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Abstract

In this thesis, we consider different resampling approaches for testing general linear
hypotheses with dependent data. We distinguish between a repeated measures model,
where subjects are repeatedly observed over time, and multivariate data, where out-
comes may be measured on different scales. Furthermore, we consider semi-parametric
approaches for metric data, where we test null hypotheses formulated in terms of means,
as well as nonparametric rank-based models for ordinal data. In these settings, current
state-of-the-art test statistics include the Wald-type statistic (WTS), which is asymptoti-
cally χ2-distributed, and the ANOVA-type statistic (ATS), which is no asymptotic pivot,
but can be approximated by an F -distribution. To improve the small sample behavior of
these test statistics in the described settings, we consider different resampling schemes.
In the case of semi-parametric repeated measurements, a permutation procedure based
on the WTS leads to astonishingly successful results in spite of the dependencies. In
the nonparametric repeated measures design, a wild bootstrap procedure applied to the
ATS yields the best simulation results and provides an asymptotic level α test. Finally,
in the semi-parametric multivariate setting, we consider a modified ATS, which is in-
variant under scale transformations and can be applied to data with singular covariance
matrices. Statistical inference (test decisions and the derivation of multivariate confi-
dence regions) is based on quantiles of a parametric, nonparametric or wild bootstrap
procedure.
We apply all resampling approaches to data examples from the life sciences. Further-
more, we analyze the small sample behavior of the tests in large simulation studies.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit Resampling-Verfahren für Hypothesentests bei ab-
hängigen Daten. Wir unterscheiden zwischen repeated measurements, wobei die Indi-
viduen zu verschiedenen Zeitpunkten beobachtet werden, und multivariaten Daten, die
auf unterschiedlichen Skalen gemessen sein können. Desweiteren betrachten wir ein
semi-parametrisches Modell für metrische Daten, in welchem Hypothesen über Mit-
telwerte getestet werden, sowie ein nicht-parametrisches, rang-basiertes Modell für or-
dinale Daten. In der Literatur werden in solchen Situationen im Wesentlichen zwei
Teststatistiken betrachtet: Eine Statistik vom Wald-Typ (WTS), die asymptotisch χ2-
verteilt ist, sowie eine ANOVA-Typ Statistik (ATS), die durch eine F -Verteilung ap-
proximiert werden kann. Um das Verhalten dieser Statistiken für kleine Fallzahlen zu
verbessern, werden verschiedene Resampling-Verfahren untersucht. Im Falle der semi-
parametrischen repeated measures Daten führt ein auf der WTS basierender Permuta-
tionsansatz zu erstaunlich erfolgreichen Resultaten trotz der involvierten Zerstörung der
Abhängigkeitsstrukturen. Im nicht-parametrischen repeated measures Modell liefert
ein wild bootstrap der ATS die besten Simulationsergebnisse und einen asymptotischen
Test zum Niveau α. Im multivariaten semi-parametrischen Modell schließlich betra-
chten wir eine Modifizierung der ATS, die invariant unter Einheitenwechsel ist und
auch für Designs mit singulären Kovarianzmatrizen verwendet werden kann. Statis-
tische Inferenz (Tests und die Herleitung multivariater Konfidenzregionen) basiert dann
auf Quantilen eines parametrischen, nichtparametrischen oder wild bootstrap Ansatzes.
Mit Hilfe der Verfahren werden verschiedene Datensätze aus den Lebenswissenschaften
analysiert. Das Verhalten der Verfahren für kleine Fallzahlen wird darüber hinaus in
umfangreichen Simulationsstudien untersucht.
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Notation

Throughout the thesis, vectors and matrices are denoted by bold symbols, e.g.,A.

N natural numbers

1{·} indicator function

A′ the transpose of a matrix or (column) vectorA

A+ Moore-Penrose inverse1 of a matrixA

It t× t identity matrix, t ∈ N

1t t-dimensional column vector of 1’s , t ∈ N

J t t× t matrix of 1’s, i.e., J t = 1t1
′
t for t ∈ N

P t t-dimensional centering matrix, P t = I t − 1
t
J t for t ∈ N

⊗ Kronecker product

⊕ direct sum

tr() the trace of a square matrix

rank() the rank of a matrix
P→ convergence in probability
D→ convergence in distribution

1The Moore-Penrose inverse satisfies the following equations: AA+A = A,A+AA+ =
A+, (AA+)′ = AA+ and (A+A)′ = A+A.
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Part I

Introduction
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1 Motivation

Factorial designs are widely used tools for modeling statistical experiments in many
disciplines, for example in the life sciences. In the univariate case, inference is tradi-
tionally based on mean vectors and effects of the factors are tested using ANOVA F -
tests. These tests, however, are derived under the assumptions of normally distributed
errors and common variances between groups - two assumptions that are difficult to
check and often not met in practice. If the assumptions are violated, type-I errors may
be inflated, see e.g. the comments in Pauly et al. (2015).

To complicate matters, data are often not independent due to multivariate endpoints,
which may be measured on different scales. Classical MANOVA methods and their
extensions that still rely on the assumption of multivariate normality and covariance
homogeneity are of limited use in practice, see e.g. the comments in Xu and Cui (2008);
Suo et al. (2013); Konietschke et al. (2015).

Another setting involving dependent data are repeated measures designs. Here, the
same outcome is measured at different occasions, e.g., different time points, or at dif-
ferent parts of the subject (e.g., left and right hemisphere of the brain). The repeated
measures are considered as levels of the sub-plot or within-subjects factor, whereas the
observed groups are levels of the whole-plot or between-subjects factor. In the context
of repeated measures or profile analysis, it is of interest to investigate whether a group
effect, a non-constant time effect or different time profiles in the groups are present.
Classical tests based on Hotelling’s T 2 (Hotelling, 1931) or Wilk’s Λ (Wilks, 1932)
assume normally distributed errors and covariance homogeneity. Violation of these
assumptions may again inflate type-I errors.

The main difference between these two approaches is that in a repeated measures de-
sign, comparisons between the response variables are meaningful. Therefore, it is of
interest to formulate and test hypotheses about the sub-plot factors, e.g., time. Multi-
variate data, in contrast, consist of several endpoints, which are recorded per subject
(or unit) and may be measured on different scales. In a multivariate setting, we test
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1 Motivation

whether the observed factors have an effect on the multivariate outcome vectors.
A data example demonstrating the similarities and differences between the two ap-
proaches is presented below and analyzed in detail in Chapter 4. Nevertheless, both
settings lead to dependencies between observations from the same unit, thus complicat-
ing the statistical analysis.

In addition to the structure of the data, it is also important to choose adequate meth-
ods depending on the scaling of the measurements. Classical MANOVA and repeated
measures approaches usually consider differences in terms of the mean vector. If or-
dinal, ordered categorical or count data are present, however, means are neither ade-
quate nor meaningful measures of deviations between groups. We therefore consider
two different approaches based on the scaling of the data: A semi-parametric model
in case of metric data used in Friedrich et al. (2017a) and Friedrich and Pauly (2017),
where effects are formulated in terms of means, and a nonparametric repeated measures
model, where we base inference on rank-statistics of the relative effects (Friedrich et al.,
2017d). The latter is valid for metric, ordinal, count, score or ordered categorical data
in a unified way.

To motivate the procedures analyzed in this thesis, we will first provide some data
examples from different fields of application:

EEG measurements in patients with Alzheimer’s disease

To illustrate the difference between a repeated measures setting and multivariate out-
comes, we consider a study on EEG measurements in patients with Alzheimer’s dis-
ease (Bathke et al., 2016). This data set contains EEG measurements of 166 patients
recorded at the University Hospital Salzburg. Beforehand, the patients were diagnosed
with either Alzheimer’s disease (AD), mild cognitive impairment (MCI) or subjective
cognitive complaints without clinically significant deficits (SCC) based on neurological
examinations. For each patient, we consider six EEG measurements, which consist of z-
scores for brain rate (Pop-Jordanova and Pop-Jordanova, 2005) and Hjorth complexity
(Hjorth, 1970, 1975). Each of these measurements is averaged within frontal, temporal
and central electrode positions. The data can be viewed in two different ways: First, we
may consider the data as multivariate. Thus, each individual has a 6-dimensional re-
sponse vector. We can then formulate and test the hypothesis of no difference between
diagnoses. On the other hand, the EEG measurements might also be viewed as levels
of the sub-plot factors ‘brain region’ (3 levels: frontal, temporal, central) and ‘feature’
(2 levels: brain rate, complexity). Therefore, we can formulate and test hypotheses in-
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volving the sub-plot factors. In Section 4, we provide an analysis of this data example
using the R package MANOVA.RM (Friedrich et al., 2017c).

Shoulder tip pain trial

In the shoulder tip pain trial (Lumley, 1996), the characteristic pain in the shoulder after
laparoscopic surgery was observed in 41 patients at 6 time points. In this trial, n1 = 22

(8 male and 14 female) patients received the active treatment, while n2 = 19 (8 male
and 11 female) patients belonged to the control group. Therefore, data was observed in
a factorial design with whole-plot factors ‘treatment’ and ‘gender’ and sub-plot factor
‘time’. The pain was measured on an ordinal scale ranging from 1 (low) to 5 (high).
A first analysis of the data reveals that pain scores under treatment seem to be lower
than those observed for the control group (see Figure 1 in Friedrich et al., 2017d). In
order to investigate effects and interactions of the factors involved in this trial, we need
rank-based repeated measures models, since means provide no adequate measure for
score data. Furthermore, the methods used have to be robust to account for the small
sample size in the experiment. We analyze this data example in detail in Friedrich et al.
(2017d).

Effect of gender on cardiologic measurements

In a cardiology study conducted at Ulm University Hospital, five cardiologic measure-
ments were recorded in the left ventricle of 188 healthy patients. We wish to analyze
whether these measurements (in terms of mean vectors) differ between male and fe-
male patients. Since the outcomes are measured on different scales (systolic and dias-
tolic peak strain rate is measured in 1/s, whereas end systolic and diastolic volume as
well as stroke volume is measured in ml), we are dealing with a multivariate outcome.
Furthermore, stroke volume closely depends on end diastolic and end systolic volume,
resulting in singular empirical covariance matrices. These issues complicate the sta-
tistical analysis, since we have to deal with unequal, singular covariance matrices in
multivariate, i.e., dependent, data. We will therefore modify an existing test statistic in
order to deal with all these issues (Friedrich and Pauly, 2017).

This thesis is organized as follows: In Chapter 2 and 3 we will briefly introduce the dif-
ferent models and resampling procedures considered in this thesis, respectively. Chap-
ter 4 contains a description of the R packages GFD and MANOVA.RM as well as a

11



1 Motivation

detailed analysis of the EEG data example using the latter. Summaries of the three
articles this thesis is based on are given in Chapter 5. The fourth scenario in this con-
text, a nonparametric multivariate setting which is still work in progress, is described in
Chapter 6, while Chapter 7 contains an overall discussion of the results as well as some
outlook to future research. The three articles are included in Part II, while the Appendix
contains the JSS publication describing the R package GFD.

12



2 Statistical Models

2.1 Semi-parametric repeated measures model

We consider the following statistical model: Let

Y ik = (Yik1, . . . , Yikti)
′, i = 1, . . . , a, k = 1, . . . , ni

denote i.i.d. random vectors of individual k in treatment group i, where the outcome is
observed at time points 1, . . . , ti ∈ N, i = 1, . . . , a. We extend the classical repeated
measures design in that we allow the number of time points to vary between groups.
A setting like this might be possible in, e.g., psychology where questionnaires with
different lengths are used in different groups. The classical setting with ti ≡ t is,
however, included as well.

We assume existence of the group-specific expectation vector µi = (µi1, . . . , µiti)
′ =

E(Y i1) and the covariance matrix V i = Cov(Y i1) > 0. Covariance matrices may
differ between groups and we neither assume any special covariance structure nor any
special underlying distribution of Y ik. For convenience, we consider the pooled vector
of observations

Y = (Y ′11, . . . ,Y
′
ana

)′

as well as the pooled mean vector

µ = (µ′1, . . . ,µ
′
a)
′.

We can easily incorporate a more complex factorial structure in this notation by splitting
up the index i into sub-indices i1, i2, . . . according to the number of factors considered.

Let N =
∑a

i=1 ni denote the total number of individuals, T =
∑a

i=1 ti the number of
time points as well as Ñ =

∑a
i=1 niti the total number of observations. In order to

13



2 Statistical Models

derive asymptotic results, we will assume the following sample size condition:

ni
N
→ κi > 0, i = 1, . . . , a (2.1)

as mini ni → ∞. Furthermore, we will assume existence of fourth moments, i.e.,
supi E(||Y i1||4) <∞.

In this set-up, hypotheses are formulated in terms of the mean vector as H0 : Hµ = 0,
where H is a suitable contrast matrix, i.e., H1T = 0. Instead of H we can use the
unique projection matrix T = H ′(HH ′)+H . The projection matrix T is idempotent
and symmetric and Tµ = 0 if and only ifHµ = 0 (Brunner and Puri, 2001).

An estimator ofµi is given by the vector of pooled group meansY i· =
1
ni

∑a
i=1 Y ik, i =

1, . . . , a and the covariance matrix V i in treatment group i is estimated by the sample
covariance matrix

V̂ i =
1

ni − 1

ni∑

k=1

(Y ik − Y i·)(Y ik − Y i·)
′.

Thus, we estimate the covariance matrix ΣN = Cov(
√
N Y •) = diag(N

ni
V i : 1 ≤ i ≤

a) by Σ̂N = diag(N
ni
V̂ i : 1 ≤ i ≤ a), where Y • = (Y

′
1·, . . . ,Y

′
a·)
′.

As basis for our analyses we consider two test statistics, which are often used in the
context of repeated measures designs with ti ≡ t repeated measures per group (Brun-
ner, 2001), namely the Wald-type statistic (WTS) and the ANOVA-type statistic (ATS).
We adapt these test statistics to our more involved design with different numbers of
repeated measures per group and show that the small sample behavior of the WTS can
be improved by a permutation procedure (Friedrich et al., 2017a).

First, the so-called Wald-type statistic (WTS) is given by

QN = NY
′
•T (T Σ̂NT )+TY •. (2.2)

We show that under H0 : Tµ = 0, QN has asymptotically, as N → ∞, a χ2
f -

distribution with f = rank(T ) degrees of freedom (Friedrich et al., 2017a, Theorem
2). However, very large sample sizes are necessary to obtain a valid level α test based
on the quantiles of the limiting χ2-distribution (e.g., Brunner, 2001; Konietschke et al.,
2015).

Another possible test statistic introduced in Brunner (2001) for repeated measures is
the so-called ANOVA-type test statistic (ATS), where we drop the Moore-Penrose term

14



2.2 Nonparametric repeated measures model

in (2.2). This leads to the following statistic:

TN = NY
′
•TY •.

Under the null hypothesis, the ATS has, asymptotically, the same distribution as a
weighted sum of independent χ2

1-distributed random variables, where the weights are
the eigenvalues of TΣ for Σ = diag(κ−1i V i) (Friedrich et al., 2017a, Theorem 1).
Thus, the ATS is non-pivotal and the limit distribution has to be estimated, e.g., based
on a Box-type approximation (Box, 1954; Brunner, 2001). This results in approximat-
ing the scaled ATS

T̃N =
N

tr(T Σ̂)
Y
′
•TY •

by an F (ν̂,∞)-distribution with degree of freedom ν̂ = tr2(T Σ̂)/ tr(T Σ̂T Σ̂) (Brun-
ner, 2001). For testing main effects of the whole-plot factors or interactions involving
only whole-plot factors, the approximation can be improved by estimating a second
degree of freedom ν̂0, see Brunner et al. (2002) for details. This procedure leads to con-
sistent test decisions for fixed alternatives, but is in general no asymptotic level α test
under the null hypothesis, since, even in the asymptotic case, the F (ν̂,∞)-distribution
is only an approximation of the true distribution of TN under the null hypothesis (e.g.,
Brunner et al., 1997, 1999).

In order to improve the small sample behavior of the WTS, we investigate a permutation
procedure, where we randomly permute the pooled observation vector (Friedrich et al.,
2017a, Section 3).

2.2 Nonparametric repeated measures model

In order to cover situations with ordinal or ordered categorical data, where means pro-
vide no adequate measure, we consider a completely nonparametric model. That is, we
assume arbitrary marginal distribution functions

Yiks ∼ Fis, i = 1, . . . , a, k = 1, . . . , ni, s = 1, . . . , t.

In this setting, we assume the same number of time points t for all groups. Null hy-
potheses are formulated as HF

0 : TF = 0, where F = (F11, . . . , Fat)
′ denotes the

vector of distribution functions and T is the projection matrix defined above.
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2 Statistical Models

In order to estimate effects in such a setting, Mann and Whitney (1947) introduced the
quantity w = P (Y11 ≤ Y21) =

∫
F1 dF2 for a univariate nonparametric two-sample

design with independent observations Yik ∼ Fi, i = 1, 2, k = 1, . . . , ni. By replac-
ing the distribution functions with their empirical counterparts, an estimator of w can
be obtained. This effect has several desirable properties, provides a meaningful inter-
pretation of the results and is widely accepted in practice, see e.g., Brumback et al.
(2006); Fischer et al. (2014); De Neve et al. (2014); Rauch et al. (2014); Brückner and
Brannath (2016). However, a generalization of w to more than two distributions or
factorial designs is not obvious. The straightforward generalization to pairwise effects
w`i = P (Y`1 ≤ Yi1), ` 6= i = 1, . . . , a can lead to paradox results in the sense of
Efron’s Dice, since these effects are not transitive, see e.g., Gardner (1970) and Brown
and Hettmansperger (2002).

We therefore consider rank-statistics based on the relative effects p = (p11, . . . , pat)
′,

where
pis =

∫
HN dFis

and HN(x) = 1
tN

∑a
i=1

∑t
s=1 niFis(x) denotes the weighted mean distribution func-

tion. These relative effects avoid the problem of non-transitivity by comparing the
distribution functions Fis to the same reference distribution HN . The interpretation of
the relative effects in a repeated measures design is as follows: If pis < pis′ for some
s 6= s′, the random measures in group i at time s tend to smaller values than those at
time s′.

Since these relative effects depend on the sample sizes, they are no fixed model con-
stants and changing the sample sizes may change the results (Brunner et al., 2016).
For testing hypotheses about the effects, one should therefore consider the unweighted
mean of the distribution functions G(x) = 1

at

∑a
i=1

∑t
s=1 Fis(x), resulting in the un-

weighted effects qij =
∫
GdFis, see Friedrich et al. (2017d, page 50) and Brunner et al.

(2016). In Dobler et al. (2017), we consider a wild bootstrap approach to unweighted
effects in a nonparametric MANOVA setting, see Chapter 6 for details. Here, how-
ever, we focus on null hypotheses formulated in terms of the distribution functions and
therefore consider the relative treatment effects pis.

Denoting by Riks the (mid-)rank of Yiks among all tN observations and by Ri·s =
1
ni

∑ni

k=1Riks the corresponding rank means, estimates of pis are given by

p̂is =
1

tN

(
Ri·s −

1

2

)
.
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2.2 Nonparametric repeated measures model

Under HF
0 : TF = 0,

√
NT (p̂ − p) follows asymptotically, as N → ∞, a mul-

tivariate normal distribution with expectation 0 and covariance matrix TΣT , where
Σ = diag(κ−1i V i), see Akritas and Brunner (1997). Here V i = Cov(X ik) de-
notes the covariance matrix of the random vectors X ik = (H(Yik1), . . . , H(Yikt))

′ and
H = 1

t

∑a
i=1

∑t
s=1 κiFis is the limit distribution function of HN under assumption

(2.1), see Friedrich et al. (2017d, page 40).

Thus, we calculate the WTS based on the relative effects as

Qp
N = N p̂′T (T Σ̂T )+T p̂,

where Σ̂ =
⊕a

i=1
N
ni
V̂ i and V̂ i = 1

(tN)2(ni−1)
∑ni

k=1(Rik − Ri·)(Rik − Ri·)′ denotes
the empirical covariance matrix in group i.

Analogous to the semi-parametric case in Section 2.1, the WTS has, underHF
0 : TF =

0 and if V i > 0 for all i = 1, . . . , a, asymptotically, as N → ∞, a χ2
f -distribution.

As in the semi-parametric case, the WTS requires large sample sizes to maintain the
pre-assigned level α. Furthermore, it is only applicable in designs with non-singular
covariance matrices.

Due to the restriction to non-singular covariance matrices and the weak performance of
the WTS for small sample sizes, we also consider a nonparametric ATS, which is given
by

T pN = N p̂′T p̂

in this setting. Under the null hypothesis, T pN has, asymptotically, the same distribution
as a weighted sum of χ2

1-distributed random variables, where the weights are the eigen-
values of TΣ (Brunner et al., 2016). Since the eigenvalues are unknown, the limiting
distribution has to be approximated again, e.g. by an F -distribution, see Brunner et al.
(2016). Again, the corresponding ATS test provides in general no asymptotic level α
test.

In Friedrich et al. (2017d), we investigate a wild bootstrap approach to improve the
small sample behavior of both the WTS and the ATS in this nonparametric setting.
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2 Statistical Models

2.3 Semi-parametric MANOVA model

In this section, we consider multivariate data, which may be measured on different
scales. Therefore, we consider d-dimensional random vectors

Y ik = (Yik1, . . . , Yikd)
′, i = 1, . . . , a, k = 1, . . . , ni

of individual k in treatment group i. We assume existence of the group-specific ex-
pectation vector µi = (µi1, . . . , µid)

′ = E(Y i1) and the covariance matrix V i =

Cov(Y i1) ≥ 0. Note that covariance matrices may differ between groups and we do
not assume any special structure. In particular, we allow for singular covariance matri-
ces in this setting. Our only distributional assumption is the existence of finite second
moments, i.e., 0 < Var(Yiks) =: σ2

is < ∞, i = 1, . . . , a, k = 1, . . . , ni, s = 1, . . . , d.
We aggregate the observation vectors in

Y = (Y ′11, . . . ,Y
′
ana

)′

as well as
µ = (µ′1, . . . ,µ

′
a)
′.

We consider hypotheses formulated in terms of the mean vector asH0 : Tµ = 0, where
T denotes the unique projection matrix.

Analogous to Section 2.1, we estimate µi again by the vector of pooled group means
Y i· =

1
ni

∑a
i=1 Y ik, i = 1, . . . , a and the covariance matrix V i in treatment group i by

the corresponding sample covariance matrix V̂ i as well as Σ̂N = diag(N
ni
V̂ i : 1 ≤ i ≤

a).

The two commonly considered test statistics WTS and ATS have several drawbacks
in this multivariate setting: First, the WTS does not provide a valid test in designs
involving singular covariance matrices. The ATS, on the other hand, is in general not
applicable to multivariate data, where the endpoints are measured on different scales,
since it is not invariant under transformations of the data like change in units (e.g.,
cm 7→ m or kg 7→ g).

We therefore propose a different test statistic, which we denote as MATS. It is moti-
vated from the test statistic proposed by Srivastava and Kubokawa (2013) in the special
context of a high-dimensional homoscedastic one-way layout. In particular, we con-
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sider

MN = NY
′
•T (TD̂NT )+TY •,

where D̂N = diag
(
N
ni
σ̂2
is

)
, i = 1, . . . , a, s = 1, . . . , d and σ̂2

is denotes the empirical
variance of component s in group i. UnderH0 : Tµ = 0, the MATS has asymptotically,
as N → ∞, the same distribution as a weighted sum of χ2

1-distributed random vari-
ables, where the weights are the eigenvalues of T (TDT )+TΣ for D = diag(κ−1i σ2

is)

(Friedrich and Pauly, 2017, Theorem 2.1).

The MATS has several advantages in the multivariate setting: First, it is invariant under
scale transformations of the data, e.g., under change of units in one or more compo-
nents. Second, in contrast to the WTS, we do not need to assume non-singular covari-
ance matrices and only the existence of finite second moments is required. However, the
limiting distribution of the MATS is again non-pivotal and we can not base inference on
quantiles of this distribution directly. We therefore consider three bootstrap approaches
in order to derive data-driven quantiles for test decisions. Furthermore, we derive con-
fidence regions and simultaneous confidence intervals for contrasts of the mean vector
based on the bootstrap quantiles (Friedrich and Pauly, 2017, Section 4.2).
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3 Resampling procedures

Resampling methods are a class of inference procedures known for inducing robust
results even for small sample sizes, see e.g., Efron and Tibshirani (1994); Davison
and Hinkley (1997); Davison et al. (2003); Good (2006); Manly (2006); Konietschke
et al. (2015); Pauly et al. (2015). The idea of the methods is to base inference on
data-dependent critical values instead of critical values of the approximate distribution.
The corresponding resampling test is (at least) asymptotically valid, if the distribution
of the test statistic under the null and the conditional resampling distribution coincide
asymptotically. Several different resampling approaches have been considered in the
literature. The most well known, perhaps, is Efron’s nonparametric bootstrap (Efron,
1979), which is based on randomly drawing with replacement from the data. However,
simulation studies indicated that this bootstrap procedure may lead to liberal test deci-
sions in several non- and semi-parametric setups, see e.g., Konietschke et al. (2015) for
general univariate MANOVA. This result has been confirmed by our simulation stud-
ies in the context of semi-parametric repeated measures data, see Tables 6–11 in the
supplementary material to Friedrich et al. (2017a).

In practice, the p-value based on the resampling distribution can be numerically calcu-
lated as follows:

1. Given the data Y , calculate the test statistic of interest, e.g., the WTS QN .

2. Resample the data according to the resampling procedure of your choice, for
example in case of the nonparametric bootstrap draw a random sample with re-
placement from the data1.

3. Calculate the test statistic of interest based on the resampling sample and save its
value in A1.

4. Repeat steps 2 and 3 a large number of times, e.g., B = 10, 000 times, resulting
in values A1, . . . , AB.

1Details on the resampling procedures will be discussed below.
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5. The p-value is calculated based on the empirical resampling distribution as

p-value =
1

B

B∑

b=1

1{Ab ≤ QN}.

Note that for very small sample sizes, it is often possible (e.g., for permutation proce-
dures) to calculate the resampling distribution exactly. However, this is even for sample
sizes of, e.g., N = 20 computationally extremely intensive and therefore usually not
feasible in practice.

In the following, we will describe the three resampling procedures that provided the
best results in the settings considered in this thesis.

3.1 Permutation procedure

In the semi-parametric repeated measures design described in Section 2.1, we consider a
permutation procedure for the WTS, which is based on a random permutation Y π of all
elements of the pooled sample Y . Here, Y π

iks denotes the (i, k, s)-entry of the permuted
vector Y π. Obviously, the original data vector Y and the permuted vector Y π only
have the same distribution, if the components of Y are exchangeable. However, this is
often not even the case in univariate two- and higher-way layouts and becomes more
untenable in the context of repeated measures.

Our arguments generalize the idea of Pauly et al. (2015), where a permutation approach
is applied in the context of univariate factorial designs. This approach is implemented
in the R package GFD, see Section 4.1 below as well as the Appendix (Friedrich et al.,
2017b).

Thus, following the idea of Janssen (1997, 2005); Chung and Romano (2013) and Pauly
et al. (2015), we consider a studentized test statistic. Therefore, we calculate the per-
mutation Wald-type statistic (WTPS) based on the mean vectors Y

π

• and empirical co-
variance matrices Σ̂

π

N of the permuted observations as

Qπ
N = N(Y

π

• )
′T (T Σ̂

π

NT )+TY
π

• . (3.1)

Due to the involved studentization, this approach is asymptotically correct, that is, it
always mimics the null distribution of the WTS. In particular, the following theorem
holds (Friedrich et al., 2017a, Theorem 3):
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3.2 Wild Bootstrap

THEOREM 3.1 The studentized permutation distribution of Qπ
N in (3.1) conditioned

on the observed data Y weakly converges to the central χ2
f -distribution in probability,

where f = rank(T ).

Theorem 3.1 states that for any underlying parameter µ ∈ RT and µ0 ∈ H0(T ) with
Tµ0 = 0 we have convergence in probability

sup
x∈R

∣∣Pµ(Qπ
N ≤ x|Y )− Pµ0

(QN ≤ x)
∣∣→ 0,

where Pµ(Qπ
N ≤ x|Y ) and Pµ(QN ≤ x) denote the conditional and unconditional

distribution function of Qπ
N and QN , respectively, under the assumption that µ is the

true underlying parameter. As described earlier, this is the crucial criterion for obtain-
ing a valid resampling approach. In particular, we obtain an asymptotic level α test
by comparing the original test statistic QN to the conditional (1 − α)-quantile of the
permutation distribution. It follows that the permutation test asymptotically keeps the
pre-assigned level α under the null hypothesis and is consistent for fixed alternatives.
Moreover, the WTS and the WTPS are asymptotically equivalent and the relative effi-
ciency of the WTPS compared to the WTS is 1. In addition, the permutation test based
on the WTS is finitely exact under exchangeability of the data (Friedrich et al., 2017a,
page 259).

Note that this permutation procedure does not work for the ATS, since it would result
in an incorrect covariance structure. For similar reasons, it is also problematic in the
more general nonparametric case HF

0 : TF = 0.

3.2 Wild Bootstrap

The wild bootstrap approach is based on multiplying the fixed (often centered) data with
random weights. To this end, let Wik denote i.i.d. random variables with E(Wik) =

0,Var(Wik) = 1 and supi,k E(W 4
ik) < ∞, which are independent of Y . Depending

on the situation, different choices of weights are possible, some satisfying different
moment conditions (Wu, 1986; Liu, 1988; Mammen, 1993a). In our applications, we
focus on random signs, that is, Rademacher distributed random variables, as well as
standard normal weights. Such resampling methods have been successfully applied
in the context of regression analysis (e.g., Wu, 1986; Mammen, 1993b; Davidson and
Flachaire, 2008), in time-series problems (e.g., Kreiss and Paparoditis, 2011; Jentsch
and Pauly, 2015) and in survival analysis (e.g., Lin, 1997; Martinussen and Scheike,
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3 Resampling procedures

2007; Beyersmann et al., 2013; Dobler and Pauly, 2014). We apply the wild bootstrap
approach both in the nonparametric repeated measures setting (Friedrich et al., 2017d)
and in the semi-parametric setting with multivariate data (Friedrich and Pauly, 2017).
In this section, we will focus on the latter. The approach in the nonparametric case is
similar and will be explained in more detail in Section 5.2 below.

In the semi-parametric setting, we obtain a wild bootstrap sample as

Y ?
ik = Wik(Y ik − Y i·), i = 1, . . . , a, k = 1, . . . , ni. (3.2)

Based on these bootstrap variables we can calculate the test statistic of interest, in this
case the MATS, as

M?
N = N(Y

?

•)
′T (TD̂

?

NT )+TY
?

•,

where Y
?

• denotes the (empirical) mean vector of the wild bootstrap sample and, simi-
larly, D̂

?

N is calculated based on the empirical variances of the wild bootstrap sample.

We obtain a wild bootstrap test by comparing the original test statistic to the conditional
(1 − α)-quantile of its wild bootstrap version. This test is asymptotically valid and
consistent for fixed alternatives (Friedrich and Pauly, 2017, Theorem 3.2).

In the nonparametric repeated measures setting, the wild bootstrap is applied to both
WTS and ATS and leads to asymptotically valid tests in both cases. Furthermore, the
wild bootstrap tests have the same local power under contiguous alternatives as the
original tests (Friedrich et al., 2017d, page 43).

3.3 Parametric Bootstrap

The parametric bootstrap approach, also known as asymptotic model based bootstrap
(Konietschke et al., 2015; Bathke et al., 2016), is typically applied for parametric mod-
els. However, although it originates from the assumption of multivariate normality,
the parametric bootstrap yields valid results in our semi-parametric setting. The ap-
proach is based on an application of the multivariate central limit theorem: For any
fixed i = 1, . . . , a, the central limit theorem implies that

√
ni(Y i· − µi) is asymp-

totically normal with mean zero and covariance matrix V i. Thus, given the data, we
generate a parametric bootstrap sample as

Y ∗i1, . . . ,Y
∗
ini
∼ N(0, V̂ i), i = 1, . . . , a.
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3.3 Parametric Bootstrap

Here and in (3.2), we chose the subscripts ∗ and ? to match the notation in Friedrich and
Pauly (2017, Section 3). Since the parametric bootstrap variables mimic the covariance
structure of the data, we obtain an accurate finite sample approximation by calculating
the test statistic (e.g., M∗

N ) based on the bootstrap variables Y ∗ik. Again, we can show
that the conditional distribution of M∗

N given the data weakly converges to the null
distribution of MN in probability under both the null hypothesis and the alternative
(Friedrich and Pauly, 2017, Theorem 3.1). Thus, the parametric bootstrap also provides
an asymptotically valid test, which is consistent for fixed alternatives.
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4 R packages and the EEG data example

4.1 The GFD package

The permutation approach investigated in Pauly et al. (2015) for general univariate
factorial designs is implemented in the R package GFD (Friedrich et al., 2017b, see
Appendix). In this setting, we assume the following model of the univariate observa-
tions

Yik = µi + εik, i = 1, . . . , a, k = 1, . . . , ni.

The error terms εik are assumed to be i.i.d. with E(εi1) = 0 and Var(εi1) = σ2
i > 0. As

in the multivariate models we neither assume normality nor equal variances or sample
sizes across groups. Null hypotheses are formulated in terms of the mean vector as
H0 : Hµ = 0, where µ = (µ1, . . . , µa)

′ and H is a suitable contrast matrix. Pauly
et al. (2015) showed that a permutation procedure of the WTS yields accurate type-I
error control and an asymptotically valid test in this context. This permutation proce-
dure is implemented in GFD along with the asymptotic χ2-approximation of the WTS
and the F -approximation of the ATS. All methods can be used to test hypotheses about
the main and interaction effects of the involved factors. Application and output of
the function GFD() are similar to the lm() or aov() function in R. In particular,
summary(), print() and plot() methods are implemented for an object of class
‘GFD’. The plotting routine displays the calculated mean values along with asymp-
totic (1 − α) confidence intervals based on quantiles of a t-distribution. Furthermore,
the package is equipped with an optional graphical user interface in order to facilitate
application for a wide range of users.

The methods implemented in GFD can be applied to arbitrary crossed or hierarchically
nested designs with up to three factors. A detailed description of the package including
many examples to demonstrate its use for different designs is published in Friedrich
et al. (2017b), which is included in the Appendix of this thesis.
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4.2 MANOVA.RM and the EEG data example

The methods for the semi-parametric models analyzed in Friedrich et al. (2017a) and
Friedrich and Pauly (2017) are implemented in the R package MANOVA.RM (Friedrich
et al., 2017c). The package consists of two parts: the function RM() calculates test
statistics and p-values for repeated measures designs (data must be provided in long
format), while MANOVA() and MANOVA.wide() provide functions for multivariate
data in long and wide format, respectively. Since the permutation approach is not feasi-
ble for multivariate data, the implemented resampling methods differ with respect to the
different types of data: For multivariate data, the package provides a parametric boot-
strap and a wild bootstrap based on Rademacher weights for the MATS (Friedrich and
Pauly, 2017) and the WTS. In case of repeated measures, we additionally implemented
the permutation approach for the WTS as in Friedrich et al. (2017a) for a common num-
ber of time points ti ≡ t in each group as well as the ATS with F -approximation and
the two bootstrap approaches.

To demonstrate the performance of the package and to illustrate the difference between
a repeated measures setting and multivariate outcomes, we consider the EEG data ex-
ample described in Section 1 and in Bathke et al. (2016). This data set contains EEG
measurements of 166 patients diagnosed with either Alzheimer’s disease (AD), mild
cognitive impairment (MCI) or subjective cognitive complaints without clinically sig-
nificant deficits (SCC). For each patient, we consider six EEG measurements, which
consist of z-scores for brain rate (Pop-Jordanova and Pop-Jordanova, 2005) and Hjorth
complexity (Hjorth, 1970, 1975) averaged within frontal, temporal and central posi-
tions.

Since comparisons between the variables are meaningful here, the data can be viewed
in two different ways: First, we may consider it as multivariate, i.e., each individual has
a 6-dimensional response vector. We can then formulate and test the hypothesis of no
difference between diagnoses (3 levels)

H0 : {(P 3 ⊗ I6)µ = 0}: No effect of diagnosis.

Here, µ is the pooled mean vector as in Section 2.3. The analysis of this data example
can be conducted using the R package MANOVA.RM (Friedrich et al., 2017c). The
EEG data set is included in the package and evaluation of the above hypothesis is carried
out as follows:

R > library(MANOVA.RM)

R > data(EEG)
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4.2 MANOVA.RM and the EEG data example

R > multi <- MANOVA(resp ~ diagnosis, data = EEG, subject = "id",

iter = 10000, resampling = "paramBS", seed = 123,

dec = 2)

R > summary(multi)

This results in the following output, where we have rounded the results to 2 digits
(parameter ’dec’).

Call:

resp ~ diagnosis

Descriptive:

diagnosis n Means Means Means Means Means Means

1 AD 36 -0.52 -0.44 -0.53 -0.57 -0.34 -0.58

2 MCI 57 -0.28 -0.26 -0.27 -0.17 -0.15 -0.07

3 SCC 67 0.51 0.46 0.51 0.45 0.31 0.37

Wald-Type Statistic (WTS):

Test statistic df p-value

53.55 12 3.28e-07

modified ANOVA-Type Statistic (MATS):

Test statistic

193.62

p-values resampling:

paramBS (WTS) paramBS (MATS)

2e-04 0e+00

In the descriptive part, the mean vectors for the different diagnoses are reported along
with the corresponding sample sizes in the groups. We find a highly significant effect
of diagnosis on the 6-dimensional EEG measurements, a finding shared by all testing
procedures including the parametric bootstrap approach. Since the ATS is not invariant
under scale transformations in the multivariate setting, it has not been implemented.

On the other hand, the EEG measurements might also be viewed as levels of the sub-
plot factors ‘brain region’ (3 levels: frontal, temporal, central) and ‘feature’ (2 levels:
brain rate, complexity). Therefore, we can formulate and test hypotheses involving the
sub-plot factors, for example

1. H(1)
0 : {(P 3 ⊗ 1

3
1′3 ⊗ 1

2
1′2)µ = 0}: No effect of diagnosis (whole-plot factor)

2. H(2)
0 : {(1

3
1′3 ⊗ 1

3
1′3 ⊗ P 2)µ = 0}: No effect of feature (second sub-plot factor)
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3. H(3)
0 : {(1

3
1′3 ⊗ P 3 ⊗ P 2)µ = 0}: No two-fold interaction between feature and

brain region

4. H(4)
0 : {(P 3 ⊗ P 3 ⊗ P 2)µ = 0}: No three-fold interaction

5. . . .

This analysis may be conducted with MANOVA.RM as follows:

R > rm <- RM(resp ~ diagnosis * region * feature, data = EEG,

subject = "id", no.subf = 2, iter = 10000,

resampling = "Perm", seed = 456, CI.method = "t-quantile",

dec = 2)

R > summary(rm)

The number of sub-plot factors considered must be specified in the RM function via
no.subf. The returned output is displayed below:

Call:

resp ~ diagnosis * region * feature

Descriptive:

diagnosis region feature n Means Lower Upper 95% CI

1 AD central brainrate 36 -0.53 -1.38 0.32

10 AD central complexity 36 -0.58 -1.84 0.68

4 AD frontal brainrate 36 -0.44 -1.31 0.42

13 AD frontal complexity 36 -0.34 -1.29 0.60

7 AD temporal brainrate 36 -0.52 -1.29 0.25

16 AD temporal complexity 36 -0.57 -1.58 0.44

2 MCI central brainrate 57 -0.27 -0.65 0.12

11 MCI central complexity 57 -0.07 -0.34 0.20

5 MCI frontal brainrate 57 -0.26 -0.65 0.13

14 MCI frontal complexity 57 -0.15 -0.60 0.31

8 MCI temporal brainrate 57 -0.28 -0.66 0.12

17 MCI temporal complexity 57 -0.17 -0.56 0.23

3 SCC central brainrate 67 0.51 0.24 0.79

12 SCC central complexity 67 0.37 0.25 0.50

6 SCC frontal brainrate 67 0.46 0.17 0.75

15 SCC frontal complexity 67 0.31 0.07 0.55

9 SCC temporal brainrate 67 0.51 0.20 0.82

18 SCC temporal complexity 67 0.45 0.25 0.64

Wald-Type Statistic (WTS):

Test statistic df p-value

diagnosis 42.59 2 5.66-10
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region 0.35 2 0.84

diagnosis:region 6.08 4 0.19

feature 0.01 1 0.91

diagnosis:feature 5.60 2 0.06

region:feature 0.35 2 0.84

diagnosis:region:feature 8.45 4 0.08

ANOVA-Type Statistic (ATS):

Test statistic df1 df2 p-value

diagnosis 13.33 1.47 2088.03 2.50e-05

region 0.13 1.73 Inf 0.85

diagnosis:region 1.21 2.41 Inf 0.30

feature 0.01 1.00 Inf 0.91

diagnosis:feature 1.66 1.70 Inf 0.19

region:feature 0.08 1.57 Inf 0.88

diagnosis:region:feature 1.09 1.98 Inf 0.34

p-values resampling:

Perm (WTS) Perm (ATS)

diagnosis 0.00 NA

region 0.84 NA

diagnosis:region 0.21 NA

feature 0.91 NA

diagnosis:feature 0.06 NA

region:feature 0.85 NA

diagnosis:region:feature 0.09 NA

None of the p-values and confidence intervals are automatically adjusted for multiple
testing. Since the permutation approach is not appropriate for the ATS, the program re-
turns no resampled p-value. In addition, for tests involving only the whole-plot factors
(here: diagnosis), a second degree of freedom f̂0 = tr2(T Σ̂)/ tr(D2

T Σ̂
2
Λ) is calcu-

lated for the F -approximation, similar to Brunner et al. (1997, 2002) and the SAS PROC

MIXED procedure (SAS Institute Inc., 2003). Here DT = diag(T ) denotes the matrix
consisting of the diagonal entries in T and Λ = diag(1/(n1 − 1), . . . , 1/(na − 1)).

We find a significant effect of the whole-plot factor ‘diagnosis’ (again shared by all test
statistics), but none of the sub-plot or interaction effects are significant at 5% level.

The output demonstrates the differences between the two analyses: In the repeated
measures model, we have one mean value per factor level combination, which is ad-
ditionally equipped with 95% confidence intervals based on either t-quantiles or the
corresponding resampling quantiles. In the MANOVA setting, on the other hand, we
have 6-dimensional mean vectors for each level of the factor ‘diagnosis’. Furthermore,
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we implemented a function for calculation of confidence regions in the multivariate
setting (conf.reg()), thus replacing the univariate confidence intervals in the re-
peated measures setting with multivariate confidence regions. Furthermore, the MATS
is calculated in the MANOVA setting instead of the ATS along with the corresponding
resampling-based p-values. Since the permutation procedure is not meaningful in the
context of multivariate data, it is not available in the MANOVA() function. The RM()
function is equipped with a plotting routine similar to the one implemented in GFD,
which displays mean values along with (1 − α) confidence intervals for a specified
factor (combination) of interest. In the case of two-dimensional multivariate data, it
is possible to plot the corresponding confidence regions. An optional graphical user
interface is available for both the RM() and the MANOVA() function.

Note that the two-sided view on the data demonstrated here only makes sense in sit-
uations where the response variables are commensurate in the sense that comparisons
between them are meaningful (Bathke et al., 2016). Usually we distinguish between
either of the two approaches.
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5.1 Article 1: ‘Permuting longitudinal data in spite of
the dependencies’ (JMVA, 2017)

We consider the semi-parametric model for general repeated measures designs with
potentially non-normal and/or heteroscedastic data described in Section 2.1. In such
situations, the WTS provides an asymptotically valid procedure. However, for small
to moderate sample sizes, test decisions based on the asymptotic χ2-quantiles become
very liberal.

As an extension to the standard repeated measures setting, we allow the number of time
points to differ between groups. We generalize all theorems on the asymptotic behavior
of the WTS and the ATS to this more involved setting and state the power behavior of
the considered methods (Theorems 1 and 2).

To improve the small sample behavior of the WTS, we propose a novel permutation
approach, where we randomly permute all elements of the pooled sample. We calculate
the permutation Wald-type statistic (WTPS) based on the mean vectors and empirical
covariance matrices of the permuted observations, i.e.,

Qπ
N = N(Y

π

• )
′T (T Σ̂

π

NT )+TY
π

• .

Due to the dependencies in the repeated measures data, the idea of how to permute is
more involved here than in the case of independent univariate observations (Pauly et al.,
2015). Heuristically, an explanation of why the above approach works is as follows:
When multiplied by a contrast matrix, the permuted mean vector always mimics the
null situation, because the permuted components unconditionally have the same mean
(page 259).

More precisely, we prove that the conditional distribution of the WTPS always approx-
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imates the null distribution of the WTS given the data (Theorem 3).

In a large simulation study, we analyze the behavior of the WTPS for different distri-
butions, sample sizes and covariance settings and compare it to the WTS and the ATS
(pages 260–263). In accordance with the literature (e.g., Brunner et al., 1997; Brunner,
2001; Pauly et al., 2015; Konietschke et al., 2015; Smaga, 2017), the test based on the
WTS considerably exceeds the nominal level, reaching type-I error rates of almost 50%
in some scenarios. The ATS, in contrast, leads to conservative test decisions in case
of non-normal data and a large number of repeated measurements. The WTPS keeps
the pre-assigned level in most scenarios. However, in settings with negative (positive)
pairing, the permutation test shows a slightly conservative (liberal) behavior. Similar
problems have been noted before for permutation tests, see, e.g., Pauly et al. (2015).
In terms of power, the ATS has a slightly higher power than the WTPS in situations
with normally distributed data. For skewed distributions, however, the WTPS has the
highest power.

As a real data example we consider a study on the oxygen consumption of leukocytes in
the presence and absence of inactivated staphylococci. This is a repeated measures de-
sign with whole-plot factor ‘treatment’ and sub-plot factors ‘time’ and ‘staphylococci’.
Questions of interest include the effects of the three factors as well as interactions be-
tween them. Since there are only 12 observations per treatment group, the test based
on the WTS is not reliable. The analysis of the data example with the three test statis-
tics considered shows a significant effect of all three factors as well as a significant
interaction between treatment and time. The three test statistics all lead to the same
conclusions in this example.

To sum up, we have considered a permutation test for semi-parametric repeated mea-
surements, where we randomly permute the pooled sample. Despite the somewhat
counterintuitive destruction of the dependency structure, the approach turns out to
perform very well in simulation studies. We have furthermore rigorously proven the
asymptotic correctness of the permutation procedure generalizing arguments from Pauly
et al. (2015) using results from Pauly (2011) to the more involved situation with depen-
dent data.
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5.2 Article 2: ‘A wild bootstrap approach for
nonparametric repeated measurements’ (CSDA,
2017)

As a motivating data example, we consider the shoulder tip pain trial described in Sec-
tion 1 of this thesis. In such a setting with score data, classical repeated measures
ANOVA models show their limits, since means are no adequate measure of deviations
between the groups. We therefore consider a nonparametric repeated measures model,
where inference is based on ranks, and improve the small sample behavior of the WTS
and the ATS by a wild bootstrap approach.

The wild bootstrap approach considered is based on multiplying the fixed data with
random signs Wik, i.e., Rademacher distributed weights. We consider the centered rank
vectors Zik = (Rik −Ri·) as well as independent and identically distributed random
signs Wik. The resampling version of the estimated treatment effects p̂i is given by

p̂∗i =
1

ni

ni∑

k=1

1

tN
WikZik.

Since the distributions of
√
NT p̂∗ and

√
NT (p̂−p) are asymptotically identical under

the null hypothesisHF
0 : TF = 0 (Theorem 3.1), we can derive wild bootstrap versions

of the WTS and ATS by plugging in the corresponding wild bootstrap estimates as well
as the corresponding covariance matrix, resulting in

(Qp
N)∗ = N(p̂∗)′T (T Σ̂

∗
T )+T p̂∗

for the WTS as well as

(T pN)∗ = N(p̂∗)′T p̂∗

for the ATS.

Both conditional distributions mimic the corresponding null distribution of the WTS
and ATS, respectively, thus leading to asymptotic level α tests, which are consistent for
fixed alternatives (Theorem 3.2 and 3.3).

We analyze the behavior of the test statistics in a simulation study, where we simulate a
one-way repeated measures design with two groups and t ∈ {4, 8} repeated measures
for underlying discrete and continuous distributions (pages 43–46). The WTS tends to
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liberal decisions in all scenarios, a behavior that is greatly improved by its wild boot-
strap version. Roughly speaking, the wild bootstrap WTS takes the variability of the
covariance matrix into account and is therefore closer to the actual sampling distribu-
tion of the WTS when sample sizes are small. We observe a similar behavior for the
ATS, which is also slightly liberal when testing for the main effect. The wild bootstrap
ATS tends to an accurate type-I error control. The wild bootstrap WTS has lower power
than the wild bootstrap version of the ATS, especially under a trend alternative, while
the power is comparable for both versions of the ATS.
Due to the results of the simulation study and since the wild bootstrap ATS can even be
applied in situations with singular covariance matrices (see the data example below),
we recommend this procedure for practical applications.

When analyzing the data example, it turns out that the estimated covariance matrix
is singular. Thus, the WTS cannot be used for the analysis. The ATS and its wild
bootstrap version lead to the same conclusions, namely a significant treatment and time
effect as well as an interaction between the two. A further analysis in the data set split
by treatment reveals a significant time trend under placebo, while there is no significant
effect in the treatment group. In a sensitivity analysis, we drop time point 6 from the
analysis, leading to a non-singular covariance matrix. We are therefore able to calculate
the WTS and its wild bootstrap version. Due to its liberality, the WTS detects several
significant effects which are not supported by the other test statistics. In particular, the
time effect is no longer significant in the analysis of the complete data set. Only when
split up according to treatment, all four procedures again find a significant effect of time
in the placebo group (pages 46–48).

In summary, we have considered a wild bootstrap approach to improve the small sample
behavior of both the WTS and the ATS in a nonparametric repeated measures design,
where null hypotheses are formulated in terms of distribution functions. The test statis-
tics are based on ranks, thus providing methods to deal with metric as well as ordinal,
count or score data in a unified way. Extensive simulations have shown that the wild
bootstrap approach indeed improves the small sample behavior of both test statistics.
We have furthermore proven that the method is asymptotically valid and has the same
local power under contiguous alternatives as the original tests based on the WTS and
ATS, respectively.
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5.3 Article 3: ‘MATS: Inference for potentially
singular and heteroscedastic MANOVA’ (2017)

We consider the data example on cardiologic measurements recorded at Ulm Univer-
sity Hospital. Remember that in addition to (empirical) covariance heterogeneity, the
covariance matrices are also singular in this example. Furthermore, the cardiologic
outcomes are measured on different scales. We can therefore neither apply the WTS,
because it relies on the assumption of non-singular covariance matrices, nor the ATS,
since it is not invariant under scale transformations of the data. Thus, we introduce a
new test statistic, which we denote as MATS:

MN = NY
′
•T (TD̂NT )+TY •.

Srivastava and Kubokawa (2013) proposed a similar test statistic for a specific ho-
moscedastic one-way layout in the context of high-dimensional data. The MATS modi-
fies and extends their test statistic to general factorial MANOVA designs, including het-
eroscedastic models. In particular, our only distributional assumption is the existence
of second moments, thereby incorporating designs with singular covariance matrices
and relaxing the usual assumption on finite fourth moments of the data (see, e.g., Pauly
et al., 2015; Konietschke et al., 2015; Friedrich et al., 2017a).

We derive the asymptotic distribution of the MATS in Theorem 2.1. Since it is non-
pivotal, we analyze three different resampling techniques to base inference upon. The
first approach is a parametric bootstrap procedure as proposed by Konietschke et al.
(2015) for the WTS in general MANOVA designs. The second approach is a wild
bootstrap, which has already been successfully applied in the context of nonparametric
repeated measures (Friedrich et al., 2017d) and cluster data (Cameron et al., 2008;
Cameron and Miller, 2015). In our simulation study, we focus on standard normally
distributed weights in the wild bootstrap approach, since they yielded similar results
as random signs in the simulations. The asymptotic results are, however, valid for all
choices of weights Wik satisfying E(Wik) = 0,Var(Wik) = 1 and supi,k E(W 4

ik) <∞.
Finally, we consider a nonparametric bootstrap, where for each group i = 1, . . . , a we
randomly draw with replacement ni independent selections Y †ik from the i-th sample.

All bootstrap procedures lead to asymptotically valid level α tests, which are consistent
for fixed alternatives (Theorems 3.1–3.3). Moreover, the asymptotic relative efficiency
of the bootstrap tests compared to the test based on the asymptotic distribution is 1. In
addition to statistical testing decisions, we also use the bootstrap quantiles to derive
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confidence regions and simultaneous confidence intervals for contrasts of the mean
vector (pages 7–8).

In a large simulation study, we analyze the behavior of the bootstrap procedures in
different one- and two-way layouts with balanced and unbalanced designs, for d = 4

and d = 8 dimensions, as well as in settings with singular covariance matrices (pages
9–15). As a competitor to the MATS, we consider the parametric bootstrap of the WTS
as proposed by Konietschke et al. (2015), since it turned out to perform better than
other resampling approaches in their simulations. We find that the parametric bootstrap
of the MATS yields better results than the parametric bootstrap of the WTS, especially
in situations with negative pairing. Furthermore, the parametric bootstrap WTS yields
no valid level α test in situations with singular covariance matrices, while the MATS is
still valid in these settings.

To our surprise, the bootstrap approaches of the MATS improve with growing number
of dimensions. Therefore, it seems worth to investigate this approach also in high-
dimensional settings where the dimension d is larger than the sample size N . The
parametric bootstrap for the MATS yields the best results in most scenarios. In partic-
ular, it is less liberal than the wild bootstrap and the parametric bootstrap of the WTS
and less conservative than the nonparametric bootstrap. Furthermore, it has a higher
power to detect fixed alternatives than the nonparametric bootstrap. However, it shows
a slightly liberal behavior in situations with negative pairing and skewed distributions.

Since the singularity of the covariance matrix in the data example on cardiologic mea-
surements is somewhat artificial, we additionally consider a data example on the 2016
presidential elections in the USA. Our aim is to investigate whether 7 demographic
factors differ between the 43 states under consideration. In this example, the empiri-
cal covariance matrix is computationally singular. We therefore apply the parametric
bootstrap of the MATS, which reveals a significant difference between the states with
respect to the 7 demographic factors considered (page 16).

To sum up, we have considered a novel test statistic which is invariant under scale
transformations in multivariate data and is applicable to settings with singular covari-
ance matrices. We have proven the asymptotic distribution of the MATS as well as the
asymptotic validity of the bootstrap tests. These proofs are more involved than in, e.g.,
Konietschke et al. (2015), since we relax the assumption of finite fourth moments to
only assuming finite second moments and we do not assume positive definite covari-
ance matrices. Furthermore, we have constructed confidence regions and simultaneous
confidence intervals for contrasts of the mean vector, which provide additional insight
into statistical analyses. Finally, the simulation results indicated that the MATS might
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be suitable in high-dimensional multivariate settings. This extension, however, requires
different techniques and will be part of future research of the working group in Ulm.
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6 Outlook: The fourth scenario

So far, we have considered a semi-parametric model (Friedrich et al., 2017a) as well
as a nonparametric model (Friedrich et al., 2017d) for repeated measures designs. Fur-
thermore, we analyzed semi-parametric multivariate data in Friedrich and Pauly (2017).
The fourth scenario in this context thus is a nonparametric model for multivariate data.
In this chapter we give a brief overview of the corresponding working paper Dobler
et al. (2017).

For the d-dimensional observation vectors Y ik = (Yi1k, . . . , Yidk)
′, we consider the

following model:

Yijk ∼ Fij, i = 1, . . . , a, j = 1, . . . , d, k = 1, . . . , ni,

i.e., we assume arbitrary marginal distribution functions Fij .

The relative effects considered in Friedrich et al. (2017d) depend on the sample sizes
ni, since they are based on weighted means of the empirical distribution functions.
This means that they are no fixed model constants and changing the sample sizes may
change the results, see Brunner et al. (2016) for an example. It is therefore sensible to
consider the unweighted relative effects proposed by Brunner and Puri (2001). In the
multivariate setting, the unweighted treatment effects for group i and dimension j are
given by

qij =

∫
Gj dFij, i = 1, . . . , a, j = 1, . . . , d.

Here, Gj = 1
a

∑a
i=1 Fij denotes the unweighted mean of the distribution functions in

dimension j. In comparison to the nonparametric treatment effects for the repeated
measures, comparisons to the overall mean distribution G = 1

ad

∑a
i=1

∑d
j=1 Fij are not

meaningful in the multivariate context, since variables may be measured on different
scales. Interpretation of the effects is again rather simple: An effect qij < 0.5 means
that the observations from component j in group i tend to smaller values than those
from the reference distribution Gj .
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We consider null hypotheses formulated in terms of these unweighted relative effects
as Hq

0 : Tq = 0, where q = (q11, . . . , qad)
′. These hypotheses are less restrictive

than HF
0 : TF = 0, since TF = 0 implies Tq = 0 but not vice versa (Brunner

et al., 2016). Procedures based on HF
0 have the advantage of a rather simple covariance

structure of TR•, see Akritas and Brunner (1997); Akritas et al. (1997) for details in
the univariate case. Here, R• = (R

′
1·, . . . ,R

′
a·)
′ denotes the vector of rank means.

Under the hypothesis Hq
0 : Tq = 0 the covariance structure is much more involved,

see Puri (1964) for a derivation of the general covariance matrix ofR• in the univariate
case as well as Brunner et al. (2016) for the covariance structure of TR• in a general
univariate factorial design as well as for repeated measures. In our current working
paper, we derive this covariance structure in the case of multivariate data.

We use empirical process theory to prove that q can be consistently estimated by q̂,
where

q̂ij =
1

a

a∑

`=1

ŵ`ij

and

ŵ`ij =
1

n`

(
R

(`i)

ij· −
ni + 1

2

)
for i, ` = 1, . . . , a, j = 1, . . . , d.

Here, R(`i)
ijk denotes the (mid-)rank of observation Yijk in dimension j among the (ni +

n`) observations in the pooled sample Y`j1, . . . , Y`jn`
, Yij1, . . . , Yijni

from treatment
groups i and `.

Inference is based on a wild bootstrap approach and a group-wise, nonparametric boot-
strap(Efron, 1979), where we randomly draw with replacement from the observation
vectors Y ik, resulting in the bootstrapped observation vectors Y ∗ik, which are then used
to build the bootstrapped empirical distribution functions F ∗ij . Finally, the bootstrapped
treatment effects are obtained via

q∗ij =

∫
G∗j dF

∗
ij.

The validity of this bootstrap approach again follows from arguments of empirical pro-
cess theory (van der Vaart and Wellner, 1996).
A bootstrap test is finally obtained by comparing the ANOVA-type test statistic

T qN = N q̂′T q̂

to the conditional (1− α)-quantile of the bootstrap distribution.

In simulation studies, we analyze the type-I error control of the proposed bootstrap ap-
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proaches in several settings including various continuous as well as ordinal distributions
with different covariance structures and varying sample sizes. We even consider a het-
eroscedastic setting where Hq

0 is satisfied but HF
0 is not. The wild bootstrap approach

shows an accurate type-I error control across all settings. Only in the heteroscedas-
tic case with small sample sizes, it turns out to be very conservative. This is the only
scenario, where the group-wise, nonparametric bootstrap provides better results.

In summary, we consider a wild bootstrap approach to unweighted nonparametric treat-
ment effects in a multivariate setting. These effects allow for transitive ordering and
do not depend on the sample sizes. Null hypotheses are formulated in terms of the
treatment effects instead of distribution functions, which allows for, e.g., derivation of
confidence intervals. We are currently working on implementing these procedures in
an R package called rankMANOVA, which will be released on CRAN soon.
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7 Discussion

In this thesis, we considered different resampling procedures in order to analyze depen-
dent data with small sample sizes. We have distinguished between a semi-parametric
model, where inference is based on means, and a nonparametric model based on rank-
statistics. The latter is even applicable to designs with ordinal, score or count data.
Furthermore, we considered two different kinds of dependent data, namely repeated
measurements, where we additionally test for underlying sub-plot factors like time, and
multivariate data, where several outcomes, potentially measured on different scales, are
recorded per subject.

In all situations, the small sample behavior of the state-of-the-art test statistics WTS and
ATS was greatly improved by the resampling approaches. In particular, the permutation
procedure of the WTS provided a valid and accurate test decision in the semi-parametric
repeated measures design (Friedrich et al., 2017a). In the nonparametric case, a wild
bootstrap procedure based on the ATS yielded the best results (Friedrich et al., 2017d).
And in the semi-parametric MANOVA setting, we developed a new test statistic which,
equipped with a parametric bootstrap routine, allowed us to develop asymptotically
valid tests with accurate finite sample properties and to construct multivariate confi-
dence regions (Friedrich and Pauly, 2017).

None of the approaches considered in this thesis relies on the assumption of multivari-
ate normality, homoscedasticity or balanced designs. Thus, they are applicable to a
wide range of factorial designs with dependent data as illustrated by the data examples
considered in the articles and in Section 1. We have rigorously proven that the resam-
pling approaches approximate the null distribution of the corresponding underlying test
statistic and can thus be used for calculating data-dependent critical values. In partic-
ular, the corresponding resampling tests are asymptotically valid and provide the same
local power as the original tests under contiguous alternatives.

Since the relative effects considered in Friedrich et al. (2017d) depend on the sample
sizes ni, we are currently working on a bootstrap procedure in the nonparametric mul-
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tivariate situation, where we formulate hypotheses in terms of the unweighted relative
effects q defined in Chapter 6. In particular, we use empirical process theory to analyze
the asymptotic behavior of q̂ as well as its bootstrap version q̂∗.

The simulation studies in Friedrich et al. (2017a) showed that the permutation pro-
cedure leads to slightly liberal (conservative) test decisions in situations with positive
(negative) pairing, respectively. This is a well-known problem for permutation tests and
improvement of this behavior will be part of future research. An idea is the approach
considered by Smaga (2015), where a {2}-inverse (Getson and Hsuan, 2012) is used
instead of the Moore-Penrose inverse in the WTS. These tests are asymptotically valid,
but only consistent for a smaller class of fixed alternatives (Smaga, 2015, 2017).

The resampling procedures for the semi-parametric setting for both multivariate data
and repeated measures are implemented in the R package MANOVA.RM (Friedrich
et al., 2017c).

The permutation procedure for the univariate case as in Pauly et al. (2015) is im-
plemented in the R package GFD (Friedrich et al., 2017b). Nonparametric univari-
ate methods are implemented in rankFD (Konietschke et al., 2016) and we are cur-
rently working on the corresponding extensions to the multivariate setting (package
rankMANOVA). By providing freely available software packages, the newly derived
methods are placed at the disposal of a general audience.
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a b s t r a c t

For general repeated measures designs the Wald-type statistic (WTS) is an asymptotically
valid procedure allowing for unequal covariance matrices and possibly non-normal
multivariate observations. The drawback of this procedure is its poor performance for
small to moderate samples, i.e., decisions based on the WTS may become quite liberal.
It is the aim of the present paper to improve the small-sample behavior of the WTS by
means of a novel permutation procedure. In particular, it is shown that a permutation
version of theWTS inherits its good large-sample properties while yielding a very accurate
finite-sample control of the type-I error as shown in extensive simulations. Moreover, the
new permutation method is motivated by a practical data set of a split plot design with a
factorial structure on the repeated measures.

© 2016 Elsevier Inc. All rights reserved.

1. Motivation and introduction

In many experiments in the life, social or psychological sciences the experimental units (e.g., subjects) are repeatedly
observed at different occasions (e.g., at different time points) or under different treatment conditions. This leads to certain
dependencies between observations from the sameunit and results in amore complicated statistical analysis of such studies.
In the context of experimental designs, the repeatedmeasures are considered as levels of the sub-plot factor. If several groups
are observed, these are considered as levels of the whole-plot factor.

Typical questions in repeated measures and profile analysis concern the investigation of a group effect, a non-constant
effect of time or different time profiles in the groups; see, e.g., the monographs of Davis [14, Section 4.3] or Johnson and
Wichern [25, Section 6.8]. Classical repeated measures models, where hypotheses are tested with Hotelling’s T 2 [19] or
Wilks’sΛ [45], assume normally distributed observation vectors and a common covariancematrix for all groups; see e.g., the
monograph of Davis [14]. In medical and biological research, however, the assumptions of equal covariance matrices and
multivariate normally distributed outcomes are often not met and a violation of themmay inflate the type-I error rates; see
the comments in Xu and Cui [46], Suo et al. [40] or Konietschke et al. [28].

Therefore, other procedures have been developed for repeated measures which are based on certain approximation
techniques [1,7–10,17,18,21,26,27,30,35,41,44]. However, these papersmainly assume themultivariate normal distribution
and only discuss methods for specific models which are also asymptotically only approximations, i.e., they do not even lead
to asymptotic exact tests. Another possibility is to apply a specific mixed model in the GEE context, see, e.g., the text books
by Verbeke and Molenberghs [42,43]. These methods require that the data stem from a specific exponential family. An
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Table 1
Means and empirical standard deviations of oxygen consumption of leukocytes in the
presence and absence of inactivated staphylococci.

O2-Consumption [µℓ]

Staphylococci
With Without
Time (min) Time (min)
6 12 18 6 12 18

Placebo
(n = 12)

Mean 1.618 2.434 3.527 1.322 2.430 3.425
Sd 0.157 0.303 0.285 0.193 0.263 0.339

Verum
(n = 12)

Mean 1.656 2.799 4.029 1.394 2.57 3.677
Sd 0.207 0.336 0.256 0.218 0.242 0.340

exception is given by the multivariate Wald-type test statistic (WTS), which is asymptotically exact. However, it is well
known that it requires large sample sizes to keep the pre-assigned type-I error level; see, e.g., [6,28,34].

To improve the small-sample behavior of the WTS in a MANOVA setting, Konietschke et al. [28] proposed different
bootstrap techniques. Another possibilitywould be to apply permutation procedures. It iswell known that permutation tests
are finitely exact under the assumption of exchangeability; see, e.g., [5,31,36] or [37–39] as well as [2,3,12] for examples. In
most of these examples, however, permutation tests are only applied in situations where the null distribution is invariant
under the corresponding randomization group.

A modified permutation procedure may also be applied in situations where this invariance does not hold; see, e.g.,
[11,23,24,33,34]. Themain idea in these papers is to apply a studentized test statistic and to use its permutation distribution
(based on permuting the pooled sample) for calculating critical values. This leads to particularly good finite-sample
properties even in case of general factorial designs with fixed factors [34]. It is the aim of the present paper to extend the
concept of permuting all data to the context of longitudinal data in general (not necessarily normal and homoscedastic) split
plot designs. Applied to the WTS this generalizes the results of Pauly et al. [34] and leads to astonishingly accurate results
despite the dependencies in repeated measurements data.

The methodology derived in the present paper is motivated by the following data example on the O2 consumption of
leukocytes. To examine the breathability of leukocytes, an experiment with 44 HSD-rats was conducted. A group of 22
rats was treated with a placebo, while the other 22 rats were treated with a substance supposed to enhance the humoral
immunity. 18 h prior to the opening of the abdominal cavity, all animals received 2.4 g sodium-caseinate for the production
of a peritoneal exudate rich on leukocytes. In order to obtain a sufficient amount of material the peritoneal liquid of 3–4
animals was mixed and the leukocytes therein were rehashed in an experimental batch. One half of the experimental batch
wasmixedwith inactivated staphylococci in a ratio of 100:1, the other half remained untreated and served as a control. Then,
the oxygen consumption of the leukocyteswasmeasuredwith a polarographic electrode after 6, 12 and 18min, respectively.
For each group separately, 12 experimental batcheswere carried out. Some descriptive statistics of the experimental batches
in both treatment groups are listed in Table 1.

Questions of interest in this example concern the effect of the whole-plot factor ‘treatment’, the effect of the sub-plot
factors ‘staphylococci’ and ‘time’ as well as interactions between these effects. We note that the empirical 6 × 6 covariance
matrices of the two groups appear to be quite different (see the supplement (see Appendix A) for details). This alsomotivates
the inclusion of unequal covariance matrices in our model. For such experimental designs, procedures are derived in this
paper that lead to good small-sample control of the type-I error while being asymptotically exact.

The paper is organized as follows. The underlying statistical model is described in Section 2, where we also introduce the
Wald-type (WTS) aswell as the ANOVA-type statistic (ATS) and state their asymptotic behavior. In Section 3, we describe the
novel permutation procedure used to improve the small sample behavior of the WTS. Afterwards, we present the results of
extensive simulation studies in Section 4, analyzing the behavior of the permuted test statistic in different simulation designs
with certain competitors. Additional simulation results have also been run for several other resampling schemes. They did
not show a better performance than the permutation procedure and are only reported in the supplementarymaterial, where
also various power simulations can be found. Themotivating data example is analyzed in detail in Section 5. The paper closes
with a brief discussion of our results in Section 6. All proofs are given in the supplementary material (see Appendix A).

2. Statistical model, hypotheses and statistics

2.1. Statistical model and hypotheses

To establish the general model, let

Yik = (Yik1, . . . , Yikti)
⊤, i = 1, . . . , a; k = 1, . . . , ni (2.1)

denote independent random vectors with distribution Fi and expectationµi = (µi1, . . . , µiti)
⊤

= E(Yi1) in treatment group
i. The underlying dependency structure is regulated by pairwise correlations. In particular, we do not assume any special
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structure of the group-specific covariance matrix Vi = cov(Yi1) > 0 which may even differ between groups i ∈ {1, . . . , a}.
Note that we also allow the number of time points ti to differ between groups. The most common case where ti = t for all
i ∈ {1, . . . , a} is thus a special case of model (2.1). Here the time points ti ∈ N are fixed. For convenience, we collect the
observation vectors Yik in

Y = (Y⊤

1 , . . . , Y⊤

a )⊤, Yi = (Y⊤

i1 , . . . , Y⊤

ini)
⊤. (2.2)

In this set-up, hypotheses are formulated asH
µ

0 : Hµ = 0, whereµ = (µ⊤

1 , . . . ,µ⊤
a )⊤ denotes the vector of all expectations

µis = E(Yi1s), i ∈ {1, . . . , a}, s ∈ {1, . . . , ti} and H is a suitable contrast matrix, i.e., its rows sum up to zero. Examples of H
are presented in Section 4.

Throughout the paper, we will use the following notation. We denote by It the t-dimensional unit matrix and by Jt the
t × t matrix of 1’s, i.e., Jt = 1t1⊤

t , where 1t = (1, . . . , 1)⊤ is the t-dimensional column vector of 1’s. Furthermore, let
Pt = It − 1/t · Jt denote the t-dimensional centering matrix. By ⊕ and ⊗ we denote the direct sum and the Kronecker
product, respectively.

An estimator of µ is given by Y • = (Y
⊤

1•, . . . , Y
⊤

a•)
⊤, where, for each i ∈ {1, . . . , a} and s ∈ {1, . . . , ti},

Y i• = (Yi·1, . . . , Yi·ti)
⊤, Y i·s =

1
ni

ni
k=1

Yiks,

and the covariance matrix Vi in treatment group i is estimated by the sample covariance matrix

Vi =
1

ni − 1

ni
k=1

(Yik − Y i•)(Yik − Y i•)
⊤.

Let N = n1 + · · · + na denote the total number of subjects in the trial, T = t1 + · · · + ta the total number of time points
and Ñ = n1t1 + · · · + nata the total number of observations. Then the asymptotic results are derived under the following
two assumptions:

(1) ni/N → κi ∈ (0, 1) as min(n1, . . . , na) → ∞,
(2) supi E(∥Yi1∥

4) < ∞.

2.2. Statistics and asymptotics

We consider two commonly used test statistics for repeatedmeasures andmultivariate data. First, the so-called ANOVA-
type statistic (ATS), introduced in [6], is given as:

QN = NY
⊤

•
H⊤(HH⊤)−HY • = NY

⊤

•
TY •, (2.3)

where (·)− denotes some generalized inverse. Note that the test statistic does not depend on the special choice of the
generalized inverse. Its asymptotic distribution is established in the next theorem.

Theorem 1. Under the null hypothesis H
µ

0 : Hµ = 0, the ATS in (2.3) has, asymptotically, the same distribution as the random
variable

X =

a
i=1

ti
s=1

λisXis,

where Xis
i.i.d.
∼ χ2

1 and the weights λis are the eigenvalues of T6 for 6 =
a

i=1 κ−1
i Vi. Moreover, for local alternatives

Tµ = 1/
√
N · Tν, ν ∈ RT , the ATS has, asymptotically, the same distribution as Z⊤TZ , where Z ∼ N (ν, 6). If additionally

6 > 0, the ATS has the same distribution as a weighted sum of χ2
1 (δ) distributed random variables, where the weights are again

the eigenvalues λis and δ = ν⊤6−1ν.

Since the λis are unknown, the result cannot be applied directly. Nevertheless, Brunner [6] proposed to approximate the
distribution of X by the distribution of a scaled χ2-distribution, i.e., by gX̃ν , where X̃ν ∼ χ2

ν . The constants g and ν are
estimated from the data such that the first two moments of X and gX̃ν coincide; see [4]. This leads to approximating the
statistic

FN =
N

tr(T6)
Y

⊤

•
TY • (2.4)

by an F (ν, ∞)-distribution with estimated degree of freedom ν̂ = tr2(T6)/tr(T6)2, where 6 = N
a

i=1 1/niVi. The
corresponding ATS test ϕATS = 1{QN > Fα(ν, ∞)}, where Fα(ν, ∞) denotes the (1 − α)-quantile of the F (ν, ∞)-
distribution, leads to consistent test decisions for fixed alternatives. However, it is in general no asymptotic level α test
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Table 2
Simulated type-I error rates (10000 simulations) in a repeatedmeasures design with
n = 10, 20, 50, 100 individuals and t = 4, 8 repeatedmeasures. TheATS is compared
to the upper 5% quantile of the F (ν̂, ∞)-distribution, the WTS to the upper 5%
quantile of the χ2

t−1-distribution.

n Type-I error rates (α = 0.05)
ATS: F-quantile WTS: χ2-quantile
t = 4 t = 8 t = 4 t = 8

10 0.025 0.012 0.223 0.776
20 0.026 0.014 0.126 0.388
50 0.030 0.021 0.081 0.166

100 0.035 0.025 0.067 0.111

under the null hypothesis, which is a severe drawback of this procedure. Thus, we discuss a second statistic, the so-called
Wald-type statistic (WTS) given as

QN = NY
⊤

•
H⊤(H6H⊤)+HY •. (2.5)

Here (H6H⊤)+ denotes theMoore–Penrose inverse of (H6H⊤). In order to test the general linear hypothesesH
µ

0 : Hµ = 0
critical values are taken from the asymptotic distribution of QN under the null hypothesis stated below.

Theorem 2. Under the null hypothesis H
µ

0 : Hµ = 0, the WTS in (2.5) has, asymptotically, a central χ2
f -distribution with

f = rank (H). The corresponding test is given by ϕWTS = 1{QN > χ2
f ,1−α}, where χ2

f ,1−α denotes the (1 − α)-quantile of the
χ2
f distribution. This test is an asymptotic level α test and is consistent for general fixed alternatives Hµ ≠ 0. Moreover, for local

alternatives Hµ = 1/
√
N ν, ν ∈ RT ,QN has asymptotically a non-central χ2

f (δ̃) distribution where δ̃ = (Hν)⊤(H6H⊤)+Hν.
This implies that EH1(ϕWTS) → Pr(Z > χ2

f ,1−α) with Z ∼ χ2
f (δ̃).

Although ϕWTS possesses these nice asymptotic properties, it is well-known that very large sample sizes ni are necessary to
maintain the pre-assigned level α using quantiles of the limiting χ2-distribution; see [6,28,34] as well as Table 2. This leads
to a limited applicability of the WTS in practice.

To accept the need for a novel procedure, we investigate the accuracy of the two test statistics in a one-sample repeated
measures design with n subjects and t repeated measures Yks. The null hypothesis H

µ

0 : {µ1 = · · · = µt} = {Ptµ =

0}, µ = (µ1, . . . , µt)
⊤ is considered and the components of Yk are selected as standardized log-normally distributed

random variables, i.e.,

Yks =
ϵks − E(ϵks)
√
var(ϵks)

for i.i.d. log-normally distributed ϵks for all k ∈ {1, . . . , n} and s ∈ {1, . . . , t}. The results are displayed in Table 2, where
the simulated type-I error rates of the WTS and ATS are given. It is readily seen that the test based on theWTS considerably
exceeds the nominal level of 5%, while the ATS leads to rather conservative decisions.

Thus, to enhance the small-sample properties of the above tests we have compared different resampling approaches
in an extensive simulation study, presented in Section 9 of the supplementary material [15]. The resampling approaches
considered there are a nonparametric and a parametric bootstrap approach (described in detail in the supplementary
material) as well as a permutation procedure. Surprisingly, the best procedure in terms of type-I error control turned out
to be a permutation technique that randomly permutes the pooled univariate observations without taking into account
the existing dependencies for calculating critical values. Motivation for this seemingly counter-intuitive method stems
from [29], where a similar approach has been applied in the paired two-sample case. Moreover, the current procedure
generalizes the permutation test on independent observations by Pauly et al. [34] and implemented in the R package
GFD [16] to the case of repeated measures and multivariate data. The details are explained in the next section.

3. The permutation procedure

Let Y π
= π(Y111, . . . , Yanata)

⊤
= (Yπ

111, . . . , Y
π
anata)

⊤ denote a fixed but arbitrary permutation of all Ñ elements of Y in
(2.2), i.e.,π ∈ SÑ . In this notation, Yπ

iks denotes the (i, k, s)-component of the permuted vector Y . Furthermore, let Y
π

•
denote

the vector of the means under this permutation and 6π
=

a
i=1 N/ni V π

i the empirical covariance matrix of the permuted
observations.

It is obvious, that Y and Y π only have the same distribution whenever the components of Y are exchangeable. However,
this is not the case in general two- and higher way layouts, even in the case of independent observations; see, e.g., [20].
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Following the approach of [11,22,23,32–34] in the case of independent observations, the idea is to studentize the statistic
√
NY

π

·
and consider its projection into the hypothesis space, resulting in the WTS of the permuted observations, namely

Q π
N = N(Y

π

•
)⊤H⊤(H6πH⊤)+HY

π

•
. (3.1)

In the sequel we will denote Q π
N as the WTPS. Note that the question of how to permute is more involved here than in

the case of independent univariate observations. A heuristic reason why the above approach might work is as follows:
Unconditionally, all permuted components possess the same mean. Thus, when multiplied by a contrast matrix the
permuted means vector always mimics the null situation, i.e., HE(Y

π

•
) = 0 always holds. In particular, it can be shown that

the conditional distribution of the WTPS Q π
N in (3.1) always approximates the null distribution of QN in (2.5) in the general

repeated measures design under study; thus leading to an asymptotically valid permutation test. This result is formulated
in the following theorem.

Theorem 3. The studentized permutation distribution of Q π
N in (3.1) conditioned on the observed data Y weakly converges to

the central χ2
f distribution in probability, where f = rank (H).

Remark 3.1. Theorem 3 states that the permutation distribution asymptotically provides a valid approximation of the null
distribution of the test statistic QN in (2.5). To be concrete, this means that for any underlying parameters µ ∈ RT and
µ0 ∈ H0(H) with Hµ0 = 0we have convergence in probability, viz.

sup
x∈R

Prµ(Q π
N ≤ x|Y ) − Prµ0(QN ≤ x)

 → 0. (3.2)

Here, Prµ(QN ≤ x) and Prµ(Q π
N ≤ x|Y ) denote the unconditional and conditional distribution function of QN and Q π

N ,
respectively, under the assumption that µ is the true underlying parameter.

Remark 3.2. AWald-type permutation test is obtained by comparing the original test statistic QN with the (1−α)-quantile
c∗

1−α of the conditional distribution of theWTPSQ π
N given the observed data Y , i.e., ϕWTPS = 1{QN > c∗

1−α}. More specifically,
the numerical algorithm for computation of the p-value is as follows:
1. Given the data Y , calculate the original Wald-type statistic QN for the null hypothesis of interest.
2. Randomly permute the pooled sample Y (i.e., all univariate observations from each group and each subject) and save

them in Y π,1.
3. Calculate the studentized Wald-type statistic Q π

N from Eq. (3.1) with the randomly permuted pooled observations Y π,1.
Save its value in A1.

4. Repeat steps 2 and 3 a large number J (e.g., J = 1000) times and obtain values A1, . . . , AJ .
5. Compute the p-value by the (approximative) conditional permutation distribution (i.e., the empirical distribution of

A1, . . . , AJ ) as

p-value =
1
J

J
j=1

1{QN ≥ Aj}.

Theorem3 implies that this test asymptotically keeps the pre-assigned levelα under the null hypothesis and is consistent
for any fixed alternative Hµ ≠ 0, i.e., it has asymptotically power 1. Moreover, it has the same asymptotic power as the
WTS for local alternatives Hµ = 1/

√
N · ν, i.e., EH1(ϕWTPS) → Pr(Z > χ2

f ,1−α) with Z ∼ χ2
f (δ̃) as in Theorem 2.

It follows that the permutation test and the classical Wald-type test are asymptotically equivalent and that both have
the same local power under contiguous alternatives. In particular the asymptotic relative efficiency of the WTPS compared
to the classical WTS is 1. Moreover, the permutation test based on Q π

N is finitely exact if the pooled data Y are exchangeable
under the null hypothesis. In comparison, the ATS also leads to a consistent test for fixed alternatives but does not provide
an asymptotic level α test since it is only an approximation.

We note that the proof given in the supplement (see Appendix A) to this paper indicates that the given permutation
technique does notwork in the case of the ATS. In particular, a permutation version of the ATSwould also possess aweighted
χ2-limit distribution but with different weights, say λ̃is, due to an incorrect covariance structure.

Remark 3.3. Our general framework (2.1) allows for the treatment of different important factorial designs in the context
of multivariate repeated measures data analysis. As in [34] the idea is to accordingly split the indices in subindices and
to choose an appropriate hypothesis matrix H . Examples of different cross-classified and hierarchically nested designs are
discussed in Section 4 of [28]. For repeated measures, examples are given in Sections 4 and 5 as well as in [6].

4. Simulations

In order to investigate the small sample behavior of the WTPS, we present extensive simulation results for different
designs and covariance structures. The procedure is analyzed in different settings with regard to maintaining the pre-
assigned type-I error rate (α = 5%). The results for the WTPS are compared to the asymptotic quantiles of the ATS (F -
quantile) and the WTS (χ2-quantile).
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4.1. Data generation

For our simulation studies, we simulated a split plot design which, in the context of longitudinal data, is a design with a
groups, ni subjects in group i and ti = t repeated measures Yiks for all s ∈ {1, . . . , t}. Let

Yik = (Yik1, . . . , Yikt)
⊤

= µi + Bik1t + V 1/2
i ϵik,

with µi = E(Yi1) for all i ∈ {1, . . . , a} and let Bik ∼ N (0, σ 2
i ) denote independent additive subject effects. The i.i.d. random

vectors ϵik = (ϵik1, . . . , ϵikt) were generated from different standardized distributions by

ϵiks =
ϵ̃iks − E(ϵ̃iks)

var(ϵ̃iks)
,

where ϵ̃iks denote i.i.d. normal, exponential or log-normal random variables.
A simulation settingwith a = 3 groups and t = 4, 8 repeatedmeasureswas considered. The null hypotheses investigated

are
(1) The hypothesis of no time effect T

H
µ

0 (T ) : µ·1 = · · · = µ·t or equivalently HTµ = 0.
(2) The hypothesis of no group × time interaction effect GT

H
µ

0 (GT ) : HGTµ =

µ11 − µ1· − µ·1 + µ··

...
µat − µa· − µ·t + µ··

 = 0,

where HT = 1/a 1⊤
a ⊗ Pt and HGT = Pa ⊗ Pt .

We considered balanced as well as unbalanced designs for the n = (n1, n2, n3) subjects in group 1–3, respectively. The
simulated numbers of subjects were n(1)

= (30, 20, 10), n(2)
= (10, 20, 30) and n(3)

= (15, 15, 15). Furthermore, we
simulated three different covariance structures Vi

Setting 1: Vi = It for i ∈ {1, 2, 3}
Setting 2: Vi = diag(σ 2

1 , . . . , σ 2
t ) with σ 2

s = s for t = 4 and σ 2
s =

√
s for t = 8

Setting 3: Vi =


ρ

|ℓ−j|
i


ℓ,j≤t

, (ρ1, ρ2, ρ3) = (0.6, 0.5, 0.4) for i ∈ {1, 2, 3}.

In Setting 1 and 2 the covariance structures are the same for all groups, whereas in Setting 3 we have an autoregressive
covariance structure with different parameters for the different groups. Moreover, we simulated block effects with different
variances σ 2

i ∈ {0, 1, 2}. However, since the results were almost identical, we here only report the case σ 2
i = 0. All

simulations were conducted with 10,000 simulation and 1000 permutation runs.

4.2. Type-I error rates

The resulting type-I error rates for the hypotheses of no time effect T and no group × time interaction GT are displayed in
Tables 3 and 4, respectively.

It is obvious that the tests based on theWTS considerably exceed the nominal level for small sample sizes. This behavior
becomesworsewith an increasing number of repeatedmeasurements andwhen testing the interaction hypothesis. In some
cases, the WTS reaches an empirical type-I error rate of almost 50% when testing the GT -interaction. This means that its
accuracy is no better than flipping a coin. The ATS, in contrast, keeps the pre-assigned level α pretty well for normally
distributed observations, even for small sample sizes. With an increasing number of repeated measurements and/or non-
normal data, however, the ATS leads to quite conservative decisions. Furthermore, the ATS leads to slightly conservative
decisions when testing the interaction hypothesis, even with normally distributed data. TheWTPS is reasonably close to the
pre-assigned level α in most situations, even under non-normality and for testing the interaction hypothesis. Despite the
dependencies in longitudinal data, the permutation procedure greatly improves the behavior of the WTS in small sample
settings. However, when testing the interaction hypothesis for t = 8 repeated measurements the WTPS shows a more or
less conservative behavior in Setting 3 combined with n(2), and a slightly liberal behavior for Setting 3 with n(1).

The simulations show a clear advantage of the permutation procedure as compared to the χ2- approximation of the
Wald-type statistic. TheWTPS controlled the 5% level in most situations, even under non-normality, i.e., in situations where
the ATS may lead to quite conservative decisions.

4.3. Additional simulation results

We note that additional simulations for the type-I error can be found in the supplementary material (see Appendix A) to
this paper. There we have compared the above methods with other resampling schemes such as the bootstrap procedures
described in [28]. Of all procedures analyzed in the simulations, the permutation procedure produced the best results.
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Table 3
Results of the simulation studies for the hypothesis of no time effect.

T t = 4 t = 8
Cov. setting ATS WTS WTPS ATS WTS WTPS

Normal distribution

1
n(1) 0.046 0.085 0.050 0.040 0.177 0.050
n(2) 0.046 0.086 0.048 0.040 0.177 0.052
n(3) 0.050 0.078 0.051 0.043 0.135 0.052

2
n(1) 0.051 0.085 0.050 0.042 0.177 0.051
n(2) 0.052 0.086 0.051 0.043 0.177 0.052
n(3) 0.053 0.077 0.051 0.041 0.135 0.052

3
n(1) 0.046 0.092 0.052 0.044 0.198 0.062
n(2) 0.051 0.080 0.045 0.048 0.155 0.042
n(3) 0.051 0.078 0.053 0.048 0.136 0.054

Log-normal distribution

1
n(1) 0.032 0.094 0.051 0.021 0.198 0.047
n(2) 0.031 0.090 0.052 0.020 0.198 0.046
n(3) 0.031 0.089 0.051 0.021 0.186 0.048

2
n(1) 0.040 0.110 0.067 0.022 0.207 0.053
n(2) 0.040 0.107 0.067 0.022 0.203 0.051
n(3) 0.042 0.107 0.070 0.024 0.197 0.057

3
n(1) 0.033 0.101 0.057 0.024 0.221 0.064
n(2) 0.037 0.090 0.053 0.033 0.190 0.048
n(3) 0.036 0.092 0.057 0.031 0.191 0.062

Exponential distribution

1
n(1) 0.045 0.090 0.048 0.034 0.194 0.051
n(2) 0.046 0.096 0.053 0.032 0.191 0.048
n(3) 0.046 0.086 0.054 0.034 0.151 0.050

2
n(1) 0.048 0.093 0.054 0.035 0.194 0.052
n(2) 0.050 0.101 0.060 0.034 0.193 0.051
n(3) 0.050 0.088 0.058 0.036 0.154 0.051

3
n(1) 0.049 0.098 0.055 0.042 0.218 0.066
n(2) 0.050 0.090 0.049 0.046 0.173 0.045
n(3) 0.050 0.087 0.055 0.042 0.153 0.056

4.3.1. Quality of the approximation
In the following, we denote by FN the distribution function of QN under H0, by F the distribution function of the limiting

χ2
f -distribution under H0 and by Fπ

N the distribution function of the WTPS under H0. We can now define

KQS = sup
0.9≤t≤0.99

|F−1
N (t) − F−1(t)|

as well as

KQSπ
= sup

0.9≤t≤0.99
|F−1

N (t) − (Fπ
N )−1(t)|

in order to compare the distance between the quantile function F−1
N and the limiting quantile function F−1 (KQS) with the

distance between F−1
N and (Fπ

N )−1, the quantile functions of the test statistic and its permuted version (KQSπ ), respectively.
We have calculated these distances for all simulation settings described above. Detailed results can be found in Section 10.1
of the supplementary material. It turned out that KQSπ is always smaller than KQS, i.e., the approximation provided by the
permutation procedure is considerably better than the asymptotic χ2 approximation for all simulation settings considered.
In our simulations, KQS ranged from 1.991 to 48.11 with a median distance of 9.179, whereas KQSπ ranged from 0.1049 to
7.618 with a median value of 0.8948. Fig. 1 exemplarily shows the plots of the corresponding quantile functions for one of
the simulation scenarios.

4.3.2. Large-sample behavior
In this section, we analyze the large sample behavior of the WTS and WTPS. We considered only normally distributed

random variables with covariance structure Setting 2 for an unbalanced (n(1)
= (30, 20, 10)) as well as a balanced

(n(3)
= (15, 15, 15)) designwith t = 4, 8 time points. The sample sizewas increased by adding b13 to the above sample size

vectors for b = ℓ 20 and all ℓ ∈ {0, . . . , 10}. The results for the type-I error under the null hypothesis of no interaction and
covariance setting 2 are presented in Fig. 2. The behavior of the WTS improves with growing sample size but even for 115
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Table 4
Results of the simulation studies for the hypothesis of no group × time interaction.

GT t = 4 t = 8
Cov. setting ATS WTS WTPS ATS WTS WTPS

Normal distribution

1
n(1) 0.049 0.135 0.046 0.033 0.432 0.051
n(2) 0.053 0.142 0.052 0.034 0.433 0.050
n(3) 0.048 0.126 0.049 0.039 0.366 0.051

2
n(1) 0.053 0.132 0.050 0.038 0.429 0.052
n(2) 0.053 0.141 0.054 0.038 0.431 0.050
n(3) 0.050 0.122 0.052 0.040 0.366 0.050

3
n(1) 0.054 0.141 0.050 0.040 0.465 0.065
n(2) 0.053 0.135 0.045 0.049 0.393 0.037
n(3) 0.051 0.126 0.049 0.045 0.363 0.053

Log-normal distribution

1
n(1) 0.024 0.121 0.047 0.012 0.426 0.053
n(2) 0.022 0.128 0.053 0.013 0.431 0.051
n(3) 0.024 0.118 0.048 0.012 0.406 0.051

2
n(1) 0.025 0.129 0.051 0.014 0.427 0.054
n(2) 0.026 0.130 0.054 0.013 0.432 0.052
n(3) 0.023 0.120 0.050 0.013 0.403 0.052

3
n(1) 0.029 0.133 0.050 0.020 0.457 0.062
n(2) 0.028 0.121 0.045 0.024 0.399 0.036
n(3) 0.028 0.122 0.049 0.020 0.408 0.053

Exponential distribution

1
n(1) 0.043 0.146 0.054 0.024 0.442 0.054
n(2) 0.041 0.148 0.054 0.024 0.443 0.050
n(3) 0.036 0.122 0.047 0.028 0.397 0.054

2
n(1) 0.048 0.151 0.059 0.027 0.444 0.057
n(2) 0.042 0.153 0.059 0.025 0.448 0.052
n(3) 0.034 0.121 0.048 0.029 0.397 0.055

3
n(1) 0.047 0.155 0.061 0.032 0.473 0.068
n(2) 0.043 0.140 0.049 0.042 0.406 0.037
n(3) 0.037 0.122 0.047 0.041 0.402 0.058

Fig. 1. Quantile functions of theWTS, WTPS and the corresponding χ2-distribution in the balanced simulation setting with log-normally distributed data,
t = 8, covariance matrix setting 2 and under the null hypothesis of no interaction.

individuals in all groups, the WTS still exceeds the nominal level. The WTPS, in contrast, is rather close to the pre-assigned
level even for small sample sizes.

4.3.3. Power
The power simulations are explained in detail in Section 11 of the supplementary material to this paper. Since the WTS

turned out to test on different α-levels (see the simulation results under the null hypothesis), we have excluded it from the
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Fig. 2. Type-I error rates under the interaction hypothesis for the WTS and the WTPS, where sample size was increased by adding b13, b = ℓ 20 for all
ℓ ∈ {0, . . . , 10} to the sample size vectors in a balanced (lower panel) and unbalanced (upper panel) design with t = 4 (left panel) and t = 8 (right panel)
time points under covariance setting 2, i.e., Vi = diag(σ 2

1 , . . . , σ 2
t ) with σ 2

s = s for t = 4 and σ 2
s =

√
s for t = 8.

Table 5
Results of the analysis of the O2 consumption data.

ATS WTS WTPS

A 0.001 0.001 0.003
B <0.001 <0.001 <0.001
T <0.001 <0.001 <0.001
AB 0.110 0.110 0.133
AT 0.009 <0.001 <0.001
BT 0.094 0.115 0.151
ABT 0.117 0.116 0.164

analyses.We additionally considered the approximation described by Lecoutre [30] aswell as Hotelling’s T 2 [19]. It turns out
that the ATS has the highest power for normally distributed data, performing slightly better than theWTPS. For log-normally
distributed data, the WTPS has larger power than the other methods and it is the only method controlling the type-I error
correctly.

5. Application: analysis of the data example

Finally, we analyze the data example on oxygen consumption of leukocytes in the presence and absence of inactivated
staphylococci. In this setting we wish to analyze the effect of the whole-plot factor ‘treatment’ (factor A, Placebo/Verum,
a = 2) as well as the sub-plot factors ‘staphylococci’ (factor B, with/without, b = 2) and ‘time’ (factor T, 6/12/18 min,
t = ti = 3, i = 1, . . . , ab). We are also interested in interactions between the different factors. The mean values and
empirical standard deviations of the data are given in Table 1 in Section 1.

In the analysiswe compared the three tests discussed above: The ATS in (2.4) is compared to the correspondingF (ν̂, ∞)-
quantile, the WTS in (2.5) to the asymptotic χ2

f -quantile as well as the quantile obtained by the permutation procedure
(WTPS). The seven different null hypotheses of interest about main and interaction effects can be tested by choosing the
related hypotheses matrices. Here, we have chosen HA = Pa ⊗ 1/b · 1⊤

b ⊗ 1/t · 1⊤
t ,HB = 1/a 1⊤

a ⊗ Pb ⊗ 1/t 1⊤
t and

HT = 1/a 1⊤
a ⊗ 1/b 1⊤

b ⊗ Pt for testing the main effect of the three factors A, B, and T . For the interaction terms we used
the matrices HAT = Pa ⊗ 1/b 1⊤

b ⊗ Pt ,HAB = Pa ⊗ Pb ⊗ 1/t 1⊤
t and HBT = 1/a 1⊤

a ⊗ Pb ⊗ Pt , and HABT = Pa ⊗ Pb ⊗ Pt . The
resulting p-values of the analysis are presented in Table 5.

For this example all tests under considerations lead to similar conclusions: Each factor (treatment, staphylococci and
time) has a significant influence on the O2 consumption of the leukocytes. Moreover, there is a significant interaction
between treatment and time.
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6. Conclusions and discussion

In this paper, we have generalized the permutation idea of Pauly et al. [34] for independent univariate factorial designs
to the case of repeated measures allowing for a factorial structure. Here, the suggested permutation test is asymptotically
valid and does not require the assumptions of multivariate normality, equal covariance matrices or balanced designs. It
is based on the well-known Wald-type statistic (WTS) which possesses the beneficial property of an asymptotic pivot
while being applicable for general repeated measures designs. Since it is well known for being very liberal for small
and moderate sample sizes, we have considerably improved its small-sample behavior under the null hypothesis by a
studentized permutation technique. For univariate and independent observations the idea of this technique dates back to
Neuhaus [32] and Janssen [22] and has recently been considered for more complex designs in independent observations
by Chung and Romano [11] and Pauly et al. [34]. Extensions of the intriguing methods of Arboretti Giancristofaro et al.
[2,3] and Corain et al. [12,13] to our quite general repeated measures design (not requiring any symmetry or
homoscedasticity assumptions) would be desirable and will be part of future research.

In addition, we have rigorously proven in Theorem 3 that the permutation distribution of the WTS always approximates
the null distribution of the WTS and can thus be applied for calculating data-dependent critical values. In particular, the
result implies that the corresponding Wald-type permutation test is asymptotically exact under the null hypothesis and
consistent for fixed alternatives while providing the same local power as the WTS under contiguous alternatives.

Moreover, our simulation study indicated that the permutation procedure showed a very accurate performance in all
designs under consideration with moderate repeated measures (t = 4) and homoscedastic or slightly heteroscedastic
covariances. Only in the case of a larger number of repeated measurements (t = 8) the WTPS showed a more or less liberal
(conservative) behavior when testing the interaction hypothesis in an unbalanced design. However, all other competing
procedures considered in the paper and the supplementary material (see Appendix A) did not perform better in these
situations.

Roughly speaking, the good performance of the WTPS for finite samples may be explained by a better approximation of
the underlying distribution of the WTS by the permutation distribution as compared to the χ2-distribution. This could be
seen clearly in the distances between the quantile functions.
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8 Proofs

Proof of Theorem 1: First note that T = T> as well as T 2 = T . Let Tµ = Tν/
√
N

for ν ∈ RT , i.e., for ν = 0 we are working under H0. It holds that
√
N(Y • − µ) has,

asymptotically, a multivariate normal distribution with mean ν and covariance matrix Σ. Thus,
it follows that

NY •
>TY • → Z>TZ,

withZ ∼ N (ν,Σ). If additionally Σ > 0, we may writeZ = Σ1/2Z̃ where Z̃ ∼ N (Σ−1/2ν, I)
and thus Z>TZ =

∑a
i=1

∑ti
s=1 λisXis where λis are the eigenvalues of TΣ and Xis ∼ χ2

1(δ)
for δ = ν>Σ−1ν. 2

Proof of Theorem 2: The null distribution of the WTS follows analogous to the proof of
Theorem 2.1 in [3]. Obviously, ϕWTS is an asymptotic level α test and consistent for fixed
alternativesHµ 6= 0.
UnderH1 : Hµ = 1/

√
N ·ν, it holds that

√
NHY • has, asymptotically, anN (Hν,HΣH>)

distribution. Thus, the WTS has asymptotically a non-central χ2
f (δ̃) distribution with f =

rank(H) degrees of freedom and non-centrality parameter δ̃ = (Hν)>(HΣH>)+Hν. 2

We will now proof Theorem 3. For notational convenience, we introduce

Z = (ZN,1, . . . , ZN,Ñ) = (Y111, Y121, . . . , Y1n11, Y112, . . . , Yanata)

for the pooled sample. SinceH1 = 0 we can rewrite the permuted test statistic as

Qπ
N =
√
N(Y

π

• − Y ···)>H>(HΣ̂
π
H>)+

√
NH(Y

π

• − Y ···),

where Y ··· = Y ··· · 1T and ZÑ = Y ··· = 1/Ñ ·∑Ñ
i=1 ZN,i. Based on this representation, we can

split the proof of Theorem 3 in two results. There, we first show that the conditional distribution
of
√
N(Y

π

• − Y ···) given the data is asymptotically multivariate normal. However, it turns out
that the resulting covariance matrix is different from Σ. Our approach corrects for the ’wrong’
covariance structure by studentizing with Σ̂

π
, which is shown in a second step. Altogether, this

proves the consistency of the WTPS as stated in Theorem 3 as well as the properties of the
corresponding test mentioned in Remarks 3.1 and 3.2.

Note that there exist finite limits bi = limmin(ni)→∞ Ñ/ni ∈ (1,∞), i ∈ {1, . . . , a} because
of assumption (1) and 0 < maxi=1,...,a(ti) <∞.

LEMMA 8.1 Under the assumptions of Theorem 3, the conditional permutation distribution of
√
N(Y

π

• − Y ···)

2



given the observed data Y weakly converges to a multivariate normal — N (0, σ2Γ) — distri-
bution in probability, where

σ2 =
a∑

i=1

1

bi

ti∑

s=1

(σ2
is + µ2

is)−
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

(8.1)

with σ2
is = var(Yiks) and

Γ =
a⊕

i=1

κ−1
i I ti − JT = diag(κ−1

1 I t1 , . . . , κ
−1
a I ta)− JT . (8.2)

Proof: First note that the classical Cramér-Wold device cannot be applied directly in this context
due to the occurrence of uncountably many exceptional sets. Therefore we will apply a modified
Cramér-Wold device, see, e.g., the proof of Theorem 4.1 in [5]. Let D be a dense and countable
subset of RT . Then for every fixed λ = (λ1, . . . , λT )> ∈ D and M0 = 0,M1 = n1, . . . ,Mt1 =
t1n1,Mt1+1 = t1n1 + n2, . . . ,MT = Ñ , we have

√
Nλ>Y • =

a∑

i=1

Mi∑

k=Mi−1+1

√
N

ni
λiZN,k

=
√
N

Ñ∑

s=1

cNs
ZN,s√
Ñ
,

where cNs =
√
Ñ
∑T

i=1 1{Mi−1 + 1 ≤ s ≤Mi}λi/ni. This implies

√
Nλ>(Y

π

• − Y ···) =
√
N

Ñ∑

s=1

cNs
ZN,π(s) − ZÑ√

Ñ
(8.3)

d
=
√
N

Ñ∑

s=1

cNπ(s)
ZN,s − ZÑ√

Ñ
,

since π is uniformly distributed on the set of all permutations of the numbers {1, . . . , Ñ}. Let
bi = limmin(ni)→∞ Ñ/ni with bi <∞ because of (1) and max(ti) <∞.

We now apply Theorem 4.1 in [5] to prove the conditional convergence in distribution.
Therefore, we have to prove the following conditions:

3



1√
Ñ

max
1≤i≤Ñ

|ZN,i − ZÑ |
Pr−→ 0 (8.4)

1

Ñ

Ñ∑

i=1

(ZN,i − ZÑ)2 Pr−→ σ2 (8.5)

max
1≤s≤Ñ

|cN,s − c·| Pr−→ 0 (8.6)

Ñ∑

s=1

(cN,s − c·)2 Pr−→ σ2
λ =

T∑

i=1

λ2
i bi −

(
T∑

i=1

λi

)2

(8.7)

√
Ñ(cN,π(1) − c·) d−→ W with E(W ) = 0 and var(W ) = σ2

λ (8.8)

Condition (8.4) as well as (8.6) – (8.8) follow analogous to [6]: Since the random variables
within each of the a groups are i.i.d. with finite variance, they fulfill (8.4). The convergence in
(8.6) is obvious and since

√
Ñ · c· =

∑T
i=1 λi we have

Ñ∑

s=1

(cN,s − c·)2 =
Ñ∑

s=1

c2
N,s − (

√
Ñc·)

2 =
T∑

i=1

Ñ

ni
λ2
i −

(
T∑

i=1

λi

)2

Pr−→
T∑

i=1

λ2
i bi −

(
T∑

i=1

λi

)2

= σ2
λ.

Moreover, (8.8) holds due to

Pr

(√
ÑcN,π(1) =

Ñλi
ni

)
=
ni

Ñ
−→ 1

bi

for i ∈ {1, . . . , a}, i.e., for a random variable W̃ with Pr(W̃ = biλi) = 1/bi, i ∈ {1, . . . , a},
we have

√
Ñ(cN,π(1) − c·) d−→ W̃ −

T∑

i=1

λi = W,

where W fulfills E(W ) = 0 and var(W ) = σ2
λ. It remains to prove (8.5):

1

Ñ

Ñ∑

i=1

(ZN,i − ZÑ)2 =
1

Ñ

Ñ∑

i=1

Z2
N,i − Y

2

···.
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Consider

E


 1

Ñ

Ñ∑

i=1

Z2
N,i


 =

1

Ñ

a∑

i=1

ti∑

s=1

ni∑

k=1

E
(
Y 2
iks

)

=
1

Ñ

a∑

i=1

ti∑

s=1

ni∑

k=1

(σ2
is + µ2

is)

=
a∑

i=1

ni

Ñ

ti∑

s=1

(σ2
is + µ2

is)

−→
a∑

i=1

1

bi

ti∑

s=1

(σ2
is + µ2

is).

Furthermore:

E(Y
2

···) = E






 1

Ñ

Ñ∑

i=1

ZN,i




2


= var

(
1

Ñ

a∑

i=1

ti∑

s=1

ni∑

k=1

Yiks

)

︸ ︷︷ ︸
O( 1

N
)

+

{
E

(
1

Ñ

a∑

i=1

ti∑

s=1

ni∑

k=1

Yiks

)}2

(8.9)

−→
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

Since

var





1

Ñ

Ñ∑

i=1

(ZN,i − ZÑ)2



 = var

(
a∑

i=1

1

Ñ

ti∑

s=1

ni∑

k=1

Y 2
iks − Y

2

···

)

=
a∑

i=1

1

(Ñ)2

ni∑

k=1

var

{
ti∑

s=1

(Y 2
iks −

1

Ñ
Y

2

···)

}

= O
(

1

N

)

because of independence and condition (2), the desired conclusion follows with Tschebyscheff’s
inequality.

Altogether, this implies by Theorem 4.1 in [5] convergence in distribution given the data Y

√
Nλ>(Y

π

• − Y ···)
d−→ N (0, σ2σ2

λ) (8.10)
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in probability. This convergence holds for every fixed λ ∈ D. Applying the subsequential
principle for convergence in probability we can find a common subsequence such that (8.10)
holds almost surely for all λ ∈ D along this subsequence. Now continuity of the characteristic
function of the limit and tightness of the conditional distribution of

√
N(Y

π

• − Y ···) given Y
show that (8.10) holds almost surely for all λ ∈ RT along this subsequence. Thus, an applica-
tion of the classical Cramér-Wold device together with another application of the subsequence
principle imply the result. 2

Now we will study the convergence of Σ̂
π

= N V̂
π

=
⊕a

i=1 N/ni · V̂
π

i .

LEMMA 8.2 Under the assumptions of Theorem 3 we have convergence in probability

Σ̂
π Pr−→ σ2 diag(κ−1

1 I ti , . . . , κ
−1
a I ta)

as N →∞.

Proof: It suffices to show that (V̂
π

i )r,s
Pr−→ σ21{r = s} in probability for all 1 ≤ r, s ≤ ti.

Therefore consider

ni − 1

ni
(V̂

π

i )r,s =
1

ni

ni∑

k=1

Y π
ikrY

π
iks

︸ ︷︷ ︸
A

−Y π

i·rY
π

i·s︸ ︷︷ ︸
B

First, consider B. It holds:

E(Y
π

i·r|Y )
Pr−→

a∑

i=1

1

bi

ti∑

s=1

µis

for all r and all i analogous to (8.9). Furthermore, setting d(i)
N,s := 1{(r − 1)ni + 1 ≤ s ≤

rni}/ni for 1 ≤ s ≤ Ñ and using Theorem 3 from [1] we get convergence in probability of the
corresponding conditional variance

var
(
Y
π

i·r|Y
)

= var




Ñ∑

s=1

d
(i)
N,sZN,π(s)|Z




=
Ñ∑

s=1

(
d

(i)
N,s − d

(i)

N,·

)2 1

Ñ − 1

Ñ∑

s=1

(ZN,s − ZÑ)2 Pr−→ 0,

since
∑Ñ

s=1

(
d

(i)
N,s − d

(i)

N,·

)2

→ 0 as N → ∞ and 1/(Ñ − 1) ·∑Ñ
s=1(ZN,s − ZÑ)2 = OPr(1).

Altogether this implies convergence in probability by the continuous mapping theorem

B
Pr−→
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

.
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For part A we distinguish two cases: First, assume r = s. We have

A =
1

ni

rni∑

k=(r−1)ni+1

Z2
N,π(k).

Now consider the conditional expectation of A

E(A|Y ) =
1

Ñ

a∑

i=1

ti∑

r=1

1

ni

rni∑

k=(r−1)ni+1

Z2
N,k

Pr−→
a∑

i=1

1

bi

ti∑

s=1

(σ2
is + µ2

is)

as well as

var(A|Y ) = var




Ñ∑

s=1

d
(i)
N,sZ

2
N,π(s)|Z




=
Ñ∑

s=1

(
d

(i)
N,s − d

(i)

N,·

)2 1

Ñ − 1

Ñ∑

s=1


Z2

N,s −
1

Ñ − 1

Ñ∑

r=1

Z2
N,r




2

,

which converges to 0 in probability as above and since we have

1

Ñ − 1

Ñ∑

s=1


Z2

N,s −
1

Ñ − 1

Ñ∑

r=1

Z2
N,r




2

= OPr(1)

because of the existence of fourth moments.

Now, consider r 6= s. We have that

E(A|Y ) =
1

ni

ni∑

k=1

E(Y π
ikrY

π
iks|Y ) = E(Y π

111Y
π

112|Y )

=
1

(Ñ)!

∑

π∈SÑ

ZN,π(1)ZN,π(2)

=
1

Ñ(Ñ − 1)

∑

i 6=j
ZN,iZN,j

Consider E(ZN,iZN,j). There are two possibilities: If ZN,i and ZN,j stem from different random
vectors (i.e., from different individuals) they are independent and we can write E(ZN,iZN,j) =
E(ZN,i)E(ZN,j). If they stem from the same individual, we cannot rewrite the expectation and

7



we denote it by γi,j := E(ZN,iZN,j) ∈ (−∞,∞). For every fixed i there are (ti − 1) possible
j’s such that ZN,i and ZN,j come from the same individual. This implies:

E

(
1

Ñ(Ñ − 1)

∑

i 6=j
ZN,iZN,j

)
=

1

Ñ(Ñ − 1)

∑

(i,j)∈Ξ

E(ZN,i)E(ZN,j) (8.11)

+
1

Ñ(Ñ − 1)

Ñ∑

i=1

∑

(i,j)∈Λ
γi,j,

where the index sets are defined as Ξ = {(i, j, ) : i 6= j and i, j stem from different subjects}
and Λ = {(i, j) : i 6= j and i, j stem from the same subject}.
Because of the Cauchy-Schwarz inequality and Condition (2) it holds that

sup
i,j
|γi,j| ≤ 2 sup

i
E(Z2

N,i) ≤ C <∞.

Thus, it follows that

1

Ñ(Ñ − 1)

Ñ∑

i=1

∑

(i,j)∈Λ
γi,j ≤

Ñ(max ti − 1)

Ñ(Ñ − 1)
C → 0

as N →∞. For the first summand on the right hand side in Equation (8.11), it holds that

1

Ñ(Ñ − 1)

∑

(i,j)∈Ξ

E(ZN,i)E(ZN,j) =
1

Ñ(Ñ − 1)

a∑

i=1

ti∑

s=1

a∑

j=1

tj∑

r=1

µisµjr − o(1)

−→
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

.

To complete the proof it remains to show that var
(

1/{Ñ(Ñ − 1)} ·∑i 6=j ZN,iZN,j
)
→ 0.

Thus,

var

(
1

Ñ(Ñ − 1)

∑

i 6=j
ZN,iZN,j

)
=

1

{Ñ(Ñ − 1)}2

∑

i1 6=j1

∑

i2 6=j2
cov(ZN,i1ZN,j1 , ZN,i2ZN,j2).

As above, we distinguish between the cases (i, j) ∈ Ξ and (i, j) ∈ Λ. If ZN,i1ZN,j1 and
ZN,i2ZN,j2 stem from different individuals it holds that cov(ZN,i1ZN,j1 , ZN,i2ZN,j2) = 0 because
of independence. In all other cases it holds that

cov(ZN,i1ZN,j1 , ZN,i2ZN,j2) ≤ 2 sup
i

E(Z4
N,i) = C̃ <∞

because of assumption (2) and the Cauchy-Schwarz inequality.
Furthermore, for every fixed i1 and j1 there are less than 5(max ti)

4 possibilities for ZN,i2ZN,j2
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to stem from the same individual(s) as ZN,i1ZN,j1 , such that at least one of the sums cancels out

and var
(

1/{Ñ(Ñ − 1)} ·∑i 6=j ZN,iZN,j
)
→ 0 for all i, j as N →∞.

This implies that for r 6= s

ni − 1

ni

(
V̂

π

i

)
r,s

= A− B Pr−→
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

−
(

a∑

i=1

1

bi

ti∑

s=1

µis

)2

= 0

and for r = s we have (V̂
π

i )r,s
Pr−→ σ2. Altogether, this proves the desired result. 2

We are now able to prove Theorem 3.
Proof: Applying the continuous mapping theorem together with Lemma 8.1 yields conditional
convergence in distribution given Y

H
√
N(Y

π

• − Y ···)
d−→ N (0, σ2HDH>),

whereD := diag(κ−1
1 I t1 , . . . , κ

−1
a I ta). Moreover, we have convergence in probability

HΣ̂
π
H>

Pr−→ σ2HDH>

by Lemma 8.2. Since det(V̂
π

i ) > 0 almost surely for N large enough due to Σ > 0, the corre-
sponding Moore-Penrose inverse converges as well in probability and hence another application
of the continuous mapping theorem proves the result using Theorem 9.2.2 in [7]. 2

9 Other resampling approaches

9.1 Nonparametric bootstrap approach

Here, we consider a nonparametric bootstrap sample Y ∗ = (Y ∗111, . . . , Y
∗
anata) drawn with re-

placement from the pooled observation vector Y = (Y111, . . . , Yanata). Therefore, given the
observations, the bootstrap components are all independent with identical distribution which is
given by the empirical distribution of Y ∗. The WTS of the bootstrap sample is given by

Q∗N = N(Y
∗
•)
>H>(HΣ̂

∗
H>)+HY

∗
•,

whereY
∗
• is the vector of means of the bootstrap sample and Σ̂

∗
denotes their covariance matrix.

THEOREM 9.1 The distribution of Q∗N conditioned on the observed data Y weakly converges
to the central χ2

f distribution in probability, where f = rank(H). In particular, we have

sup
x∈R

∣∣Prµ(Q∗N ≤ x|Y )− Prµ0
(QN ≤ x)

∣∣→ 0 (9.12)

in probability for any underlying parameter µ ∈ RT and µ0 ∈ H0(H).
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Proof: The result follows analogously to the proof of Theorem 3.1 in the paper. 2

Note, that a nonparametric bootstrap version based on drawing with replacement from the
observation vectors as in [3] performed considerably worse than the parametric bootstrap ap-
proach described below and is therefore not reported here.

In addition, we have also studied a nonparametric bootstrap version of the ATS (although
this is in general not asymptotically correct) given by

F ∗N =
N

tr(T Σ̂
∗
)
(Y
∗
•)
>TY

∗
•.

A corresponding permutation version of the ATS has not been considered since it is also asymp-
totically only an approximation.

9.2 Parametric bootstrap approach

We have also considered a parametric bootstrap approach as studied by, e.g., Konietschke et al.
[3]. Here, the parametric bootstrap variables are generated as

Y ?
i
i.i.d.∼ N (0, V̂ i), 1 ≤ i ≤ a.

The idea behind this approach is to obtain a more accurate finite-sample approximation by
mimicking the given covariance structure of the original data. We can again compute the WTS
and ATS from the parametric bootstrap vectors as

Q?
N = N(Y

?

•)
>H>(HΣ̂

?
H>)+HY

?

•,

and

F ?
N =

N

tr(T Σ̂
?
)
(Y

?

•)
>TY

?

•,

where Y
?

• is the vector of means of the parametric bootstrap sample and Σ̂
?

denotes their
empirical covariance matrix.

THEOREM 9.2 The distribution of Q?
N conditioned on the observed data Y weakly converges

to the central χ2
f distribution in probability, where f = rank(H). In particular, we have

sup
x∈R

∣∣Prµ(Q?
N ≤ x|Y )− Prµ0

(QN ≤ x)
∣∣→ 0 (9.13)

in probability for any underlying parameters µ,µ0 ∈ RT withHµ0 = 0.
Furthermore, for the ATS of the parametric bootstrap sample it also holds that

sup
x∈R

∣∣Prµ(F ?
N ≤ x|Y )− Prµ0

(FN ≤ x)
∣∣→ 0 (9.14)

in probability for any underlying parameters µ,µ0 ∈ RT withHµ0 = 0. Thus, the conditional
distribution of F ?

N always approximates the null distribution of FN .
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Proof: The result for the WTS follows analogously to the proof of Theorem 3.2 in [3]. For the
parametric bootstrap version of the ATS the result is obtained by the multivariate Lindeberg-
Feller Theorem, the Continuous Mapping Theorem and another application of Slutsky’s Theo-
rem. The details are left to the reader. 2

9.3 Type-I error rates

In the following, we present the results of the detailed simulation studies conducted as de-
scribed in Section 4 of the paper. For comparison, the results of the permutation approach are
also included. The results for the hypothesis of no time effect T are presented in Tables 6,
7 and 8 for the normal, log-normal and exponential distribution, respectively. The results for
the hypothesis of no group × time interaction are in Tables 9, 10 and 11, respectively. The
parametric bootstrap approach is denoted by PBS, the nonparametric bootstrap by NPBS. The
results are again compared to the asymptotic quantiles, i.e., the F(ν̂,∞)-quantile for the ATS
and the χ2

f -quantile for the WTS. A permutation version of the ATS has not been considered
for the reasons stated above. The covariance settings and the number of simulated individuals
are the same as described in Section 4. It turns out that, in terms of type-I error control, the
permutation approach performs best across the different scenarios. The parametric bootstrap, in
comparison, tends to rather conservative or liberal decisions when applied to the ATS and WTS,
respectively, whereas the non-parametric bootstrap approach for the WTS leads to similar but
slightly worse results than the permutation procedure.
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Table 6: Simulation results for the hypothesis of no time effect with normal distribution.
normal distribution

T t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.050 NA 0.050
PBS 0.041 0.052 0.034 0.059

NPBS 0.048 0.047 0.052 0.050
asymptotic 0.046 0.085 0.040 0.177

n(2)

Permutation NA 0.048 NA 0.052
PBS 0.041 0.050 0.034 0.060

NPBS 0.046 0.048 0.052 0.050
asymptotic 0.046 0.086 0.040 0.177

n(3)

Permutation NA 0.051 NA 0.052
PBS 0.045 0.048 0.040 0.050

NPBS 0.051 0.051 0.050 0.052
asymptotic 0.050 0.078 0.043 0.135

2

n(1)

Permutation NA 0.050 NA 0.051
PBS 0.046 0.052 0.036 0.059

NPBS 0.056 0.051 0.054 0.050
asymptotic 0.051 0.085 0.042 0.177

n(2)

Permutation NA 0.051 NA 0.052
PBS 0.046 0.052 0.036 0.060

NPBS 0.057 0.051 0.056 0.052
asymptotic 0.052 0.086 0.043 0.177

n(3)

Permutation NA 0.051 NA 0.052
PBS 0.049 0.048 0.038 0.049

NPBS 0.059 0.049 0.054 0.051
asymptotic 0.053 0.077 0.041 0.135

3

n(1)

Permutation NA 0.052 NA 0.062
PBS 0.041 0.052 0.040 0.064

NPBS 0.052 0.052 0.069 0.061
asymptotic 0.046 0.092 0.044 0.198

n(2)

Permutation NA 0.045 NA 0.042
PBS 0.047 0.052 0.043 0.056

NPBS 0.056 0.043 0.075 0.042
asymptotic 0.051 0.080 0.048 0.155

n(3)

Permutation NA 0.053 NA 0.054
PBS 0.047 0.050 0.044 0.049

NPBS 0.058 0.051 0.073 0.052
asymptotic 0.051 0.078 0.048 0.136
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Table 7: Simulation results for the hypothesis of no time effect with log-normal distribution.
log-normal distribution

T t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.051 NA 0.047
PBS 0.026 0.055 0.017 0.075

NPBS 0.051 0.050 0.047 0.048
asymptotic 0.032 0.094 0.021 0.198

n(2)

Permutation NA 0.052 NA 0.046
PBS 0.025 0.058 0.016 0.074

NPBS 0.048 0.051 0.054 0.046
asymptotic 0.031 0.090 0.020 0.198

n(3)

Permutation NA 0.051 NA 0.048
PBS 0.026 0.056 0.019 0.077

NPBS 0.052 0.050 0.051 0.050
asymptotic 0.031 0.089 0.021 0.186

2

n(1)

Permutation NA 0.067 NA 0.053
PBS 0.035 0.072 0.018 0.084

NPBS 0.060 0.066 0.052 0.053
asymptotic 0.040 0.110 0.022 0.207

n(2)

Permutation NA 0.067 NA 0.051
PBS 0.034 0.073 0.018 0.082

NPBS 0.061 0.066 0.057 0.052
asymptotic 0.040 0.107 0.022 0.203

n(3)

Permutation NA 0.070 NA 0.057
PBS 0.037 0.072 0.021 0.080

NPBS 0.065 0.068 0.057 0.057
asymptotic 0.042 0.107 0.024 0.197

3

n(1)

Permutation NA 0.057 NA 0.064
PBS 0.027 0.059 0.021 0.082

NPBS 0.054 0.058 0.063 0.064
asymptotic 0.033 0.101 0.024 0.221

n(2)

Permutation NA 0.053 NA 0.048
PBS 0.031 0.060 0.028 0.075

NPBS 0.057 0.053 0.079 0.047
asymptotic 0.037 0.090 0.033 0.190

n(3)

Permutation NA 0.057 NA 0.062
PBS 0.031 0.059 0.027 0.079

NPBS 0.057 0.054 0.075 0.062
asymptotic 0.036 0.092 0.031 0.191
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Table 8: Simulation results for the hypothesis of no time effect with exponential distribution.
exponential distribution

T t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.048 NA 0.051
PBS 0.038 0.055 0.026 0.070

NPBS 0.052 0.049 0.052 0.051
asymptotic 0.045 0.090 0.034 0.194

n(2)

Permutation NA 0.053 NA 0.048
PBS 0.039 0.057 0.029 0.069

NPBS 0.053 0.053 0.050 0.048
asymptotic 0.046 0.096 0.032 0.191

n(3)

Permutation NA 0.054 NA 0.050
PBS 0.041 0.057 0.031 0.059

NPBS 0.053 0.054 0.049 0.050
asymptotic 0.046 0.086 0.034 0.151

2

n(1)

Permutation NA 0.054 NA 0.052
PBS 0.040 0.059 0.029 0.070

NPBS 0.062 0.055 0.057 0.052
asymptotic 0.048 0.093 0.035 0.194

n(2)

Permutation NA 0.060 NA 0.051
PBS 0.044 0.064 0.029 0.074

NPBS 0.063 0.059 0.056 0.052
asymptotic 0.050 0.101 0.034 0.193

n(3)

Permutation NA 0.058 NA 0.051
PBS 0.045 0.062 0.032 0.062

NPBS 0.060 0.058 0.052 0.051
asymptotic 0.050 0.088 0.036 0.154

3

n(1)

Permutation NA 0.055 NA 0.066
PBS 0.041 0.055 0.034 0.074

NPBS 0.060 0.054 0.073 0.065
asymptotic 0.049 0.098 0.042 0.218

n(2)

Permutation NA 0.049 NA 0.045
PBS 0.045 0.058 0.039 0.067

NPBS 0.062 0.049 0.078 0.044
asymptotic 0.050 0.090 0.046 0.173

n(3)

Permutation NA 0.055 NA 0.056
PBS 0.045 0.058 0.038 0.060

NPBS 0.062 0.055 0.072 0.056
asymptotic 0.050 0.087 0.042 0.153
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Table 9: Simulation results for the hypothesis of no group × time interaction with normal
distribution.

normal distribution
GT t = 4 t = 8

Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.046 NA 0.051
PBS 0.039 0.051 0.025 0.077

NPBS 0.049 0.046 0.052 0.051
asymptotic 0.049 0.135 0.033 0.432

n(2)

Permutation NA 0.052 NA 0.050
PBS 0.042 0.056 0.026 0.075

NPBS 0.052 0.051 0.051 0.049
asymptotic 0.053 0.142 0.034 0.433

n(3)

Permutation NA 0.049 NA 0.051
PBS 0.041 0.049 0.032 0.046

NPBS 0.050 0.050 0.054 0.050
asymptotic 0.048 0.126 0.039 0.366

2

n(1)

Permutation NA 0.050 NA 0.052
PBS 0.045 0.054 0.030 0.076

NPBS 0.060 0.050 0.055 0.053
asymptotic 0.053 0.132 0.038 0.429

n(2)

Permutation NA 0.054 NA 0.050
PBS 0.044 0.056 0.029 0.072

NPBS 0.059 0.053 0.057 0.051
asymptotic 0.053 0.141 0.038 0.431

n(3)

Permutation NA 0.052 NA 0.050
PBS 0.044 0.049 0.034 0.046

NPBS 0.059 0.052 0.060 0.050
asymptotic 0.050 0.122 0.040 0.366

3

n(1)

Permutation NA 0.050 NA 0.065
PBS 0.043 0.051 0.033 0.082

NPBS 0.061 0.049 0.075 0.069
asymptotic 0.054 0.141 0.040 0.465

n(2)

Permutation NA 0.045 NA 0.037
PBS 0.046 0.054 0.040 0.069

NPBS 0.057 0.047 0.078 0.037
asymptotic 0.053 0.135 0.049 0.393

n(3)

Permutation NA 0.049 NA 0.053
PBS 0.043 0.048 0.038 0.047

NPBS 0.064 0.050 0.077 0.051
asymptotic 0.051 0.126 0.045 0.363
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Table 10: Simulation results for the hypothesis of no group × time interaction with log-normal
distribution.

log-normal distribution
GT t = 4 t = 8

Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.047 NA 0.053
PBS 0.019 0.040 0.009 0.061

NPBS 0.048 0.047 0.048 0.052
asymptotic 0.024 0.121 0.012 0.426

n(2)

Permutation NA 0.053 NA 0.051
PBS 0.017 0.044 0.009 0.055

NPBS 0.048 0.053 0.050 0.048
asymptotic 0.022 0.128 0.013 0.431

n(3)

Permutation NA 0.048 NA 0.051
PBS 0.018 0.037 0.010 0.042

NPBS 0.048 0.046 0.047 0.051
asymptotic 0.024 0.118 0.012 0.406

2

n(1)

Permutation NA 0.051 NA 0.054
PBS 0.019 0.044 0.010 0.062

NPBS 0.056 0.051 0.052 0.054
asymptotic 0.025 0.129 0.014 0.427

n(2)

Permutation NA 0.054 NA 0.052
PBS 0.019 0.044 0.011 0.056

NPBS 0.056 0.053 0.052 0.051
asymptotic 0.026 0.130 0.013 0.432

n(3)

Permutation NA 0.050 NA 0.052
PBS 0.018 0.038 0.010 0.042

NPBS 0.056 0.049 0.053 0.052
asymptotic 0.023 0.120 0.013 0.403

3

n(1)

Permutation NA 0.050 NA 0.062
PBS 0.022 0.042 0.014 0.067

NPBS 0.053 0.050 0.068 0.060
asymptotic 0.029 0.133 0.020 0.457

n(2)

Permutation NA 0.045 NA 0.036
PBS 0.022 0.043 0.020 0.053

NPBS 0.055 0.046 0.076 0.035
asymptotic 0.028 0.121 0.024 0.399

n(3)

Permutation NA 0.049 NA 0.053
PBS 0.023 0.037 0.014 0.043

NPBS 0.059 0.046 0.071 0.054
asymptotic 0.028 0.122 0.020 0.408
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Table 11: Simulation results for the hypothesis of no group × time interaction with exponential
distribution.

exponential distribution
GT t = 4 t = 8

Cov. Setting n Method ATS WTS ATS WTS

1

n(1)

Permutation NA 0.054 NA 0.054
PBS 0.036 0.057 0.018 0.076

NPBS 0.055 0.055 0.049 0.055
asymptotic 0.043 0.146 0.024 0.442

n(2)

Permutation NA 0.054 NA 0.050
PBS 0.030 0.057 0.019 0.072

NPBS 0.051 0.054 0.048 0.050
asymptotic 0.041 0.148 0.024 0.443

n(3)

Permutation NA 0.047 NA 0.054
PBS 0.029 0.043 0.023 0.052

NPBS 0.047 0.046 0.054 0.054
asymptotic 0.036 0.122 0.028 0.397

2

n(1)

Permutation NA 0.059 NA 0.057
PBS 0.040 0.061 0.019 0.077

NPBS 0.065 0.061 0.054 0.056
asymptotic 0.048 0.151 0.027 0.444

n(2)

Permutation NA 0.059 NA 0.052
PBS 0.035 0.060 0.019 0.072

NPBS 0.058 0.059 0.050 0.051
asymptotic 0.042 0.153 0.025 0.448

n(3)

Permutation NA 0.048 NA 0.055
PBS 0.028 0.042 0.024 0.051

NPBS 0.051 0.048 0.058 0.054
asymptotic 0.034 0.121 0.029 0.397

3

n(1)

Permutation NA 0.061 NA 0.068
PBS 0.039 0.059 0.024 0.083

NPBS 0.067 0.060 0.068 0.069
asymptotic 0.047 0.155 0.032 0.473

n(2)

Permutation NA 0.049 NA 0.037
PBS 0.038 0.056 0.033 0.062

NPBS 0.056 0.050 0.078 0.036
asymptotic 0.043 0.140 0.042 0.406

n(3)

Permutation NA 0.047 NA 0.058
PBS 0.031 0.043 0.033 0.052

NPBS 0.055 0.047 0.080 0.057
asymptotic 0.037 0.122 0.041 0.402
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10 Additional simulation results

10.1 Quality of the approximation

Recall that we defined

KQS = sup
0.9≤t≤0.99

|F−1
N (t)− F−1(t)|

as well as

KQSπ = sup
0.9≤t≤0.99

|F−1
N (t)− (F π

N)−1(t)|

for the distances between the quantile functions of the WTS (F−1
N ) and the χ2-distribution(F−1)

and the WTPS((F π
N)−1), respectively. The results for all simulation settings described in the

paper are presented in Tables 12 and 13. Some plots of exemplarily chosen scenarios are in
Figures 1-3.
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Figure 1: Quantile funtions of the WTS, WTPS and the corresponding χ2-distribution in the
simulation setting with normally distributed data, t = 4, covariance matrix setting 3, n(2) and
under the null hypothesis of no time effect.
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Figure 2: Quantile funtions of the WTS, WTPS and the corresponding χ2-distribution in the
simulation setting with exponentially distributed data, t = 4, covariance matrix setting 1, n(1)

and under the null hypothesis of no time effect.
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Figure 3: Quantile funtions of the WTS, WTPS and the corresponding χ2-distribution in the
simulation setting with exponentially distributed data, t = 8, covariance matrix setting 3, n(2)

and under the null hypothesis of no interaction effect.

19



Table 12: Simulation results for the distances between the quantile functions for the hypothesis
of no time effect.

normal distribution
T t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 3.683 0.411 10.548 0.381
n(2) 3.299 0.310 11.393 0.654
n(3) 2.198 0.213 7.771 0.281

2
n(1) 3.620 0.564 10.494 0.286
n(2) 3.378 0.227 11.604 0.993
n(3) 1.991 0.226 7.646 0.297

3
n(1) 4.451 1.186 12.515 2.086
n(2) 2.599 0.731 9.564 1.486
n(3) 2.264 0.105 7.571 0.344

log-normal distribution
T t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 3.097 0.532 12.399 1.044
n(2) 3.960 0.386 14.293 0.998
n(3) 3.087 0.363 12.768 0.421

2
n(1) 5.645 2.258 14.165 1.105
n(2) 6.045 2.656 15.484 2.617
n(3) 5.062 1.891 14.239 1.815

3
n(1) 3.977 0.517 14.547 2.299
n(2) 4.000 0.526 12.740 0.610
n(3) 3.561 0.643 14.238 3.203

exponential distribution
T t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 3.617 0.283 11.750 1.054
n(2) 4.245 0.491 12.098 0.948
n(3) 2.906 0.382 9.685 0.885

2
n(1) 4.761 1.262 11.704 0.628
n(2) 4.961 1.366 12.201 0.724
n(3) 3.833 0.915 10.226 0.286

3
n(1) 4.567 0.969 13.840 2.089
n(2) 3.700 0.290 10.504 1.729
n(3) 3.179 0.343 10.093 0.601
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Table 13: Simulation results for the distances between the quantile functions for the hypothesis
of no interaction.

normal distribution
GT t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 9.151 0.420 40.954 1.135
n(2) 8.872 0.573 41.179 1.451
n(3) 7.789 0.711 30.617 0.905

2
n(1) 8.648 0.582 42.023 1.804
n(2) 8.727 0.497 41.980 1.928
n(3) 7.951 1.166 30.031 0.956

3
n(1) 10.280 1.108 48.106 7.618
n(2) 7.700 1.463 36.252 4.470
n(3) 7.579 0.604 31.374 1.461

log-normal distribution
GT t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 5.292 0.610 30.474 1.058
n(2) 5.952 0.360 30.014 1.671
n(3) 5.767 0.467 27.019 1.024

2
n(1) 5.340 0.524 30.986 0.770
n(2) 6.307 0.812 29.960 1.329
n(3) 5.826 0.674 27.346 0.558

3
n(1) 6.425 0.298 34.755 2.106
n(2) 5.124 1.408 26.657 6.691
n(3) 5.561 0.182 27.517 1.363

exponential distribution
GT t = 4 t = 8

Cov. Setting χ2 WTPS χ2 WTPS

1
n(1) 8.416 0.431 36.706 0.968
n(2) 9.066 1.184 37.318 1.295
n(3) 6.016 0.618 29.863 1.073

2
n(1) 8.523 0.869 36.999 1.044
n(2) 9.206 1.510 37.160 1.436
n(3) 6.445 0.293 30.130 0.925

3
n(1) 9.415 1.219 42.643 5.264
n(2) 7.638 0.946 32.131 5.851
n(3) 6.490 0.260 30.012 0.689

10.2 Large time correlations

In order to investigate the behavior of the proposed test for situations with very large time
correlations, we investigated the auto-regressive setting with a correlation of ρ = 0.9 as well as
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a Toeplitz-type covariance matrix with

Σi =

(
0.9

0.9 + |`− j|

)

`,j≤t
, i ∈ {1, 2, 3}

for all three groups. The resulting type-I error rates for the hypothesis of no time effect and no
group × time interaction are displayed in Tables 14 and 15, respectively.

Table 14: Type-I error rates in scenarios with large time correlation for the hypothesis of no
time effect.

t = 4 t = 8
ATS WTS WTPS ATS WTS WTPS

normal

AR(0.9)
n(1) 0.056 0.087 0.052 0.052 0.174 0.048
n(2) 0.058 0.087 0.052 0.056 0.178 0.048
n(3) 0.053 0.075 0.051 0.056 0.139 0.051

Toeplitz
n(1) 0.053 0.087 0.051 0.040 0.175 0.047
n(2) 0.053 0.088 0.051 0.044 0.177 0.048
n(3) 0.051 0.075 0.050 0.050 0.140 0.054

log-normal

AR(0.9)
n(1) 0.042 0.094 0.054 0.036 0.210 0.065
n(2) 0.040 0.099 0.055 0.044 0.215 0.071
n(3) 0.037 0.092 0.058 0.042 0.203 0.084

Toeplitz
n(1) 0.031 0.092 0.051 0.023 0.203 0.056
n(2) 0.031 0.096 0.053 0.025 0.208 0.060
n(3) 0.030 0.089 0.053 0.026 0.196 0.065

exp

AR(0.9)
n(1) 0.053 0.093 0.054 0.050 0.188 0.050
n(2) 0.051 0.091 0.054 0.051 0.194 0.054
n(3) 0.054 0.082 0.054 0.049 0.165 0.065

Toeplitz
n(1) 0.048 0.092 0.053 0.039 0.185 0.049
n(2) 0.044 0.091 0.053 0.037 0.191 0.050
n(3) 0.046 0.081 0.051 0.037 0.164 0.056

10.3 Large effect of factor B

In this scenario, we simulated a 2×2 repeated measures design with t = 4 repeated measures,
exponentially distributed errors and a Toeplitz covariance structure as described above. In order
to investigate the behavior of the permutation procedure in a scenario with large effects of one
factor, we set

µij = αi + βj + (αβ)ij, i, j ∈ {1, 2}
and chose αi = 0, (αβ)ij = 0 and β1 = δ · 1t = −β2 with δ = (0, 0.5, 1, 5, 10, 100). Type-I
error rates for the null hypothesis of no effect of factor A as well as no interaction effect AB are
given in Table 16. Note that ATS and WTS are identical in these scenarios.
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Table 15: Type-I error rates in scenarios with large time correlation for the hypothesis of no
group × time interaction effect.

t = 4 t = 8
ATS WTS WTPS ATS WTS WTPS

normal

AR(0.9)
n(1) 0.059 0.149 0.053 0.058 0.436 0.052
n(2) 0.065 0.145 0.052 0.056 0.430 0.054
n(3) 0.057 0.131 0.054 0.056 0.370 0.049

Toeplitz
n(1) 0.055 0.149 0.052 0.044 0.436 0.052
n(2) 0.057 0.145 0.052 0.039 0.431 0.052
n(3) 0.050 0.130 0.054 0.044 0.369 0.047

lognormal

AR(0.9)
n(1) 0.034 0.126 0.042 0.038 0.433 0.039
n(2) 0.036 0.125 0.043 0.038 0.435 0.038
n(3) 0.034 0.124 0.047 0.037 0.407 0.047

Toeplitz
n(1) 0.027 0.126 0.047 0.019 0.431 0.045
n(2) 0.026 0.125 0.048 0.019 0.430 0.044
n(3) 0.026 0.123 0.051 0.017 0.406 0.048

exp

AR(0.9)
n(1) 0.048 0.143 0.051 0.052 0.452 0.049
n(2) 0.049 0.143 0.051 0.055 0.448 0.051
n(3) 0.051 0.132 0.048 0.047 0.389 0.049

Toeplitz
n(1) 0.042 0.142 0.053 0.034 0.450 0.051
n(2) 0.040 0.142 0.050 0.033 0.445 0.054
n(3) 0.043 0.134 0.050 0.030 0.389 0.047

Table 16: Type-I errors in a simulation setting with large effect of factor B.
δ ATS = WTS WTPS

’no effect of factor A’
0 0.056 0.050

0.5 0.056 0.050
1 0.056 0.049
5 0.056 0.049
10 0.056 0.049

100 0.056 0.048
’no interaction effect AB’

0 0.057 0.052
0.5 0.057 0.050
1 0.057 0.050
5 0.057 0.050
10 0.057 0.050

100 0.057 0.049
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11 Power

We have also conducted several simulations to analyze the power of our method. Since the WTS
turned out to test on different α−levels (see the simulation results under the null hypothesis),
we have excluded it from the analyses. We considered a two sample repeated measures design,
where we have simulated data as

Y ik = (Yik1, . . . , Yikt)
> = µi + V

1/2
i εik,

withµi = E(Y i1), i ∈ {1, 2}, andV i ≡ I t. The i.i.d. random vectors εik = (εik1, . . . , εikt)
>, i ∈

{1, 2}, were generated from different standardized distributions by

εiks =
ε̃iks − E(ε̃iks)√

var(ε̃iks)
,

where ε̃iks denote i.i.d. normal or log-normal random variables. For the power simulation we
have considered a trend alternative, i.e., we set µ2 = 0 in the second group and µ1 = δc =
δ(c1, . . . , ct)

> in the first group, where cs = s/t, s ∈ {1, . . . , t} and δ ∈ {0, 0.5, 1, 1.5, 2, 3}.
We considered a balanced design with 15 individuals per group, hypothesis matrix H =

P t(I t
... − I t) and again simulated both t = 4 and t = 8 repeated measures. Figures 4 and 5

display the power comparison for the WTPS, the ATS, the approximation described by Lecoutre
[4] as well as Hotelling’s T 2 [2] for normal distribution and t = 4 and t = 8 repeated measures,
respectively. In Figures 6 and 7, the results for the log-normal distribution are displayed. From
these figures it appears that the ATS has slightly higher power for normally distributed data.
For log-normally distributed data, the WTPS has larger power than the other methods and it is
the only method controlling the type-I error correctly. We also note that the approximation by
Huynh-Feldt and Lecoutre performs worst for the log-normal distribution.
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Figure 4: Power (α = 0.05) simulation results of the WTPS, ATS, Lecoutre and Hotelling for
normal distribution and t = 4 repeated measures under a trend alternativeµ = (µ1

>,µ2
>)> =

(0>, δc>)> with δ = {0, 0.5, 1, 1.5, 2, 3} and cs = s/t, s ∈ {1, . . . , t}.
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Figure 5: Power (α = 0.05) simulation results of the WTPS, ATS, Lecoutre and Hotelling for
normal distribution and t = 8 repeated measures under a trend alternativeµ = (µ1

>,µ2
>)> =

(0>, δc>)> with δ = {0, 0.5, 1, 1.5, 2, 3} and cs = s/t, s ∈ {1, . . . , t}.
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Figure 6: Power (α = 0.05) simulation results of the WTPS, ATS, Lecoutre and Hotelling
for log-normal distribution and t = 4 repeated measures under a trend alternative µ =
(µ1

>,µ2
>)> = (0>, δc>)> with δ = {0, 0.5, 1, 1.5, 2, 3} and cs = s/t, s ∈ {1, . . . , t}.
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Figure 7: Power (α = 0.05) simulation results of the WTPS, ATS, Lecoutre and Hotelling
for log-normal distribution and t = 8 repeated measures under a trend alternative µ =
(µ1

>,µ2
>)> = (0>, δc>)> with δ = {0, 0.5, 1, 1.5, 2, 3} and cs = s/t, s ∈ {1, . . . , t}.
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12 Analysis of the data example: Comparing the different
approaches

We again consider the data example from Section 5 on the oxygen consumption of leukocytes.
First of all, we notice that the empirical covariance matrices of the two groups appear to be
quite different. The empirical covariance matrix in the Placebo-group (rounded to three digits)
is given as




0.025 −0.022 −0.004 0.009 0.015 0.025
−0.022 0.092 −0.005 −0.001 −0.024 −0.035
−0.004 −0.005 0.081 −0.013 −0.010 −0.004
0.009 −0.001 −0.013 0.037 0.044 0.038
0.015 −0.024 −0.010 0.044 0.069 0.063
0.025 −0.035 −0.004 0.038 0.063 0.115




whereas in the Verum-group we have




0.043 0.012 0.046 0.033 0.014 0.055
0.012 0.113 0.008 0.009 0.060 0.032
0.046 0.008 0.065 0.041 0.005 0.066
0.033 0.009 0.041 0.047 0.016 0.059
0.014 0.060 0.005 0.016 0.058 0.047
0.055 0.032 0.066 0.059 0.047 0.116




. Thus, the assumption of homoscedasticity is not fulfilled in this data example.

For completeness, we also include some correlation matrices. Separately for the two groups,
we get




1.000 −0.468 −0.093 0.290 0.368 0.462
−0.468 1.000 −0.053 −0.019 −0.300 −0.342
−0.093 −0.053 1.000 −0.230 −0.137 −0.041
0.290 −0.019 −0.230 1.000 0.864 0.578
0.368 −0.300 −0.137 0.864 1.000 0.701
0.462 −0.342 −0.041 0.578 0.701 1.000




in the Placebo-group and for the Verum-group we have




1.000 0.177 0.875 0.727 0.273 0.784
0.177 1.000 0.089 0.121 0.735 0.278
0.875 0.089 1.000 0.729 0.083 0.759
0.727 0.121 0.729 1.000 0.301 0.793
0.273 0.735 0.083 0.301 1.000 0.567
0.784 0.278 0.759 0.793 0.567 1.000



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Considering the time correlations across the different groups, we get:




1.000 −0.018 0.376 0.557 0.326 0.632
−0.018 1.000 0.367 0.143 0.324 0.172
0.376 0.367 1.000 0.303 0.168 0.477
0.557 0.143 0.303 1.000 0.593 0.699
0.326 0.324 0.168 0.593 1.000 0.670
0.632 0.172 0.477 0.699 0.670 1.000




The results of the analyses using the different methods are presented in the following table.
The asymptotic results are again obtained by considering the corresponding F(ν̂,∞)-quantile
for the ATS and the χ2

f -quantile for the WTS.

Table 17: p-values of the analysis of the O2 consumption data.

ATS WTS
asymptotic PBS NPBS asymptotic Permutation PBS NPBS

A 0.001 0.002 0.003 0.001 0.003 0.002 0.003
B <0.001 0.001 0.001 <0.001 <0.001 0.001 0.001
T <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

AB 0.110 0.110 0.128 0.110 0.133 0.110 0.128
AT 0.009 0.012 0.009 <0.001 <0.001 <0.001 0.001
BT 0.094 0.0108 0.105 0.115 0.151 0.161 0.155

ABT 0.117 0.138 0.132 0.116 0.164 0.170 0.157

For this data set, the results are similar for all resampling methods and the asymptotic ap-
proaches considered.
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a b s t r a c t

Repeated measures and split plot plans are often the preferred design of choice when
planning experiments in life and social sciences. They are typically analyzed by mean-
based methods from MANOVA or linear mixed models, requiring certain assumptions
on the underlying parametric distribution. However, if count, ordinal or score data are
present, these techniques show their limits since means are no adequate measure of
deviations between groups. Here, nonparametric rank-based methods are preferred for
making statistical inference. The common nonparametric procedures such as the Wald-
or ANOVA-type tests, however, have drawbacks since they usually require large sample
sizes for accurate test decisions. The aim is to enhance the small sample properties of these
test statistics by means of a specific nonparametric bootstrap procedure while preserving
their general applicability for all kinds of data in factorial repeated measures and split plot
designs. In particular, it is shown that a specific wild bootstrap procedure inherits the large
sample properties of the Wald- and ANOVA-type statistics while considerably improving
their small sample behavior. The new method is motivated by and applied to a practical
data example in a repeated measures design with score data.

© 2016 Elsevier B.V. All rights reserved.

1. Motivation and introduction

When planning experiments in behavioral, medical or psychological sciences repeated measures designs and split-
plot plans are often preferred because fewer experimental units (subjects) are required to obtain ‘sufficient’ numbers of
observations (Stevens, 2012; Howell, 2013; Hedeker and Gibbons, 2006; Davis, 2002). Such data are typically analyzed
by mean-based multivariate analysis-of-variance methods (MANOVA), repeated measures ANOVA or linear mixed models
requiring certain assumptions on the underlying parametric distributions, see e.g. themonographs of Davis (2002), Hedeker
and Gibbons (2006) or Johnson and Wichern (2007). However, as e.g. pointed out by Kherad-Pajouh and Renaud (2015) ‘‘it
is likely that for this kind of data, the parametric assumptions are not satisfied’’ so that the ‘‘result of the methods (. . . ) might not
be reliable’’, see also Xu and Cui (2008), Suo et al. (2013) or Konietschke et al. (2015) for related comments. Furthermore,
parametricmethods usually require a specific covariance structure of the data, e.g., compound symmetry, sphericity or equal
covariance matrices across the different groups. The type of covariance matrix is hard to justify in real applications. If the
assumed covariance matrix is mis-specified, the estimator of the covariance matrix is biased, which results in a liberal or
conservative behavior of the test. In particular, Oberfeld and Franke (2013) point out that the ‘‘covariance structure of the data
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is important for the validity of the tests’’, see also Keselman et al. (2001) and the references cited therein. Therefore plenty of
robustifications and/or approximations for more general mean-based analysis in various repeated measures designs have
been proposed, see Huynh and Feldt (1976), Huynh (1978), Lecoutre (1991), Kenward and Roger (1997), Keselman et al.
(2000), Pesarin (2001), Vallejo and Ato (2006), Xu and Cui (2008), Kenward and Roger (2009), Arnau et al. (2012), Chi et al.
(2012), Pesarin and Salmaso (2012), Brombin et al. (2013), Konietschke et al. (2015), Pauly et al. (2015) or Friedrich et al.
(2015), among others.

If count, ordinal, ordered categorial or score data are present, however, these approaches show their limits since
means are neither meaningful nor adequate measures of deviations between groups or treatments. In such a situation,
nonparametric rank-based methods are the preferred choice for making statistical inference. Such methods are robust,
applicable to all kinds of data and the corresponding test results are invariant under monotone transformations of the
data. In particular, Akritas and Arnold (1994), Akritas and Brunner (1997), Brunner et al. (1999), Brunner (2001), Brunner
et al. (2002) and Akritas (2011) propose rank-based methods for testing nonparametric hypotheses formulated in terms of
distribution functions for factorial longitudinal data. The procedures are valid for the analysis of metric, count, ordinal, score
or even ordered categorial data in a unified way. The two proposed statistics therein, however, have drawbacks: The Wald-
type statistic provides an asymptotically valid test, but very large sample sizes are required for accurate test decisions.
The method tends to be very liberal in case of small and moderate numbers of observations, see e.g. Brunner (2001).
Moreover, it is only applicable in case of regular covariance matrices. The latter drawback is not shared by the ANOVA-
type statistic which turns out to be an approximation that is in general not asymptotically correct and results in rather
conservative test decisions for small sample sizes, see Brunner (2001). Since sample sizes are often rather small compared
to the number of time points in practical applications, it is thus the aim of the present paper to (i) enhance the small sample
performances and (ii) the asymptotic properties of these testing procedures. To this end, we adopt a nonparametric wild
bootstrap resampling technique which is already known for leading to the above desired enhancements in mean-based
regression analyses, seeWu (1986), Liu (1988),Mammen (1993b), Flachaire (2005), Davidson and Flachaire (2008), Cameron
et al. (2008) and Cameron and Miller (2015). Here its application to the above described statistics leads to our goals (i) and
(ii) while preserving their general applicability in factorial repeated measures designs.

As amotivating example, we consider the shoulder tip pain trial reported by Lumley (1996). In this trial, the characteristic
pain in the shoulder tip after laparoscopic surgery was observed in N = 41 patients during t = 6 time points. After
randomization, n1 = 22 patients (14 female and 8male) received the active treatment (treatment = ‘Yes’) and n2 = 19 (11
female and 8 male) patients belonged to the control group (treatment = ‘No’). Thus, data was observed in an elaborate
factorial design, with stratifying whole-plot factors Treatment and Gender, and sub-plot factor Time. For every patient
enrolled in the trial, t = 6 possibly correlated repeatedmeasurements were observed. The pain wasmeasured on an ordinal
scale ranging from 1 (low) to 5 (high). The lower the score, the better the clinical record. The observed score distribution is
displayed in Fig. 1.

It can be readily seen from the boxplots displayed in Fig. 1 that the scores given under treatment tend to be lower than
those under control. However, the investigation of statistical interactions between the factors treatment, gender and time are
of major interest in this experiment. Since mean-based approaches are inappropriate for making statistical inference with
ordered categorial data, nonparametric ranking methods are preferred.

The paper is organized as follows: In the next section, we state the statistical model as well as the hypotheses and test
statistics considered. In Section 3 we describe the wild bootstrap procedure. Simulation results are displayed in Section 4
as well as in the supplementary material (see Appendix B) and a detailed analysis of the data example is given in Section 5.
Finally, we discuss the results in Section 6. All proofs are deferred to Appendix A.

Throughout the paper, we will use the following notation. We denote by It the t-dimensional unity matrix and by Jt
the t × t matrix of 1’s, i.e. Jt = 1t1′

t , where 1t = (1, . . . , 1)′ is the t-dimensional column vector of 1’s. Furthermore, let
Pt = It − 1

t Jt denote the t-dimensional centering matrix. By ⊕ and ⊗ we denote the direct sum and the Kronecker product,
respectively.

2. Statistical model, hypotheses and statistics

2.1. Statistical model and hypotheses

To establish the general nonparametric repeated measures model with a different groups and t different time points, let

Xik = (Xik1, . . . , Xikt)
′, i = 1, . . . , a, k = 1, . . . , ni,

denote the random vector belonging to the kth subject in group i. The N =
a

i=1 ni random vectors are assumed to be
independent with marginals

Xiks ∼ Fis, i = 1, . . . , a, k = 1, . . . , ni, s = 1, . . . , t.

For convenience, we collect the observations Xik in larger vectors

Xi = (X ′

i1, . . . ,X
′

ini)
′, and X = (X ′

1, . . . ,X
′

a)
′, (2.1)

containing all the information of group i (i = 1, . . . , a) and the pooled sample, respectively.
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Fig. 1. Frequencies of the pain scores observed in the shoulder pain trial (Lumley, 1996).

In this set-up, null hypotheses are formulated by HF
0 : CF = 0, where F = (F11, . . . , Fat)′ denotes the vector of the

distribution functions Fis, i = 1, . . . , a, s = 1, . . . , t and C is a suitable hypothesis matrix. Rank-statistics for testing these
hypotheses are derived by considering estimates of the relative marginal effects p = (p11, . . . , pat)′, where pis =


HNdFis.

Here, HN(x) =
1
t·N

a
i=1
t

s=1 niFis(x) denotes the (weighted) mean distribution function of the whole experiment. If
pis < pis′ for some s ≠ s′, then the (random) measurements in group i at time s tend to result in smaller values than
those at time s′. If pis = pis′ , no data tend to be smaller or larger. The effects pis are estimated by

pis =
1
tN


Ri·s −

1
2


,

where Riks denotes the (mid-)rank of Xiks among all tN observations and Ri·s =
1
ni

ni
k=1 Riks. A more detailed theoretical

derivation of the relative treatment effects is given in the Appendix A. For convenience, the estimators are collected in the
vectorp = (p11, . . . ,pat)′. Assuming the usual sample size condition

ni

N
→ κi ∈ (0, 1), for all i = 1, . . . , a, (2.2)

Akritas and Brunner (1997) have shown that
√
NC(p − p) follows, asymptotically, as N → ∞, a multivariate normal

distribution with expectation 0 and covariance matrix C6C ′ under the hypothesis HF
0 . Here, the matrix

6 =

a
i=1

κ−1
i Vi (2.3)

is the weighted block diagonal matrix of the covariance matrices Vi = Cov(Yik) of the random vectors Yik = (H(Xik1),
. . . ,H(Xikt))

′ and H =
1
t

a
i=1
t

s=1 κiFis is the limit distribution function of HN under (2.2).
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2.2. Statistics and asymptotics

In this section, suitable test statistics for testing the null hypothesis HF
0 : CF = 0will be introduced. First, the Wald-type

statistic (WTS) of Akritas and Arnold (1994) and Brunner and Puri (2001)

QN = Np′C ′(C6C ′)+Cp (2.4)

is considered, where M+ denotes the Moore–Penrose inverse of a matrix M . Here,6 = N
a

i=1
1
ni
Vi denotes the weighted

direct sum of the empirical covariance matrices

Vi =
1

(tN)2(ni − 1)

ni
k=1

(Rik − R i·)(Rik − R i·)
′, i = 1, . . . , a,

which is a consistent estimator of the limiting covariance matrix Vi. The asymptotic distribution of the WTS is provided in
the next theorem:

Theorem 2.1. Assume (2.2) and Vi > 0 for all i = 1, . . . , a. Under the hypothesis HF
0 : CF = 0, the WTS in (2.4) has,

asymptotically as N → ∞, a central χ2
f -distribution with f = rank(C) degrees of freedom, i.e.,

QN
d

→ Q ∼ χ2
rank(C). (2.5)

Due to the weak performance of the WTS for small sample sizes and its restriction to non-singular covariance matrices,
Brunner et al. (1997) and Brunner and Langer (2000) propose the so-called ANOVA-type test statistic (ATS). The idea is to
first drop the estimated covariance matrix in (2.4), resulting in the following statistic:

AN = Np′C ′(CC ′)+Cp =: Np′Tp. (2.6)

The asymptotic distribution of AN is given in the next theorem (Brunner and Puri, 2001, Theorem 2.7):

Theorem 2.2. Under the hypothesis HF
0 : CF = 0 and assumption (2.2), the statistic AN has, asymptotically as N → ∞, the

same distribution as a weighted sum of χ2
1 -distributed random variables, i.e.,

AN
d

→ A ∼

a
i=1

t
s=1

λisξis, (2.7)

where ξis
i.i.d.
∼ χ2

1 and the weights λis are the eigenvalues of T6, where 6 is defined in (2.3).

Since the eigenvalues λis are unknown, the limiting distribution is approximated by aweighted g ·χ2
f distribution, where

g and f are estimated from the data such that the first twomoments of the limiting distribution of the ATS and g ·χ2
f coincide

(Box, 1954). Finally, the distribution of the ANOVA-type statistic

FN =
N

tr(T6)
p′Tp

can be approximated by a central F(f̂ , ∞)-distribution with f̂ =
(tr(T6))

2

tr(T6T6)
degrees of freedom under the null hypothesis HF

0 ,
see Brunner et al. (1999). For testing the main effects of the whole-plot factors or interactions involving only whole-plot
factors, the distribution of the ATS can be further approximated by an F(f̂ , f̂0) distribution with f̂0 as in Brunner et al. (1997).
Compared to the WTS the corresponding ATS has the advantage of being applicable in case of a singular covariance matrix
6. The ATS is implemented in the R-package nparLD (Noguchi et al., 2012) for the analysis of factorial repeated measures
designs. Furthermore, the rank-based ATS can be computed using SAS (SAS Institute Inc., 2003), e.g. SAS PROC MIXED
using the option ANOVAF. Note that the ranks of the data are obtained via PROC RANK and usedwithin themodel statement.

Note that in contrast to the WTS, the corresponding ATS test provides in general no asymptotic level α test, which is a
severe drawback of this procedure. The finite sample distributions of both the WTS and the ATS can be approximated by a
wild bootstrap procedure, thus leading to more accurate statistical tests. This will be explained in the next section.

3. The wild bootstrap procedure

Resampling techniques arewidely known to induce robust inference procedures, even for small sample sizes, see e.g. their
extensive treatment in Davison andHinkley (1997), Davison et al. (2003), Good (2006) orManly (2006). Typically, the idea of
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themethods is as follows: Instead of computing the p-value (or critical value) from an approximate distribution of a statistic,
the p-value is computed from a resampling distribution of the statistic. Thus, the resampling test can only be consistent, if
both the distribution of the test statistic and its (conditional) resampling distribution coincide, at least asymptotically. In
order to achieve this goal, several different resampling techniques have been explored in the literature: nonparametric
bootstrap (randomly drawing with replacement), parametric bootstrap, permutation and randomization methods, cross
validation andmanymore. Simulation studies indicate that the use of Efron’s nonparametric bootstrap (Efron, 1979) results
in liberal conclusions in the present setup. Therefore, we did not further investigate the conventional bootstrap. This result
is in concordance with recent results for general MANOVA (Konietschke et al., 2015) in a semiparametric framework.
For nonparametric bivariate data, Konietschke and Pauly (2012) investigated a studentized permutation approach based
on rank statistics. Their bivariate model is included in ours by setting a = 1 and t = 2. Simulation results indicated
that the resampling version greatly improves the classical rank-test for small sample sizes. The permutation method is
based on randomly permuting the observed components X1k1 and X1k2 from subject k. Now, computing the differences
Dk = X1k1 − X1k2, it follows that their permutation approach is distributional identical to multiplying the differences with
random signs ϵk, with P(ϵik = 1) = P(ϵik = −1) =

1
2 . This perception led to generalizing their method to our setting with

general nonparametric factorial longitudinal data. Such resamplingmethods,which are based onmultiplying the (fixed) data
with random signs, i.e., using Rademacher distributed random weights (Davidson and Flachaire, 2008), are a specific wild
bootstrap technique. Note that earlier wild bootstrap versions used different weights satisfying differentmoment conditions,
see e.g. Wu (1986), Liu (1988) or Mammen (1993a). Typically, the choice of weights depends on the specific situation. In
our nonparametric setting we found a specific preference for Rademacher weights in our simulation study. They have the
additional advantage of leading to a finitely exact test if the multiplied random variables (Zik below) are 0-symmetric under
the null, see e.g. Janssen (1999) or Lehmann and Romano (2005).

Furthermore, these resamplingmethods aremotivated by the residual bootstrap commonly applied in regression analysis
(Wu, 1986; Mammen, 1993b; Janssen, 1999; Flachaire, 2005; Davidson and Flachaire, 2008; Cameron et al., 2008), and in
time-series testing problems (Kreiss and Paparoditis, 2011). It is also proposed in the context of survival analysis (Lin, 1997;
Martinussen and Scheike, 2007; Pauly, 2011; Beyersmann et al., 2013; Dobler and Pauly, 2014; Dobler et al., 2015), and
recently for the selection of biomarkers in early diagnostic trials (Zapf et al., 2015). The approach will be explained in the
following.

Let Zik =

Rik − R i·


, i = 1, . . . , a; k = 1, . . . , ni denote the centered rank vectors and let ϵik denote independent and

identically distributed random signs; thus fulfilling E(ϵ11) = 0 and Var(ϵ11) = 1. We restrict ourselves to this specific kind
of weights since they showed the best finite sample performance in the scenarios considered here (see also Davidson and
Flachaire, 2008 for a similar observation in regression models). However, the subsequent results can easily be extended to
other choices of weights fulfilling E(ϵ11) = 0 and Var(ϵ11) = 1. Now, consider the resampling vectors

Z∗

ik = ϵik · Zik, i = 1, . . . , a; k = 1, . . . , ni,

which depict a conditional distribution of the centered rank vectors Zik around zero. The shape of the distribution depends on
Zik and particularly on the shape of the distribution of the randomweights. Since the ϵ′

iks are random signs, the distribution
of Z∗

ik is a symmetrization of the fixed vectors Zik. Now, let

p̂ϵ
i =

1
ni

ni
k=1

ϵik

tN


Rik − R i·


=

1
ni

ni
k=1

1
tN

Z∗

ik

denote the resampling equivalent of the relative effect estimatorspi; and let 6ϵ
= N

a
i=1

1
ni
V ϵ
i denote the direct sum of

the empirical covariance matrices

V ϵ
i =

1
(tN)2(ni − 1)

ni
k=1


Z∗

ik − Z
∗

i·

 
Zik − Z

∗

i·

′

, i = 1, . . . , a,

of the vectors Z∗

ik, respectively. For convenience, the vectors p̂ϵ
i are collected in the vector p̂ϵ

= (p̂ϵ
1, . . . , p̂

ϵ
a)

′. This bootstrap
method corresponds to the wild cluster bootstrap proposed by Cameron et al. (2008) for semiparametric regression
problems. In this sensewemay also call our approachmore specifically nonparametric wild cluster bootstrap of the individual
rank vectors Rik. In the next theorem, the conditional multivariate distribution of

√
N p̂ϵ will be examined.

Theorem 3.1. The conditional distribution of
√
N p̂ϵ , given the data X , is, asymptotically, as N → ∞, the multivariate N(0, 6)

distribution, in probability.

Theorem 3.1 implies that both the distributions of
√
NCp̂ϵ and

√
NC(p − p) are asymptotically identical under the

hypothesis HF
0 . Furthermore, the asymptotic distribution of

√
NCp̂ϵ is independent from the distribution of the data X .

These results can now be used to derive the wild bootstrap versions of both the Wald-type statistic (WWTS)

Q ϵ
N = N(p̂ϵ)′C ′(C6ϵC ′)+Cp̂ϵ, (3.8)
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and the ANOVA-type statistic (WATS)

F ϵ
N =

N

tr(T6ϵ
)
(p̂ϵ)′T p̂ϵ . (3.9)

It will be shown in the subsequent theorems that both the conditional distributions of the statistics Q ϵ
N and F ϵ

N mimic the
asymptotic null distributions of the WTS and the ATS given in Theorems 2.1 and 2.2, respectively.

Theorem 3.2. Under Assumption (2.2) and Vi > 0 for all i = 1, . . . , a, the conditional distribution of Q ϵ
N converges weakly to

the central χ2
f -distribution with f = rank(C) degrees of freedom in probability for any underlying value p ∈ Rat , i.e. we have

sup
x∈R

|Pp(Q ϵ
N ≤ x|X) − PH0(QN ≤ x)|

P
→ 0, (3.10)

where PH0(QN ≤ x) denotes the unconditional null distribution function of QN under H0.

Theorem 3.3. Under Assumption (2.2) the conditional distribution of F ϵ
N converges weakly to the null distribution of FN in

probability for any underlying value p ∈ Rat , i.e. we have

sup
x∈R

|Pp(F ϵ
N ≤ x|X) − PH0(FN ≤ x)|

P
→ 0. (3.11)

Remark 3.1. The corresponding wild bootstrap tests are given by ϕϵ
WTS = 1{QN > cϵ

WTS} and ϕϵ
ATS = 1{FN > cϵ

ATS},
where cϵ

WTS and cϵ
ATS denote the conditional (1 − α)-quantile of the wild bootstrap distribution of Q ϵ

N and F ϵ
N given the

data, respectively. Properties (3.10) and (3.11) ensure that the wild bootstrap tests are of asymptotic level α under the null
hypothesis and consistent for any fixed alternative. Moreover, it follows from Janssen and Pauls (2003) that they possess
the same local power under contiguous alternatives as the original tests ϕWTS and ϕATS , respectively.

4. Simulations

In the previous sections, nonparametric rank-based inference methods for the analysis of general factorial longitudinal
data have been derived. The procedures are based on the asymptotic joint distribution of the vector

√
NCp under the

hypothesis HF
0 : CF = 0. As an approximate solution, wild bootstrap methods are proposed. All of the proposed approaches,

however, are valid for large sample sizes. In order to investigate the accuracies of the procedures in terms of (i) controlling
the pre-assigned type-1 error level under the null hypothesis, and (ii) their power to detect certain alternatives, extensive
simulation studies were conducted. All simulationswere performedwith R environment, version 3.2.2. (R Core Team, 2010),
each with 100,000 simulation and 999 bootstrap repetitions (Dufour and Khalaf, 2001; Racine and MacKinnon, 2007),
respectively. Due to abundance of possible factorial longitudinal designs, we restrict the analysis to one-way designs with
a = 2 independent groups of subjects, different numbers of time points t ∈ {4, 8}, underlying discrete and continuous data
distributions (ordinal data, normal, and lognormal), and varying sample sizes ni ∈ {10, 20}. Discrete data were simulated in
order to investigate the impact of tied observations on the wild bootstrap tests. Both the WTS, ATS and their wild bootstrap
versions are investigated to test the null hypothesis of ‘‘no main effect’’ (A), ‘‘no time effect’’ (T), as well as ‘‘no interaction’’
(A:T) between the main and time effect, respectively. The nominal type-1 error rate was set to 5%. More simulation results
for different α levels (α = 1% and α = 10%) can be found in the supplementary material (see Appendix B). The results
and conclusions obtained are similar to the ones presented below. Throughout the simulations, random signs were used as
weights for both thewild bootstrapmethods. Results for standard normal, uniform orMammen (1993a) weights lead to less
accurate test decisions, and are therefore omitted.

4.1. Ordinal data

In order to imitate the underlying distributions of the grading scores given in the shoulder tip pain trial, a split-plot design
with a = 2 groups, ni subjects in group i and t repeated measures Xiks was simulated. The observations

Xiks =


5(Ziks + cYik)

c + 1


+ 1

were generated from independent observations Yik ∼ U[0, 1] and Ziks ∼ U[0, 1], i = 1, 2, k = 1, . . . , ni and s = 1, . . . , t .
The random variables Xiks take values between 1 and 5 as in the shoulder tip pain trial. The correlation between Xiks and Xiks′

can be regulated by choosing the constant c between 0 and ∞. Here, c = 1 has been chosen. Thus, the generated scores
have a compound symmetric covariance structure. The type-1 error simulation results are displayed in Table 1.

It can be readily seen from Table 1 that the classicalWald-type test (WTS) tends to liberal conclusions. Roughly speaking,
the liberality of the WTS can be explained by the non-consideration of the variability of the empirical covariance matrix by
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Table 1
Simulation results (α = 5%) of the WTS, ATS and their wild bootstrap versions for testing the three different hypotheses (A,
T, A:T) with ordinal data and varying sample sizes.

Hypothesis n Method t = 4 t = 8
ATS WTS ATS WTS

A
n1 = n2 = 10 Classic 0.066 0.066 0.066 0.066

Wild bootstrap 0.051 0.051 0.051 0.051

n1 = 10, n2 = 20 Classic 0.067 0.067 0.066 0.066
Wild bootstrap 0.054 0.054 0.053 0.053

T
n1 = n2 = 10 Classic 0.054 0.118 0.038 0.314

Wild bootstrap 0.051 0.052 0.048 0.049

n1 = 10, n2 = 20 Classic 0.053 0.111 0.039 0.277
Wild bootstrap 0.051 0.055 0.049 0.059

A:T
n1 = n2 = 10 Classic 0.053 0.115 0.038 0.312

Wild bootstrap 0.051 0.050 0.048 0.049

n1 = 10, n2 = 20 Classic 0.055 0.113 0.038 0.274
Wild bootstrap 0.052 0.055 0.049 0.058

its limiting χ2 distribution. Its wild bootstrap version, however, greatly improves the type-1 error rate control of the WTS.
This occurs, because the wild bootstrap distribution takes the variability of the empirical covariance matrix into account.
Therefore, the actual sampling distribution of theWTS and itswild bootstrap version are similarwhen sample sizes are small.
The same behavior can be seen for the ATS. The classical ATS is less liberal than theWTS, however, its empirical type-1 error
rate is ≈7% when testing for the main effect. In the other situations (T and A : T ), the method tends to be conservative in
case of larger numbers of time points. Its wild bootstrap version, however, improves this behavior and tends to an accurate
type-1 error rate control. Furthermore, it can be seen that unbalanced designs seem to not affect the accuracy of the wild
bootstrap tests. Altogether, rejection rates for the wild bootstrap procedure vary between 0.048 and 0.059, with usually
larger values for the WTS wild bootstrap test.

Next, continuous distributions and the impact of different covariance structures on the quality of the approximations
will be investigated.

4.2. Continuous data

For the empirical investigation of the type-1 error rate control of the proposed methods, balanced and unbalanced split-
plot design with a = 2 groups, sample sizes ni ∈ {10, 20}, and t = {4, 8} repeated measures Xiks was simulated. Data was
generated by:

Xik = 6
1/2
i
Xik,

where 6i either has an autoregressive structure (Setting 1) or a compound symmetric pattern (Setting 2):
Setting 1 (AR): 6i =


ρ |l−j|


l,j≤t , ρ = 0.6 for i = 1, 2.

Setting 2 (CS): 6i = It + Jt for i = 1, 2.

The independent and identically distributed random vectorsXik = (Xik1, . . . ,Xikt) were generated either from a standard
normal distribution or from a standardized log-normal distribution.

The type-1 error simulation results for testing the hypotheses of no main effect A, no time effect T and no main × time
interaction A : T are displayed in Tables 2 and 3 for the normal and log-normal distribution, respectively.

It can be seen from Tables 2 and 3 that the shape of the underlying data distribution does not affect the type-1 error
rate control of all four methods, and are similar for all three investigated distributions (ordinal, normal, and lognormal).
Furthermore, the chosen dependency structures of the data do not impact the quality of the approximations. All of the
investigated methods allow for an arbitrary covariance matrix. From Tables 2 and 3 it further follows that both the WTS
and ATS show a liberal and conservative to slightly liberal behavior depending on the hypothesis and number of time
points, respectively. Both the wild bootstrap methods show an accurate type-1 error rate control with rejection rates
varying from 0.047 to 0.058 for the normal distribution and 0.044 to 0.068 for the log-normal distribution, and are therefore
recommended for practical applications. Note, however, that the rejection frequencies of the wild bootstrap version of the
WTS are sometimes statistically different from 5% for t = 8 time points and unequal sample sizes, e.g. 0.068 for testing
T with compound symmetry in Table 3. Next, the power of the methods for the detection of certain alternatives will be
investigated.

4.3. Power

To investigate the power of the tests a separate simulation study was performed in a one-sample repeated measures
design utilizing multivariate normal distributions with expectation µ = (µ1, µ2, µ3, µ4)

′, autoregressive covariance
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Table 2
Type-1 error simulation results for normally distributed data with sample sizes n(1)

= (10, 10) and n(2)
= (10, 20).

Cov. setting n Method t = 4 t = 8
ATS WTS ATS WTS

A

AR
n(1) Classic 0.064 0.066 0.066 0.067

Wild bootstrap 0.050 0.050 0.052 0.052

n(2) Classic 0.063 0.065 0.067 0.068
Wild bootstrap 0.052 0.052 0.054 0.054

CS
n(1) Classic 0.064 0.066 0.067 0.067

Wild bootstrap 0.050 0.050 0.052 0.052

n(2) Classic 0.064 0.066 0.067 0.067
Wild bootstrap 0.052 0.052 0.054 0.054

T

AR
n(1) Classic 0.055 0.114 0.050 0.314

Wild bootstrap 0.050 0.049 0.053 0.049

n(2) Classic 0.056 0.109 0.050 0.273
Wild bootstrap 0.053 0.053 0.053 0.058

CS
n(1) Classic 0.052 0.115 0.037 0.314

Wild bootstrap 0.049 0.050 0.047 0.048

n(2) Classic 0.052 0.108 0.037 0.270
Wild bootstrap 0.051 0.053 0.048 0.056

A:T

AR
n(1) Classic 0.055 0.115 0.049 0.315

Wild bootstrap 0.051 0.050 0.052 0.049

n(2) Classic 0.057 0.109 0.049 0.273
Wild bootstrap 0.053 0.053 0.053 0.058

CS
n(1) Classic 0.052 0.114 0.037 0.315

Wild bootstrap 0.049 0.050 0.048 0.047

n(2) Classic 0.052 0.108 0.036 0.268
Wild bootstrap 0.050 0.053 0.047 0.057

Table 3
Simulation results for log-normally distributed data with sample sizes n(1)

= (10, 10) and n(2)
= (10, 20).

Cov. setting n Method t = 4 t = 8
ATS WTS ATS WTS

A

AR
n(1) Classic 0.065 0.066 0.066 0.066

Wild bootstrap 0.051 0.051 0.052 0.052

n(2) Classic 0.064 0.065 0.067 0.068
Wild bootstrap 0.052 0.052 0.055 0.055

CS
n(1) Classic 0.065 0.066 0.067 0.067

Wild bootstrap 0.051 0.051 0.052 0.052

n(2) Classic 0.064 0.065 0.068 0.068
Wild bootstrap 0.052 0.052 0.054 0.054

T

AR
n(1) Classic 0.059 0.121 0.055 0.324

Wild bootstrap 0.053 0.055 0.054 0.054

n(2) Classic 0.060 0.118 0.056 0.281
Wild bootstrap 0.056 0.058 0.055 0.062

CS
n(1) Classic 0.051 0.122 0.034 0.334

Wild bootstrap 0.048 0.056 0.044 0.059

n(2) Classic 0.051 0.116 0.035 0.283
Wild bootstrap 0.049 0.059 0.046 0.068

A:T

AR
n(1) Classic 0.057 0.116 0.054 0.316

Wild bootstrap 0.051 0.050 0.053 0.048

n(2) Classic 0.058 0.111 0.054 0.275
Wild bootstrap 0.054 0.055 0.054 0.059

CS
n(1) Classic 0.052 0.115 0.036 0.314

Wild bootstrap 0.049 0.049 0.047 0.045

n(2) Classic 0.052 0.111 0.036 0.268
Wild bootstrap 0.050 0.056 0.046 0.054
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Fig. 2. Power simulation results (type-1 error level α = 5%) of the four investigated methods to detect the Alternatives 1–3 defined above with varying
sample sizes n = 10 and n = 15, respectively.

structure Vij = (0.6)|i−j|, t = 4 dimensions and sample size n ∈ {10, 15}. The aim of the simulation study is to investigate
and compare the empirical power of the tests to detect the three chosen alternatives

Alternative 1: µ(1)
= (0, 0, 0, δ) for varying δ ∈ {0, 0.5, 1, 1.5, 2},

Alternative 2: µ(2)
= (0, 0, δ, δ) for varying δ ∈ {0, 0.5, 1, 1.5, 2},

Alternative 3: µ(3)
= δ · (1/4, 1/2, 3/4, 1) for varying δ ∈ {0, 0.5, 1, 1.5, 2}.

They are chosen to represent frequently appearing alternatives in practical applications. The Alternatives 1–3 represent a
1-point, 2-point and a trend alternative, respectively. The power simulation results are displayed in Fig. 2.

Although the Wald-type statistic QN tends to be highly liberal when small sample sizes like n = 10 or 15 are present,
the statistic has been included in Fig. 2 for illustration purposes. However, because of these issues, the method will not
be viewed as a competitor to the other three methods. It can be seen from Fig. 2 that the ATS has the highest power to
detect all three chosen alternatives when sample size is very small (n = 10). However, this method is slightly liberal when
n = 10, and therefore the conclusion that the ATS is head and shoulders above the rest is questionable. In particular, with
increasing sample sizes (n = 15) both the power of the ATS and its wild bootstrap version are similar while the latter
keeps the prescribed α level more accurate. The wild bootstrap version of the WTS has the lowest power to detect all of the
three alternatives. It has a slightly lower power than the wild bootstrap version of the ATS in the first two scenarios while a
considerable power loss (compared to the ATS and its wild bootstrap version) to detect trend alternatives is apparent.

5. Application: analysis of the data example

We now re-analyze the data of the shoulder tip pain trial (Lumley, 1996). It turns out that the given scores for the treated
male patients given under time point 5 and 6 are identical, thus, the estimated covariance matrix6 is singular. Therefore,
theWTS cannot be used for data analysis, and only the ATSwill be used formaking inference. First, data will be descriptively
analyzed. Since data was observed in an elaborate factorial design, the relativemarginal effects are computed for each factor
combination separately. The results for the joint analysis of all possible treatment× gender× time combinations alongwith
95% point-wise confidence intervals are displayed in Fig. 3, which was generated using the R-package nparLD.

It can be readily seen from Fig. 3 that the time responses between the treated and non-treated patients differ. This is
most apparent at time point t = 3, where the confidence intervals between the treatment groups do not overlap. At all time
points, the estimated effects are smaller under treatment than under control. Thus, the scores seemingly tend to be smaller
under treatment. Over time, the effects of the treated male patients tend to decrease until time t = 4 before they slightly
increase and stabilize at the end. For the non-treated male patients the time profile is contrary: The effects rise until t = 3
and decline thereafter. Compared to the male patients, the time profile of the female patients show a similar behavior in
both groups with slightly larger effects at the beginning. The ATS as well as its wild bootstrap version can now be used to
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Fig. 3. Joint analysis of the data example: Treatment specific plots of the relative effects with 95%-confidence intervals—Gender: Male (left) and Female
(right).

Table 4
Analysis of the shoulder tip pain trial using the ATS as given in (2.6) as well as the wild bootstrap ATS defined
in (3.9).

Effect Statistic df p-value (ATS) p-value (WATS)

Treatment 16.401 1.000 <0.001 <0.001
Gender 0.046 1.000 0.832 0.827
Time 3.382 2.701 0.021 0.021
Treatment:gender 0.036 1.000 0.852 0.847
Treatment:time 3.711 2.701 0.014 0.013
Gender:time 1.144 2.701 0.327 0.325
Treatment:gender:time 0.438 2.701 0.705 0.736

Table 5
Treatment specific results for the shoulder tip pain trial using the ATS as given in (2.6) as well as the wild bootstrap ATS defined in (3.9).

Effect Treatment = Yes Treatment = No
Statistic df p-value (ATS) p-value (WATS) Statistic df p-value (ATS) p-value (WATS)

Gender 0.007 1.000 0.932 0.931 0.046 1.000 0.834 0.828
Time 1.893 2.663 0.136 0.151 5.580 2.696 0.001 <0.001
Gender:time 0.959 2.663 0.403 0.432 0.926 2.696 0.419 0.424

test if significantmain effects and interactions among the three factors treatment, gender and time are apparent. The results
are presented in Tables 4 and 5. Here, the values of the test statistics, degrees of freedom of the classical F-approximation
of the ATS and p-values for both the ATS and its wild bootstrap version (WATS) introduced in Section 3 are displayed. For
the wild bootstrap 10,000 bootstraps were conducted.

It turns out that the ATS as well as its wild bootstrap version tend to result in similar conclusions. Overall, p-values
obtained by the ATS, however, are slightly larger than those by the WATS (except for the threefold interaction). It turns
out that the interaction between treatment and time is significant at 5% level of significance. Therefore, data is further split
by the factor treatment and the above analysis is repeated for each treatment group separately. We note that this changes
the estimates and confidence intervals since ranks are no longer calculated from the pooled sample but separately for both
(independent) groups. The results are given in Table 5.

It can be seen fromTable 5 that in both treatment groups data do not provide the evidence for a gender× time interaction.
Similarly, a significant gender effect does not seem to exist at 5% level in both groups. However, under treatment, the scores
do not change significantly over time (WATS p-value of 0.151), while a significant time effect is apparent under placebo. The
corresponding relative effect estimators with 95%-confidence intervals are displayed in Fig. 4. The significant time effect
under control can be readily seen from Fig. 4. For both the male and female patients, the pain score is significantly smaller
at time point 6 compared to time point 3.

5.1. Sensitivity analysis

In the data example, the WTS cannot be used due to the singularity of the covariance matrix. In order to apply both ATS
andWTS,we have dropped time point 6 from the following analysis, yielding a non-singular covariancematrix. The resulting
p-values of this analysis are displayed in Tables 6 and 7. It can be seen that all methods still detect a significant effect of the
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Fig. 4. Separate analysis of the data example per treatment: Plots of the relative effectswith 95%-confidence intervals—Treatment: No (left) and Yes (right).

Table 6
Analysis of the shoulder tip pain trial (without time point 6) using the ATS,WTS as well as the wild bootstrap
ATS and WTS.

Effect p-value (ATS) p-value (WATS) p-value (WTS) p-value (WWTS)

Treatment <0.001 <0.001 <0.001 <0.001
Gender 0.8006 0.8033 0.8006 0.8033
Time 0.1356 0.1398 0.0344 0.0755
Treatment:gender 0.9151 0.9137 0.9151 0.9137
Treatment:time 0.0168 0.0189 0.0102 0.0338
Gender:time 0.2409 0.2419 0.0227 0.0591
Treatment:gender:time 0.6721 0.7028 0.3022 0.3867

Table 7
Treatment specific results for the shoulder tip pain trial using the ATS and the WTS as well as their wild bootstrap versions.

Effect Treatment = Yes Treatment = No
p-value
(ATS)

p-value
(WATS)

p-value
(WTS)

p-value
(WWTS)

p-value
(ATS)

p-value
(WATS)

p-value
(WTS)

p-value
(WWTS)

Gender 0.9314 0.9311 0.9314 0.9311 0.8306 0.8250 0.8306 0.8250
Time 0.1356 0.1413 0.0763 0.2400 0.0013 0.0006 <0.0001 0.0043
Gender:time 0.4032 0.4215 0.0237 0.1444 0.4193 0.4346 0.0520 0.2251

treatment as well as a significant interaction between treatment and time. The WTS furthermore detects a significant time
effect aswell as a significant interaction between gender and time. These findings are not supported by the other procedures
(theWWTS finds borderline significance in both cases) and are probably due to the liberality of theWTS. To further analyze
the results, we again consider the two treatment groups separately (see Table 7). Here, only the WTS detects a significant
gender × time interaction in both treatment groups (borderline significant for the placebo group). All other procedures do
not provide evidence for such an interaction. Furthermore, a significant gender effect does not seem to exist in both groups.
However, a significant time effect seems to be present only in the placebo group, a finding shared by all four procedures
again.

Overall, these findings are similar to the ones obtained above with the exception of the significant results only detected
by the WTS, which are consistent with the liberal behavior of the WTS seen in the simulation studies in Section 4.

6. Conclusions and discussion

Ranking methods for the analysis of factorial longitudinal data provide a robust and powerful tool for making statistical
inference. The consideredWald- and ANOVA-type statistic of Akritas and Brunner (1997) can be seen as the current state of
the art. It turns out, however, that the Wald-type statistic tends to be quite liberal, while the ANOVA-type statistic tends to
rather conservative or even liberal conclusionswhen small sample sizes are apparent. In this paper, awild bootstrapmethod
has been introduced. It was shown that the conditional distributions of the wild bootstrap statistics mimic the (asymptotic)
distributions of the corresponding test statistics in both cases. Thus, the resampling versions are (at least) asymptotically
valid, a desirable property that is not shared by the classical ATS. The empirical type-1 error rate control of the methods has
been investigated for ordinal, symmetric as well as skewed continuous distributions with different covariance matrices in
different balanced and unbalanced designs. The studies show that the wild bootstrap approximations of both the WTS and
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ATS improve their finite sample behavior. Both resampling tests improve the type-1 error control of their non-bootstrap
versions in all considered scenarios, whereof the wild bootstrap version of the ATS is more accurate in most instances.
Regarding the power of the resampling tests, it could be seen that the wild bootstrap version of the ATS has higher power to
detect the chosen alternatives when sample sizes are small (n = 10, 15). The power simulations have further shown, that
the power of the ATS and its resampling version are asymptotically equivalent, i.e., both tests have the same power to detect
certain alternatives when sample sizes are large. The findings via the simulation study give rise to recommend the wild
bootstrap version of the ATS for practical applications. Different to both WTS procedures, this method is further applicable
when the estimated variance covariance matrix is singular as in the presented data example.

The considered nonparametric hypotheses are formulated in terms of the distribution functions. The interpretation of
the hypotheses can be challenging, particularly in factorial designs. The extension of the methods for testing hypotheses
formulated in terms of the relative marginal effects by Hp

0 : Cp = 0will be part of future research.
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Appendix A

In a nonparametric setting as described in Section 2, the relative treatment effects are defined as

pis =


HNdFis, i = 1, . . . , a, s = 1, . . . , t, (A.12)

where again HN(x) =
1
tN

a
i=1
t

s=1 niFis(x) denotes the weighted average of all marginal distribution functions.
Estimators of HN(x) and pis are derived by replacing the distribution functions in (A.12) with the empirical distribution

functions

Fis(x) =
1
ni

ni
k=1

1
2
[1(x > Xiks) + 1(x ≥ Xiks)] , (A.13)

resulting inH(x) =
1
tN

a
i=1
t

s=1 niFis(x) and a rank estimator of the relative effects

pis =

 HdFis =
1
ni

ni
k=1

H(Xiks). (A.14)

For each summand on the right hand side of (A.14) we write Yiks = H(Xiks) =
Riks−

1
2

tN and set its limit variable to
Yiks := H(Xiks). It follows from the Asymptotic Equivalence Theorem (Akritas and Brunner, 1997) that under HF

0 ,
√
NCY · and√

NCp asymptotically have the same distribution. Since Y i· are means of independent random vectors and Cp = 0 under
HF

0 , it is easily established that
√
NCY ·

d
−→ N(0, C6C ′) under the null hypothesis. Thus, we even have

√
NC(p − p) d

−→ N(0, C6C ′) (A.15)

under HF
0 . Here, 6 = ⊕

a
i=1

1
κi
Vi and Vi = Cov(Yi1). Note that the covariance matrices Vi may not be equal, even if a

homoscedastic model is assumed for X , since H(·) is a nonlinear transformation.

Proof of Theorem 2.1. The result is also stated in Section 1.5.1 of Brunner and Puri (2001). For completeness we shortly
present its proof here: From (A.15) it follows that

Q̃N = Np′C ′(C6C ′)+Cp
has asymptotically a central χ2

rank(C) distribution under HF
0 . Finally, the result follows by replacing 6 with 6 by applying

the multivariate Slutsky Theorem and noting that the involved Moore–Penrose inverse is continuous since 6 > 0 by
assumption. �

Proof of Theorem 2.2. The proof can be found in Brunner and Puri (2001, THEOREM 1.8). �

Proof of Theorem 3.1. Due to conditional independence of the random variables p̂ϵ
i , i = 1, . . . , a, we can study them

separately. Applying Theorem A.1 in Beyersmann et al. (2013), see also Theorem 4.1 in Pauly (2011), it remains to show the
following convergences in probability

max
1≤i≤a

√
N∥Yik −Yi·∥

ni

P
−→ 0, N → ∞, (A.16)
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as well as

N
n2
i

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′ P
−→

1
κi
Vi, (A.17)

whereYi· =
1
ni

ni
k=1

Yik. The first convergence (A.16) follows due to |Yiks| ≤ 1 and the second one (A.17) from

N
n2
i

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′

=
(ni − 1)N

ni

1
ni(ni − 1)

ni
k=1

(Yik −Yi·)(Yik −Yi·)
′

P
−→

1
κi
Vi.

Thus, we can conclude convergence in distribution
√
N

ni

ni
k=1

ϵik(Yik − Y i·)
d

−→ N

0,

1
κi
Vi


(i = 1, . . . , a)

given the data X in probability and the stated weak convergence of the conditional distribution of
√
N p̂ϵ to an N(0, 6)-

distributed random variable as well as of
√
NCp̂ϵ to the right hand side of (A.15) in probability follows. �

Proof of Theorem 3.2. The statement follows directly from Theorem 3.1 if we prove consistency of6ϵ . Therefore, consider

pϵ
is =

1
ni

ni
k=1

ϵik

Nt
(Riks − Ri·s) =:

1
ni

ni
k=1

ϵik

Nt
Ziks.

First, it holds that

E(pϵ
is|X) = E


1
ni

ni
k=1

ϵik

Nt
Ziks|X


=

1
Ntni

ni
k=1

E(ϵik) · E(Ziks|X) = 0.

Moreover, due to conditional independence of ϵikZiks given X , the corresponding conditional variances also converge to zero
in probability as ni/N → κi:

Var(pϵ
is|X) =

1
(Ntni)2

ni
k=1

Var(ϵik)Z2
iks

=
1

(Ntni)2

ni
k=1

Z2
iks ≤

1
(Ntni)2

ni(N − 1)2 → 0.

Because of Tschebyscheff’s inequality this impliespϵ
is

P
→ 0 for all i = 1, . . . , a and thus the asymptotic equivalence of 6ϵ

and6. Since6 is consistent, this completes the proof. �

Proof of Theorem 3.3. The result follows from Theorems 2.2 and 3.1 and an application of Lemma 1 in Janssen and Pauls
(2003) by noting that the limit distribution of AN in (2.7) is continuous. �

Remark. Note that the relative effects depend on the sample sizes ni. To avoid this dependence onemay replace the function
H(x) by the unweighted mean of the distribution functions G(x) =

1
at

a
i=1
t

s=1 Fis(x). This results in unweighted relative
effects qis =


GdFis, see e.g. Puri andHall (2003). Awild bootstrap version thereofmay be defined analogously to the relative

effects considered above and the asymptotic results follow analogous to p̂ϵ , if we considerZiks =G(Xiks) instead ofYiks, i.e. letqϵ
=

1
ni

ni
k=1 ϵik(Zik −Zi·) forZi· = n−1

i
ni

k=1
Zik. Given the data X , we have conditional convergence in distribution

√
Nqϵ d

−→ N(0,6)

in probability, where6 = ⊕
1
κi
Vi andVi = Cov(G(Xiks)), analogous to the proof of Theorem 3.1.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.csda.2016.06.016.
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8 Additional simulation results

The simulation setting is the same as in Section 4. We analyzed both ordinal and continuous

(normal and lognormal) data for the nominal level of α = 1% and α = 10%, respectively. The

results are presented in Tables 8 – 13, demonstrating a similar behavior as already observed

for the 5%-level: The wild bootstrap versions of the two test statistics improve their behavior,

showing a more accurate type-1 error rate control. For α = 1% the difference between both

wild bootstrap tests are marginal, whereas for α = 10% the wild bootstrap ATS seems to be the

method of choice since the bootstrap WTS sometimes results in rejection frequencies that are

slightly larger than the nominal 10%.

8.1 Ordinal Data

Table 8: Simulation results (α = 1%) of the WTS, ATS and their wild bootstrap versions for
testing the three different hypotheses (A, T, A:T) with ordinal data and varying sample sizes.

t = 4 t = 8
Hypothesis n Method ATS WTS ATS WTS

A
n1 = n2 = 10

classic 0.020 0.020 0.021 0.021
Wild Bootstrap 0.012 0.012 0.013 0.013

n1 = 10, n2 = 20
classic 0.020 0.020 0.021 0.021

Wild Bootstrap 0.013 0.013 0.015 0.015

T
n1 = n2 = 10

classic 0.012 0.048 0.006 0.188
Wild Bootstrap 0.011 0.011 0.010 0.012

n1 = 10, n2 = 20
classic 0.012 0.043 0.006 0.151

Wild Bootstrap 0.012 0.013 0.011 0.014

A:T
n1 = n2 = 10

classic 0.012 0.046 0.006 0.187
Wild Bootstrap 0.011 0.011 0.010 0.011

n1 = 10, n2 = 20
classic 0.013 0.043 0.006 0.150

Wild Bootstrap 0.013 0.013 0.011 0.014
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Table 9: Simulation results (α = 10%) of the WTS, ATS and their wild bootstrap versions for
testing the three different hypotheses (A, T, A:T) with ordinal data and varying sample sizes.

t = 4 t = 8
Hypothesis n Method ATS WTS ATS WTS

A
n1 = n2 = 10

classic 0.116 0.116 0.115 0.115
Wild Bootstrap 0.100 0.100 0.099 0.099

n1 = 10, n2 = 20
classic 0.118 0.118 0.116 0.116

Wild Bootstrap 0.103 0.103 0.101 0.101

T
n1 = n2 = 10

classic 0.107 0.183 0.085 0.399
Wild Bootstrap 0.102 0.102 0.097 0.099

n1 = 10, n2 = 20
classic 0.104 0.174 0.086 0.365

Wild Bootstrap 0.100 0.105 0.098 0.112

A:T
n1 = n2 = 10

classic 0.105 0.180 0.084 0.398
Wild Bootstrap 0.100 0.100 0.097 0.098

n1 = 10, n2 = 20
classic 0.105 0.176 0.085 0.361

Wild Bootstrap 0.101 0.106 0.098 0.111

8.2 Continuous Data

Table 10: Type-1 error simulation results for normally distributed data with sample sizes n(1) =
(10, 10) and n(2) = (10, 20), α = 1%.

t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

A

AR
n(1) classic 0.018 0.019 0.020 0.020

Wild Bootstrap 0.012 0.012 0.012 0.012

n(2) classic 0.018 0.019 0.019 0.020
Wild Bootstrap 0.013 0.013 0.013 0.013

CS
n(1) classic 0.018 0.019 0.020 0.021

Wild Bootstrap 0.011 0.011 0.012 0.012

n(2) classic 0.018 0.019 0.021 0.021
Wild Bootstrap 0.013 0.013 0.013 0.013

T

AR
n(1) classic 0.015 0.045 0.013 0.189

Wild Bootstrap 0.012 0.010 0.013 0.011

n(2) classic 0.015 0.040 0.013 0.149
Wild Bootstrap 0.014 0.012 0.014 0.014

CS
n(1) classic 0.011 0.045 0.006 0.187

Wild Bootstrap 0.011 0.011 0.010 0.010

n(2) classic 0.012 0.040 0.006 0.144
Wild Bootstrap 0.012 0.012 0.011 0.013

A:T

AR
n(1) classic 0.015 0.045 0.013 0.187

Wild Bootstrap 0.013 0.011 0.014 0.011

n(2) classic 0.015 0.040 0.013 0.148
Wild Bootstrap 0.013 0.013 0.013 0.013

CS
n(1) classic 0.011 0.045 0.006 0.186

Wild Bootstrap 0.011 0.011 0.010 0.010

n(2) classic 0.012 0.041 0.006 0.143
Wild Bootstrap 0.012 0.013 0.011 0.013



Table 11: Type-1 error simulation results for normally distributed data with sample sizes n(1) =
(10, 10) and n(2) = (10, 20), α = 10%.

t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

A

AR
n(1) classic 0.114 0.116 0.117 0.118

Wild Bootstrap 0.100 0.100 0.102 0.102

n(2) classic 0.112 0.113 0.117 0.118
Wild Bootstrap 0.099 0.099 0.103 0.103

CS
n(1) classic 0.115 0.117 0.118 0.118

Wild Bootstrap 0.101 0.101 0.101 0.101

n(2) classic 0.112 0.114 0.118 0.118
Wild Bootstrap 0.100 0.100 0.104 0.104

T

AR
n(1) classic 0.103 0.178 0.095 0.400

Wild Bootstrap 0.100 0.099 0.102 0.098

n(2) classic 0.105 0.173 0.095 0.361
Wild Bootstrap 0.102 0.103 0.102 0.111

CS
n(1) classic 0.102 0.177 0.083 0.403

Wild Bootstrap 0.099 0.100 0.097 0.097

n(2) classic 0.103 0.172 0.084 0.359
Wild Bootstrap 0.100 0.103 0.098 0.110

A:T

AR
n(1) classic 0.102 0.179 0.093 0.402

Wild Bootstrap 0.099 0.100 0.100 0.098

n(2) classic 0.105 0.173 0.093 0.361
Wild Bootstrap 0.102 0.103 0.100 0.109

CS
n(1) classic 0.102 0.179 0.084 0.402

Wild Bootstrap 0.098 0.099 0.097 0.097

n(2) classic 0.103 0.172 0.082 0.356
Wild Bootstrap 0.100 0.103 0.097 0.108
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Table 12: Type-1 error simulation results for log-normally distributed data with sample sizes
n(1) = (10, 10) and n(2) = (10, 20), α = 1%.

t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

A

AR
n(1) classic 0.020 0.021 0.020 0.020

Wild Bootstrap 0.012 0.012 0.012 0.012

n(2) classic 0.019 0.020 0.020 0.020
Wild Bootstrap 0.013 0.013 0.013 0.013

CS
n(1) classic 0.020 0.021 0.021 0.021

Wild Bootstrap 0.012 0.012 0.013 0.013

n(2) classic 0.019 0.020 0.021 0.021
Wild Bootstrap 0.013 0.013 0.014 0.014

T

AR
n(1) classic 0.017 0.050 0.015 0.195

Wild Bootstrap 0.013 0.012 0.014 0.012

n(2) classic 0.017 0.047 0.016 0.157
Wild Bootstrap 0.015 0.015 0.015 0.015

CS
n(1) classic 0.011 0.052 0.005 0.204

Wild Bootstrap 0.010 0.013 0.008 0.014

n(2) classic 0.011 0.046 0.005 0.157
Wild Bootstrap 0.011 0.015 0.010 0.017

A:T

AR
n(1) classic 0.017 0.046 0.016 0.188

Wild Bootstrap 0.014 0.011 0.014 0.010

n(2) classic 0.017 0.043 0.016 0.151
Wild Bootstrap 0.014 0.013 0.015 0.014

CS
n(1) classic 0.011 0.045 0.005 0.182

Wild Bootstrap 0.011 0.010 0.010 0.009

n(2) classic 0.012 0.043 0.006 0.140
Wild Bootstrap 0.011 0.013 0.011 0.011
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Table 13: Type-1 error simulation results for log-normally distributed data with sample sizes
n(1) = (10, 10) and n(2) = (10, 20), α = 10%.

t = 4 t = 8
Cov. Setting n Method ATS WTS ATS WTS

A

AR
n(1) classic 0.116 0.117 0.117 0.117

Wild Bootstrap 0.100 0.100 0.101 0.101

n(2) classic 0.113 0.115 0.118 0.118
Wild Bootstrap 0.100 0.100 0.103 0.103

CS
n(1) classic 0.115 0.117 0.117 0.118

Wild Bootstrap 0.101 0.101 0.101 0.101

n(2) classic 0.114 0.115 0.118 0.119
Wild Bootstrap 0.100 0.100 0.104 0.104

T

AR
n(1) classic 0.107 0.186 0.100 0.408

Wild Bootstrap 0.102 0.106 0.103 0.105

n(2) classic 0.108 0.181 0.100 0.370
Wild Bootstrap 0.106 0.111 0.104 0.117

CS
n(1) classic 0.101 0.184 0.080 0.419

Wild Bootstrap 0.098 0.106 0.093 0.113

n(2) classic 0.102 0.179 0.081 0.372
Wild Bootstrap 0.099 0.110 0.095 0.124

A:T

AR
n(1) classic 0.105 0.179 0.098 0.402

Wild Bootstrap 0.101 0.100 0.101 0.097

n(2) classic 0.106 0.175 0.098 0.364
Wild Bootstrap 0.103 0.105 0.102 0.112

CS
n(1) classic 0.103 0.179 0.083 0.402

Wild Bootstrap 0.099 0.099 0.097 0.094

n(2) classic 0.103 0.175 0.081 0.358
Wild Bootstrap 0.100 0.105 0.095 0.108
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1. Motivation and Introduction

In many experiments in, e.g., biology, ecology and psychology several endpoints, potentially measured on
different scales, are recorded per subject. As an example, we consider a data set on the 2016 presidential elections
in the USA containing demographic data on counties from US census. For our exemplary analysis, we aim to
investigate whether the states differ with respect to some demographic factors. In addition to unequal empirical
covariance matrices between groups, analysis is further complicated by their singularity.
The analysis of such multivariate data is typically based on classical MANOVA models assuming multivariate
normality and/or homogeneity of the covariance matrices, see, e.g., [1, 14, 15, 20, 25, 34, 44]. These assumptions,
however, are often not met in practice (as in the motivating example) and it is well known that the methods
perform poorly in case of heterogeneous data [23, 40]. Furthermore, the test statistic should be invariant under
scale transformations of the components, since the endpoints may be measured on different scales. Thus, test
statistics of multivariate ANOVA-type (ATS) as, e.g., proposed in [5] and studied in [16], are only applicable if all
endpoints are measured on the same scale, i.e., for repeated measures designs. Assuming non-singular covariance
matrices and certain moment assumptions the scale invariance is typically accomplished by utilizing test statistics
of Wald-type (WTS). However, inference procedures based thereon require (extremely) large sample sizes for
being accurate, see [23, 37, 41]. In particular, even the novel approaches of [23] and [37] showed a more or
less liberal behavior in case of skewed distributions. Moreover, their procedures cannot be used to analyze the
motivating data example with possibly singular covariance matrices. Therefore, we follow a different approach
by modifying the above mentioned ANOVA-type statistic (MATS). It is motivated from the modified Dempster
statistic proposed in [39] for high-dimensional one-way MANOVA. This statistic is also invariant under the change
of units of measurements. However, until now, it has only been developed for a homoscedastic one-way setting
assuming non-singularity and a specific distributional structure that is motivated from multivariate normality.

It is the aim of the present paper to modify and extend the [39] approach to factorial MANOVA designs, incor-
porating general heteroscedastic models. In particular, we only postulate existence of the group-wise covariance
matrices, which may even be singular. The small sample behavior of our test statistic is enhanced by applying
bootstrap techniques as in [23]. Thereby, the novel MATS procedure enables us to relax the usual MANOVA
assumptions in several ways: While incorporating general heteroscedastic designs and allowing for potentially sin-
gular covariance matrices we postulate their existence as solely distributional assumption, i.e., only finite second
moments are required. Moreover, we gain a procedure that is more robust against deviations from symmetry and
homoscedasticity than the usual WTS approaches.

So far, only few approaches have been investigated which do not assume normality or equal covariance matrices
(or both). Examples in the nonparametric framework include the permutation based nonparametric combination
method [32, 33] and the rank-based tests presented in [6] and [7] for Split Plot Designs and in [2] and [27] for
MANOVA designs. However, these methods are either not applicable for general MANOVA models or based on
null hypotheses formulated in terms of distribution functions. In contrast we wish to derive inference procedures
(tests and confidence regions) for contrasts of mean vectors. Here, beside all previously mentioned procedures,
only methods for specific designs have been developed, see [11] for two-sample problems, [42, 43] for robust but
homoscedastic one-way MANOVA or [18] for a particular two-way MANOVA. To our knowledge, mean-based
MANOVA procedures allowing for possibly singular covariance matrices have not been developed so far.

The paper is organized as follows: In Section 2 we describe the statistical model and hypotheses. Furthermore,
we propose a new test statistic, which is applicable to singular covariance matrices and is invariant under scale
transformations of the data. In Section 3, we present three different resampling approaches, which are used for
the derivation of statistical tests as well as confidence regions and simultaneous confidence intervals for contrasts
in Section 4. The different approaches are compared in a large simulation study (Section 5), where we analyze
different factorial designs with a wide variety of distributions and covariance settings. The motivating data example
is analyzed in Section 6 and we conclude with some final remarks and discussion in Section 7. All proofs are
deferred to the supplementary material, where we also provide further simulation results and the analysis of an
additional data example.
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2. Statistical Model, Hypotheses and Test Statistics

Throughout the paper, we will use the following notation. We denote by Id the d-dimensional unit matrix and
by Jd the d × d matrix of 1’s, i.e., Jd = 1d1>d , where 1d = (1, . . . , 1)> is the d-dimensional column vector of 1’s.
Furthermore, let Pd = Id − d−1 Jd denote the d-dimensional centering matrix. By ⊕ and ⊗ we denote the direct
sum and the Kronecker product, respectively.

In order to cover different factorial designs of interest, we establish the general model

Xik = µi + ε ik

for treatment group i = 1, . . . , a and individual k = 1, . . . , ni, on which we measure d-variate observations. Here
µi = (µi1, . . . , µid)> ∈ Rd for i = 1, . . . , a. A factorial structure can be incorporated by splitting up indices, see,
e.g., [23]. For fixed 1 ≤ i ≤ a, the error terms ε ik are assumed to be independent and identically distributed
d-dimensional random vectors, for which the following conditions hold:

(1) E(ε i1) = 0, i = 1, . . . , a,

(2) 0 < σ2
is = Var(Xiks) < ∞, i = 1, . . . , a, s = 1, . . . , d,

(3) Cov(ε i1) = Vi ≥ 0, i = 1, . . . , a.

Thus, we only assume the existence of second moments. For convenience, we aggregate the individual vectors
into X = (X>11, . . . , X

>
ana

)> as well as µ = (µ>1 , . . . ,µ
>
a )>. Denote by N =

∑a
i=1 ni the total sample size. In order to

derive asymptotic results in this framework, we will throughout assume the usual sample size condition:

ni/N → κi > 0, i = 1, . . . , a

as N → ∞.

An estimator for µ is given by the vector of pooled group means Xi· = n−1
i

∑ni
k=1 Xik, i = 1, . . . , a, which we

denote by X• = (X
>
1·, . . . , X

>
a·)
>. The covariance matrix of

√
N X• is given by

ΣN = Cov(
√

N X•) = diag
(

N
ni

Vi : 1 ≤ i ≤ a
)
,

where the group-specific covariance matrices Vi are estimated by the empirical covariance matrices

V̂i =
1

ni − 1

ni∑

k=1

(Xik − Xi·)(Xik − Xi·)>

resulting in

Σ̂N = diag
(

N
ni

V̂i : 1 ≤ i ≤ a
)
.

In this semi-parametric framework, hypotheses are formulated in terms of the mean vector as H0 : Hµ =

0, where H is a suitable contrast matrix, i.e., H1ad = 0. Note that we can use the unique projection matrix
T = H>(HH>)+H, where (HH>)+ denotes the Moore-Penrose inverse of HH>. It is T = T2,T = T> and
Tµ = 0⇔ Hµ = 0, see, e.g., [8].

A commonly used test statistic for multivariate data is the Wald-type statistic (WTS)

TN = NX
>
• T(TΣ̂NT)+TX•, (2.1)
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which requires the additional assumption (3’) Vi > 0, i = 1, . . . , a. It is easy to show that the WTS has under
H0 : Tµ = 0, asymptotically, as N → ∞, a χ2

f -distribution with f = rank(T) degrees of freedom if (1) – (3’)
holds. However, large sample sizes are necessary to maintain a pre-assigned level α using quantiles of the limiting
χ2-distribution. [23] proposed different resampling procedures in order to improve the small sample behavior of
the WTS for multivariate data. Therein, a parametric bootstrap approach turned out to be the best in case that the
underlying distributions are not too skewed and/or too heteroscedastic. In the latter cases all considered procedures
were more or less liberal. Moreover, assuming only (3) instead of (3’) for the WTS would in general not lead to an
asymptotic χ2

f -limit distribution. The reason for this are possible rank jumps between TΣ̂NT, TΣT and T. To accept
this, suppose that rank(TΣT) = 2, while rank(T) = 4 (this corresponds to Scenario S5 in the simulation studies
below). If additionally limN→∞ rank(TΣ̂NT) = rank(TΣT) = 2, we have that the WTS follows, asymptotically, a
χ2

g-distribution under the null hypothesis, where g = rank(TΣT) = 2. The Wald-type test, however, compares TN to
the quantile of a χ2

4-distribution. Thus, for a chosen significance level of α = 0.05 this results in a true asymptotic
(N → ∞) type-I error of

Pr(TN > χ2
4;0.95) = 1 − Pr(TN ≤ χ2

4;0.95) ≈ 0.0087,

i.e., a strictly conservative behavior of the test. Here χ2
f ;1−α denotes the (1 − α)-quantile of the χ2

f -distribution.
Similarly, for α = 0.1 and α = 0.01 we obtain asymptotically inflated type-I error rates of 0.02 and 0.0013 (both
again conservative), respectively. Moreover, the situation is even more complicated since limN→∞ rank(TΣ̂NT) =

rank(TΣT) is neither verifiable in practice nor holds in general.

We tackle this problem in the current paper, where we not only relax the assumption (3’) on the unknown co-
variance matrices but also gain a procedure that is more robust to deviations from symmetry and homoscedasticity.
To this end, we consider a different test statistic, namely a multivariate version of the ANOVA-type statistic (ATS)
proposed by [5] for repeated measures designs, which we obtain by erasing the Moore-Penrose term from (2.1):

Q̃N = NX
>
• TX•.

In the special two-sample case where we wish to test the null hypothesis H0 : µ1 − µ2 = 0, this is equivalent to the
test statistic proposed by [15].

The drawback of the ATS for multivariate data is that it is not invariant under scale transformations of the
components, e.g., under change of units (cm 7→ m or g 7→ kg) in one or more components. We demonstrate this
problem in a real data analysis given in the supplementary material, where we exemplify that a simple unit change
can completely alter the test decision of the ATS. Thus, we consider a slightly modified version of the ATS, which
we denote as MATS:

QN = NX
>
• T(T D̂NT)+TX•. (2.2)

Here, D̂N = diag
(
N/ni · σ̂2

is

)
, i = 1, . . . , a, s = 1, . . . , d, where σ̂2

is is the empirical variance of component s in
group i. A related test statistic has been proposed by [39] in the context of high-dimensional (d → ∞) data for a
special non-singular one-way MANOVA design. Here, we investigate in the classical multivariate case (with fixed
d) how its finite sample performance can be enhanced considerably. We start by analyzing its asymptotic limit
behavior.

THEOREM 2.1. Under Conditions (1), (2) and (3) and under H0 : Tµ = 0, the test statistic QN in (2.2) has
asymptotically, as N → ∞, the same distribution as a weighted sum of χ2

1 distributed random variables, where the
weights λis are the eigenvalues of V = T(T DT)+TΣ for D = diag

(
κ−1

i σ2
is

)
and Σ = diag(κ−1

i Vi), i.e.,

QN = NX
>
• T(T D̂NT)+TX•

D−→ Z =

a∑

i=1

d∑

s=1

λisZis,

with Zis
i.i.d.∼ χ2

1 and ”
D−→” denoting convergence in distribution.
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Thus, we obtain an asymptotic level α benchmark test ϕN = 1{QN > c1−α} for H0 : Tµ = 0, where c1−α is
the (1 − α)-quantile of Z. However, the distribution of Z depends on the unknown variances σ2

is, i = 1, . . . , a, s =

1, . . . , d so that ϕN is infeasible for most practical situations. For this reason we consider different bootstrap
approaches in order to approximate the unknown limiting distribution and to derive adequate and asymptotically
correct inference procedures based on QN in (2.2). This will be explained in detail in the next section. Apart
from statistical test decisions discussed in Section 4.1, a central part of statistical analyses is the construction
of confidence intervals, which allows for deeper insight into the variability and the magnitude of effects. This
univariate concept can be generalized to multivariate endpoints by constructing multivariate confidence regions
and simultaneous confidence intervals for contrasts h>µ for any contrast vector h ∈ Rad of interest. Details on the
derivation of such confidence regions for h>µ are given in Section 4.2 below.

3. Bootstrap Procedures

The first bootstrap procedure we consider is a parametric bootstrap approach as proposed by [23] for the
WTS. The second one is a wild bootstrap approach, which has already been successfully applied in the context
of repeated measures or clustered data, see [9, 10] or [17]. The third procedure is a group-wise, nonparametric
bootstrap approach. All of these bootstrap approaches are based on the test statistic QN in (2.2). Note that the
procedures derived in the following can also be used for multiple testing problems, either by applying the closed
testing principle [30, 38] or in the context of simultaneous contrast tests [19, 21].

3.1. A Parametric Bootstrap Approach

This asymptotic model based bootstrap approach has successfully been used in univariate one- and two-way
factorial designs ([24, 46]), and has recently been applied to Wald-type statistics for general MANOVA by [23]
and [37], additionally assuming finite fourth moments. The approach is as follows: Given the data, we generate a
parametric bootstrap sample as

X∗i1, . . . , X
∗
ini

i.i.d.∼ N(0, V̂i), i = 1, . . . , a.

The idea behind this method is to obtain an accurate finite sample approximation by mimicking the covariance
structure given in the observed data. This is achieved by calculating Q∗N from the bootstrap variables X∗i1, . . . , X

∗
ini

,
i.e.,

Q∗N = N(X
∗
•)
>T(T D̂

∗
NT)+TX

∗
•. (3.1)

We then obtain a parametric bootstrap test by comparing the original test statistic QN with the conditional (1 − α)-
quantile c∗1−α of its bootstrap version Q∗N .

THEOREM 3.1. The conditional distribution of Q∗N weakly approximates the null distribution of QN in probability
for any parameter µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R
|Pr
µ

(Q∗N ≤ x|X) − Pr
µ0

(QN ≤ x)| Pr→ 0,

where Prµ(QN ≤ x) and Prµ(Q∗N ≤ x|X) denote the unconditional and conditional distribution of QN and Q∗N ,
respectively, if µ is the true underlying mean vector.
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3.2. A Wild Bootstrap Approach

Another resampling approach, which is based on multiplying the fixed data with random weights, is the so-
called wild bootstrap procedure. To this end, let Wik denote i.i.d. random variables, independent of X, with E(Wik) =

0,Var(Wik) = 1 and supi,k E(W4
ik) < ∞. We obtain a bootstrap sample as

X?
ik = Wik(Xik − Xi·), i = 1, . . . , a, k = 1, . . . , ni.

Note that there are different choices for the random weights Wik, e.g., Rademacher distributed random variables
[13] or weights satisfying different moment conditions, see, e.g., [3, 28, 29, 45]. The choice of the weights typically
depends on the situation. In our simulation studies, we have investigated the performance of different weights such
as Rademacher distributed as well asN(0, 1) distributed weights (see [26] for this specific choice). The results were
rather similar and we therefore only present the results of our simulation study for standard normally distributed
weights in Section 5 below.

Based on the bootstrap variables X?
ik, we can calculate Q?

N in the same way as described for Q∗N in (3.1) above.
A wild bootstrap test is finally obtained by comparing QN to the conditional (1 − α)-quantile of its wild bootstrap
version Q?

N .

THEOREM 3.2. The conditional distribution of Q?
N weakly approximates the null distribution of QN in probability

for any parameter µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R
|Pr
µ

(Q?
N ≤ x|X) − Pr

µ0

(QN ≤ x)| Pr→ 0.

3.3. A nonparametric bootstrap approach

The third approach we consider is the nonparametric bootstrap. Here, for each group i = 1, . . . , a, we randomly
draw ni independent selections X†ik with replacement from the i-th sample {Xi1, . . . , Xini }. The bootstrap test statistic
Q†N is then calculated in the same way as described above, i.e., by recalculating QN with X†ik, i = 1, . . . , a, k =

1, . . . , ni. Finally, a nonparametric bootstrap test is obtained by comparing the original test statistic QN to the
empirical (1 − α)-quantile of Q†N . The asymptotic validity of this method is guaranteed by

THEOREM 3.3. The conditional distribution of Q†N weakly approximates the null distribution of QN in probability
for any parameter µ ∈ Rad and µ0 with Tµ0 = 0, i.e.,

sup
x∈R
|Pr
µ

(Q†N ≤ x|X) − Pr
µ0

(QN ≤ x)| Pr→ 0.

4. Statistical Applications

We now want to base statistical inference on the modified test statistic in (2.2) using the bootstrap approaches
described above. A thorough statistical analysis should ideally consist of two parts: First, statistical tests give
insight into significant effects of the different factors as well as possible interactions. We therefore consider
important properties of statistical tests based on the bootstrap approaches in Section 4.1. Second, it is helpful
to construct confidence regions for the unknown parameters of interest in order to gain a more detailed insight into
the nature of the estimates. The derivation of such confidence regions is discussed in Section 4.2.
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4.1. Statistical Tests

In this section, we analyze the statistical properties of the bootstrap procedures described above. For ease of
notation, we will only state the results for the parametric bootstrap procedure, i.e., consider the test statistic Q∗N
based on X∗ik throughout. Note, however, that the results are also valid for the wild and the nonparametric bootstrap
procedure, i.e., the test statistics Q?

N and Q†N .

As mentioned above, a bootstrap test ϕ∗ = 1{QN > c∗1−α} is obtained by comparing the original test statistic QN

to the (1 − α)-quantile c∗1−α of its bootstrap version. In particular, p-values are numerically computed as follows:

(1) Given the data X, calculate the MATS QN for the null hypothesis of interest.

(2) Bootstrap the data with either of the bootstrap approaches described above and calculate the corresponding
test statistic Q∗,1N .

(3) Repeat step (2) a large number of times, e.g., B = 10, 000 times, and obtain values Q∗,1N , . . . ,Q∗,BN .

(4) Calculate the p-value based on the empirical distribution of Q∗,1N , . . . ,Q∗,BN as

p-value =
1
B

B∑

b=1

1{QN ≤ Q∗,bN }.

Theorems 3.1 – 3.3 imply that the corresponding tests asymptotically keep the pre-assigned level α under the
null hypothesis and are consistent for any fixed alternative Tµ , 0, i.e., Eµ(ϕ∗) → α · 1{Tµ = 0} + 1{Tµ , 0}.
Moreover, for local alternatives H1 : Tµ =

√
N−1Tν, ν ∈ Rad, the bootstrap tests have the same asymptotic power

as ϕN = 1{QN > c1−α}, where c1−α is the (1 − α)-quantile of Z given in Theorem 2.1. In particular, the asymptotic
relative efficiency of the bootstrap tests compared to ϕN is 1 in this situation.

4.2. Confidence regions and confidence intervals for contrasts

In order to conduct a thorough statistical analysis, interpretation of the results should not be based on p-values
alone. In addition, it is helpful to construct confidence regions for the unknown parameter. The concept of a
confidence region is the same as that of a confidence interval in the univariate setting: We want to construct a
multivariate region, which is likely to contain the true, but unknown parameter of interest. The aim of this section
is to derive multivariate confidence regions and simultaneous confidence intervals for contrasts h>µ for any contrast
vector h of interest. Such contrasts include, e.g., the difference in means µ1−µ2 in two-sample problems, Dunnett’s
many-to-one comparisons, Tukey’s all-pairwise comparisons, and many more, see, e.g., [21] for specific examples.
In this section, we will base the derivation of confidence regions on the bootstrap approximations given in Section
3, i.e., we will use one of the bootstrap quantiles. Again, we only formulate the results for c∗1−α.

For the derivation of a confidence region, first note that the results from Section 4.1 imply that the null hypoth-
esis H0 : Hµ = Hµ0 for a vector of contrasts Hµ0,H = (h1| . . . |hq)> ∈ Rq×ad,µ0 ∈ Rad, is rejected at asymptotic

level α, if N(HX• − Hµ0)>(HD̂N H>)+(HX• − Hµ0) is larger than the bootstrap quantile c∗1−α. Thus, a confidence
region for the vector of contrasts Hµ is determined by the set of all Hµ such that

N(HX• − Hµ)>(HD̂N H>)+(HX• − Hµ) ≤ c∗1−α.

A confidence ellipsoid is now obtained based on the eigenvalues λ̂s and eigenvectors ês of HD̂N H>. As in [22], the

direction and lengths of its axes are determined by going
√
λ̂s · c∗1−α/N units along the eigenvectors ês of HD̂N H>.

In other words, the axes of the ellipsoid are given by

HX• ±
√
λ̂s · c∗1−α/N · ês, s = 1, . . . , d. (4.1)

7



Note that this approach is similar to the construction of confidence intervals in the univariate case, where we
exploit the one-to-one relationship between CIs and tests. While we can calculate (4.1) for arbitrary dimensions
d, we cannot display the joint confidence region graphically for d ≥ 4. In the two-sample case with d = 2
endpoints, however, the ellipse can be plotted: Beginning at the center HX• the axes of the ellipsoid are given

by ±
√
λ̂s · c∗1−α/N · ês, s = 1, 2. That is, the confidence ellipse extends

√
λ̂s · c∗1−α/N units along the estimated

eigenvector ês for s = 1, 2. Therefore, we get a graphical representation of the relation between the group-
mean differences µ11 − µ21 and µ12 − µ22 of the first and second component, see Section 10 and Figure 6 in the
supplementary material for an example.

Concerning the derivation of multiple contrast tests and simultaneous confidence intervals for contrasts, we
consider the family of hypotheses

Ω = {H0 : h>` µ = 0 with h` , 0, ` = 1, . . . , q}.

As shown in Sections 2 and 3 a test statistic for testing the null hypothesis H0 : Hµ = 0 is given by QN in (2.2).
Consequently, working with a single contrast h` as contrast matrix leads to the test statistic

Q`
N = N(h>` X•)>(h>` D̂N h`)−1(h>` X•) = N

(∑a
i=1

∑d
s=1 h`,isXi·s

)2

∑a
i=1

∑d
s=1 h2

`,isσ̂
2
is

for the null hypotheses H`
0 : h>` µ = 0, ` = 1, . . . , q. Here, h` = (h`,11, . . . , h`,ad)>. To obtain a single critical value

with one of the bootstrap methods we may, e.g., consider the usual maximum or sum statistics. We exemplify the
idea for the latter. Thus, let

S N ≡ N(HX•)> diag
((

h>` D̂N h`
)−1

: ` = 1, . . . , q
)

HX• =

q∑

`=1

Q`
N

and denote by q∗1−α the conditional (1 − α)-quantile of its corresponding bootstrap version S ∗N . From the proofs of
Theorem 3.1 – 3.3 given in the supplement it follows for any of the three bootstrap methods described in Section 3

that σ̂∗is are consistent estimates for σis (i = 1, . . . , a, s = 1, . . . , d) and that
√

NHX
∗
• asymptotically mimics the

distribution of
√

NH(X• − µ). Thus, the continuous mapping theorem implies Pr
(
S N ≤ q∗1−α

)
→ 1 − α as N → ∞

and therefore

Pr


q⋂

`=1

{Q`
N ≤ q∗1−α}

 ≤ Pr


q∑

`=1

Q`
N ≤ q∗1−α

→ 1 − α,N → ∞.

This implies, that simultaneous 100(1 − α)% confidence intervals for contrasts h>` µ, ` = 1, . . . , q, are given by

h>` X• ±
√

q∗1−α · h>` D̂N h`/N.

In the supplement we additionally explain that the bootstrap idea also works for the usual maximum statistic.

5. Simulations

The procedures described in Section 3 are valid for large sample sizes. In order to investigate their behavior
for small samples, we have conducted various simulations. In the simulation studies, the behavior of the proposed
approaches was compared to a parametric bootstrap approach for the WTS as in [23] since this turned out to
perform better than other resampling versions of the WTS and Wilk’s Λ. For comparison, we also included the
asymptotic chi2 approximation of the WTS. All simulations were conducted using R Version 3.3.1 [35] each with
nsim = 5,000 simulation and nboot = 5,000 bootstrap runs. We investigated a one- and a two-factorial design.
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5.1. One-way layout

For the one-way layout, data was generated as in [23]. We considered a = 2 treatment groups and d ∈ {4, 8}
endpoints as well as the following covariance settings:

Setting 1: V1 = Id + 0.5(Jd − Id) = V2,

Setting 2: V1 =
(
(0.6)|r−s|)d

r,s=1
= V2,

Setting 3: V1 = Id + 0.5(Jd − Id) and V2 = Id · 3 + 0.5(Jd − Id),

Setting 4: V1 =
(
(0.6)|r−s|)d

r,s=1
and V2 =

(
(0.6)|r−s|)d

r,s=1
+ Id · 2.

Setting 1 represents a compound symmetry structure, while setting 2 is an autoregressive covariance structure.
Both settings 1 and 2 represent homoscedastic scenarios while settings 3 and 4 display two scenarios with unequal
covariance structures. Data was generated by

Xik = µi + V1/2
i ε ik, i = 1, . . . , a; k = 1, . . . , ni,

where V1/2
i denotes the square root of the matrix Vi, i.e., Vi = V1/2

i ·V1/2
i . The mean vectors µi were set to 0 in both

groups. The i.i.d. random errors ε ik = (εik1, . . . , εikd)> with mean E(ε ik) = 0d and Cov(ε ik) = Id×d were generated
by simulating independent standardized components

εiks =
Yiks − E(Yiks)√

Var(Yiks)

for various distributions of Yiks. In particular, we simulated normal, χ2
3, lognormal, t3 and double-exponential

distributed random variables. We investigated balanced as well as unbalanced designs with sample size vectors
n(1) = (10, 10)>, n(2) = (20, 20)>, n(3) = (10, 20)> and n(4) = (20, 10)>, respectively. A major criterion concerning
the accuracy of the procedures is their behavior in situations where increasing variances (settings 3 and 4 above) are
combined with increasing sample sizes (n(3), positive pairing) or decreasing sample sizes (n(4), negative pairing).
In this setting, we tested the null hypothesis Hµ

0 : {(Pa ⊗ Id)µ = 0} = {µ1 = µ2}, i.e., no treatment effect. The
resulting type-I error rates (nominal level α = 5%) for d = 4 and d = 8 endpoints are displayed in Table 1 (normal
distribution) and Table 2 (χ2

3-distribution), respectively. Further simulation results for lognormal, t3 and double-
exponential distributed errors for the parametric bootstrap of WTS and MATS can be found in Tables 7 – 9 in the
supplementary material.

As already noticed by [23], the WTS with the χ2 approximation is far too liberal, reaching type-I error rates
of more than 50% in some scenarios (e.g., for d = 8 with negative pairing, i.e., covariance setting S3 and n =

(20, 10)>). Even in the scenarios with only d = 4 dimensions and n = (20, 20)>, the error rates are around 9%
instead of 5%. The parametric bootstrap of the WTS greatly improves this behavior for all situations. However, it
still shows a rather liberal behavior with type-I error rates of around 10% in some situations, e.g., d = 8 dimensions
with S3 or S4 and n = (20, 10)> in Tables 1 and 2.

The wild bootstrap of the MATS shows a rather liberal behavior across all scenarios and can therefore not be
recommended in practice. In contrast, both the parametric and the nonparametric bootstrap of the MATS show a
very accurate type-I error rate control. The nonparametric bootstrap is often slightly more conservative than the
parametric bootstrap and thus works better in situations with negative pairing, especially for the χ2

3-distribution,
i.e., for S3 and S4 with n = (20, 10)> and d = 4 or d = 8 dimensions in Table 2. In most other scenarios, however,
the parametric bootstrap yields slightly better results. The improvement of the parametric bootstrap MATS over
WTS (PBS) and nonparametric bootstrap MATS is most pronounced for large d, i.e., in situations where d is close
to min(n1, n2).

However, in situations with negative pairing and skewed distributions (see Table 2 as well as Table 7 in the
supplementary material), the parametric bootstrap MATS shows a slightly liberal behavior. For t3 and double-
exponentially distributed errors and negative pairing, in contrast, the parametric bootstrap MATS is slightly con-
servative, see Tables 8 and 9 in the supplementary material, respectively.
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Surprisingly, the resampling approaches based on the MATS improve with growing d in most settings, i.e., when
the number of endpoints is closer to the sample size. The WTS approach, in contrast, gets worse in these scenarios.
This might be an interesting approach for future research in high-dimensional settings such as in [31].

As a result, we find that the MATS with the parametric bootstrap approximation is the best procedure in most
scenarios. Especially, it is less conservative than the nonparametric bootstrap approximation and less liberal than
the WTS equipped with the parametric bootstrap approach over all simulation settings. Only in situations with
negative pairing and skewed distributions, the new procedure shows a slightly liberal behavior.

Table 1: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout for the normal distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S1

(10, 10) 15.2 4.5 6.9 5.2 4.4
(10, 20) 14.5 5.9 6.9 5.1 4.5
(20, 10) 14 5.6 7.2 5.3 4.8
(20, 20) 9.5 5.3 6 5.1 5.1

S2

(10, 10) 15.2 4.5 7 5 4.5
(10, 20) 14.5 5.8 6.9 5 4.5
(20, 10) 14 5.6 7.3 5.5 4.9
(20, 20) 9.5 5.4 6.3 5.2 5

S3

(10, 10) 18.3 5.5 7.3 4.8 3.6
(10, 20) 10.9 4.7 6.4 4.8 4.4
(20, 10) 21.4 6.6 7.8 4.8 3.4
(20, 20) 11.2 5.7 6.3 5.1 4.6

S4

(10, 10) 18.3 5.6 7.5 4.8 3.9
(10, 20) 11 5.2 6.1 4.6 4.3
(20, 10) 21 6.7 7.9 4.7 3.2
(20, 20) 10.9 5.7 6.2 5.0 4.7

d = 8

S1

(10, 10) 38.6 4.7 7.7 5.1 4.3
(10, 20) 31 6.2 6.9 5 4.2
(20, 10) 32.1 6.1 6.6 4.6 4
(20, 20) 17.0 4.9 5.8 4.8 4.8

S2

(10, 10) 38.6 4.5 7.9 4.3 3.4
(10, 20) 31 6.3 7.4 4.3 3.6
(20, 10) 32.1 6.1 7 4.1 3.4
(20, 20) 17.0 4.7 6.2 4.8 4.5

S3

(10, 10) 50.1 6.6 7.9 4.2 2.8
(10, 20) 21.8 4.1 6.3 4.4 4.1
(20, 10) 55 10.3 8.5 3.6 2.2
(20, 20) 21.9 5.4 6.1 4.0 3.6

S4

(10, 10) 48.9 6.3 7.8 3.6 2.4
(10, 20) 21.9 4.2 6.3 3.8 3.4
(20, 10) 54.1 10.4 8.4 3.5 2
(20, 20) 21.8 5.2 6.0 3.9 3.6
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Table 2: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout for the χ2

3-distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S1

(10, 10) 15.3 4 7.1 4.8 3.4
(10, 20) 13.9 5.5 7.3 5.6 4.6
(20, 10) 14.6 5.7 7.7 5.9 4.6
(20, 20) 8.9 4.7 6.3 5.5 5

S2

(10, 10) 15.3 4.1 7.1 4.5 3.2
(10, 20) 13.9 5.6 7.5 5.5 4.5
(20, 10) 14.6 5.8 7.7 5.5 4.5
(20, 20) 8.9 4.7 6.3 5.3 4.7

S3

(10, 10) 20.6 7.1 9.5 6.1 3.8
(10, 20) 11.2 4.8 6.9 4.8 3.7
(20, 10) 26.2 10.9 12.3 8.9 5.6
(20, 20) 12.8 6.6 7.6 6 4.7

S4

(10, 10) 21.2 7.2 9.6 6.2 3.8
(10, 20) 11.1 5 6.9 4.7 3.4
(20, 10) 26.5 10.7 12.7 8.9 5.6
(20, 20) 12.9 6.7 7.7 6.2 4.7

d = 8

S1

(10, 10) 39.3 3.8 7.7 4.9 3.4
(10, 20) 32.3 5.5 7.6 5.9 4.7
(20, 10) 33.4 6.3 7.2 5.1 4.2
(20, 20) 16.9 4.5 5.9 4.9 4.6

S2

(10, 10) 39.3 3.8 8.1 4.3 2.7
(10, 20) 32.3 5.5 8.6 5.2 4
(20, 10) 33.4 6.3 7.6 4.9 3.9
(20, 20) 16.9 4.5 6.2 4.5 4.0

S3

(10, 10) 53.1 6.8 10.2 5.5 3.1
(10, 20) 23.4 4.8 6.8 4.6 3.5
(20, 10) 59.9 13.9 13.7 8.1 4.6
(20, 20) 24.8 6.9 7.9 5.7 4.1

S4

(10, 10) 52.5 6.3 11 5.3 2.6
(10, 20) 24.3 4.5 7.1 4.1 2.8
(20, 10) 59 13.6 14.8 8.4 4.5
(20, 20) 24.3 6.9 7.7 5.7 4.0

5.1.1. Singular Covariance Matrix

In order to analyze the behavior of the discussed methods in designs involving singular covariance matrices,
we considered the one-way layout described above with a = 2 groups and d ∈ {4, 8} observations involving the
following covariance settings (displayed for d = 4):

Setting 5: V1 =



1 1/2 1 1
1/2 1 1/2 1/2
1 1/2 1 1
1 1/2 1 1


,V2 = V1 + 0.5 · Jd

Setting 6: V1 =



1 0.6 0.36 0.18
0.6 1 0.6 0.3

0.36 0.6 1 0.5
0.18 0.3 0.5 0.25


,V2 = V1 + 0.5 · Jd
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Setting 7: V1 =



1 0 0 0
0
√

2 0 0
0 0 2 1
0 0 1 0.5


,V2 = V1 + 0.5 · Jd

Setting 6 is based on an AR(0.6) covariance matrix (see setting 2 above), where the last row and column have
been replaced by half the row/column before, respectively. Setting 7 is based on Ṽ1 = diag(

√
2s), s = 0, . . . , d − 1,

where the last row and column have been replaced by half the row/column before. We have considered the same
sample size vectors as above.

The results are displayed in Tables 3 and 4. The parametric bootstrap of the MATS again yields the best results
in almost all scenarios. The wild bootstrap, in contrast, is again rather liberal. For the χ2 approximation of the
WTS, the results are in concordance with the theoretical reflections mentioned in Section 2: Covariance setting
S5 corresponds to the case, where the rank of T and TΣT differs and as calculated above, the χ2-approximation
becomes very conservative here. In setting S6 and S7, in contrast, there is no rank jump despite the singular
covariance matrices and the χ2-approximation shows its usual liberal behavior. Since the rank of TΣT is not
known in practice, the WTS should not be used for data with possibly singular covariance matrices. It turns out,
however, that the parametric bootstrap of the WTS is relatively robust against singular covariance matrices. Its
behavior is comparable to the scenarios above with non-singular covariance matrices. It is, however, rather liberal
for n = (20, 10)>, especially with the χ2

3-distribution, see Table 4. This behavior is improved by the parametric
bootstrap MATS, e.g., for d = 8 and S7, the WTS (PBS) leads to a type-I error of 9%, whereas the MATS (PBS) is
at 5.1%. The nonparametric bootstrap, in contrast, sometimes leads to strictly conservative test decisions. This is
especially apparent for d = 8 and covariance setting S7 in Tables 3 and 4.
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Table 3: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout with singular covariance
matrices for the normal distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S5

(10, 10) 3.1 5.1 5.9 4.8 4.4
(10, 20) 2.6 5.1 5.7 4.9 4.6
(20, 10) 2.7 5.3 6.6 5.3 4.7
(20, 20) 1.7 4.8 5.6 5.2 5.0

S6

(10, 10) 16.7 5.3 7.1 5 4.6
(10, 20) 12.4 5.1 6 4.7 4.3
(20, 10) 17.1 6.1 7.1 5.3 4.6
(20, 20) 10.2 5.5 6.0 5.2 5.1

S7

(10, 10) 16.6 5.2 7.3 4.7 4
(10, 20) 12.3 5.8 6.6 4.6 4.2
(20, 10) 16.3 5.7 6.9 4.5 4
(20, 20) 9.4 4.8 5.9 4.8 4.8

d = 8

S5

(10, 10) 2.8 4.5 6.2 5 4.7
(10, 20) 2.3 4.9 5.5 4.9 4.7
(20, 10) 2.6 4.4 5.6 4.7 4.3
(20, 20) 1.5 4.6 5.5 4.9 4.8

S6

(10, 10) 39.5 4.4 8.2 5 4.2
(10, 20) 28.8 5.4 6.6 4.6 4.2
(20, 10) 35.7 7.0 7.5 4.8 4.0
(20, 20) 17.3 4.7 6.1 4.8 4.5

S7

(10, 10) 38.8 4.2 7.4 4 2.9
(10, 20) 27.4 5.2 6.6 3.6 3
(20, 10) 36.3 6.3 7.4 3.8 3.2
(20, 20) 17.3 5.1 5.9 4.2 4.0

Table 4: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) in the one-way layout with singular covariance
matrices for the χ2

3-distribution.

d Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

d = 4

S5

(10, 10) 2.7 4.2 6.7 5.4 4.5
(10, 20) 1.9 4.8 5.9 4.9 4.5
(20, 10) 3.5 6.5 7.3 5.9 5.2
(20, 20) 1.7 4.9 6.2 5.7 5.5

S6

(10, 10) 19.7 7.1 7.4 5.2 4.1
(10, 20) 14.6 7.1 6.4 5 4.3
(20, 10) 20.1 8.5 8.1 6.4 5.4
(20, 20) 11.4 6.3 6.5 5.7 5.3

S7

(10, 10) 19.4 7 7.1 4.1 3.1
(10, 20) 14.5 6.7 6.4 4.2 3.4
(20, 10) 20.3 8.7 8.3 6.1 4.5
(20, 20) 11.7 6.4 6.1 5.1 4.5

d = 8

S5

(10, 10) 2.4 4.7 6.1 5.1 4.6
(10, 20) 2.6 5.3 6.1 5.3 5
(20, 10) 3 5.6 6 5.1 4.6
(20, 20) 1.2 4.5 5.9 5.3 5.1

S6

(10, 10) 43.1 5.4 8.2 5.1 3.9
(10, 20) 30.7 6.6 7.3 5.2 4.2
(20, 10) 39.2 8.7 8.3 5.6 4.5
(20, 20) 19.3 5.6 6.8 5.1 4.7

S7

(10, 10) 42.4 5.5 7.5 3.3 1.7
(10, 20) 31.1 6.3 7.1 4 2.4
(20, 10) 39.5 9 9.2 5.1 3.4
(20, 20) 18.7 5.3 5.1 3.2 2.6
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5.2. Two-way layout

We have investigated the behavior of the methods in a setting with two crossed factors A and B, which is again
adapted from [23]. In particular, we simulated a 2 × 2 designs with covariance matrices similar to the one-way
layout above. A detailed description of the simulation settings as well as the results for the main and interaction
effects are deferred to the supplementary material. Here we only summarize our findings: Since the total sample
size N is larger in this scenario, the asymptotic results come into play and therefore all methods lead to more
accurate results than in the one-way layout. Nevertheless we find a similar behavior as in the one-way layout:
Again, the MATS and the WTS with the parametric bootstrap approach control the type-I error very accurately,
whereas the nonparametric bootstrap approach leads to slightly more conservative results. Both the WTS with χ2

approximation and the wild bootstrap MATS can not be recommended due to their liberal behavior. In situations
with negative pairing (covariance setting 10 and 11 with sample size vector n(3)), the parametric bootstrap MATS
improves the slightly liberal behavior of the WTS, see e.g., Table 10 for the normal distribution, where the WTS
(PBS) leads to a type-I error of 6.1%, while the MATS (PBS) is at 4.9%.

5.3. Power

We have investigated the empirical power of the proposed methods to detect a fixed alternative in the simulation
scenarios above. Data was simulated as described in Section 5.1 but now with µ1 = 0 and µ2 = (δ, . . . , δ)> for
varying shifts δ ∈ {0, 0.5, 1, 1.5, 2, 3}. Due to the liberality of the classical Wald-type test and the wild bootstrapped
MATS, we have only considered the WTS with parametric bootstrap as well as the parametric and nonparametric
bootstrap of the MATS. The results for selected scenarios are displayed in Figures 1 – 2. The plots show that
both resampling versions of the MATS have a higher power for detecting the fixed alternative than the WTS. The
parametric bootstrap of the MATS has a slightly higher power than the nonparametric bootstrap, a behavior that
is more pronounced for the χ2-distribution (Figure 1). Moreover, the power analysis shows a clear advantage of
applying the parametric bootstrap approach to the MATS over its application to the WTS. For example, in the
scenario with normally distributed data, d = 8 dimensions, covariance setting S4 and n = (10, 20)> observations
(Figure 2), the parametric bootstrap MATS has twice as much power as its WTS version in case of δ = 0.5 (34.4%
as compared to 16.7%). Similar differences can also be observed in some of the other settings.
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 : Cov S2

0.5 1.0 1.5 2.0 2.5
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0.8

 : Cov S4

WTS (PBS) MATS (PBS) MATS (NPBS)

Figure 1: Empirical power results for the WTS with parametric bootstrap as well as the MATS with parametric (PBS) and nonparametric
(NPBS) bootstrap for χ2

3-distributed data with d = 4 dimensions and sample sizes n = (10, 10)>.
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0.5 1.0 1.5 2.0 2.5

 : Cov S3

0.2

0.4

0.6

0.8

 : Cov S4

WTS (PBS) MATS (PBS) MATS (NPBS)

Figure 2: Empirical power results for the WTS with parametric bootstrap as well as the MATS with parametric (PBS) and nonparametric
(NPBS) bootstrap for normally distributed data with d = 8 dimensions and sample sizes n = (10, 20)>.
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6. Application: Analysis of the Data Example

As a data example, we consider 7 demographic factors of US citizens in 43 states. Our aim is to investi-
gate whether these factors differ between the states. The full data set ‘county facts.csv‘ is available from kaggle
(https://www.kaggle.com/joelwilson/2012-2016-presidential-elections). In order to have sufficient sample sizes
for the analysis and to avoid a high-dimensional setting, we exclude all states with less than 15 counties. In par-
ticular, we removed Connecticut, Delaware, Hawaii, Massachusetts, New Hampshire, Rhode Island and Vermont.
We consider the following demographic factors: the population estimate for 2014 (PST045214), the percentage of
female citizens in 2014 (SEX255214) as well as the percentage of white (RHI125214), black or African American
(RHI225214), American Indian and Alaska native (RHI325214), Asian (RHI425214) and native Hawaiian and
other pacific islanders (RHI525214) citizens in 2014. This results in a one-way layout with a = 43 levels of the
factor ‘state‘ and d = 7 dimensions. The sample sizes and mean values for the different states can be found in
Table 5. Figure 3 exemplarily displays boxplots for the percentage of white citizens across the different states.
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Figure 3: Boxplots of the percentage of white citizens across the different states.

We now want to analyze, whether there is a significant difference in the multivariate means for the different
states. The null hypothesis of interest thus is H0 : {(P43 ⊗ I7)µ = 0}. Since the empirical covariance matrix is
computationally singular in this example (reciprocal condition number 1.7e-16), we cannot apply the Wald-type
test. Thus, we consider the parametric bootstrap approach of the MATS which yielded the best results in the
simulation study. Computation of the MATS results in a value of QN = 393.927 and the parametric bootstrap
routine with 1,000 bootstrap runs gives a p-value of p < 0.0001, implying that there is indeed a significant
difference between the states with respect to the 7 demographic measurements.

A confidence region for this effect can be constructed as described in Section 4. The analysis of this example,
including the calculation of the confidence region, can be conducted using the R package MANOVA.RM.

7. Conclusions and Discussion

We have investigated a test statistic for multivariate data (MATS) which is based on a modified Dempster
statistic. Contrary to classical MANOVA models, we incorporate general heteroscedastic designs and allow for
singular covariance matrices while postulating their existence as solely distributional assumption. Moreover, our
proposed MATS statistic is invariant under linear transformations of the response variables.
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In order to improve the small sample behavior of the test statistic, we have investigated different bootstrap
approaches, namely a parametric bootstrap, a wild bootstrap and a nonparametric bootstrap procedure. We have
rigorously proven that they lead to asymptotically exact and consistent tests and even analyzed their local power
behavior.
In a large simulation study, the parametric bootstrap turned out to perform best in most scenarios, even with skewed
data and heteroscedastic variances. Although the type-I error control is still not ideal in the latter case, the method
performed advantageous over the parametric bootstrap of the WTS proposed in [23] and has the additional advan-
tage of being applicable to situations with singular covariance matrices. In situations with skewed distributions,
the parametric bootstrap of the MATS yielded more robust results than the WTS. The wild bootstrap approach,
in contrast, turned out to be very liberal in all scenarios, while the nonparametric bootstrap was mostly slightly
more conservative than the parametric bootstrap. Power simulations showed a clear advantage of the parametric
bootstrap MATS compared to the WTS (PBS) as well as the nonparametric bootstrap. All in all, we therefore
recommend the parametric bootstrap based on the MATS for practical applications in a multivariate setting.
Furthermore, we have constructed confidence regions and simultaneous confidence intervals for contrasts h>µ
based on the bootstrap quantiles. These confidence regions provide an additional benefit for the analysis of multi-
variate data since they allow for more detailed insight into the nature of the estimates.
In order to facilitate application of the proposed methods, the parametric bootstrap test and the calculation of
confidence regions are implemented in the R package MANOVA.RM.

Following the idea of [39] we plan to extend our concepts to the high-dimensional setting, i.e., where the
sample size N may be less than the dimension d. This approach looks promising, since we have seen in the
simulation study that the MATS with the parametric bootstrap approach exhibited an improved type-I error control
with increasing d. However, the extension to high-dimensional data requires different techniques and will be part
of future research.

Acknowledgment

The authors would like to thank Dr. Jan Paul and Prof. Dr. Volker Rasche for providing the cardiology data
example used in the supplement. This work was supported by the German Research Foundation projects DFG PA
2409/3-1 and PA 2409/4-1.

References

References

[1] M. S. Bartlett. A note on tests of significance in multivariate analysis. Mathematical Proceedings of the Cambridge Philosophical Society,
35(02):180–185, 1939. Cambridge University Press.

[2] A. C. Bathke, S. W. Harrar, and L. V. Madden. How to compare small multivariate samples using nonparametric tests. Computational
Statistics & Data Analysis, 52(11):4951–4965, 2008.

[3] J. Beyersmann, S. D. Termini, and M. Pauly. Weak convergence of the wild bootstrap for the Aalen–Johansen estimator of the cumulative
incidence function of a competing risk. Scandinavian Journal of Statistics, 40(3):387–402, 2013.

[4] P. J. Bickel and D. A. Freedman. Some asymptotic theory for the bootstrap. The Annals of Statistics, pages 1196–1217, 1981.
[5] E. Brunner. Asymptotic and approximate analysis of repeated measures designs under heteroscedasticity. Mathematical Statistics with

Applications in Biometry, 2001.
[6] E. Brunner, F. Konietschke, M. Pauly, and M. L. Puri. Rank-based procedures in factorial designs: hypotheses about non-parametric

treatment effects. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2016.
[7] E. Brunner, U. Munzel, and M. L. Puri. Rank-score tests in factorial designs with repeated measures. Journal of Multivariate Analysis,

70(2):286–317, 1999.
[8] E. Brunner and M. L. Puri. Nonparametric methods in factorial designs. Statistical papers, 42(1):1–52, 2001.
[9] A. C. Cameron, J. B. Gelbach, and D. L. Miller. Bootstrap-based improvements for inference with clustered errors. The Review of

Economics and Statistics, 90(3):414–427, 2008.
[10] A. C. Cameron and D. L. Miller. A practitioner’s guide to cluster-robust inference. Journal of Human Resources, 50(2):317–372, 2015.
[11] E. Chung and J. P. Romano. Multivariate and multiple permutation tests. Journal of Econometrics, 193(1):76–91, 2016.
[12] S. Csörgo. On the law of large numbers for the bootstrap mean. Statistics & probability letters, 14(1):1–7, 1992.

17



[13] R. Davidson and E. Flachaire. The wild bootstrap, tamed at last. Journal of Econometrics, 146(1):162–169, 2008.
[14] A. P. Dempster. A high dimensional two sample significance test. The Annals of Mathematical Statistics, 29(4):995–1010, 1958.
[15] A. P. Dempster. A significance test for the separation of two highly multivariate small samples. Biometrics, 16(1):41–50, 1960.
[16] S. Friedrich, E. Brunner, and M. Pauly. Permuting longitudinal data in spite of the dependencies. Journal of Multivariate Analysis,

153:255–265, 2017.
[17] S. Friedrich, F. Konietschke, and M. Pauly. A wild bootstrap approach for nonparametric repeated measurements. Computational

Statistics & Data Analysis, 2016.
[18] S. W. Harrar and A. C. Bathke. A modified two-factor multivariate analysis of variance: asymptotics and small sample approximations.

Annals of the Institute of Statistical Mathematics, 64(1):135–165, 2012.
[19] M. Hasler and L. A. Hothorn. Multiple contrast tests in the presence of heteroscedasticity. Biometrical Journal, 50(5):793–800, 2008.
[20] H. Hotelling. A generalized t-test and measure of multivariate dispersion. In Proceedings of the Second Berkeley Symposium on Mathe-

matical Statistics and Probability. The Regents of the University of California, 1951.
[21] T. Hothorn, F. Bretz, and P. Westfall. Simultaneous inference in general parametric models. Biometrical Journal, 50(3):346–363, 2008.
[22] R. A. Johnson and D. W. Wichern. Applied multivariate statistical analysis. 6th edition, Prentice Hall, 2007.
[23] F. Konietschke, A. Bathke, S. Harrar, and M. Pauly. Parametric and nonparametric bootstrap methods for general MANOVA. Journal of

Multivariate Analysis, 140:291–301, 2015.
[24] K. Krishnamoorthy and F. Lu. A parametric bootstrap solution to the MANOVA under heteroscedasticity. Journal of Statistical Compu-

tation and Simulation, 80(8):873–887, 2010.
[25] D. Lawley. A generalization of fisher’s z test. Biometrika, 30(1-2):180–187, 1938.
[26] D. Lin. Non-parametric inference for cumulative incidence functions in competing risks studies. Statistics in Medicine, 16(8):901–910,

1997.
[27] C. Liu, A. C. Bathke, and S. W. Harrar. A nonparametric version of wilks’ lambda - asymptotic results and small sample approximations.

Statistics & Probability Letters, 81(10):1502–1506, 2011.
[28] R. Y. Liu. Bootstrap procedures under some non-iid models. The Annals of Statistics, 16(4):1696–1708, 1988.
[29] E. Mammen. When does bootstrap work? Asymptotic results and simulations. Springer Science & Business Media, 1993.
[30] R. Marcus, P. Eric, and K. R. Gabriel. On closed testing procedures with special reference to ordered analysis of variance. Biometrika,

63(3):655–660, 1976.
[31] M. Pauly, D. Ellenberger, and E. Brunner. Analysis of high-dimensional one group repeated measures designs. Statistics, 49:1243–1261,

2015.
[32] F. Pesarin and L. Salmaso. Permutation tests for complex data: theory, applications and software. John Wiley & Sons, 2010.
[33] F. Pesarin and L. Salmaso. A review and some new results on permutation testing for multivariate problems. Statistics and Computing,

22(2):639–646, 2012.
[34] K. Pillai. Some new test criteria in multivariate analysis. The Annals of Mathematical Statistics, 26(1):117–121, 1955.
[35] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,

2016.
[36] C. Rao and S. Mitra. Generalized inverse of matrices and its applications. Wiley New York, 1971.
[37] Ł. Smaga. Bootstrap methods for multivariate hypothesis testing. Communications in Statistics-Simulation and Computation, 2016. Just

accepted.
[38] E. Sonnemann. General solutions to multiple testing problems. Biometrical Journal, 50(5):641–656, 2008.
[39] M. S. Srivastava and T. Kubokawa. Tests for multivariate analysis of variance in high dimension under non-normality. Journal of

Multivariate Analysis, 115:204–216, 2013.
[40] G. Vallejo and M. Ato. Robust tests for multivariate factorial designs under heteroscedasticity. Behavior research methods, 44(2):471–

489, 2012.
[41] G. Vallejo, M. Fernández, and P. E. Livacic-Rojas. Analysis of unbalanced factorial designs with heteroscedastic data. Journal of

Statistical Computation and Simulation, 80(1):75–88, 2010.
[42] S. Van Aelst and G. Willems. Robust and efficient one-way MANOVA tests. Journal of the American Statistical Association,

106(494):706–718, 2011.
[43] S. Van Aelst and G. Willems. Fast and robust bootstrap for multivariate inference: the R package FRB. Journal of Statistical Software,

53(3):1–32, 2013.
[44] S. S. Wilks. Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate

distribution. The Annals of Mathematical Statistics, 17(3):257–281, 1946.
[45] C.-F. J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14(4):1261–1295, 1986.
[46] L.-W. Xu, F.-Q. Yang, S. Qin, et al. A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with

unequal variances. Journal of Multivariate Analysis, 115:172–180, 2013.

18



Supplementary Material to
MATS: Inference for potentially Singular and Heteroscedastic MANOVA

Sarah Friedrich, Markus Pauly

Institute of Statistics, Ulm University, Germany

Sarah Friedrich, Markus Pauly

Institute of Statistics, Ulm University, Germany

Abstract

In this supplementary material to the authors’ paper ”MATS: Inference for potentially singular and heteroscedastic
MANOVA” we provide the proofs of all theorems as well as some additional simulation results for different
distributions and a two-way layout. Furthermore, we provide an additional data example from cardiology, where
we also explain the problem of the ATS in more detail.

Keywords: Multivariate Data; Parametric Bootstrap; Confidence Regions; Singular Covariance Matrices

Email addresses: sarah.friedrich@uni-ulm.de (Sarah Friedrich), sarah.friedrich@uni-ulm.de (Sarah Friedrich)

Preprint submitted to Elsevier December 6, 2017



8. Proofs

Proof of Theorem 2.1
The result follows directly from the representation theorem for quadratic forms [36] and the continuous mapping
theorem by noting that

√
N(X• − µ) has, asymptotically, as N → ∞, a multivariate normal distribution with mean

0 and covariance matrix Σ = limN→∞ ΣN = diag(κ−1
i Vi). Moreover, D̂N is consistent for D = diag(κ−1

i σ2
is), where

the latter is of full rank by assumption. Thus, T D̂NT converges in probability to T DT and since there is finally no
rank jump in this convergence we eventually obtain

(T D̂NT)+ Pr−→ (T DT)+, (8.1)

where
Pr−→ denotes convergence in probability.

Proof of Theorem 3.1
Let

Yik := Xik · 1{||Xik || ≤ δ}
for δ > 0. Then, Yik has finite moments of any order, especially fourth moments exist. Analogously, given
Y = (Yik)i,k, let Y∗ik

i.i.d.∼ N(0, V̂i(δ)), where V̂i(δ) = (ni − 1)−1 ∑ni
k=1(Yik − Yi·)(Yik − Yi·)> and define Q∗N,δ =

N(Y
∗
•)
>T(T D̂

∗
δT)+TY

∗
•, where D̂

∗
δ = diag(N/ni · (σ̂∗is(δ))2) and (σ̂∗is(δ))

2 is the empirical variance of Y∗iks.

First, we apply the multivariate Lindeberg-Feller CLT to show that, given X,
√

N Y
∗
• converges in distribution to

a normal distributed random variable. Therefore, consider Ỹi
∗

:=
√

N/niY∗ik and Vi(δ) = Cov(Yik). The Lindeberg-
Feller CLT now yields convergence in distribution given the data X to a normal distributed random variable

√
N Y

∗
•
D|X−−−→ N(0,Σδ), (8.2)

if we proof the following conditions:

a∑

i=1

ni∑

k=1

E(Ỹi
∗|X) = 0 (8.3)

a⊕

i=1

ni∑

k=1

Cov(Ỹi
∗|X)

Pr−→ Σδ :=
a⊕

i=1

1
κi

Vi(δ) (8.4)

a∑

i=1

ni∑

k=1

E
(
||Ỹi
∗||2 · 1{||Ỹi

∗|| > ε}|X
) Pr−→ 0 ∀ ε > 0. (8.5)

Condition (8.3) follows since, given the data, Y∗ik
i.i.d.∼ N(0, V̂i(δ)). For condition (8.4), note that

a⊕

i=1

ni∑

k=1

Cov(Ỹi
∗|X) =

a⊕

i=1

ni∑

k=1

Cov

√

N
ni

Yik
∗|X

 =

a⊕

i=1

ni∑

k=1

N
n2

i

V̂i(δ) =

a⊕

i=1

N
ni

V̂i(δ).

Thus, since V̂i(δ) is a consistent estimator of Vi(δ), (8.4) follows. For (8.5) note that

1{||Ỹi
∗|| > ε} = 1⇔ δ ≥ ||Y∗ik || >

ni√
N
ε =

ni

N

√
Nε.

Since ni/N → κi > 0, the right hand side converges to infinity as N → ∞. Therefore, for arbitrary fixed δ > 0
and ε > 0 we finally have 1{||Ỹi

∗|| > ε} = 0 for N large enough and Equation (8.5) follows. Altogether this proves
(8.2).
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Since D̂
∗
δ

Pr−→ Dδ = diag(κ−1
i Var(Yiks)), i = 1, . . . , a, s = 1, . . . , d due to existence of finite fourth moments

of the truncated random variables Y, it now follows from continuous mapping and the representation theorem for
quadratic forms that

Q∗N,δ = N(Y
∗
•)
>T(T D̂

∗
δT)+TY

∗
•
D|X−−−→ Z̃, N → ∞,

in probability, see, e.g., [23] and the references cited therein for similar arguments. Here, Z̃ =
∑a

i=1
∑d

s=1 λ̃isZ̃is

with Z̃is ∼ χ2
1 and λ̃is are the eigenvalues of T(T DδT)+TΣδ. Furthermore, since

Cov(Yik) = Cov(Xik · 1{||Xik || ≤ δ})→ Cov(Xik), δ→ ∞,

by dominated convergence and analogously Dδ → D, δ→ ∞, it follows that

Z̃
D|X−−−→ Z, δ→ ∞

in probability, where Z is the limit variable of QN given in Theorem 2.1. Thus, it remains to show that

lim
δ→∞

lim sup
N→∞

Pr(|Q∗N,δ − Q∗N | > ε|X) a.s.
= 0 for all ε > 0.

Let Ỹ :=
√

NTY
∗
•, X̃ :=

√
NTX

∗
•, Mδ := (T D∗δT)+ and M := (T D∗T)+. Then, Q∗N,δ = Ỹ

>
MδỸ and Q∗N =

X̃
>

MX̃ and therefore
Q∗N,δ − Q∗N = Ỹ

>
Mδ(Ỹ − X̃)︸           ︷︷           ︸

(A)

+ (Ỹ
>

Mδ − X̃
>

M)X̃︸                 ︷︷                 ︸
(B)

.

First, consider part (A) and let ξik := Xik − Yik = Xik1{||Xik || > δ}. Another application of the multivariate
Lindeberg-Feller CLT shows that √

N(Y
∗
• − X

∗
•)
D|X−−−→ N(0, Σ̃δ)

in probability, where Σ̃δ :=
⊕a

i=1 κ
−1
i Cov(Xik1{||Xik || > δ}) =

⊕a
i=1 κ

−1
i Cov(ξik).

Thus,

Ỹ − X̃
D|X−−−→ N(0,TΣ̃δ)

in probability and the representation theorem again yields Ỹ
>

Mδ(Ỹ− X̃)
D|X−−−→ Bδ =

∑a
i=1

∑d
s=1 η

(δ)
is B2

is in probability,
where B2

is ∼ χ2
1 and η(δ)

is are the eigenvalues of (TΣδ)1/2 Mδ(TΣ̃δ)1/2.
By dominated convergence it follows that Σ̃δ → 0 for δ → ∞. Since Σδ → Σ and Dδ → D we finally obtain
Bδ → 0 as δ→ ∞. Altogether, this proves

lim
δ→∞

lim sup
N→∞

(A) = 0.

It remains to consider part (B) which we expand as

(Ỹ
>

Mδ − X̃
>

M)X̃ = [Ỹ
>

Mδ − X̃
>

Mδ + X̃
>

(Mδ − M)]X̃.

Using similar arguments as above, it follows that given the data

(Ỹ
> − X̃

>
)MδX̃

converges to 0 in probability for N → ∞ and, subsequently, δ→ ∞.

Finally, (σ̂∗is(δ))
2 − (σ̂∗is)

2 converges to zero (where (σ̂∗is)
2 is the empirical variance of X∗iks) by dominated

convergence and consistency of the variance estimators and it follows that Mδ −M converges to 0. This concludes
the proof.
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Proof of Theorem 3.2
Analogous to the proof of Theorem 3.1, we define

Yik := Xik · 1{||Xik || ≤ δ}

for δ > 0 as well as, given Y, Y?
ik = Wik(Yik − Yi·) and Q?

N,δ = N(Y
?

· )>T(T D̂
?

δ T)+TY
?

· .

The first part of the proof follows analogous to the proof of Theorem 3.1 above. It remains to show that
(σ̂?is(δ))

2 − (σ̂?is)
2 converges to zero. Therefore, consider

(∗) := (σ̂?is(δ))
2 − (σ̂?is)

2 =
1
ni

ni∑

k=1

W2
ikξ

2
iks − (Y

?

i·s)
2 + (X

?

i·s)
2,

where again ξiks := Xiks − Yiks. For the first summand on the right hand side it holds

E


1
ni

ni∑

k=1

W2
ikξ

2
iks|X

 =
1
ni

ni∑

k=1

ξ2
iks

a.s.−−−−→
N→∞

E(X2
i1s1{||Xik || > δ}).

Now letting δ→ ∞, it follows from dominated convergence that

E(X2
i1s1{||Xik || > δ}) δ→∞−−−−→ 0.

Concerning (X
?

i·s)
2 − (Y

?

i·s)
2, we first consider X

?

i·s − Y
?

i·s = n−1
i

∑ni
k=1 Wikξiks. It holds that E(X

?

i·s − Y
?

i·s|X) = 0 as

well as Var(X
?

i·s − Y
?

i·s|X)
N→∞−−−−→ Var(Xi·s − Y i·s)

δ→∞−−−−→ 0 and therefore

lim
δ→∞

lim sup
N→∞

Pr(|X?

i·s − Y
?

i·s| > ε|X) = 0.

The continuous mapping theorem now implies

lim
δ→∞

lim sup
N→∞

Pr((X
?

i·s − Y
?

i·s)
2 > ε|X) = 0

and furthermore
(X

?

i·s − Y
?

i·s)
21{X?

i·s > Y
?

i·s}
Pr−→ 0.

Therefore,
0 ≤

(
(X

?

i·s)
2 − (Y

?

i·s)
2
)
1{X?

i·s > Y
?

i·s} → 0

and analogously
0 ≤

(
(X

?

i·s)
2 − (Y

?

i·s)
2
)
1{X?

i·s < Y
?

i·s} → 0

and therefore
lim
δ→∞

lim sup
N→∞

Pr(|(X?

i·s)
2 − (Y

?

i·s)
2| > ε|X) = 0.

Altogether, this implies by the general Markov inequality that

lim
δ→∞

lim sup
N→∞

Pr((∗) > ε|X) ≤ lim
δ→∞

lim sup
N→∞

1
ε

E((∗)|X) a.s.
= 0,

which concludes the proof.

Proof of Theorem 3.3
The result for the nonparametric bootstrap can be proved by conditionally following the lines of the proof of The-
orem 2.1. First note, that conditional independence of the bootstrap sample X†ik, i = 1, . . . , a, k = 1, . . . , ni together
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with the multivariate CLT for the bootstrap given in [4] implies that the conditional distribution of
√

N(X
†
• − X•)

asymptotically, as N → ∞, coincides with a multivariate normal distribution with mean 0 and covariance matrix
Σ = diag(κ−1

i Vi) (almost surely). Moreover, the law of large numbers for the bootstrap (see, e.g., [12]) implies

that D̂
†
N converges almost surely to D = diag(κ−1

i σ2
is). We can thus conclude as in the proof of Theorem 2.1:

T D̂
†
NT → T DT holds almost surely and since there is finally no rank jump in this convergence we also obtain

(T D̂
†
NT)+ Pr−→ (T DT)+ almost surely. Putting these ingredients together with the continuous mapping theorem

finally proves the convergence.

Proofs of the results in Section 4.1
Theorems 3.1 – 3.3 directly imply that the corresponding bootstrap tests ϕ∗ = 1{QN > c∗1−α} asymptotically keep
the pre-assigned level α, since c∗1−α is the (1 − α)-quantile of the (conditional) bootstrap distribution, which, given
the data, converges weakly to the null distribution of QN in probability.
For local alternatives H1 : Tµ =

√
N−1Tν, ν ∈ Rad, it holds that

√
NTX• =

√
NT(X• − µ) + Tν

has, asymptotically, as N → ∞, a multivariate normal distribution with mean Tν and covariance matrix TΣT
and thus QN converges to ζ(T DT)+ζ, where ζ ∼ N(Tν,TΣT), by using (8.1) again. Thus, Theorems 3.1 – 3.3
imply that the bootstrap tests have the same asymptotic power as ϕN = 1{QN > c1−α} and the asymptotic relative
efficiency of the bootstrap tests ϕ∗ compared to ϕN is 1 in this situation.

Proof of the results in Section 4.2
In order to derive a simultaneous contrast test formulated in the maximum statistic, we need to analyze the asymp-
totic joint distribution of the vector of test statistics Q = (Q1

N , . . . ,Q
q
N)>. First note that Q can be re-written as

√
N(HX• − Hµ)>

√
N diag

(
h>` X•

)
diag

(
(h>` D̂N h`)−1

)
. (8.6)

The last diagonal matrix converges to diag
(
(h>` Dh`)−1

)
, while the first part can be viewed as ψ

(√
N(HX• − Hµ)

)

for a continuous function ψ. Due to the results above,
√

N(HX• − Hµ) converges to a multivariate normally
distributed random vector Ξ with mean 0 and covariance matrix HΣH>. Thus, (8.6) converges in distribution to
ψ(Ξ) ·diag

(
(h>` Dh`)−1

)
due to the continuous mapping theorem and Slutzky. The same distributional convergence

also holds for the bootstrapped test statistic Q∗ = (Q1,∗
N , . . . ,Qq,∗

N )> given the data in probability due to Theorems 3.1

– 3.3 (they imply that σ̂∗is are consistent estimates for σis (i = 1, . . . , a, s = 1, . . . , d) and that
√

NHX
∗
• converges

to Ξ in distribution given the data in probability). Since max is continuous, it thus follows that

sup
x
|Pr{max(Q1

N , . . . ,Q
q
N) ≤ x} − Pr{max(Q1,∗

N , . . . ,Qq,∗
N ) ≤ x|X}| Pr→ 0,

which concludes the proof.

In future research it will be investigated which method performs preferably for the derivation of simultaneous
confidence intervals.

9. Further simulation results

9.1. One-way layout

In this section, we present some additional simulation results for different distributions. The simulation sce-
narios are the same as in the paper, but we have excluded the WTS with χ2-approximation, the wild and the
nonparametric bootstrap of the MATS here.
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The results are displayed in Tables 7 – 9 for the lognormal, t3 and double-exponential distribution, respec-
tively. The parametric bootstrap of the MATS keeps the pre-assigned α-level very well for the t3 and the double-
exponential distribution. Note that the validity of the parametric bootstrap of the WTS has not yet been proven for
the t3 distribution, since fourth moments do not exist in this case. With lognormally distributed data and negative
pairing (setting 3 and 4 with n = (20, 10)>), all procedures show a liberal behavior.

9.2. Two-way layout

To analyze the behavior of our methods in a setting with two crossed factors A and B, we considered the
following simulation design, which is again adapted from [23]. We simulated a 2×2 design with sample sizes n(1) =

(n(1)
11 , n

(1)
12 , n

(1)
21 , n

(1)
22 )> = (7, 10, 13, 16)>, n(2) = (10, 10, 10, 10)>, n(3) = (16, 13, 10, 7)>, n(4) = (20, 20, 20, 20)>. The

covariance settings were chosen similar to the one-way layout above as:

Setting 8: Vi j = Id + 0.5(Jd − Id), i, j = 1, 2,

Setting 9: Vi j =
(
(0.6)|r−s|)d

r,s=1
, i, j = 1, 2,

Setting 10: Vi j = Id · ` + 0.5(Jd − Id), ` = 1, . . . , 4,

Setting 11: Vi j =
(
(0.6)|r−s|)d

r,s=1
+ Id · `, ` = 1, . . . , 4.

Again, setting 10 and 11 combined with sample sizes n(2) and n(3) represent settings with positive and negative
pairing, respectively. In this scenario, we consider three different null hypotheses of interest:

(1) The hypothesis of no effect of factor A

Hµ
0 (A) : {µ1· = µ2·} = {HAµ = 0},

(2) The hypothesis of no effect of factor B

Hµ
0 (B) : {µ·1 = µ·2} = {HBµ = 0},

(3) The hypothesis of no A × B interaction effect

Hµ
0 (AB) : {(Pa ⊗ Pb ⊗ Id)µ = 0},

where HA = Pa ⊗ b−1 Jb ⊗ Id and HB = a−1 Ja ⊗ Pb ⊗ Id.

The simulation results for factor A and B as well as the interaction between the factors are in Tables 10 – 12,
respectively. Due to the larger total sample size N in this scenario, the asymptotic results come into play and
therefore all methods lead to more accurate results than in the one-way layout. The behavior of the tests is similar
to the one-way layout: Both MATS and WTS with the parametric bootstrap approach control the type-I error
accurately in most scenarios. The χ2-approximation of the WTS is very liberal again, while the wild bootstrap
MATS also shows a slightly liberal behavior. In situations with negative pairing (covariance setting 10 and 11 with
sample size vector n(3)), the parametric bootstrap MATS improves the slightly liberal behavior of the WTS, see
e.g., Table 10 for the normal distribution, where the WTS (PBS) leads to a type-I error of 6.1%, while the MATS
(PBS) is at 4.9%. The nonparametric bootstrap is again slightly more conservative than the parametric bootstrap,
see, e.g., Table 11 with χ2

3-distribution and covariance settings S10 and S11. For the interaction hypothesis with
χ2

3-distribution, the WTS (PBS), MATS (PBS) and MATS (NPBS) show more conservative results than for the
hypotheses about the main effects.
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Table 7: Type-I error rates in % (nominal level α = 5%) for the parametric bootstrap (PBS) of the WTS and the MATS in the one-way layout
for the log-normal distribution.

d Cov n WTS (PBS) MATS (PBS)

d = 4

S1

(10, 10) 2.0 3.5
(10, 20) 4.4 5.3
(20, 10) 4.3 5.5
(20, 20) 3.5 4.0

S2

(10, 10) 1.9 3.2
(10, 20) 4.5 4.9
(20, 10) 4.4 5.4
(20, 20) 3.4 3.9

S3

(10, 10) 6.8 6.1
(10, 20) 4.2 3.6
(20, 10) 14.9 13.8
(20, 20) 8.4 6.7

S4

(10, 10) 7.0 6.2
(10, 20) 4.2 3.6
(20, 10) 15.4 13.5
(20, 20) 8.7 6.8

d = 8

S1

(10, 10) 2.9 4.1
(10, 20) 3.9 5.6
(20, 10) 4.2 5.3
(20, 20) 3.0 4.0

S2

(10, 10) 2.8 2.5
(10, 20) 4.0 4.8
(20, 10) 4.1 4.1
(20, 20) 3.0 3.1

S3

(10, 10) 6.3 6.0
(10, 20) 3.5 3.6
(20, 10) 15.0 12.7
(20, 20) 7.7 6.7

S4

(10, 10) 7.0 6.0
(10, 20) 3.6 2.8
(20, 10) 15.5 13.6
(20, 20) 8.0 7.0
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Table 8: Type-I error rates in % (nominal level α = 5%) for the parametric bootstrap (PBS) of the WTS and the MATS in the one-way layout
for the t3 distribution.

d Cov n WTS (PBS) MATS (PBS)

d = 4

S1

(10, 10) 3.6 4.4
(10, 20) 4.8 4.8
(20, 10) 3.9 4.3
(20, 20) 4.0 4.5

S2

(10, 10) 3.7 4.1
(10, 20) 4.7 4.6
(20, 10) 4.1 4.2
(20, 20) 4.0 4.3

S3

(10, 10) 4.1 3.1
(10, 20) 4.3 4.2
(20, 10) 4.9 3.3
(20, 20) 3.9 3.8

S4

(10, 10) 4.2 3.1
(10, 20) 4.4 3.9
(20, 10) 4.9 3.2
(20, 20) 4.0 4.0

d = 8

S1

(10, 10) 3.5 4.7
(10, 20) 4.8 4.7
(20, 10) 5.0 4.2
(20, 20) 3.9 4.7

S2

(10, 10) 3.4 3.8
(10, 20) 4.8 4.1
(20, 10) 5.0 3.5
(20, 20) 3.9 3.9

S3

(10, 10) 5.2 3.2
(10, 20) 3.5 4.2
(20, 10) 8.6 2.7
(20, 20) 4.0 3.6

S4

(10, 10) 5.0 2.6
(10, 20) 3.6 3.6
(20, 10) 8.3 2.5
(20, 20) 3.8 3.2
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Table 9: Type-I error rates in % (nominal level α = 5%) for the parametric bootstrap (PBS) of the WTS and the MATS in the one-way layout
for the double-exponential distribution.

d Cov n WTS (PBS) MATS (PBS)

d = 4

S1

(10, 10) 4.1 4.5
(10, 20) 5.0 4.8
(20, 10) 4.1 4.2
(20, 20) 5.1 5.6

S2

(10, 10) 4.1 4.5
(10, 20) 4.9 4.8
(20, 10) 4.0 4.2
(20, 20) 5.1 5.4

S3

(10, 10) 4.5 3.3
(10, 20) 4.3 4.4
(20, 10) 5.1 3.2
(20, 20) 4.7 4.9

S4

(10, 10) 4.6 3.7
(10, 20) 4.6 4.3
(20, 10) 5.0 3.3
(20, 20) 4.7 4.7

d = 8

S1

(10, 10) 3.4 4.6
(10, 20) 5.2 4.8
(20, 10) 4.7 4.9
(20, 20) 4.3 4.7

S2

(10, 10) 3.6 3.4
(10, 20) 5.3 4.3
(20, 10) 4.6 4.3
(20, 20) 4.3 4.3

S3

(10, 10) 4.8 3.0
(10, 20) 4.1 4.2
(20, 10) 8.1 3.0
(20, 20) 5.0 3.6

S4

(10, 10) 4.7 2.5
(10, 20) 4.2 3.7
(20, 10) 7.9 2.5
(20, 20) 4.9 3.5
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Table 10: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) when testing for an effect of factor A in a two-way
layout with d = 4 dimensional observations.

distr Cov n WTS (χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

normal

S8

n(1) 10.4 4.7 6.1 4.6 4.4
n(2) 9.5 4.5 6.4 5.1 4.9
n(3) 11.2 5.4 6.6 5.3 4.8
n(4) 6.8 5.0 5.6 5.3 5.2

S9

n(1) 10.4 4.8 6.2 4.7 4.4
n(2) 9.5 4.4 6.6 5.3 4.9
n(3) 11.2 5.5 6.5 4.9 4.6
n(4) 6.8 4.9 5.7 5.1 5.1

S10

n(1) 9 4.7 5.8 4.5 4.2
n(2) 11.1 5.2 6.4 4.8 4.3
n(3) 14.8 6.1 7.3 4.9 4
n(4) 7.4 5 5.5 4.7 4.7

S11

n(1) 9.2 4.7 5.8 4.4 4.1
n(2) 10.2 4.9 6 4.4 4.1
n(3) 13.3 6 7 4.8 4.2
n(4) 7 5.1 5.4 4.6 4.5

χ2
3

S8

n(1) 9.7 4.6 6.7 5.1 4.5
n(2) 9.2 3.9 6.7 5.1 4.5
n(3) 10.7 4.7 6.7 5 4.4
n(4) 6.6 4.3 4.7 4.3 4.1

S9

n(1) 9.7 4.6 6.5 4.7 4.1
n(2) 9.2 3.9 7 5.1 4.3
n(3) 10.7 4.8 6.6 5 4.2
n(4) 6.6 4.5 4.9 4.4 4.2

S10

n(1) 8.8 4.5 6.1 4.3 3.6
n(2) 11.2 5 7.6 5.2 4.1
n(3) 16 7 9.4 6.5 5.3
n(4) 7.7 5.5 5.6 4.9 4.5

S11

n(1) 8.5 4.2 5.6 3.7 3
n(2) 9.9 4.3 6.7 4.7 3.8
n(3) 13.9 6.4 8.7 5.9 4.4
n(4) 7.2 5 5.6 4.9 4.3
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Table 11: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) when testing for an effect of factor B in a two-way
layout with d = 4 dimensional observations.

distr Cov n WTS(χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS (NPBS)

normal

S8

n(1) 10.7 5.1 6.9 5.3 4.8
n(2) 9.2 4.6 6 4.8 4.5
n(3) 10.2 4.6 6.3 5 4.7
n(4) 6.5 4.4 5.0 4.7 4.7

S9

n(1) 10.7 5.2 6.6 5.1 4.8
n(2) 9.2 4.7 6.1 4.9 4.8
n(3) 10.2 4.5 6.2 4.5 4.3
n(4) 6.5 4.5 5 4.5 4.4

S10

n(1) 8.7 4.9 5.8 4.7 4.4
n(2) 10.3 4.6 5.9 4.5 4.1
n(3) 13.4 5.3 6.4 4 3.3
n(4) 6.9 4.6 5.2 4.7 4.6

S11

n(1) 9 4.9 5.7 4.4 4.3
n(2) 9.4 4.7 6.1 4.4 4.1
n(3) 12.4 5.1 6.4 4.1 3.4
n(4) 6.4 4.6 5.2 4.4 4.3

χ2
3

S8

n(1) 10.3 4.9 6.4 4.9 4.3
n(2) 9.4 4 6.2 4.8 4.3
n(3) 10.7 4.5 5.9 4.7 4.1
n(4) 7.2 4.7 5.1 4.7 4.5

S9

n(1) 10.3 4.9 6.8 4.8 4.2
n(2) 9.4 4 6.3 4.6 4
n(3) 10.7 4.5 6 4.4 4
n(4) 7.2 4.9 5.4 5 4.8

S10

n(1) 9 4.5 6.1 4.4 3.8
n(2) 10.6 4.5 6.5 4.4 3.2
n(3) 13.7 5.4 7 4.4 3.3
n(4) 7.7 5.1 6 5.1 4.6

S11

n(1) 9.2 4.6 6.2 4.4 3.7
n(2) 9.7 4.2 6.3 4.1 2.9
n(3) 12.4 5.1 6.4 4.2 3.1
n(4) 7.3 5.2 6 5.1 4.3
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Table 12: Type-I error rates in % (nominal level α = 5%) for the WTS with χ2-approximation and parametric bootstrap (PBS) and the MATS
with wild bootstrap (wild), parametric bootstrap (PBS) and nonparametric bootstrap (NPBS) when testing the interaction hypothesis in a
two-way layout with d = 4 dimensional observations.

distr Cov n WTS(χ2) WTS (PBS) MATS (wild) MATS (PBS) MATS(NPBS)

normal

S8

n(1) 10.8 4.8 6.9 5.4 5
n(2) 10 4.7 6.5 5.4 5.2
n(3) 10 4.7 6.8 5.3 5
n(4) 6.3 4.3 5.0 4.6 4.6

S9

n(1) 10.8 4.9 6.9 5.1 4.9
n(2) 10 4.8 6.3 5.1 4.8
n(3) 10 4.8 6.4 5 4.8
n(4) 6.3 4.3 5 4.7 4.4

S10

n(1) 8.8 5.1 6.2 4.8 4.5
n(2) 10.9 4.8 6.6 4.9 4.5
n(3) 13.8 5.7 7.5 4.9 4.1
n(4) 6.9 4.5 5 4.3 4.2

S11

n(1) 9.1 4.9 6.4 4.8 4.4
n(2) 10.1 4.8 6.6 4.7 4.5
n(3) 12.9 5.4 7.3 4.7 4.1
n(4) 6.5 4.5 4.9 4.4 4.2

χ2
3

S8

n(1) 9.5 4.3 6.3 4.8 4.3
n(2) 9.4 4.3 6.3 4.8 4.4
n(3) 9.8 4.1 5.9 4.6 4
n(4) 6.6 4.6 4.8 4.4 4.2

S9

n(1) 9.5 4.3 6.3 4.6 4.1
n(2) 9.4 4.1 6.5 4.8 4.2
n(3) 9.8 4.2 5.9 4.6 4
n(4) 6.6 4.6 5.1 4.6 4.4

S10

n(1) 7.9 4.1 5.9 4.3 3.6
n(2) 10.3 4.2 5.9 3.9 2.9
n(3) 13 4.3 6.4 3.7 2.4
n(4) 6.8 4.7 5.5 4.6 4

S11

n(1) 8.2 4 5.8 4 3.4
n(2) 9.7 4.2 6 3.9 2.9
n(3) 11.7 4.3 6.2 3.5 2.4
n(4) 6.7 4.8 5.4 4.4 4.2

10. Another data example

As our second data example, we consider cardiological measurements in the left ventricle of 188 healthy
patients, that were recorded at the University clinic Ulm, Germany. Variables of interest are the peak systolic and
diastolic strain rate (PSSR and PDSR, respectively), measured in circumferential direction, the end systolic and
diastolic volume (ESV and EDV, respectively) as well as the stroke volume (SV). The empirical covariance matrix
is singular in this example, since stroke volume is calculated as the difference between end diastolic volume and
end systolic volume. The empirical covariance matrices can be found in Section 10.1 below. Note that this data
example is somewhat artificial, since the reason for the singularity of the empirical covariance matrix is known
and one would usually drop one of the three variables involved in the collinearity. We consider a one-way layout
analyzing the factor ’gender’ (female vs. male). Some descriptive statistics of the measurements for this factor are
displayed in Table 5. Boxplots of the systolic and diastolic measurements are in Figures 4 and 5, respectively.
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Figure 4: Boxplots of the systolic and diastolic peak strain rate for female and male patients.

Table 13: Descriptive statistics of the cardiology data. Volume measurements (EDV, ESV and SV) are in m`, peak strain rate measurements are
in 1/sec.

Gender n Mean Sd
EDV ESV SV PSSR PDSR EDV ESV SV PSSR PDSR

female 92 124.37 41.39 82.98 -1.16 1.07 25.25 13.38 15.77 0.32 0.30
male 96 157.02 54.98 102.04 -1.07 0.94 31.02 15.98 18.70 0.39 0.35

We now want to analyze, whether there is a significant difference in the multivariate means for female and
male patients. The null hypothesis of interest thus is H(1)

0 : {(P2 ⊗ I5)µ = 0}. Since the covariance matrix is
singular in this example, we cannot apply the Wald-type test. Thus, we consider the parametric bootstrap approach
of the MATS which yielded the best results in the simulation study. Computation of the MATS results in a value
of QN = 171.0011 and the parametric bootstrap routine with 10,000 bootstrap runs gives a p-value of p < 0.0001,
implying that there is indeed a significant effect of gender on the measurements.

In a second step we want to derive a confidence region for the factor ’Gender’. Here, we restrict our analyses
to the strain rate measurements in order to be able to plot the confidence ellipsoids for the contrast of interest. That
is, we consider the null hypothesis H(2)

0 : {Tµ = 0} = {µ11 − µ21 = µ12 − µ22} = {µ1 − µ2 = 0}, where µi j is the
corresponding mean value of measurement j (systolic vs. diastolic measurement) in group i (female vs. male) and

T =

(
1 0 −1 0
0 1 0 −1

)
.

The parametric bootstrap procedure with 10,000 bootstrap runs leads to a p-value of p = 0.0146 for the MATS,
i.e., there is a significant effect of gender on the peak strain rate. We can now construct a confidence ellipsoid
as described in Section 4.2 based on the parametric bootstrap quantile c∗1−α. Therefore, we need to compute the

eigenvalues λ j and eigenvectors e j, j = 1, 2 of T D̂NT. The ellipse is centered at TX• = (−0.097, 0.126)>. For the
eigendecomposition of T D̂NT, we obtain λ = (0.508, 0.412) as well as e1 = (−1, 0)> and e2 = (0,−1)>, that is,
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Figure 5: Boxplots of the end diastolic and systolic volume as well as stroke volume for female and male patients.

the confidence ellipse extends
√
λ1 · c∗1−α/N = 0.013 units in the direction of e1 and 0.012 units in the direction of

e2. The corresponding ellipse is displayed in Figure 6. It turns out that female patients have a lower systolic peak
strain rate but a higher diastolic peak strain rate than male patients, a finding that is confirmed by the descriptive
analysis in Table 5 and Figure 4.

10.1. Covariance Matrices

For convenience, we included the estimated covariance matrices of the data example for female and male
patients and the five outcome variables end diastolic volume (EDV), end systolic volume (ESV), stroke volume
(SV), peak systolic strain rate (PSSR) and peak diastolic strain rate (PDSR) in this section. Covariance matrices,
rounded to three decimals, for female patients (EDV, ESV, SV, PSSR, PDSR):



6.931 3.087 3.844 0.022 −0.012
3.087 1.947 1.140 0.018 −0.013
3.844 1.140 2.704 0.004 0.002
0.022 0.018 0.004 0.001 −0.001
−0.012 −0.013 0.002 −0.001 0.001



and male patients: 

10.025 4.522 5.503 0.043 −0.021
4.522 2.661 1.862 0.027 −0.018
5.503 1.862 3.641 0.016 −0.003
0.043 0.027 0.016 0.002 −0.001
−0.021 −0.018 −0.003 −0.001 0.001


.

10.2. Problem with the ATS

Finally, we want to demonstrate the problems that can arise when using the ATS Q̃N in multivariate data.
Since the asymptotic distribution of the ATS depends on unknown parameters [5, 16], it is approximated by an
F -distribution. In particular, the scaled statistic

FN =
N

tr(TΣ̂)
X
>
• TX•

32



−0.15 −0.10 −0.05 0.00

0.
00

0.
05

0.
10

0.
15

µ11−µ21

µ12
−µ2

2

Figure 6: 95 % confidence ellipse for µ1 − µ2. The � denotes the center TX• of the ellipse. Female patients seem to have a lower systolic peak
strain rate but a higher diastolic peak strain rate than male patients.

is approximated by an F (̂ν,∞)-distribution with ν̂ = tr2(TΣ̂)/ tr(TΣ̂)2 degrees of freedom. We consider only the
peak strain rate measurements. The ATS then results in a test statistic of FN = 5.2, while the corresponding quantile
of the F -distribution is 3.51, resulting in a p-value of 0.02. If we now change the units of the peak systolic strain
rate from 1/sec to 1/min, the test statistic becomes FN = 3.51 with an F -quantile of 3.84, resulting in a p-value
of 0.06. By changing the units in one component, we have therefore changed the significance of the outcome at
5% level. Thus, the ATS should only be applied if observations are measured on the same scale as in repeated
measurements but not to multivariate data in general.
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Appendix: The GFD package

Friedrich, S., Konietschke, F. and Pauly, M. (2017). GFD: An R package
for the Analysis of General Factorial Designs. Journal of Statistical
Software, Code Snippets, 79(1), 1–18, DOI: 10.18637/jss.v079.c01.

This work is licensed under the licenses
Paper: Creative Commons Attribution 3.0 Unported License
(https://creativecommons.org/licenses/by/3.0/de/legalcode)
Code: GNU General Public License (at least one of version 2 or version
3) or a GPL-compatible license.
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Abstract

Factorial designs are widely used tools for modeling statistical experiments in all
kinds of disciplines, e.g., biology, psychology, econometrics and medicine. For testing
null hypotheses in this framework, ANOVA methods are widely used. However, the cor-
responding F tests are only valid for normally distributed data with equal variances, two
assumptions which are often not met in practice. The R package GFD provides an im-
plementation of the Wald-type statistic (WTS), the ANOVA-type statistic (ATS) and a
studentized permutation version of the WTS. Both the WTS and the permuted WTS do
not require normally distributed data or variance homogeneity, whereas the ATS assumes
normality. All methods are available for general crossed or nested designs and all main
and interaction effects can be plotted. Additionally, the package is equipped with an
optional graphical user interface to facilitate application for a wide range of users. We
illustrate the implemented methods for a range of different designs.

Keywords: factorial designs, non-normal data, heteroscedasticity, permutation, R, GUI.

1. Introduction
Originated in the agricultural sciences factorial designs are widely used tools for modeling sta-
tistical experiments in a variety of disciplines, e.g., biology, econometrics, medicine, ecology
or psychology. For testing null hypotheses formulated in terms of means, analysis-of-variance
(ANOVA) methods are well known, and preferred for making statistical inference. ANOVA
methods are implemented in R within the function aov in the R package stats (R Core Team
2017). The anova function in this package as well as Anova in the car package (Fox and
Weisberg 2011) provide clearly arranged ANOVA tables for fitted models. The corresponding
F tests, however, are only valid under the assumption of normally distributed errors and equal
variances across the different treatment groups. These assumptions are hard to verify in prac-
tice and often not met. A violation usually inflates the type-I or -II errors of the F statistics.



2 GFD: General Factorial Designs in R

The accuracy of the F tests depends on the actual data distributions, sample size allocations,
and the degree of variance heteroscedasticity. For normally distributed errors, several pro-
cedures for heteroscedastic data have been proposed, e.g., the generalized Welch-James test
(Johansen 1980), the approximate degrees of freedom test (Zhang 2012) or the ANOVA-type
test proposed by Brunner, Dette, and Munk (1997), see also Bathke, Schabenberger, Tobias,
and Madden (2009). These tests control the type-1 error level in heteroscedastic designs quite
accurately, but are in general not asymptotically exact for non-normal data. In comparison
to that, the Wald-type statistic, see Equation 2 below, is asymptotically exact in general
factorial designs without assuming variance homogeneity or normally distributed error terms.
It is well known, however, that the Wald-type statistic requires large sample sizes to control
the pre-assigned type-I error, see e.g., Vallejo, Fernández, and Livacic-Rojas (2010). Its small
sample behavior may be improved by applying an adequate permutation procedure, see Pauly,
Brunner, and Konietschke (2015) for the theoretical background. The only comparable test
included in the R function oneway.test is the Welch (1951) test for heteroscedastic one-way
layouts. Furthermore, an ANOVA-type test based on ranks is also implemented in the R
package asbio (Aho 2017) within the functions BDM and BDM.2way for nonparametric one- and
two-way layouts, respectively.
For a user friendly application of these rather robust methods in statistical data sciences, the
R package GFD has been developed. The use of the main function GFD as well as its output
are very similar to the aov function from the R package stats or the Anova function from the
R package car (Fox and Weisberg 2011). Its application provides a descriptive overview of
the data as well as the complete ANOVA-tables according to the formula input, which al-
lows the modeling of arbitrary high-way layouts. Hereby the Wald-type statistic, a permuted
version thereof as well as the ANOVA-type statistic for these general factorial designs are
implemented. Both the Wald-type statistic as well as the permutation test neither assume
normality nor homogeneous variances, while the ANOVA-type statistic assumes normality.
Furthermore, all main and interaction effects can be plotted along with (1 − α) confidence
intervals. In addition, the package is equipped with a graphical user interface (GUI) to
facilitate application for a wide audience of statisticians, practitioners, and educational pur-
poses. The package is freely available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=GFD.
The paper is organized as follows: In Section 2 we describe the statistical model and the tests
used in this setting. In Section 3 we provide various examples for different settings which are
statistically evaluated with the R package GFD. Finally, we discuss the results in Section 4
and provide an outlook to future work.
Throughout the paper we use the following notation: We denote by P a = Ia − 1

aJa the
a-dimensional centering matrix, Ia is the a-dimensional unit matrix and Ja denotes the a×a
matrix of 1’s, i.e., Ja = 1a1>a , where 1a = (1, . . . , 1)> is the a-dimensional column vector of
1’s.

2. Statistical model and inference methods
In order to cover different factorial designs, we consider the following general linear model

Yik = µi + εik, (1)

where k = 1, . . . , ni is the experimental unit within class i = 1, . . . , a. Note that different
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sample sizes ni are admitted. For each fixed i the error terms εik are independent and
identically distributed with E(εi1) = 0 and VAR(εi1) = σ2

i > 0. Note that we neither assume
normality of the error terms nor variance homoscedasticity. In this setting, a higher way
factorial structure with crossed or nested factors can be achieved by splitting up the index i
into sub-indices i1, i2, . . . , ip. In our notation, the components i = 1, . . . , a can be considered
as a lexicographic order of the factor level combinations.
In this framework we like to test general linear null hypotheses

Hµ
0 : Hµ = 0

about the mean vector µ = (µ1, . . . , µa)>. Here H denotes an adequate hypothesis contrast
matrix of interest.
Let Y · = (Y 1·, . . . , Y a·)> denote the vector of group means and let V N = COV(

√
N Y ·) =

diag(Nni
σ2
i : i = 1, . . . , a) denote the covariance matrix of

√
N Y ·. Then V N is consistently

estimated by V̂ N = diag(Nni
σ̂2
i ), where σ̂2

i = 1
ni−1

∑ni
i=1(Yik − Y i·)2 denotes the empirical

variance of the sample Y i = (Yi1, . . . , Yini)>.
In order to test the null hypotheses formulated above in this general framework, we consider
two generalizations of the two-sample Welch t statistic: The Wald-type statistic (WTS) as
discussed, e.g., in Pauly et al. (2015), and the ANOVA-type statistic (ATS) from Brunner
et al. (1997). The WTS is given by

QN = N Y
>
· H

>(HV̂ NH
>)+H Y ·. (2)

Here, M+ denotes the Moore-Penrose inverse of a matrix M . It is well known that under
rather weak assumptions the WTS has asymptotically a central χ2

f distribution with f =
rank(H) degrees of freedom under Hµ

0 : Hµ = 0. However, the WTS requires large sample
sizes to get a satisfactory approximation by using the quantiles of the limiting χ2 distribution
(Akritas, Arnold, and Brunner 1997; Akritas and Brunner 1997; Vallejo et al. 2010; Pauly
et al. 2015).
A second generalization of the two-sample Welch statistic is the ANOVA-type statistic (ATS)
defined as

AN = N

tr(T V̂ N )
Y
>
· T Y ·,

where T = H>(HH>)−H. Following Brunner et al. (1997) the distribution of the ATS can
be approximated by an F (f̂ , f̂0)-distribution such that the first two moments coincide, i.e.,
by choosing

f̂ = tr(T V̂ N )2/tr(T V̂ NT V̂ N )

and
f̂0 = tr(T V̂ N )2/tr(D2V̂

2
NΛ).

Here D denotes the matrix of diagonal elements of T and Λ = diag((n1 − 1)−1, . . . , (na −
1)−1) (Brunner et al. 1997; Brunner and Puri 2001). Note that in the two-sample case this
approximation coincides with the Satterthwaite-t-approximation. However, the ATS is in
general asymptotically exact only for normally distributed error terms.
Another possibility is to improve the small sample behavior of the WTS by applying a per-
mutation procedure (Pauly et al. 2015). To describe this procedure in detail, let Y π =
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π(Y 1, . . . ,Y a)> denote a fixed but arbitrary permutation of Y , i.e., π ∈ SN . Furthermore,
let Y π

· = (Y π
1·, . . . , Y

π
a·)> denote the vector of means and V̂ π

N = diag
(
N
ni

(σ̂ πi )2 : i = 1, . . . , a
)

the diagonal matrix of empirical variances (σ̂ πi )2 under this permutation. Then, the permuted
Wald-type statistic (WTPS) is given by

Qπ
N = N(Y π

· )>H>(HV̂ π

NH
>)+H Y

π
· ,

which is the WTS as defined in Equation 2 calculated with the permuted observations. Now,
a permutation test is achieved by the following steps:

1. Fix the data Y and compute the WTS QN .

2. Permute the data randomly and obtain the value of Qπ
N . Safe this in A1.

3. Repeat Step 2 J (say J = 10, 000) times and obtain the values A1, . . . , AJ .

4. Compute the p value by the (approximative) conditional permutation distribution (i.e.,
the empirical distribution of A1, . . . , AJ) as

p value = 1
J

J∑

j=1
I(QN ≥ Aj).

Instead of computing the p value for making statistical inference, the original WTS QN
can be compared with the (1 − α) quantile of the conditional distribution of Qπ

N given the
data Y , i.e., the empirical quantile of A1, . . . , AJ . Pauly et al. (2015) have shown that this
algorithm yields a valid permutation approach and consistent level α test, i.e., the conditional
distribution of the WTPS always approximates the null distribution of QN . The test controls
the preassigned level α under the null hypothesis and is even finitely exact if the pooled data
is exchangeable under the hypothesis. Note that in the special case of a one-way layout the
WTPS reduces to the permutation test for means of Chung and Romano (2013). The default
value for the number of permutation runs in the R package GFD is nperm = J = 10, 000.
For practical recommendations we briefly summarize the main properties of the three con-
sidered tests from Pauly et al. (2015): Mathematically, only the WTS and WTPS provide
valid asymptotic procedures for general factorial designs. Nevertheless, simulation studies
demonstrate that the ATS controls the α level for finite samples rather satisfactory. In case
of non-normal data, however, the test tends to be conservative, which leads to loss of power.
The WTS, in contrast, is quite liberal for small to moderate sample sizes. The WTPS is
a rather accurate procedure even for non-normal data. When data is very skewed and het-
eroscedastic, the test tends to be liberal and to over-reject the hypothesis, in particular when
the larger sample has the smaller variance (so called negative pairing). Its liberality is, how-
ever, not as pronounced as for the WTS.
Note that in comparison the coin package (Hothorn, Hornik, van de Wiel, and Zeileis 2008),
which contains permutation tests for two- and multiple-sample problems, does not, e.g., handle
heteroscedastic shift models. In our more general situation we allow for different variances
and/or different distributions among the different groups. Furthermore, the Welch test from
the function oneway.test is also only an approximation for normally distributed models that
is known to perform worse than the ATS and the WTPS, see e.g., Vallejo et al. (2010) and
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Pauly et al. (2015). Remark further, that the ANOVA-type tests from the R package asbio
(Aho 2017) are based on ranks and test different null hypotheses formulated in terms of
distribution functions instead of means.
For the calculation of the confidence intervals, we have used the corresponding quantiles of
the t distribution.

2.1. Two-sample tests
A special case of model (1) is the heteroscedastic two-sample case, i.e., a = 2. This results in
the extended Behrens-Fisher model

Yik = µi + εik, i = 1, 2; k = 1, . . . , ni,

which is usually analyzed using a Welch’s t test in the statistic

TN = Y 1· − Y 2·√
σ̂2

1/n1 + σ̂2
2/n2

. (3)

Its distribution is approximated by a tν distribution with estimated Satterthwaite-Welch
degree of freedom ν to account for variance heterogeneity. Another possibility to approximate
the distribution of TN as defined in Equation 3 is to employ the studentized permutation
distribution of TN , and to carry out the test as a permutation test as proposed by Janssen
(1997, 2005).
Note that the Wald-type statistic QN , as well as the ATS AN are the square of TN in the
two-sample case. Furthermore, both the statistics QN and AN are identical in this setup; and
the second degree of freedom f̂0 of the ATS is identical to the Satterthwaite-Welch degree
of freedom. The first degree of freedom f̂ is equal to 1, by definition. Thus the ATS test is
essentially Welch’s t test and the WTPS test is in fact Janssen’s permutation test.

3. Examples
In this section, we provide examples demonstrating how different factorial designs can be
analyzed using the GFD package. The function GFD returns an object of class ‘GFD’ from
which the user may obtain plots and summaries of the results using plot(), print() and
summary() methods, respectively. Here, print() returns a short summary of the results,
i.e., the values of the test statistics along with degrees of freedom and corresponding p values
whereas summary() also displays some descriptive statistics such as the means and variances
for the different factor level combinations. Plotting is based on plotrix (Lemon 2006). For
two- and higher-way layouts, the factors for plotting can be additionally specified in the plot
call, see the examples below.

GFD(formula, data = NULL, nperm = 10000, alpha = 0.05)

Note that the test statistics for the main effects considered in Section 2 are not changed
by whether or not an additional interaction term is specified in formula since the tests are
determined by the choice of the hypothesis matrixH. Only crossed and hierarchical (nested)
designs are implemented – a mixture of both is up to date not available.
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Figure 1: The GUI for tests in general factorial designs: The user can specify the data location,
the formula, the number of permutations and the significance level α. One can additionally
choose to plot the results.

Figure 2: Graphical user interfaces for plotting: The left GUI is for the one-way layout (no
choice of factors possible), the other one is for a higher-way layout. An example for plotting
interactions is given in the right panel.

Furthermore, the GFD package is equipped with an optional GUI, based on RGtk2 (Lawrence
and Temple Lang 2010), which will be explained in detail in the next section.

3.1. Graphical user interface
The GUI is started in R with the command calculateGUI(). Note that the GUI depends
on RGtk2 and will only work if RGtk2 is installed. The user can specify the data location
(either directly or via the "load data" button), the formula, the number of permutations and
the significance level α, see Figure 1. Additionally, one can specify whether or not headers are
included in the data file, and which separator and character symbols are used for decimals
in the data file. The GUI also provides a plotting option, which generates a new window
for specifying the factors to be plotted (in higher-way layouts) along with a few plotting
parameters, see Figure 2. Note that four- and higher way interactions cannot be plotted due
to the increasing complexity of the plots.

R> library("GFD")
R> calculateGUI()

3.2. Two-sample tests
As an example of a two-sample problem we consider a subset of the weightgain data set
(Hand, Daly, McConway, Lunn, and Ostrowski 1993) from the HSAUR package (Everitt and
Hothorn 2017). The data contains information on the weight gain (in grams) of rats which
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were randomized to one of four diets, distinguished by the amount of protein (high and low)
and the source of protein (beef and cereal). For our purposes, we first restrict our analysis to
the high protein group.

R> library("GFD")
R> data("weightgain", package = "HSAUR")
R> weightgain2 <- subset(weightgain, type == "High")
R> set.seed(123)
R> two_sample <- GFD(weightgain ~ source, data = weightgain2,
+ nperm = 10000, alpha = 0.05)
R> plot(two_sample, main = "Two-sample test", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)
R> two_sample

Call:
weightgain ~ source

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

4.37169244 1.00000000 0.03654068 0.05580000

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

4.37169244 1.00000000 17.99896078 0.05099558

Note that the results are identical with those using the t.test function:

R> t.test(weightgain ~ source, data = weightgain2)

Welch Two Sample t-test

data: weightgain by source
t = 2.0909, df = 17.999, p-value = 0.051
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.0679184 28.2679184
sample estimates:

mean in group Beef mean in group Cereal
100.0 85.9

As mentioned in Section 2.1 the p values obtained using the ATS and the Satterthwaite-Welch
t test are identical. A reason for the smaller p value obtained with the WTS may be given
due to its more liberal behavior in case of small sample sizes (n1 = n2 = 10), see Vallejo et al.
(2010) and Pauly et al. (2015).
The data may also be analyzed using the GUI, see Figure 3 for an example. The corresponding
plot of the effect is given in Figure 4.
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Figure 3: Graphical user interface with formula for the weightgain data set.
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Figure 4: Mean weight gain for the two different sources of protein, beef and cereal, in the
two-sample problem.

3.3. One-way layout
In a one-way layout,

Yik = µi + εik, i = 1, . . . , a; k = 1, . . . , ni,

we are interested in the effect of factor A, i.e., we wish to test the null hypothesis H0 : {µ1 =
. . . = µa} = {P aµ = 0}.
An example for such a model is the data set on startup costs of companies, which was selected
from the Business Opportunities Handbook, see Cengage College (2008). The data represent
business startup costs in thousands of dollars for five different kinds of shops.

R> library("GFD")
R> data("startup", package = "GFD")
R> set.seed(456)
R> model1 <- GFD(Costs ~ company, data = startup, nperm = 10000,
+ alpha = 0.05)
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Figure 5: Mean startup costs for the five different companies in the startup data example.

R> summary(model1)
R> plot(model1, main = "Startup Costs", cex.axis = 1.5, cex.lab = 1.5,
+ cex.main = 1.5, lwd = 2)

Call:
Costs ~ company

Descriptive:
company n Means Variances Lower 95 % CI Upper 95 % CI

1 baker 11 92.09091 1512.6909 66.28044 117.90138
2 gifts 10 87.00000 1289.1111 61.70193 112.29807
3 pets 16 51.62500 733.0500 37.27595 65.97405
4 pizza 13 83.00000 1165.1667 62.54732 103.45268
5 shoes 10 72.30000 983.7889 50.19995 94.40005

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

15.037830399 4.000000000 0.004623394 0.024600000

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

2.57248203 3.70623134 44.51042721 0.05456579

This example nicely demonstrates the liberal behavior of the WTS (p value = 0.0046) as
well as the conservative behavior of the ATS (p value = 0.055). The WTPS, in contrast, is
somewhere in between with a p value of 0.0246.
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3.4. Two-way layout
In a two-way crossed design,

Yijk = µij + εijk = µ+ αi + βj + γij + εijk,

with i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij , one is interested in tests for the main effects of
the factors A and B as well as for an interaction of the two, i.e.,

H0(A) : {αi = µi· − µ·· = 0 ∀ i = 1, . . . , a},
H0(B) : {βj = µ·j − µ·· = 0 ∀ j = 1, . . . , b},

H0(AB) : {γij = µij − µi· − µ·j + µ·· = 0 ∀ i = 1, . . . , a, j = 1, . . . , b},

or formulated with suitable contrast matrices:

H0(A) : {HAµ = P a ⊗
1
b
1>b · µ = 0},

H0(B) : {HBµ = 1
a
1>a ⊗ P b · µ = 0},

H0(AB) : {HABµ = P a ⊗ P b · µ = 0}.

We will again consider the weightgain data set from package HSAUR. This time, however,
we are interested in analyzing both factors, i.e., amount and source of protein.

R> library("GFD")
R> data("weightgain", package = "HSAUR")
R> set.seed(789)
R> model2 <- GFD(weightgain ~ source * type, data = weightgain)
R> summary(model2)
R> plot(model2, factor = "source:type", main = "Interaction", xlab = "Type",
+ cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)
R> plot(model2, factor = "source", main = "Mean weight gain",
+ xlab = "source", cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)

Call:
weightgain ~ source * type

Descriptive:
source type n Means Variances Lower 95 % CI Upper 95 % CI

1 Beef High 10 100.0 229.1111 89.33489 110.66511
3 Beef Low 10 79.2 192.8444 69.41534 88.98466
2 Cereal High 10 85.9 225.6556 75.31562 96.48438
4 Cereal Low 10 83.9 246.7667 72.83158 94.96842

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

source 0.9879494 1 0.32024407 0.3229
type 5.8123090 1 0.01591439 0.0204
source:type 3.9517976 1 0.04682133 0.0554
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Figure 6: Plots of the interaction of factors source and type in the weight gain data (left)
and for factor source alone (right).

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

source 0.9879494 1 35.72893 0.32692829
type 5.8123090 1 35.72893 0.02118641
source:type 3.9517976 1 35.72893 0.05452616

The factor type, i.e., high or low amount of protein in the food, has a significant impact on
the weight gain at 5% level of significance using all three different tests. The source of the
protein, in contrast, does not have a significant influence. The interesting part is the test for
interaction: Here, the classical WTS results in a p value of 0.047, whereas both the ATS and
WTPS provide a p value of 0.055. Thus, both the ATS and WTPS endorse a “borderline
significance” at 5% level.
Figure 6 shows plots for the main effect of the factor type as well as the interaction between
both factors.

3.5. Three-way layout
For the three-way example, we consider a data set on pizza delivery times (Mackisack 1994).
The objective of the study was to see how the delivery time in minutes would be affected by
three different factors: whether thick or thin crust was ordered (factor A), whether Coke was
ordered with the pizza or not (factor B), and whether or not garlic bread was ordered as a
side (factor C). The R code to analyze this data is given in the following statements:

R> library("GFD")
R> data("pizza", package = "GFD")
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R> set.seed(1234)
R> model3 <- GFD(Delivery ~ Crust * Coke * Bread, data = pizza)
R> summary(model3)
R> plot(model3, factor = "Crust:Coke:Bread", legendpos = "center",
+ main = "Delivery time of pizza", xlab = "Bread", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)
R> plot(model3, factor = "Crust:Coke", legendpos = "topleft",
+ main = "Two-way interaction", xlab = "Coke", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)

Call:
Delivery ~ Crust * Coke * Bread

Descriptive:
Crust Coke Bread n Means Variances Lower 95 % CI Upper 95 % CI

1 thin no no 2 19.0 2.0 14.69735 23.30265
5 thin no yes 2 17.5 0.5 15.34867 19.65133
3 thin yes no 2 17.5 4.5 11.04602 23.95398
7 thin yes yes 2 15.0 2.0 10.69735 19.30265
2 thick no no 2 19.5 0.5 17.34867 21.65133
6 thick no yes 2 18.0 2.0 13.69735 22.30265
4 thick yes no 2 21.5 0.5 19.34867 23.65133
8 thick yes yes 2 18.5 0.5 16.34867 20.65133

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

Crust 11.56 1 0.0006738585 0.0089
Coke 0.36 1 0.5485062355 0.5613
Crust:Coke 6.76 1 0.0093223760 0.0286
Bread 11.56 1 0.0006738585 0.0073
Crust:Bread 0.04 1 0.8414805811 0.8153
Coke:Bread 1.00 1 0.3173105079 0.3457
Crust:Coke:Bread 0.04 1 0.8414805811 0.8212

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

Crust 11.56 1 4.699248 0.02121110
Coke 0.36 1 4.699248 0.57625702
Crust:Coke 6.76 1 4.699248 0.05122842
Bread 11.56 1 4.699248 0.02121110
Crust:Bread 0.04 1 4.699248 0.84984482
Coke:Bread 1.00 1 4.699248 0.36598284
Crust:Coke:Bread 0.04 1 4.699248 0.84984482

We find a significant influence of the factors Crust and Bread. The WTS and WTPS also
suggest a significant interaction between the factors Crust and Coke at 5% level, which is only
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Figure 7: Plots of the three-way interaction (upper panel) and the two-way interaction be-
tween factors Coke and Crust (lower panel).

borderline significant when using the ATS. Figure 7 shows interaction plots of the three-way
interaction as well as the two-way interaction between Crust and Coke.

3.6. Nested design
A nested design is covered by the model

Yijk = µij + εijk = µ+ αi + βj(i) + εijk,

where factor B is nested within the levels of factor A. As an example, we consider the curdies
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data set (Quinn, Lake, and Schreiber 1996) included in the GFD package. The aim of the
study was to describe basic patterns of variation in a small flatworm, Dugesia, in the Curdies
River, Western Victoria. Therefore, worms were sampled at two different seasons and three
different sites within each season. For our analyses we consider both factors as fixed (e.g.,
some sites may only be accessed in summer). The R code for analyzing this nested design is
given in the following:

R> library("GFD")
R> data("curdies", package = "GFD")
R> set.seed(987)
R> nested <- GFD(dugesia ~ season + season:site, data = curdies)
R> summary(nested)
R> plot(nested, factor="season:site", xlab = "site", cex.axis = 1.5,
+ cex.lab = 1.5, cex.main = 1.5, lwd = 2)

Call:
dugesia ~ season + season:site

Descriptive:
season site n Means Variances Lower 95 % CI Upper 95 % CI

1 SUMMER 4 6 0.4190947 0.4615290 -0.25954958 1.0977390
2 SUMMER 5 6 0.2290862 0.3148830 -0.33146759 0.7896401
3 SUMMER 6 6 0.1942443 0.0729142 -0.07549781 0.4639864
4 WINTER 1 6 2.0494375 4.0647606 0.03543415 4.0634408
5 WINTER 2 6 4.1819078 35.6801853 -1.78509515 10.1489107
6 WINTER 3 6 0.6782063 0.1910970 0.24151987 1.1148927

Wald-Type Statistic (WTS):
Test statistic df p-value p-value WTPS

season 5.415180 1 0.01996239 0.0001
season:site 5.200991 4 0.26728919 0.3154

ANOVA-Type Statistic (ATS):
Test statistic df1 df2 p-value

season 5.415180 1.000000 6.447707 0.05593278
season:site 1.382224 1.217424 6.447707 0.29278958

In this setting, both WTS and WTPS detect a significant influence of the season whereas
the ATS, again, only shows a borderline significance at 5% level. The effect of the site is not
significant. A plot for the nested effect is given in Figure 8.

4. Conclusion and future work
The R package GFD implements a broad range of semi-parametric methods for the analysis of
general factorial designs, i.e., linear models without the assumption of normality and/or ho-
moscedastic variances across the treatment groups. Three different methods are implemented:
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Figure 8: Plot for the effects in the nested design. The sites are nested within seasons.

Wald-type statistic QN , ANOVA-type statistic AN as well as a permutation approach pro-
posed by Pauly et al. (2015). All methods can be used to test general hypotheses among the
main and interaction effects. In particular, nested designs can be analyzed using GFD. From
a practical point of view we recommend the WTPS procedure since it has been found in Pauly
et al. (2015) to posses both good finite type-I error rate control and power behavior. The
ATS and WTS, in comparison, are slightly conservative or rather liberal, respectively. Con-
fidence interval plots are available for all effects of interest – except of four- and higher-way
interactions.
A graphical user interface (GUI) has been implemented which allows a convenient use of
the software in industry, academia, and educational purposes. We plan to update the GFD
package on a regular basis with new procedures available for the analysis of general designs.
So far, ANOVA-based methods are implemented, and an adjustment of the treatment effects
for covariates is not possible. Furthermore, tests and simultaneous confidence intervals for
multiple comparisons based on the permutation approach are not yet available. The extension
of the implemented methods to covariates and multiple comparisons and their implementation
will be part of future research.
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