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Abstract. This paper gives an overview of the KIV system, which in
its long history has evolved from a prover for sequential programs using
Dynamic Logic to a general purpose theorem prover. Today, KIV’s main
focus is the refinement-based development of sequential and concurrent
software systems. In this paper we describe KIV’s logic, highlighting re-
cent developments such as support for polymorphism and for exceptions
in programs. We show its proof engineering support that uses a graphical
user interface and explicit proof trees, as well as KIV’s support for the
development of large-scale software systems using modular components
and for the verification of concurrent algorithms using a rely-guarantee
calculus. Finally, we give a short survey over the case studies that have
been conducted with KIV.

1 Introduction

KIV was originally developed in the 80’s by Maritta Heisel, Wolfgang Reif and
Werner Stephan at the chair of Prof. Menzel in Karlsruhe [25]. The original focus
was on developing proof support for the verification and synthesis of sequential
programs using Dynamic Logic [17]. Underlying the work was the development of
a specific functional “proof programming language” (PPL), that replaced LISP’s
basic data structure of s-expressions with proof trees.

Reiner Héhnle was one of the first students involved in the implementation
of PPL (that used an instance of Cardelli’s SECD machine [9] to interpret PPL)
and the realization of first deduction concepts. He co-authored [19]. This work
later influenced the design of the Key System [1], which also uses a version of
Dynamic Logic to verify Java programs.

Since then KIV has evolved to a general-purpose theorem prover, however,
still with a focus on developing verified software. KIV supports the refinement-
based development of sequential as well as concurrent software systems. The logic
has been extended to a higher-order temporal logic and recently polymorphism
has been added. The programming language now has exceptions and a code
generator supports generating Scala as well as C-Code.

The implementation language of KIV also changed a few years ago: KIV is
now programmed entirely in Scala [43].

* Partly supported by the Deutsche Forschungsgemeinschaft (DFG), “Verifikation von
Flash-Dateisystemen” (grants RE828/13-1 and RE828/13-2).



This paper gives an overview of the current concepts supported in KIV. It is
organized as follows. Sec. [2] introduces polymorphic higher-order logic, which is
the basis of our specification language. Exemplary specifications of the free data
type of lists and the non-free data type of heaps with separation formulas are
given.

Sec. [3] describes the core features of KIV’s proof engineering. Explicit proof
trees are used, that can be saved and manipulated, AC rewriting and heuristics
are used to automate proving theorems. Interaction takes place via a graphical
interface that allows context-sensitive rewriting by clicking on sub-expressions.

Sec. {4 introduces KIV’s program logic for sequential, abstract programs. In
contrast to many other theorem provers, which use (some variant of) higher-
order logic only and embed programs as data structures, KIV always had pro-
grams as a native concept together with a calculus for symbolic execution of
Dynamic Logic and wp-calculus formulas. The section then introduces KIV’s
concept of components, subcomponents, and refinement. Components are also
called abstract state machines (ASMs) since they are close to ASMs as defined
in [§]. Abstractly, a component can be viewed as an instance of an abstract data
type, i.e. a collection of operations working on a common state. When operations
are called sequentially, then refinement is essentially data refinement with the
contract approach [12].

Section Sec. [5] introduces KIV’s basic concepts for the verification of con-
current systems. This calculus has evolved over time. It started as a calculus
that views programs as formulas of interval temporal logic (ITL; an extension of
LTL) and is able to prove arbitrary temporal logic properties. Rely-Guarantee
(RG) formulas were initially defined as abbreviations [55]. They became native
concepts later on, with calculus rules that are stream-lined to the verification of
partial and total correctness of concurrent programs.

KIV also implements extensions of the component concept to concurrency.
Such components may either have concurrent internal threads (e.g. Garbage Col-
lection) or offer a thread-safe interface such that operations can be called by sev-
eral threads in parallel. They are proved to be linearizable [26] and deadlock-free
using proof obligations from RG calculus. A discussion of concurrent components
and the proof obligations that are necessary for their correctness is beyond the
scope of this paper, the interested reader should look at [4[52].

Sec. [6]gives an overview of some medium- to large-sized case studies that have
been verified with KIV. Finally, Sec. [7| gives some ongoing work and concludes.

2 Basic Logic and Structured Specifications

The basic logic of the KIV system is higher order logic (HOL), recently extended
from monomorphic to polymorphic types. The definition of the set of types Ty
is based on a finite set of type constructors Tc¢ with fixed arity [ (we write
te:l € Te) and a countable set of type variables ‘a € Twv. It is assumed that
the type constant bool is predefined, i.e. bool:0 € Tc. We will usually leave the
arity of type constructors implicit when writing types. Hence, a type ty € Ty is



an application of a type constructor, a type variable, a tuple type, or a n-nary
function type

ty =tel(ty) |'a| (ty) | ty =ty

where ty denotes a sequence ty; X ... X ty,, of types (we will use underlining to
denote sequences in general). The sequence must have [ elements in the appli-
cation of a type constructor, at least two elements for tuples, and at least one
element for function types.

Expressions e € Ezpr are defined over a set of (typed) variables z:ty € X
and a signature X' = (T¢, Op) which in addition to type constructors contains
(typed) operations op:ty € Op. Op always includes the usual boolean operations
like true : bool, = . : bool — bool (written prefix), or . A . : bool x bool — bool
(written infix), equality . = . : ‘a x ‘a — bool, an if-then-else-operator D:
bool x 'a x 'a — 'a, as well as tuple constructors (written (ey,...,e,)) and tuple
selectors (written e.g. e._3). The basic set of higher-order expressions, which will
be extended in Sec. [d] and Sec. [f] is defined by the grammar

e =z | op| eye) | Az.e | Vz. o | Tz. ¢

Here, ¢ denotes a formula, i.e. an expression of type bool, and the variables
of z must be pairwise disjoint. In the following we will also use t to denote
terms, which are expressions without quantifiers, and € to denote quantifier-free
formulas, which are used e.g. for conditions of programs (see Sec. . The typing
rules are standard, e.g. in an application the type of ey must be a function type,
where the argument types are equal to those of e. Operations are allowed to be
used with an instantiated type in theorems, but not in axioms (definitions). Most
types can be inferred by type inference, so we will leave the types of variables
and the instance types of operations implicit in formulas. Application of the if-
then-else-operator is written as (¢ D eg;es). Its result is ep if ¢ is true and ey
otherwise.

The semantics of an expression [e] essentially follows the semantics of HOL
defined in [18]. It is based on algebras A = (U, {tc:I'}, {op:ty}).

The first component of an algebra is the universe U, which is a set of non-
empty (potential) carrier sets. The semantics ted™ U - U of a type construc-
tor maps the carrier sets of its argument types to the one of the full type. The
semantics of booleans, functions and tuples is standard, i.e. U is assumed to con-
tain the set {tt, ff} that interprets booleans, and to be closed against forming
cartesian products and functions to interpret function and tuple types. Given a
type valuation w : Tv — U, that maps each type variable to a carrier set, an
algebra fixes the semantics [ty] (A, w) of a type as one of the carrier sets in U.

The interpretation op:ty”* of an operation over an algebra then yields an
element of [ty] (A, w) for every possible type valuation w. Finally, the semantics
of an expression [e] (A, w, v) refers to an algebra A, to interpret type constructors
and operations, a type valuation w, and a valuation v (compatible with w) that
maps each variable x : ty to an element of [ty](A, w). The result of [e] (A, w,v)
is an element of the carrier set [ty](A, w). We write A, w,v = ¢ when the



data specification
using nat

data types
list('a) =[] | . + . (. .head : 'a; . .tail : list('a)) ;

variables
X, y, z : list('a);
a: 'a;

size functions # . : list('a) - nat;
order predicates . < . : list('a) x list('a);

end data specification
Fig. 1: KIV specification of the generic free data type list.

semantics of a formula evaluates to tt. An algebra is a model of an axiom ¢
(A = ), iff the formula evaluates to true for all w and v.

In the following we are interested in valuations v that are used as (the chang-
ing) states of programs, while algebra A and type valuation w are fixed. In this
case we often drop these arguments and just write [e](v).

2.1 Structured Specifications of Algebraic Data Types

In KIV we use structured algebraic specifications to build a hierarchy of data
type definitions, which may be generated freely or non-freely. Such data type
definition specifications can be augmented by additional functions and can be
combined using the usual structuring operations like enrichment, union, and
renaming. KIV also supports a generic instantiation concept. It allows to replace
an arbitrary subspecification P (the “parameter”) of a generic specification G
with an actual specification A using a mapping. A mapping is a generalized
morphism that renames types and operations of P to types and expressions over
A. Such an instantiation generates proof obligations that require to prove that
the axioms of P instantiated by the mapping are theorems over A.

An example of a free data type specification is given in Fig. [I] for lists. A
list list('a) is defined using a constant constructor [] (representing the empty
list) and a non-constant infix constructor +. Non-empty lists consist of an head
element of generic type ‘a and and a remaining tail list. These fields can be
accessed via the selector functions .head and .tail, respectively.

For a free data type specification KIV generates all necessary axioms: the
constructor functions are injective, different constructor functions yield different
results, selectors and update functions (written e.g. x.head:= newhead) get def-
initions. Selector (and update) functions are not given axioms for all arguments:
[1.head is left unspecified (as is [1.tail). The semantic function in a model
then is still a total function, and [].head may be any value, following the stan-
dard loose approach to semantics. However, for use in programs, KIV attaches
a domain to the function, here given as A z.  # []. Calling .head outside of
its domain in a program (here: with [1, where it is “undefined”) will raise an
exception, explained in detail in Sec.

A size function (# z counts the number of non-constant constructors in z,
i.e. it calculates list length) and an order predicate (z < y iff x is a suffix of y)



can be specified, for which axioms are generated as well. Note that we abbreviate
functions with result type bool by omitting the result type and declaring them
as predicates.

2.2 Modelling the Heap and Separation Logic

The specification of non-free data types requires more effort as axioms cannot

be generated automatically. For example, we use the polymorphic non-free data

type shown in Fig. [2] to reason about pointer structures in the heap. A heap

can be considered as a partial function mapping references r to objects obj of a

generic type ‘a, where allocation of references is explicit. As stated by the “in-

duction” clause, the heap(‘a) data type is inductively generated by the constant

() representing the empty heap, by allocating an new reference r (written b ++ ),

or by updating an allocated location r with a new object obj (written h[r, obj]).
For a non-free data type one has gouaric specification

to give an extensionality ariom: two Eg;:;‘eﬁgz ref

heaps are considered to be equal if target

they have allocated the same locations sorts heap('a);

and they store the same objects un-

der their allocated locations. This def-

constants @ : heap('a);

o Rk o predicates
inition requires two additional oper- . €. :ref x heap('a);
ations that also have to be axioma- variables
tized. A predicate r € h is defined for ho:heapta);
checking whether a reference is allo- obj : 'a;
cated in a heap and a function h[r] partial functions
. . . . . ++ . : heap('a) x ref - heap('a)
is used for looking up objects in the with A h, r. r=null A~ r € h;

. . -- . 1 heap('a) x ref - heap('a)
heap (this corresponds to dereferenc- with Ah, rr=null ar e h;
ing a pointer). References can also be SO Ei:ﬁ(la% *rre: : [‘]311 N
deallocated by the function h -- r. . [ .1 : heap('a) x ref x 'a - heap('a)

. with A h, r, obj. r = null A r € h;
The constructor functions as well
induction

as lookup and deallocation are de-
clared as partial functions in order
to specify valid accesses to the heap.

heap('a) generated by &, ++, [ |;

axioms

extensionality:

This requires to give domains for yhe=hievr. (reheerehnl)
the functions (see lambda clauses in A (r € he = holr) = hlrh);
Fig.[2): Accesses to the heap with the i - definitions of € [ 1,

null reference are always undefined end generic specification
(r # null) and allocation is only al-
lowed for new references (- r € h).
Lookups, updates, and deallocations
are defined only for allocated references (r € h).

This explicit specification of the heap is necessary since in KIV all parameters
of procedures are explicit. Hence, when reasoning about pointer-based programs,
like a pointer-based implementation of red-black trees, the heap must be an ex-
plicit parameter of the program as well. To facilitate the verification of such
programs we built a library for Separation Logic (SL) [4§] in KIV. SL formu-

Fig. 2: KIV specification of the polymor-
phic non-free data type heap('a).



las are encoded using heap predicates hP : heap(‘a) — bool. A heap predicate
describes the structure of a heap h. At its simplest, h is the empty heap emp:

Femp(h) <+ h=10

The maplet r — obj describes a singleton heap, containing only one reference
r mapping to an object obj. It is defined as a higher-order function of type
(ref x'a) — heap(‘a) — bool:

F (r— obj)(h) <> h = (D ++ r)[r, obj] A r # null

More complex heaps can be described using the separating conjunction hPy * hP;
asserting that the heap consists of two disjoint parts, one satisfying AP, and one
satisfying hP;, respectively. Since it connects two heap predicates, it is defined as
a function with type (heap(‘a) — bool) x (heap('a) — bool) — (heap('a) — bool):

F (hPy % hP;)(h) <> 3 ho,ha. ho L hy A = hoUhy A hPy(ho) A hPy (ki)

Besides the basic SL definitions, the KIV library contains various abstractions of
commonly used pointer data structures like singly-/doubly-linked list or binary
trees. These abstractions allow to prove the functional correctness (incl. memory
safety) of algorithms on pointer structures against their algebraic counterparts.

3 Proof Engineering

Proof engineering (in analogy to software engineering) is the process of develop-
ing a verified software system. Since the goal is mechanized verification, the tool
support a verification system can provide for speeding up the process is very im-
portant. The process includes various complex and time-consuming tasks. Struc-
tured specifications containing axioms and definitions must be set up or (better)
reused from a library, properties must be formalized, and finally proved. Many
revisions are necessary when proofs fail or definitions are found to be inadequate.
Only a small part of the effort is verifying the final theorems with the correct
axioms, where flexible features to automate proofs are crucial to avoid repeating
the same interactive proof steps over and over. Most of the effort is spent re-
structuring specifications, revising axioms and theorems, and then particularly
correcting proofs that become invalidated by these changes, so that maintaining
a large lemma base is a critical factor in developing a verified system.

One key building block of KIV to address these challenges is the Graphical
User Interface (GUI), which provides intuitive and interactive support for the
proof engineer. Algebraic specifications and theorems can be managed via a
graphical representation of the specification hierarchy (see Sec. [3.1)). Theorems
are proved semi-interactively in the GUI, where proof automation techniques
like heuristics or the automatic rewriting of expressions support the user (see
Sec. . Proofs are visualized explicitly as proof trees that give insight into
every proof step and offer direct manipulation of the proof (see Sec. [3.3)).

The KIV system is publicly available as an IDE plugin developed in Scala.
More information about the setup can be found at [28].



3.1 Management of Specifications and Proofs

The basis of the development is a hierarchy of specifications that can contain
data type definitions, components (see Sec. 7 and structuring operations (union,
actualization, enrichment, etc.). This hierarchy is called the development graph
and shown graphically. It is the starting point when developing a software project
in KIV. A specification (a node in the graph) has a theorem base attached that
contains axioms and theorems (some of them may be proof obligations) together
with their proofs, as far as they have been done.

A specification can be in different states, depending on whether it has just
been created, is imported from a library, or is currently valid. Changing a sub-
specification may yield an invalid specification that must be fixed, e.g. when
some signature symbols used in axioms has changed. When all theorems over a
specification have been successfully proved, it can be put in proved state, which
asserts that all lemmas used in proofs that are from subspecifications are still
present in some subspecification. Deferring this check for entering proved state
allows to avoid invalidating proofs on restructuring specifications. It also avoids
the need to enforce a bottom-up strategy for proving theorems. In general, the
correctness management of KIV always minimizes the number of proofs that are
invalidated when specifications or theorems are changed. When all specifications
are in proved state, the correctness management guarantees that all theorems
are proved and do not have cyclic dependencies.

The development graph also offers access to work on a particular specifica-
tion. When selecting a specification, the theorem base is loaded and an overview
is shown that gives information about its axioms, and its proved, unproved,
and invalid lemmas. At this level, theorems can be added, edited, and deleted.
Axioms and theorems can be declared as simplifier rules, which are then used
automatically in proofs (see the following section). For the theorems of the spec-
ification, new proofs can be started, existing proofs can be deleted, and partial
proofs can be continued. KIV projects can be combined by importing (parts
of) other projects and using them as a library. The standard library included
in the KIV plugin provides specifications for common data structures like lists,
arrays, sets, and maps. Other libraries define support for separation logic (see
Sec. , or provide basic locking constructs (mutexes, reader-writer locks, and
conditions) to support concurrency. Providing an exhaustive library also has the
benefit of adding many useful simplifier rules to the theorem base, such that
verification effort will be reduced drastically.

Finally, the KIV application offers general features, like exporting projects to
an HTML representation (presentations of many projects can be found at [30])
or viewing proof statistics for projects or individual specifications.

3.2 Proving Theorems

Proving theorems in KIV is done using a sequent-based calculus. A sequent
I' b A abbreviates the formula Vz. A I' — \/ A where I" (the antecedent) and
A (the succedent) are lists of formulas and z is the list of all free variables in



A and I'. The rules of the calculus follow the structure of the formulas and are
applied backwards in order to reduce the conclusion to simpler premises, until
they can be closed using axioms.

KIV facilitates this process for proving theorems by using extensive automa-
tion combined with interactive steps performed by a proof engineer. Therefore
the interface must help the proof engineer to understand the automated steps
and to identify possible actions. The interface for proving consists of two parts:
one for the proof tree (see Sec. and another for performing proof interac-
tions. The latter is the most important part of the GUI and is shown in Fig.
The large area in the middle contains the sequent of the current goal, i.e. what
currently has to be proven. The left-hand side shows the list of calculus rules
that can be applied to the goal. A status bar under the menu bar provides in-
formation about the proof: the name of the lemma, the number of open goals,
the number of the current goal, and the total number of proof steps.

KIV Specification heap
File Theorems Proof Control Goal Strategy Simplifier Unit Edit View Latex Print

exin-uni Open goals: 1. Current goal: 1. Proof steps: 12.

Strategy

ho u (¢ ++ rilr, ol. o r e hO (157 Heuristic:

subst equation+discard (left to right)

subst equationtkeep (left to right)

VD induction ### show info for symbol ###

structural induction ### display reverted rules ###

cut formula ### display rules rewriting to false ###

constructor cut exin (): + r #null + (r € h # (3 W0, o. h = (B0 ++ r)lr, o] A - r € hO))
apply lemma in-uni (J): F h0 L h1 > (r e O U hl # T € hO ¥V r € hl)

apply rewrite lemma subset-in (): F 0 C hi AT € h0 + r € hi &

unfold | i ——
1 i|® set-union

apply elim lemma

apply proof lemma

subst equation

shostak

Fig. 3: Sequent of a proof goal with context sensitive choice.

The proof engineer must choose the next proof step, if no rules are applicable
by the automation. This is usually done context-sensitively, as shown in Figure 3]
When the user moves the mouse over the sequent, the KIV system permanently
determines the smallest (sub-)expression and highlights it. Right-clicking on a
formula opens a context menu with applicable rules. If the leading symbol is
a logical connective, the rules for dealing with this connective are offered, e.g.
“quantifier instantiation” for quantifiers. If the leading symbol is a predicate, a
list of applicable rules is shown.

Figure [3]shows the result of a click on the predicate € in the expression = 7 €
hOU(D ++ r)[r, obj] in the antecedent. It shows the three rewrite lemmas matching
on the selected part of the expression out of the hundreds of lemmas in the
theorem base. When the user selects the rewrite lemma in-uni: = h0 L hl — (r €
hOU Al <> r € hOVr € hl) from the context menu, all occurrences of the selected
expression are rewritten to - € hOV r € (B ++ r)[r, obj]. The precondition
generates a side goal where one has to prove h0 L (@ ++ r)[r, 0bj]. The context-



sensitive computation of applicable lemmas restricts the theorem base to the
relevant cases, so that even very large verification projects remain manageable.

Besides applying rules manually, KIV of-

: . current proof - o X
fers different levels of automation: the user
. . . . Operations  Zoom (%): « iy
can switch between different sets of heuristics -
blastMN-all- B |

that automatically apply calculus rules. The
base heuristic that is used in every proof is
the simplifier The simplifier rewrites the cur-
rent goal by applying rules and lemmas that
simplify the sequent. This includes applying
all the propositional rules of sequent calcu- blastli-recg:
lus with at most one premise as well as the
two rules that eliminate quantifiers (universal
quantifier right and existential quantifier left).
The simplifier also applies simplifier rules that
are lemmas following the pattern of condi-
tional rewrite rules and of forward rules if en-
abled by the user: Rewrite rules replace terms
with simpler terms, forward rules are typically
used to add transitive information to the goal. |blastirecg:
Application of these rules is performed mod-
ulo associativity and commutativity, the strat-
egy is currently enhanced to include matches
modulo neutral elements as well. Addition-
ally, specialized heuristics are available, de-

1

blastMN-all-81

WView Sequent
View Sequent in new window

Prune ’iree

Replay
Save-Prune-ViewOld

Apply as Proof Lemma
Apply VD Induction

pending on the content of the sequent. E.g., Make Lemma
. 1At . Show History
for sequents containing programs (see Sec. |4)), oy

different heuristics performing symbolic execu- Collapse subtree
tion can be selected. Furthermore, KIV offers

heuristics that call the SMT solvers Z3 Fig. 4: Example of a proof tree.
and CVC4 [2].

3.3 Proof Trees

A proof tree like the one shown in Figure [4] is a graphical representation that
shows the applied rules in a particular proof step. Typically a proof tree consists
of 20 up to 300 steps. For every step of the proof, the current sequent, the
applied proof rule, used lemmas and simplifier rules, the used substitution for the
variable instantiation, the active heuristics, and a lot of internal information are
stored and accessible. Characteristic proof steps are easy to identify, similarities
between different parts of the proof can be recognized, and the proof can be saved
in any state and continued later. If a premise of a proof cannot be closed, the
proof tree allows to easily trace back the problem to its cause, e.g. a problematic
branch of a program present in the original conclusion.



The nodes of the proof tree have different forms and colors. Filled circles
represent steps performed by a heuristic; open circles represent interactive steps.
The color indicates the different kinds of steps. For instance, induction steps
are red. The edges of the proof also have different colors. Edges leading to an
incomplete subtree are red, the edges of completely proved subtrees are green.
At the nodes representing the interactive usage of a lemma, the name of the
lemma is added to the node.

Clicking on nodes allows to view information about the goal or to inspect
which simplifier rules have been used by the simplifier. When a premise is not
provable, tracing through the branch is regularly used to identify where or why
something went wrong.

Incorrect decisions can be undone by standard chronological backtracking.
But since the incorrect step is usually not the last one, it is typically done
by pruning the proof tree, i.e. removing the complete subtree above a selected
node. Often fixing the incorrect step allows to successfully reapply the steps of
the subtree (without its incorrect first step) that has been pruned away, since
the approach for proving the branch is not affected by the fix.

Such a reapplication is directly supported in KIV with the replay functional-
ity. The mechanism allows the user to reuse (parts of ) proofs, even if the goal has
changed, using a sophisticated strategy to adjust proof steps. Thus, replaying is
also a powerful tool for re-validating invalid proofs: if a proof becomes invalid
due to a minor change in one (or some) of its used theorems, most of the time,
the old proof can be replayed automatically (the same applies if the theorem
goal itself has changed).

All in all, KIV offers helpful features to support the proof engineer in the
process of developing specifications and proofs. Among them are a direct interac-
tion with the proof structure through proof trees, assistance for automation using
heuristics, and context-sensitive rule selection. Finally, KIV’s correctness man-
agement supports maintaining many proofs split into theorem bases for many
specifications. More detailed information on the KIV GUI can be found in [20].

4 Components, Refinement and Program Logic

4.1 Sequential Programs

KIV features an imperative programming language with recursive procedures.
Recently, the programming language was extended by constructs for exception
handling. The syntax of sequential programs in KIV is given by the grammar
a:= skip | abort | z:=1 | aj;as | if € then «; else ay
| let 2 = ¢ in « | choose z with ¢ in oy ifnone a5 | a1 or ay
| while ¢ do « | proc#(¢;z; y) | throw op | try a catch

The program skip does nothing and abort is the program that never terminates.
Assignments x := t assign each variable x; the value of term ¢; simultaneously.
This allows for swaps of the form z,y := y,z in a single statement with no
additional variables necessary. Two programs «; and as can be executed in order



by sequential composition (;). The if-then-else and while programs function
as usual.

The let program is used to introduce new variables z initialized with values
t. choose also introduces new local variables z but with a random valuation
that satisfies a condition . If such a valuation can be found, the program oy
is executed using these variables. If no values that satisfy ¢ exist, the program
ag is executed. The or program makes an nondeterministic choice between two
programs oy and as.

For if-programs the else-branch can be omitted if as is the program skip.
Similarly, for choose-programs as can be dropped if it is the program abort.
A ‘with true’ clause in a choose can be omitted too.

A procedure proc# can be called with input arguments ¢, reference argu-
ments z, and output arguments y by the statement proc#(¢; z; y), where the
different argument types are separated by semicolons. Input arguments may
be arbitrary terms while only variables are allowed to be passed as reference
and output arguments. Typically, a procedure has a declaration of the form
proc#(z; y; z){a} with disjoint formal parameters z, y, and z. o must set all
output parameters z, only the input parameters z and the reference parameters
y can be read in «. Updates to z and y are allowed, however, updates to z are
invisible to the caller of proc#. B

The recently added try-catch and throw constructs enable exception han-
dling in KIV programs. A program statement may now raise an exception if a
partial function (see Sec.|2) is applied to arguments outside of its domain. Each
exception is thus coupled with an operation op. For example, the subtraction op-
eration — on natural numbers throws its exception in the program m := ng —ny
when ng < np. Additionally, the exception of operation op can be thrown explic-
itly by the throw program. try-catch blocks can be used to catch exceptions
within a program « by giving exception handlers

7 = case op; i (1; ... ; case op, :: ap; default :: agefaui

7 can contain exception handlers for any number of operations op,, ..., op,, as
well as an default exception handler (both are optional). If the leading statement
of o throws an exception op, for which a matching handler case op, :: a; € 7
exists, the remaining statements of « are discarded and «; is executed. If no
matching handler exists but there is a default handler, then a gefqau is executed,
otherwise the exception is not caught.

A small-step semantics of concurrent programs is explained in Sec. 5| For
sequential programs the semantics can be abstracted to a relation [af C ST x
ST x(Op U {T}) between states ST (valuation of program variables), augmented
with Op and T to express termination with or without an exception. (v,v’,() €
[«] iff there is a terminating execution of the program « starting in state v € ST
and finishing in state v € ST, without raising an exception (if { = T) or finishing
with an exception ¢ € Op.



4.2 Weakest Precondition Calculus with Exceptions in KIV

Reasoning about sequential programs in KIV is done with a weakest-precondition
calculus, borrowing notation from Dynamic Logic (DL) [24] including its two
standard modalities: formula [« (boz) denotes that for every terminating run
the final state must satisfy ¢, corresponding to the weakest liberal precondition
wlp(a, ¢). The formula ()¢ (diamond) guarantees that there is a terminating
execution of « that establishes . Finally, the formula (a)) ¢ (strong diamond)
states that the program « is guaranteed to terminate and that all final states
reached satisfy ¢. This is equivalent to the weakest precondition wp(«, ¢). For
deterministic programs the two formulas (a)p and (af) ¢ are equivalent. As a
sequent, partial and total correctness of « with respect to pre-/post-conditions
Pre/Post are written as Pre - [a]Post and Pre b {a) Post. To handle excep-
tions the modalities are extended by exception specifications

£=op; i1, ..., OPy it @k, default 2 @gepun

which yields program formulas of the form {a) (¢ ; &), {(a)(¢; &), and [a](¢ ; &),
respectively. The exception specifications allow to give additional postconditions
for executions that terminate with a specific exception, e.g. ¢; must hold if
o terminates with exception op;, or to give a generic exception postcondition
Pdefaulr for executions of a that terminate with an exception op ¢ 0Py, --,0P-
If one wants to show the absence of exceptions, the exception specifications
¢ = default :: false can be chosen, which is the default and omitted from
program formulas.

The main proof technique for verifying program correctness in KIV is sym-
bolic execution. Basically, a symbolic execution proof step executes the first state-
ment of the program and calculates the strongest postconditions from the pre-
conditions. When the symbolic execution of the program is completed, the proof
of the postcondition is performed purely in predicate logic. In the following we
will present an excerpt of the calculus rules for program formulas in KIV, with
a focus on the recent addition of exceptions and exception handling.

Fig. [5| shows the rule for parallel assignments for total correctness (the rule
is identical for the other modalities). The rule uses a vector 2’ of fresh variables
to store the values of x before the assignment. The assignment is removed and
instead the formula z = L% is added to the antecedent ( ﬁ/ denotes the renaming
of z to 2’ in t). Note that renaming is possible on all program formulas, while
substitution of z by general terms t in {af ¢ is not possible and just yields
{z := t;a) ¢. Only when the assignment is the last statement of the program
and « is missing, the standard premise of Hoare calculus, which replaces the
program formula in the premise with wi , can be used.

Since the expressions t can contain partial operations, this is correct only
when the evaluation of ¢ does not raise any exception: we use d(e) to describe
the condition that the expressions e are defined, i.e. that all partial operations
in e are applied to arguments within their respective domain. For example, a
heap constructor term (h ++ rg)[r1, 0bj] (see Sec. produces the definedness
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Fig. 5: Calculus rule for assignments.

condition
S((h ++ 19)[r1, 0bj]) = (ro Znull A = rg € h) A (1 Znull A 1 € (h++ 1))

Exception premises Exc(I', A, t, ,£) need to be shown for all potential viola-
tions of §(¢), i.e. for all partial operations op,,...,op,, in ¢, throw premises are
generated. For each partial operation an exception condition is calculated follow-
ing a bottom-up approach: the exception is thrown if and only if an application
of op, violates the domain of op, and the evaluation of its arguments does not
throw an exception. E.g. the assignment h := (h ++ rg)[r1, 0bj] would yield the
two exception premises

Exc(I, A, (h ++ 19)[r1, obj], ¢, §) =
(1) I'= 19 =null V 1y € h — (throw ++ |) (¢; &), A
(2) I'F (ro #null A =g € h) A (rp=mnull V =1 € (h++ 1))
— (throw [ 1) (¢; &), A

Computing exception clauses uses the standard left-to-right strategy for evaluat-
ing arguments, and a shortcut semantics for boolean connectives (like Java and
Scala). The test y # 0 A x/y = 1 of a conditional will never throw an exception,
while switching the conjunction will throw the division exception, when y = 0.

The rules for throw are quite simple. If an operation is thrown for which
a specific exception specification op :: ¢ is given in &, the program formula
is discarded and replaced by the exception postcondition @¢. If there is no ex-
ception specification in £ for the thrown operation op, the default exception
postcondition @ gefauit must hold.

The try-catch-rule shown in Fig. [f] takes advantage of the fact that excep-
tion postconditions can also contain program formulas. The program « can be
executed symbolically with adjusted exception specifications ¢’ that include the
exception handling of 7. ¢ contains exception specifications for all operations
that have either already a specification in & or have a case in 7. For an operation
op the adjusted exception postcondition 4,07’£ is defined as

/ (/) (p; &) ifcaseop:a €
o = & n
3 pe 1f°P¢ﬂ/\Op::<,05€§

If an exception handler was given for op, <p’€ is set to a program formula with the
exception handler program «’ and the original postcondition ¢ and exception
specifications £. This has exactly the desired effect: if an op exception is thrown
within «, symbolic execution continues with o’ while the postcondition is still
. For operations without a case in 7, the exception postcondition remains un-
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Fig.6: Calculus rule for try- I'  (while € do o) (¢ ; §), A
catch programs.

Fig. 7: Invariant rule for while loops.

changed (p; = ¢¢). The adjusted default exception postcondition ¢/, is con-
structed similarly. If there is a default exception handler default :: agefauir € 7,
a program formula with agefaui: is built, otherwise the default postconditi(;n
Pdefaur from & is used.

Proofs about recursive procedures are typically done using (well-founded)
induction. For while-loops, typically the invariant rule shown in Fig. [7]is used,
though the more general induction rule occasionally leads to simpler proofs (see
e.g. the proof online at [30] for Challenge 3 at the VerifyThis2012 competition).

The rule requires an invariant formula INV as an input from the user from
which multiple premises need to be proven: the invariant must hold at the be-
ginning of the loop (1), INV must be stable over the loop body « (3), and
INV must be strong enough to prove the postcondition ¢ after the loop was
exited (4). Similar to the assignment rule, exception premises are generated for
the loop condition € (2). These cannot include I" or A as ¢ is evaluated again
after each iteration. Instead, the invariant INV can be assumed as well as d(g)
for premises (3) and (4). The figure shows the rule for total correctness which
requires to give a variant ¢ that decreases with every iteration of the loop (¢ < z
in premise (3)). The rule functions analogously for diamond formulas, for partial
correctness no decreasing variant is necessary.

4.3 Hierarchical Components and Refinement

For the development of complex software systems in KIV we use the concept
of hierarchical components combined with the contract approach to data refine-
ment [12]. A component is an abstract data type (ST, Init, (0p;);e.) consisting
of a set of states ST, a set of initial states Init C ST, and a set of operations
Op; C In; x ST x ST xOut;. An operation Op; takes inputs In; and outputs Out;
and modifies the state of the component. Operations are specified with contracts
using the operational approach of ASMs [6]: for an operation Op;, we give a pre-
condition pre; and a program «; (that establishes the postcondition of the oper-
ation) in the form of a procedure declaration op;#(in;; st; out;) pre pre; {a;}.
Instead of defining initial states directly, we also give a procedure declaration
INit# (ininit; St outingt) {Qinit} where in;p,;; are initialization parameters, that
determine the intial state, and out;,;; is an error code, that may indicate that
initialization with these parameters failed.



Components are distinguished between specifications and implementations.
The former are used to model the functional requirements of a (sub-)system and
are typically kept as simple as possible by heavily utilizing algebraic functions
and nondeterminism. The approach is as general as specifying with pre- and
postconditions, since choose st’, out’ with post(st’,out’) in st, out := st’, out’
can be used to establish any postcondition post over state st and output out.
Implementations are typically deterministic and only use constructs that allow
to generate executable Scala- or C-code from them with our code generator.

The functional correctness of implementation components is then proven by a
data refinement of the corresponding specification components (we write C < A if
C = (STC, InitC, (0pf) e ) is a refinement of A = (ST, Inith, (0p});cs) where
C and A have the same set of operations J). Proofs for such a refinement are
done with a forward simulation R C ST* x ST° using commuting diagrams.
This results in correctness proof obligations for all j € J (an extra obligation
ensures that Init* and Init® establish matching states).

R(st*, st%), prej(st)
- Qopjc-#(inj; st% out;)) (0p§#(inj; st out;))(R(stA, st) Aout; = out;)

Informally, one has to prove that, when starting in R-related states, for each run
of an operation op$# of C there must be a matching run of opj# of A that
maintains R(st*, sté) with the same inputs and outputs. The obligations also
require to show that the precondition pre?(st“) is strong enough to establish the
precondition pre$(st®) if R(st*, st®) holds. This obligation is implicit as the call
rule creates this premise for a procedure with a precondition.

For each component invariant formulas inv(st) over the state st can be given,
which must be maintained by all (Op,);e,. This simplifies (or even makes it pos-
sible in the first place) to prove the correctness proof obligations of a refinement
as invariants inv*(st*) and inv®(st®) are added as assumptions. If an invariant
is given for a component, additional proof obligations for all its operations are
generated that ensure that the invariant holds. Additionally, one can give an
individual postcondition post;(st) for an operation which extends its invariant
contract.

pre;(st), inv(st) = (op;#(ing; st; out;)|) (inv(st) A post;(st))

These invariant contracts can be applied when proving the refinement proof
obligations and may further simplify the proofs since symbolic execution of the
operation can be avoided. The theory has also been extended with proof obliga-
tions for crash-safety, see [16] for more details.
To facilitate the development of larger systems, we
A; introduced a concept of modularization in the form of
subcomponents. A component (usually an implementa-
tion) can use one or more components as subcompo-
Ci |_CO_| Ain nents (usually specifications). The client component
cannot access the state of its subcomponents directly
but only via calls to the interface operations of the
subcomponents. Using subcomponents, a refinement

Fig.8: Data refinement
with subcomponents.



hierarchy is composed by multiple refinements like the one shown in Fig. [§] A
specification component A; is refined by an implementation C; (dotted lines in
Fig.[8) that uses a specification A;11 as a subcomponent (—©— in Fig. |8| we write
Ci(A;41) for this subcomponent relation). This pattern then repeats in the sense
that A;41 is refined further by an implementation C;41 that again uses a subcom-
ponent A; 1o and so on. A; may also be used as a subcomponent of an implemen-
tation C;_; if it is not the toplevel specification. The complete implementation
of the system then results from composing all individual implementation com-
ponents Co(C1(Cz(...))). In [16] we have shown that C < A implies M(C) < M(A) for
a client component M which ensures that the composed implementation is in fact
a correct refinement of its toplevel specification Ag, i.e. Co(C1(Ca(...))) < Ag. This
allows us to divide a complex refinement task into multiple, more manageable
ones.

5 Concurrency, Temporal Logic and Rely-Guarantee
Calculus

5.1 Concurrent Programs and Their Semantics

KIV supports concurrency in the form of weak fair and non-fair interleaving
of sequential programs. Concurrent programs [ extend the syntax of sequential
ones (a) by the following constructs

B:= «| if* e then 3 else B2 | atomic € {B} | 51 ||nf B2
| 81 || B2 | forall| z with ¢ do | forall||,s z with ¢ do 8

Programs execute atomic steps, consisting of one assignment, the evaluation of
the test of a condition, binding a variable with let or calling/returning from a
procedure. To enable thread-local reasoning, they are now assumed to execute
their steps in an environment that may modify the state in between program
steps. The environment may consist of other interleaved programs or a global
environment, e.g. a physical environment that changes sensor values read by the
program.

There are several new constructs that may be freely mixed with the sequential
constructs. The first is the variant if* of a conditional, which evaluates the test
together with the first step of the branch taken in one atomic step. It is used to
model test-and-set, or CAS (compare-and-swap) instructions.

The construct atomic ¢ {8} is assumed to (passively) wait for the envi-
ronment to make the test € true. While ¢ is false, the program is blocked. A
program where the environment never enables the test is deadlocked. When the
test becomes true, the program f is executed in a single step. The typical use of
the construct is to model locking with atomic lock = free {lock := locked}.
Atomic programs are also used in Lipton’s reduction strategy [14,36], which
proves that program instructions can be combined to larger atomic blocks when
specific commutativity conditions hold.

Both 1 ||t 82 and By || B2 interleave steps of 81 and B2 non-deterministically.
The interleaving is blocked only, when both programs are blocked. The first as-



sumes no fairness, so when (; does not terminate and is never blocked, one
possible run executes steps of 81 only. The second f; || B2 has a weak fairness
constraint: if s is enabled continuously (i.e. is never blocked) then it will even-
tually execute a step, even if 1 is always enabled. Weak fairness is typically
assumed for programs which use locks while CAS-based programs often ensure
the progress condition of lock-freedom that does not assume fairness.

The programs forall| and forall||,s generalize binary interleaving to inter-
leaving instances of 8 for all values that satisfy ¢ bound to local variables x.
The typical use would be forall|| n with n < m do 8 where the body /3 uses
variable n as the thread identifier.

Earlier versions of RG calculus in KIV used an equivalent recursive spawn#£-
program (called with m and the variables z used in ) which is defined as

spawn#(n; z){ if* n = 0 then skip else { § || spawn#(n — 1;z) } }

They imported a theory which verified the correctness of the forall-rule given at
the end of the next section.

Formally, the semantics of programs [(] is defined as a set of finite or in-
finite state sequences also called intervals following the terminology of interval
temporal logic (ITL) [41]. Formally an interval is of the form

I= (I(O)’I(O)bvll(o)vI(l)vl(l)bajl(1)7[(2>7 s 7<)

where every I(k) and I’(k) are valuations which map variables to values. The
transitions from I(k) to I'(k) are program transitions and the transitions from
I'(k) to I(k + 1) from a primed to the subsequent unprimed state are environ-
ment transitions. Hence, intervals alternate between program and environment
transitions, similar to the reactive sequence semantics in [11].

To model passive waiting, the boolean flag I(k), denotes whether the program
transition from I(k) to I'(k) is blocked, i.e. the program waits to continue its
execution. In this case, when I(k), = tt, then I'(k) = I(k).

To model exceptions when running a program, the final state of a finite run
carries information ¢ whether an exception has happened. This may be either
T to indicate regular termination without exception or the information that an
operation op € OP has thrown its exception. To have uniform notation, we
assume that ¢ = oo for infinite (non-terminating) runs, so ( € OP U {T, cc0}.

The semantics of programs is compositional, i.e. the semantics of complex
programs can be constructed by combining intervals that are members of the
semantics of its parts. This has been explained in detail for programs without
exceptions in [55]. Adding exceptions for the sequential case is straightforward,
for interleaving the combined run ends with an exception if one of the interleaved
intervals does. Unlike in programming languages, where exceptions are thread-
local, we therefore have global exceptions, which abort the whole interleaved
program. If necessary, the global effect must be avoided by exception handlers
in the interleaved programs.



5.2 Temporal and Program Formulas

To verify concurrent programs, KIV’s logic is based on the idea of having pro-
grams as formulas. To do this, the semantics of expressions e is generalized from
[e](v) to [e](I) using an interval I instead of a single state v. The expressions
considered so far refer to the initial valuation I(0) of the interval only. The ex-
tended semantics makes it possible to view a program ( with free variables z
as a formula [: z | 5] (expression with boolean result) which returns tt iff the
semantics of 8 includes the interval I. That § has a temporal property v is then
simply expressed as the implication [: z | 8] — .

The resulting calculus is again based on symbolic execution of programs
as well as of temporal formulas. The resulting calculus has been described in
detail in [55]. The calculus is strong enough to define rely-guarantee formulas as
abbreviations of temporal logic formulas and to formally derive the rules of rely-
guarantee calculus. Since rely-guarantee calculus is the one we predominantly use
in the practical verification of programs, we have explicitly added rely-guarantee
formulas and derived rules for them.

The extended expression language partitions variables into flexible variables,
that may be modified by concurrent programs, and static ones, that always
have the same value in all states 1(0), I'(0), ...of an interval. In KIV, flexible
variables start with uppercase letters, all others are static. The abstract syntax
definition uses y to denote a static and z for a flexible variable. Flexible variables
are allowed in quantifiers, but not as parameters of A-expressions.

The extended language allows to use primed and double primed flexible vari-
ables ¢ and y” in predicate logic expressions. [y'](I) and [y"](I) are defined
as I'(0)(y) and in I(1)(y), except for the case where the interval consists of a
single state. For such an empty interval the value of both is I(0)(y). Formulas
like ¢/ = y or y”/ > 1/ therefore talk about the relation of the first program step
(y is not changed) and about the first environment step (y is not decremented).
They are used as guarantee and rely formulas that constrain program and envi-
ronment steps. We use G to denote a predicate logic formula over unprimed and
primed variables and R to denote one over primed and double primed variables.
We write ¢ and ¢” for predicate logic formulas where one resp. two extra primes
are added to every free variable that is flexible.

The extended syntax then extends higher-order and wp-calculus formulas
that may use any primed or double primed variables written y (¢ still denotes a
formula without primed variables) to temporal expressions v, including program
expressions. These have the following syntax:

vi=x| [z]8]] Ov |0 ]| until ¢, | last | lastexc | lastexc(op)
| blocked | [: z | R,G,¢,B](¢¥;€) | (2| R, G, Runs, ¢, B)(1;§)
A formal semantics is given in [55], here we just give an informal explanation.
— [: z | B] is a program formula, where the used variables of 8 are required to be
a subset of z. The formula holds over an interval (i.e. the semantics evaluates

to tt) if the program steps are steps of the program. The environment steps
between program steps are not constrained: they may arbitrarily change



the values of variables. The frame assumption z indicates that non-program
variables can change arbitrarily in program steps.

— O, ¢ ¢ and ¥ until ¥ are the standard formulas of linear temporal logic.

— last is true, if the interval is empty, i.e. consists of just the state (0).

— lastexc(op) resp. lastexc is true on an empty interval where { = op resp.
¢ # T. The formula {(last A — lastexc) therefore states, that the interval
is finite (terminates) without exception.

— blocked is true for non-empty intervals, where the first step is blocked, i.e.
I(0)p = tt. The formula O blocked is used to express a deadlock.

The last two formulas are used to express rely-guarantee (RG) properties of
programs, and we assume the reader to be familiar with the basic ideas. In [60]
such an RG assertion would be written as 3 sat { Pre, R, G, Post}, another com-
mon notation is as an extended Hoare-quintuple {Pre, R} 8 {G, Post}. Often,
whether partial or total correctness is intended, depends on the context. In KIV,
partial and total correctness are expressed as a sequents

Pret [: z |, R,G, B]Post Pret (: z | R,G, Runs, a)Post

Like for the wp-formulas we leave away the default exception condition & =
default :: false that forbids any exceptions for the final state.

Partial correctness asserts that if precondition Pre holds in the initial state,
then program steps will not violate the guarantee G and the final state will not
violate Post (and have no exception) unless an earlier environment step violated
R. The formula implies that partial correctness holds: if all environment steps
are rely steps then all program steps will be guarantee steps and in final states
the postcondition will hold.

Total correctness guarantees two additional properties. First, when the rely
is never violated, then the program is guaranteed to terminate. Second, in all
states, where predicate Runs holds, the next program step is guaranteed not to
be blocked. The additional Runs-predicate is used to verify deadlock-freedom:
when an interleaved program satisfies total correctness with Runs = true, then
the program is deadlock-free: there is always at least one of its threads that is
not currently waiting to acquire a lock.

At the end of this section we want to note that the interval semantics of
programs can used to define the semantics of wp-calculus formulas as well by
abstracting to initial and final states of the interval and assuming an “empty”
environment that does not change program variables via the equivalences

[alo=1[z]|2" =2 true,alp (lao=(2|2" =2, true,a)p

In the formulas, z are the flexible variables that occur free in « (all variables,
except those bound by let, choose or forall) or free in .
5.3 Rely-Guarantee Calculus

Since rely-guarantee formulas can be viewed as abbreviations of temporal for-
mulas, we could just use the calculus defined in [55] for deduction (and earlier



case studies have done so). Since rely-guarantee formulas are now available di-
rectly, it is unnecessary for a user to get familiar with temporal logic formulas.
Knowledge of the calculus given in this section is sufficient to do partial or to-
tal correctness proofs for concurrent programs. The embedding into temporal
logic is useful however to prove results about progress conditions such as lock-
freedom [58] or starvation-freedom [57], which would not be possible with pure
RG calculus only.

Symbolic execution using the rely-guarantee calculus resembles symbolic ex-
ecution in wp-calculus. The extra effort needed when proving RG formulas can
be seen when looking at the rule for assignment:

Pre(y,).y, = ty,) F G(y,.y,)
P?“@(Qo)ag1 = t(go)aR(gﬂg) = <: z | R’G 6>P05t
Pre(z) - (: 2| R(z',2"), G(z,2"), 2 := Uz); B) Post

For easier notation the rule assumes that all variables of the frame assumption
are assigned. We also leave away the side conditions for possible exceptions when
evaluating t. These are the same as in wp-calculus. The rule makes explicit that
Pre and t may contain variables from z by writing them as arguments in the
conclusion. Analogously, R and G may depend on z, 2/, and 2”.

In the semantics, symbolic execution of the assignment reduces the interval
I =(I1(0),1(0)b,I'(0),I(1),...) to the one shorter interval (I(1),...). The values
of variables z in states 1(0) and I'(0) are now stored in two vectors y  and y,
of fresh static variables, the remaining program [ again starts with the Values
of the variables in z. The old precondition now holds for y_, the values stored
in y, are equal to the ones of the terms t(y ) As the assignment rule shows,
the RG calculus has two differences to Wp—calculus First there is an additonal
premise that asserts that executing the assignment satisfies the guarantee (which
is simple usually). Second, the main premise needs two vectors of fresh variables
instead of one to store old values: one before the assignment and one after the
assignment but before the environment step.

The other rules of RG-calculus (e.g. the invariant rules for partial and total
correctness) look very similar to wp-calculus. The only difference is again that a
premise is generated that ensures that the step is a guarantee step. Finally, we
need a rule for parallel composition. We give the rule for one flexible variable wu,
the generalization to several variables should be obvious.

The rule assumes that a lemma for the body ( is available, that is applied
by the rule and shown as its first premise. The precondition Pre of the goal can
depend on z, and we write Pre(y) for the assertion, where z has been replaced
by y. Similar conventions apply for the other formulas. E.g. Rely Ry can depend
on v, 2, u", 2", so write Ro(u,yo,u,gl) for an instance. Formula ¢ may use u
and z. Since u is a local variable, the environment steps of g can not change its
value, so the lemma can (and should) include the rely condition v” = u'. Since
the program is also prohibited from modifying variable u (otherwise it could
not be used to identify the thread executing), instances of Ry (and similarly:
Go) always use the same static variable v to instantiate «’ and u”. The possible




values for u are chosen in the inital state before the forall executes, using new
static variables y for this initial state and static variables v, v, v2 for the values
that all satisfy Pre(u) A ¢(v,w).

1) Preg b (: uw,z | Ro, Go, Runsg, 8) Postg

Rely(yo,y1) - AR(y,y,,9,)
EG(y,y,:y,) - Guar(y,,y,)
10) Pre(y), Runs(y,) = ERuns(y,y,)
11) Pre(y), APost(y,z) F (: z | R, G, Runs, By) Post
Pret (: z| R,G, Runs, {forall|| u with ¢ do 8}; 8y) Post
Conditions (1) to (6) ensure that the forall satisfies
Pre(z), APre(z) F (: z| AR, EG, ERuns, forall...)APost

2) Pre(y), o(v,y) F Go(v,y,,v,9,)
3) Pre(y), ¢(v,y) = Ro(v,y,,v,y,) A Ro(v, ¥, v, ,) = Ro(v,y,,v,9,)
4) Pre(y), p(v1,y), o(v2,y),v1 # va2 Go(vl,yo,vl,y ) — Ro(vg,go,vz,gl)
5) Pre(y), o(v,y) F Preo(v,yo) A Ro(v,go, v,yl) — Preo(v,gl)
) Pre(y), o(v,y) = Posto(v,go) A Ro(v,go,v,gl) — Posto(v,gl)
7) Pre(y) = APre(y)
) Pre(y),
) Pre(y),

where
APre(y) =V v. Pre(y) A e(v,y) — Preg(v,y)
APost(y,z) =V v. Pre(y) A o(v,y) — Posto(v, 2)
EG(y,z,z2 Z)y=3w. Pre(y) Ao(v,y) A Go(v, z,v,2")
ERuns(y,z) = 3 v. Pre(y) A ¢(v,y) A Runsg(v, 2)
AR(y, 2, 2") =Y v. Pre(y) A o(v,y) = Ro(v, 2, v,2")

The remaining conditions (7) to (11) ensure that the given predicates used
in the conclusion are weaker (for rely, precondition, and runs) resp. stronger (for
guarantee) than the most general ones defined above, and that the remaining
program fq is correct with the established postcondition APost of the forall.

The rule for interleaving two programs 1 || B2 is essentially the special case
we get from the equivalent program forall || b with true do if* b then f; else 5,
where b is a boolean variable. Two lemmas are now required, one for 5; and one
for B (corresponding to the two boolean values).

6 Applications

This section gives a short overview over applications that have been modeled and
verified using KIV. We start with a brief overview over historically important
case studies on sequential systems, described in the next subsection. Case studies



on concurrency are described in Sec. [6.2} Finally, Sec. [6.3] gives a brief overview
over concepts used in the development of a verified file system for flash memory,
developed in the Flashix project, which is by far the largest project we have
tackled so far.

6.1 Overview

Initially, KIV had a focus on verifying single programs with Dynamic Logic,
which is more flexible than just generating verification conditions from a stan-
dard Hoare-calculus [23] (see Challenge 3 of the VerifyThis competition 2012
in [15] for a recent example).

The focus however shifted early on to the development of modular, sequen-
tial software. An early concept there were algebraic modules [46], which were
used to e.g. verify the correctness of Dynamic Hashtables or AVL trees [47].
Algebraic modules are stateless, and are nowadays integrated with the instanti-
ation concept: a parameter P may be instantiated by placing a restriction and
a congruence on the instance A. A simple example would be to use duplicate-
free (restriction) lists, where the order of elements is ignored (congruence), to
implement sets. This concept can be used to formally verify the consistency of
non-free data type specifications.

Later on the focus shifted to the verification of components with state. The
biggest case study in this area was the verification [51] of a compiler for Pro-
log, that compiles to the Warren Abstract Machine (WAM), formalizing the
development in [7] as a hierarchy of a dozen refinements. The case study uses
the complete theory of ASM refinement |50, which generalizes the theory of
data refinement: the main correctness condition for a 1:1 diagram involving one
abstract and one concrete operation (cf. Sec. is generalized to using m:n
diagrams, which are useful in particular for compiler verification.

Another area where component-based development was important, was the
Mondex case study, which initially was about mechanizing a proof of of a proto-
col for the secure transfer of money between Mondex smartcards [59]. This case
study became a part of the development of a strategy of model-based develop-
ment for security protocols in general, starting with a UML model and ending
with verified Java Code. For Mondex the original single refinement was extended
to three refinements that end with verified Java code, see [21] for an overview.

6.2 Case studies on Concurrency

Research in this area has focused on the verification of efficient low-level imple-
mentations of components, in particular on CAS-based implementations, which
are harder to verify and need different concepts for progress than standard lock-
based implementations. The most complex proof using extensions of RG calculus
to the thread-local verification of linearizability [26] and lock-freedom was a proof
of Treiber’s stack that used Hazard pointer with non-atomic reading and writ-
ing [39,561[58]. A number of other examples, e.g. one with fine-grained locking
and formal proof obligations for starvation-freedom [57] can be found on [29].



The Web page also shows proofs for two of Cliff Jones’ original examples that
demonstrate the use of RG calculus: FINDP [22] (a parallel search over an array)
and SIEVE [34] (parallel version of the Sieve of Erathostenes).

As part of the VerifyThis Competition 2021 [45], we used RG reasoning to
verify ShearSort, a parallel sorting algorithm for matrices. The case study uses
the forall|| construct presented in Sec. and also requires to solve the tricky
problem of how to formalize the 0-1-principle, which is often used in informal
proofs. A web presentation of the case study can be found at [32].

For some implementations thread-local verification of linearizability is diffi-
cult (including Herlihy and Wing’s simple, but hard to verify queue implemen-
tation [26]), since their linearization points (LPs) are not fixed to specific steps
of the thread itself, but are in steps of other threads and “potential”: whether an
LP has been passed depends on future execution. With colleagues we developed
a complete approach [53] that uses a formalization of IO Automata [37] (using
HOL only) in KIV that has recently been extended to an automatic transla-
tion of programs as steps of an IO automaton together with proof obligations
generated from assertions [13].

The formalization of IO Automata provided one of the main motivations for
adding polymorphism to KIV, I0-Automata are specified as data structures,
with states and actions as parameters. Though the content of proofs does not
change, using states and actions as type parameters instead of instantiating
specifications (with e.g. “concrete” and “abstract” states for refinement, more
instances are necessary to prove transitivity of refinement, or to define product
automata) roughly halved the number of specifications required.

The most complex case study verified in this setting was the Elimination
queue [40], an extension of the Michael-Scott queue [38] with an elimination
array, that has very complex potential LPs. This case study, several others and
a number of papers in this area can be found again online at [30].

Recently we also have looked at opacity [35] as the correctness criterion
for STMs (implementations of software transactional memory, formalizing the
theory as IO automaton refinement [3].

6.3 The Flashix Project

Flashix [4,/54] has been proposed as a pilot project for Hoare’s Grand Chal-
lenge [27] with the goal to develop and verify a realistic file system for flash
memory. The project motivated many enhancements in KIV, especially in com-
ponent modularization and refinement methodology (cf. Sec. . To tackle the
complexity we decomposed the file system into a deep hierarchy of components
connected by 11 refinements. We generate C and Scala code from this hierar-
chy (we currently work on the generation of Rust code), the generated C code
is about 18 kLLOC and can be integrated into the Linux kernel or run via the
FUSE interface.

A major focus in the project was to ensure crash-safety, i.e. the dealing with
arbitrary power cuts. In [16] we added crash behavior to the semantics of our



components and proposed a verification methodology to prove crash-safety for
modular refinement hierarchies.

The project required the use of our Separation Logic library (see Sec.
on multiple occasions. In the lower levels of Flashix, a verified pointer-based
implementation of red-black trees is used (the KIV code and proofs can be
found online [31]). There, we combined Separation Logic with KIV’s concept of
components and refinement (see Sec. to “separate Separation Logic”: the
proof is split into the verification of a version based on algebraic trees, where the
properties of red-black trees are verified, and a separate refinement that shows
that copying branches on modifications can be avoided by replacing the algebraic
tree with a pointer structure, that is updated in place. Only the latter, simple
refinement has to deal with pointer structures, aliasing, and the avoidance of
memory leaks by using Separation Logic formulas. Similarly, this concept was
applied to the top-level refinement of Flashix, where the abstract representation
of the file system as an algebraic tree is broken down to linked file and directory
nodes.

The last phase of the project was mainly about introducing performance-
oriented features like caching and concurrency. We added different caches to the
file system, proposed novel crash-safety criteria for cached file systems, extended
our refinement approach with corresponding proof obligations, and proved that
the crash-safety criteria apply to the Flashix file system (see [44] and [5]). To
add concurrency to the existing (purely sequential) refinement hierarchy, another
kind of refinement was introduced: atomicity refinement [52] allows to incremen-
tally reduce lock-based concurrent implementations to their sequential counter-
parts. This allowed to reuse large parts of the sequential proof work, in particular
complex data refinements. The generation of proof obligations for atomicity re-
finements was implemented in KIV, they are based on rely-guarantee formulas
(cf. Sec. , ownerships, and Lipton reductions [14,36]. With this methodol-
ogy, Flashix now allows concurrent calls to its toplevel interface and features
concurrent Wear Leveling [52] as well as concurrent Garbage Collection [4].

7 Conclusion

This paper has given an overview of the concepts that are used in KIV to model
and verify software systems. A lot of the support for software development was
overhauled since [15] was published in 2014, starting with switching to Scala as
KIV’s implementation language. The basic logic has been extended to support
polymorphism and exceptions in programs, rely-guarantee calculus has been
revised to have native formulas and rules in favor of using abbreviations and
general temporal rules. Support for components and for proof obligations has
been significantly enhanced, and a code generator has been added that supports
generation of Scala- and C-code.

Many of these developments have been motivated by the requirements to
develop a realistic, concurrent file system for flash memory in the Flashix project.
As an example, adding exceptions has uncovered several errors, that would have



gone unnoticed with the standard unspecified values semantics that is used in
HOL, and that would also have been likely escaped testing, as they happened
only on certain combinations of rare hardware errors (one was e.g. in formatting
a flash device). Others, like adding assertions to programs or the forall-rule,
have been motivated by the wish to be able to do smaller experiments, e.g. the
challenges of the VerifyThis competition series, more quickly than before.

There is still lots of room for improvement though. Support for automat-
ing separation logic proofs is still far less developed than in native separation
logic provers like Verifast [33] or Viper [42]. There is still lots of potential to
optimize code generation from KIVs programs, using a careful dataflow analy-
sis, where destructive updates and aliasing can be allowed in the generated C-
code. The programming language is still (like Java) based on having programs
(“statements”) and expressions separately. We currently work on extending the
language to have program expressions, where programs are the special case of
program expressions of type unit. In the semantics this will generalize the void
result ¢ = T on regular termination to a value of any type. This will allow
methods with results and returns, and the use of Scala syntax for KIV pro-
grams (using Scalameta [49] for parsing). This will hopefully lead to increased
expressiveness as well as an easier learning curve.

Acknowledgement We would like to thank our student Kilian Kotelewski
who has added the forall-construct and its rules to the calculus.
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