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Abstract

We benchmark the robustness of maximum likelihood based
uncertainty estimation methods to outliers in training data for
regression tasks. Outliers or noisy labels in training data re-
sults in degraded performances as well as incorrect estima-
tion of uncertainty. We propose the use of a heavy-tailed dis-
tribution (Laplace distribution) to improve the robustness to
outliers. This property is evaluated using standard regression
benchmarks and on a high-dimensional regression task of
monocular depth estimation, both containing outliers. In par-
ticular, heavy-tailed distribution based maximum likelihood
provides better uncertainty estimates, better separation in un-
certainty for out-of-distribution data, as well as better detec-
tion of adversarial attacks in the presence of outliers.

Introduction
The ability to estimate the uncertainty along with network
prediction has become a relevant feature for the adoption
of deep neural networks (DNN) in safety-critical and au-
tonomous systems (Borg et al. 2019; Schwalbe and Schels
2020). Accurate and calibrated uncertainties can be used to
gain confidence for making decisions in autonomous sys-
tems (Jha et al. 2018; Serban, Poll, and Visser 2020). Un-
certainty estimation is a challenging problem, especially in
high dimensional data because of the lack of ground truth re-
garding uncertainty. The presence of noisy labels or outliers
in the training data elevates the challenge of uncertainty es-
timation. Robust uncertainty estimation is the capability of
learning algorithms to correctly learn uncertainty by ignor-
ing the outliers. In this work we focus on the following re-
search question: For a regression problem, given a training
dataset, where an η-fraction of data are outliers, how can
we robustly estimate uncertainty in the predictions?

Uncertainty estimation approaches can be broadly classi-
fied in three categories: 1. Bayesian methods (Kendall and
Gal 2017; Dusenberry et al. 2020b); 2. Sampling based
methods (Gal and Ghahramani 2016; Lakshminarayanan,
Pritzel, and Blundell 2017); 3. Single-model methods (Nix
and Weigend 1994; Amini et al. 2020; Sensoy, Kaplan,
and Kandemir 2018) . Although, Bayesian and sampling
based methods provide state-of-the-art uncertainty estimates
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Figure 1: Depiction of the contrast in performance of uncer-
tainty estimation on one dimensional regression data con-
taining outliers. Row 1 shows data with no outliers while
row 2 data contains 10% outliers. The blue dots are clean
data while red dots are outliers. The shaded blue region is the
estimated uncertainty(three standard deviations). (a) Gaus-
sian loss function (Nix and Weigend 1994) (b) Ensemble
method (Lakshminarayanan, Pritzel, and Blundell 2017) (c)
Laplace loss function (ours)

(Dusenberry et al. 2020a; Wen, Tran, and Ba 2020) they have
come at a cost: increased training time, increased prediction
time and increased memory requirements. For example, the
Bayesian neural learning method by converting weights to
distributions (Blundell et al. 2015) requires a doubling in pa-
rameters, MC-Dropout (Gal and Ghahramani 2016) with 50
Monte Carlo samples will require 50x forward passes and
Deep ensembles (Lakshminarayanan, Pritzel, and Blundell
2017) with an ensemble size of 5 will require 5x the number
of weights. These become an operational challenge for their
adoption in real-time autonomous systems. On the contrary,
single-model based uncertainty estimation methods predict
the uncertainty with a single network, no increase in weights
and a single forward pass (Nix and Weigend 1994; Malinin
and Gales 2019; Sensoy, Kaplan, and Kandemir 2018). In
this work, we focus on single-model methods because of
their applicability to autonomous systems.

All the uncertainty estimation methods have worked ex-
clusively with clean datasets, however getting clean anno-
tated datasets in real world applications is a difficult task.
As a result, real world datasets collected even after hu-
man annotation contain large label noise (Algan and Ulu-



soy 2021). Learning in the presence of noisy labels is a
well studied problem for the classification task (Arazo et al.
2019; Xia et al. 2019; Li, Soltanolkotabi, and Oymak 2020).
Also learning uncertainty in addition to the classification in
the presence of label noise is now gaining importance be-
cause of safety (Neverova, Novotný, and Vedaldi 2019; Goel
and Chen 2021; Northcutt, Jiang, and Chuang 2021). Al-
though all these methods have been evaluated for their pre-
diction and uncertainty quantification for the classification
task, their performance for the regression task in the pres-
ence of outliers (noisy labels) is not a well studied problem.
In this work, we focus on the problem of robustly learning
accurate uncertainty in the presence of outliers.

To handle outliers in statistics, heavy-tailed distribution
(Student-t distribution, mixture of Gaussians and Laplace)
has been introduced (Lange, Little, and Taylor 1989; Tak,
Ellis, and Ghosh 2019; Pasi, Jarno, and Aki 2011). They
model the noise in the data using a heavy-tailed distribution.
As the heavy-tailed distribution assumes some data can be
present away from the mean, the outlier data produces com-
paratively less loss and have minimum impact while train-
ing. In this paper, we study the use of heavy-tailed distribu-
tions for maximum likelihood based uncertainty estimation
and benchmark their robustness to outliers in labels. In par-
ticular, we use the Laplace distribution as a heavy-tailed dis-
tribution because of its high breakaway point (Bosse, Aga-
mennoni, and Gilitschenski 2016), indicating the high pro-
portion of outlier data it can handle.

We formulate the loss function by taking the negative
log-likelihood of the Laplace distribution. This loss function
provides protection against outliers by reducing their effects
while training. This can be demonstrated with the help of
a toy example as shown in Fig. 1. The dataset is a one di-
mensional (1D) regression problem where the ground truth
y is a sine-wave. The dataset contains heteroskedatic noise
with varying levels of uncertainty across x. In addition to
the noisy data we also add 10% outliers to the data. The
addition of outliers results in a complete mis-calibration of
uncertainty estimated by Gaussian loss function (Nix and
Weigend 1994) and Evidential (Amini et al. 2020) however,
the proposed Laplace loss function uncertainty estimates are
not that degraded.

We benchmark the robustness of uncertainty estimation
methods when trained with noisy data. Specifically, this
work makes the following contributions:
1. we improve the robustness of uncertainty estimation by

modeling the loss function using a heavy-tailed distribu-
tion;

2. we evaluate the robustness of the loss function on a stan-
dard regression datasets benchmark and complex vision
regression task of depth estimation; and

3. we evaluate the use of predicted uncertainty for out-of-
distribution (OOD) detection and adversarial attacks de-
tection.

Uncertainty Estimation in Regression
In a regression learning problem we have a training dataset
D = (x, y) drawn from a joint distribution D(X,Y ), where
for each co-variate sample pair, x ∈ X is the input data and
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Figure 2: Negative log likelihood (NLL) (left) and probabil-
ity density function (PDF) (right) of the Laplace loss func-
tion

y ∈ Y is the label data. In addition we define a neural net-
work fθ parameterized by θ. We train the parameters θ of the
neural network by minimizing the empirical loss function `.

θ̂ = minimize
θ

R(θ); R(θ) = E
<x,y>∈D

[`(x, y, θ)]

In a typical (i.e. deterministic and non-robust) regression
problem, the loss function can be the sum of squared resid-
uals.

`(x, y, θ) =
1

2
(y − fθ(x))2

The above problem formulation can only do point estimates
and can be considered as estimating the mean of a probabil-
ity distribution. A simple extension is to estimate the entire
conditional probability distribution by predicting variance
σ2 (in case of Gaussian distribution assumption) in addition
to the point estimate µ (Nix and Weigend 1994). However,
a Gaussian distribution is not robust to outliers in training
data.

Improving Robustness with Heavy-Tailed
Distribution

We define the problem of robust uncertainty estimation.
Definition 1 (Robustly learning the output of a neural net-
work with bounded second moments under additive out-
liers). Let D be the set of n samples so that D = Dclean ∪
Doutlier, where Dclean is a subset of D and Doutlier satis-
fies |Doutlier| < ηn. Given an η-outlier set of samples from
D(x, y) and learn the output of a neural network ŷ and var
such that it minimizes |yclean−ŷ| and |var(yclean)−var(ŷ)|

Thus the goal of a robust loss function will be to ac-
curately predict the output and its uncertainty by ignoring
outliers in the data. In this paper we have selected a heavy
tail distribution, Laplace distribution for modeling the un-
certainty in the output.

Regression models using heavy-tailed error distributions
to accommodate outliers are studied in statistics by (West
1984). The heavy tail of the distribution reduces the impact
of the outlier while finding the maximum likelihood and thus
has limited impact on the predicted value and the uncer-
tainty. We choose Laplace as the heavy-tailed distribution
because of its well-defined moments and it has a concave
loss function, as is required for the uncertainty estimation.



Laplace Maximum Likelihood The probability density
function of a Laplace distribution is given by:

p(y|µ, s) = 1

2s
exp(−|y − µ|

s
) (1)

where p(y|µ, s) is only defined for s > 0 and µ ∈ R. We
use the Negative Log likelihood (NLL) of the Laplacian dis-
tribution −log(p(.|µ, s)) for training the neural networks

`NLL(x, y, θ) = − log(p(y|fµθ , f
s
θ ) = log(2fsθ ) +

|y − fµθ |
fsθ

(2)
The probability density function (PDF) and the NLL for dif-
ferent values of fsθ are plotted in Fig. 2. The loss function has
several properties that makes it suitable for gradient-based
optimization. The loss function is a convex function. The
convexity ensures that the loss is minimum when |y − µ|
is minimum and increases monotonically with respect to
|y − µ| .

min(− log(p(y|fµθ , f
s
θ )))⇒ fµθ = y

∂`

∂|y − fµθ |
≥ 0

(3)
The loss monotonically increases with respect to fsθ :

∂`

∂fsθ
(|y − fµθ |, f

s
θ ) ≥ 0 (4)

This property helps to learn the correct aleatoric uncertainty.
The monotonicity guaranteed by the loss function with re-
spect to s forces the optimization algorithm to reduce fsθ
when there is less aleatoric noise in the data. As can be
observed in Fig. 2, when fsθ is reduced the minimum of
NLL reduces, thus ensuring that the correct uncertainties are
learned.

Related Work
Uncertainty Estimation Nix and Weigend (1994) esti-
mated the uncertainty for regression problems by modeling
the output of the neural network as a Gaussian distribution
and learning the output using a Gaussian NLL loss func-
tion. This was the first demonstration of how the neural net-
work can learn the uncertainty in addition to the predicted
value. In the deep learning era, uncertainty estimation in
large-scale vision tasks was demonstrated by Blundell et al.
(2015) which represented the weights of network with dis-
tribution. Gal and Ghahramani (2016) estimated the uncer-
tainty by using dropouts and multiple forward passes. The
current state-of-the-art in uncertainty estimation is based on
ensemble methods (Lakshminarayanan, Pritzel, and Blun-
dell 2017; Dusenberry et al. 2020a; Wen, Tran, and Ba 2020)
which use a set of models under a single one. Even though
all these methods provide good uncertainty estimates, they
still require multiple forward passes from the model.

Single-Model Approaches to Uncertainty Estimation
Uncertainty estimation using a single-model can be achieved
by replacing loss function based approaches (Malinin and
Gales 2018; Sensoy, Kaplan, and Kandemir 2018; Amini
et al. 2020), computing closed-form posterior for the out-
put layer (Riquelme, Tucker, and Snoek 2018; Snoek

et al. 2015), changing the output layer (Calandra et al.
2016; Tagasovska and Lopez-Paz 2019), spectral normal-
ization (Liu et al. 2020), or by two-sided gradient penalty
(Van Amersfoort et al. 2020). Laplace maximum likelihood
builds on these approaches by replacing the loss function
and changing the output layer.

Robust Training in Neural Networks Robust training in
the presence of outliers is a classical statistics problem and
is dominated by M-estimator methods by Huber (2004). In
neural networks, a generalized M-estimator loss function
was proposed by Barron (2019), which uses the negative log
of the density function to improve robustness while train-
ing. Lathuilière et al. (2018) proposed the use of Gaussian-
uniform mixture model as a loss function which continu-
ously adapts as per the outliers in data.

Experiments
In this section we benchmark performance of the proposed
loss function. We will show that the proposed loss function
improves robustness to outliers in data. These benchmarks
are not intended to represent the state-of-the-art for any par-
ticular task; on the contrary they are intended to demonstrate
the capability of our loss function when learning uncertainty
with data containing outliers. We compare the following
uncertainty estimation methods: 1. Gaussian refers to the
model introduced in (Nix and Weigend 1994) 2. Ensemble
corresponds to the ensemble of deep learning method pro-
posed by (Lakshminarayanan, Pritzel, and Blundell 2017)
3. Evidential refers to the Normal-inverse-Gamma distri-
bution based uncertainty estimation by (Amini et al. 2020)
4. Laplace refers to the method we propose. We bench-
mark these methods in terms of uncertainty prediction in a
1D outlier regression dataset, real world regression datasets
and NyuV2 monocular depth estimation dataset with outliers
(Silberman et al. 2012).

We first discuss the need for new metrics for uncertainty
comparison and select an appropriate metric to benchmark
the predicted uncertainty. In the subsequent section we fo-
cus on benchmarking the breakaway point, which is the per-
centage of outliers that can be present in the data without
any significant change in the predicted output. We use a
synthetic 1D dataset for adding different percentage of out-
liers. As we will show, our proposed loss function is par-
ticularly effective even with a high percentage of outliers.
We further benchmark the methods on real world datasets
of regression to demonstrate how the proposed loss function
performs compared to other methods. Finally, we focus on
vision based learning task of monocular depth estimation.
Here we test the robustness of the methods to outliers by us-
ing the original depth dataset with outlier sensor noise. The
results demonstrate the capability of our proposed loss func-
tion to learn correct depth even in the presence of outliers.

Assessing Uncertainty Estimation Techniques
As this work focuses on the robustness capacity of DNNs to
correctly estimate the uncertainty, we needed metrics which
access the quality of the estimated uncertainty separately
from the quality of prediction. Scoring Rules are a group
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Figure 3: Breakaway Point estimation: (A) The change in RMSE and Interval score with respect to outlier percentage in the
data for the 1D regression dataset. (B): The uncertainty of the neural network output with different methods learned at different
outlier percentages η. The shaded blue region is three standard deviations.

of such metrics which assess the quality of predicted un-
certainties, by assigning a numerical score based on both
the prediction and uncertainty (Gneiting and Raftery 2007).
Most of the literature in uncertainty estimation for regres-
sion use root mean square error (RMSE) for comparing per-
formance of model and NLL for comparing performance of
uncertainty. Although NLL is a proper Scoring Rule it is not
comparable across different distributions. In this work we
use Interval score Scoring Rule.

Interval score uses the prediction interval, with lower and
upper endpoints represented by predictive quantiles at levels
α
2 and 1− α

2 . The Interval score is defined as :

Sintα (l, u; y) = (u−l)+ 2

α
(l−y)1{y < l}+2

α
(y−u)1{y > u}

(5)
The score rewards narrow predictions and penalizes predic-
tion outside the interval. For our experiments we fix the α
to 95%. Based on the mean and variance predicted by the
neural network, we first calculate the 95% quantile predic-
tion interval (l, u) which is then used to calculate the Interval
score. As the Interval score compares the 95% quantile pre-
diction interval it becomes comparable across different dis-
tributions (in our case Gaussian and Laplace distribution).

Empirical Breakaway Point Benchmark
In this experiment, we empirically benchmark the break-
away point for all the methods. Breakaway point is the
percentage of outliers that can be present in the dataset
after which the estimator predicts statistically wrong out-
puts (Huber 2004). Here we interpret the outputs as both
the predicted output and the predicted uncertainty. The re-
gression problem we consider is the 1D regression prob-
lem as shown in Fig. 1 which is a sine wave with increas-
ing aleatoric uncertainties along the x-axis. The particular
dataset was selected such that the network has to learn the
underlying aleatoric uncertainty even in the presence of out-
liers. The neural network is 4 layer fully connected network
with 100 neurons in each layer with rectified linear unit
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Figure 4: Benchmark Regression Tasks: RMSE and Inter-
val score for different methods and datasets. Our method
achieves statistical comparable results in eight of the nine
datasets in RMSE. While for Interval score it provides com-
parable in all the nine datasets

(ReLU) activation function. An illustrative scatter plot of the
dataset with outliers and the predicted uncertainty is shown
in Fig. 3-B. In this benchmark we start with no outliers and
increase the outliers upto 50% of the original dataset and
record RMSE and Interval score for each dataset. Fig. 3-
A plots the RMSE and Interval score for different levels of
outliers. Gaussian and Ensemble methods have breakaway
points at 10% outliers for the output prediction (Fig. 3-A
left plot), while for the uncertainties the breakaway point
is 10% for Evidential learning (Fig. 3-A right plot). In this
benchmark, we can conclude that the breakaway points are
different for the predicted output value and its uncertainty.
Some methods are better at output prediction and worse at
uncertainty prediction, while Laplace method performs best
on both the scenarios in the given example.

Benchmark Regression Tasks
In addition to the toy datasets we validate the uncertainty es-
timation with respect to real world datasets as used in the
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Figure 6: Outliers in the NYU-Depth-v2-dataset (Silber-
man et al. 2012). (A) Input RGB image (B) Depth image
captured from Kinect camera. The dark spots are outliers
where no depth information is available because of sensor
noise (C) The histogram of the depth where the outliers can
be separated

Lakshminarayanan, Pritzel, and Blundell (2017); Gal and
Ghahramani (2016); Amini et al. (2020). We replicate the
experiment and compare RMSE and the Interval score. The
purpose of the experiment is to compare the uncertainty
quality obtained from different methods to that of the pro-
posed method on real world datasets. Each experiment is
executed 20 times each with random sampling of the train
and test dataset. The network used is a fully-connected net-
work with 3 hidden layers containing 100 neurons, and was
trained to convergence. All models were trained with learn-
ing rate η = 5e−3 and batch size of 512. The results are
shown in Fig. 4. As seen in the results the proposed Laplace
method performs comparable to other uncertainty estimation
methods both in RMSE and Interval score. The Evidential
method shows some deviation in the predicted uncertainty
from the other methods in the Interval score plot for all four
datasets.

Monocular Depth Estimation with Outliers
Monocular depth estimation is a supervised regression task,
where the model is trained to predict depth of each cor-
responding pixel. The input data is a RGB image of size
HxWx3 and the label is a depth image with size HxW whose
pixel values represent the depth of the scene in meters. We
evaluate monocular depth estimation on the NYU-Depth-v2-

dataset which is collected in an indoor environment using a
Kinect v1 camera.

In fields of robotics, the datasets collected are noisy and
always contaminated with outliers. For example, in Fig. 6-
B we can observe black spots (outliers) which contain no
depth information, in the collected depth labels because of
sensor noise in the Kinect v1 camera. In the NYU-Depth-v2-
dataset the outliers in the images were removed by using the
Levin Colorization method. For our work, we have not re-
moved the outliers and used the depth labels along-with the
outliers. In order for the results to be comparable to Amini
et al. (2020), rather than directly using the outlier labels, we
simulate the outliers in the cleaned depth data using simu-
lated noise model of a Kinect v1 camera (Handa et al. 2014;
Barron and Malik 2013; Bohg et al. 2014).

The training dataset consists of 27K RGB-depth image
pairs. For comparison, we use the architecture similar to
Amini et al. (2020) which is a U-Net (Ronneberger, Fischer,
and Brox 2015) with spatial dropout. The goal of the ex-
periment is not to prove state-of-the-art depth estimation but
comparison of uncertainty estimation, hence we have lim-
ited to the popular depth estimation architecture. The U-Net
model consists of five convolutional and pooling blocks in
both the down-sampling and up-sampling parts. The input
image shape is (160,128). The final layer outputs HxWxn
layers, where n = 2 for Gaussian and Laplace regression
while n = 4 for Evidential regression. We perform three
independent runs for all the methods and report the distribu-
tion in all the experiments. The hyper-parameters used are:
Adam optimizer with learning rate 5e−5, batch size of 32
and over 70000 iterations. The evaluation is done using a
disjoint dataset with non-outlier depth labels.

Clean Data vs Outlier Data We report the comparison of
RMSE and Interval score between models trained on clean
depth data and depth data containing outliers in Fig. 5-C.
Clean depth data here we refer to the NYU-Depth-v2-dataset
in which the outliers are removed by using the Levin Col-
orization method, while outlier data is the depth data con-
taining outliers. The goal of the experiment is to showcase
the degradation in the uncertainty estimation when the depth
data contains outliers. In Fig. 5-C we can observe the change
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Figure 7: Adversarial detection (A) Error, (B) Entropy as
a function to adversarial perturbation ε on the NYU-Depth-
v2-dataset.

in performance and uncertainty estimation when trained
with outliers in data. First we observe that adding outliers
degrades performance of all the three methods which is as
expected. For Evidential, we observe there is large shift in
RMSE but less in Interval score, while for Gaussian the In-
terval score shift is highest. The change between both the
metrics is minimal for Laplace regression indicating robust-
ness to outliers.

Uncertainty Calibration Here we measure uncertainty
calibration of each method using calibration curves, where
the expected confidence (inverse of uncertainty) is plotted
with respect to observed confidence. The expected confi-
dence is calculated based on the error; for samples with
minimum error we expect maximum confidence and vice
versa. For a well calibrated method, the curve will follow
the line y = x. In Fig. 5-B we plot the calibration curves
for three methods. The results show calibration curves over
three independent trials represented by the shaded region in
different color. Here we observe that the Gaussian method
underestimates confidence in the low confidence region and
overestimates confidence in the high confidence region. Ev-
idential shows calibrated predictions, however, there is large
spread between indicating lack of reliability in learning.
Overall Laplace has the comparative best calibration over
multiple trials.

Adversarial Attack Detection The models which are
trained in the above section are evaluated on an adversar-
ial dataset generated using the Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy 2015), using
various values of the adversarial perturbation coefficient ε.
Adversarial images are artificial generated images with ε in-
tentional feature perturbation which causes the model to give
wrong predictions. The adversarial attack results for differ-
ent values of ε are shown in Fig. 7. We observe in Fig. 7-A,
that the error increases with increase in adversarial attack
for all the methods. In Fig. 7-B, we plot the entropy over
the range of ε. The desirable result is that the entropy should
increase for increasing level of ε (Amini et al. 2020), indi-
cating higher uncertainty for higher adversarial inputs. We
observe Laplace and Gaussian show an increase in entropy
as adversarial input increases. For Gaussian, we also observe
that for lower ε it has higher spread of entropy, thus indicat-
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Figure 8: Out of distribution Entropy comparison for in-
distribution (ID) data and out-of-distribution (OOD) data
(A) Comparison Box plot of entropy between ID and OOD
data (B) Entropy distribution for the Laplace method

ing high uncertainty for no adversarial input images. The
rise of uncertainty is minimum for Evidential. Thus we can
conclude that the Laplace loss function learns to estimate
appropriate uncertainty while learning from data containing
outliers.

Out-of-Distribution Detection We also evaluated our
trained models on an OOD dataset. The ApolloScape dataset
by Huang et al. 2018 was selected as the OOD dataset. The
ApolloScape dataset is also a depth estimation dataset con-
sisting of images from outdoor settings, thus making it ap-
propriate for testing OOD. The desirable result is an in-
creased uncertainty for OOD data predictions as compared
to In-distribution (ID) predictions. The predicted uncertainty
for OOD data should also be statistically different than the
ID predictions. This clear separation helps in defining a
threshold value for making informed decisions on trusting
the predictions. Fig. 8-A plots the interquartile box plots of
entropy which shows that only the Laplace method is able
to statistically distinguish between ID and OOD data. The
separation is minimum for the Evidential method. This is
corroborated in Fig. 8-B where we plot the distribution of
entropy for both ID and OOD data from the Laplace method.

Conclusion and Outlook
We have benchmarked maximum likelihood based uncer-
tainty estimation for deep regression. We observed that us-
ing Gaussian-based loss functions are not robust to outliers
in the training data and consequently provide inaccurate un-
certainty estimates. We proposed a heavy-tailed distribution
based loss function as an alternative in order to improve
robustness to outliers. The heavy-tailed Laplace loss func-
tion accurately estimates uncertainty in predictions and has a
high breakaway point compared to the other methods. When
applied to high dimensional datasets containing outliers,
such as depth estimation datasets, the Laplace loss function
is able to better estimate the uncertainties. Our proposed loss
function improves state-of-the-art in three uncertainty esti-
mating benchmarks: 1. high breakaway point; 2. detection
of OOD ; 3. detection of adversarial inputs. In the future



work, we would benchmark performance by modeling the
loss function with other heavy-tailed distributions. The pro-
posed robust loss function could benefit in building software
which uses uncertainty from the neural network for safe de-
ployment of deep neural networks in autonomous systems.
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