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Abstract Process mining studies data-driven methods to discover, enhance, and
monitor business processes by gathering knowledge from event logs recorded by
modern IT systems. To gain valuable process insights, it is essential for process
mining users to formalize their process questions as executable queries. For this
purpose, we present the Celonis Process Query Language (Celonis PQL), which is a
domain-specific language tailored toward a special process data model and designed
for business users. It translates process-related business questions into queries and
executes them on a custom-built query engine. Celonis PQL covers a broad set
of more than 150 operators, ranging from process-specific functions to machine
learning and mathematical operators. Its syntax is inspired by SQL, but specialized
for process-related queries. In addition, we present practical use cases and real-
world applications, which demonstrate the expressiveness of the language and how
business users can apply it to discover, enhance, and monitor business processes.
The maturity and feasibility of Celonis PQL is shown by thousands of users from
different industries, who apply it to various process types and huge amounts of event
data every day.

1 Introduction

Process mining is a data-driven approach to reconstruct, analyze, and improve
business processes using log data recorded by modern IT systems, like enterprise
resource planning (ERP) or customer relationship management (CRM) systems
[15]. The starting point of process mining is an event log, which is a record of
what happens when a business process is performed. Process mining applies special
algorithms on the event log data to uncover the actual process execution, to reveal
undesired process behavior and to identify inefficiencies [15]. Typical business use
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cases for process mining are procurement (e.g., purchase-to-pay), sales (e.g., order-
to-cash), accounting (e.g., accounts payable), or production (e.g., make-to-order).

Due to their strong ability to provide transparency across complex business
processes, process mining capabilities have been adopted by many software vendors
and academic tools. A key success factor for any process mining tool is the ability to
translate business questions into executable process queries and to make the query
results accessible to the user. To this end, we developed Celonis Process Query
Language (Celonis PQL). It takes the input from the user and executes the queries
in a custom-built query engine. This allows the users to analyze all facets of a
business process in detail, as well as to detect and employ process improvements.
Celonis PQL is a comprehensive query language that consists of more than 150
(process) operators. The language design is strongly inspired by the requirements of
business users. Therefore, Celonis PQL achieved a wide adoption by thousands of
users across various industries and process types.

This chapter is organized as follows: Sect. 2 provides the background knowledge,
which is required to understand the specifics of our process query language.
Section 3 gives an overview of the various application scenarios of Celonis PQL.
Section 4 presents the query language, its syntax, and operators. Section 5 demon-
strates the applicability of Celonis PQL to solve widespread business problems.
Section 6 outlines the implementation of the query language. Section 7 positions
Celonis PQL within the Process Querying Framework (PQF). Finally, Sect. 8
concludes the chapter.

2 Background

In this section, we introduce the general concept of process mining and how the
Celonis software architecture enables process mining through our query language.
We also present the history of Celonis PQL as well as the design goals that were
considered during the development of the query language.

2.1 Process Mining

In the course of digitization, an increasing number of log data is recorded in IT
systems of companies worldwide. This data is of high value, as it represents how
processes are running inside a company. Process mining technology can be applied
to such data to gain insights about business processes, discover inefficiencies, and
find potential improvements.
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CASE ACTIVITY TIMESTAMP DEPARTMENT ITEM
1 Create Purchase Order Item 2019-01-23 08:15 D1 Screw
1 Request Approval 2019-01-23 08:20 D1 Screw
1 Grant Approval 2019-01-23 11:00 D2 Screw
1 Send Purchase Order 2019-01-23 11:10 D1 Screw
1 Receive Goods 2019-01-25 10:30 D3 Screw
1 Scan Invoice 2019-01-25 11:30 D3 Screw
1 Clear Invoice 2019-01-28 17:15 D3 Screw
2 Create Purchase Order Item 2019-01-23 13:00 D1 Screw Driver
2 Request Approval 2019-01-23 15:00 D1 Screw Driver
2 Reject 2019-01-23 18:00 D2 Screw Driver

Fig. 1 Example event log

Process mining is based on event logs. An event log is a collection of events. An
event is described by a number of attributes. The following three event attributes are
always required for process mining:

Case. The case attribute indicates which process instance the event belongs to. A
process instance is called a case. A case usually consists of multiple events.

Activity. The activity attribute describes the action that is captured by the event.
Timestamp. The timestamp indicates the time when the event took place.

A sequence of events, ordered by their timestamps, that belong to the same case
is called a trace. The traces of all the different cases with the same activity sequence
represent a variant. The throughput time between two events of a case is the time
difference between the corresponding timestamps. Accordingly, the throughput time
of a case is equal to the throughput time between the first and the last event of the
corresponding trace.

Figure 1 shows an example event log in procurement. Each case represents a
process instance of one purchase order. In the first case, the order item is created
in the system, an approval for purchasing is requested and approved. After the
approval, the order is sent to the vendor. Two days later, the ordered goods are
received, the invoice is registered and eventually paid. In the second case, an order
item is created, but the approval to actually order it is rejected. Besides the three
required attributes of an event log mentioned above, the example also includes
attribute DEPARTMENT, which specifies the executing department for each event, as
well as attribute ITEM containing the description of the corresponding order item.

Process mining techniques that are applied on an event log to understand and
improve the corresponding process can be assigned to three groups [15]: discovery,
conformance, and enhancement. Discovery uses the event log as input and generates
a business process model as output. Conformance takes the event log and an a priori
process model to detect discrepancies between the log data and the a priori model.
Enhancement takes the event log and an a priori model to improve the model with
the insights generated from the event log.



380 T. Vogelgesang et al.

2.2 Architecture Overview

Celonis PQL is an integral component of the Celonis software architecture, which
is shown in Fig. 2. All Celonis applications use this language to query data from
a data model. The data model contains metadata like schema information and the
foreign key relationships between the tables, as well as the actual data from the
source systems. Celonis PQL queries are evaluated by the Celonis PQL Engine.

Source system. A source system is the system containing the business data to be
analyzed by the Celonis applications. ERP systems like SAP, CRM systems like
Salesforce, and many other standard systems are supported. Celonis applications
can also connect to a variety of database systems on the customer’s premises like
PostgreSQL. It is also possible to upload Excel or CSV files. Data from multiple
source systems can be combined in one data model.

Data model. A data model combines all tables from the source system (or
multiple source systems), which contain the data about a process that a user
wants to analyze. In the data model, the foreign key relationships between the
source tables can be defined. This is performed here because specifying joins
is not part of the query language itself. The tables are arranged in a snowflake
schema, which is common for data warehouses, and the schema is centered
around explicit case and activity tables. Other data tables provide additional
context. Figure 3 shows an example data model. It contains the event log of
Fig. 1 in the ACTIVITIES table, including the DEPARTMENT column. It is linked
to the CASES table, containing information about each order item. The ITEM

Source System A

Transformations

Source System Z

Transformations

Metadata

Data Model

Celonis PQL
Engine

Application 1 Application N

Data

PQL

PQLPQL

Fig. 2 Celonis architecture overview
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ACTIVITIES
CASE ACTIVITY TIMESTAMP DEPARTMENT

1 Create Purchase Order Item 2019-01-23 08:15 D1
1 Request Approval 2019-01-23 08:20 D1
1 Grant Approval 2019-01-23 11:00 D2
1 Send Purchase Order 2019-01-23 11:10 D1
1 Receive Goods 2019-01-25 10:30 D3
1 Scan Invoice 2019-01-25 11:30 D3
1 Clear Invoice 2019-01-28 17:15 D3
2 Create Purchase Order Item 2019-01-23 13:00 D1
2 Request Approval 2019-01-23 15:00 D1
2 Reject 2019-01-23 18:00 D2

CASES
CASE ITEM QUANTITY ORDERVALUE ORDERNO

1 Screw 100 50 4711
2 Screw Driver 1 99 4711

ORDERS
ORDERNO SHIPPINGTYPE VENDORNO

4711 Standard V10

VENDORS
VENDORNO NAME COUNTRY

V10 Screws Inc. DE

Fig. 3 Example data model with four tables, including activity and case tables

attribute from the example event log of Fig. 1 is contained in the CASES table,
as the data model should contain normalized table schemas. Both order items
(i.e., both cases) belong to the same purchase order, which is sent to one vendor.
Details about the purchase orders and the vendors are available in the ORDERS

and VENDORS tables of the data model.
Activity table. The data model always contains an event log, which we call the

activity table. The activity table always contains the three columns of the core
event log attributes, while additional columns may be present. Within one case,
the corresponding rows in the activity table are always sorted based on the
timestamp column.
Usually, the activity table is not directly present in the source systems and
therefore needs to be generated depending on the business process being
analyzed. Since the source system is a relational database in most cases, this
is usually done in SQL in the so-called transformation step. The transformation
result can be a database view. However, a persisted table is usually created for
performance reasons. This procedure is comparable to the extract, transform,
load procedure (ETL) in data warehouses. Like all the other tables, the resulting
activity table is then imported into the data model. The user can specify the case
and activity table in a graphical user interface (GUI) and mark the corresponding
columns of the activity table as the case, activity, and timestamp columns.

Case table. The case table provides information about each case and acts as the
fact table in the snowflake schema. It always includes the case column, contain-
ing all distinct case IDs, while other columns provide additional information on
the cases. There is a 1:N relationship between the case table and the activity
table. If the case table is not specified in the data model, it will be generated
automatically during the data model load. The case table then consists of one
column containing all distinct case IDs from the activity table. This guarantees
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that a case table always exists, and the Celonis PQL functions and operators can
rely on it.

Celonis PQL Engine. Celonis PQL Engine is an analytical column-store main
memory database system. It evaluates Celonis PQL queries over a defined data
model. Section 6 describes the Celonis PQL Engine in more detail.

Applications. Celonis applications provide a variety of tools for the business
user to discover, monitor, and enhance business processes. All applications
use Celonis PQL to query the required data. They include easy-to-use GUIs,
providing a convenient way for the users to interact with the process and business
data. In the applications, the users can specify custom Celonis PQL queries.
There are also many auto-generated queries sent by the applications to retrieve
various information, which is then presented to the user in the graphical interface.
An overview of the different applications that use Celonis PQL is given in Sect. 3.

2.3 History of Celonis PQL

The first version of Celonis PQL was introduced with version 2.4 of Celonis Process
Mining, which was released in 2014. Celonis PQL was an extension to SQL,
providing commands to query and filter process flows and patterns in addition to
the standard SQL commands. For example, the process filter process# START
’Activity XYZ’ could be used to filter all cases that start with activity “Activity
XYZ”. The custom Celonis PQL commands were translated into standard SQL
in the background and executed directly on the source database system. Multiple
source systems like SAP HANA, MSSQL, and Oracle were supported.

In SQL, different database systems support different SQL dialects. For example,
function names and syntaxes for certain functionalities like date and time calcu-
lations are database specific. However, Celonis PQL was independent of the SQL
dialect of the underlying database system. If necessary, Celonis PQL functions were
mapped to equivalent SQL functions based on the appropriate dialect.

For version 4.0 of Celonis Process Mining, which was released in February 2016,
the concept of Celonis PQL was fully redesigned based on the experiences gained
from the first version of the language. Instead of being an extension to SQL, Celonis
PQL became an independent language inspired by SQL. Now, Celonis PQL queries
are executed on the custom-built Celonis PQL Engine, which is a query engine that
is highly optimized for process mining capabilities. In comparison to the previous
approach, this enables much better performance. Also, all functionalities are fully
independent of the underlying database dialect, which makes it easier to support
a wider range of source systems. Several patents were registered as part of the
development efforts.

In October 2018, Celonis Intelligent Business Cloud (IBC) was released. This
transition from an on-premises product to a modern native cloud solution provides
easier access to process mining and, consequently, IBC increased the number of
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Celonis PQL users significantly. Many new applications, all using Celonis PQL to
query process data, are included in IBC, as described in Sect. 3.

The language is continuously extended with new functionalities. This is mostly
driven by customers who use Celonis PQL on a daily basis to explore their data.
Due to the rich functionality and possibility to use it in various Celonis applications,
Celonis PQL is used by a high number of users in many production systems.

2.4 Design Goals

The first version of Celonis PQL was an extension to SQL. While it had several
convenient process mining functions, the actual queries evaluated on the database
were complicated. Furthermore, it was difficult to extend the language with new
functionality. To overcome these issues, the query language was redesigned based
on previous experiences, with the following design goals in mind:

Simplicity. The query language should be easy to use for business users. Provid-
ing an easy way to translate complex process questions into data queries should
make process mining accessible for business users.

Flexibility. The query language should not include specialized functions. Instead,
the goal is to provide a set of generic functions and operators that can be
combined in a wide range of queries. This flexibility is very important, since
the users should be able to formulate all their questions in the query language,
regardless of the processes they address.

Event log-centered. In contrast to SQL, the language should be designed to
support dedicated process mining functionality. This should be reflected in the
query language by process functions, which operate on the given event log.

Business focus. Event data can be augmented with additional business infor-
mation. It is therefore important to combine process mining and business
intelligence (BI) capabilities within one query language. To achieve this, besides
specific process mining functionality, the query language should also provide a
variety of functions known from SQL, like aggregations, string modifications,
and mathematical functions.

Frontend interaction. To simplify the use of the query language, the user should
be able to formulate queries with support of a GUI. Consequently, the goal is
to design a language that provides easy integration via GUI components. The
simple query creation using a GUI is a key factor for the usability of a product,
which results in high acceptance, usage, and adoption by the users.
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3 Applications

As a result of emerging technologies, the requirements on tools used for analyzing
processes within different business departments go beyond the simple tracking
of performance. For this reason, process mining at Celonis is evolving into a
holistic approach that serves as a performance accelerator for business processes.
Necessary steps that are included within this approach are the discovery, enhance-
ment, and monitoring of processes. Within discovery, process mining can capture
digital footprints from all source systems involved in the process, visualize the
respective processes, and understand the root causes of deviations between the as-
is process and the to-be process. Thus, the discovery step serves as the starting
point for process improvements. During enhancement, process mining supports the
automation of tasks, proposes intelligent actions, and proactively drives process
interventions and improvements. Monitoring allows the user to continuously track
the development of key figures that are defined during the discovery step. This
enables the ongoing benchmarking of processes—internally, as well as externally.
Celonis PQL enables all these activities and tasks, and it is used in all Celonis
products as depicted in Fig. 4.

• Process Analytics is part of discovery and can be used to visualize and identify
the root causes of issues within a process. Furthermore, it identifies the specific
actions that have the greatest impact on solving the issue. For that purpose,
Celonis PQL is used to obtain performance metrics, such as the average case
duration, the change rate in the process, or the degree of process automation. In
addition, Celonis PQL enables the user to enrich the event log data with data
related to the problematic cases, such as finding the vendor causing the issue, or
identifying sub-processes that prolong throughput times.

Enhance

• Process Analytics

   Center
• Action Engine

• Machine Learning
   WorkbenchMonitor

Discover
PQL

PQL
PQL

Fig. 4 The Discover, Enhance, Monitor approach
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• Process Conformance is, as shown in Fig. 4, also part of the discovery step. It
is used to identify deviations from the defined to-be process and to uncover the
root causes of process deviations. In this context, Celonis PQL allows utilizing
the calculated process conformance to obtain metrics leading to the discovery of
root causes for deviations [16].

• Action Engine is part of the enhancement step and uses insights gained from the
discovery step to recommend actions to improve process performance [1]. The
foundation to generate these findings is Celonis PQL. The findings can include all
the relevant information that impacts a decision about whether or how an action,
like executing a task in the source system or triggering a bot, is performed. In
addition, Celonis PQL assists in prioritizing necessary actions.

• Machine Learning Workbench enables the usage of Jupyter notebooks within
Celonis IBC for creating and using Python predictive models. As part of the
enhancement step, it supports building predictive models on process data to
proactively avoid downstream friction like long running process steps, leading
to e.g., late payments in finance. Celonis PQL is crucial for querying the process
data necessary as input for the predictive models.

• Process Automation allows to automatically trigger specific actions in down-
stream applications, like SAP, Gmail, and Salesforce, based on predefined process
conditions. Therefore, Process Automation is part of the enhancement step. In this
context, Celonis PQL is used for process condition querying.

• Transformation Center is part of the monitoring step. It measures and monitors
the progress of the process metrics defined within the discovery step. Therefore,
it assists in achieving Key Performance Indicators (KPIs) and business outcomes.
As with Process Analytics, Celonis PQL is used in this context to obtain the
performancemetrics by querying the underlying event log data and to enrich event
log data with relevant business context.

Celonis IBC enables customers to use the entire product range on-demand,
containing all products described above. As shown in Fig. 5, Celonis IBC is
currently (as of October 2019) managing more than 10,000 users and more than

Celonis
IBC

> 5k data
models

~ 2M queries
per day

> 10k users
~ 90% query

execution < 1s

~ 370ms query
execution time

Fig. 5 Celonis IBC statistics (as of October 2019)
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5000 data models. Twomillion queries are executed per day, written in Celonis PQL,
and processed by the Celonis PQL Engine with an average execution time of 370
milliseconds per query. In reality, the execution time per query is often much lower,
but especially complex Celonis PQL statements on huge datasets lead to outliers in
execution time. In around 90% of the cases, the execution time is less than a second.
Nevertheless, we still aim for continuous performance improvements in order to
further reduce the execution time of complex Celonis PQL statements, like heavily
nested queries, in the future.

4 The Celonis Process Query Language

The intention of Celonis PQL is to provide a query language for performing process
mining tasks on large amounts of event data. As described in Sect. 2.2, it is based on
a relational data model. The event and business data as well as all results (including
the mined process models) are represented as relational data.

Currently, the supported data types comprise STRING, INT, FLOAT, and DATE.
Boolean values are not directly supported, but can be represented as integers. Each
data type can hold NULL values. In general, Celonis PQL treats NULL values as non-
existing and ignores them in aggregations. Also, row-wise operations like adding the
values of two columns will return NULL if one of its inputs is NULL.

Operators usually create and return a single column that is either added to an
existing table (e.g., the case or activity table) or to a new, temporary result table.
Only a few operators (e.g., for computing a process graph) create and return one
or more tables with multiple columns. However, these operators are only used
internally by GUI components and are not exposed to the end-user.

Currently, Celonis PQL providesmore than 150 different operators to process the
event data. Due to space limitations, we cannot sketch the full language. However,
we can offer a brief overview of the major language features before we present
selected examples to showcase the expressiveness of the language. Comprehensive
documentation of the Celonis PQL operators can be accessed via the free process
mining platform Celonis Snap.1

4.1 Language Overview

Even though Celonis PQL is inspired by SQL, there are major differences between
the two query languages. Figure 6 shows these differences by comparing how to
query the cases and the number of involved departments for all orders with a value

1 https://www.celonis.com/snap-signup/ (registration required).

https://www.celonis.com/snap-signup/
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SELECT
   COUNT ( DISTINCT "Activities"."Department" ),

   "Cases"."CaseID"

FROM
   "Activities"
LEFT JOIN
   "Cases"
ON
   "Activities"."CaseID" = "Cases"."CaseID"

GROUP BY
   "Cases"."CaseID"

WHERE
   "Cases"."OrderValue" > 1000 ;

TABLE (
   COUNT ( DISTINCT "Activities"."Department" ),

   "Cases"."CaseID"
);

FILTER "Cases"."OrderValue" > 1000 ;

SQL Celonis PQL

KPI

Implicit joins
from Data Model

Implicit
grouping

Filter

Dimension

Fig. 6 Comparing SQL and Celonis PQL by an example query

of more than 1000 euros in both languages. Furthermore, it also illustrates the key
concepts of Celonis PQL.

Similar to SQL, Celonis PQL enables the user to specify the data columns to
retrieve from the data model. This can either be an aggregation,which we call a KPI,
or an unaggregated column, which we call a dimension. While the data columns are
part of the SELECT statement in SQL, Celonis PQL requires them to be wrapped in
the TABLE operator, which combines the specified columns into a common table.

In contrast to SQL, Celonis PQL does not require the user to define how to join
the different tables within the query. Instead, it implicitly joins the tables according
to their foreign key relationships that have to be defined only once in the data
model. Also, the grouping clause is not needed in Celonis PQL as each selected
column, which is not aggregated (i.e., a dimension), is implicitly used as a grouper.
According to the design goals, implicit joins and groupings significantly reduce the
size and complexity of the queries and make it much simpler to formulate them.

Both languages offer the possibility to filter rows. While SQL requires the user
to formulate the filter condition in the WHERE clause of the query, Celonis PQL
offers the FILTER statements that are separated from the TABLE statements but
executed together. Splitting the data selection and the filters into different statements
enables the user to define multiple filter statements in different locations inside an
application, which then can be combined into the table statement to query the data.

Beyond this simple structure, Celonis PQL provides a wide range of different
operators that can be combined to answer complex business questions. The follow-
ing list gives an overview of the most important classes of operators.

Aggregations. Celonis PQL offers a wide range of aggregation functions, from
simple standard functions like count and average, to more advanced aggregations
like standard deviation and quantiles. Most of the aggregation functions are also
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available as window-based functions computing the aggregation not over all
values but over a user-defined sliding element window.

Data functions. These are operators like REMAP_VALUES (see Sect. 4.2) and
CASE WHEN (see Sect. 5.1), which allow for conditional changes of values.

Date and time functions. These functions enable the user to modify, project, or
round a date or time value, e.g., add a day to a date or extract the month from
a timestamp. There are also functions to compute date and time difference (e.g.,
between timestamps of events).

Index functions. Index functions create indices based on columns. The function
INDEX_ACTIVITY_LOOP, for example, returns for each activity how many
times it has occurred in direct succession in a case. This is useful, e.g., for
identifying self-loops and computing their cycle lengths.

Machine learning functions. There are various machine learning functions
available, e.g., to cluster data using the k-means algorithm or learn decision trees.

Math functions. Celonis PQL offers a wide range of mathematical functions,
e.g., for arithmetic computations, rounding float numbers, and computing
logarithms.

Predicates and logical operators. For expressing complex filter conditions,
Celonis PQL offers a variety of predicates (like range-based or pattern-based
comparison) and standard Boolean operators (AND, OR, and NOT).

Process functions. Process functions comprise all process-specific functions that
operate on the activity table and take its configuration into account. Examples
are pattern-based process filters, SOURCE and TARGET operators (see Sect. 4.2),
and computation of variants (see Sect. 4.3). There are also special process mining
operators for discovering process models, clustering variants, and checking the
conformance of a process model to the event data (see Sect. 4.4).

String modification. These functions enable the user to modify string values,
e.g., trimming whitespaces, changing case, and creating substrings.

A major difference between SQL and Celonis PQL is the different language
scope. Hence, Celonis PQL does not support all operators that are available in
SQL. This is due to the fact that the development of the language is driven by
customer requirements, and only operators that are needed for the target use cases
are implemented. For example, generic set operators like UNION are not supported,
as they have not been required so far.

Another major difference to SQL is the missing support of a data manipulation
language (DML). As all updates in the process mining scenario should come from
the source systems, there is no need to directly manipulate and update the data
through the query language. As the data can be considered to be read-only, this also
allows for specific performance optimizations during implementation (see Sect. 6).

Furthermore, Celonis PQL does not provide any data definition language (DDL).
As the data model is created by a visual data model editor and stored internally,
there has not been any need for this so far.

In contrast to SQL, Celonis PQL is domain-specific and offers a wide range of
process mining operators that are not available in SQL. Consequently, Celonis PQL
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seamlessly integrates the data with the process perspective. In the following, we
explain selected process operators like SOURCE and TARGET (Sect. 4.2),VARIANT
(Sect. 4.3), and CONFORMANCE (Sect. 4.4) in more detail.

4.2 Source and Target Operators

In process mining applications it is often required to relate an event to another
event that directly or eventually follows. For instance, this is required to compute
the throughput time between two events by calculating the difference between the
corresponding timestamps. Due to the relational data model, the timestamp values
to subtract are stored in different rows. However, the operators (e.g., arithmetic
operations) usually can only combine values from the same row. Therefore, we need
a way to combine values from two different rows into the same row for performing
such computations.

To overcome this issue, Celonis PQL relies on the SOURCE and TARGET
operators. Figure 7 shows an example that illustrates how SOURCE and TARGET can
be used to compute the throughput time between an event and its direct successor.
While SOURCE always refers to the actual event, TARGET refers to its following
event. Consequently, SOURCE and TARGET can be used to combine an event with
its following event in the same row of a table. Both operators accept a column of
the activity table as input and return the respective value of the referred event, as
illustrated in Fig. 7.

For the first event in the ACTIVITIES table, SOURCE returns the activity name “A”
of the current event, while TARGET returns the activity name “B” of the following
event (refer to 1 in Fig. 7). For the second event of the input table, SOURCE returns

TABLE (
SOURCE ( "ACTIVITIES"."ACTIVITY" ),
TARGET ( "ACTIVITIES"."ACTIVITY" ),
MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 

TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00

1 ‘B’ 2019-01-01 13:01:00

1 ‘C’ 2019-01-01 13:07:00

1 ‘D’ 2019-01-01 13:09:00

Source Target Throughput Time (mins)
‘A’ ‘B’ 1
‘B’ ‘C’ 6
‘C’ ‘D’ 2

ACTIVITIES

RESULT

1
1

2

3

2
3

Fig. 7 Example of throughput time computation using SOURCE and TARGET operators
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“B” and TARGET returns “C” (refer to 2 in Fig. 7) while they return “C” and “D”
for the third event (refer to 3 in Fig. 7).

The example also demonstrates how the SOURCE and TARGET operators can be
used to compute the throughput time. Instead of the activity column, we can use the
column containing the timestamp of the events as input. Consequently,SOURCE and
TARGET return the timestamps of the referred events. Then, we can pass the result
columns of the SOURCE and TARGET operators to the MINUTES_BETWEEN oper-
ator to compute the difference between the timestamps of an event and its following
event in minutes. In the example of Fig. 7, this results in throughput times of 1
minute from “A” to “B”, 6 minutes from “B” to “C”, and 2 minutes from “C” to “D”.

Syntax 1 SOURCE and TARGET operators

SOURCE ( input_column [, filter_column ] [, edge_config ] )

TARGET ( input_column [, filter_column ] [, edge_config ] )

edge_config ← ANY_OCCURRENCE[] TO ANY_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO ANY_OCCURRENCE_WITH_SELF[]
| ANY_OCCURRENCE[] TO LAST_OCCURRENCE[]
| FIRST_OCCURRENCE[] TO LAST_OCCURRENCE[]

Syntax 1 shows the syntax of the SOURCE and TARGET operators, which is
similar for both operators. The first parameter is a column of the activity table. Its
values are mapped to the referred events and returned as result column. The result
column is stored in a temporary result table that can be joined with the case table.

To skip certain events, the SOURCE and TARGET operators accept an optional
filter column as a parameter. This column must be of the same size as the activity
table. The SOURCE and TARGET operators ignore all events that have a NULL value
in the related entry of the filter column. Usually, the filter column is created using
the REMAP_VALUES operator.

Syntax 2 REMAP_VALUES operator

REMAP_VALUES ( input_column ( , [ string , string ] )+ [, other_value ] )

REMAP_INTS ( input_column ( , [ integer , integer ] )+ [, other_value ] )

The syntax of the REMAP_VALUES operator is shown in Syntax 2. The first
parameter is an input column of type string that provides the values that should
be remapped as input. For creating a filter column for the SOURCE and TARGET
operators, this input column is usually the activity column of the activity table.
However, REMAP_VALUES can be generally applied to any column of type string.
The second parameter is a list of one or more pairs of string values that describe the
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mapping. Each occurrence of the first value of the pair will be remapped to the sec-
ond value of the pair. Finally, the operator accepts an optional string value that will
replace all values that are not remapped within the mapping. If this optional default
replacement value is missing, all values not considered in the mapping will remain
unchanged. As the REMAP_VALUES operator is only applicable to columns of type
string, REMAP_INTS provides a similar functionality for columns of type integer.

Figure 8 shows a simple example of the REMAP_VALUES operator. It takes the
activity column of the activity table as input and maps “B” and “C” to NULL. As the
optional replacement value is not defined, all the other values (“A” and “D”) remain
the same. Figure 9 demonstrates how to use the result of the REMAP_VALUES as
filter column for the SOURCE and TARGET operators by an example query.

The query returns the activity names of the source and target events given in the
input table ACTIVITIES. However, the RESULT table only shows one row relating
“A” to “D” because the activities “B” and “C” are filtered out. This is achieved
by passing the result of the REMAP_VALUES operator as shown in Fig. 8 to the
SOURCE operator as filter column. As both activities “B” and “C” are mapped

TABLE (
  REMAP_VALUES ( "ACTIVITIES"."ACTIVITY", [ 'B', NULL ], [ 'C', NULL ] ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:07:00
1 ‘D’ 2019-01-01 13:09:00

ACTIVITIES

Remapped Values
‘A’
NULL
NULL
‘D’

RESULT

Fig. 8 Example of REMAP_VALUES operator

TABLE (
  SOURCE ( "ACTIVITIES"."ACTIVITY", 

REMAP_VALUES ( "ACTIVITIES"."ACTIVITY", [ 'B', NULL ], [ 'C', NULL ] ) ),
  TARGET ( "ACTIVITIES"."ACTIVITY" ),
  MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 
                    TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:07:00
1 ‘D’ 2019-01-01 13:09:00

ACTIVITIES

Source Target Throughput Time (mins)
‘A’ ‘D’ 9

RESULT

Fig. 9 Example for omitting activities “B” and “C” in SOURCE and TARGET operators
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A B C

A B CB

A B CB

A B CB

A B CB

(a) ANY_OCCURRENCE[] TO ANY_OCCURRENCE[] (default)

(d) ANY_OCCURRENCE[] TO LAST_OCCURRENCE[]

(e) FIRST_OCCURRENCE[] TO LAST_OCCURRENCE[]

(c) FIRST_OCCURRENCE[] TO ANY_OCCURRENCE_WITH_SELF[]

(b) FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[]

Fig. 10 Available edge configuration options of the SOURCE and TARGET operators

to NULL, the next subsequent activity of “A” is “D” with a throughput time of 9
minutes.

To define which relationships between the events should be considered, the
operators offer the optional edge configuration parameter. Figure 10 illustrates the
different edge configuration options. The first option (a) is the default and only
considers the direct follow relationships between the events, while option (b) only
considers relationships from the first event to all subsequent events. Option (c) is
similar to option (b) but also considers self-loops of the first event. Option (d) is the
opposite of option (b) and only considers relationships going from any event to the
last event. Finally, option (e) only considers the relationship between the first and the
last event. The different options enable the user to compute KPIs between different
activities of the process. For example, you can use option (b) to compute how many
minutes after the start of the process (indicated by the first activity “A”) an activity
was executed. This is illustrated in Fig. 11 where SOURCE always refers to the first
event of the case (activity “A”) while TARGET refers to any other event (activities
“B”, “C”, and “D”). Consequently, MINUTES_BETWEEN computes the minutes
elapsed between the occurrence of “A” and all the other activities of the case. For
computing the remaining process execution time for each activity of the process,
you can simply adapt the edge configuration in the query from Fig. 11 to option (d).

To simplify the query, the optional edge configuration and the filter column need
to be defined in only one occurrence of SOURCE or TARGET per query. The settings
are implicitly propagated to all other operators in the same query. This can be seen
in the query in Fig. 9, where the TARGET operator inherits the filter column from
the SOURCE operator.

Besides the computation of custom process KPIs, like the throughput time
between certain activities, SOURCE and TARGET also enable more advanced use
cases, like the segregation of duties, as we will demonstrate in Sect. 5.3. A concept
similar to the SOURCE and TARGET operators has recently been proposed in [3].
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TABLE (
  SOURCE ( "ACTIVITIES"."ACTIVITY", FIRST_OCCURRENCE[] TO ANY_OCCURRENCE[] ),
  TARGET ( "ACTIVITIES"."ACTIVITY" ),
  MINUTES_BETWEEN ( SOURCE ("ACTIVITIES"."TIMESTAMP" ), 
                    TARGET ("ACTIVITIES"."TIMESTAMP" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00

1 ‘B’ 2019-01-01 13:01:00

1 ‘C’ 2019-01-01 13:07:00

1 ‘D’ 2019-01-01 13:09:00

Source Target Throughput Time (mins)
‘A’ ‘B’ 1
‘A’ ‘C’ 7
‘A’ ‘D’ 9

ACTIVITIES

RESULT

1
2
3

31 2

Fig. 11 Example for computing how many minutes after the start of the process an activity was
executed

4.3 Variant Computation

The computation of variants is a vital task in processmining.Most process discovery
algorithms, like the Inductive Miner [8] or the Heuristics Miner [17], use them as
input instead of the raw events and cases to significantly speed up the computation.
To compute variants, Celonis PQL provides the VARIANT operator that aggregates
all events of a case into a string, which represents the variant of the case. The
resulting column is added to the case table such that each case is related to its
respective variant.

Syntax 3 VARIANT operator and VARIANT operator with reduced self-loops

VARIANT ( input_column )

SHORTENED ( VARIANT ( input_column ) [, max_cycle_length ] )

The syntax of the VARIANT operator is shown in Syntax 3. As input, the operator
uses a column of type string from the activity table. The operator concatenates the
string values of the given column into a single string delimited by comma and adds
the result to the row of the related case. Usually, the activity column is used as
input; however, other columns of the activity table, like the name of the executing
department or user, can be used.

Sometimes, different cases may have self-loops of the same activity but with
a different number of activities. Consequently, these cases are related to different
variants. However, in some applications it is not of interest how often an activity
is repeated but only if there is a self-loop or not. For such cases, the VARIANT
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TABLE (
  "CASES"."CASE_ID",
  VARIANT ( "ACTIVITIES"."ACTIVITY" ),
  SHORTENED ( VARIANT ( "ACTIVITIES"."ACTIVITY" ) )
);

Query

Input Output

CASE_ID ACTIVITY TIMESTAMP
1 ‘A’ 2019-01-01 13:00:00
1 ‘B’ 2019-01-01 13:01:00
1 ‘C’ 2019-01-01 13:02:00
2 ‘A’ 2019-01-01 13:03:00
2 ‘B’ 2019-01-01 13:04:00
2 ‘B’ 2019-01-01 13:05:00
2 ‘C’ 2019-01-01 13:06:00
3 ‘A’ 2019-01-01 13:07:00
3 ‘B’ 2019-01-01 13:08:00
3 ‘B’ 2019-01-01 13:09:00
3 ‘B’ 2019-01-01 13:10:00
3 ‘C’ 2019-01-01 13:11:00

CASE_ID Variant Shortened
1 ‘A, B, C’ ‘A, B, C’
2 ‘A, B, B, C’ ‘A, B, B, C’
3 ‘A, B, B, B, C’ ‘A, B, B, C’

ACTIVITIES

RESULT

CASE_ID
1
2
3

CASES

ACTIVITIES.CASE_ID CASES.CASE_ID
Foreign Keys

Fig. 12 Example for the VARIANT operator with and without reduced self-loops

operator can be wrapped by the SHORTENED command, which shortens self-loops
to a maximum number of occurrences. In this way, it is possible to abstract from
repeated activities and reduce the number of distinct variants. The limit for the
length of the self-loops can be specified by an optional parameter. The default value
for the maximum cycle length is 2.

Figure 12 shows an example query for the variant computation. The input data
consists of an activity table and a case table, which can be joined by the foreign
key relationship between the CASE_ID columns of both tables. For each case, the
query result shows the variant string (VARIANT column) and the variant string with
reduced self-loops (SHORTENED column). Column VARIANT of the RESULT table
shows individual variants (with a varying number of “B” activities) for each case,
while column SHORTENED shows equal variants for the cases 2 and 3 where the
third “B” activity of case 3 is omitted.
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4.4 Conformance Checking

Besides process discovery, conformance checking is another important process
mining technique that relates a process model to an event log [4]. It enables the
identification of deviations of the as-is process—as reflected by the data in the event
log—from the to-be process as defined by a prescriptive process model. Celonis
PQL offers such conformance checking capability via the CONFORMANCE operator.

Syntax 4 CONFORMANCE operator

CONFORMANCE ( activity_column, model )

READABLE ( CONFORMANCE ( activity_column, model ) )

model ← places, transitions, flows, mapping, start_places, end_places
places ← node_list
transitions ← node_list
start_places ← node_list
end_places ← node_list
node_list ← [ ( string_id )+ ]
flows ← [ ( [ string_id string_id ] )+ ]
mapping ← [ ( [ string string_id ] )+ ]

The syntax of the CONFORMANCE operator is shown in Syntax 4. It accepts an
activity column and a description of a process model, as a Petri net, as input. The
first part of the model description is a list containing all places of the Petri net, each
specified by a unique string ID. It is followed by a similar list of all transitions.
The third part of the model description is a list of flow relations, where each flow
relation is specified as a pair of the source place and the target transition or a pair
of the source transition and the target place, respectively. After that, a list of value
pairs defines the mapping of activity names to the related transitions. The first value
in such a pair is an activity name as a string while the second value is the ID of
a transition that must be defined in the list of transitions. The last two parts of the
model description are the lists of start and end places, respectively. Both lists consist
of place IDs that must be specified in the first part of the model description.

The CONFORMANCE operator replays the activities’ names from the input
column on the processmodel. As a result, it adds a temporary column of type integer
to the activity table. The value of a row in this fresh column indicates if there is a
conformance issue or not. Also, the type of violation and the related activities in the
process model are encoded in this value.

As the integer encoding is not suitable for the end-user, the CONFORMANCE
operator can be wrapped in the READABLE command. If there is a violation, this
will translate the encoding into a message explaining the violation.

Figure 13 shows an example query that uses the CONFORMANCE operator, which
takes an activity table with three different cases as input. The process model that
should be related to the event log is illustrated in Fig. 14. It is a simple Petri net
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Fig. 13 CONFORMANCE operator example with integer encoding and readable explanation

A B
P_0 P_1 T_12 T_01 P_2 

Fig. 14 Simple Petri net used in conformance checking example

consisting of two transitions and three places forming a trivial sequence of two
activities “A” and “B”.

The result of the query consists of four columns with CASE_ID as the first, and
ACTIVITY as the second column. The third column (CONFORMANCE) shows the
integer encoded result of the CONFORMANCE operator, while the fourth column
(READABLE) shows intuitive messages explaining the deviations. Even though
activity “A” matches the model, the first row is marked as incomplete because it
is the last activity of case 1, which does not reach the end of the process due to the
missing activity “B”. For case 2, the first activity (row 2) conforms, but the second
activity (“C” in row 3) is not part of the process model and, therefore, is marked as
an undesired activity. In contrast to that, case 3 fully conforms, which is indicated
for all its activities (rows 4 and 5) of the output.

As the example illustrates, the model description is quite extensive even for such
a small model that seems to contradict the design goal of keeping the language
as simple as possible. However, the conformance operator is usually called from a
GUI component. Using this component, the user can upload, automatically discover,
or manually model a process model in Business Process Model and Notation
(BPMN) [12] representation, which is automatically translated into the required
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string description. The GUI component can also bind the model description string
to a variable. Instead of defining the process model in the query, the user can simply
insert the variable, which makes it much easier to use the CONFORMANCE operator
in other GUI components. For example, the user can apply the CONFORMANCE
operator in a filter in order to restrict a data table or chart only to cases that are
marked as incomplete.

5 Use Cases

This section demonstrates the applicability of Celonis PQL for solving real-
world problems of business users. First, we show how Celonis PQL is used to
discover working capital optimizations. In our example, we identify early invoice
payments to improve the on-time payment rate (Sect. 5.1). Second, we demonstrate
how Celonis PQL is used to identify ping-pong-cases in IT service management
processes in order to reduce ticket resolution times (Sect. 5.2). Third, we show the
application of Celonis PQL for detecting segregation of duties violations to prevent
fraud and errors in procurement (Sect. 5.3).

5.1 Working Capital Optimization by On-Time Payment
of Invoices

Working capital is defined as the difference between a company’s current assets
and its current liabilities essential for the smooth operation of a business, and is a
key figure for measuring a company’s liquidity and its short-term financial health.
Working capital management aims to optimize liquidity while ensuring sustained
operations in the long term. Typical ways to optimize the working capital are
inventory reduction, faster collection of receivables, and lengthening of the payable
cycle. Activities for optimization within these areas are manifold. One example
for lengthening the payable cycle is on-time payment of invoices by avoiding both
early and late payments. Eradicating early payments can improve working capital
by keeping assets until the day they are due. Preventing late payments can stop late
payment penalties and allows to take advantage of cash discounts.

Query 1 shows a Celonis PQL statement for the calculation of the early payment
ratio per vendor. Using this query, the user is able to discover the vendors that have
the highest ratio of invoices paid more than three days early.

The distinction whether an invoice was paid more than three days before the
due date is made within the CASE WHEN statement (lines 7–17) by calculating
the throughput time with the CALC_THROUGHPUT function (lines 9–12). The
CALC_THROUGHPUT operator takes the timestamp of the first occurrence of
activity “Clear Invoice” and the timestamp of the first occurrence of activity
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Query 1 Average days of early payments per vendor

1 FILTER PROCESS EQUALS ’Clear Invoice’;
2 FILTER PROCESS EQUALS ’Due Date passed’;
3

4 TABLE (
5 "Invoice"."VendorName",
6 AVG(
7 CASE
8 WHEN COALESCE(
9 CALC_THROUGHPUT(

10 FIRST_OCCURRENCE[’Clear Invoice’] TO
11 FIRST_OCCURRENCE[’Due Date passed’],
12 REMAP_TIMESTAMPS("Activities"."Eventtime", DAYS)),
13 0
14 ) > 3
15 THEN 1.0
16 ELSE 0.0
17 END
18 ) AS "TooEarlyRatio"
19 ) ORDER BY "TooEarlyRatio" DESC;

“Due Date passed” and calculates the difference. The second parameter, given as
REMAP_TIMESTAMPS operator (line 12), counts time units in the specified interval
DAYS based on the timestamps in the activity table to enable the calculation of
the throughput time. As the CALC_THROUGHPUT operator returns NULL if the
end date is before the start date, the result of the calculation is wrapped in the
COALESCE (lines 8–14) operator to return 0 in these cases. The result of the
COALESCE operator is then compared to the specified three days (line 14). If the
result is greater than 3, the CASE WHEN statement returns 1; otherwise 0.

The whole CASE WHEN statement is wrapped in the AVG operator (lines 6–
18), allowing to calculate the ratio of invoices paid more than three days early. By
specifying the vendor name ("Invoice"."VendorName") as a dimension in
the TABLE statement (lines 4–19), the ratio is calculated per vendor. To get the
vendors with the highest ratio of early invoice payments, the result of the AVG
calculation is sorted in descending order by the ORDER BY statement (line 19).
The two FILTER statements (lines 1 and 2) at the beginning of the query ensure
that only cases with an already paid invoice and a specified due date are considered
within the calculation.

5.2 Identifying Ping-Pong-Cases for Ticket Resolution Time
Reduction

IT service management (ITSM) refers to the measurements and methods performed
by an organization to ensure the optimal support of IT services provided to
customers. Service-level agreements (SLAs) between the organization (also referred
to as service provider) and the customers (also referred to as service user) define
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Query 2 Direct ping-pong-case ratio per country

1 TABLE (
2 "Tickets"."Country",
3 COUNT(DISTINCT
4 CASE
5 WHEN "Activities"."Activity" = ’Change Assigned Group’
6 AND "Activities"."Activity" = ACTIVITY_LEAD("Activities"."Activity",2)
7 AND "Activities"."Activity" != ACTIVITY_LEAD("Activities"."Activity",1)
8 THEN "Activities"."TicketId"
9 ELSE NULL

10 END
11 )
12 /
13 COUNT_TABLE("Tickets")
14 AS "DirectPingPongRatio"
15 ) ORDER BY "DirectPingPongRatio" DESC;

particular aspects of the provided support like availability, responsibility, and most
important quality. SLAs are important factors influencing service quality levels and
customer happiness. Therefore, compliance with defined SLAs is essential.

Customer support within ITSM systems is usually carried out by creating a ticket
for each customer inquiry in the system and solving these tickets. Thus, an important
key figure for ITSM is the resolution time of a ticket. A ticket is ideally resolved
without the interference of many departments or teams. However, in so-called ping-
pong-cases, a ticket is repeatedly going back and forth between departments or
teams. This is massively slowing down the resolution time. To prevent this, the
identification of ping-pong-cases is crucial.

Query 2 shows a Celonis PQL query to identify direct ping-pong-cases. A
case in this context is equivalent to a ticket. Direct ping-pong refers to tickets in
which the same activity appears (at least) two times with only one other activity
in between, e.g., “Change Assigned Group” directly followed by “Review Ticket”
directly followed by “Change Assigned Group”.

The query calculates whether a ticket is a ping-pong-case or not within the CASE
WHEN statement (lines 4–10). If the current activity equals “Change Assigned
Group”, the second next activity is equal to the current activity, and the next activity
is not equal to the current activity, the ticket is classified as ping-pong-case and
the CASE WHEN statement returns the ticket ID. The comparison between the
current activity, the next, and the second next activity is achieved by using the
ACTIVITY_LEAD operator (lines 6 and 7). In general, the ACTIVITY_LEAD
operator returns the activity from the row that follows the current activity by offset
number of rows within a case. As the timestamp column of the activity table is
defined in the data model, the ACTIVITY_LEAD operator can implicitly rely on
the correct ordering of events. The CASE WHEN statement is wrapped in a COUNT
operator (lines 3–11) to count the total number of ping-pong-cases. By adding
DISTINCT (line 3) to the COUNT operator, it is guaranteed that a ticket is only
counted once although ping-pong activities can occur multiple times within a ticket.
The result of the COUNT operator is then divided by the total number of tickets to get
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Query 3 Indirect ping-pong-case ratio per country

1 FILTER "Activities"."Activity" = ’Change Assigned Group’;
2

3 TABLE(
4 "Tickets"."Country",
5 COUNT(DISTINCT
6 CASE
7 WHEN ACTIVATION_COUNT("Activities"."Activity") > 1
8 AND "Activities"."Activity" != ACTIVITY_LAG("Activities"."Activity",2)
9 AND "Activities"."Activity" != ACTIVITY_LAG("Activities"."Activity",1)

10 THEN "Activities"."TicketId"
11 ELSE NULL
12 END
13 )
14 /
15 COUNT_TABLE("Tickets")
16 AS "IndirectPingPongRatio"
17 ) ORDER BY "IndirectPingPongRatio" DESC;

the ratio of ping-pong-cases. Thereby, the total number of tickets is calculated using
the COUNT_TABLE operator (line 13). COUNT_TABLE is a performance-optimized
function for counting the number of rows of a specified table. By specifying
the country ("Tickets"."Country", line 2) as a dimension in the TABLE
statement (lines 1–15), the ratio of ping-pong-cases is calculated per country. In
order to get the countries with the highest ratio of ping-pong-cases, the calculated
ratio is sorted in descending order by the ORDER BY statement (line 15).

Query 3 shows a Celonis PQL query to identify indirect ping-pong-cases. Indirect
ping-pong refers to tickets in which the activity “Change Assigned Group” appears
at least two times with more than one other activity in between, e.g., “Change
Assigned Group”, directly followed by “Review Ticket”, directly followed by “Do
some work”, directly followed by “Change Assigned Group”.

The query shown in Query 3 calculates whether a ticket is an indirect ping-
pong-case or not by using the operators ACTIVATION_COUNT (line 7) and
ACTIVITY_LAG (lines 8 and 9) within a CASE WHEN statement (lines 6–12).

ACTIVATION_COUNT returns, for every activity, howmany times it has already
occurred (so far) in the current case. Within the CASE WHEN statement, the ticket
ID is returned if the ACTIVATION_COUNT is greater than 1 and the current
activity is not equal to the last and the second last activity. The latter comparison is
calculated by the ACTIVITY_LAG operator. In general, ACTIVITY_LAG returns
the activity from the row that precedes the current activity by offset number of rows
within a case.

If one of the expressions in the WHEN-clause (lines 7–9) is FALSE, the CASE
WHEN statement returns NULL. As in the example for direct ping-pong-cases, the
CASE WHEN statement is wrapped in a COUNT operator (lines 5–13) to count the
total number of ping-pong-cases. By adding DISTINCT (line 5) to the COUNT
operator, it is guaranteed that a ticket is only counted once as an indirect ping-
pong-case. The result of the COUNT operator is then, again, divided by the total
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Query 4 Violated SoD ratio per purchase organization

1 TABLE (
2 "PurchaseOrders"."PurchaseOrganization",
3 AVG(
4 CASE
5 WHEN SOURCE ( "Activities"."Department",
6 REMAP_VALUES ( "Activities"."Activity",
7 [ ’Request Approval’, ’Request Approval’ ],
8 [ ’Grant Approval’, ’Grant Approval’ ],
9 NULL

10 )
11 ) = TARGET ( "Activities"."Department" )
12 THEN 1.0
13 ELSE 0.0
14 END
15 )
16 ) AS "SoDViolationRatio"
17 ) ORDER BY "SoDViolationRatio" DESC;

number of tickets to get the ratio of indirect ping-pong-cases. Thereby, the total
number of tickets is calculated using the COUNT_TABLE operator (line 15). The
country ("Tickets"."Country", line 4) is specified as a dimension in the
TABLE statement (lines 3–17) to calculate the ratio of indirect ping-pong-cases per
country. To get the countries with the highest ratio of indirect ping-pong-cases, the
calculated ratio is sorted in descending order by the ORDER BY statement (line 17).
The FILTER statement (line 1) at the beginning of the query ensures that the current
activity is “Change Assigned Group”.

5.3 Fraud Prevention by Identifying Segregation of Duties
Violations

Segregation of Duties (SoD) is a concept based on shared responsibilities: It
ensures that certain activities are not executed by the same person or department. It
applies the four-eyes principle and decreases the power of an individual person or
department in order to prevent fraud and errors. Therefore, the concept is essential
for effective risk management and internal controls. In procurement, unauthorized or
unnecessary purchase orders or purchase orders for personal use may occur if duties
are not separated properly. With this in mind, it is best practice in procurement to
have different people, or departments, for purchase approvals and invoice payment
approvals.

Query 4 shows a Celonis PQL query for the calculation of the ratio of purchase
orders in which the SoD for the activities “Request Approval” and “Grant Approval”
was violated because the same department executed both tasks. The ratio is
calculated per purchase organization to discover the ones with the highest violation
ratio. Comparing whether the activities “Request Approval” and “Grant Approval”
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were executed by the same department is done within the CASE WHEN statement
(lines 4–14). The statement contrasts the source event department to the target event
department by using the SOURCE and TARGET operators (lines 5–11). A detailed
description of these operators can be found in Sect. 4.2. The REMAP_VALUES
function (lines 6–10) passed as a parameter to the SOURCE operator allows to
extract the activities “Request Approval” and “Grant Approval” by mapping them
to the same name while mapping all the other activities to NULL. If the comparison
between the source department and the target department returns true, the CASE
WHEN statement returns 1 (line 12); otherwise 0 (line 13).

The AVG operator (lines 3–15) in which the CASE WHEN statement is wrapped
calculates the ratio of violations of the SoD. By specifying the purchasing
organization ("PurchaseOrders"."PurchaseOrganization") as a
dimension in the TABLE statement (lines 1–17), the ratio of violations is calculated
per purchase organization. The result of the AVG calculation is sorted in descending
order by the ORDER BY statement (line 17) to get the organizationswith the highest
violation rate.

6 Implementation

Celonis PQL is the basis of a commercial product that promises interactive process
mining and business intelligence using datasets with hundreds of millions of events.
For this reason, the implementation of the language has to fulfill high requirements
regarding performance, scalability, and low latency.

The implementation targets business intelligence and process mining because
our experience is that process mining unfolds its full potential in combination with
classic BI. Many insights into customer data could only be derived by taking into
account further dimensional tables, in addition to the event log. For example, to
find the country with the most segregation of duties violations (see Sect. 5.3),
information about the countries has to be available.

In the past, different types of software addressed two fields: BI and process
mining. BI is the domain of relational database systems. This is also reflected by
the TPC-H benchmark [5], which is the de facto standard benchmark for analytical
databases. The benchmark portrays a wholesale supplier in a data warehouse and
focuses on classic BI questions, but it does not consider any process mining aspects.
As a result, databases perform well in answering BI questions, but they are not
optimized to answer process mining questions.

Besides the Celonis PQL implementation, process mining is done on relational
databases, specialized implementations, or graph databases [6]. Graph databases can
be considered as a reasonable choice, because a process instance can be interpreted
as a graph. While they deliver a decent performance for process mining, a graph
database is not optimized for business intelligence. This is why our objective was
not to build upon an existing data processing solution. Instead, we wanted to
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design a system from scratch, which combines techniques from relational and graph
databases.

Like most state-of-the-art database systems, the Celonis PQL implementation
is a main memory database. This means that it uses main memory as primary
storage instead of the disk in order to avoid slow disk access. It is implemented
in C++ and Java. C++ is used for all software modules in which active control over
the main memory is necessary, like the storage layer and the performance-critical
process mining algorithms. Java is used for non-performance-critical sections, like
the parser, because of its memory safety.

The Celonis PQL Engine uses state-of-the-art techniques from the database
research community like just-in-time (JIT) compilation and dictionary encoding.
JIT compilation is a technique that generates and compiles code to execute a query.
It allows achieving a good cache locality and a low number of CPU instructions
resulting in a very high performance as shown by Neumann [11]. Dictionary
encoding is a standard compression technique to reduce the memory overhead [10].

Elements that are taken from the graph community are some algorithms and data
structures, like the adjacency list. The Celonis PQL Engine thereby exploits features
of an event log, like process instances, which in most cases represent graphs with a
rather low number of nodes.

The Celonis PQL Engine implementation focuses on analytical queries. It is
snapshot-based, which means that the engine answers queries based on the data of
the source system at a particular point in time. The data is not constantly updated.
Instead, a bulk update mechanism is in place. This avoids some overhead, which
would be introduced by a concurrency control mechanism like MVCC [2].

The Celonis PQL Engine implementation is also focused on scaling with the
number of CPU cores within one server. The challenge here is that the implementa-
tion has to be lightweight enough to run on commodity laptop hardware, while it has
to be sophisticated enough to make use of all the power a high-end server provides.
This is achieved by parallel intra query execution, refer to Leis et al. [9] for details.

The Celonis PQL Engine implementation, however, is not designed to process
queries across multiple servers. This is a conscious decision because the Celonis
PQL Engine needs to provide results with low latency. Synchronizing multiple
machines across the network to execute a Celonis PQL query adds overhead,
which is against the low latency goal. The work of Schüle et al. [14] supports
our single-node approach by demonstrating that a single server can handle even
large scale applications like Wikipedia. To support such applications, lightweight
in-memory compression techniques have to be in place. The Celonis PQL Engine
implementation uses an approach for in-memory compression, which is inspired by
the work of Lang et al. [7].
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7 Celonis PQL and the Process Querying Framework

The Process Querying Framework (PQF) [13] is an abstract system consisting of a
set of generic components to define a process querying method. Celonis PQL covers
many of these components. This section describes the integration of Celonis PQL
into the PQF.

Figure 15 illustrates how Celonis PQL instantiates the main components of the
PQF. The first part of the framework (Model, Record, and Correlate) retrieves or
creates the behavioral models and formalizes the business questions into process
queries. The event logs are recorded by information systems like ERP or CRM
systems, and extracted from these source systems into the Celonis IBC platform.
The process models are either manually modeled (e.g., in Celonis IBC or in an
external tool) or discovered by process mining techniques, like the Inductive Miner
[8]. The correlation models are created by the conformance checking operator (see
Sect. 4.4), relating activities of the event log to tasks in the process model. However,
the different kinds of model repositories overlap due to their related storage, as
relational data within the same data model. For example, the result column of the
conformance checking operator (correlation model) is added to the activity table
(event log).

The query intent of Celonis PQL is limited to create and read. While all
supported kinds of behavioral models can be read, process models and correlation
models can also be created by Celonis PQL queries (e.g., by process discovery and
conformance checking). The update and delete query intents are not included—
especially for the event logs—as they should always stem from the source systems.
Therefore, event log updates can be achieved by delta loads that regularly extract
the latest data from the source systems. The process querying instruction is usually
defined by an analyst through a user interface. For example, the user defines the
columns to be shown in a table, which can be considered as the query conditions.
The selections from the user interface are then formalized into a Celonis PQL query.

The Prepare part of the framework focuses on increasing the efficiency of the
query processing. The Celonis PQL Engine—that processes the queries—maintains
a cache for query results, refer to Sect. 6. After the application starts, it warms up the
cache with the most relevant queries derived from the Process Querying Statistics
to provide fast response times. According to [13], the Indexing component does
not only include classical index structures but also all kind of data structures for
an efficient retrieval of data records. It is covered by the dictionary encoding of
columns, as discussed in Sect. 6.

The Execute part of the framework combines an event log with an optional
process model and a Celonis PQL query into a query result, which can be either
a process model, KPIs, filtered and processed event log data, or conformance
information. The concrete input and output of the query depend on the selected
query intent and the query conditions. The Filtering component reduces the input
data of the query. This can either be achieved by the REMAP_VALUES operator and
the filter column of the SOURCE and TARGET operators, as described in Sect. 4.2,
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or by the general filter statement shown in the example in Fig. 6. The Optimizing
component uses basic database technology to rewrite the query and create the
Execution Plan, which describes a directed graph of operator nodes. The Process
Querying component then executes the execution plan on the filtered data. It also
retrieves data from the cache to avoid re-computation of either the full query or
certain parts of it, which are shared with previous queries.

The Interpret part of the framework communicates the query results to the user
and improves the user’s comprehension of them. The applications in the Celonis IBC
platform incorporate Celonis PQL and make the results accessible to the user. The
Process Analytics presents the query results as process graphs, charts, and tables.
Beyond pure visualization, it is highly interactive with dynamic filtering to drill-
down the processes to specific cases of interest. This interactivity offered by all
GUI components is achieved through the dynamic creation of Celonis PQL queries.

Process Conformance [16] shows the deviations between process model and
event log in a comprehensive view, including a comparison of KPIs between
conforming and non-conforming cases. In contrast to this, the focus of the Action
Engine [1] is not to present query results, but to trigger user actions, for instance,
by informing about deliveries that are expected to be late. The Action Engine can
also trigger automated workflows that are executed by the Process Automation
component. Within this component, the workflows can query data from the event
log using Celonis PQL.

Transformation Center supports process monitoring. It historicizes the query
results to show how the processes evolved over time. Finally, Machine Learning
Workbench provides a platform for user-defined machine learning analyses over
event logs and retrieves the event data using Celonis PQL queries.

8 Conclusion and Future Work

In this chapter, we introducedCelonis PQL, which is an independent query language
with a custom-built query engine. It is highly optimized for process mining
capabilities, and although it was inspired by SQL, the design of Celonis PQL is
mostly driven by requirements of business users. A key difference to SQL is that
Celonis PQL is a domain-specific language tailored toward a concrete data model.
As a consequence, it does not require the user to explicitly define joins of data tables
or groupings within the query, which is done implicitly.

As Celonis PQL comprises more than 150 different operators to process event
data, we could only provide an overview of the major language features that are
currently offered to users and showcase the expressiveness of the language with a
few examples. Besides the description of the language, we illustrated the application
of Celonis PQL within the various products available in Celonis IBC. Presented
statistics show the extensive usage of Celonis PQL within these products. In
addition, we presented the applicability of the query language for solving different
real-world problems customers are facing, such as fraud preventionwith segregation
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of duties and speed up of service requests by identifying ping-pong-cases. Finally,
we described the position of Celonis PQL within the Process Querying Framework
(PQF) [13]. Celonis PQL instantiates all parts of the PQF, except for the capability
to simulate models. Moreover, create and read query intents are covered.

Future work on Celonis PQL will focus on the implementation of new operators
to further enrich the capabilities and use cases of the query language. Additionally,
efforts will be made to improve query performance. New features will be developed
in co-innovation projects with academic and commercial partners, and with our
customers.

Readers can access a wide range of PQL functionalities for free. Business users
can use Celonis PQL in the free Celonis Snap2 version. Academic users can get free
access to the full Celonis IBC technology including the wide range of Celonis PQL
capabilities via the Celonis IBC—Academic Edition.3
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