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1. Introduction

Burgers equation is a dissipative system occurring in various areas of applied math-
ematics, such as fluid mechanics [11, 19], nonlinear acoustics [22], gas dynam-
ics [34], and traffic flow [40]. For a given kinematic viscosity ν, the viscous Burgers
equation is

∂tu = ν∂xxu− u∂xu, u(0, x) = u0(x),

which describes the speed of the fluid at each location along the pipe as time
progresses [20]. The solution is then called Burgers turbulent fluid flow, and referred
to as “Burgers turbulence” or “Burgulence” [17]. We refer to it for the case of a
fluid flow u(t, x) of order one, space-periodic of period one.

By means of the celebrated Cole–Hopf transformation u = −2ν 1
φ∂xφ, we convert

the viscous Burgers equation into a linear equation

∂x

(
1
φ
∂tφ

)
= ν∂x

(
1
φ
∂xxφ

)
,

which can be integrated with respect to x on a periodic domain to get the diffusion
equation ∂tφ = ν∂xxφ. The heat equation can be solved explicitly by the convolution
of the initial data and the heat kernel, and then we use the inverted Cole–Hopf
transformation to obtain the solution to the viscous Burgers equation

u(t, x) = −2ν∂x

(
ln

{
(4πνt)−1/2

∫ ∞

−∞
exp

[
− (x− x̂)2

4νt
− 1

2ν

∫ x̂

0

f(x̃)dx̃

]
dx̂

})
.

The Reynolds number of the flow u(t, x) is Rey = ν−1, where ν is the kinematic
viscosity of fluid. If Rey is large (i.e. ν � 1), then the velocity field u(t, x) of the
flow becomes very irregular, i.e. turbulent [32].

In particular, when ν = 0, the viscous Burgers equation becomes the inviscid
Burgers equation ∂tu = −u∂xu, which is a conservation law, more generally a first
order quasilinear hyperbolic equation. It is important to stress that u(t, x) converges
as ν → 0 to a weak solution for the inviscid Burgers equation constructed by the
method of characteristics; in general the weak solution is not continuous and its
discontinuities are indeed very useful to express the turbulence due to an anomaly
from the shock wave.

Taking the Burgers equation as a model for one-dimensional turbulence we fol-
low Burgers [3]. In order to characterize Burgers turbulence in the presence of
random forces, we add Lévy noise η to generate a stochastic Burgers equation. The
main focus of this study is to investigate the qualitative properties for stochas-
tic viscous Burgers equation driven by cylindrical Lévy process with the periodic
boundary condition, bearing in mind,

∂tu = ν∂xxu− u∂xu+ η(t, x),

u(0, x) = u0(x), t ≥ 0, x ∈ S
1, 0 < ν ≤ 1.

(1.1)
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The Kolmogorov theory of turbulence was created by Kolmogorov in three
papers [24–26] published in 1941 (Kolmogorov’s 1941 theory is referred to herein
as K41 theory). It describes statistical properties of turbulent flows and is now
the most popular theory of turbulence, known as the local similarity or universal
equilibrium theory of small-scale velocity fluctuations in high Reynolds number,
incompressible and stationary turbulence. Kolmogorov proved that short-scale-in-
x features of a turbulent flow u(t, x) display a universal behavior which depends
on particularities of the system only through a few parameters. The Kolmogorov
theory is statistical. That is, it assumes that the velocity field u(t, x) depends on
a random parameter ω ∈ (Ω,F ,P). Moreover, Kolmogorov supposed that the ran-
dom field uω(t, x) is stationary in time and homogeneous. It means that statistically
uω(t, x) and uω(t+C, x+ C̃), where C and C̃ are constants, are the same random
field. Kolmogorov studied short space-increments

u(t, x+ l) − u(t, x), |l| � 1

and examined moments of these random variables as functions of |l|. He also took the
Fourier coefficients ûk(t) of u(t, x) and identified their second moments as functions
of |k|. The Kolmogorov theory admits a natural one-dimensional version [27].

In the spirit of K41 theory, Kuksin [28–31] examined the properties of the turbu-
lence limit for some nonlinear partial differential equations perturbed by a bounded
random kick-force as the viscosity goes to zero. Boritchev [5] obtained sharp esti-
mates for the dissipation length scale and the small-scale quantities which charac-
terize the decaying Burgers turbulence, i.e. the structure functions and the energy
spectrum. The references [7, 13] focused on the turbulence in stochastic viscous
Burgers equation with forcing of Gaussian white noise type. The paper [14] dis-
cussed a number of rigorous results in the stochastic model for wave turbulence due
to Zakharov-L’vov, and considered the damped/driven (modified) cubic nonlinear
Schrödinger equation on a large torus and decomposed its solutions to formal series
in the amplitude. Weinan et al. [16] established existence and uniqueness of an
invariant measure for the Markov process corresponding to the inviscid stochastic
Burgers equation, and also gave a detailed description of the structure and regu-
larity properties for the solutions that live on the support of this measure.

Experimentally, Gottwald [18] evaluated centered second order in time and space
discretizations of the inviscid Burgers equation that supports non-smooth shock
wave solutions in its continuum formulation, and derived the modified equation
associated with the numerical scheme using backward error analysis. LaBryer et
al. [33] improved the reliability and computational efficiency of large-eddy sim-
ulation predictions for turbulent flows of the forced Burgers equation, and con-
structed subgrid models based upon information that is consistent with the under-
lying spatiotemporal statistics of the flow. Blömker et al. [9] investigated the spec-
tral Galerkin method for spatial discretization and the rate of convergence in uni-
form topology for the stochastic Burgers equation driven by colored noise with
well-illustrated numerical examples. A related work for the numerical solution of
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the one-dimensional Burgers equation with Neumann boundary noise using the
Galerkin approximation in space and the exponential Euler method in time was
referred to Ghayebi et al. [21].

Most of our results rely on some knowledge for cylindrical Lévy process, e.g.,
Itô’s formula. The notion cylindrical Lévy process appeared the first time in Peszat
and Zabczyk [37]. The systematic introduction of cylindrical Lévy processes was
presented Applebaum and Riedle [1]. The independent and stationary increments
of a cylindrical Lévy process enable us to identify the cylindrical Lévy process as
a good integrator. Bertoin [6] established some properties and elements of Burgers
turbulence with white noise initial data, and discussed their possible generalization
to the stable noise case. Truman and Wu [39] proved existence of a unique, local and
mild solution to the stochastic Burgers equation driven by Lévy space-time white
noise. Dong et al. [15] identified the strong Feller property and the exponential
ergodicity of stochastic Burgers equations driven by α-stable processes.

This work is structured as follows. In Sec. 2, we introduce analysis tools including
Sobolev space, mass conserving noise and Lévy processes with bounded jumps that
have moments of all orders. We regard the solution u(t, ω, x) of (1.1) as a turbulent
curve depending on ω in L2(S1), i.e. as a random processes in Sobolev spaces.
In Sec. 3, we present the properties of existence and uniqueness for the pathwise
solution u of model (1.1). In Sec. 4, we discuss the Oleinik–Kruzkov inequality
about estimates on u in L∞, and on ∂xu in L1. In Sec. 5, we systematically average
various functionals f of solution u to estimate quantities

Ef(u(t)) =
∫

Ω

f(u(t, ω))P(ω), f :Hn → R,

by means of the logic in the turbulence theory. Then, we get upper and lower bounds
for the Sobolev norms of solution in stochastic Burgers equation (1.1). In Sec. 6,
we deduce the main results consisting of the structure function in x and the energy
spectrum in Fourier for the fluid flow u, and justify the non-Gaussian behavior
of stochastic turbulence by considering small-scale quantities. In Sec. 7, we show
that the energy spectrum of solution u in dynamical system (1.1) is of the form of
Kolmogorov’s law En(u) ∼ n−2, n ∈ N∗ when ν → 0 based on the results of the
previous sections. Finally, in Sec. 8, we summarize our conclusions and challenges,
as well as a number of directions for future study.

2. Analysis Tools

Throughout the paper, we shall work in the separable real Hilbert space

H =
{
φ ∈ L2(S1) :

∫
S1
φ(x)dx = 0

}
and equip it with scalar product 〈·, ·〉 and norm ‖ · ‖ defined by

〈φ, φ̃〉 :=
∫

S1
φ(x)φ̃(x)dx, ‖φ‖ :=

(∫
S1
φ2(x)dx

) 1
2

, φ, φ̃ ∈ H.
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Note that S1 is identified with the interval [0, 2π) and periodic boundary condi-
tion. The standard scalar product in L2(S1) is denoted by 〈·, ·〉L2 . For the Laplace
operator Δ on H with D(Δ) = W k,2(S1) ∩H . The eigenfunctions of Δ are

ek(x) =

{√
2 cos(2πkx) if k ∈ {1, 2, . . .};

√
2 sin(2πkx) if k ∈ {−1,−2, . . .}.

(2.1)

Those functions {ek, k = ±1,±2, . . .} form the trigonometric basis in H of periodic
function with zero mean. Note that if u(t, x) =

∑
k∈Z∗ uk(t)ek(x), then by e2iπkx =

cos(2πkx) + i sin(2πkx), we write it as Fourier series

u(t, x) =
∑
k∈Z∗

ûk(t)e2iπkx,

where ûk(t) = ¯̂u−k(t) = (
√

2)−1(uk(t) − iu−k(t)) is called Fourier coefficient.
For all k ∈ Z∗ := Z\{0},

Δek = −λkek with λk = 4π2|k|2.

For any θ ∈ R, by using the domain of definition for fractional powers of the
operator Δ, we define

Hθ := D((−Δ)θ/2)

:=

{
φ =

∑
k∈Z∗

φkek :φk = 〈φ, ek〉 ∈ R,
∑
k∈Z∗

λθkφ
2
k <∞

}

and

(−Δ)θ/2φ :=
∑
k∈Z∗

λ
θ/2
k φkek, φ ∈ D((−Δ)θ/2)

with the associated norm

‖ φ ‖θ=‖
∞∑
k=1

φkek ‖θ:=‖ (−Δ)θ/2φ ‖:=
√∑
k∈Z∗

λθkφ
2
k.

It is worthwhile to note that when θ = n ∈ N∗, Hn is equivalent to the Sobolev
space Hn = {u ∈ H, u(n) ∈ H}, endowed with the homogeneous scalar product

〈u, v〉n =
∫

S1
u(n)(x)v(n)(x)dx,

where u(n) := ∂nxu represents the weak derivative with respect to x of order n for u.
The norm ‖ · ‖n is induced by the product, and ∂x :Hn+1 → Hn is an isomorphism
satisfying ‖∂mx u‖n = ‖∂xu‖m+n, for all m,n ∈ N.
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If u ∈ H , then u is written as u(x) =
∑

k∈Z∗ ukek(x) using the trigonometric
base (2.1), and the norm of u in Hn is

‖u‖2
n = (2π)2n

∑
k∈Z∗

|k|2n|uk|2 = 2(2π)2n
∞∑
k=1

|k|2n|ûk|2.

Alternatively, we use this characterization to determine the Sobolev space Hn for
all n ≥ 0: Hn = {u ∈ H, ‖u‖n <∞}. For n < 0, we define Hn as the completion of
H with respect to the norm ‖ · ‖n.

We recall the Sobolev injection:

Hn ↪→ Ck(S1) ⇐⇒ n > k +
1
2

(2.2)

and that the space Hn for n > 1
2 is a Hilbertian algebra:

‖uv‖n ≤ cn‖u‖n‖v‖n for some constant cn. (2.3)

Let p ∈ [1,+∞). For a function u(x), we denote by |u|p its norm in the Lebesgue
space Lp(S1), and by ‖u‖n its homogeneous Sobolev norm of order n. If θ = 0, then
we write ‖u‖ := ‖u‖0 = |u|2.

In order to guarantee mass conservation
∫

S1 u(t, x)dx = 0 of the solution to (1.1),
we suppose that the initial value and the noise are mass conserving [10], i.e. for all
t ≥ 0,

∫
S1 u0dx =

∫
S1 ηdx = 0. The stochastic term η = ∂tL(t, x) is Lévy space-time

white noise [36], where L is a cylindrical Lévy process defined via

L(t) =
∑

k=±1,±2,...

βkLk(t)ek(x). (2.4)

Here {βk} is a given sequence of real numbers, converging to zero sufficiently fast,
i.e. there exist constants C1, C2 > 0 such that, for any k ∈ Z∗,

C1λ
−γ0
k ≤ βk ≤ C2λ

−γ0
k , with γ0 > 1.

The independent one-dimensional Lévy processes {Lk(t)}k∈Z∗ on a standard prob-
ability space (Ω,F , {Ft}t≥0,P), have the same characteristic function by Lévy–
Khinchine formula, satisfying that for any k ∈ Z∗ and t ≥ 0,

E[eiξLk(t)] = [Eeiξ·Lk(1)]t = etψ(ξ), ξ ∈ R,

where ψ(ξ) is the Lévy symbol given by

ψ(ξ) = ibξ − 1
2
σ2ξ2 +

∫
y=0

(eiξy − 1 − iξy1(0,1)(|y|))μ(dy), b, σ ∈ R.

Note that μ in the triplet (b, σ2, μ) is the Lévy measure satisfying
∫
R\{0} 1 ∧

|y|2μ(dy) < ∞. For t > 0 and B ∈ B(R\{0}), define the Poisson random mea-
sure of Lk(t) by

Nk(t, B) =
∑

0≤s≤t
1B(ΔLk(s)) = #{0 ≤ s ≤ t : ΔLk(s) ∈ B},

where ΔLk(s) := Lk(s)−Lk(s−) are the jumps of the process Lk and Lk(s−) is the
left limit of Lk(s) at time s. The function μ(B) = E(N(1, B)) describes the expected
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number of jumps in a certain size at a time interval (0, 1] in particular. Furthermore,
define the compensated Poisson measure of Lk(t) via Ñk(t, B) = Nk(t, B)− tμ(B).
According to the Lévy–Itô decomposition, Lk(t) can be expressed as [12]

Lk(t) = tb+ σWt +
∫
|y|<1

yÑk(t, dy) +
∫
|y|≥1

yNk(t, dy), (2.5)

where W is a one-dimensional standard Brownian motion. In this work we only con-
sider Lévy processes {Lk(t)}k∈Z∗ with uniformly bounded jumps and Lévy triplet
(0, 0, μ). They admit moments of all orders.

Theorem 2.1. If {Lk(t)}k∈Z∗ are Lévy processes such that |ΔLk(t, ω)| ≤ c for all
t ≥ 0 and some constant c > 0, then E(|Lk(t)|p) <∞ for all p ≥ 0.

Proof. Let FLk
t := σ(Lk(s), s ≤ t) be the σ-algebra generated by Lk, and define

the stopping times

τ0 := 0, τn := inf{t > τn−1 : |Lk(t) − Lk(τn−1)| ≥ c}.

Since {Lk(t)}k∈Z∗ have càdlàg paths, τ0 < τ1 < τ2 < · · ·. Moreover, Lévy processes
enjoy the strong Markov property τn − τn−1 ∼ τ1 and τn − τn−1 are stochasti-
cally independent of FLk

τn−1
, i.e. (τn − τn−1)n∈N is an independent and identically

distributed sequence. Therefore,

Ee−τn = (Ee−τ1)n = qn

for some q ∈ [0, 1). From the definition of the stopping times we infer

|Lk(t ∧ τn)| ≤
n∑

m=1

|Lk(τm) − Lk(τm−1)|

≤
n∑

m=1

(|ΔLk(τm)|︸ ︷︷ ︸
≤c

+ |Lk(τm−) − Lk(τm−1)|︸ ︷︷ ︸
≤c

) ≤ 2nc.

Thus, |Lk(t)| > 2nc =⇒ τn < t, and by Markov’s inequality

P(|Lk(t)| > 2nc) ≤ P(τn < t) ≤ etEe−τn = etqn.

Finally,

E(|Lk(t)|p) =
∞∑
n=0

E(|Lk(t)|p1{2nc<|Lk(t)|≤2(n+1)c})

≤ (2c)p
∞∑
n=0

(n+ 1)pP(|Lk(t)| > 2nc)

≤ (2c)pet
∞∑
n=0

(n+ 1)pqn <∞.
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Remark 2.1. A Lévy process Lk starting at zero, has stationary and independent
increments and is continuous in probability. All paths [0,∞) � t → Lk(t, ω) are
right-continuous with finite left-hand limits (cádlág). For each ω the noise L(t, ω, x)
in (1.1) defines a cádlág curve L(t, ·) ∈ D0(R+,Hθ), θ ≥ 0.

Example 2.1. For example, Lk(t) is a Lévy process with Lévy measure μ(dy) =
τ(y)

|y|1+α dy, α ∈ (1, 2), where τ(y) is smooth truncation function τ(y) = 1 for |y| ≤ 1,
τ(y) = 0 for |y| ≥ 2. We suppress big jumps, so that E(|Lk(t)|p) < ∞, p ≥ 0, but
Lk(t) is close to α-stable Lévy process.

In a formal way (via multiplying by dt) we are able to rewrite (1.1) as an abstract
stochastic evolution equation

du = (ν∂xxu− u∂xu)dt+ dLt, u(0) = u0. (2.6)

We need to give a rigorous meaning to the formal equation (2.6). It is the abbrevi-
ation of the corresponding integral equation,

u(t) = u0 +
∫ t

0

(ν∂xxu− u∂xu)ds+ L(t), ∀ t ≥ 0, ∀x ∈ S
1, (2.7)

which is defined in a distributional sense.

Definition 2.1. We say that uω(t, x) is a unique pathwise solution of (1.1) if the
stochastic differential equation (2.7) holds for each ω ∈ Qc, where Q is a negligible
set (i.e. Q ∈ F such that P(Q) = 0). If u0 ∈ Hθ, θ ≥ 0, then there is a unique
pathwise solution uω ∈ D(R+, Hθ) of (1.1). It depends on the random parameter ω.

Remark 2.2. Define a bilinear operator Q(u, v) := 1
2uv

′ + 1
2u

′v, u, v ∈ H1 and
write Q(u) = Q(u, u) using symmetry. We rewrite (2.6) into the following stochastic
Burgers equation driven by L(t) as an alternative representation:

du = [νΔu −Q(u)]dt+ dL(t), u(0) = u0 ∈ Hθ, θ ≥ 1.

The mild formulation provides the basic ingredients to verify the existence and
uniqueness of solution by the variation of constants formula. We call a stochastic
process u ∈ D(R+, Hθ), θ ≥ 0 a mild solution of (2.6) with initial condition u(0) =
u0 if

u(t) = u0e
tνΔ −

∫ t

0

e(t−s)νΔQ(u(s))ds+
∫ t

0

e(t−s)νΔdL(s)

for all t ∈ [0, T ] a.s. Based on the regularity of the stochastic convolution [38]∫ t

0

e(t−s)νΔdLs =
∑
k∈Z∗

βk

∫ t

0

e(t−s)νλkdLk(s)ek,

we are able to solve the stochastic Burgers equation using Banach’s fixed point
argument.
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3. Well-Posedness of Stochastic Burgers Equation

For T > 0 and n ∈ N, we endow the Banach space D([0, T ];Hn) with the uniform
norm ‖u‖Dn

T
= sup

t∈[0,T ]

‖u(t)‖n since every càdlàg function on [0, T ] is bounded.

Consider the stochastic heat equation

∂tv = ν∂xxv + η(t, x), v(0, x) = u0(x). (3.1)

The decomposition (2.4) of the force L(t) in the trigonometric base (2.1) demon-
strates that there exists a unique pathwise solution v ∈ D([0, T ];Hn) of stochastic
parabolic partial differential equation (3.1), i.e. for all t ∈ [0, T ],

v(t) = u0 + ν

∫ t

0

∂xxv(s)ds+ L(t), u0 ∈ Hn,

by explicitly calculating the Fourier coefficients of v.
Now we decompose a solution of model (1.1) into

u(t, x) = v(t, x) + w(t, x),

where v is the solution of system (3.1). Thus, w satisfies the perturbed Burgers
equation

∂tw = ν∂xxw − 1
2
∂x(w + v)2, w(0) = 0. (3.2)

The advantage of reducing from Eq. (1.1) to Eq. (3.2) is the fact that all the
coefficients of the latter are regular. In the following we solve Eq. (3.2). We start
with a lemma to deal with functional inequality.

Lemma 3.1. Let n ∈ N∗, q ∈ [1,∞] and w ∈ Hn+1. Then, there exists C(n) > 0
such that

|〈∂2n
x w, ∂xw

2〉| ≤ C(n)‖w‖1+ε
n+1|w|2−εq , ε(n, q) =

n+ 2
q −

1
2

n+ 1
q + 1

2

. (3.3)

Proof. Using Leibniz’s formula, we have

|〈∂2n
x w, ∂xw

2〉| ≤ C(n)
n∑

m=0

∫
S1
|w(m)w(n−m)w(n+1)|dx. (3.4)

We maximize the integral at the right-hand side of (3.4) by Hölder’s inequality to
obtain ∫

S1
|w(m)w(n−m)w(n+1)|dx ≤ |w(m)|p1 |w(n−m)|p2‖w‖n+1,

where 1
p1

+ 1
p2

= 1
2 . Utilizing Gagliardo–Niremberg inequality, we get∫

S1
|w(m)w(n−m)w(n+1)|dx ≤ C‖w‖1+ε

n+1|w|2−εq ,

where ε = ε(m, q, p1, n + 1) + ε(n − m, q, p2, n + 1) =
n+ 2

q − 1
2

n+ 1
q + 1

2
. Combing the last

inequality and relation (3.4), we deduce (3.3).
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Theorem 3.1. Let n ≥ 1, T > 0 and v ∈ D([0, T ];Hn). Then there is a unique
pathwise solution w ∈ D([0, T ];Hn) of Eq. (3.2) and there exists Cn(T, ν, ‖v‖Dn

T
)> 0

such that

‖w‖2
Dn

T
+
∫ T

0

‖w(t)‖2
n+1dt ≤ Cn. (3.5)

Proof. Based on Galerkin’s approximation for the stochastic Burgers equation [8],
we immediately build the existence of w, and thus the technical details are omitted.
As for uniqueness, let w1, w2 ∈ D([0, T ];Hn) be solutions of (3.2), i.e.

∂twi = ν∂xxwi −
1
2
∂x(wi + v)2, wi(0) = 0, i = 1, 2.

Then the difference, w := w1 − w2 satisfies the equation

∂tw = ν∂xxw − 1
2
∂x((w1 + w2 + 2v)w), w(0) = 0.

Taking the scalar product in 〈·, ·〉L2 of this previous equation with respect to w,
and doing integration by parts,

1
2
d

dt
‖w(t)‖2 = −ν‖w(t)‖2

1 −
1
2

∫
S1

(w1(t) + w2(t) + 2v(t))w(t)∂xw(t)dx.

Due to Cauchy–Schwarz inequality, the injection of H1 into L∞ and Young’s
inequality ∫

S1
|(w1(t) + w2(t) + 2v(t))w(t)∂xw(t)|dx

≤ ‖(w1(t) + w2(t) + 2v(t))w(t)‖ · ‖∂xw(t)‖

≤ C

(
C

2ν
‖w(t)‖2 +

ν

2C
‖w(t)‖2

1

)
.

Hence, d
dt‖w(t)‖2 ≤ C1‖w(t)‖2. Since w(0) = 0, Gronwall’s inequality admits that

‖w(t)‖2 = 0. The uniqueness holds true.
To prove the inequality (3.5), we first discuss the case n = 0 of (3.5).

After multiplying (3.2) by w and integrating in space, the left side is written as∫
S1 w∂twdx = 1

2
d
dt‖w(t)‖2, and the right side becomes∫

S1
w

(
ν∂xxw − 1

2
∂x(w + v)2

)
dx

= −ν‖w(t)‖2
1 +

1
2

∫
S1

(w2∂xw + v2∂xw + 2vw∂xw)dx

= −ν‖w(t)‖2
1 +

1
2

∫
S1

(v2∂xw + 2vw∂xw)dx.

2240004-10



Stochastic turbulence for Burgers equation with Lévy noise

It is a direct consequence of Cauchy–Schwarz inequality, Young’s inequality
and (2.2) with k = 0, that

1
2

∫
S1

(v2∂xw + 2vw∂xw)dx

≤ ν

4
‖w(t)‖2

1 + c‖v‖4
D1

T
+
ν

4
‖w(t)‖2

1 + c‖v‖2
D1

T
‖w(t)‖2, c = c(ν).

The above yields

d

dt
‖w(t)‖2 + ν‖w(t)‖2

1 ≤ c1‖v‖4
D1

T
+ c2‖v‖2

D1
T
‖w(t)‖2.

Gronwall’s inequality infers that

‖w(t)‖2 ≤ tc1‖v‖4
D1

T
e
c2‖v‖2

D1
T
t ≤ c(T ), 0 ≤ t ≤ T, (3.6)

which will be especially helpful for us to estimate ‖w(t)‖n.
Now, we multiply Eq. (3.2) with w(2n), and use integration by parts, to obtain

1
2
d

dt
‖w(t)‖2

n + ν‖w(t)‖2
n+1

≤
∣∣∣∣〈 dn

dxn
(w(t) + v(t))2,

dn+1

dxn+1
w(t)

〉∣∣∣∣
≤ |〈w2(t)(1), w(t)(2n)〉|︸ ︷︷ ︸

=:J1

+ 2|〈(w(t)v(t))(n) , w(t)(n+1)〉|︸ ︷︷ ︸
=:J2

+ |〈v2(t)(n), w(t)(n+1)〉|︸ ︷︷ ︸
=:J3

.

By (3.3) (with ε = ε(n, 2)),

|J1| ≤ C1‖w(t)‖1+ε
n+1‖w(t)‖2−ε, ε =

2n+ 1
2n+ 2

.

Applying Young’s inequality to the right-hand side of this inequality

J1 ≤ ν

4
‖w(t)‖2

n+1 + C′
1‖w(t)‖c′1 .

To estimate J2 = 2〈w(t)v(t), ∂xw(t)〉n, Gagliardo–Niremberg inequality and (2.3)
indicate that

J2 ≤ C‖w(t)v(t)‖n‖w(t)‖n+1 ≤ C1‖w(t)‖n‖v(t)‖n‖w(t)‖n+1

≤ Cn‖v(t)‖n‖w(t)‖1− n
n+1 ‖w(t)‖1+ n

n+1
n+1 .

Young’s inequality concludes that

J2 ≤ ν

4
‖w(t)‖2

n+1 + C′
2(‖v‖Dn

T
)‖w(t)‖c′2 .

In a similar manner,

J3 ≤ ν

4
‖w(t)‖2

n+1 + C′
3(‖v‖Dn

T
)‖w(t)‖c′3 .
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Using (3.6), we have

1
2
d

dt
‖w(t)‖2

n +
ν

4
‖w(t)‖2

n+1 ≤ C′(‖v(t)‖Dn
T
)C(T )c

′
.

Finally, the integration of the above inequality on [0, T ] allows us to get the validity
of (3.5).

Consequently, Theorem 3.1 ensures the following result.

Theorem 3.2. For all T > 0, n ≥ 1 and u0 ∈ Hn, there is a unique pathwise
solution u of model (1.1). In addition, u satisfies that

‖u‖2
Dn

T
+
∫ T

0

‖u(t)‖2
n+1dt ≤ Cn,

where Cn = Cn(T, ν, ‖u0‖n, ‖L‖Dn
T
) > 0.

4. Oleinik–Kruzkov Inequality

The goal of this section is to estimate u and ∂xu. To get upper bounds for the
norms, the key point is the Oleinik–Kruzkov inequality (4.1), which we apply to
solution of (1.1) with fixed ω. The inequality was proved by Oleinik–Kruzkov for the
free Burgers equation, but their argument applies to the stochastic equation (1.1)
in pathwise sense. The following theorem provides us with estimations on u in L∞,
and on ∂xu in L1.

Theorem 4.1. For any initial data u0 ∈ H1, any p ≥ 1, any ε ∈ (0, T ] and
ν ∈ (0, 1], uniformly in t ∈ [ε, T ] we have

E(|u(t, ω)|p∞ + |∂xu(t, ω)|p1) ≤ Cε−p, (4.1)

where the constant C depends only on the random force L(t).

Proof. If L(t) is not zero, we propose to take the solution u of model (1.1) as
u = v + L when u, L ∈ D([0, T ], Hn). Therefore, v := u− L is solution of

∂tv = −u∂xu+ ν∂xxv + ν∂xxL(t). (4.2)

We calculate the derivative of Eq. (4.2) with respect to x and multiply it by t,

t∂txv = −t((∂xu)2 + u∂xxu) + νt∂xxxv + νt∂xxxL(t). (4.3)

Set w := t∂xv and rewrite Eq. (4.3) into

∂tw = ∂xv − t(∂xu)2 − tu∂xxL(t) − u∂xw + ν∂xxw + νt∂xxxL(t). (4.4)

Now, we consider the function w(t, x) on the cylinder [0, T ] × S1. Since w|t=0 = 0
and

∫
S1 w(x)dx = 0, either w is identically zero, or it takes maximal value M > 0 at

a point (t1, x1) ∈ [0, T ]× S1 with t1 > 0. If w is identically zero, then ∂xv(t, x) ≡ 0
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and v(t, x) = 0 over [0, T ]×S1. Hence (4.1) holds. If w reaches its maximum M > 0
at (t1, x1) ∈ [0, T ]× S1, we denote

K := max
(

1, max
0≤t≤T

|L(t)|
)
. (4.5)

Then,

K ≤ max
(

1, C sup
0≤t≤T

‖L(t)‖n
)
, C > 0.

Let us show that M ≤ 4TK. Reducing to an absurdity, suppose that M > 4TK.
Optimality conditions recognize that

∂tw ≥ 0, ∂xw = 0 and ∂xxw ≤ 0 at the point (t1, x1). (4.6)

By (4.4) and (4.6), we figure out

−∂xv + t(∂xu)2 + tu∂xxL(t) ≤ νt∂xxxL(t), at the point (t1, x1).

Multiplying this previous inequality by t and using the fact that w(t1, x1) = M and
t2(∂xu)2 = (w + t∂xLt)2,

−M + (M + t∂xL(t))2 + t2u∂xxL(t) ≤ νt2∂xxxL(t), at point (t1, x1).

When t ≤ T , because of (4.5),

|t∂jxjL(t)| ≤ TK, j = 0, . . . , n.

Moreover,

(M + t∂xL(t))2 ≥ (M − TK)2, at point (t1, x1),

since M ≥ TK. In addition,
∫

S1 tv(x)dx = 0 and t∂xv = w ≤ M suggest that
|tv| ≤M , which results in

|tu| ≤ |tL(t)| +M ≤ TK +M, ∀ (t, x) ∈ [0, T ]× S
1 (4.7)

and

|t2u∂xxL(t)| = |(tu)(t∂xxL(t))| ≤ (TK +M)(TK), ∀ (t, x) ∈ [0, T ]× S
1.

As νt2∂xxxL(t) ≤ T 2K, using (4.7), we deduce that

−M + (M − TK)2 ≤ (TK +M)TK + T 2K.

This last relation implies that M < 3TK. But M > 4TK and K ≥ 1, we get
the contraction 3TK + T < 5TK. Hence M ≤ 4TK is established. Since t∂xu =
w + t∂xL(t) and M ≤ 4TK, for all (t, x) ∈ [0, T ] × S1, we have t∂xu ≤ 5TK. It
follows that

t|u|∞ + t|∂xu|1 ≤ 10TK ≤ 10T (1 + ‖L‖Dn
T
)

and then u satisfies (4.1).
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If L(t) is zero, then we consider w = t∂xu, find a point where it takes maximal
value at the cylinder [0, T ] × S

1, and write the conditions of maximality to use
similar arguments as above.

This very powerful estimate, jointly with stochastic partial differential equations
tricks, will allow us to bound moments for all Sobolev norms of solution u from
system (1.1) in the next section.

5. Moment Estimates for Sobolev Norms of Solution

Given solution u ∈ D([0, T ];Hn) of (1.1), the aim of this section is to estimate
the mathematical expectation of the norms E[‖u(t)‖2

n], n ≥ 1, for the solution u(t)
uniformly in ν ∈ (0, 1] and in u0 ∈ Hn. Let f be a function on Hn, which is twice
continuously differentiable. Applying Itô’s formula to compute

E[f(u(t))] = E

[
f(u0) +

∫ t

0

f ′(u(s))(ν∂xxu− u∂xu)ds

+
∑
k∈Z∗

∫ t

0

∫
|y|≥1

[f(u(s−) + yβkek) − f(u(s−))]Nk(ds, dy)

+
∑
k∈Z∗

∫ t

0

∫
|y|<1

[f(u(s−) + yβkek) − f(u(s−))]Ñk(ds, dy)

+
∑
k∈Z∗

∫ t

0

∫
|y|<1

(f(u(s−) + yβkek)

− f(u(s−))− f ′(u(s−))yβkek)μ(dy)ds

]
. (5.1)

Theorem 5.1. Let T > ε > 0, n ≥ 1 and ν ∈ (0, 1]. There exists C(n, ε) > 0 such
that for all u0 ∈ Hn, the solution u of (1.1) satisfies

E[‖u(t)‖2
n] ≤ C(n, ε)ν−(2n−1), ∀ t ∈ [ε, T ]. (5.2)

Proof. The analysis of these estimates proceeds in two steps. First, we take a func-
tion f(u) = ‖u‖2

n = 〈(−Δ)nu, u〉 = 〈(−Δ)n/2u, (−Δ)n/2u〉 in (5.1). Furthermore,
for any u, v ∈ Hn,

f ′(u)v = 2〈(−Δ)nu, v〉 = 2〈(−Δ)n/2u, (−Δ)n/2v〉 ≤ 2‖u‖n‖v‖n, (5.3)

f ′′(u)(v, v) = 2〈(−Δ)nv, v〉 = 2〈(−Δ)n/2v, (−Δ)n/2v〉 = 2‖v‖2
n. (5.4)

Rewrite (5.1) into

E[f(u(t))] = E

[
f(u0) +

∫ t

0

2〈(−Δ)nu(s), ν∂xxu(s) − u(s)∂xu(s)〉ds
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+
∑
k∈Z∗

∫ t

0

∫
|y|≥1

[f(u(s−) + yβkek) − u(w(s−))]Nk(ds, dy)

+
∑
k∈Z∗

∫ t

0

∫
|y|<1

[f(u(s−) + yβkek) − f(u(s−))]Ñk(ds, dy)

+
∑
k∈Z∗

∫ t

0

∫
|y|<1

(f(u(s−) + yβkek)

−f(u(s−)) − 2〈(−Δ)nu(s−), yβkek〉)μ(dy)ds

]
:= E[f(u0) + I1(t) + I2(t) + I3(t) + I4(t)],

(5.5)

where 2〈(−Δ)nu(s), ν∂xxu(s) − u(s)∂xu(s)〉= − 2ν〈(−Δ)nu(s), (−Δ)u(s)〉 −
〈(−Δ)nu(s), ∂xu2(s)〉 in I1(t). Based on Lemma 3.1 (with q = ∞) and the fact
that |u|∞ ≤ |∂xu|1, we obtain

|E[〈(−Δ)nu(s), ∂xu2(s)〉]| ≤ C(n)E[‖u(s)‖ε+1
n+1|∂xu(s)|2−ε1 ], ε =

2n− 1
2n+ 1

.

By Hölder’s inequality and Theorem 4.1, for ε′ := ε
2 ≤ t ≤ T ,

E[‖u(s)‖ε+1
n+1|∂xu(s)|2−ε1 ] ≤ (E‖u(s)‖2

n+1)
2n

2n+1 (E|∂xu(s)|2n+3
1 )

1
2n+1

≤ C(n)(E‖u(s)‖2
n+1)

2n
2n+1 . (5.6)

The inequality (5.3) above permits us to get

EI2(t) ≤ C
∑
k∈Z∗

E

(∫ t

0

∫
|y|≥1

|f(u(s) + yβkek) − f(u(s))|Nk(ds, dy)
)

= C
∑
k∈Z∗

E

(∫ t

0

∫
|y|≥1

|f(u(s) + yβkek) − f(u(s))|μ(dy)ds

)

≤ C
∑
k∈Z∗

E

(∫ t

0

∫
|y|≥1

∫ 1

0

‖f ′(u(s) + ξyβkek)‖ndξ‖yβkek‖nμ(dy)ds

)

≤ C
∑
k∈Z∗

E

(∫ t

0

∫
|y|≥1

(‖u(s)‖n + ‖yβkek‖n)‖yβkek‖nμ(dy)ds

)

≤ C
∑
k∈Z∗

βk

∫
|y|≥1

|y|μ(dy)E
∫ t

0

‖u(s)‖nds+ C

∞∑
k=1

β2
k

∫
|y|≥1

|y|2μ(dy)

≤ C

∫ t

0

E‖u(s)‖2
nds+ C. (5.7)
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Relying on Hölder’s inequality, Itô isometry and Young’s inequality, we figure out

EI3(t) ≤ C
∑
k∈Z∗

(
E

∫ t

0

∫
|y|<1

|f(u(s) + yβkek) − f(u(s))|2μ(dy)ds

) 1
2

≤ C
∑
k∈Z∗

(
E

∫ t

0

∫
|y|<1

∫ 1

0

‖f ′(u(s) + ξyβkek)‖2
ndξ‖yβkek‖2

nμ(dy)ds

) 1
2

≤ C
∑
k∈Z∗

(
E

∫ t

0

∫
|y|<1

(‖u(s)‖2
n + ‖yβkek‖2

n)‖yβkek‖2
nμ(dy)ds

) 1
2

≤ C
∑
k∈Z∗

βk

[∫
|y|<1

|y|2μ(dy)

] 1
2 (

E

∫ t

0

‖u(s)‖2
nds

) 1
2

+C
∑
k∈Z∗

β2
k

[∫
|y|<1

|y|4μ(dy)

] 1
2

≤ CE

∫ t

0

‖u(s)‖2
nds+ C

⎛⎝∑
k∈Z∗

βk

[∫
|y|<1

|y|2μ(dy)

] 1
2
⎞⎠2

+ C

≤ C

∫ t

0

E‖u(s)‖2
nds+ C. (5.8)

The Taylor’s expansion and (5.3)–(5.4) have been successfully used to monitor

EI4(t) ≤ C
∑
k∈Z∗

E

∫ t

0

∫
|y|<1

|f(u(s) + yβkek) − f(u(s))

− 2〈(−Δ)nu(s), yβkek〉|μ(dy)ds

≤ C
∑
k∈Z∗

E

∫ t

0

∫
|y|<1

‖yβkek‖2
nμ(dy)ds

≤ C
∑
k∈Z∗

β2
k

∫
|y|<1

|y|2μ(dy) ≤ C. (5.9)

We set Xj(t) = E‖u(t)‖2
j , j ∈ N∗. According to previous estimates (5.6)–(5.9),

from (5.5) we obtain

d

dt
Xn(t) ≤ CXn(t) − 2νXn+1(t) + C(n)Xn+1(t)

2n
2n+1 , ε′ ≤ t ≤ T. (5.10)

As before, Gagliardo–Niremberg inequality, Hölder’s inequality and Theorem 4.1
yield that

Xn(t) ≤ C(n)Xn+1(t)
2n−1
2n+1 (E|∂xu|a1)b ≤ C(n)Xn+1(t)

2n−1
2n+1
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for suitable constants a, b > 0. Then

Xn+1(t) ≥ C(n)Xn(t)
2n+1
2n−1 , ε′ ≤ t ≤ T. (5.11)

The relation (5.10) is rewritten into
d

dt
Xn(t) ≤ C(n)Xn+1(t)

2n−1
2n+1 − 2νXn+1(t) + C(n)Xn+1(t)

2n
2n+1

≤ C(n) − 2νXn+1(t) + C(n)Xn+1(t)
2n

2n+1

= C(n) −Xn+1(t)
2n

2n+1 (2νXn+1(t)
1

2n+1 − C(n)), (5.12)

where we have used Young’s inequality to get the second inequality.
In order to get (5.2), we proceed by contradiction. Fix δ > 1 and suppose that

∃ t∗ ∈ (2ε′, T ] such that Xn(t∗) > δν−(2n−1). (5.13)

Let s = t∗ − t, s ∈ [0, t∗]. So the relation (5.12) is rewritten as
d

ds
Xn(s) ≥ −C(n) +Xn+1(s)

2n
2n+1 (2νXn+1(s)

1
2n+1 − C(n)). (5.14)

If Xn(s) > δν−(2n−1), then by (5.11),

2νXn+1(s)
1

2n+1 − C(n) ≥ 2ν(C(n)Xn(s)
2n+1
2n−1 )

1
2n+1 − C(n)

≥ C(n)δ
1

2n−1 − C(n).

Choose δ0 � 1 such that C(n)δ
1

2n−1−C(n) > 1 for all δ > δ0. From (5.11) and (5.14)
we deduce that

d

ds
Xn(s) ≥ −C(n) +Xn+1(s)

2n
2n+1 (2νXn+1(s)

1
2n+1 − C(n))

≥ −C(n) + C(n)Xn+1(s)
2n

2n−1 (δ
1

2n−1 − 1) > 0, (5.15)

where the last inequality is valid if δ0 � 1. Collecting together (5.13) and (5.15),
we get that

the function s→ Xn(s) is increasing over [0, t∗]. (5.16)

For all s ∈ [0, t∗], we have
d

ds
Xn(s) ≥ −C(n) + C(n)Xn+1(s)

2n
2n−1 (δ

1
2n−1 − 1)

if δ > δ0 � 1. The last inequality showcases that
d

ds
(Xn(s)−

1
2n−1 ) ≤ −C(n)(δ

1
2n−1 − 1).

By integrating the last relation in time between 0 and s, and using (5.16),

Xn(s)−
1

2n−1 ≤ −C(n)(δ
1

2n−1 − 1)s+Xn(0)−
1

2n−1

≤ −C(n)(δ
1

2n−1 − 1)s+ δ−
1

2n−1 ν.

As ν ≤ 1, we can find a s′ ∈ (0, t∗] such that Xn(s′)−
1

2n−1 = 0, which results in a
contradiction since Xn(s′)−

1
2n−1 > 0. Therefore, (5.13) is false if δ is large enough.

Thus, we get (5.2) with C(n, ε) = δ. The proof for the case n ∈ N∗ is completed.
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In the second step, we suppose that n ≥ 1 and n /∈ N
∗. Then, there exists j ∈ N

∗

and s ∈ (0, 1) such that n = j + s and �n� = j + 1. Utilizing the interpolation
inequality and Hölder’s inequality

E[‖u(t)‖2
n] ≤ E[‖u(t)‖2

j+1]
s
E[‖u(t)‖2

j ]
1−s.

Because (5.2) is established for n = j and n = j + 1, the right-hand term of this
inequality is bounded by C(n, ε)ν−[(2(j+1)−1)s+(2j−1)(1−s)] = C(n, ε)ν−(2n−1).

Remark 5.1. Pay attention that for n = 0 this is wrong, and instead we have
E[‖u(t)‖2] ∼ 1. This means that in averaging sense the solution u for (1.1) is of
order one with ν ∈ (0, 1].

Corollary 5.1. Under the conditions of Theorem 5.1, for all k ≥ 1, there exists
C(k, n, ε) > 0 such that

E[‖u(t)‖kn] ≤ Cν−
k
2 (2n−1), ∀ t ∈ [ε, T ]. (5.17)

Proof. For m > n ∈ N∗ and by Gagliardo–Niremberg inequality, we have

E[‖u(t)‖kn] ≤ C[‖u(t)‖kγn(m)
m |u(t)|k(1−γn(m))

∞ ], γn(m) =
2n− 1
2m− 1

,

where C = C(k,m, n) > 0. Let us choose m large enough such that kγn(m) < 2.
Using Hölder’s inequality, the right term is bounded by

C′
E[‖u(t)‖2

m]
kγn(m)

2 E[|u(t)|a∞]b,

with C′(k,m, n), a(k,m, n), b(k,m, n) > 0. Hence, using (5.2), we get (5.17). If n
is not a positive integer, then we execute similar arguments as in the proof of
Theorem 5.1.

If we take f(u) = 1
2‖u‖2 in the identity (5.1), then for 1 ≤ T ≤ t ≤ T +σ(σ > 0)

the energy balance relation for solution u(t) of the stochastic equation (1.1) takes
the following form:

1
2

E[‖u(T + σ)‖2] − 1
2

E[‖u(T )‖2]

= E

[∫ T+σ

T

〈u(t), ν∂xxu− u∂xu〉dt

+
∑
k∈Z∗

∫ T+σ

T

∫
|y|≥1

1
2
(‖u(t−) + yβkek‖2 − ‖u(t−)‖2)Nk(dt, dy)

+
∑
k∈Z∗

∫ T+σ

T

∫
|y|<1

1
2
(‖u(t−) + yβkek‖2 − ‖u(t−)‖2)Ñk(dt, dy)
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+
∑
k∈Z∗

∫ T+σ

T

∫
|y|<1

1
2
(‖u(t−) + yβkek‖2

−‖u(t−)‖2 − 2〈u(t−), yβkek〉)μ(dy)dt

]
.

(5.18)

We rewrite the energy balance (5.18) into

1
2

E[‖u(T + σ)‖2] − 1
2

E[‖u(T )‖2] + ν

∫ T+σ

T

E[‖u(t)‖2
1]dt

= E

[∑
k∈Z∗

∫ T+σ

T

∫
|y|≥1

1
2
(‖u(t−) + yβkek‖2 − ‖u(t−)‖2)Nk(dt, dy)

+
∑
k∈Z∗

∫ T+σ

T

∫
|y|<1

1
2
(‖u(t−) + yβkek‖2 − ‖u(t−)‖2)Ñk(dt, dy)

+
∑
k∈Z∗

∫ T+σ

T

∫
|y|<1

1
2
(‖u(t−) + yβkek‖2

−‖u(t−)‖2 − 2〈u(t−), yβkek〉)μ(dy)dt

]
. (5.19)

The term 1
2E[‖u(t)‖2] is called the energy of u(t) and E[‖u(t)‖2

1] is the energy
dissipation rate. The following theorem will give us a framework for the rate of
energy dissipation.

Theorem 5.2. For u(t) in system (1.1) with initial value u0 ∈ H1, there exist
C1, C2 > 0 and σ0(C1, C2) > 0 such that for all σ ≥ σ0 and T ≥ 1 :

C1ν
−1 ≤ 1

σ

∫ T+σ

T

E[‖u(t)‖2
1]dt ≤ C2ν

−1,

uniformly in ν ∈ (0, 1].

Proof. Using similar arguments as in the proof of Theorem 5.1, the three terms
at the right side of (5.19) are bounded by C

∫ T+σ

T E[‖u(t)‖2]dt+ C̃. It follows from
1
2
d
dtE[‖u(t)‖2] ≤ CE[‖u(t)‖2] and Gronwall’s inequality that E[‖u(t)‖2] is bounded

by a constant which depends only on the random force. Hence we get the result by
utilizing (5.19) again.

For any random function t → R(t, ω) (i.e. for a random process R), we denote
by 〈〈R〉〉 its averaging in ensemble and local averaging in time,

〈〈R〉〉 =
1
σ

∫ T+σ

T

E[R(t, ω)]dt,
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where T ≥ 1 and σ ≥ σ0 > 0 are parameters. In this notation, the inequality in
Theorem 5.2 that we have just proved, has the expression

C1ν
−1 ≤ 〈〈‖u‖2

1〉〉
1
2
≤ C2ν

−1.

So,

〈〈‖∂xu‖2
L2〉〉 = 〈〈‖uν‖2

1〉〉 ∼ ν−1,

where ∼ means that the ratio of two quantities is bounded from below and from
above, uniformly in ν and in T ≥ 1 and σ ≥ σ0, entering the brackets 〈〈·〉〉.

Now, let us show the basic estimate for Sobolev norms of solution: 〈〈‖u‖2
n〉〉 ∼

ν−(2n−1).

Theorem 5.3. Let n ∈ N∗, σ ≥ σ0 > 0 and T ≥ 1. For any u0 ∈ H1, there exists
Cn(σ0) > 1 such that the solution u of (1.1) satisfies

C−1
n ν−(2n−1) ≤ 〈〈‖u‖2

n〉〉 ≤ Cnν
−(2n−1), (5.20)

uniformly in ν ∈ (0, 1].

Proof. The upper bound in the right inequality of (5.20) follows from Theorem 5.1.
We have already obtained the lower bound for the averaged first Sobolev norm in
Theorem 5.2. So, it remains to prove the lower bound for 〈〈‖u‖2

n〉〉 when n ∈ N∗

and n ≥ 2. By an application of Gagliardo–Nirenberg interpolation inequality

‖∂xu‖2 ≤ c‖∂xu‖
2

2n−1
n−1 |∂xu|

2n−2
2n−1
1 , c > 0.

Apply Hölder inequality to the integral 1
σ

∫
Ω

∫ T+σ

T · · ·dtP(dω) and use Theorem 4.1,

〈〈‖u‖2
1〉〉 ≤ c〈〈‖u‖2

n〉〉
1

2n−1 〈〈|∂xu|21〉〉
2n−2
2n−1 ≤ C〈〈‖u‖2

n〉〉
1

2n−1 ,

that is to say,

〈〈‖u‖2
n〉〉 ≥ C1−2n〈〈‖u‖2

1〉〉2n−1.

Combining this with 〈〈‖u‖2
1〉〉 ≥ Cν−1, we get the lower bound for 〈〈‖u‖2

n〉〉:

〈〈‖uν‖2
n〉〉 ≥ C−1

n ν−(2n−1), ∀n ∈ N
∗.

Exactly, it’s the left inequality of (5.20).

This theorem turns out to be a powerful and efficient tool to study stochastic
turbulence in the one-dimensional Burgers equation (1.1).

Corollary 5.2. For n ∈ N∗ and k ≥ 1, there exists C(k, n, σ0) > 0 such that

C−1ν−n+ 1
2 ≤ 〈〈‖u‖kn〉〉

1
k ≤ Cν−n+ 1

2 . (5.21)
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Proof. After averaging in (5.17), the right inequality in (5.21) is immediate. If
k ≥ 2, then the left inequality of (5.21) is a result of Hölder’s inequality and (5.20)
occurring earlier. Now, we only need to establish the left inequality of (5.21) for
k ∈ [1, 2). Taking advantage of Hölder’s inequality, we exploit

〈〈‖u‖2
n〉〉 = 〈〈‖u‖

4
3
n‖u‖

2
3
n 〉〉 ≤ 〈〈‖u‖4

n〉〉
1
3 〈〈‖u‖n〉〉

2
3 .

Make use of (5.21) with k = 2 and k = 4,

〈〈‖u‖n〉〉 ≥ 〈〈‖u‖2
n〉〉

3
2 〈〈‖u‖4

n〉〉−
1
2

≥ (C−1(2, n, σ0)ν−n+ 1
2 )3(C(4, n, σ0)ν−n+ 1

2 )−2 =: C−1ν−n+ 1
2

and then the left inequality of (5.21) is established for k = 1. Finally, for k ∈ (1, 2),
the left inequality in (5.21) is a consequence of that with k = 1 and Hölder’s
inequality.

6. Stochastic Turbulence

Our aim in the present section is to study the statistical quantities of one-
dimensional turbulence u(t, x) given by stochastic Burgers equation with respect
to cylindrical Lévy processes.

6.1. The structure function for stochastic turbulence

The structure function is one of the main objects of hydrodynamic turbulence [35].
For the one-dimensional fluid described by stochastic Burgers equation, the struc-
ture function is defined as follows.

Definition 6.1. Small-scale increments corresponding to the solution u of stochas-
tic Burgers equation (1.1) are |u(x+ l) − u(x)|, x ∈ S

1, |l| � 1. Their moments of
degree p > 0 are 〈〈∫

S1
|u(x+ l) − u(x)|pdx

〉〉
=: Sp(l;u),

where (l, p) → Sp(l;u) is called the structure function of u.

In physics, the basic quantity characterizing a solution u(t, x) as a one-dimensional
turbulent flow is its dissipation scale ld, also known as Kolmogorov’s inner scale.
The dissipation scale for Burgulence described by (1.1) in the Fourier presenta-
tion is ld = Cν−1, such that for |k| ≥ ld the averaged squared norm of the
kth Fourier coefficient ûk(t) decays very fast, where ûk(t) is from Fourier series
u(t, x) =

∑
k=±1,±2,... ûk(t)e

2iπkx. In other words, for any N ∈ N∗ and γ > 0 there
exists a CN,γ such that

〈〈|ûk(t)|2〉〉 ≤ CN,γ |k|−N , ∀ |k| ≥ ν−1−γ . (6.1)

To check this, we know that 〈〈|ûk(t)|2〉〉 ≤ Cn|k|−2nν−(2n−1) ≤ Cn|k|−2n γ
1+γ , n ∈

N∗, by using (5.20) in Theorem 5.3.
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The turbulence ranges are zones specifying the size for increments of x. The
dissipation range, the inertial range and the energy range in x are non-empty
and non-intersecting intervals (0, Ĉ1ν] = (0, l−1

d ], (Ĉ1ν, Ĉ2] = (l−1
d , Ĉ2] and (Ĉ2, 1],

respectively. Here, Ĉ1, Ĉ2 > 0 depend on the random force.
The functions Sp(l;u) satisfy the following upper estimates.

Lemma 6.1. For |l| ∈ (0, 1], ν ∈ (0, 1] and p > 0, there is Cp > 0 such that

Sp(l;u) ≤
{
Cp|l|pν−(p−1) if p ≥ 1;

Cp|l|p if p ∈ (0, 1).

Proof. If we begin by considering the case p ≥ 1, then

Sp(l;u) ≤
〈〈∫

S1
|u(x+ l) − u(x)|dx · max

x
|u(x+ l) − u(x)|p−1

〉〉
.

By Hölder’s inequality, we have

Sp(l;u) ≤
〈〈(∫

S1
|u(x+ l) − u(x)|dx

)p〉〉 1
p

︸ ︷︷ ︸
=:I

〈〈max
x

|u(x+ l) − u(x)|p〉〉
p−1

p︸ ︷︷ ︸
=:J

.

On the one hand, noticing that the space average of x → u(x + l) − u(x) vanishes
identically for all t. We have∫

S1
|u(x+ l) − u(x)|dx

≤
∫

S1
(u(x+ l) − u(x))+dx +

∫
S1

(u(x+ l) − u(x))−dx

≤ 2
∫

S1
(u(x+ l) − u(x))+dx ≤ 2 sup

x
(∂xu)+ · |l|,

which yields that I ≤ 2|l|〈〈[supx(∂xu)+]p〉〉 1
p . So, by Theorem 4.1, we get that

I ≤ Cp|l|. On the other hand, J ≤ 〈〈|l|p|∂xu|p∞〉〉
p−1

p . From Gagliardo–Nirenberg
interpolation inequality and Hölder’s inequality, we obtain

〈〈|l|p|∂xu|p∞〉〉
p−1

p ≤ (C|l|p〈〈‖u‖
2p

2n−1
n |∂xu|

(2n−3)p
2n−1

1 〉〉)
p−1

p

≤ Cpl
p−1〈〈‖u‖2

n〉〉
p−1
2n−1 〈〈|∂xu|

(2n−3)p
2n−1−p

1 〉〉
(2n−1−p)(p−1)

(2n−1)p .

Using Theorems 4.1 and 5.3, we get that J ≤ Cp|l|p−1ν−(p−1). Finally, Sp(l;u) ≤
IJ ≤ Cp|l|pν−(p−1).

The case p ∈ (0, 1) follows immediately from the case p = 1 and Hölder’s
inequality

Sp(l;u) ≤
〈〈∫

S1
|u(x+ l) − u(x)|dx

〉〉p
= S1(l;u)p ≤ Cp|l|p.

For |l| ∈ (Ĉ1ν, 1], we have a better upper bound if p ≥ 1.
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Lemma 6.2. For ν ∈ (0, 1], |l| ∈ (Ĉ1ν, 1] and p > 0, there is Cp > 0 such that

Sp(l;u) ≤
{
Cp|l| if p ≥ 1;

Cp|l|p if p ∈ (0, 1).

Proof. The calculations are almost the same as in Lemma 6.1. The only difference
is that we use another bound for J , i.e.

Sp(l;u) ≤ Cp|l|J ≤ Cp|l|〈〈(2|u|∞)p〉〉
p−1

p ≤ Cp|l|.

Now, we prove the lower estimates for Sp(l;u).

Lemma 6.3. Assume that ν ∈ (0, ν0], where the constant ν0 ∈ (0, 1] only depends
on random force with 0 < Ĉ1ν0 < Ĉ2 < 1. For |l| ∈ (Ĉ1ν, Ĉ2] and p > 0, there is
Cp > 0 such that

Sp(l;u) ≥
{
Cp|l| if p ≥ 1;

Cp|l|p if p ∈ (0, 1).
(6.2)

Proof. Define the probability space

(ΩT ,FT , ρ) :=
(

[T, T + σ] × Ω, T × F , dt
σ

× P

)
,

where σ ≥ σ0 > 0, T ≥ 1 and T is the Borel σ-algebra on [T, T + σ]. Let ε > 0 and
Q1 = {(t, ω) ∈ ΩT : ‖u(t, ω)‖1 ≤ ε}. Then ρ(Q1) ≥ C(1, σ0). Let K > 0 and

Q2 = {(t, ω) ∈ Q1 : |∂xu+(t, ω)|∞ + |∂xu(t, ω)|1 + ν
3
2 ‖u(t, ω)‖2

+ ν
5
2 ‖u(t, ω)‖3 ≤ K}.

By Theorem 4.1, estimate (5.21) and Chebyshev’s inequality

ρ(Q2) ≥ C(1, σ0) − C1K
−1 ≥ 1

2
C(1, σ0)

for all ν ∈ (0, ν0] and if K is sufficiently large. Let (t, ω) ∈ Q2 and denote u(t, ω, x)
by u(x). To establish (6.2), we show that u satisfies∫

S1
|u(x+ l) − u(x)|pdx ≥ C|l|min(1,p), |l| ∈ [Ĉ1ν, Ĉ2], p > 0, (6.3)

uniformly in ν ∈ (0, ν0], where C = C(Ĉ1, Ĉ2, p) > 0.
First, consider the case p ≥ 1. Note that

Cν−1 ≤
∫

S1
|∂xu|2dx ≤ |∂xu|∞|∂xu|1 ≤ K|∂xu|∞.

Therefore,

|∂xu|∞ ≥ CK−1ν−1 =: C̃ν−1. (6.4)
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As |∂xu+|∞ ≤ K, we gain |∂xu+|∞ ≤ 1
2 C̃ν

−1 if ν ≤ 1
2 C̃K

−1 =: ν0. Thus, by (6.4),
we have

|∂xu+|∞ ≤ 1
2
C̃ν−1 and |∂xu−|∞ ≥ C̃ν−1 if ν ∈ (0, ν0].

Denoted by y = y(t, ω) = min{x ∈ [0, 1) :∂xu−(x) ≥ C̃ν−1}: y is a well-defined
measurable function over Q2 if ν ∈ (0, ν0]. Admittedly,∫

S1
|u(x+ l) − u(x)|pdx ≥

∫ y

y− |l|
2

∣∣∣∣∣
∫ x+l

x

∂xu
−(z)dz −

∫ x+l

x

∂xu
+(z)dz

∣∣∣∣∣
p

dx.

(6.5)

Gagliardo–Niremberg inequality ensures that |∂xxu|∞ ≤ c‖u‖
1
2
2 ‖u‖

1
2
3 , which implies

that |∂xxu|∞ ≤ cKν−2. So in the interval [x, x+ c̃ν], c̃ > 0, we have

∂xu
− ≥ C̃ν−1 − c̃cKν−1 =

3
4
C̃ν−1, if c̃ =

C̃

4cK
.

Suppose that |l| ≥ c̃ν. Because ∂xu+ ≤ K,∫ x+l

x

∂xu
−(z)dz ≥

∫ x+c̃ν

x

∂xu
−(z)dz ≥ 3

4
C̃c̃ and

∫ x+l

x

∂xu
+(z)dz ≤ Kl.

Using (6.5) we get that∫
S1
|u(x+ l) − u(x)|pdx ≥

∫ y

y− |l|
2

∣∣∣∣34 C̃c̃−Kl

∣∣∣∣p dx ≥ |l|
2

(
1
2
C̃c̃

)p
,

provided that |l| ∈ [c̃ν, C̃c̃4K ] and ν ∈ (0, ν0]. Thus, the inequality (6.2) is established
with ν0 = 1

2 C̃K
−1, Ĉ1 = c̃ and Ĉ2 = C̃c̃

4K , if p ≥ 1.
Now, suppose that p ∈ (0, 1). Let f be a positive arbitrary function. We can

write it as f = f
2(1−p)
2−p f

p
2−p . So, by means of Hölder’s inequality, we have (

∫
f)2−p ≤

(
∫
f2)1−p(

∫
fp). Hence,∫

S1
|u(x+ l) − u(x)|pdx

∫
S1

([u(x+ l) − u(x)]+)pdx

≥
(∫

S1
([u(x+ l) − u(x)]+)2dx

)p−1(∫
S1

([u(x+ l) − u(x)]+)dx
)2−p

.

Owing to ∂xu+ ≤ K, we observe that [u(x+ l)− u(x)]+ ≤M |l|. Moreover, p− 1 <
0, so the first term of the right-hand side of this last inequality is reduced to
(K2|l|2)p−1. Observe that

∫
S1 [u(x+ l) − u(x)]dx = 0. Therefore,∫

S1
[u(x+ l) − u(x)]+dx =

1
2

∫
S1
|u(x+ l) − u(x)|dx

and utilizing (6.3) with p = 1, we get that the second term is reduced to C|l|2−p.
Finally, (6.2) is established for the case p ∈ (0, 1).
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In the same way as above, we have the following lower estimates for Sp(l;u).

Lemma 6.4. Assume that ν ∈ (0, ν0], where the constant ν0 ∈ (0, 1] only depends
on random force with 0 < Ĉ1ν0 < Ĉ2 < 1. For |l| ∈ (0, Ĉ1ν] and p > 0, there is
Cp > 0 such that

Sp(l;u) ≥
{
Cp|l|pν−(p−1) if p ≥ 1;

Cp|l|p if p ∈ (0, 1).

Proof. The computations are almost the same as in Lemma 6.3. The only difference
is that in the case p ≥ 1, for |l| ≤ Ĉ1ν, by Hölder’s inequality we get∫

S1
|u(x+ l) − u(x)|pdx

≥
∫ y+Ĉ1ν

y−Ĉ1ν

|u(x+ l) − u(x)|pdx

≥ (2Ĉ1ν)−(p−1)

(∫ y+Ĉ1ν

y−Ĉ1ν

|u(x+ l) − u(x)|dx
)p

≥ Cpν
−(p−1)

(∫ y+Ĉ1ν

y−Ĉ1ν

∫ x+l

x

[∂xu−(z) − ∂xu
+(z)]dzdx

)p

≥ Cpν
−(p−1)

(∫ y+Ĉ1ν

y−Ĉ1ν

C|l|ν−1dx

)p
≥ Cp|l|pν−(p−1).

Summing up the results of Lemmas 6.1–6.4 above, we obtain the following
theorem.

Theorem 6.1. For |l| in the inertial range (Ĉ1ν, Ĉ2] we have

Sp(l;u) ∼ |l|min(1,p), where p > 0.

While for |l| in the dissipation range (0, Ĉ1ν],

Sp(l;u) ∼ |l|pν1−max(1,p), where p > 0.

Remark 6.1. In K41 theory the hydrodynamical dissipative scale is predicted to
be lKd = ν−

3
4 . For water turbulence the K41 theory predicts that in the inertial

range

Sp(l;u) := E|u(x+ l) − u(x)|p ∼ |l|
p
3 , |l| ∈ [Ĉ1ν

3
4 , Ĉ2],

where u is a homogeneous random field. This is the celebrated 1
3 -law of the K41

theory about the pth moment of the random variable u(x+ l)−u(x). It claims that
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the sizes of increments |u(x+ l)− u(x)| behaves as |l| 13 for |l| in the inertial range.
The 1

3 -law tells us that

Sp(l;u)
1
p

Sp(l;u)
1
q

∼ Cp,q ∀p, q > 0,

even for tiny |l|, when u(x+ l) − u(x) is a Gaussian random variable (very small).

Remark 6.2. In our case, u(x + l) − u(x) certainly is a non-Gaussian random
variable. The structure functions Sp(l;u) obey the law in Theorem 6.1 that presents
an abnormal scaling. For stochastic turbulence,

Sp(l;u)
1
p

Sp(l;u)
1
q

∼ Cp,q|l|
1
p− 1

q ,

which is big for small l if p > q. This is a typical non-Gaussian behavior.

6.2. The energy spectrum for stochastic turbulence

The second celebrated law for the Kolmogorov theory of turbulence deals with
the distribution of the energy 〈〈1

2

∫
S1 |u|2dx〉〉 along the spectrum [2]. For one-

dimensional turbulent flow u(t, x) in stochastic model (1.1), by Parseval’s identity,〈〈
1
2

∫
S1
|u|2dx

〉〉
=
∑
k∈Z∗

1
2
〈〈|ûk|2〉〉.

So we consider the quantities 1
2 〈〈|ûk|2〉〉. For any n ∈ N∗, define En(u) as the

averaging of 1
2 〈〈|ûk|2〉〉 along the layer Jn = {k ∈ Z∗ : M−1n ≤ |k| ≤ Mn} around

n, i.e.

En(u) = 〈〈en(u)〉〉, en(u) =
1

|Jn|
∑
k∈Jn

1
2
|ûk|2;

where en(u) is the averaged energy of the nth mode of u. The function n→ En(u)
is called the energy spectrum for the flow u.

Equivalently,

Definition 6.2. For the energy of wave number n corresponding to the solution u
of stochastic Burgers equation (1.1), the function n→ En(u) satisfying

En(u) =
1

2n(M −M−1)

∑
M−1n≤|k|≤Mn

1
2
〈〈|ûk|2〉〉 (6.6)

is the layer-averaged energy spectrum, where M is a positive constant independent
of ν.

The estimate (6.1) of 〈〈|ûk|2〉〉 infers that if k is greater than the critical thresh-
old ν−1, then it decreases faster than any negative power of k, and that this is not
valid if k � ν. It follows that for n � ld the energy spectrum decays faster than
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any negative degree of n uniformly in ν. But for n ≤ ld the behavior of En(u) is
quite different.

In what follows, we shall continue to the study of the energy spectrum En(u)
when n � ν−1.

Theorem 6.2. Let M ≥ 1 in (6.6) be large enough, for n−1 in the inertial range
(Ĉ1ν, Ĉ2] as in Theorem 6.1, i.e.

Ĉ−1
2 ≤ n < Ĉ−1

1 ν−1, (6.7)

we have the spectral power law

Ĉ3n
−2 ≤ En(u) ≤ Ĉ4n

−2, (6.8)

which means that En(u) ∼ n−2.

Proof. Since ûk(t) =
∫

S1 u(t, x)e−2iπkxdx, after integration by parts, we know that
|ûk| ≤ 1

2πk |∂xu|1, k ∈ N∗. By Theorem 4.1 and the meaning of averaging 〈〈·〉〉, we
obtain that 〈〈|ûk|2〉〉 ≤ Ck−2, which results in the upper estimate of (6.8). Now we
check the lower estimate. As 〈〈|ûk|2〉〉 ≤ Ck−2,∑

|k|≤M−1n

|k|2〈〈|ûk|2〉〉 ≤ CM−1n (6.9)

and ∑
|k|≥Mn

〈〈|ûk|2〉〉 ≤ CM−1n−1. (6.10)

Let us pose U =
∑

|k|≤Mn |k|2〈〈|ûk|2〉〉. Using the fact | sin(x)| ≤ |x|,

U ≥ n2

π2

∑
|k|≤Mn

sin2

(
kπ

n

)
〈〈|ûk|2〉〉

=
n2

π2

⎛⎝∑
k∈Z∗

sin2

(
kπ

n

)
〈〈|ûk|2〉〉 −

∑
|k|>Mn

sin2

(
kπ

n

)
〈〈|ûk|2〉〉

⎞⎠. (6.11)

Note that by Parseval’s identity, we get

‖u(· + y) − u(·)‖2 = 4
∑
k∈Z∗

sin2(kπy)|ûk|2.

So (6.10) and (6.11) imply that

U ≥ n2

π2

⎛⎝1
4

〈〈
‖u
(
· + 1

n

)
− u(·)‖2

〉〉
−

∑
|k|>Mn

〈〈|ûk|2〉〉

⎞⎠
≥ Cn2S2

(
1
n

)
− C′M−1n. (6.12)
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Because n satisfies (6.7), by (6.12) and (6.2) (p = 2, l = 1
k ), we obtain

U ≥ C′′n2n−1 − C′M−1n = (C′′ − C′M−1)n. (6.13)

Arguably,

En(u) ≥ 1
4M3n3

∑
M−1n≤|k|≤Mn

|k|2〈〈|ûk|2〉〉.

Hence, utilizing (6.9) and (6.13), we specify that

En(u) ≥ 1
4M3n3

⎛⎝U −
∑

|k|≤M−1n

|k|2〈〈|ûk|2〉〉

⎞⎠
≥ C′′ − C′M−1 − CM−1

4M3n2
> Ĉ3n

−2 with Ĉ3 > 0,

if we choose M � 1. Therefore, the first inequality of (6.8) holds.

Ignoring the multiplicative constants before the powers of ν in the Fourier pre-
sentation, we write the segment [Ĉ−1

2 , Ĉ−1
1 ν−1) as [ν0, ν−1) and call it the inertial

zone. Then, Theorem 6.2 says that in the inertial zone the energy spectrum En(u)
behaves like n−2. Likewise, we call the segment [ν−1,+∞) the dissipative zone,
and (6.1) results in the fact that in this zone, the energy spectrum En(u) decreases
faster than any negative power of n.

Remark 6.3. For the water turbulence the K41 theory proposed that En(u) obeys
the useful Kolmogorov–Obukhov law [4]:

En ∼ |n|− 5
3 ,

if n in the inertial range. For fluid dynamics of turbulence in the Burgers equation,
the physicist Jan Burgers in 1940 predicted that En ∼ |n|−2 for |n| > Cν−1, i.e.
exactly the spectral power law above.

Remark 6.4. If random force L(t, ω, x) =
∑

k=±1,±2,... βkLk(t, ω)ek(x) is such
that βk ≡ β−k, i.e. L(t, ω, x) is homogeneous in x, then the velocity field u(t, x) is
stationary in t and homogeneous in x. What’s more,

Een(u(t)) ∼ n−2 for all t.

It is a perfect match for K41 of turbulence.

7. Statistical Quantities in the Inviscid Limit

A remarkable fact is that, when ν → 0, a solution uν of stochastic system (1.1)
converges to an inviscid limit of turbulence:

uν(t, ·) → u0(t, ·) in Lp(S1), a.s.

for each p > 0. This result of the limiting dynamics is due to the Lax–Oleinik
formula. The limit u0(t, x) is called an inviscid solution, or an entropy solution
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of (1.1) with ν = 0. The limiting function u0(t, x) of the inviscid equation is not
even continuous. But still the structure function and energy spectrum are well
defined for u0(t, x), and they inherit all qualitative and quantitative properties
proved previously for uν uniformly with small enough ν > 0 in last section.

Because formally there is no dissipation in the inviscid Burgers equation, it does
not have a dissipation range. To make this rigorous, we define the non-empty and
non-intersecting intervals (0, Ĉ2] and (Ĉ2, 1] in x-presentation, which now corre-
spond to the inertial range and the energy range, respectively. The constant Ĉ2 is
the same as Theorem 6.1. We denote the structure function Sp(l;u0) and energy
spectrum En(u0) for u0(t, x) in the same way as the previously considered quan-
tities Sp(l;uν) and En(uν) for uν(t, x). On the basis of the power and utility for
dominated convergence theorem, the following estimates remain valid in the inviscid
limit.

Theorem 7.1. If |l| ∈ (0, Ĉ2], then

(1) En(u0) ∼ n−2 for all n ∈ N∗

(2) and we gain the law

Sp(l;u0) ∼
{
Cp|l| if p ≥ 1;

Cp|l|p if p ∈ (0, 1).

This theorem describes stochastic turbulence in the inviscid limit. It should be
noted that for u0 the dissipation scale ld equals to ∞, and the inertial range in
Fourier becomes the whole interval [0,∞). Now the energy law for En(u0) holds for
all n ∈ N∗ and the inertial range (0, Ĉ2] in x.

8. Conclusions and Challenges

In stochastic Burgers equation (1.1) perturbed by Lévy space-time white noise
with the periodic boundary condition and small viscosity, we rigorously derived
the moment estimates for Sobolev norms of solution, and proved statistical prop-
erties including structure function as well as energy spectrum. We focused on one-
dimensional turbulence effected by cylindrical Lévy process with bounded jumps,
and illustrated the practical usage and applicability of the flow fluids for small but
positive ν, i.e. when 0 < ν � 1. Moreover, we obtained the qualitative and quan-
titative properties in the inviscid limit as the kinematic viscosity ν tends towards
zero.

Let us comment here briefly on possible extensions of those results. When the
noise involves large jumps, by using interlacing techniques, we expect scientific
computation and further analysis for stochastic turbulence. But it does not escape
us that if some jumps are too big, then non-Gaussian fluctuations cause sudden,
intermittent and unpredictable dynamical behaviors of turbulent flows. In addition,
it would be interesting to extend the present additive noise considerations to the
case of multiplicative Lévy noise. The jumps multiply the velocity, so we first must
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consider stochastic turbulence in the framework of Marcus type stochastic partial
differential equations modeling jumps in the velocity gradient. It is complicated to
identify probability density functions. Look at the problem dialectically, the Marcus
properties give us a chain rule to take care of the large jumps. We plan to show
those sophisticated contents, simulations and experiments in the future papers.
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symmetric pure jump Lévy space-time white noises, Electron. J. Probab. 24 (2019)
1–28.

14. A. Dymov and S. Kuksin, On the Zakharov-L’vov stochastic model for wave turbu-
lence, Dokl. Math. 101 (2020) 102–109.

15. Z. Dong, L. Xu and X. Zhang, Exponential ergodicity of stochastic Burgers equations
driven by α-stable processes, J. Stat. Phys. 154 (2014) 929–949.

2240004-30



Stochastic turbulence for Burgers equation with Lévy noise
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Funct. Anal. 206 (2004) 109–148.
37. S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise.
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