Rotating the control points of the surface
In this algorithm we have to rotate the control points of the Bézier surface, which
is given by the following equation:

S(u, v) =
n∑

i=0

n∑

j=0

Bn
i (u)B

n
j (v)Pi,j .

We need to compute the normal vector by the partial derivatives of the surface, with
respect to the parameters u and v: U(u, v) = ∂S(u,v)

∂u and V (u, v) = ∂S(u,v)
∂v . The

normal vector will be the cross product of the two partial derivatives: N(u, v) =
U(u, v)×V (u, v).

We can write the equation of a plane that touches the Bézier surface in the
point from where the normal vector perpendicular to vectors m and v:

Nx(u, v)(X −X0) +Nz(u, v)(Z − Z0) = Ny(u, v)Y0,

where X0, Y0, Z0 are the coordinates of the points of the Bézier surface. The
isoptic point is lying on the line in which this plane and the base plane given by
the equation Y = 0 intersect each other. By solving this equation with X = 0, we
obtain the distance from the origin. This will be the Z coordinate of the isooptic
point:

Z =
Ny(u, v)Y0 −Nx(u, v)X0

Nz(u, v)
+ Z0.

The X and Y coordinates of this point are equal to zero. We need to rotate
this point with the same angle as we used to rotate the surface. While we rotate
the control points around the Y -axis the following conditions need to be satisfied:
〈N(u, v),m〉 = 0 and 〈N(u, v),v〉 = 0, that means the following:

Nx(u, v) = 0

sin(α)·Ny(u, v) = cos(α)·Nz(u, v).

If we can solve this equation for u and v we obtain an exact formula to compute the
normal vector and from this we can calculate exactly the position of each isoptic
point. Unfortunately the solution cannot be given in closed form in most of the
cases, but numerical methods work sufficiently.

2.2. Rotating vectors m and v
The other way to find the isoptic points is to rotate the vector m and v around the
Y -axis. The coordinates of the vectors will be the following:

m = (cos(β), 0,− sin(β)) and v = (− sin(β)· cos(α), sin(α),− cos(β)· cos(α)),
where β is the angle of rotation around the Y -axis, in the interval [0, 2π]. The
condition of the search is that 〈N(u, v),m〉 = 0 and 〈N(u, v),v〉 = 0 have to be
fulfilled. From these we obtain the following:

Nx(u, v) = tanβ·NZ(u, v)
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Ny(u, v) = cotα· 1

cosβ
·Nz(u, v).

We also tried to resolve this equation for u and v, but it cannot be obtained in
closed form as well. But there is no need to rotate the isoptic points so we can
compute exactly the X and Y cordinates of these points.

Let e be the intersection line of the plane that touches the surface and the base
plane given by the equation Y = 0, and let f be the line which has one point in
the origin and its normal vector m. The isoptic point is the intersection of these
lines:

X =
sin (β)·c

cos(β)·Nz(u, v)− sin(β)·Nx(u, v)

Z =
cos (β)·c

cos(β)·Nz(u, v)− sin(β)·Nx(u, v)
,

where c = Nx(u, v)X0 +Ny(u, v)Y0 +Nz(u, v)Z0. Since 〈N(u, v),m〉 = 0, we can
compute the coordinates by the following equations:

X =
cNx(u, v)

〈Nx(u, v), Nx(u, v)〉+ 〈Nz(u, v), Nz(u, v)〉

Z =
cNz(u, v)

〈Nx(u, v), Nx(u, v)〉+ 〈Nz(u, v), Nz(u, v)〉
.

2.3. Calculation by linear combination
There is another way to compute the isoptic points. To find these points we still
need to use the vectors m and v. If the normal vector of the surface is the cross
product of the vector U(u, v) and V (u, v), and N(u, v) is perpendicular to the
vector m and v, then v, m, U(u, v) and v, m, V (u, v) are linearly dependent.
Thus U(u, v) and V (u, v) can be obtained by linear combination of vectors m and
v. This means the following:

∣∣∣∣∣∣

1 0 0
1 sin(α) − cos(α)

Ux(u, v) Uy(u, v) Uz(u, v)

∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣

1 0 0
1 sin(α) − cos(α)

Vx(u, v) Vy(u, v) Vz(u, v)

∣∣∣∣∣∣
= 0.

From this we obtain the following equations:

sin(α) · Uz(u, v) + cos(α) · Uy(u, v) = 0

sin(α) · Vz(u, v) + cos(α) · Vy(u, v) = 0.

By solving this system we acquire a complex fifth order equation for u and v,
but it is not possible approximate the roots even by computer algebra systems.
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3. Conclusions

The possibilities of 3 dimensional generalization of isoptic curves are considered.
We provided a special scene where isoptic points of a surface can be computed,
although in some cases only by numerical methods. This method can be applied
in circumstances when a convex surface is above a given plane and the method
provides a curve in this plane from the point of which one can see the surface
under a given angle. Further investigations in terms of computational efficiency
and generalization can be subject of future work.
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Abstract

Generalized one-sided concept lattices represent one of the conceptual
data mining methods, suitable for an analysis of object-attribute models with
the different types of attributes. It allows to create FCA-based output in form
of concept lattice with the same interpretation of concept hierarchy as in the
case of classical FCA. The main aim of this paper is to investigate relation-
ship between formal contexts and generalized one-sided concept lattices. We
show that each one uniquely determines the other one and we also derive
the number of generalized one-sided concept lattices defined within the given
framework of formal context. The order structure of all mappings involved in
some Galois connections between a power set and a direct product of complete
lattices is also dealt with.

Keywords: Galois connection, generalized one-sided concept lattice, formal
context.
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1. Introduction

Handling uncertainty, imprecise data or incomplete information has become an
important research topic in the recent years. One of the frequent solutions, how to
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deal with “imperfect” information, usually leads to the development of the fuzzified
versions of several well-known standard structures or approaches. In this paper,
we focus on the area of the formal concept analysis, specifically, on the approach
known as generalized one-sided concept lattices.

Formal Concept Analysis (FCA [9]) represents a method of data analysis for
identifying conceptual structures among data sets. As an efficient tool, Formal
Concept Analysis has been successfully applied to domains such as decision sys-
tems, information retrieval, data mining and knowledge discovery. Classical FCA
is suitable for crisp case, where object-attribute model is based on binary rela-
tion (object has/has-not the attribute). In practice there are natural examples
of object-attribute models for which relationship between objects and attributes
are represented by many-valued (fuzzy) relations. Therefore, several attempts to
fuzzify FCA have been proposed. As an example we mention work of Bělohlávek
[2, 3, 4] or other approaches [12, 14, 15]. One-sided concept lattices play a spe-
cial role in fuzzy FCA, where usually objects are considered as crisp subsets and
attributes obtain fuzzy values. In this case the interpretation of object clusters is
straightforward as in classical FCA, instead of fuzzy approaches with fuzzy subsets
of objects, where interpretability often becomes problematic.

Recently, there was a generalization of all known one-sided approaches [1, 10,
11], so called generalized one-sided concept lattices, cf. [7, 8]. This approach is,
in contrary with the previous one-sided approaches, convenient for the analysis
of object-attribute models with different truth value structures. From this point
of view it is applicable to a wide spectrum of real object-attribute models where
methods of classical FCA are appropriate, cf. [5, 6, 16, 17]. In this note we deal
with theoretical question, whether correspondence between formal contexts, which
represent object-attribute models, and concept lattices on the other side is one-to-
one or equivalently injective.

In order to make this paper as self-contained as possible, in the next section
we give a brief overview of the notions like formal context, Galois connections,
complete lattices, direct product, etc. We also describe the basic definitions and
the results concerning generalized one-sided concept lattices.

Our main results are in Section 3. Firstly we prove that the correspondence
between formal context and generalized one-sided concept lattices is injective, i.e.,
that each generalized one-sided concept lattice also uniquely determines formal
context. Based on this result, we deduce the formula expressing number of gen-
eralized one-sided concept lattices defined within the fixed framework of a given
formal context. Further, we are studying the order structure of mappings involved
in some Galois connections between a power set and a direct product of complete
lattices. In particular, we show that the lattice of all such mappings and the lattice
of all incidence relations are isomorphic.
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2. Formal contexts and generalized one-sided con-
cept lattices

In this section we examine the notion of the object-attribute model and its mathe-
matical counterpart formal context. Further, based on the notion of formal context
we define generalized one-sided concept lattices as fuzzy generalization of classical
concept lattices.

Firstly, we briefly describe the object-attribute models. Generally, by object
we understand any item that can be individually selected and manipulated, e.g.,
person, car, document, etc. In general, an attribute is a property or characteristic
of given object, e.g., height of a person, colour of a car or frequency of occurrence
of a given word in some document. We will consider that each particular attribute
under consideration has defined its range of possible values. Hence, if we measure
the height in cm, then any person has assigned the height as integer value from
interval [0, 280]. Similarly, color of a car can be from some given set of prescribed
colors {red, blue,white, . . . } and frequency of occurrence of some word w can be
given as the ratio Nw

Nall
from the interval [0, 1] of rationals. In this case Nw denotes

the number of the occurrences of the word w and Nall denotes the number of all
words in the considered document.

In our understanding object-attribute model consists of the set of objects, set
of the attributes with prescribed ranges and values which characterizes objects by
the given attributes, e.g., John is tall 183 cm.

In order to apply methods of FCA, we will need one restriction on the ranges
of all attributes belonging to object-attribute models. This restriction is given by
the usage of fuzzy logic in the theory of fuzzy concept lattices. The main idea of
fuzzifications of classical FCA is the usage of graded truth. In classical logic, each
proposition is either true or false, hence classical logic is bivalent. In fuzzy logic,
to each proposition there is assigned a truth degree from some scale L of truth
degrees. The structure L of the truth degrees is partially ordered and contains the
smallest and the greatest element. If to the propositions φ and ψ are assigned truth
degrees ‖ φ ‖ = a and ‖ ψ ‖ = b, then a ≤ b means that φ is considered less true
than ψ. In the object-attribute models typical propositions are of the form “object
has attribute in degree a”.

In the theory of fuzzy concept lattices it is always assumed that the structure
L of the truth degrees assigned to each attribute forms complete lattice.

Now we recall some basic facts concerning partially ordered sets and lattices.
By the partially ordered set (P,≤) we understand non-empty set P 6= ∅ together
with binary relation ≤ satisfying:

i) x ≤ x for all x ∈ P , i.e., the relation ≤ is reflexive,

ii) x ≤ y and y ≤ x then x = y, i.e., antisymmetry of ≤,

iii) x ≤ y and y ≤ z then x ≤ z, i.e., transitivity of the relation ≤.
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Let (P,≤) be a partially ordered set and H ⊆ P be an arbitrary subset. An
element a ∈ P is said to be the least upper bound or supremum of H, if a is the
upper bound of the subset H (h ≤ a for all h ∈ H) and a is the least of all elements
majorizing H (a ≤ x for any upper bound x of H). We shall write a = supH or
a =

∨
H. The concepts of the greatest lower bound or infimum is similarly defined

and it will be denoted by inf H or
∧
H.

A partially ordered set (L,≤) is a lattice if sup{a, b} = a∨b and inf{a, b} = a∧b
exist for all a, b ∈ L. A lattice L is called complete if

∨
H and

∧
H exist for any

subset H ⊆ L. Obviously, each finite lattice is complete. Note that any complete
lattice contains the greatest element 1L = supL = inf ∅ and the smallest element
0L = inf L = sup ∅. In what follows we will denote the class of all complete lattices
by CL.

Now we are able to define formal context which represents mathematical for-
malization of the notion object-attribute model.

Definition 2.1. A 4-tuple
(
B,A,L, R

)
is said to be a generalized one-sided formal

context if the following conditions are fulfilled:

a) B is a non-empty set of objects and A is a non-empty set of attributes.

b) L : A→ CL,

c) R : B×A→ ⋃
a∈A L(a) is a mapping satisfying R(b, a) ∈ L(a) for all b ∈ B and

a ∈ A.
Second condition says that L is a mapping from the set of attributes to the

class of all complete lattices. Hence, for any attribute a, L(a) denotes the complete
lattice, which represents structure of truth values for attribute a, i.e., L(a) denotes
the range of attribute a. As it is explicitly given, we require that all ranges form
complete lattices. The symbol R denotes so-called (generalized) incidence relation,
i.e., R(b, a) represents a degree from the structure L(a) in which the element b ∈ B
has the given attribute a.

As an example of simple formal context, consider four-element set of objects
B = {a, b, c, d} and eight-element set of attributes A = {a1, a2, a3, a4, a5, a6, a7, a8}.
We will assume that the attributes in our model are binary or real, i.e., ranges of
these attributes are represented either two-element chain 2 = {0, 1} with 0 < 1 or
real unit interval [0, 1]. Particularly we have L(a1) = L(a3) = L(a5) = L(a6) = 2
and L(a2) = L(a4) = L(a7) = L(a8) = [0, 1]. The generalized incidence relation
R of each formal context is usually described as data table. In this case the value
R(b, a) can be found on the intersection of b-th row and a-th column of the table.
The incidence relation of our example is depicted in Table 1.

Further we define generalized one-sided concept lattices derived from given gen-
eralized one-sided formal context. Since the theory of concept lattices is based on
the notion of Galois connections, we recall this notion at first, cf. [13] or [9].

Definition 2.2. Let (P,≤) and (Q,≤) be partially ordered sets and let

ϕ : P → Q and ψ : Q→ P
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a1 a2 a3 a4 a5 a6 a7 a8
a 0 0.2 1 0.3 1 0 0.1 0.5
b 1 0.6 0 0.6 0 1 0.5 0.3
c 1 1.0 0 0.7 0 0 0.5 0.0
d 0 0.2 0 0.3 1 0 0.1 0.5

Table 1: Data table of object-attribute model

be maps between these ordered sets. Such a pair (ϕ,ψ) of mappings is called a
Galois connection between the ordered sets if:

(a) p1 ≤ p2 implies ϕ(p1) ≥ ϕ(p2),

(b) q1 ≤ q2 implies ψ(q1) ≥ ψ(q2),

(c) p ≤ ψ(ϕ(p)) and q ≤ ϕ(ψ(q)).

Let us remark that the conditions (a), (b) and (c) are equivalent to the following
one:

p ≤ ψ(q) iff ϕ(p) ≥ q. (2.1)

These two maps are also called dually adjoint to each other. An important
property of Galois connections is captured in the following expressions (see [9] for
the proof).

ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ (2.2)

Moreover the dual adjoint is determined uniquely, i.e., if (ϕ1, ψ) forms Galois
connection as well as (ϕ2, ψ) then ϕ1 = ϕ2. The same is true if (ϕ,ψ1) and (ϕ,ψ2)
form Galois connections, then ψ1 = ψ2.

Now we describe the partially ordered sets, where we define appropriate Galois
connection. On the side of objects, we will consider the set P(B) as a domain of
one part of Galois connection. Let us note that P(B) denotes the power set of all
subsets of the set B partially ordered by the set theoretical inclusion. It is well
known fact that P(B) forms complete lattice. In this case, clusters of objects are
represented by classical subsets, hence this is the reason for the name “one-sided
concept lattices”.

If Li for i ∈ I is a family of lattices the direct product
∏

i∈I Li is defined as the
set of all functions

f : I →
⋃

i∈I
Li (2.3)

such that f(i) ∈ Li for all i ∈ I with the “componentwise” order, i.e, f ≤ g if
f(i) ≤ g(i) for all i ∈ I. If Li = L for all i ∈ I we get a direct power LI . In
this case the direct power LI represents the structure of L-fuzzy sets, hence direct
product of lattices can be seen as a generalization of the notion of L-fuzzy sets.
The direct product of lattices forms complete lattice if and only if all members of
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the family are complete lattices. The straightforward computations show that the
lattice operations in the direct product

∏
i∈I Li of complete lattices are calculated

componentwise, i.e., for any subset {fj : j ∈ J} ⊆∏i∈I Li we obtain
( ∨

j∈J
fj
)
(i) =

∨

j∈J
fj(i) and

( ∧

j∈J
fj
)
(i) =

∧

j∈J
fj(i), (2.4)

where these equalities hold for each index i ∈ I.
Generalized one-sided concept lattices were designed to handle with different

types of attributes, hence the appropriate domain for second part of Galois con-
nection consists of direct product of attribute lattices

∏
a∈A L(a).

Definition 2.3. Let
(
B,A,L, R

)
be a generalized one-sided formal context. We

define a pair of mappings ↑ : P(B) → ∏
a∈A L(a) and ↓ :

∏
a∈A L(a) → P(B) as

follows:
↑
(
X
)
(a) =

∧

b∈X
R(b, a), for all X ⊆ B, (2.5)

↓(g) = {b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)}, for all g ∈
∏

a∈A
L(a). (2.6)

The main result concerning such defined pair of mappings is stated in the fol-
lowing proposition.

Proposition 2.4. The pair (↑, ↓) forms a Galois connection between P(B) and∏
a∈A L(a).

Proof. We prove that ↑(X) ≥ g if and only if X ⊆ ↓(g) for all X ⊆ B and all
g ∈∏a∈A L(a).

Since ↑
(
X
)
≥ g if and only if ↑

(
X
)
(a) ≥ g(a) for all a ∈ A, according to the

Definition (2.5) of the map ↑ and expression (2.4) we obtain

∀a ∈ A, ↑
(
X
)
(a) =

∧

b∈X
R(b, a) ≥ g(a) iff ∀a ∈ A,∀b ∈ X, R(b, a) ≥ g(a).

Due to the definition (2.6) of the map ↓, this is equivalent to
X ⊆ {b ∈ B : ∀a ∈ A, g(a) ≤ R(b, a)} = ↓(g).

The result of this proposition allows to define generalized one-sided concept
lattices. Let

(
B,A,L, R

)
be a generalized one-sided formal context. Denote by

C
(
B,A,L, R

)
the set of all pairs (X, g), X ⊆ B, g ∈ ∏a∈A L(a) which form fixed

points of the Galois connection (↑, ↓), i.e., satisfying
↑
(
X
)

= g and ↓(g) = X.

In this case the ordered pair (X, g) is said to be a concept, the set X is usually
referred as extent and g as intent of the concept (X, g).

Further we define partial order on the set C
(
B,A,L, R

)
as follows:

(X1, g1) ≤ (X2, g2) iff X1 ⊆ X2 iff g1 ≥ g2. (2.7)
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{}
(1,1.0,1,1.0,1,1,1.0,1.0)

{a}
(0,0.2,1,0.3,1,0,0.1,0.5)

{b}
(1,0.6,0,0.6,0,1,0.5,0.3)

{c}
(1,1.0,0,0.7,0,0,0.5,0.0)

{b,c}
(1,0.6,0,0.6,0,0,0.5,0.0)

{a,d}
(0,0.2,0,0.3,1,0,0.1,0.5)

{a,b,d}
(0,0.2,0,0.3,0,0,0.1,0.3)

{a,b,c,d}
(0,0.2,0,0.3,0,0,0.1,0.0)

Figure 1: Generalized one-sided concept lattice

Proposition 2.5. The set C
(
B,A,L, R

)
with the partial order defined by (2.7)

forms a complete lattice, where
∧

i∈I

(
Xi, gi

)
=
(⋂

i∈I
Xi, ↑↓

(∨

i∈I
gi
))

and
∨

i∈I
(Xi, gi) =

(
↓↑
(⋃

i∈I
Xi

)
,
∧

i∈I
gi

)

for each family (Xi, gi)i∈I of elements from C
(
B,A,L, R

)
.

Proof of this proposition is based on the fact that any Galois connection be-
tween complete lattices induces dually isomorphic closure systems (see [13]). Con-
sequently, this dual isomorphism maps infima on the one side onto suprema in a
closure system on the other side and vice versa.

Remark that the algorithm for generation of generalized one-sided concept lat-
tices can be found in [7] or [8].

The Hasse diagram of the generalized one-sided concept lattice determined by
Table 1 is shown on Figure 1. Let us remark that we denote the elements of direct
product as ordered tuples, as it is common in lattice theory.

3. On relationship between incidence relations and
generalized one-sided concept lattices

In this section we present our results concerning incidence relations and correspond-
ing one-sided concept lattices. We also describe the order structure of the set of
all mappings involving in some Galois connection between power set and the direct
product of complete lattices. Firstly, we show that the correspondence

generalized one-sided context 7→ generalized one-sided concept lattice
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is injective or equivalently one-to-one. We already know how to define generalized
one-sided lattice from given formal context. However, there is an interesting theo-
retical question, whether different formal contexts yield different one-sided concept
lattices. The positive answer means that not only formal context fully characterizes
generalized one-sided context, but the converse is also true, i.e., given generalized
one-sided concept lattice fully determines formal context. Hence, generalized one-
sided concept lattice contains all information about object-attribute model.

We recall the definition of injective mapping. A mapping f : A→ B is said to
be injective (one-to-one) if

x 6= y implies f(x) 6= f(y)

Evidently, this condition is equivalent to the condition f(x) = f(y) implies x = y.
In what follows, we will consider that the set of objects B is fixed, as well as the

set of all attributes A (together with truth value structures L(a)). Consider that
we have two generalized one-sided formal contexts (B,A,L, R1) and (B,A,L, R2).
The corresponding concept lattices are denoted by C1 = C

(
B,A,L, R1

)
and C2 =

C
(
B,A,L, R2

)
.

Theorem 3.1. The correspondence (B,A,L, R) 7→ C
(
B,A,L, R

)
, which assign to

each generalized one-sided formal context the corresponding generalized one-sided
concept lattice is injective.

Proof. We prove this theorem in two steps. Firstly we show that the correspondence
(B,A,L, R) 7→ (↑, ↓), which maps formal context onto the Galois connection given
by (2.5) and (2.6) respectively, is injective. Next we show that the correspondence
(↑, ↓) 7→ C

(
B,A,L, R

)
, which maps Galois connection to the concept lattice is

injective too. Since the composition of two injective mappings is injective, this will
satisfy to prove our result.

Suppose that incidence R1 and R2 differ, i.e., there exist b ∈ B, a ∈ A such
that R1(b, a) 6= R2(b, a). Note, that we will recognize the corresponding Galois
connection by subscript. According to the definition (2.5) of mapping ↑ we obtain:

↑1({b}) =
∧

b′∈{b}
R1(b′, a) = R1(b, a) 6= R2(b, a) =

∧

b′∈{b}
R2(b′, a) = ↑2({b}).

This equation shows that we have found one-element subset {b} with ↑1({b}) 6=
↑2({b}) and consequently (↑1, ↓1) 6= (↑2, ↓2). Hence, the first correspondence be-
tween formal contexts and Galois connections is injective.

Further, assume that C1 = C2, i.e., that the generalized one-sided concept
lattices equal. This means that the sets of fixed points coincide, i.e., for all X ⊆ B
and g ∈∏a∈A L(a) it holds

↑1(X) = g and ↓1(g) = X iff ↑2(X) = g and ↓2(g) = X. (3.1)

Let X ⊆ B be an arbitrary subset. From the property (2.2) of Galois connec-
tions we have ↑1(X) = ↑1(↓1(↑1(X))), thus ordered pair (↓1(↑1(X)), ↑1(X)) forms
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a fixed point of Galois connection (↑1, ↓1). Then, due to condition (3.1) we obtain
that ↓2(↑1(X)) = ↓1(↑1(X)). Consequently, we have X ⊆ ↓1(↑1(X)) = ↓2(↑1(X))
which yields the first half of the condition (c) of the Definition 2.2.

Similarly, using (2.2) we obtain for each element g ∈ ∏a∈A L(A) the pair
(↓2(g), ↑2(↓2(g)) forms fixed point of (↑2, ↓2). Again, due to condition (3.1) we
obtain ↑2(↓2(g)) = ↑1(↓2(g)), which yields g ≤ ↑2(↓2(g)) = ↑1(↓2(g)). Since the
mappings ↑1 and ↓2 are order reversing, we have proved that the pair (↑1, ↓2)
forms Galois connection. Now using the fact that dual adjoint is unique, we obtain
↑1 = ↑2 and ↓1 = ↓2, which completes the proof.

It was proved in [7] that for any Galois connection (Φ,Ψ) between P(B) and∏
a∈A L(a) there exists a generalized formal context (B,A,L, R) that ↑ = Φ and
↓ = Ψ. Hence the correspondence between formal contexts and generalized one-
sided concept lattices is surjective, too. Since we have shown that it is injective,
in fact this correspondence is bijective. Using this fact we can prove the following
theorem about number of all concept lattices.

Theorem 3.2. Let B 6= ∅ be set of objects, A = {a1, a2, . . . , am} be set of at-
tributes. Denote by n = |B| number of objects and for all i = 1, . . . ,m denote by
ni = |L(ai)| the cardinality of the complete lattice L(ai). Then there is (

∏m
i=1 ni)

n

generalized one-sided concept lattices.

Proof. There is a bijection between set of all generalized incidence relations and
one-sided concept lattices, thus it is sufficient to count all generalized incidence
relations. For each object b and each attribute a the value R(b, a) can obtain
ni = |L(ai)| values. Since we have n objects, there is nin possibilities for columns
in data table (which represents incidence relation). Together we have

n1
n · n2n · . . . · nmn · . . . = (

m∏

i=1

ni)
n

possibilities to define incidence relation.

This result generalizes the similar assertion for classical concept lattices. Sup-
pose there is given a formal context (B,A, I). If we have n objects andm attributes,
then there is 2n·m concept lattices. Any classical concept lattice can be character-
ized as generalized one-sided concept lattice by setting L(a) = 2 (2 = {0, 1} denotes
two-element chain) and R(b, a) = 1 if and only if (b, a) ∈ I (see [14] for details).
Hence applying the result of Theorem 3.2 we obtain

∏m
i=1 2n = (2n)m = 2m·n.

Similarly, if one will consider L(ai) = L for all i = 1, . . . ,m, than generalized
one-sided concept lattices, represent one-sided concept lattices. Hence, applying
Theorem 3.2 we obtain that there is

∏m
i=1 |L|

n
= |L|m·n different one-sided concept

lattices.
Next we show that formal contexts also characterize order properties of the

Galois connections between power sets and complete lattices. Firstly we prove the
following lemma, concerning the closure property of Galois connections. Let L and
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M be complete lattices. Denote by Gal(L,M) the set of all ϕ : L → M such that
there exists ψ : M → L dually adjoint to ϕ.

Lemma 3.3. Let L,M be complete lattices. The set Gal(L,M) forms a closure
system in complete lattice ML.

Proof. We show that the set Gal(L,M) is closed under arbitrary infima. Let {ϕi :
i ∈ I} ⊆ Gal(L,M) be an arbitrary system. Denote by ϕ =

∧
i∈I ϕi. In this case

ϕ(x) =
∧

i∈I ϕ(x) for all x ∈ L. In order to prove that ϕ ∈ Gal(L,M) we show that
there is a dual adjoint ψ : M → L. Define ψ =

∧
i∈I ψi where ψi is dually adjoint

to ϕi for all i ∈ I.
Let x1, x2 ∈ L be elements such that x1 ≤ x2. Since ϕi(x1) ≥ ϕi(x2) for all

i ∈ I, we obtain
ϕ(x1) =

∧

i∈I
ϕi(x1) ≥

∧

i∈I
ϕi(x2) = ϕ(x2).

Similarly, for all y1, y2 ∈M condition y1 ≤ y2 implies ψ(y2) ≥ ψ(y1).
Finally, we show that x ≤ ψ(ϕ(x)) for all x ∈ L. Let j ∈ I be an arbitrary

index. Then for all x ∈ L we have

x ≤ ψj

(
ϕj(x)

)
≤ ψj

(∧

i∈I
ϕ(x)

)
,

since ψj is order reversing and ϕj(x) ≥ ∧i∈I ϕi(x). This yields

x ≤
∧

j∈I
ψj

(∧

i∈I
ϕi(x)

)
=
∧

j∈I
ψj

(
ϕ(x)

)
= ψ

(
ϕ(x)

)
.

In similar way, one can prove y ≤ ϕ(ψ(y)) for all y ∈M .

Since Gal(L,M) forms a closure system in complete lattice ML, it forms com-
plete lattice too. In this case meets in Gal(L,M) coincide with the meets in ML,
but this is not valid for joins in general. In particular, if (ϕi : i ∈ I} ⊆ Gal(L,M)
then

sup{ϕi : i ∈ I} =
∧
{ϕ ∈ Gal(L,M) : ϕ ≥

∨

i∈I
ϕi}

where the symbols
∧

and
∨

denote operations of meet and join in ML.
Let us note that Gal(L,M) and Gal(M,L) forms isomorphic posets. This follows

from the fact that the correspondence ϕ 7→ ψ where ψ denotes the dual adjoint
of ϕ is bijective. Moreover it is order preserving in both directions. Suppose
ϕ1(x) ≤ ϕ2(x) for all x ∈ L. Let y ∈ M be an arbitrary element. Then y ≤
ϕ1(ψ1(y)) ≤ ϕ2(ψ1(y)) and according to the condition (2.1) it follows ψ1(y) ≤
ψ2(y). The opposite implication can be proved analogously, hence ϕ1 ≤ ϕ2 if and
only if ψ1 ≤ ψ2.

Further assume that B,A 6= ∅ and L : A → CL are fixed. In order to describe
the structure of the lattice Gal(P(B),

∏
a∈A L(a)) we denote by R(B,A,L) the

set of all relations R such that (B,A,L, R) forms generalized one-sided formal
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context. Obviously the set R(B,A,L) forms complete lattice. In this case, if
{Ri : i ∈ I} is a system of relations, then relation R where R(b, a) =

∧
i∈I Ri(b, a)

(R(b, a) =
∨

i∈I Ri(b, a) ) corresponds to the infimum (supremum).

Theorem 3.4. The lattice Gal(P(B),
∏

a∈A L(a)) is isomorphic to the lattice of
all incidence relations R(B,A,L).

Proof. Define F : R(B,A,L) → Gal(P(B),
∏

a∈A L(a)) for all R ∈ R(B,A,L) by
F (R) = ↑R, where ↑R is defined by (2.5). As we already know, the mapping F is
bijective. We show, that it also preserves the lattice operations, i.e., F

(
R1∧R2

)
=

F (R1) ∧ F (R2) and F (R1 ∨R2) = sup{F (R1), F (R2)}.
Let X ⊆ B be any subset and a ∈ A be an arbitrary element. Then we obtain

↑R1∧R2
(X)(a) =

∧

b∈X

(
R1(b, a) ∧R2(b, a)

)
=

=
∧

b∈X
R1(b, a) ∧

∧

b∈X
R2(b, a) = ↑R1

(X)(a) ∧ ↑R2
(X)(a).

Hence the mapping F preserves meets.
In order to prove that F preserves joins, we use the fact that the mapping F

is surjective, i.e., for any Galois connection (ϕ,ψ) between P(B) and
∏

a∈A L(a)
there is some relation R with ϕ = ↑R and ψ = ↓R.

Let ϕ ∈ Gal(P(B),
∏

a∈A L(a)) be a mapping satisfying ϕ ≥ ↑R1
, ↑R2

. Then
ϕ = ↑R for some R ∈ R(B,A,L) and for all b ∈ B and a ∈ A we obtain

ϕ({b})(a) = ↑R({b})(a) =
∧

b′∈{b}
R(b, a) = R(b, a).

Since ϕ({b}) ≥ ↑R1
({b}), ↑R2

({b}) for all b ∈ B we have R(b, a) ≥ R1(b, a)∨R2(b, a)
for all b ∈ B and a ∈ A. This yields

ϕ(X)(a) = ↑R(X)(a) =
∧

b∈X
R(b, a) ≥

∧

b∈X

(
R1(b, a) ∨R2(b, a)

)
= ↑R1∨R2

(X)(a)

for all X ⊆ B and for all a ∈ A. Obviously ↑R1∨R2
is the upper bound of

↑R1
and ↑R2

and we have shown that it is in fact the least upper bound of ↑R1

and ↑R2
. Hence in the lattice Gal(P(B),

∏
a∈A L(a)) the assertion F (R1 ∨ R2) =

sup{F (R1), F (R2)} is valid.
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Abstract

In this paper, we define the bi-periodic incomplete Fibonacci sequences,
we study some recurrence relations linked to them, some properties of these
numbers and their generating functions. In the case a = k = b , we obtain
the incomplete k-Fibonacci numbers. If a = 1 = b, we have the incomplete
Fibonacci numbers.

Keywords: bi-periodic incomplete Fibonacci sequence, bi-periodic Fibonacci
sequence, generating function
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1. Introduction

Fibonacci numbers and their generalizations have many interesting properties and
applications to almost every field of science and art [10]. The Fibonacci numbers
Fn are defined by the recurrence relation

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1, n > 1.

There exist a lot of properties about Fibonacci numbers. In particular, there is a
beautiful combinatorial identity

Fn =

bn−1
2 c∑

i=0

(
n− i− 1

i

)
(1.1)
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for Fibonacci numbers [10].
In analogy with (1.1), Filipponi [6] introduced the incomplete Fibonacci num-

bers Fn(s) and the incomplete Lucas numbers Ln(s). They are defined by

Fn(s) =
s∑

j=0

(
n− 1− j

j

) (
n = 1, 2, 3, . . . ; 0 ≤ s ≤

⌊
n− 1

2

⌋)
,

and

Ln(s) =
s∑

j=0

n

n− j

(
n− j
j

) (
n = 1, 2, 3, . . . ; 0 ≤ s ≤

⌊n
2

⌋)
.

Further in [11], generating functions of the incomplete Fibonacci and Lucas num-
bers are determined. In [2] Djordević gave the incomplete generalized Fibonacci
and Lucas numbers. In [3] Djordević and Srivastava defined incomplete gener-
alized Jacobsthal and Jacobsthal-Lucas numbers. In [15] the authors define the
incomplete Fibonacci and Lucas p-numbers. Also the authors define the incom-
plete bivariate Fibonacci and Lucas p-polynomials in [16]. In [13] we introduce
the incomplete k-Fibonacci and k-Lucas numbers and in [12] we study incomplete
h(x)−Fibonacci and h(x)−Lucas polynomials.

On the other hand, many kinds of generalizations of Fibonacci numbers have
been presented in the literature. In particular, a generalization is the bi-periodic
Fibonacci sequence [4]. For any two nonzero real numbers a and b, the bi-periodic
Fibonacci sequence, say {qn}∞n=0, is determined by:

q0 = 0, q1 = 1, qn =

{
aqn−1 + qn−2, if n ≡ 0 (mod 2);

bqn−1 + qn−2, if n ≡ 1 (mod 2);
n > 2. (1.2)

These numbers have been studied in several papers; see [1, 4, 5, 8, 9, 17]. In [17],
the explicit formula to bi-periodic Fibonacci numbers is

qn = aξ(n−1)
bn−1

2 c∑

i=0

(
n− i− 1

i

)
(ab)bn−1

2 c−i, (1.3)

where ξ(n) = n− 2bn2 c, i.e., ξ(n) = 0 when n is even and ξ(n) = 1 when n is odd.
From equation (1.3) we introduce the bi-periodic incomplete Fibonacci numbers
and we obtain new recurrent relations, new identities and generating functions.

2. Bi-Periodic Incomplete Fibonacci Sequence

Definition 2.1. For n > 1, the bi-periodic incomplete Fibonacci numbers are
defined as

qn(l) = aξ(n−1)
l∑

i=0

(
n− i− 1

i

)
(ab)b

n−1
2 c−i, 0 ≤ l ≤

⌊
n− 1

2

⌋
. (2.1)
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For a = b, qn(l) = F lk,n, we get incomplete k-Fibonacci numbers [13]. If a =
b = 1, we obtained incomplete Fibonacci numbers [6]. In Table 1, some values of
bi-periodic incomplete k-Fibonacci numbers are provided, with a = 3 and b = 2.

n/l 0 1 2 3 4 5 6
1 1
2 3
3 6 7
4 18 24
5 36 54 55
6 108 180 189
7 216 396 432 433
8 648 1296 1476 1488
9 1296 2808 3348 3408 3409
10 3888 9072 11340 11700 11715
11 7776 19440 25488 26748 26838 26839
12 23328 62208 85536 91584 92214 92232
13 46656 132192 190512 208656 211176 211302 211303
14 139968 419904 633744 711504 725112 726120 726141
15 279936 886464 1399680 1613520 1658880 1663416 1663584
16 839808 2799360 4618944 5474304 5688144 5715360 5716872

Table 1: Numbers qn(l), for 1 6 n 6 16, and a = 3, b = 2

Some special cases of (2.1) are

qn(0) = aξ(n−1)(ab)b
n−1
2 c; (n ≥ 1) (2.2)

qn(1) = aξ(n−1)(ab)b
n−1
2 c + aξ(n−1)(n− 2)(ab)b

n−1
2 c−1; (n ≥ 3) (2.3)

qn

(⌊
n− 1

2

⌋)
= qn; (n ≥ 1) (2.4)

qn

(⌊
n− 3

2

⌋)
=

{
qn − na

2 , if n ≡ 0 (mod 2);

qn − 1, if n ≡ 1 (mod 2);
n ≥ 3. (2.5)

2.1. Some recurrence properties of the numbers qn(l)

Proposition 2.2. The non-linear recurrence relation of the bi-periodic incomplete
Fibonacci numbers qn(l) is

qn+2(l + 1) =

{
aqn+1(l + 1) + qn(l), if n ≡ 0 (mod 2);

aqn+1(l + 1) + qn(l), if n ≡ 1 (mod 2);
0 ≤ l ≤ n− 2

2
. (2.6)

The relation (2.6) can be transformed into the non-homogeneous recurrence relation

qn+2(l) =

{
aqn+1(l) + qn(l)− a

(
n−l−1

l

)
(ab)b

n−1
2 c−l, if n ≡ 0 (mod 2);

bqn+1(l) + qn(l)−
(
n−l−1

l

)
(ab)b

n−1
2 c−l, if n ≡ 1 (mod 2).

(2.7)
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Proof. If n is even, then bn2 c = bn−12 c + 1. Use the Definition 2.1 to rewrite the
right-hand side of (2.6) as

a

(
aξ(n)

l+1∑

i=0

(
n− i
i

)
(ab)b

n
2 c−i

)
+ aξ(n−1)

l∑

i=0

(
n− i− 1

i

)
(ab)b

n−1
2 c−i

= aξ(n+1)
l+1∑

i=0

(
n− i
i

)
(ab)b

n
2 c−i + aξ(n+1)

l+1∑

i=1

(
n− i
i− 1

)
(ab)b

n−1
2 c−(i−1)

= aξ(n+1)

(
l+1∑

i=0

[(
n− i
i

)
+

(
n− i
i− 1

)]
(ab)b

n
2 c−i

)
− aξ(n+1)

(
n

−1

)
(ab)b

n+1
2 c

= aξ(n+1)
l+1∑

i=0

(
n− i+ 1

i

)
(ab)b

n−1
2 c−i − 0

= qn+2(l + 1).

If n is odd, the proof is analogous. On the other hand, equation (2.7) is clear from
(2.6). In fact, if n is even

qn+2(l) = aqn+1(l) + qn(l − 1) = aqn+1(l) + qn(l) + (qn(l − 1)− qn(l))

= aqn+1(l) + qn(l)− a
(
n− l − 1

l

)
(ab)b

n−1
2 c−l.

If n is odd, the proof is analogous.

Proposition 2.3. One has

s∑

i=0

(
s

i

)
qn+i(l + i)ab

i+ξ(n+1)
2 cbb

i+ξ(n)
2 c = qn+2s(l + s), 0 ≤ l ≤ n− s− 1

2
. (2.8)

Proof. (By induction on s.) The sum (2.8) clearly holds for s = 0 and s = 1 (see
(2.6)). Now suppose that the result is true for all j < s+ 1, we prove it for s+ 1.
If n is even, then

s+1∑

i=0

(
s+ 1

i

)
qn+i(l + i)ab

i+1
2 cbb

i
2 c

=
s+1∑

i=0

[(
s

i

)
+

(
s

i− 1

)]
qn+i(l + i)ab

i+1
2 cbb

i
2 c

=
s+1∑

i=0

(
s

i

)
qn+i(l + i)ab

i+1
2 cbb

i
2 c +

s+1∑

i=0

(
s

i− 1

)
qn+i(l + i)ab

i+1
2 cbb

i
2 c

= qn+2s(l + s) +

(
s

s+ 1

)
qn+s+1(l + s+ 1)ab

s+2
2 cbb

s+1
2 c
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+
s∑

i=−1

(
s

i

)
qn+i+1(l + i+ 1)ab

i+2
2 cbb

i+1
2 c

= qn+2s(l + s) + 0 + a

s∑

i=0

(
s

i

)
qn+i+1(l + i+ 1)ab

i
2 cbb

i+1
2 c +

(
s

−1

)
qn(l)a

b 12 cb0

= qn+2s(l + s) + a

s∑

i=0

(
s

i

)
qn+i+1(l + i+ 1)ab

i
2 cbb

i+1
2 c + 0

= qn+2s(l + s) + aqn+2s+1(l + s+ 1)

= qn+2s+2(l + s+ 1).

If n is odd, the proof is analogous.

Proposition 2.4. For n ≥ 2l + 2,

s−1∑

i=0

ab
s−ξ(n+1)

2 c−b i+ξ(n)
2 cbb

s−ξ(n)
2 c−b i+ξ(n+1)

2 cqn+i(l)

= qn+s+1(l + 1)− ab s+ξ(n+1)
2 cbb

s+ξ(n)
2 cqn+1(l + 1). (2.9)

Proof. (By induction on s.) Sum (2.9) clearly holds for s = 1 (see (2.6)). Now
suppose that the result is true for all i < s. We prove it for s. If n is even, then

s∑

i=0

ab
s
2 c−b i2 cbb

s+1
2 c−b

i+1
2 cqn+i(l)

=
s−1∑

i=0

ab
s
2 c−b i2 cbb

s+1
2 c−b

i+1
2 cqn+i(l) + qn+s(l)

= aξ(s+1)bξ(s)
s−1∑

i=0

ab
s−1
2 c−b i2 cbb

s
2 c−b

i+1
2 cqn+i(l) + qn+s(l)

= aξ(s+1)bξ(s)
(
qn+s+1(l + 1)− ab s+1

2 cbb
s
2 cqn+1(l + 1)

)
+ qn+s(l)

=
(
aξ(s+1)bξ(s)qn+s+1(l + 1) + qn+s(l)

)
− aξ(s+1)+b s+1

2 cbξ(s)+b
s
2 cqn+1(l + 1)

=
(
aξ(s+1)bξ(s)qn+s+1(l + 1) + qn+s(l)

)
− ab s+2

2 cbb
s+1
2 cqn+1(l + 1)

= qn+s+2(l + 1)− ab s+2
2 cbb

s+1
2 cqn+1(l + 1).

If n is odd, the proof is analogous.

Following proposition shows the sum of the nth row of the array in Table 1.

Proposition 2.5. One has

bn−1
2 c∑

l=0

qn(l) = (l + 1)qn(l)− aξ(n−1)
bn−1

2 c∑

i=0

i

(
n− i− 1

i

)
(ab)b

n−1
2 c−i. (2.10)
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Proof. Let h =
⌊
n−1
2

⌋
, then

h∑

l=0

qn(l) = qn(0) + qn(1) + · · ·+ qn(h)

= aξ(n−1)
(
n− 1− 0

0

)
(ab)h

+ aξ(n−1)
[(
n− 1− 0

0

)
(ab)h +

(
n− 1− 1

1

)
(ab)h−1

]
+ · · ·

+ aξ(n−1)
[(
n− 1− 0

0

)
(ab)h + · · ·+

(
n− 1− h

h

)
(ab)h−h

]

= aξ(n−1)
[
(h+ 1)

(
n− 1− 0

0

)
(ab)h + h

(
n− 1− 1

1

)
(ab)h−1+

· · ·+
(
n− 1− h

h

)
(ab)h−h

]

= aξ(n−1)
bn−1

2 c∑

i=0

(h+ 1− i)
(
n− 1− i

i

)
(ab)h−i

= aξ(n−1)(h+ 1)

bn−1
2 c∑

i=0

(
n− 1− i

i

)
(ab)h−i

− aξ(n−1)
bn−1

2 c∑

i=0

i

(
n− 1− i

i

)
(ab)h−i

= (h+ 1) qn(l)− aξ(n−1)
bn−1

2 c∑

i=0

i

(
n− 1− i

i

)
(ab)h−i.

3. Generating function of the bi-periodic incomplete
Fibonacci numbers

In this section, we give the generating functions of bi-periodic incomplete Fibonacci
numbers.

Lemma 3.1. Let {sn}∞n=0 be a complex sequence satisfying the following non-
homogeneous and non-linear recurrence relation:

sn =

{
asn−1 + sn−2 + arn, if n ≡ 1 (mod 2);

bsn−1 + sn−2 + sn−1, if n ≡ 0 (mod 2);
(n > 1), (3.1)

where a and b are complex numbers and {rn}∞n=0 is a given complex sequence. Then
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the generating function U(t) of the sequence {sn}∞n=0 is

U(t) =
aG(t) + s0 − r0 + (s1 − as0 − ar1)t+ (b− a)tf(t) + (1− a)R(t)

1− at− t2 , (3.2)

where G(t) denotes the generating function of {rn}∞n=0, f(t) denotes the generat-
ing function of {s2n+1}∞n=0 and R(t) denotes the generating function of {r2n}∞n=0.
Moreover,

f(t) =
atR(t) + a(1− t2)R′(t) + (s1 − a(r1 + r0))t+ (a(s0 + r1)− s1)t3

1− (ab+ 2)t2 + t4
, (3.3)

where R′(t) denotes the generating function of {r2n−1}∞n=1.

Proof. We begin with the formal power series representation of the generating
function for {sn}∞n=0 and {rn}∞n=0,

U(t) = s0 + s1t+ s2t
2 + · · ·+ skt

k + · · · ,
G(t) = r0 + r1t+ r2t

2 + · · ·+ rkt
k + · · · .

Note that,

atU(t) = as0t+ as1t
2 + as2t

3 + · · ·+ askt
k+1 + · · · ,

t2U(t) = s0t
2 + s1t

3 + s2t
4 + · · ·+ skt

k+1 + · · · ,

and,

aG(t) = ar0 + ar1t+ ar2t
2 + · · ·+ arkt

k + · · · .

Since s2k+1 = as2k + s2k−1 + ar2k+1, we get

(1− at− t2)U(t)− aG(t)

= (s0 − ar0) + (s1 − a(s0 + r1))t+
∞∑

m=1

(s2m − as2m−1 − s2m−2 − ar2m) t2m.

Since s2k = bs2k−1 + s2k−2 + r2k, we get

(1− at− t2)U(t)− aG(t)

= (s0 − ar0) + (s1 − a(s0 + r1))t+

∞∑

m=1

((b− a)s2m−1 + (1− a)r2m) t2m

= (s0 − ar0) + (s1 − a(s0 + r1))t+ (b− a)t
∞∑

m=1

s2m−1t
2m−1 + (1− a)

∞∑

m=1

r2mt
2m

= (s0 − ar0) + (s1 − a(s0 + r1))t+ (b− a)tf(t) + (1− a)R(t)− (1− a)r0
= (s0 − r0) + (s1 − a(s0 + r1))t+ (b− a)tf(t) + (1− a)R(t).
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Then equation (3.2) is clear.
On the other hand,

s2m−1 = as2m−2 + s2m−3 + ar2m−1
= a(bs2m−3 + s2m−4 + r2m−2) + s2m−3 + ar2m−1
= (ab+ 1)s2m−3 + as2m−4 + a(r2m−2 + r2m−1)

= (ab+ 1)s2m−3 + s2m−3 − s2m−5 − ar2m−3 + a(r2m−2 + r2m−1)

= (ab+ 2)s2m−3 − s2m−5 + a(−r2m−3 + r2m−2 + r2m−1).

Then

(1− (ab+ 2)t2 + t4)f(t)− atR(t) + a(t2 − 1)R′(t)

= (s1 − a(r0 + r1))t+ (s3 − (ab+ 2)s1 − ar2 + a(r1 − r3))t3

+
∞∑

m=3

(s2m−1 − (ab+ 2)s2m−3 + s2m−5 − ar2m−2

+ a(r2m−3 − r2m−1))t2m−1

= (s1 − a(r0 + r1))t+ (s3 − (ab+ 2)s1 − ar2 + a(r1 − r3))t3

= (s1 − a(r0 + r1))t+ (a(s0 + r1)− s1)t3.

Therefore equation (3.3) is obtained.

Theorem 3.2. The generating function of the bi-periodic incomplete Fibonacci
numbers qn(l) is given by

Ql(t) =

∞∑

i=0

qi(l)t
i (3.4)

=
aG(t) + q2l+1 + (q2l+2 − aq2l+1)t+ (b− a)tf(t) + (1− a)R(t)

1− at− t2 , (3.5)

where

G(t) = −1

2

(
t2

(1−(ab)1/2t)l+1
(1+(ab)−1/2)+

t2

(1+(ab)1/2t)l+1
(1−(ab)−1/2)

)
, (3.6)

f(t) =
q2l+2t+ (aq2l+1 − q2l+2)t

3 + atR(t) + a(1− t2)R′(t)
1− (ab+ 2)t2 + t4

(3.7)

and

R(t) = −1

2

(
t2

(1− (ab)1/2t)l+1
+

t2

(1 + (ab)1/2t)l+1

)
, (3.8)

R′(t) = − 1

2(ab)1/2

(
t2

(1− (ab)1/2t)l+1
− t2

(1 + (ab)1/2t)l+1

)
. (3.9)
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Proof. Let l be a fixed positive integer. From (2.1) and (2.7), qn(l) = 0 for 0 ≤
n < 2l + 1, q2l+1(l) = q2l+1, and q2l+2(l) = q2l+2, and

qn(l) =

{
aqn−1(l) + qn−2(l)− a

(
n−l−3

l

)
(ab)b

n−3
2 c−l, if n ≡ 0 (mod 2);

bqn−1(l) + qn−2(l)−
(
n−l−3

l

)
(ab)b

n−3
2 c−l, if n ≡ 1 (mod 2).

(3.10)

Now let

s0 = q2l+1(l) = q2l+1, s1 = q2l+2(l) = q2l+1, and

sn = qn+2l+1(l).

Also let

r0 = r1 = 0 and rn =

(
n+ l − 2

n− 2

)
(ab)b

n
2 c−1.

The generating function of the sequence {−rn} is

G(t) = −1

2

(
t2

(1− (ab)1/2t)l+1
(1 + (ab)−1/2) +

t2

(1 + (ab)1/2t)l+1
(1− (ab)−1/2)

)

See [14, p. 355] and bisection generating functions [7]. Thus, from Lemma 3.1, we
get the generating function Ql(t) of sequence {qn(l)}∞n=0.

4. Conclusion

In this paper, we introduce the notion of bi-periodic incomplete Fibonacci numbers,
and we obtain new identities. An open question is to evaluate the right sum in
Proposition 2.5. On the other hand, in [9], authors introduced the bi-periodic
Lucas numbers. They are defined by the recurrence relation

p0 = 2, p1 = 1, pn =

{
apn−1 + pn−2, if n ≡ 0 (mod 2);

bpn−1 + pn−2, if n ≡ 1 (mod 2);
n > 2. (4.1)

It would be interesting to study the bi-periodic incomplete Lucas numbers and
research their properties.

Acknowledgements. The author thanks the anonymous referee for his careful
reading of the manuscript and his fruitful comments and suggestions.
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Abstract
We consider two general classes of second-order linear recurrent sequences

and the polynomials whose coefficients belong to a sequence in either of these
classes. We show for each such sequence {ai}i≥0 that the polynomial f(x) =∑n

i=0 aix
i always has the smallest possible number of real zeros, that is,

none when the degree is even and one when the degree is odd. Among the
sequences then for which this is true are the Motzkin, Riordan, Schröder, and
Delannoy numbers.

Keywords: zeros of polynomials, Motzkin number, Schröder number

MSC: 11C08, 13B25

1. Introduction

Garth, Mills, and Mitchell [3] considered the Fibonacci coefficient polynomial
pn(x) = F1x

n + F2x
n−1 + · · · + Fnx + Fn+1 and showed that it has no real ze-

ros if n is even and exactly one real zero if n is odd. Later, Mátyás [5, 6] ex-
tended this result to polynomials whose coefficients are given by more general
second order recurrences (having constant coefficients), and Mátyás and Szalay
[7] showed the same holds true for the Tribonacci coefficient polynomials qn(x) =
T2x

n + T3x
n−1 + · · · + Tn+1x + Tn+2. The latter result has been extended to

k-Fibonacci polynomials by Mansour and Shattuck [4].
In the apparent absence of a general criterion for determining when a polyno-

mial having real coefficients has the smallest possible number of real zeros, one
might wonder as to what other sequences ai for which this result holds true for
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the polynomial f(x) =
∑n

i=0 aix
i. Here, we consider this question for sequences

belonging to two general classes and show that it holds in all cases. Among the
sequences belonging to these classes are the Motzkin [9], Riordan [1], Schröder [2],
and Delannoy [10].

We note that the sequences under consideration in the current paper are all
given by second order linear recurrences, but with variable instead of constant
coefficients. Thus, instead of multiplying f(x) by a characteristic polynomial to
obtain another polynomial whose coefficients are mostly zero (as was done in [3] and
in subsequent papers in the case when ai = Fi for all i), we first apply a different
linear operator to f , namely, one that is of a first-order differential nature. This
yields a differential equation for f which can then be used to express it in an
integral form that we find more convenient.

Recall that the Motzkin numbers mn and the Riordan numbers rn are given by

(n+ 2)mn = (2n+ 1)mn−1 + 3(n− 1)mn−2, n ≥ 2,

with m0 = m1 = 1, and by

(n+ 1)rn = (n− 1)(2rn−1 + 3rn−2), n ≥ 2,

with r0 = 1 and r1 = 0. See entries A001006 and A005043 in OEIS [8].
Recall that the (little) Schröder numbers sn and the (central) Delannoy numbers

dn are given by

(n+ 1)sn = 3(2n− 1)sn−1 − (n− 2)sn−2, n ≥ 2,

with s0 = s1 = 1, and by

ndn = 3(2n− 1)dn−1 − (n− 1)dn−2, n ≥ 2,

with d0 = 1 and d1 = 3. See entries A001003 and A001850 in [8].
We will prove the following result in the next two sections.

Theorem 1.1. If ai denotes any one of the sequences mi, ri, si, or di, then the
polynomial f(x) =

∑n
i=0 aix

i, n ≥ 2, has no real zeros if n is even and one real
zero if n is odd.

The first two parts of Theorem 1.1 are shown in the next section as special cases of
a more general result, while the last two parts are shown in a comparable manner
in the third section.

2. Motzkin family polynomials

Let un, n ≥ 0, denote the sequence defined by the recurrence

(n+ a)un = (2(n− 1) + b)un−1 + 3(n− 1)un−2, n ≥ 2, (2.1)
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with the initial values u0 = 1 and u1 = c, where a, b, and c are constants. Note
that un reduces to the Motzkin sequence when a = 2, b = 3, c = 1 and to the
Riordan sequence when a = 1, b = c = 0. Let

fn(x) =
n∑

i=0

uix
i, n ≥ 0.

We will need the following integral representation of fn(x).

Lemma 2.1. If −1 < x < 0, then

fn(x) = j(x)−1




x∫

xo

j(t)hn(t)

t(1 + t)(1− 3t)
dt+ j(xo)fn(xo)


 , (2.2)

where −1 < xo < 0 is any fixed number,

j(x) = |x|a(1 + x)
3−a−b

4 (1− 3x)
1−3a+b

4 ,

and

hn(x) = a+ ((1 + a)c− b)x− (n+ a+ 1)un+1x
n+1 − (3n+ 3)unx

n+2.

Proof. Let f = fn(x). By the recurrence (2.1), we have

xf ′ + af − 2x2f ′ − bxf − 3x3f ′ − 3x2f

=

n∑

i=1

iuix
i + a

n∑

i=0

uix
i − 2

n+1∑

i=2

(i− 1)ui−1x
i − b

n+1∑

i=1

ui−1x
i

− 3

n+2∑

i=3

(i− 2)ui−2x
i − 3

n+2∑

i=2

ui−2x
i

= a+ ((1 + a)c− b)x− ((2n+ b)un + 3nun−1)x
n+1 − (3n+ 3)unx

n+2

+
n∑

i=2

[(i+ a)ui − (2(i− 1) + b)ui−1 − 3(i− 1)ui−2]x
i

= a+ ((1 + a)c− b)x− (n+ 1 + a)un+1x
n+1 − (3n+ 3)unx

n+2,

where the prime denotes differentiation. The final equality may be rewritten in the
form

f ′n(x) +
a− bx− 3x2

x(1 + x)(1− 3x)
fn(x) =

hn(x)

x(1 + x)(1− 3x)
, (2.3)

where hn(x) is as given. Note that, by partial fractions, we have

a− bx− 3x2

x(1 + x)(1− 3x)
=
a

x
+

3− a− b
4(1 + x)

− 3− 9a+ 3b

4(1− 3x)
,
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which gives the antiderivative
∫

a− bx− 3x2

x(1 + x)(1− 3x)
dx = log

(
|x|a|1 + x| 3−a−b

4 |1− 3x| 1−3a+b
4

)
.

Formula (2.2) now follows from solving the first order linear differential equation
(2.3) on the open interval (−1, 0) by the usual method.

In the next two lemmas, we assume that the constants a, b, and c used in
defining un are non-negative real numbers such that a ≤ b+ 1 and c ≤ b

a+1 .

Lemma 2.2. If n ≥ 2 is even, then the polynomial fn(x) =
∑n

i=0 uix
i has no

zeros on the interval (−∞,−1].

Proof. First note that f2(−1) > 0 if and only if a + 5 > (a − b)c. The latter
inequality clearly holds if a− b ≤ 0. It also holds if a− b > 0, since in this case we
have

(a− b)c ≤ (a− b)b
a+ 1

≤ a2

4(a+ 1)
< a+ 5.

Let kn(x) = fn(−x). Observe that

k2(x) = 1− u1x+ u2x
2 > 0, x ≥ 1,

since k2(1) > 0 and

k′2(x) = 2u2x− u1 ≥ 2u2 − u1 =
(2b− a+ 2)c+ 6

a+ 2
≥ (b+ 1)c+ 6

a+ 2
> 0.

Using recurrence (2.1) and the assumption a−b ≤ 1, one can show by induction
that un > un−1 if n ≥ 4. If x ≥ 1, then

kn(x) = (1− u1x+ u2x
2) +

n
2∑

i=2

(u2ix
2i − u2i−1x2i−1)

≥ (1− u1x+ u2x
2) +

n
2∑

i=2

(u2i − u2i−1)x2i−1 > 0,

being the sum of positive terms, whence fn(x) > 0 for x ≤ −1.

Lemma 2.3. If n ≥ 3 is odd and fn(−1) ≥ 0, then fn(x) has exactly one negative
zero.

Proof. Let kn(x) = fn(−x), x > 0. Note that as in the previous proof, we have
un ≥ un−1 if n ≥ 3, with equality possible only when n = 3. Therefore, if 0 < x < 1,
we have

u2i+1x
2i+1 − u2ix2i = u2i+1x

2i(x− 1) + x2i(u2i+1 − u2i) < u2i+1 − u2i, i ≥ 1,
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which implies for n ≥ 3 odd that

kn(x) = (u0 − u1x+ u2x
2 − u3x3) +

n−1
2∑

i=2

(u2ix
2i − u2i+1x

2i+1)

> (u0 − u1 + u2 − u3) +
n−1
2∑

i=2

(u2i − u2i+1) = kn(1) ≥ 0.

Thus, kn(x) > 0 if 0 < x < 1.
If x ≥ 1, then

k′n(x) = −u1 +
n−1
2∑

i=1

(2iu2ix
2i−1 − (2i+ 1)u2i+1x

2i) < 0,

since 2iu2i < (2i + 1)u2i+1 for i ≥ 1. Then kn(x) has one zero for x ≥ 1 since
kn(1) ≥ 0 and k′n(x) < 0, which implies fn(x) has one negative real zero.

We now prove the main result of this section.

Theorem 2.4. Suppose a, b, and c are non-negative real numbers such that a ≤
b + 1 and c ≤ b

a+1 . If n ≥ 2, then the polynomial fn(x) =
∑n

i=0 uix
i has no real

zeros if n is even and one real zero if n is odd.

Proof. Clearly, fn(x) has no positive zeros since it has non-negative coefficients.
First suppose n is even. By Lemma 2.2, we may restrict our attention to the case
−1 < x < 0. By Lemma 2.1, we have

fn(x) = j(x)−1αn(x), −1 < x < 0, (2.4)

where

αn(x) =

x∫

xo

j(t)hn(t)

t(1 + t)(1− 3t)
dt+ j(xo)fn(xo), −1 < x < 0,

xo ∈ (−1, 0) is fixed, and j(x), hn(x) are as above. By (2.4), to complete the proof
in the even case, it suffices to show that αn(x) > 0 for −1 < x < 0 as j(x) > 0 on
this interval. Since αn(x) = j(x)fn(x), with fn(0), fn(−1) > 0, we first see that
αn(x) > 0 for all x sufficiently close to either −1 or 0.

When n is even, note that the polynomial hn(x) has one negative zero, by
Descartes’ rule of signs and the assumption c ≤ b

a+1 . Since hn(0) ≥ 0, we must
have either (i) hn(x) > 0 if −1 < x < 0, or (ii) hn(x) > 0 if r < x < 0 and
hn(x) < 0 if −1 < x < r, for some r ∈ (−1, 0). Note that

α′n(x) =
j(x)hn(x)

x(1 + x)(1− 3x)
, −1 < x < 0.
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If (i) occurs, then α′n(x) < 0, which implies αn(x) > 0 for −1 < x < 0, since it is
positive for all x sufficiently close to either endpoint of this interval. If (ii) occurs,
then α′n(x) > 0 for −1 < x < r and α′n(x) < 0 for r < x < 0, which again implies
αn(x) > 0 for −1 < x < 0, since in this case the minimum value of αn(x) on the
interval is achieved as x approaches one of the endpoints.

Now suppose n is odd. We’ll show in this case that fn(x) possesses exactly one
negative zero. By Lemma 2.3, we may assume fn(−1) < 0. Note that fn(−1) < 0
implies fn(x) < 0 for all x ≤ −1 since f ′n(x) > 0 if x ≤ −1 and n is odd. Thus, we
may again restrict attention to when −1 < x < 0, and we’ll show in this case that
αn(x), and thus fn(x), possesses exactly one zero. Note first that αn(x) is positive
for all x near zero and negative for all x near −1 since fn(0) > 0 and fn(−1) < 0.

We claim that hn(x) must possess at least one zero on the interval (−1, 0) when
a > 0. Suppose that this is not the case. By Descartes’ rule and the assumption
c ≤ b

a+1 , the polynomial hn(x) when n is odd has either two negative zeros or
none at all. Then hn(0) ≥ 0 and limx→−∞ hn(x) = ∞ would imply hn(x) > 0
if −1 < x < 0 and thus α′n(x) < 0. But this would contradict the fact that
αn(x) is negative for x near −1 and positive for x near 0. Thus, hn(x) possesses
two negative zeros and at least one of these zeros lies in the interval (−1, 0) when
a > 0. Therefore, we must have either (a) hn(x) > 0 if r < x < 0 and hn(x) < 0 if
−1 < x < r for some −1 < r < 0, or (b) hn(x) > 0 if −1 < x < r or s < x < 0,
with hn(x) < 0 if r < x < s for some −1 < r < s < 0.

If (a) occurs, then αn(x) initially increases going to the right from x = −1 and
crosses the x-axis before it decreases in its approach to x = 0 from the left. If (b)
occurs, then αn(x) traces out a similar curve in going from x = −1 to x = 0 except
that it initially decreases some from its negative value near x = −1 before it starts
to increase. In each case, we see that αn(x), and thus fn(x), possesses exactly one
zero for −1 < x < 0 when a > 0.

If a = 0, then a similar argument applies if c < b. If a = 0 and c = b, then hn(x)
possesses exactly one negative zero, which we will denote by t. Note that hn(x) < 0
if t < x < 0 and hn(x) > 0 if x < t since hn(0) = 0 and limx→−∞ hn(x) = ∞. If
t ≤ −1, then hn(x) < 0 on (−1, 0) and thus αn(x) is increasing on (−1, 0), which
implies it has a single zero there. If −1 < t < 0, then αn(x) is decreasing on (−1, t)
and increasing on (t, 0), which yields the same conclusion. This completes the odd
case and the proof.

Taking a = 2, b = 3, c = 1 and a = 1, b = c = 0 in the prior theorem gives
the first two parts of Theorem 1.1 above concerning the Motzkin and the Riordan
sequences.

3. Schröder family polynomials

Let vn, n ≥ 0, denote the sequence defined by the recurrence

(n+ a)vn = 3(2n− 1)vn−1 − (n− 2 + b)vn−2, n ≥ 2, (3.1)
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with the initial values v0 = 1 and v1 = c, where a, b, and c are constants. Note
that vn reduces to the (little) Schröder sequence when a = 1, b = 0, c = 1 and to
the (central) Delannoy sequence when a = 0, b = 1, c = 3. Let

gn(x) =

n∑

i=0

vix
i, n ≥ 0.

We will need the following integral representation of gn(x).

Lemma 3.1. If x < 0, then

gn(x) = j(x)−1




x∫

xo

j(t)hn(t)

t(1− 6t+ t2)
dt+ j(xo)gn(xo)


 , (3.2)

where xo < 0 is any fixed number,

j(x) = |x|a(1− 6x+ x2)
b−a
2

(
x− 3− 2

√
2

x− 3 + 2
√
2

) 3(a+b−1)

4
√

2

,

and

hn(x) = a+ ((1 + a)c− 3)x− (n+ a+ 1)vn+1x
n+1 + (n+ b)vnx

n+2.

Proof. Let g = gn(x). By (3.1), we have

xg′ + ag − 6x2g′ − 3xg + x3g′ + bx2g

= a+ ((1 + a)c− 3)x− (3(2n+ 1)vn − (n− 1 + b)vn−1)x
n+1 + (n+ b)vnx

n+2

+
n∑

i=2

[(i+ a)vi − 3(2i− 1)vi−1 + (i− 2 + b)vi−2]x
i

= a+ ((1 + a)c− 3)x− (n+ 1 + a)vn+1x
n+1 + (n+ b)vnx

n+2.

This may be rewritten in the form

g′n(x) +
a− 3x+ bx2

x(1− 6x+ x2)
gn(x) =

hn(x)

x(1− 6x+ x2)
, x < 0, (3.3)

where hn(x) is as given. Note that, by partial fractions, we have

a− 3x+ bx2

x(1− 6x+ x2)
=
a

x
+

(b− a)(x− 3)

1− 6x+ x2

+
3(a+ b− 1)

4
√
2

(
1

x− 3− 2
√
2
− 1

x− 3 + 2
√
2

)
,
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which gives the antiderivative

∫
a− 3x+ bx2

x(1− 6x+ x2)
dx = log


|x|a|1− 6x+ x2| b−a

2

∣∣∣∣∣
x− 3− 2

√
2

x− 3 + 2
√
2

∣∣∣∣∣

3(a+b−1)

4
√

2


 .

Formula (3.2) now follows from solving (3.3) for x < 0 by the usual method.

Theorem 3.2. Suppose a, b, and c satisfy 0 ≤ a ≤ 2, 0 ≤ b ≤ 7 − a, and
1 ≤ c ≤ 3

a+1 . If n ≥ 2, then the polynomial gn(x) =
∑n

i=0 vix
i has no real zeros if

n is even and one real zero if n is odd.

Proof. Using (3.1) and the assumptions c ≥ 1 and a + b ≤ 7, one can show by
induction that vn ≥ vn−1 for all n ≥ 1, with equality possible only when n = 1 or
n = 2. Then gn(x) clearly has no positive zeros since it has positive coefficients.

Suppose n is even. If x ≤ −1, then

gn(x) = 1 +

n
2∑

i=1

x2i−1(v2i−1 + v2ix) > 0,

so we may restrict attention to the case −1 < x < 0. By Lemma 3.1, we have

gn(x) = j(x)−1βn(x), x < 0, (3.4)

where

βn(x) =

x∫

xo

j(t)hn(t)

t(1− 6t+ t2)
dt+ j(xo)gn(xo), x < 0,

xo is a fixed negative number, and j(x), hn(x) are as stated in this lemma.
Since j(x) > 0 for x < 0, to complete the proof in the even case, it suffices

to show that βn(x) > 0 for x < 0, by (3.4). Since βn(x) = j(x)gn(x), with
gn(0), gn(−1) > 0, we see that βn(x) > 0 for x = −1 and all x sufficiently close to
0. Next observe that

β′n(x) =
j(x)hn(x)

x(1− 6x+ x2)
, x < 0,

and that hn(x) > 0 if x < 0 for n even, by the assumption c ≤ 3
a+1 . Thus

β′n(x) < 0, which implies βn(x) > 0 for −1 < x < 0, since it is positive at x = −1
and for all x near 0. This completes the even case.

Now suppose n is odd. We’ll show in this case that gn(x) possesses exactly one
negative zero. Note first that gn(−1) < 0, which implies gn(x) < 0 for all x ≤ −1
since g′n(x) > 0 if x ≤ −1 and n is odd. To complete the proof, we will show that
βn(x), and thus gn(x), possesses exactly one zero on the interval (−1, 0). Observe
that βn(x) is positive for all x sufficiently close to zero and that βn(−1) < 0 since
gn(0) > 0 and gn(−1) < 0.
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By Descartes’ rule, the polynomial hn(x) has one negative zero when n is odd
and a > 0. Reasoning as in the proof of Theorem 2.4 above then shows that this
zero must belong to the interval (−1, 0). Since hn(0) > 0, it must be the case that
hn(x) > 0 if r < x < 0 and hn(x) < 0 if −1 < x < r for some −1 < r < 0.
Reasoning now as in the proof of Theorem 2.4 shows that βn(x), and thus gn(x),
possesses exactly one zero on the interval (−1, 0) when a > 0. A similar argument
applies to the case when a = 0 and c < 3. If a = 0 and c = 3, then hn(x) < 0 if
x < 0, which implies βn(x) is increasing on (−1, 0) and thus has one zero there.
This completes the odd case and the proof.

Taking a = 1, b = 0, c = 1 and a = 0, b = 1, c = 3 in the prior theorem gives
the last two parts of Theorem 1.1 above concerning the Schröder and Delannoy
sequences.
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Abstract

As an application of Faulhaber’s theorem on sums of powers of integers
and the associated Faulhaber polynomials, in this article we provide the solu-
tion to the following two questions: (1) when is the average of sums of powers
of integers itself a sum of the first n integers raised to a power? and (2), when
is the average of sums of powers of integers itself a sum of the first n integers
raised to a power, times the sum of the first n squares? In addition to this,
we derive a family of recursion formulae for the Bernoulli numbers.

Keywords: sums of powers of integers, Faulhaber polynomials, matrix inver-
sion, Bernoulli numbers

MSC: 11C08, 11B68

1. Introduction

Recently Pfaff [1] investigated the solutions of the equation

∑n
i=1 i

a +
∑n

i=1 i
b

2
=

(
n∑

i=1

i

)c

, (1.1)

for positive integers a, b, and c, and found that the only solution (a, b, c) to (1.1)
with a 6= b is (5, 7, 4) (the remaining solutions being the trivial one (1, 1, 1) and
the well-known solution (3, 3, 2)). Furthermore, Pfaff provided some necessary

Annales Mathematicae et Informaticae
42 (2013) pp. 105–117
http://ami.ektf.hu

105



conditions for
∑n

i=1 i
a1 +

∑n
i=1 i

a2 + · · ·+∑n
i=1 i

am−1

m− 1
=

(
n∑

i=1

i

)am

, (1.2)

to hold. Specifically, by assuming that a1 ≤ a2 ≤ · · · ≤ am−p−1 < am−p = · · · =
am−1 (with a1, a2, . . . , am positive integers), Pfaff showed that any solution to (1.2)
must fulfil the condition

p

m− 1
=

am
2am−1 . (1.3)

There are infinitely many solutions to (1.3). For example, for am = 8, the set of
solutions to (1.3) is given by (am, p,m − 1) = (8, p, 16p), with p ≥ 1. However,
as Pfaff himself pointed out [1], it is not known if any given solution to (1.3) also
yields a solution to (1.2), so that solving this problem for m > 3 will require some
other approach. In this article we show that, for any given value of am ≥ 1, there is
indeed a unique solution to equation (1.2), on the understanding that the fraction

p
m−1 is given in its lowest terms. Interestingly, this is done by exploiting the
properties of the coefficients of the so-called Faulhaber polynomials [2, 3, 4, 5, 6].
Although there exist more direct ways to arrive at the solution of equation (1.2)
(for example, by means of the binomial theorem or by mathematical induction),
our pedagogical approach here will serve to introduce the (relatively lesser known)
topic of the Faulhaber polynomials to a broad audience.

In addition to the equation (1.2) considered by Pfaff, we also give the solution
to the closely related equation

∑n
i=1 i

a1 +
∑n

i=1 i
a2 + · · ·+∑n

i=1 i
am−1

m− 1
=

(
n∑

i=1

i2

)(
n∑

i=1

i

)am

, (1.4)

where now am ≥ 0. Obviously, for am = 0, we have the trivial solution a1 = a2 =
· · · = am−1 = 2. In general, it turns out that all the powers a1, a2, . . . , am−1 on
the left-hand side of (1.4) must be even integers, whereas those appearing in the
left-hand side of (1.2) must be odd integers. This is a straightforward consequence
of the following theorem.

2. Faulhaber’s theorem on sums of powers of inte-
gers

Let us denote by Sr the sum of the first n positive integers each raised to the integer
power r ≥ 0, Sr =

∑n
i=1 i

r. The key ingredient in our discussion is an old result
concerning the Sr’s which can be traced back to Johann Faulhaber (1580–1635),
an early German algebraist who was a close friend of both Johannes Kepler and
René Descartes. Faulhaber discovered that, for even powers r = 2k (k ≥ 1), S2k

can be put in the form

S2k = S2

[
F

(2k)
0 + F

(2k)
1 S1 + F

(2k)
2 S2

1 + · · ·+ F
(2k)
k−1 S

k−1
1

]
, (2.1)
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whereas, for odd powers r = 2k + 1 (k ≥ 1), S2k+1 can be expressed as

S2k+1 = S2
1

[
F

(2k+1)
0 + F

(2k+1)
1 S1 + F

(2k+1)
2 S2

1 + · · ·+ F
(2k+1)
k−1 Sk−1

1

]
, (2.2)

where {F (2k)
j } and {F (2k+1)

j }, j = 0, 1, . . . , k− 1, are sets of numerical coefficients.
Equations (2.1) and (2.2) can be rewritten in compact form as

S2k = S2F
(2k)(S1), (2.3)

S2k+1 = S2
1F

(2k+1)(S1), (2.4)

where both F (2k)(S1) and F (2k+1)(S1) are polynomials in S1 of degree k−1. Follow-
ing Edwards [2] we refer to them as Faulhaber polynomials and, by extension, we
call F (2k)

j and F (2k+1)
j the Faulhaber coefficients. Next we quote the first instances

of S2k and S2k+1 in Faulhaber form as

S2 = S2,

S3 = S2
1 ,

S4 = S2

[
− 1

5 + 6
5S1

]
,

S5 = S2
1

[
− 1

3 + 4
3S1

]
,

S6 = S2

[
1
7 − 6

7S1 +
12
7 S

2
1

]
,

S7 = S2
1

[
1
3 − 4

3S1 + 2S2
1

]
,

S8 = S2

[
− 1

5 + 6
5S1 − 8

3S
2
1 + 8

3S
3
1

]
,

S9 = S2
1

[
− 3

5 + 12
5 S1 − 4S2

1 + 16
5 S

3
1

]
,

S10 = S2

[
5
11 − 30

11S1 +
68
11S

2
1 − 80

11S
3
1 + 48

11S
4
1

]
,

S11 = S2
1

[
5
3 − 20

3 S1 +
34
3 S

2
1 − 32

3 S
3
1 + 16

3 S
4
1

]
.

Note that, from the expressions for S5 and S7, we quickly get that S5+S7

2 = S4
1 .

Let us now write the equations (1.2) and (1.4) using the notation Sr for the
sums of powers of integers,

Sa1
+ Sa2

+ · · ·+ Sam−1

m− 1
= Sam

1 , (2.5)

and
Sa1

+ Sa2
+ · · ·+ Sam−1

m− 1
= S2S

am
1 . (2.6)

Since S1 = n(n+1)/2 and S2 = (2n+1)S1/3, from (2.1) and (2.2) we retrieve the
well-known result that Sr is a polynomial in n of degree r+ 1. From this result, it
in turn follows that the maximum index am−1 on the left-hand side of (2.5) is given
by am−1 = 2am − 1, a condition already established in [1]. In fact, in order for
equation (2.5) to hold, it is necessary that all the indices a1, a2, . . . , am−1 appearing
in the left-hand side of (2.5) be odd integers. To see this, suppose on the contrary
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that one of the indices is even, say aj . Then, from (2.3) and (2.4), the left-hand
side of (2.5) can be expressed as follows:

L(S1, S2) =
S2F

(aj)(S1) + S2
1P (S1)

m− 1
,

where F (aj)(S1) and P (S1) are polynomials in S1. On the other hand, for nonneg-
ative integers u and v, it is clear that S2S

u
1 6= Sv

1 irrespective of the values of u
and v, as S2S

u
1 (Sv

1 ) is a polynomial in n of odd (even) degree. This means that
S2F

(aj)(S1) cannot be reduced to a polynomial in S1 from which we conclude, in
particular, that L(S1, S2) 6= Sam

1 .
Similarly, using (2.3) and (2.4) it can be seen that, in order for equation (2.6)

to hold, all the indices a1, a2, . . . , am−1 in the left-hand side of (2.6) have to be
even integers, the maximum index am−1 being given by am−1 = 2am + 2.

3. Faulhaber’s coefficients

The sets of coefficients {F (2k)
j } and {F (2k+1)

j } satisfy several remarkable proper-
ties, a number of which will be described below. As it happens with the binomial
coefficients and the Pascal triangle, the properties of the Faulhaber coefficients are
better appreciated and explored when they are arranged in a triangular array. In
Table 1 we have displayed the set {F (2k+1)

j } for k = 1, 2, . . . , 10, while the corre-
sponding coefficients {F (2k)

j } (also for k = 1, 2, . . . , 10) are given in Table 2. The
numeric arrays in Tables 1 and 2 also can be viewed as lower triangular matrices,
with the rows being labelled by k and the columns by j. The following list of prop-
erties of the Faulhaber coefficients are readily verified for the coefficients shown in
Tables 1 and 2. They are, however, completely general.

1. The Faulhaber coefficients are nonzero rational numbers.

2. The entries in a row have alternating signs, the sign of the leading coefficient
(which is situated on the main diagonal) being positive.

3. The sum of the entries in a row is equal to unity,
∑k−1

j=0 F
(2k+1)
j =

∑k−1
j=0 F

(2k)
j = 1.

4. The entries on the main diagonal are given by F (2k+1)
k−1 = 2k

k+1 and F
(2k)
k−1 =

3·2k−1

2k+1 , and the entries in the j = 0 column are F (2k+1)
0 = 2(2k + 1)B2k and

F
(2k)
0 = 6B2k, where B2k denotes the 2k-th Bernoulli number. Furthermore,

the entries in the j = 1 column are connected to those in the j = 0 column
by the simple relations F (2k+1)

1 = −4F (2k+1)
0 = −8(2k + 1)B2k and F (2k)

1 =

−6F (2k)
0 = −36B2k.
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k\j 0 1 2 3 4 5 6 7 8 9

1 1

2 − 1
3

4
3

3 1
3 − 4

3 2

4 − 3
5

12
5 −4 16

5

5 5
3 − 20

3
34
3 − 32

3
16
3

6 − 691
105

2764
105 − 944

21
4592
105 − 80

3
64
7

7 35 −140 718
3 − 704

3
448
3 −64 16

8 − 3617
15

14468
15 − 4948

3
24304
15 − 9376

9
1408
3 − 448

3
256
9

9 43867
21 − 175468

21
1500334

105 − 210656
15

45264
5 − 144512

35
6944
5 − 1024

3
256
5

10 − 1222277
55

4889108
55 − 5016584

33
24655472

165 − 3180688
33 44096 −15040 11776

3 −768 1024
11

Table 1: The set of coefficients {F (2k+1)
j } for 1 ≤ k ≤ 10.

5. There exists a relation between F (2k+1)
j and F (2k)

j , namely,

F
(2k+1)
j =

2(2k + 1)

3(j + 2)
F

(2k)
j , j = 0, 1, . . . , k − 1. (3.1)

This formula allows us to obtain the k-th row in Table 1 from the k-th row
in Table 2, and vice versa.

6. The entries F (2k+1)
k−2 , F

(2k+1)
k−3 , . . . , F

(2k+1)
0 within the k-th row in Table 1 can

be successively obtained by the rule
q∑

j=0

2j
(
k + 1− j
2q + 1− 2j

)
F

(2k+1)
k−j−1 = 0, 1 ≤ q ≤ k − 1, (3.2)

given the initial condition F (2k+1)
k−1 = 2k

k+1 . By applying the bijection (3.1) to

the coefficients F (2k+1)
k−j−1 , one gets the corresponding rule for the entries in the

k-th row in Table 2.

7. For any given k ≥ 3, and for each j = 0, 1, . . . , k − 3, we have
k∑

r=1

odd(r)
(
k

r

)
F

(2k−r)
j = 0, (3.3)

where odd(r) restricts the summation to odd values of r, i.e., odd(r) = 1 (0)
for odd (even) r. Similarly, by applying the bijection (3.1) to the coef-
ficients F (2k−r)

j , it can be seen that, for any given k ≥ 1 and for each
j = 0, 1, . . . , k − 1,

k+1∑

r=0

even(r)
(
k + 2

r + 1

)
(2k + 3− r)F (2k+2−r)

j = 0, (3.4)

Averaging sums of powers of integers and Faulhaber polynomials 109



k\j 0 1 2 3 4 5 6 7 8 9

1 1

2 − 1
5

6
5

3 1
7 − 6

7
12
7

4 − 1
5

6
5 − 8

3
8
3

5 5
11 − 30

11
68
11 − 80

11
48
11

6 − 691
455

4146
455 − 1888

91
328
13 − 240

13
96
13

7 7 −42 1436
15 − 352

3
448
5 − 224

5
64
5

8 − 3617
85

21702
85 − 9896

17
12152
17 − 9376

17
4928
17 − 1792

17
384
17

9 43867
133 − 263202

133
3000668

665 − 105328
19

407376
665 − 216768

95
83328
95 − 4608

19
768
19

10 − 174611
55

1047666
55 − 10033168

231
12327736

231 − 454384
11 22048 − 60160

7
17664

7 − 3840
7

512
7

Table 2: The set of coefficients {F (2k)
j } for 1 ≤ k ≤ 10.

where even(r) = 1 (0) for even (odd) r picks out the even power terms.
Informally, we may call the property embodied in equations (3.3) and (3.4) the
sum-to-zero column property, as the coefficients F (2k−r)

j [F (2k+2−r)
j ] entering

the summation in (3.3) [(3.4)] pertain to a given column j. This is to be
distinguished from the sum-to-zero row property in equation (3.2), where the
coefficients F (2k+1)

k−j−1 belong to a given row k.

8. For completeness, next we write down the explicit formula for F (2k+1)
j which

was originally obtained in [7, Section 12]. Adapting the notation in [7] to
ours, we have that

F
(2k+1)
j = (−1)j 2

j+2

j + 2

bj/2c∑

r=0

(
2j + 1− 2r

j + 1

)(
2k + 1

2r + 1

)
B2k−2r, (3.5)

for j = 0, 1, . . . , k − 1, and where bj/2c denotes the floor function of j/2,
namely the largest integer not greater than j/2. The set of coefficients {F (2k)

j }
can then be found through relation (3.1). We shall use relation (3.5) in
Section 6 to derive a family of recursion formulae for the Bernoulli numbers.

4. Averaging sums of powers of integers

Interestingly enough, the sum-to-zero column property in equations (3.3) and (3.4)
provides the solution to the problem of averaging sums of powers of integers in
equations (2.5) and (2.6). For the sake of brevity, next we focus on the connection
between (3.3) and (2.5). An analogous reasoning can be made to establish the link
between (3.4) and (2.6). To grasp the meaning of equation (3.3), consider a concrete
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example where k = 7. Then the column index j takes the values j = 0, 1, 2, 3, 4,
and (3.3) gives rise to the following five equalities:

(
7
1

)
F

(13)
0 +

(
7
3

)
F

(11)
0 +

(
7
5

)
F

(9)
0 +

(
7
7

)
F

(7)
0 = 0

(
7
1

)
F

(13)
1 +

(
7
3

)
F

(11)
1 +

(
7
5

)
F

(9)
1 +

(
7
7

)
F

(7)
1 = 0

(
7
1

)
F

(13)
2 +

(
7
3

)
F

(11)
2 +

(
7
5

)
F

(9)
2 +

(
7
7

)
F

(7)
2 = 0

(
7
1

)
F

(13)
3 +

(
7
3

)
F

(11)
3 +

(
7
5

)
F

(9)
3 = 0

(
7
1

)
F

(13)
4 +

(
7
3

)
F

(11)
4 = 0.

For a reason that will become clear in just a moment, we add to this list of equalities
a last one to include the value of

(
7
1

)
F

(13)
5 , namely,

(
7
1

)
F

(13)
5 = 26. Furthermore, we

multiply the first equality by S0
1 , the second equality by S1

1 , the third equality by
S2
1 , and so on, that is,

(
7
1

)
F

(13)
0 S0

1 +
(
7
3

)
F

(11)
0 S0

1 +
(
7
5

)
F

(9)
0 S0

1 +
(
7
7

)
F

(7)
0 S0

1 = 0
(
7
1

)
F

(13)
1 S1

1 +
(
7
3

)
F

(11)
1 S1

1 +
(
7
5

)
F

(9)
1 S1

1 +
(
7
7

)
F

(7)
1 S1

1 = 0
(
7
1

)
F

(13)
2 S2

1 +
(
7
3

)
F

(11)
2 S2

1 +
(
7
5

)
F

(9)
2 S2

1 +
(
7
7

)
F

(7)
2 S2

1 = 0
(
7
1

)
F

(13)
3 S3

1 +
(
7
3

)
F

(11)
3 S3

1 +
(
7
5

)
F

(9)
3 S3

1 = 0
(
7
1

)
F

(13)
4 S4

1 +
(
7
3

)
F

(11)
4 S4

1 = 0
(
7
1

)
F

(13)
5 S5

1 = 26S5
1 .

Now we can see that the sum of the entries in the first column is just
(
7
1

)
times

the Faulhaber polynomial F (13)(S1), the sum of the entries in the second column
is
(
7
3

)
times F (11)(S1), the sum of the third column is

(
7
5

)
times F (9)(S1), and the

sum of the fourth column is
(
7
7

)
times F (7)(S1). Then we have

(
7
1

)
F (13)(S1) +

(
7
3

)
F (11)(S1) +

(
7
5

)
F (9)(S1) +

(
7
7

)
F (7)(S1) = 26S5

1 .

Next we multiply both sides of this equation by S2
1 and divide them by 26. Thus,

taking into account (2.4), we finally obtain
(
7
7

)
S7 +

(
7
5

)
S9 +

(
7
3

)
S11 +

(
7
1

)
S13

26
= S7

1 . (4.1)

Since
(
7
1

)
+
(
7
3

)
+
(
7
5

)
+
(
7
7

)
= 26, the identity (4.1) constitutes the solution to (2.5)

for the particular case am = 7. In this case we have that p
m−1 = 7

26 , in accordance
with condition (1.3).

In general, for an arbitrary exponent am ≥ 1, the solution to equation (2.5) is
given by ∑am

r=1 odd(r)
(
am

r

)
S2am−r

2am−1 = Sam
1 . (4.2)

A few comments are in order concerning the solution in (4.2). In the first place,
by the constructive procedure we have used to obtain the solution (4.1) for the
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case am = 7, it should be clear that the solution (4.2) is unique for each am ≥ 1,
the quotient p

m−1 characterizing the solution being determined (when expressed
in lowest terms) by the relation p

m−1 = am

2am−1 . Secondly, for odd (even) am, the
numerator of (4.2) involves am+1

2 (am

2 ) different sums Sj with j being an odd
integer ranging in am ≤ j ≤ 2am − 1 (am + 1 ≤ j ≤ 2am − 1). Furthermore, the
binomial coefficients fulfil the identity

∑am

r=1 odd(r)
(
am

r

)
= 2am−1, thus ensuring

that the overall number of terms appearing in the numerator of (4.2) equals 2am−1.
For example, for am = 3, from (4.2) we get the solution S3+3S5

4 = S3
1 , which

was also found in [1]. For am = 4, noting that p
m−1 = 4

8 = 1
2 , we get the solution

S5+S7

2 = S4
1 which, as we saw, corresponds to the one denoted as (a, b, c) = (5, 7, 4)

in [1]. More sophisticated examples are, for instance,

S9 + 36S11 + 126S13 + 84S15 + 9S17

256
= S9

1 ,

and

1

131072

(
5S21 + 285S23 + 3876S25 + 19380S27 + 41990S29

+ 41990S31 + 19380S33 + 3876S35 + 285S37 + 5S39

)
= S20

1 .

On the other hand, starting with equation (3.4) and making an analysis similar
to that leading to equation (4.2), one can deduce the following general solution to
equation (2.6), namely,

1
am+2

∑am+1
r=0 even(r)

(
am+2
r+1

)
(2am + 3− r)S2am+2−r

3 · 2am
= S2S

am
1 . (4.3)

Now, for each am ≥ 0, the quotient p
m−1 characterizing the solution (4.3) turns

out to be p
m−1 = 2am+3

3·2am . Further, for odd (even) am, the numerator of (4.3)
involves am+3

2 (am

2 + 1) different sums Sj with j being an even integer ranging in
am + 1 ≤ j ≤ 2am + 2 (am + 2 ≤ j ≤ 2am + 2). Moreover, the following identity
holds

am+1∑

r=0

even(r)
(
am + 2

r + 1

)
(2am + 3− r) = 3 · 2am(am + 2),

and then the overall number of terms in the numerator of (4.3) is 3 · 2am . For
example, for am = 17, from equation (4.3) we find

1

393216

(
S18 + 189S20 + 4692S22 + 35700S24 + 107406S26

+ 140998S28 + 82212S30 + 20196S32 + 1785S34 + 37S36

)
= S2S

17
1 .

Finally we note that, by combining (4.2) and (4.3), we obtain the double identity
(with am ≥ 1):
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(am + 2)

am∑

r=1

odd(r)
(
am
r

)
S2S2am−r

=
1

6

am+1∑

r=0

even(r)
(
am + 2

r + 1

)
(2am + 3− r)S2am+2−r

= 2am−1(am + 2)S2S
am
1 .

5. Matrix inversion

It is worth pointing out that, for any given am, we can equally obtain Sam
1 (S2S

am
1 )

by inverting the corresponding triangular matrix formed by the Faulhaber coeffi-
cients in Table 1 (Table 2). This method was originally introduced by Edwards [3]
(see also [2]) to obtain the Faulhaber coefficients themselves by inverting a matrix
related to Pascal’s triangle. As a concrete example illustrating this fact, consider
the equation (2.2) written in matrix format up to k = 6:




S3

S5

S7

S9

S11

S13




=




1 0 0 0 0 0

− 1
3

4
3 0 0 0 0

1
3 − 4

3 2 0 0 0

− 3
5

12
5 −4 16

5 0 0
5
3 − 20

3
34
3 − 32

3
16
3 0

− 691
105

2764
105 − 944

21
4592
105 − 80

3
64
7







S2
1

S3
1

S4
1

S5
1

S6
1

S7
1




. (5.1)

Let us call the square matrix of (5.1) F. Clearly, F is invertible since all the
elements in its main diagonal are nonzero. Then, to evaluate the column vector on
the right of (5.1), we pre-multiply by the inverse matrix of F on both sides of (5.1)
to get 



S2
1

S3
1

S4
1

S5
1

S6
1

S7
1




=




1 0 0 0 0 0
1
4

3
4 0 0 0 0

0 1
2

1
2 0 0 0

0 1
16

5
8

5
16 0 0

0 0 3
16

5
8

3
16 0

0 0 1
64

21
64

35
64

7
64







S3

S5

S7

S9

S11

S13




,

from which we obtain the powers S2
1 , S

3
1 , S

4
1 , . . . , expressed in terms of the odd

power sums S3, S5, S7, . . . . Of course the resulting formula for S7
1 agrees with that

in equation (4.1). Conversely, by inverting the matrix F−1 we get the corresponding
Faulhaber coefficients. Note that the elements of F−1 are nonnegative, and that
the sum of the elements in each of the rows is equal to one. In fact, the row
elements of F−1 are given by the corresponding coefficients

(
am

r

)
/2am−1 appearing

in the left-hand side of (4.2).
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Similarly, writting the equation (2.1) in matrix format up to k = 6, we have



S2

S4

S6

S8

S10

S12




=




1 0 0 0 0 0

− 1
5

6
5 0 0 0 0

1
7 − 6

7
12
7 0 0 0

− 1
5

6
5 − 8

3
8
3 0 0

5
11 − 30

11
68
11 − 80

11
48
11 0

− 691
455

4146
455 − 1888

91
328
13 − 240

13
96
13







S2

S2S1

S2S
2
1

S2S
3
1

S2S
4
1

S2S
5
1




. (5.2)

Let us call the square matrix of (5.2) G. Then, pre-multiplying both sides of (5.2)
by the inverse matrix of G, we obtain




S2

S2S1

S2S
2
1

S2S
3
1

S2S
4
1

S2S
5
1




=




1 0 0 0 0 0
1
6

5
6 0 0 0 0

0 5
12

7
12 0 0 0

0 1
24

7
12

3
8 0 0

0 0 7
48

5
8

11
48 0

0 0 1
96

9
32

55
96

13
96







S2

S4

S6

S8

S10

S12




,

from which we can determine S2 times the powers S1, S
2
1 , S

3
1 , . . . , in terms of the

even power sums S2, S4, S6, . . . . Likewise, we can see that the elements of G−1
are nonnegative and that the sum of the elements in each row is equal to one.

In view of this example, it is clear that the formulae (4.2) and (4.3) can be
regarded as a rule for calculating the inverse of the triangular matrices in Tables 1
and 2, respectively. Moreover, the uniqueness of the solutions in (4.2) and (4.3)
follows ultimately from the uniqueness of the inverse of such triangular matrices.

6. A family of recursion formulae for the Bernoulli
numbers

As a last important remark we note that the sum-to-zero column property allows
us to derive a family of recursive relationships for the Bernoulli numbers. Consider
initially the equation (3.3) for the column index j = 0. So, recalling that F (2k+1)

0 =

2(2k+ 1)B2k, we will have (for odd r) that F (2k−r)
0 = 2(2k− r)B2k−r−1, and then

equation (3.3) becomes (for j = 0)

k∑

r=1

odd(r)
(
k

r

)
(2k − r)B2k−r−1 = 0, (6.1)

which holds for any given k ≥ 3. For example, for k = 13, from (6.1) we obtain

B12 + 90B14 + 935B16 + 2508B18 + 2079B20 + 506B22 + 25B24 = 0,
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and so, knowing B12, B14, B16, B18, B20, and B22, we can get B24. On the other
hand, from equation (3.5) we obtain

F
(2k+1)
2 =

4

3
(2k + 1)

[
30B2k + k(2k − 1)B2k−2

]
,

from which we in turn deduce that, for odd r,

F
(2k−r)
2 = 40(2k − r)B2k−r−1 + 4

(
2k − r

3

)
B2k−r−3.

Therefore, recalling (6.1), from equation (3.3) with j = 2 we obtain the recurrence
relation

k∑

r=1

odd(r)
(
k

r

)(
2k − r

3

)
B2k−r−3 = 0, (6.2)

which holds for any given k ≥ 5. On the other hand, from equation (3.5) we obtain

F
(2k+1)
4 =

16

45
(2k + 1)

[
3780B2k + 210k(2k − 1)B2k−2

+ k(k − 1)(2k − 1)(2k − 3)B2k−4
]
,

from which we in turn deduce that, for odd r,

F
(2k−r)
4 = 1344(2k − r)B2k−r−1 + 224

(
2k − r

3

)
B2k−r−3 +

32

3

(
2k − r

5

)
B2k−r−5.

Thus, taking into account (6.1) and (6.2), we see that, for j = 4, equation (3.3)
yields the recurrence relation

k∑

r=1

odd(r)
(
k

r

)(
2k − r

5

)
B2k−r−5 = 0, (6.3)

which holds for any given k ≥ 7. The pattern is now clear. Indeed, by assuming
that F (2k−r)

2s (for odd r) is of the form

F
(2k−r)
2s =

s∑

q=0

f (2k−r)q

(
2k − r
2q + 1

)
B2k−r−2q−1,

with the f (2k−r)q ’s being nonzero rational coefficients, from equation (3.3) one read-
ily gets the following general recurrence relation for the Bernoulli numbers:

k∑

r=1

odd(r)
(
k

r

)(
2k − r
2s+ 1

)
B2k−r−2s−1 = 0, (6.4)

which holds for any given k ≥ 2s+3, with s = 0, 1, 2, . . . . Formulae (6.1), (6.2), and
(6.3) are particular cases of the recurrence (6.4) for s = 0, 1, and 2, respectively.
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Similarly, starting from equation (3.4), it can be shown that

k+1∑

r=0

even(r)
(
k + 2

r + 1

)(
2k + 3− r
2s+ 1

)
B2k+2−r−2s = 0, (6.5)

which holds for any given k ≥ 2s + 1, with s = 0, 1, 2, . . . . It is easy to see that
relations (6.4) and (6.5) are equivalent to each other. Moreover, we note that the
recurrence (6.4) is essentially equivalent to the one given in [8, Theorem 1.1].

7. Conclusion

In this article we have tackled the problem of averaging sums of powers of integers
as considered by Pfaff [1]. For this purpose, we have expressed the Sr’s in the
Faulhaber form and then we have used certain properties of the coefficients of the
Faulhaber polynomials. Indeed, as we have seen, the sum-to-zero column property
in equations (3.3) and (3.4) constitutes the skeleton of the solutions displayed in
(4.2) and (4.3). It is to be noted, on the other hand, that the formulae (4.2) and
(4.3) can be obtained in a more straightforward way by a proper application of the
binomial theorem (for a derivation of the counterpart to the formulae (4.2) and (4.3)
using this method, see [5, Subsections 3.2 and 3.3]). Furthermore, a demonstration
by mathematical induction of the identities in (4.2) and (4.3) (although expressed
in a somewhat different manner) already appeared in [9].

We believe, however, that our approach here is worthwhile since it introduces an
important topic concerning the sums of powers of integers that may not be widely
known, namely, the Faulhaber theorem and the associated Faulhaber polynomials.
We invite the interested reader to prove some of the properties listed above, and
to pursue the subject further [3, 4, 5, 6, 10, 11, 12].
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1. Introduction

In this paper we apply the usual methods for solving linear recurrence relations
with constant coefficients of special form - progressions. The method of charac-
teristic equation, of generating function and of mathematical induction are used.
The relationship between the considered relations and the generalized Fibonacci
numbers is also specified. The numbers considered in this paper are complex. We
remember that one calls generalized Fibonacci numbers or Horadam numbers (see
[5, 6, 7]) of orders α and β, the numbers xn, n = 0, 1, 2, . . . , satisfying the gen-
eralized Fibonacci recurrence relation xn+1 = αxn + βxn−1, n = 1, 2, . . ., with
arbitrary initial data x0 and x1. If α = β = 1, hence when the numbers xn sat-
isfy the usual Fibonacci recurrence relation xn+1 = xn + xn−1, these numbers are
called Fibonacci type numbers. Particularly, when the initial data are x0 = 0 and
x1 = 1, the usual Fibonacci numbers are obtained. When the coefficients of the
linear recurrence relation of order n are in arithmetic progression, then its solutions
are generalized Fibonacci numbers of certain orders. When the coefficients are in
geometric progression, then the solutions are also in such a progression. In the final
Section, this last situation is particularly considered when both the coefficients and
solutions are generalized Fibonacci numbers. Aspects of the theory of recurrence
relations and Fibonacci numbers can be found in the works listed in References.

2. Linear recurrence relations with coefficients in
arithmetic progression

Theorem 2.1. The numbers xn are solutions of the linear recurrence relation with
the coefficients in arithmetic progression

xn+1 = axn+(a+r)xn−1+· · ·+(a+(n−1)r)x1+(a+nr)x0, n = 0, 1, 2, . . . , (2.1)

with initial data x0, if and only if they are the generalized Fibonacci numbers given
by the Binet type formula

xn =
x0

λ1 − λ2
[
(b− aλ2)λn−11 − (b− aλ1)λn−12

]
, n = 1, 2, . . . , (2.2)

where

b = a2 + a+ r, λ1,2 =
a+ 2±

√
a2 + 4r

2
. (2.3)

Proof. (By reduction to a generalized Fibonacci recurrence relation) We suppose
that the numbers xn satisfy the recurrence relation (2.1). Then we have x1 = ax0,
x2 = bx0 and

xn+1 − xn = axn + rxn−1 + rxn−2 + · · ·+ rx1 + rx0,

xn − xn−1 = axn−1 + rxn−2 + · · ·+ rx1 + rx0,
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(xn+1 − xn)− (xn − xn−1) = axn + (r − a)xn−1.

Denoting c = a− r, one obtains the generalized Fibonacci recurrence relation

xn+1 = (a+ 2)xn − (c+ 1)xn−1, n = 2, 3, . . . . (2.4)

This equation has the solution xn = C1λ
n
1 + C1λ

n
2 , where λ1,2 are the roots, given

by (2.3), of the characteristic equation λ2 − (a + 2)λ + c + 1 = 0. The initial
conditions x1 = C1λ1 + C2λ2 = ax0 and x2 = C1λ

2
1 + C2λ

2
2 = bx0 give C1,2 =

±x0(b− aλ2,1)
λ1,2(λ1 − λ2)

, hence the solutions of the recurrence relation (2.1) are given by

the formula (2.2).

Remark. The linear recurrence relation (2.4) fails for n = 1 and therefore its
initial conditions are x1 and x2 instead of x0 and x1.

Proof. (By generating function method) Working with formal series, we denote by
X(t) =

∑∞
n=0 xnt

n, the generating function of the sequence xn. Then the recur-
rence relation (2.1) takes the form

∑∞
n=0 xn+1t

n+1 =
∑∞

n=0

∑n
k=0(a+kr)xn−kt

n+1.
Using the formula for the product of two power series, one obtains

X(t)− x0 = t

∞∑

n=0

(a+ nr)tn
∞∑

n=0

xnt
n = t

∞∑

n=0

(a+ nr)tnX(t).

Because
∞∑

n=0

(a+ nr)tn = a

∞∑

n=0

tn + rt

∞∑

n=0

d

dt
(tn) = a

1

1− t + rt
d

dt

( 1

1− t
)
=

a− ct
(1− t)2 ,

we have X(t)− x0 =
t(a− ct)
(1− t)2 X(t). One obtains

X(t) =
x0(t− 1)2

(c+ 1)t2 − (a+ 2)t+ 1
=

x0
c+ 1

+
x0((r − c)t+ c)√
c+ 1(t− t1)(t− t2)

,

where t1 =
1

λ1
and t2 =

1

λ2
are the roots of the equation (c+1)t2−(a+2)t+1 = 0,

the numbers λ1,2 been given by the relation (2.3). We have

X(t) =
x0
c+ 1

+
x0

(c+ 1)2(t1 − t2)

[
(r − c)t1 + c

t− t1
− (r − c)t2 + c

t− t2

]

=
x0
λ1λ2

+
x0

λ1λ2(λ1 − λ2)

[
cλ1 + r − c
1− λ1t

− cλ2 + r − c
1− λ2t

]

=
x0
λ1λ2

+
x0

λ1λ2(λ1 − λ2)

[
(cλ1 + r − c)

∞∑

n=0

λn1 t
n − (cλ2 + r − c)

∞∑

n=0

λn2 t
n

]

Linear recurrence relations with the coefficients in progression 121



= x0 +
x0

λ1λ2(λ1 − λ2)

[
(cλ1 + r − c)

∞∑

n=1

λn1 t
n − (cλ2 + r − c)

∞∑

n=1

λn2 t
n

]
.

Therefore the coefficients of the generating function X(t) are given by the relation

xn =
x0(cλ1 + r − c)
λ2(λ1 − λ2)

λn−11 − x0(cλ2 + r − c)
λ1(λ1 − λ2)

λn−12 , n = 1, 2, . . . .

Taking into account the identities
cλ1 + r − c

λ2
= b−aλ2 and

cλ2 + r − c
λ1

= b−aλ1,
from the above expression of xn one obtains formula (2.2).

Proof. (Reciprocal) If the sequence xn is given by formula (2.2), it satisfies the
recurrence relation (2.4). Indeed, using (2.2) and the relation λ2j = (a+2)λj− (c+
1), j = 1, 2, which results by the definition of the numbers λ1,2, one obtain

(a+ 2)xn − (c+ 1)xn−1 = (a+ 2)
x0

λ1 − λ2
[
(b− aλ2)λn−11 − (b− aλ1)λn−12

]
−

− (c+ 1)
x0

λ1 − λ2
[
(b− aλ2)λn−21 − (b− aλ1)λn−22

]

=
x0

λ1 − λ2
(b− aλ2)

[
(a+ 2)λ1 − (c+ 1)

]
λn−21 −

− x0
λ1 − λ2

(b− aλ1)
[
(a+ 2)λ2 − (c+ 1)

]
λn−22

=
x0

λ1 − λ2
[
(b− aλ2)λn1 − (b− aλ1)λn2

]
= xn+1, n = 1, 2, . . . .

Now we prove by induction that the sequence xn given by (2.2) satisfies the recur-
rence relation (2.1). We first show that (2.1) is satisfied for n = 0, 1, 2. Indeed,
from (2.2) it follows

x1 =
x0

λ1 − λ2
(b− aλ2 − b+ aλ1) = ax0,

x2 =
x0

λ1 − λ2
[
(b− aλ2)λ1 − (b− aλ1)λ2

]
= bx0

= (a2 + a+ r)x0 = ax1 + (a+ r)x0,

x3 =
x0

λ1 − λ2
[
(b− aλ2)λ21 − (b− aλ1)λ22

]

=
x0

λ1 − λ2
[
b(λ21 − λ22)− aλ1λ2(λ1 − λ2)

]

= x0
[
b(λ1 + λ2)− aλ1λ2

]
= x0

[
b(a+ 2)− a(c+ 1)

]

= abx0 + x0
[
2(a2 + a+ r)− a(1 + a− r)

]

= ax2 + x0(a
2 + ar + a+ 2r) = ax2 + (a+ r)x1 + (a+ 2r)x0.

For a fixed index n ≥ 2, we suppose that the formula (2.1) is true when k ≤ n,
hence we have

xk+1 =

k∑

j=0

(a+ (k − j)r)xj , k ≤ n. (2.5)
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Using (2.4) and (2.5), one obtains

xn+2 = (a+ 2)xn+1 − (c+ 1)xn

= (a+ 2)
n∑

k=0

(a+ (n− k)r)xk − (c+ 1)
n∑

k=1

(a+ (n− k)r)xk−1

=
n∑

k=2

(a+ (n− k)r)
[
(a+ 2)xk − (c+ 1)xk−1

]
+ (a+ 2)(a+ (n− 1)r)x1+

+ (a+ 2)(a+ nr)x0 − (c+ 1)(a+ (n− 1)r)x0 =

n∑

k=2

(a+ (n− k)r)xk+1+

+ a(a+ 2)(a+ (n− 1)r)x0 + a(a+ nr)x0+

+ 2(a+ nr)x0 + (r − a− 1)(a+ (n− 1)r)x0

=
n∑

k=2

(a+ (n− k)r)xk+1 + (a+ (n− 1)r)x2 + (a+ nr)x1 + (a+ (n+ 1)r)x0

=

n+1∑

k=0

(a+ (n+ 1− k)r)xk,

hence formula (2.1) is true for the index n+ 1. According to the induction axiom,
(2.1) is true for any natural number n.

Remarks. 1) The sequence of usual Fibonacci numbers can not be solution of
the equation (2.1). Indeed, for this would be that a + 2 = −c − 1 = r − a − 1 =
1, for the equation (2.4) to reduce to well-known Fibonacci recurrence relation
xn+1 = xn + xn−1 and to have the initial conditions x1 = ax0 = 1 and x2 = bx0 =
(a2 + a + r)x0 = 1. But these conditions are contradictory, leading to the false
equality x0 = 1 = −1.
2) An arithmetic progression xn cannot be solution of the equation (2.1). Indeed,
this requires that xn+1 = 2xn−xn−1, therefore a+2 = 2 and−c−1 = r−a−1 = −1,
which leads to the trivial case a = r = xn = 0, for n = 1, 2, . . . .

Corollary 2.2. The linear recurrence relation

xn+1 = xn + 2xn−1 + · · ·+ nx1 + (n+ 1)x0, n = 0, 1, 2, . . . , (2.6)

with the initial data x0 = 1, has the solution

xn =
1√
5

[(
3 +
√
5

2

)n

−
(
3−
√
5

2

)n]
, n = 1, 2, . . . . (2.7)

Proof. For a = r = x0 = 1, from Theorem 2.1 and its proof it results that the
recurrence relation (2.6) reduces to the generalized Fibonacci relation

xn+1 = 3xn − xn−1, n = 2, 3, . . . , (2.8)

with the initial data x1 = 1 and x2 = 3, hence it has the solution (2.7). Particularly,
both (2.6) and (2.7) give x3 = 8, x4 = 21 and so on.
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Remark. The recurrence relation (2.6) from above corollary was considered as
problem 9 (ii) in F. Lazebnik, Combinatorics and Graphs Theory, I, (Math 688).
Problems and Solutions, 2006, a work appearing on the Internet at the address
www.math.udel.edu/~lazebnik/papers/688hwsols.pdf. Unfortunately, in the
cited work one obtains the wrong solution

xn =
5−
√
5

10

(
3 +
√
5

2

)n

+
5 +
√
5

10

(
3−
√
5

2

)n

, n = 0, 1, 2, . . . ,

with particular solutions x0 = x1 = 1, x2 = 2, x3 = 5 and so on, the last two
being false. The explanation of this mistake is that the recurrence relation (2.8)
was wrongly considered for n = 1, 2, . . . ,, with the initial data x0 = x1 = 1, leading
to the wrong solution mentioned above. Indeed, for n = 1, the obtined recurrence
relation x2 = 3x1 − x0 is false. This mistake shows the importance of the correct
initialization of the recurrence relations.

3. Linear recurrence relations with coefficients in ge-
ometric progression

Theorem 3.1. The numbers xn are solutions of the linear recurrence relation with
constant coefficients in geometric progression

xn+1 = axn + aqxn−1 + · · ·+ aqn−1x1 + aqnx0, n = 0, 1, 2, . . . , (3.1)

with initial data x0, if and only if they form the geometric progression given by the
formula

xn = ax0(a+ q)n−1, n = 1, 2, . . . (3.2)

Proof. (By induction). From (3.1) we obtain x1 = ax0 and x2 = ax0(a+ q). For a
fixed natural number n we suppose formula (3.2) true for every k ≤ n. Therefore
we have xk = ax0(a + q)k−1, for k ≤ n. Then, from the recurrence relation (3.1)
one obtains

xn+1 = a2x0(a+ q)n−1 + a2x0q(a+ q)n−2 + · · ·+
+ a2x0q

n−2(a+ q) + a2x0q
n−1 + ax0q

n

= a2x0(a+ q)
[
(a+ q)n−2 + q(a+ q)n−3 + · · ·+ qn−3(a+ q) + qn−2

]
+

+ ax0q
n−1(a+ q)

= a2x0(a+ q)
(a+ q)n−1 − qn−1

a
+ ax0q

n−1(a+ q) = ax0(a+ q)n,

hence the formula (3.2) is true for n + 1. According to the induction axiom it
results that formula (3.2) is true for every natural number n.
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Proof. (By generating function method) Denoting X(t) =
∑∞

n=0 xnt
n, from the

recurrence relation (3.1) one obtains
∑∞

n=0 xn+1t
n+1 = at

∑∞
n=0

∑n
k=0 q

kxn−ktn.
Using the formula for the product of two power series, one obtains

X(t)− x0 = at
∞∑

n=0

qntn
∞∑

n=0

xnt
n =

at

1− qtX(t).

Therefore

X(t) = x0
qt− 1

(a+ q)t− 1
=

x0q

a+ q
+

ax0
(a+ q)(1− (a+ q)t)

=
x0q

a+ q
+

ax0
a+ q

∞∑

n=0

(a+ q)ntn = x0 + ax0

∞∑

n=1

(a+ q)n−1tn,

from which it results the formula (3.2).

Proof. (Reciprocal) If xn is given by the formula (3.2), then we have

a
n∑

k=0

qn−kxk = a2x0

n∑

k=1

qn−k(a+ q)k−1 + ax0q
n

= a2x0q
n−1

n∑

k=1

(a+ q

q

)k−1
+ ax0q

n

= a2x0q
n−1

(a+ q

q

)n − 1

a+ q

q
− 1

+ ax0q
n = ax0(a+ q)n = xn+1, n = 1, 2, . . . ,

hence the sequence xn satisfies the recurrence equation (3.1).

4. Linear recurrence relations having as coefficients
generalized Fibonacci numbers in geometric pro-
gression

Lemma 4.1. The terms an = aqn, n = 0, 1, 2, . . . , of a geometric progression are
generalized Fibonacci numbers of orders α and β if and only if the progression ratio
is given by the formula

q =
α±

√
α2 + 4β

2
. (4.1)

Proof. If the terms an of the geometric progression are generalized Fibonacci
numbers of orders α and β, then an+1 = αan + βan−1, relation which becomes
aqn+1 = αaqn + βaqn−1. One obtains the quadratic equation q2 − αq − β = 0,
with the roots given by formula (4.1). Reciprocally, if the number q is given by
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formula (4.1), it satisfies the above quadratic equation. Multiplying this equation
by aqn−1, one obtains the relation an+1 = αan + βan−1, hence an are generalized
Fibonacci numbers of orders α and β.

Example. If α = 2i, with i =
√
−1 and β = 1, then (4.1) gives q = i, therefore the

terms of the geometric progression an = ain are generalized Fibonacci numbers of
orders 2i and 1. Indeed, we have 2ian + an−1 = 2ain+1 + ain−1 = ain+1 = an+1.

Theorem 4.2. The coefficients an = aqn, n = 0.1.2. . . . , and the solutions
xn, n = 1, 2, . . . of the linear recurrence relation (3.1) are both generalized Fi-
bonacci numbers of orders α and β if and only if

α = a+ 2q, β = −q(a+ q). (4.2)

Proof. According to Theorem 3.1 and the above Lemma, the coefficients an and
the solutions xn of (3.1) are generalized Fibonacci numbers of orders α and β, if
and only if

q2 − αq − β = 0, (a+ q)2 − α(a+ q)− β = 0, (4.3)

hence the formula (4.2) holds.

Example. If a = q = i, then an = in+1 and, according to Theorem 3.1, xn =
x0

2 (2i)n. From Theorem 4.3 it results that both an and xn are generalized Fibonacci
numbers of orders α = a+ 2q = 3i and β = −q(a+ q) = 2. Indeed, we have

3ian + 2an−1 = 3in+2 + 2in = in+2 = an+1

and
3ixn + 2xn−1 =

x0
2
[3i(2i)n + 2(2i)n−1] =

x0
2
(2i)n+1 = xn+1.

Corollary 4.3. The coefficients an and the solutions xn of the linear recurrence
relation (3.1) are both Fibonacci type numbers if and only if

a = ∓
√
5, q =

1±
√
5

2
. (4.4)

Proof. For α = β = 1 it follows from Theorem 4.3 that a+2q = 1 and −q(a+q) = 1,
from which we obtain (4.4).
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Abstract

In this note we prove directly that Golomb’s method and the continued
fraction method are essentially the same, in the sense that they give the same
Egyptian fraction expansions of positive rational numbers. Furthermore, we
show their connection with the Farey sequence method.
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1. Introduction

It is well-known that every positive rational number can be expressed as a sum of
distinct unit fractions (reciprocals of natural numbers). Ancient Egyptians already
used such representations of rational numbers, for this reason we call a sum of
distinct unit fractions an Egyptian fraction. We note that sometimes unit fractions
themselves are called Egyptian fractions.
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Since the harmonic series
∞∑

n=1

1
n is divergent, it is enough to give an algorithm

for finding an Egyptian fraction expansion of rational numbers between 0 and 1.
There are several methods to do this, many of them are summarized in [6].

Probably the oldest such algorithm is the greedy method, which subtracts al-
ways the largest possible unit fraction from the current rational number. Sometimes
it is referred to as Fibonacci method or Fibonacci-Sylvester method, because it was
first described by Leonardo Pisano, better known as Fibonacci [5], and later it was
rediscovered by J. J. Sylvester [10].

The splitting method is based on successive application of the identity 1
n =

1
n+1 + 1

n(n+1) . It was shown by L. Beeckmans [2] that this algorithm terminates
after a finite number of steps, however it was stated previously without proof by
P. J. Campbell [4].

We still mention here by name the method of S. W. Golomb [7] and the contin-
ued fraction method due to M. N. Bleicher [3], as they are the main subject of this
paper. We should remark that there is a confusion in the literature, in [3] a further
variant of the latter method is presented, and the author calls the modified version
the continued fraction method. However, in [6] the original algorithm is called the
continued fraction method, as will be in this note.

Writing her BSc thesis, the first author observed that surprisingly Golomb’s
method and the continued fraction method always give the same Egyptian frac-
tion expansions. Before proving this statement directly, we discuss these methods
briefly. After that, we present their connection with the Farey sequence method,
and a possible usage of them in teaching basic number theory.

2. Golomb’s method and the continued fraction
method

Golomb’s method Let a < b be positive integers with gcd(a, b) = 1, and con-
sider the rational number 0 < a

b < 1. If a = 1, then it is a unit fraction. Otherwise,
since a and b are coprime, there exist a multiplicative inverse 0 < a′ < b of amodulo
b and a natural number r such that aa′ = br + 1. Then

a

b
=

r

a′
+

1

a′b
.

Now it follows from aa′ > br > ar and aa′ = br + 1, that 0 < r
a′ < 1 and

gcd(r, a′) = 1, and we can apply the above procedure for r
a′ .

On the other hand, we have aa′ > br > a′r, hence r < a, which guarantees
the finiteness of the method. The algorithm is also correct, it gives distinct unit
fractions in the Egyptian fraction expansion, which can be proved by induction
showing that the unit fractions have denominators at most b(b− 1).

Continued fraction method Let 0 < a
b < 1 be again a rational number with

coprime natural numbers a and b. Suppose that the finite simple continued fraction
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expansion of a
b is 〈c0, c1, . . . , cn〉, where c0 = 0 and c1, . . . , cn are positive integers.

As it is well-known, a
b can be represented by a finite simple continued fraction in

exactly two ways, but it is indifferent which of them is used.
As usual, define two sequences (ak)nk=−2 and (bk)

n
k=−2 recursively:

a−2 = 0, a−1 = 1, ak = ckak−1 + ak−2 (k = 0, 1, . . . , n)

b−2 = 1, b−1 = 0, bk = ckbk−1 + bk−2 (k = 0, 1, . . . , n)

Then an = a and bn = b.
Primary and secondary convergents satisfy equations

ak
bk
− ak−1
bk−1

=
(−1)k+1

bk−1bk

for 1 ≤ k ≤ n, and

ak−2 + lak−1
bk−2 + lbk−1

− ak−2 + (l − 1)ak−1
bk−2 + (l − 1)bk−1

=
(−1)k

(bk−2 + (l − 1)bk−1)(bk−2 + lbk−1)

for 2 ≤ k ≤ n, 1 ≤ l ≤ ck. Details about these and other properties of continued
fractions can be found in [8, 9].

Using the above identities, we can describe the continued fraction method. If
n is odd, then

an
bn

=
an−1
bn−1

+
1

bn−1bn
, (2.1)

and apply the method for an−1

bn−1
.

If n is even, then

an
bn

=
an−2 + cnan−1
bn−2 + cnbn−1

=
an−2
bn−2

+

cn∑

l=1

(
an−2 + lan−1
bn−2 + lbn−1

− an−2 + (l − 1)an−1
bn−2 + (l − 1)bn−1

)

=
an−2
bn−2

+

cn∑

l=1

1

(bn−2 + (l − 1)bn−1)(bn−2 + lbn−1)
, (2.2)

and apply the method for an−2

bn−2
.

We note that the first case (odd subscript) is used at most once, while the
correctness of the algorithm can be proved by induction on n showing that the
denominators of the unit fractions do not exceed bn(bn − 1).

Proof that these methods give the same Egyptian fraction expansions
If n is odd, then it follows from anbn−1 − an−1bn = 1 that 0 < bn−1 < bn is the
multiplicative inverse of an modulo bn, hence one step of Golomb’s method gives
(2.1), exactly the same sum as the continued fraction method.

If n is even, then (an−2+lan−1)(bn−2+(l−1)bn−1)−(an−2+(l−1)an−1)(bn−2+
lbn−1) = 1 implies that 0 < bn−2 + (l− 1)bn−1 < bn−2 + lbn−1 is the multiplicative
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inverse of an−2+ lan−1 modulo bn−2+ lbn−1, hence applying Golomb’s method for
an−2+lan−1

bn−2+lbn−1
, it gives

an−2 + lan−1
bn−2 + lbn−1

=
an−2 + (l − 1)an−1
bn−2 + (l − 1)bn−1

+
1

(bn−2 + (l − 1)bn−1)(bn−2 + lbn−1)

(l = cn, cn − 1, . . . , 1). It shows that after cn steps of Golomb’s method, we get
(2.2) from an

bn
.

3. Example

As an example, we calculate the Egyptian fraction expansions of the rational num-
ber 47

64 both by Golomb’s method and by the continued fraction method.

Golomb’s method Golomb’s method gives the result through the following
steps:

The multiplicative inverse of 47 modulo 64 is 15, hence 47
64 = 11

15 + 1
960 .

The multiplicative inverse of 11 modulo 15 is 11, hence 11
15 = 8

11 + 1
165 .

The multiplicative inverse of 8 modulo 11 is 7, hence 8
11 = 5

7 + 1
77 .

The multiplicative inverse of 5 modulo 7 is 3, hence 5
7 = 2

3 + 1
21 .

Finally, the multiplicative inverse of 2 modulo 3 is 2, hence 2
3 = 1

2 + 1
6 .

Summarizing these equations, it follows that the Egyptian fraction expansion
by Golomb’s method is

47

64
=

1

2
+

1

6
+

1

21
+

1

77
+

1

165
+

1

960
.

Continued fraction method The Euclidean algorithm gives the finite simple
continued fraction expansion 47

64 = 〈0, 1, 2, 1, 3, 4〉 and the sequences (ak)
5
k=0 =

(0, 1, 2, 3, 11, 47), (bk)5k=0 = (1, 1, 3, 4, 15, 64). Then the continued fraction method
works as follows:
First, by application of the odd subscript case we obtain 47

64 = 11
15 + 1

960 .
Thereafter we apply the even subscript case twice to get 11

15 = 2
3 + 1

21 + 1
77 + 1

165
and 2

3 = 1
2 + 1

6 .
Consequently, the Egyptian fraction expansion by this method is

47

64
=

1

2
+

1

6
+

1

21
+

1

77
+

1

165
+

1

960
,

which is the very same as above.

132 E. Gyimesi, G. Nyul



4. Connection with the Farey sequence method

Our observation could be verified also through Farey sequences. Denote by Fn

the Farey sequence of order n, that is the list of all reduced rational numbers in
[0, 1], having denominators less than or equal to n, in increasing order. The main
properties of Farey sequences can be found in [8, 9].

In [1], see also [3], the Farey sequence method is presented to obtain an Egyptian
fraction expansion of a positive rational number. Let 0 < a

b < 1 be a rational
number, where a and b are positive integers with gcd(a, b) = 1. If c

d is the preceding
fraction in Fb, then

a

b
=
c

d
+

1

db
,

where d < b, and we can continue the method on c
d .

We have to notice that in practice this form of the Farey sequence method
is only an algorithm in principle, because it says nothing about how to find the
preceding fraction in Fb.

Then it is straightforward that Golomb’s method coincides with the Farey se-
quence method, since ad = bc + 1 and 0 < d < b is the multiplicative inverse of a
modulo b.

On the other hand, the Farey sequence method gives the same result as the
continued fraction method, which can be deduced from the following fact: For odd
n, the preceding fraction of a

b = 〈c0, c1, . . . , cn〉 (c0 = 0) in Fb is 〈c0, c1, . . . , cn−1〉.
While for even n, the preceding fraction is 〈c0, c1, . . . , cn−2〉 if cn = 1, furthermore
〈c0, c1, . . . , cn−1, cn − 1〉 if cn ≥ 2. Thus the preceding fraction is a primary or
secondary convergent, which is already mentioned in a half sentence in [3].

5. Teaching possibilities

Elementary number theory textbooks, lecture notes (see e.g. [8, 9]) and under-
graduate courses often deal with Farey sequences and continued fractions. Our
experiences show that these topics are rather popular among university students.
Because of their interesting properties, they are also suitable to be the subject
of popular science lectures or mathematics study circles for advanced secondary
school students. At a higher level, in the theory of diophantine approximation,
both Farey sequences and continued fractions are used to give alternative proofs
of Hurwitz’s theorem. Nevertheless, these topics are always handled in separate
chapters, we can hardly find any sources about their connection.

Thanks to the simplicity of the necessary notions and the historical background,
we think that Egyptian fractions also give a rewarding topic to popularize mathe-
matics. On the other hand, at university level, as the lecturer’s material or as the
subject of students’ project work, it can be an unordinary base to introduce both
Farey sequences and continued fractions, as well as their properties. And it allows
us not only to study them separately, but one can find out their close connection,
as we have done above.
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Abstract

In this article we would like to introduce you to the educational struc-
ture of the program design and informatics course at the Eszterházy Károly
College. We will also mention the new fields of RFID system usage and
the importance of this system in winning a spectacular tender. Furthermore
you will get some details about the extra competencies our students gain by
taking part in the RFID project. In order to familiarize them with the ap-
pliances and their features used in the RFID technology we have established
a lab which serves more functions. First of all we find essential for students
to take part in tender-related projects. Moreover, it is also important for our
students to get the chance of learning the technology, using the appliances in
practice, and examining them while they are working.

The lab is continuously being updated with gadgets, this way students get
the opportunity of taking parts in group or individual projects beside their
“guided tour” and the theoretical class.
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1. Introduction

The aim of the program is training informatics experts capable of elaboration,
introducing, operating, maintaining, developing, and applying software-oriented
information technology equipments and systems either in groups or individually.
Furthermore, the acquired theoretical knowledge will ensure graduates to continue
their studies in second cycle M.A. programs.[7] Their education is separated to the
following fields.

1.1. Basic classes

Mathematical and Scientific basics (Introduction to informatics, Discrete Mathe-
matics, Calculus, Numeral Mathematics, Searching Operation, Combinatory and
Probability Theory, Computer Statistics) Theory of Computing (Logical basics of
Informatics, Theory of Computing, Automata and Formal Languages, Data Struc-
tures and Algorithms, Design and Examine algorithms, Basics of the Artificial
Intelligence, Introduction to Computer Graphics)

1.2. Profession-related classes

Software technology module: (Advanced programming languages, Translation pro-
grammes, Programming technologies, Programming environments, Assembly lan-
guages) Information systems module: (Database systems, Managing database sys-
tems, System design, Technology of system design)

1.3. Facultative profession-related classes

Computerised word and publication processing, Spreadsheet systems, History of
Informatics, Descriptive Geometry

1.4. Majors, specializations

Our students are capable of choosing specialization in the second half of the course.
The theses written about the following subjects have to be justified at the fi-
nal examination. Data models (Managing database systems 2, Advanced DBMS)
Networks (Examining the effectiveness of networks, Server administration, Dy-
namical WEB programming) Computer graphics and geometry (Computer graph-
ics, Graphical systems, Geometry modelling, Multimedia) Mathematical methods
within Informatics (Neural networks, Computer Statistics 2, Searching Operation 2,
Cryptography, Computer algebraic systems)
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1.5. Inserting Research & Development and Talent Develop-
ment into the course

We put a high pressure on seeking students, who are looking for a great academic
career, succeed at TDK competitions, or seem to be the future generation of lec-
turers and researchers. Students who turn out to be curious or talented in the
first term are attending lectures for two months held by the college’s researchers
to pique their interest. The common work gets started at the end of the second
term and might bring fruitful results in the second and third year. The college runs
three RFID and a Robotics lab, where students can learn some teamwork. Prob-
lems they solve in the labs are partly everyday programming issues, but sometimes
they work on tasks that might occur in the industrial sphere.

2. The RFID lab and the connecting projects

The lab was established in the Institute of Mathematics and Informatics in one
room in 2009. The inventory was partly ensured by the Institution like the fur-
niture, three workstations, and a server. The appliances of the lab were donated
by an industrial company. These appliances include a power-type industrial tag
printer, an RFID writer, and mobile RFID reader, installed with a compatible
PDA. These gadgets were expanded with a fix installed gate, and an RFID reader.
The mobile reader provides us to be able to take through examinations out of the
lab. We have expanded the tools with numerous passive RFID tags. They include
the paper-based tag used by the printer, and the industrially capable hardtag as
well. After the difficulties at the beginning, three enthusiastic students helped with
starting to run the lab.

We achieved the following results in the period 2009-2013:

Figure 1: Intermec mobile reader, PDA Windows CE
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Figure 2: industrial hardtags

2.1. Thesis
All together 14 thesis have been written based on the topic

• Usage of RFID in the library

• Temperature allowance of RFID tags

• Examining efficiency issues

• Attack possibilities and cryptography

• Stock registration with the help of RFID

• Possibilities of following the products manufacturing

2.2. Academic results
• 2 articles

• 2 conference articles

• 7 conference lectures and posters

• 1 submitted article

We began the examinations with using UHF passive tags.[6] Its reason roots
in the fact that the projects’ specification starting or running now requires it.
Moreover, they are absolutely capable of learning, taking examinations, coming to
know the system, and their price is more affordable, than active tags’.[3]

To sum up in this period approximately 15-18 students got in touch with the
RFID technology. Furthermore, with the help of projects and theses we have
managed to acquire the basics and pique the interest.

The TÁMOP-4.2.2.C-11/1/KONV-2012-0014 The developing possibilities of
RFID/NFC technology by the conception of “Internet of Things” tender has started
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on January 1st 2013. This tender is providing appreciable financial sources, and
the support of the engineers of the Bay Zoltan Institute also means a lot of help
for us. The number of the RFID labs has grown to three. The former lab contains
the appliances, antennas, and readers which are capable of examining the UHF
frequency interval. These tools have been expanded with more mobile readers and
industrial readers, ready to be installed.[5, 6]

Another examining room has been set up with tools to examine the features of
the electro-magnetic space and the active (33MHz) technology.

Figure 3: National Instruments examining set

The most amazing item of the third lab is the plotting board which is controlled
with RFID tags and readers working in the HF interval (13,56 MHz). Beside it the
lab contains readers, cards and tags which are necessary to learn about and work
with the HF/NFC technology.

The teachers of the Institute of Mathematics and Informatics are already work-
ing in the set-up labs, and under their control students can work on this technology.
In the first three years one teacher and 15-18 students were dealing with the RFID
technology. Winning the tender has given us such a boost that today 16 teachers
control 20 students’ job in the labs.

3. Part-tasks connected to the tender

The tender project is separated into part-tasks, which are joined by our students
as well. These are the following:

• Digital proprietary rights

• Reliability
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• Unionisation

• Localisation, tasks of the softwares and the middle layer

• Sensors, energy harvesting, data safety

• Hybrid technologies

Meanwhile the project was processing the basic research fields were expanded with
applied research and development projects. More projects are also joined by en-
thusiastic and wholehearted students:

• Entering and work-time registration systems supported with RFID

• Automatic library

• Selective waste collection using RFID

• Registering living animals and their health condition

• The effect of micro climate changes on the fauns, collecting physical data
automatically with the help of sensor networks

• Using RFID in food safety projects

The Institute of Mathematics and Informatics creates the RFID research institution
in order to continue the arrangement and coordination of the common work of
students and teachers in the above mentioned widespread basic and applied research
fields.

Managing to insert the Automatic identification subject into the course is con-
sidered to be a great success. This subject includes two lectures and two practices
a week. During the lecture the following topics are discussed:

• Review of the automatic identification, standards, and organisations

• The function, structure, mathematical background, and types of the 1D and
2D barcodes

• Security issues in the barcode technology, typical appliances and solutions,
steps of development

• Physical bases of the RFID system, dynamic EM spaces, and their description

• Basics of the RFID, standards, frequencies, physical bases

• Items of the system, tags, readers and their types

• Describing the RFID communication algorithm

• RFID system design, opened and closed systems, developing RFID softwares
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• Data security and cryptographic opportunities in the field of automatic iden-
tification

• Smartcards, chip cards, and their usage

• Social and judicial environment, expectations

Furthermore advantages can be made from the opportunities provided by the labs
and the programming competencies students have gained during the former terms.

• Using the plotting board

• Programming the plotting board. Signals.

• Programming the plotting board. Switches.

• Programming the plotting board. Mixed access.

• Mobile readers, type Intermec and Alien, passive tags.

• Chance of reading and programming on the mobile readers. Passive reading
and writing.

• Usage of active tags and readers

Figure 4: Plotting board with trains and HF tags

The work students do in the projects insensate and specialise their knowledge.
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Figure 5: Plotting board with HF readers

4. Summarize

All in all increasing the role of practice in the course is inevitable. This field could
be strengthened with projects generated by tenders. Students are unquestionably
eager to join the projects, work on them diligently, and profit from these experi-
ences during their latter work. Another highlighted aspect is that these students
own a vantage with their new and notable competency within the labour power.
According to our former experiences our graduated students are pleased to use this
vantage.
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