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In recent years, advancements in the field of artificial intelligence (AI) have impacted

several areas of research and application. Besides more prominent examples like

self-driving cars or media consumption algorithms, AI-based systems have further

started to gain more and more popularity in the health care sector, however whilst

being restrained by high requirements for accuracy, robustness, and explainability.

Health-oriented AI research as a sub-field of digital health investigates a plethora of

human-centered modalities. In this article, we address recent advances in the so far

understudied but highly promising audio domain with a particular focus on speech

data and present corresponding state-of-the-art technologies. Moreover, we give an

excerpt of recent studies on the automatic audio-based detection of diseases ranging

from acute and chronic respiratory diseases via psychiatric disorders to developmental

disorders and neurodegenerative disorders. Our selection of presented literature shows

that the recent success of deep learning methods in other fields of AI also more and

more translates to the field of digital health, albeit expert-designed feature extractors

and classical ML methodologies are still prominently used. Limiting factors, especially

for speech-based disease detection systems, are related to the amount and diversity

of available data, e. g., the number of patients and healthy controls as well as the

underlying distribution of age, languages, and cultures. Finally, we contextualize and

outline application scenarios of speech-based disease detection systems as supportive

tools for health-care professionals under ethical consideration of privacy protection and

faulty prediction.

Keywords: artificial intelligence, disease detection, healthcare, machine learning, speech

1. INTRODUCTION

The world is continually changing driven by technological progress. By now, there are more
mobile phones on our planet than human beings, we are using virtual agents for navigation
purposes or to manage our shopping lists, we are searching for partners via digital dating services,
and prefer consulting “Dr. Internet” on perceived symptoms over visiting a medical practice.
Worldwide, the technological advancements of the recent years have promoted interconnectivity
between human beings and machines. In particular, the COVID-19 pandemic starting in 2019 has
shown that communication is not restricted to geographic bounds, as we quickly and successfully
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switched from personal interactions at the same table to virtual
interactions from our individual home offices. The health sector
was affected by achievements in digital signal transmission and
information technology as well. In times in which humans
have a longer life expectancy, but partly tend to have an
unhealthier lifestyle than ever before, developments in health
technology havemade it possible that the acquisition of medically
relevant parameters does neither necessarily require healthcare
professionals, nor an examination room. Today, healthcare
monitoring can be done basically everywhere and anytime (1).

More and more people equip themselves with commercial
wearables, such as wristbands with integrated sensor technology,
to continuously monitor vital parameters and infer activity
patterns or fitness status over time. But also in medical science,
the collection of health-related data by means of wearable devices
has become increasingly popular. Today’s sensors have small size,
light weight, and long battery life—characteristics that allow high
flexibility for data collection in everyday life settings. Such a long-
term wearable-based remote tracking of vital signs is well-suited
for different application scenarios, such as disease prevention,
disease detection, or intervention planning and control. Themost
frequently used vital parameters tracked by means of wearable
devices for medical applications include heart rate, blood
pressure, respiration rate, blood oxygen saturation, and body
temperature (2, 3). Apart from the direct measurement of vital
signs, other data logs such as GPS or acceleration information can
be used to indirectly deduce behavioral patterns associated with
physical and mental health. Nowadays, appropriate sensors are
integrated in all common smartphones. This also holds true for
microphones, which are well-suited for recording another type of
data with high relevance in the medical domain—speech1 data.

Large quantities of data collected in people’s natural
environment enable the development of novel approaches that
have the potential to revolutionize the healthcare system.
For the analysis of such data sets for complex patterns and
relationships, the use of artificial intelligence (AI) has almost
become indispensable today. Even though a number of questions,
e. g., regarding ethics or practical implementation, are still open,
the starting shot for an era in which diseases are automatically
detected by machines to support medical doctors in diagnostic
procedures was fired (4). In the following, we aim to address
recent advances in the audio domain with a particular focus
on speech data and present corresponding state-of-the-art AI
technologies. This mini review shall give an excerpt of recent
studies on the automatic audio-based disease detection, covering
a variety of medical conditions.

2. ARTIFICIAL INTELLIGENCE

AI nowadays usually refers to technologies, which are able to
solve complex tasks, including pattern recognition or creative
tasks, which were previously expected to be only solvable by
humans. With advances in AI however, more and more problems

1Please note that we collectively use the term “speech” for all sounds produced by

the human speech apparatus throughout this paper, even though in some context

“voice” would be the more precise term from a linguistic point of view.

appear increasingly easy to solve, thereby further shifting the line
of what problems need “true” intelligence to be solved.

Most breakthroughs in recent decades of AI research came
from the field of machine learning (ML). ML subsumes several
techniques, in which the algorithm designer only provides a
learning framework, based on which the algorithm can learn
from training data how to make decisions. Among the subfields
of ML, supervised learning most importantly contributes to
current automatic disease prediction systems. In this approach,
each data point is accompanied by a label indicating the target
of the ML algorithm. Successful algorithms in this field mostly
belong to the group of parametric ML algorithms, which rely
on fixed-sized sets of usually continuous-valued parameters used
for decision making. The search for a well-suited parameter set
is in general realized by an optimization algorithm as a part of
the training routine. The target of the optimisation process is
to achieve high performance on target evaluation metrics, which
depend on the problem and can be categorized in two groups. For
regression tasks, i.e., the prediction of a single continuous value,
evaluation metrics such as the root mean square error (RMSE) or
the concordance correlation coefficient (CCC) are based on the
absolute difference of prediction and label for given data points.
For classification tasks, i.e., the assignment of a data point to one
of different pre-defined classes, common evaluation metrics such
as the unweighted average recall (UAR) or accuracy (Acc) are
based on the confusion matrix, which displays the relationship
of class predictions and class labels.

For most supervised ML tasks the general processing
framework is similar: Provided data, often in form of pre-
processed features (see Section 3), is fed into an ML algorithm,
which is then optimized to achieve a high performance for a
defined regression or classification metric. Whilst details on data,
pre-processing, ML algorithm and evaluation metrics may differ
from case to case, this common concept has seen tremendous
success for a plethora of applications (5).

The currently most successful technique for many ML tasks
such as self-driving cars or text generation is deep learning
(DL), which is based on artificial neural networks (ANNs)
building hierarchical structures of neurons and propagating
information via matrix multiplications and non-linear functions
and is described in more detail in Goodfellow et al. (6). Based
on their architecture, ANNs can be divided into different classes.
Feed-forward neural networks (FFNNs) consist of a set of fully-
connected or dense layers, i.e., each pair of neurons from
consecutive layers has an individual weighted connection. In
convolutional neural networks (CNNs), consecutive layers are
connected via a convolution operation with weight filters, which
are applied similarly as in traditional image processing and share
parameters across dimensions. ANNs can be further classified
according to the performed task. In a generative adversarial
network (GAN), for example, two neural networks compete
against each other with one trying to create authentic artificial
data samples from noise, while the other trying to discriminate
between fake samples created by the first neural network and real
samples coming from the database (7).

Especially in the context of small data sets, in which ANNs
can fail to generalize well from training to test data, more
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traditional ML algorithms remain quite popular. Particularly for
speech-based disease detection, data sets often only contain a few
hours of speech, compared to corpora, for instance, for automatic
speech recognition (ASR) with approximately several 1,000 h of
speech (8). This apparent gap of dominance for deep learning-
based approaches in health-related speech tasks has already been
pointed out by Cummins et al. (9). A popular approach is the
support vector machine (SVM) for classification tasks and the
support vector regression (SVR) for regression tasks, respectively.
Both approaches are based on the (non-linear) transformation
of the input features into a higher-dimensional space, where
the data points can be separated by hyperplanes. In contrast,
pure statistic-based analyses, for instance related to mean and
standard-deviations of features, are in general not counted as AI
methods.

3. SPEECH MODALITY

AI algorithms rely on the processing of signals, which encode
relevant information about the task at hand. Signals can thereby
be of different nature and, for instance, encode visual or auditory
information. Whilst some areas of AI research, including image-
based approaches, have obtained a large amount of attention
over the years and resulting algorithms are increasingly accepted
and focused on in medical research (10, 11), health-related
AI research based on audio data is yet limited. Existing
audio approaches often focus on speech data, as human
speech production requires an interplay of complex anatomical
structures and neurological control, encoding both linguistic
information (speech content) and acoustic information (speech
quality). The audio signal produced by the human speech
apparatus can, thus, be potentially influenced on different
levels by a multitude of environmental and internal factors
including diseases ranging from a simple cold to a neurological
disorder.

The raw form in which audio data can be used for
subsequent digital processing and analysis is a time-
and value-quantised one-dimensional signal originally
based on continuous measurements of air pressure waves
through a microphone. Even though some ML algorithms,
so-called end-to-end systems, are designed to directly
process these raw analog-to-digital converted signals, most
approaches still rely on an initial extraction of a set of audio
features.

Traditional audio feature sets rely on a careful expert-
driven selection of features potentially relevant for a
specific task based on theoretic reasoning and/or practical
experience, and they usually include features derived from
audio signal representations in different domains, such
as the original time-domain or the frequency/spectral
domain obtained through a Fourier transform. Figure 1

exemplarily demonstrates speech spectrograms of a patient
with COVID-19 and a healthy control. The comparison
reveals obvious differences in the frequency domain, mostly
toward an increased amount of coarseness in the speech of
the patient with COVID-19 reflected in less distinct harmonic

overtone structures. In this case, the spectral audio signal
representation seems to be a good basis for the derivation
of features suited to make an AI system detect a respiratory
disease.

Basic properties of the signal are usually captured on a
short-term basis through low-level descriptors (LLDs). Examples
are the fundamental frequency (Fo), jitter, shimmer (14), or
Mel frequency cepstral coefficients (MFCCs), which display
the short-term energy spectrum on a Mel scale (15), as well
as their first (1) and second (12) order derivatives. Then,
higher-level descriptors (HLDs) are calculated as statistical
functionals over LLD trajectories and, thereby, summarize
LLDs over larger segments of time. The extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) is a rather
small standardized set of overall 88 acoustic HLDs selected
by experts in the audio field based on their theoretical and
practical relevance for automatic speech analysis tasks including
clinical tasks (16). In contrast, the Computational Paralinguistics
ChallengE (ComParE) feature set represents one of the most
extensive standardized feature sets in the field of automatic
speech analysis and was introduced as part of the homonymous,
yearly Interspeech challenge (17). It comprises 6 373 acoustic
HLDs, which are generated through a brute-force combination
of numerous LLDs and statistical functionals.

Recently, a number of feature sets, which are not explicitly
dependent on expert knowledge, have attracted an increasing
amount of attention. This includes the deep spectrum features,
which are based on spectrograms, and utilize hidden layers
of CNNs, pre-trained on the ImageNet or other image
corpora, for feature extraction (18). After the initial feature
extraction stage, some approaches exist, which further
process these features. A popular approach in this regard is
the use of bag-of-audio-words (BoAW) representations to
summarize signal characteristics over time by means of their
frequency (19).

4. AUTOMATIC SPEECH-BASED DISEASE
DETECTION

A literature search in PubMed, one of the most important
reference search engines for articles on life sciences and
biomedical topics, revealed 85,012 entries on “artificial
intelligence” OR “machine learning” OR “deep learning” (=
search term 1) for the last 5 years (2017–2021) with more than
40% (37,032) of them having been indexed in 2021. These
numbers demonstrate an increasing acceptance of AI technology
in the health domain. Thereby, research on automated disease
detection based on speech data has gained momentum as well:
5,019 of the overall 85,012 entries deal with speech OR voice OR
language (= search term connected with a logic AND to search
term 1) with again more than 40% (2,038) of them stemming
from 2021. A number of recently published studies in this field
follow supervised ML approaches based on extracted acoustic
features as outlined above. However, the exact task, type and size
of the data sets, the selection of features and ML algorithms, as
well as the corresponding performances vary greatly among the
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FIGURE 1 | Comparison of a 19-year-old symptomatic male with COVID-19 (top) and a 37-year-old asymptomatic COVID-19 negative male (bottom) by means of

speech spectrograms of the recorded first clause of the German standard text “The Northwind and the Sun” [“Einst stritten sich Nordwind und Sonne, wer von ihnen

beiden wohl der Stärkere wäre."]. The recordings are part of the “Your Voice Counts” dataset (12, 13).

different studies. An excerpt of studies published since 2017 on
automated speech-based disease detection2 is given in Table 1,
specifying above mentioned details.

The presented overview does not claim for completeness,
but is intended to indicate current research trends and to
reveal the variety of recently done work on AI-driven speech-
based disease detection with regard to the used approaches
and the addressed disease types alongside the obtained
performances. Following a general trend in AI, the most
frequently used ML approaches here are ANNs including CNNs
and deep neural networks (DNNs), along with SVM/SVR
still playing a substantial role, especially for benchmarking
purposes and when having only small- to middle-sized
datasets available.

The basic feasibility of speech-based disease detection
or disease/symptom severity prediction could already be
demonstrated for a wide spectrum of medical conditions
ranging from acute or chronic respiratory diseases, such
as cold and flu (34), COVID-19 (24), or asthma (23), via
psychiatric disorders, such as anxiety disorder (21), bipolar
disorder (22), or depression (28), to developmental disorders,
such as autism spectrum disorder (30), and neurodegenerative
diseases, such as Alzheimer’s disease (20) or Parkinson’s
disease (32). Promising results in most of the presented
studies suggest that AI-based speech analysis might really
have the potential to make a valuable contribution to future
healthcare. Efforts should be made to gradually move this
technology from a basic research level to its practical
application. To this end, a close collaboration between
engineers, healthcare professionals, and patient stakeholders will
be essential.

2Please note that we consistently use “detection” as a medical term throughout this

work, even though presented studies actually represent classification or regression

tasks from a technical perspective.

5. DISCUSSION

En route to make machines automatically analyse human speech
to support medical doctors in diagnostic decision-making, a
number of obstacles have yet to be overcome. Among the biggest
challenges of speech-based AI systems for disease detection
is the acquisition of well-controlled and high-quality data of
sufficient quantity to apply state-of-the-art AI approaches such
as DNNs. To acquire large amounts of data is especially difficult
in rare diseases. Moreover, most studies focus on speakers of
the same language—in most cases English—and it remains open
whether the results are generalisable to other languages. New
innovative solutions for the acquisition of bigger and universally
interpretable medically relevant speech data are necessary to
enhance the potential of AI approaches for disease detection.

5.1. Perspectives
Future application fields of speech-based AI systems for disease
detection are manifold: Such systems could be used by healthcare
professionals in clinics, by local general practitioners or—in case
of pandemics such as the COVID-19 pandemic—in specific test
centers. There could be specific examination rooms with optimal
acoustic conditions where the patient could be asked to produce,
e. g., sustained vowels or to read aloud a certain standardized text.
The speech material would be recorded by a microphone and
immediately analyzed by the AI system. The results would then
be interpreted by the healthcare professional and could be used to
discuss potential next diagnostic steps or intervention procedures
with the patient.

Such AI-based disease detection technology could be even
implemented fully automatically during routine examinations,
such as the regular examinations of infants and young children
in their first years of life. For this, it would only be necessary to
equip the examination room with suitable microphones that are
connected with the AI system. In the future, such an approach
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TABLE 1 | Overview of recent speech-based disease detection studies.

Disease Reference Cohort (m/f) Data Features ML task Appr. Perform.

Alzheimer’s

disease

(20) 78, 50–80 y, w/ and w/o,

MMST interval: 0–30

Spontaneous speech BoAW, ZFF-Signals Prediction of MMST value SVR RMSE: 6.97

w/ vs w/o (2-class) E2E CNN Acc: 0.74

Anxiety

disorder

(21) 239 (69/170), 18–68 y (31.5

± 12.3 y), BAI interval: 0–63

Vocalization exercises ComParE, eGeMAPS, DS BAI prediction SVR ρ ≤ 0.70

Bipolar

disorder

(22) 46 (30/16), 18–60 y YMRS:

remission (0–7), hypomania

(8–19), mania (20–60)

Audio from structured

interview

MFCCs YMRS (3-class) DNN UAR: 0.57

Bronchial

asthma

(23) 71 (N/A), w/ and 135 (NA)

w/o bronchial asthma, 8 ±

N/A y

Sustained vowel /a:/ MFCCs, CQCCs w/ vs w/o (2-class) GMM-UBM Acc: 0.72

COVID-19 (24) 52 (32/20), 63.4 ± 9.9 y

Hospitalized w/, 3 severity

categories

Speech, 5 sentences eGeMAPS, ComParE severity prediciton

(3-class)

SVM UAR ≤ 0.68

(25) 20 (12/8) w/ 60 (40/20) w/o

and healthy

Speech (1/12)-MFCCs, LLDs w/ vs w/o (2-class) LSTM-RNN Acc: 0.88

Depression (26) 275, PHQ-8 interval: 0–24 Audio from semi-clinical

interviews

LLDs, BoAW, DS PHQ-8 prediction RNNs CCC ≤

0.108, RMSE

≥ 8.19

(27) 292 (N/A), 18–63 y (31.5 ±

12.3 y), BDI-II interval: 0–63

Audio from HCI scenario log-Mel-spectrograms BDI-II prediction CNN RMSE: 9.65

(28) 182 (N/A) w/ or w/o, binary

PHQ-8

Speech from clinical

interviews

MFCC depression prediction

(2-class)

LSTM-RNN Acc: 0.763

Develop-

mental

disorder

(29) 11 children w/ ASD, 10 w/

PDD, 13 w/ SLI, 68 typically

developed, 6–18 y

Spontaneous speech eGeMAPS, ComPARE Developmental disorder

prediction (4-class)

GANs UAR: 0.47

(30) 10 infants later diagnosed

w/ ASD (5/5), 10 typically

developed (5/5), 10m

Audio from PCI scenario eGeMAPS ASD prediction (2-class) SVM, RNN Acc: 0.75

Parkinson’s

disease

(31) 23 (N/A) w/ and 8 (N/A) w/o Speech sound samples 22 selected acoustic

features

w/ vs w/o (2-class) k-NN, RF, NB,

SVM

CR ≤ 85.81%

(32) 50 w/ (25/25) and 50 w/o

(25/25), 31–86 y

Read words/texts,

monolog, diadochokinetic

exercises

488 articulatory features,

28 phonation features,

103 prosody features, 192

glottal features

w/ vs w/o (2-class) SVM Acc ≤ 0.68

E2E CNN Acc ≤ 0.69

Pathological

speech

(33) 126 (N/A) speech Cochleogram, Hilbert

Spectrum

w/ vs w/o (2-class) VGG-16 CNN Acc: 0.92

Upper

respiratory

tract infection

(34) 630 (382/248), 12–84 y

(29.5 ± 12.1 y), w/ and w/o,

WURSS-24 (German

version)

spontaneous speech, text

reading

ComParE w/ vs w/o (2-class) DNNs UAR: 0.67

For further details, the reader is referred to the original articles. Acc, accuracy; Appr., approach; ASD, autism spectrum disorder; BAI, Beck anxiety inventory; BDI-II, Beck

depression inventory-II; BoAW, Bag-of-Audio-Words; CCC, concordance correlation coefficient; CNN, convolutional neural network; ComParE, computational paralinguistics challenge

[representations]; CQCCs, constant-Q cepstral coefficients; CR, classification rate; 1, first derivative; 12, second derivative; DNN, deep neural network; DS, deep spectrum [features];

E2E, end-to-end; eGeMAPS, extended Geneva minimalistic acoustic parameter set; GAN, generative adversarial network; GMM-UBM, Gaussian mixture model-universal background

model; HCI, human-computer interaction; k-NN, k-nearest neighbor; LLDs, low level descriptors; LSTM, long short-term memory; MFCCs, Mel frequency cepstral coefficients; MMST,

mini-mental-status-test; N/A, not available; NB, naive Bayes; PCI, parent-child interaction; PDD, pervasive developmental disorder; m, months; Perform., performance; PHQ-8, 8-item

patient health questionnaire depression scale; RF, random forest; ρ, Spearman’s Correlation Coefficient; RMSE, root mean square error; RNN, recurrent neural network; SLI, specific

language impairment; SVM, support vector machine; SVR, support vector regressor; UAR, unweighted average recall; w/, with [corresponding disease]; w/o, without [corresponding

disease]; y, years; ZFF, zero-frequency filtered.

could allow an earlier detection of various developmental
disorders that are associated with deficits in the speech-
language domain.

Speech-based AI systems could also be applied “in-the-
wild,” i.e., in the natural environment of a person. Specific
smartphone apps may allow to record speech sequences and

provide immediate feedback on the health status of the speaker.
They may even directly contact the speaker’s general practitioner
if a disease is suspected.

Both possible application scenarios—the data collection in a
healthcare department or “in-the-wild”—have their own benefits:
The data collection in the healthcare department usually results
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in data of higher quality because the recording environment
is easier to control. The data collection “in-the-wild” allows
to capture a probably more reliable picture of the actual
health status of a person due to the absence of a healthcare
professional, cf. the white-coat effect (35), and the presence of
a person’s familiar environment. Moreover, an in-the-wild data
collection would be suited for an efficient and low-resource
continuous and individualized observation of a person’s health
status. This would allow to immediately detect newly occurring
atypicalities in a person’s speech characteristics and to initiate
timely diagnostic procedures.

5.2. Ethical Considerations
Without a doubt, AI applications have a high potential to
revolutionize the healthcare system. Still, prior to their actual use
for disease detection, certain data protection issues need to be
solved and ethical questions need to be discussed thoroughly. For
example, we need to decide whether speech recordings need to
be stored or whether they can be deleted directly after analysis.
In case data are stored, it needs to be discussed who can access
these data. We need to think about who is allowed to retrieve the
disease detection results gained by an AI system. An important
limitation of AI-based disease detection systems is that they
are based on probability theory and, therefore, may provide
misclassifications. Healthcare professionals need to be aware of
this and interpret the results of the AI system in the context
of other available clinical information. Another critical ethical
aspect in connection with AI-based disease detection is raised
by the fact that AI systems, especially high-performing state-of-
the-art deep learning models, usually represent black boxes hard
to understand for human beings. Thus, the clinician would be
forced to make a decision based on a result whose genesis is
completely unclear to her or him. Hence, the field of explainable
artificial intelligence (XAI) deals with techniques to make ML
models better understandable and, thus, generated results better
interpretable by human professionals (36). A common approach
is to derive a selection of features that leads to the best detection
performance (37), or to identify those features that contribute
most to the final model output. The knowledge about specific
speech features that are most essential for the ML algorithm to
differentiate between patients with a certain disease and healthy
speakers, could allow the physician to draw conclusions about
potential voice-physiological atypicalities associated with the

investigated disease (38). Alternatively, sonification represents a

recently emerging XAI approach, in which sound is generated to
auditorily demonstrate salient facets of learning data or relevant
acoustic features to allow human listeners to follow the reasoning
of an ML algorithm (39).

6. CONCLUSION

This mini review gave an overview of recent progress in the
field of automatic speech-based disease detection and revealed
promising results for a wide range of medical conditions. At
this point, it is essential to highlight that the future goal of
AI systems in healthcare is not to replace medical doctors, but
rather to serve as an additional examination instrument that can
help them to more efficiently and more reliably detect diseases
and plan/validate interventions. Future medical doctors will need
to learn how to use such AI systems and how to interpret
their generated outputs. The healthcare professional will act an
essential interface between the AI system and the patient. For a
patient, the personal interaction with a healthcare professional is
of utmost importance for his or her wellbeing. Taken together,
speech has the potential to become similarly important for
disease detection as blood is nowadays. In the upcoming years,
it will be possible to detect a growing amount of diseases earlier
with the help of speech-based AI systems.
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