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1. Introduction

The adjective frustrated has usually purely negative connotations, but this is not always true.
Sometimes, frustration is the origin of innovation because it strongly motivates to identify
and solve problems. One famous example is the well-known coffee filter. Melitta Bentz
desperately wanted to avoid frustrating particles in her coffee and invented an efficient, but
easy-to-use filter in 1908. Nowadays, the Melitta group offers a wide range of household
products. It comprises more than 50 subsidiaries on five continents, employs nearly 6,000
workers, and achieved annual sales of about 1.7 billion Euro in 2020 [1]. Consequently,
frustration can initiate astonishing success stories.
In the context of magnetism, frustration can lead to fascinating new phenomena, too,

which attracted strong interest due to, for example, the potential in the field of quantum
computers. But how can a magnet be frustrated? Magnetic materials consist of interacting
magnetic moments (or spins), and the strength of the interaction can be parameterized in
the exchange coupling J . In an antiferromagnet, for instance, neighboring moments try to
align antiparallel. If this is not possible with all neighbors at the same time, the moments
are frustrated. The most direct realization is geometrical frustration. Imagine a triangle
with three spins on each corner that either point up or down. They shall be coupled anti-
ferromagnetically with exchange couplings of equal strength. The antiparallel alignment of
all three spins cannot be fulfilled simultaneously, and there exist six energetically equivalent
arrangements (or ground states), between which the moments can fluctuate (up-up-down,
up-down-up, etc). Such frustration effects can prevent a magnetically ordered ground state,
that usually sets in as soon as thermal fluctuations become small compared to the magnetic
interaction, T . J . Instead of a symmetry breaking transition, a liquid-like state emerges,
which is called spin liquid. In the case of small spins, quantum fluctuations are strong and
survive even at zero temperature. Thus, the so-called quantum spin liquid (QSL) evades
long-range magnetic order down to 0 K.

Such peculiar state has been proposed for the first time by Anderson in 1973 with the
resonating valence bond (RVB) state on the triangular lattice [2]. Its elementary excitations
are fractionalized (spinons), in sharp contrast to those in conventional magnets (magnons).
Furthermore, the RVB state was suggested to be relevant for high-temperature supercon-
ductors [3, 4]. While it turned out that Anderson’s original scenario with isotropic nearest-
neighbor Heisenberg interactions does not host a QSL ground state [5, 6], many QSL have
been identified theoretically on various lattices, including the triangular arrangement. For
example, taking next-nearest neighbors into account (J1-J2 model) can be sufficient to stabi-
lize a QSL, depending on the ratio J2/J1 [7]. Another famous example is the so-called Kitaev
quantum spin liquid (KSL), found by Kitaev in 2006 on the honeycomb lattice with special
anisotropic interactions [8] leading to frustrated neighboring spins. Therefore, this type of
spin liquid is an example for exchange frustration. The KSL attracted enormous attention
because of its potential for fault-tolerant quantum computing [9].
On the experimental side, however, progress could not keep pace with these discoveries

because of several reasons. Real materials are usually more complex due to additional inter-
actions, which leads to deviations from theoretical models. Moreover, a fundamental question

1



1. Introduction

is how to evidence a QSL experimentally, which is rather challenging. A key feature is the
absence of long-range magnetic order in combination with fluctuating spins even at 0 K [7].
Consequently, a bunch of different techniques have to be combined at temperatures as low as
possible. Spin dynamics can be probed by muon spin relaxation (µSR) or nuclear magnetic
resonance (NMR). Neutron scattering is an extremely powerful tool because it is sensitive to
magnetically ordered structures, but can also provide information on the excitation spectrum
of the material. On the other hand, it requires beam time at a large scale facility, where a
well-justified proposal is mandatory several months in advance. Therefore, other methods
are essential for the first characterization of QSL candidates. Thermodynamic measurements
are ideally suitable for this purpose. The specific heat, for example, detects phase transitions
and gives insight into the low-energy excitations. The technical challenge is to perform such
experiments as close as possible to 0 K, which requires more advanced setups than stan-
dard cryostats on 4He basis. In this work, a 3He/4He dilution refrigerator is employed to
investigate potential QSL candidates down to far below 100 mK in fields up to 15 T.
The thesis is structured as follows. Chapter 2 introduces basic concepts in the field of

magnetism, including crystal electric field (CEF), magnetization and magnetic ordering. Two
different mechanisms of frustration are presented, namely the triangular and the honeycomb
lattice, that are relevant for all investigated materials. Thermodynamic relations are crucial
for connecting various variables and revisited before discussing principles of the thermody-
namic properties specific heat, magnetic Grüneisen parameter, and entropy.
The technical aspects of the utilized devices and measurements methods are an essential

part of this experimental thesis, and chapter 3 is addressed to that issue. The working princi-
ple of a 3He/4He dilution refrigerator is introduced. Reliable thermometry in the millikelvin
range is challenging, and considerable efforts have been undertaken to prepare and calibrate
small size thermometers down to below 30 mK in fields up to 17.5 T. The specific heat cells
are equipped with one of these customized thermometers, respectively, and the measurement
methods for specific heat and magnetic Grüneisen parameter are presented in detail. Fur-
thermore, the working principle of the Faraday magnetometer is explained, which is utilized
for determining the magnetization in the millikelvin range.
Chapter 4 comprises measurements on four different samples that all belong to the class of

Yb3+ based triangular lattices. YbMgGaO4 was the first rare-earth based QSL candidate and
is still subject to vivid discussions. Its ground state is apparently disordered with fluctuating
spins down to 50 mK, the key ingredients of a QSL [7]. On the other hand, the site-mixing
of the non-magnetic ions Mg2+/Ga3+ complicates the microscopic scenario due to locally
differently charged environments of the Yb3+ ions. This could lead to a mimicry of a spin
liquid [10, 11]. Additionally, spin-glass freezing has been suggested around 100 mK [12]. In
order to address these issues, temperature- and field-dependent magnetization measurements
down to 40 mK in fields up to 10 T are combined with a procedure to include the structural
randomness into Monte Carlo simulations in Sec. 4.1.
To evade the concerns on the effects of site-mixing, disorder-free Yb3+ materials are highly

desirable. The search was successful in the family of AYbX2, where A and X stand for alkali
metals (K, Na, Cs) and chalcogens (O, S, Se), respectively. The potential QSL candidates
KYbS2 and NaYbO2 are investigated in this thesis by means of specific heat and magnetic
Grüneisen parameter down to 50 mK in fields up to 15 T in Secs. 4.2.1 and 4.2.2. The zero-
field specific heat characterization is discussed in detail, including the subtraction of the
nuclear contribution that arises below about 100 mK. The field-dependent measurements are
used to probe the non-trivial field evolution, which is compared to other triangular lattice
materials. Finally, the phase diagram is established for both materials.

2



The chapter on triangular magnets is concluded by measurements on KBaYb(BO3)2 in
Sec. 4.3. It turns out that its entropy evolution in magnetic fields is ideally suitable for
adiabatic demagnetization refrigeration (ADR) down to temperatures below 20 mK, starting
at 2 K and moderate fields. This material has great potential to replace established cooling
materials due to its chemical stability under vacuum conditions and heating up to 600 °C. In
this thesis, several cooling tests are presented, including a realistic application in the com-
mercial Physical Property Measurement System (PPMS). Finally, possibilities for further
optimization are discussed.
In chapter 5, the focus is changed towards the Kitaev material α-RuCl3, where Ru3+ ions

are arranged on a honeycomb lattice. Despite of sizeable Kitaev interaction, this system is
not a KSL in zero field because of additional interactions. α-RuCl3 undergoes a phase transi-
tion to a magnetically ordered phase in a zigzag pattern at around 7 K. If α-RuCl3, however,
is close to a KSL, suppressing the magnetic order by magnetic field potentially could uncover
underlying spin liquid physics. Excitingly, a half-quantized plateau in thermal Hall conduc-
tivity was found, as soon as the order is suppressed at around 7-8 T [13]. This is in general
considered to be a strong evidence for a field-induced KSL and, thus, for Majorana fermions
in α-RuCl3. On the other hand, this distinct spin liquid phase eventually has to enter the
partially polarized state, when the magnetic field is further increased. It can be expected that
this should be accompanied by another signature in thermodynamic measurements, but only
very weak anomalies have been detected so far [14, 15]. In order to further investigate this,
extensive field-dependent measurements are presented between 0 T and 14 T with the field
applied along various in-plane orientations. This takes the in-plane anisotropy of α-RuCl3
into account. The focus is on the magnetic Grüneisen parameter because of its high sensi-
tivity to field-induced phase transitions. Moreover, the combination with specific heat gives
direct access to the field-dependent entropy. Altogether, these thermodynamic measurements
provide a powerful arsenal to explore the phase diagram of α-RuCl3. Chapter 5 is closed by
the comparison of several samples synthesized in different laboratories, which sheds light on
unexpected in-gap states in the ordered state.
In the end, all results of this thesis are briefly summarized in chapter 6, together with an

outlook on possible further measurements and developments.
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2. Basic Concepts

Classical models exclude any magnetization in materials in thermal equilibrium and zero
field, which is known as the Bohr-van Leeuwen theorem [16]. This is in clear contradiction
to, for example, the probably most prominent permanent magnet, Fe3O4, also called mag-
netite. It is already known for more than two thousand years and was used to fabricate
compass needles [16]. Consequently, a quantum mechanical description is essential for ex-
plaining magnetic phenomena. In Sec. 2.1, the concepts of magnetism in solids are presented
mainly following Ref. [16]. Subsequently, the competing phenomena of magnetic ordering and
frustration are introduced, including the lattice geometries relevant to this work [Sec. 2.2].
Additionally, an overview of thermodynamic basics and relations is presented in Sec. 2.3-2.6.

2.1. Magnetic Moments in Solid Materials

In the following sections, the magnetic moment of a single atom is introduced and environ-
ment effects in solids like the crystal electric field are discussed. Furthermore, the response
of many non-interacting moments on magnetic fields is established.

2.1.1. On the Atomic Level: Hund’s Rules and Spin-Orbit Coupling

For explaining magnetic phenomena, quantum mechanics are essential. In the following, the
relevant basic concepts on an atomic level are introduced. An atom consists of a nucleus and
surrounding electrons in the atomic shell. Each electron carries an orbital angular momentum
l̂i as well as a spin angular momentum ŝi. In the case of weak spin-orbit coupling (SOC),
they both sum up to the total orbital and spin angular momentum L̂ =

∑
l̂i and Ŝ =

∑
ŝi,

respectively. The resulting momenta couple to the total angular momentum Ĵ,

Ĵ = L̂ + Ŝ, (2.1)

generally known as Russel-Saunders or LS coupling. The commuting operators Ĵ2 and Ĵz with
the eigenvalues ~2J(J + 1) and mJ~ represent the atom well [16, 17] with values between
J = |L − S|, ..., |L + S| in integer steps. J is the quantum number of the total angular
momentum with the magnetic quantum number mJ. As a consequence, the SOC splits the
atomic levels according to J , which results in the fine structure [17]. The atomic ground state
can be determined by Hund’s rules. According to the first and second rule, the total spin S
and, subsequently, the total orbital moment L is maximized. Due to SOC, J = |L − S| is
energetically favored for less than half-filled orbitals, whereas J = L+S is prefered for more
than half-filling minimizing the spin-orbit energy given by HSO = λL̂Ŝ [16–18]. The SOC
constant λ increases towards heavier elements and will later become important for comparison
with other energy scales [Sec. 2.1.2].
As an example for applying Hund’s rules, the term scheme of the element Yb is illustrated

in Fig. 2.1(a) where S = L = 0 because of fully filled orbitals and, thus, J = 0. In principle,
the same rules can be applied to ions exemplarily shown in Fig. 2.1(b,c) for Yb3+ and Ru3+

5



2. Basic Concepts

Figure 2.1. Application of Hund’s rules on isolated atoms or ions without considering environ-
ment effects in solids: (a) Yb, (b) Yb3+, and (c) Ru3+.

with J = 7/2 and J = 5/2. Strictly speaking, this only holds true for free ions, where effects
of the environment are neglected, see also Sec. 2.1.2. The total angular momentum Ĵ is linked
to a magnetic moment,

µ̂ = −gJ
µB

~
Ĵ, µeff = −gJµB

√
J(J + 1), gJ = 1+

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
, (2.2)

with the g-factor gJ, the Bohr magneton µB, and the Planck constant ~ [19]. The effective
magnetic moment µeff is linked to the square root of the eigenvalue of Ĵ2 and, therefore, also
to the quantum number J of the total angular momentum. As a result, no magnetic moment
is expected for elementary Yb with J = 0 [16]. For ions, however, the situation becomes
more complicated. Hund’s rules predict the effective magnetic moment for 4f insulators
extremely well, for example for Yb3+ with J = 7/2, but only at high temperatures. Moreover,
transition metal compounds with partially filled d−shells significantly deviate from Hund’s
predictions [16, 19]. Consequently, further effects despite of SOC have to be considered such
as the local environment of the magnetic ions. Implications on the energy level scheme will
be discussed in the next section.
As a closing remark, it should be mentioned that the nucleus may also carry a magnetic

moment due to its nuclear spin I from the protons and neutrons. Compared to the electronic
magnetic moment, it scales by the mass ratio between electron and proton, me/mp. Thus,
its magnetism can usually be neglected [16].

2.1.2. Crystal Electric Field and Effective Total Angular Momentum Jeff

In solid materials, the ions naturally can not be considered as isolated, and environment
effects are usually crucially important. The stability of ionic solids results from the attrac-
tive force between oppositely charged ions, e. g. between the central atom Ru3+ and the
surrounding ligands Cl− in the case of α-RuCl3. The ligands are very often arranged in an
octahedral configuration around the central atom. In α-RuCl3, edge-sharing RuCl6 octahedra
are formed with six chlorine ions arranged around Ru3+ [Fig. 2.2(a)]. This octahedral con-
figuration holds true for all investigated materials in this work. In general, the ligands may
have an impact on orbitals of the central atom and, consequently, lift the orbital degeneracy.
Here, the Crystal Electric Field (CEF) theory can provide further insights. It describes the
ligands as negative point charge and can, in principle, be expanded to the ligand field theory
by including molecular orbital theory [16].
In the following, a 3d transition metal ion is discussed in detail as a standard example. The
3d atomic orbitals with l = 2 are five-fold degenerate due to the possible magnetic quantum
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Figure 2.2. (a) 3d transition metal (blue) in octahedral ligand (red) configuration. (b) Electrons
in 3dx2−y2 orbital experience electrostatic repulsion from the negative charge representing the
ligands in the xy−plane. Consequently, this orbital is lifted in energy. (c) In contrast, the 3dxy
orbital is favorable for the electron due to the minimized repulsion. (d) As a result, the 3d levels
split into t2g and eg. In the Low Spin configuration, as indicated here for 3d5, the electrons first
occupy the lower orbitals. Figures partially adapted from Ref. [16].

numbers ml = ±2,±1, 0. In a crystal with the three spatial axes x, y, z, however, the real
orbitals are linear combinations of the original atomic wave functions d±2, d±1, d0 which
again results in five degenerate orbitals. These are well-known as dxy, dxz, dyz, dx2−y2 ,
and dz2 orbitals. Please note that the quantum number ml is not well defined anymore for
these orbitals [20]. Consequently, calculating J by simply applying Hund’s rules is no longer
possible. Now, let us return to the influence of the ligands on the central atoms’ d−orbitals.
In Fig. 2.2(b), dx2−y2 is illustrated. The neighbouring ligands in the xy-plane can be, for
example, Cl− or O2− and are treated as negative point charges. In general, d-orbitals are fairly
extended and not shielded by surrounding fully filled shells. As a consequence, an electron
in dx2−y2 experiences strong electrostatic repulsion from the ligands. Therefore, it is lifted in
energy. In contrast, dxy reveals maximal distance to the ligands being energetically favorable
for an electron [Fig. 2.2(c)]. This way, the surrounding crystal field splits the d-orbitals
into two groups, the so-called eg and t2g levels, with an energy difference ∆ [Fig. 2.2(d)].
This holds true for the octahedral ligand configuration while other arrangements result in
different splitting [16]. The filling of the t2g and eg levels with 4, 5, 6, or 7 electrons depends
on the pairing energy of electrons in the same orbital. In general, pairing two spins in the
same orbital is energetically unfavorable because it requires a finite energy due to Coulomb
repulsion. If ∆ is comparatively large, however, minimizing the total spin by first filling t2g
becomes preferable (Low Spin configuration, Fig. 2.2(d)). This is in contrast to Hund’s first
rule, where the spin would be maximized by occupying eg before double-filling t2g (High Spin
configuration) [16].

This discussion emphasizes that determining the ground state of magnetic systems is more
complex than merely applying Hund’s rules and strongly depends on the strength of the CEF
compared to SOC. In 3d transition metals, CEF is the dominating energy scale resulting in the
t2g and eg levels for octahedral ligand environment as discussed above. For heavier elements,
especially in the 5d metals, SOC becomes stronger and often comparable to the CEF. This can
lead to further splitting of the t2g manifold. In the case of d5, the five electrons fill the lowest
states leaving a hole in the Jeff level. This yields an effective magnetic degree of freedom
of Jeff = 1

2 [21, 22], dictating the low temperature magnetism of Ru3+ in α-RuCl3 [23]. In
rare earth ions, however, the 4f subshell is fairly localized and shielded by more expanded
orbitals. This drastically suppresses effects of the CEF rendering SOC as dominating energy

7



2. Basic Concepts

scale, which results in J = 7/2 for Yb3+ following Hund’s rules. That 8-fold degenerate
multiplet, however, is split by the CEF into four doublets according to the Kramers theorem.
At high temperatures, all levels are equally populated, and the theoretically predicted value
µeff = 4.54µB is confirmed experimentally with high accuracy [16]. The low-temperature
physics, on the other hand, is dominated by the lowest Kramers doublet. For YbMgGaO4

and the other investigated Yb3+ samples, their ground state is again expressed by an effective
spin-1

2 [7]. Therefore, both ground states should carry the same entropy R ln 2 [Sec. 2.6].
Nevertheless, the underlying principles are not the same for α-RuCl3 and the Yb3+ materials
leading to fundamentally different physics [Ch. 4 and 5].

2.1.3. Dia- and Paramagnetism

After establishing magnetic moments due to partially filled subshells, the response of a ma-
terial on magnetic fields is discussed. For this purpose, the term of magnetic susceptibility
χ is used, which is often defined as M = χH. It connects the volume magnetization M of a
material with the external magnetic field H = B/µ0. In general, the magnetization does not
depend linearly on the magnetic field and can also be anisotropic. Therefore, a more suitable
definition of the magnetic susceptibility is χij = ∂Mi/∂Hj . The volume magnetization is
the total magnetic moment m normalized by the volume V , Mvol = m/V , and independent
of the sample volume. In many experiments, on the other hand, the molar magnetization
Mmol = m/n with the unit J T−1 mol−1 or µB T−1 is more common. These definitions must
not be confused. In this section, interactions between the material’s ions are neglected.
First, ions without unpaired spins are considered. From a classical point of view1, the

electrons of each ion move around their respective nucleus. Applying a magnetic field causes
a current, which induces a magnetic moment in opposite direction compared to the external
magnetic field. Consequently, χ takes a negative value. This effect is present in all materials
and called diamagnetism [24]. Usually, diamagnetism is fairly weak and can be neglected in
many materials [16].
As soon as permanent non-interacting magnetic moments are present due to non-zero J ,

the situation changes fundamentally. An external field aligns those moments and, thus, the
magnetization M increases. For simplicity, the magnetization is treated as a scalar from
now on because, in most cases, it is measured for the same direction like the magnetic field
without any other components. At a certain field strength, the saturation magnetization
MS = gJµBJ is attained when all moments have become parallel. Note that MS is here
defined as molar magnetization. This behavior can be captured by

Mmol = MSBJ(y), (2.3)

with the Brillouin function2 BJ(y) and y = gJJ(µBB/kBT ) [16]. For y � 1, i.e. high tem-
peratures kBT compared to the magnetic field µBB, the Brillouin function can be expanded
for calculating the molar magnetic susceptibility,

χpara =
µ0µ

2
eff

3kBT
=
CCurie

T
, (2.4)

which is the famous Curie Law [16]. This contribution is called paramagnetism. Its sus-
ceptibility diverges towards zero temperature, whereas diamagnetic contributions remain
temperature independent [16, 24].

1The quantum mechanical solution yields the same expressions for Diamagnetism [24, 25].
2BJ(y) = 2J+1

2J
coth

(
2J+1
2J

y
)
− 1

2J
coth

(
y
2J

)
, and for J = 1/2: B1/2(y) = tanh(y).
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A second paramagnetic contribution should be mentioned as well. Let us consider an atom
obtaining a J = 0 ground state. In this case, a magnetic field is not expected to change the
ground state energy. Nevertheless, a contribution to the susceptibility is possible when the
ground state mixes with excited states exhibiting J 6= 0. Such an effect is known as Van-Vleck
paramagnetism and, like diamagnetism, turns out to be temperature independent [16]. The
susceptibility can then be expressed as χpara(T ) = C/T+χ0 [26]. The Van-Vleck contribution
χ0 leads to an additional linear slope in the field-dependent magnetization M(B) that may
become dominant as soon as the magnetic saturation is reached. As an example, the Brillouin
function for a paramagnetic spin-1/2 system together with a Van-Vleck contribution is shown
in Fig. 2.3(a) with the magnetization normalized to the saturation magnetization. The linear
increase at high fields results from the Van-Vleck term that can be precisely determined
by a linear fit function (red-dotted line). After subtracting the Van-Vleck contribution, the
Brillouin function is recovered (green curve), which saturates to MS as soon as all magnetic
moments are aligned parallel to the magnetic field. In other words, the paramagnet has
entered the fully polarized state. The same behavior in the high-field limit can be observed in
more complex magnets that will be introduced in the following sections. In some anisotropic
magnets, however, extremely high magnetic fields are required to realize this phase. An
example relevant to this work is α-RuCl3. Here, the magnetization M(B) for in-plane fields
is reduced below the expected value because the strong anisotropic interactions prevent the
parallel alignment of the spins. M(B) still increases even at 60 T, and full saturation will
only be approached in the limit of extremely high fields [27, 28]. This rather peculiar state
is denoted as the partially-polarized state.
As a closing remark on paramagnets, the magnetic susceptibility χ(B) as field-derivative

of the magnetization is shown in the inset of Fig. 2.3(a). χ(B) decreases monotonically and
reaches the constant value χ0 if a Van-Vleck contribution is present.

2.1.4. Magnetic Interaction

Hund’s rules basically stem from interactions between electrons on the same atom [18]. Nat-
urally, these electrons may also interact with neighbouring atoms which has been neglected
so far. This is crucial for explaining cooperative magnetic phenomena because the classical
dipole-dipole interaction clearly lacks any reasonable description. For typical parameters in
solids, the dipole energy is in the order of 1 K and, as a consequence, is not capable to explain
e. g. magnetic order at room temperature [16]. In the following, the very basics of magnetic
interactions are briefly introduced following Ref. [18]. In insulating materials, they mainly
can be ascribed to two distinct types, namely the potential and the kinetic exchange.
Let us consider two electrons located on two different atoms. In this configuration, the

electron spins can form a singlet or a triplet state. By calculating the energy difference be-
tween those states, Es − Et, the nature of the ground state can be determined. For atoms
being close enough to each other, like in the hydrogen molecule, a chemical bond is developed
resulting in singlet state. Without overlap of the atomic wave functions, however, the ground
state turns out to be a triplet. That corresponds to ferromagnetic interaction between the
electrons. Since it originates from electron-electron repulsion and, therefore, influences the
potential energy, that interaction is called potential exchange.

Furthermore, hopping processes between the two atoms are possible with a hopping probabil-
ity t resulting in two electrons located on the same atom and orbital. Thus, the strong on-site
Coulomb repulsion becomes important, which is often denoted as Hubbard U due to its cen-
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2. Basic Concepts

Figure 2.3. (a) Magnetization of an ideal J = 1/2 paramagnet using the Brillouin function
together with a Van-Vleck contribution yielding a linear slope at high fields (black). Fitting this
part with MHF = χ0B+MS (red) allows to subtract of the Van-Vleck term and to recover of the
original Brillouin function (green). (b) Sketch of typical χ−1(T ) curves for a ferromagnet (blue)
and an antiferromagnet (red) with an ordering temperatures of TC/N. In the high temperature
limit, the Curie-Weiss law is valid and can be used to fit the linear regime with χ−1 ∼ T −Θ. A
negative Curie-Weiss temperature Θ indicates AF interactions, whereas FM interactions result
in positive values. For a paramagnet (black), Θ = 0 recovers the Curie law from Eq. 2.4. Graph
adapted from Ref. [25]. (c) Magnetic susceptibility M/H of a typical spin glass system adapted
from Ref. [29]. Below the freezing temperature Tf , the susceptibility depends on the measurement
history. DC-susceptibility measurements require a small but finite magnetic field. Cooling the
system in this field (FC) results in nearly constant susceptibility below Tf (black). If the system
is cooled in zero-field (ZFC), however, it strongly decreases below Tf (red). This way, the freezing
temperature can be determined.

tral role in the Hubbard model. In the regime of Mott insulators, the Coulomb repulsion is
dominating, U � t. Returning to the hopping process, it is obviously only allowed for the
singlet state due to the Pauli principle. Calculating again the energy difference Es−Et reveals
the singlet state as energetically favorable. Consequently, possible hopping processes reduce
the energy and favor the antiferromagnetic configuration. Due to the imaginary movement
of the electron, that effect is called kinetic exchange.
In insulating materials, these two exchanges determine if a material exhibit ferro- or anti-

ferromagnetic interactions. In the Heisenberg model introduced in Sec. 2.2.1, both exchanges
are summarized in the coupling constant Jij and are not distinguished explicitly anymore.

2.1.5. Magnetic Ordering

As soon as magnetic interactions come into play, an abundance of magnetic structures can
evolve. The most elementary arrangements are ferromagnets (FM) and antiferromagnets
(AFM), where the magnetic moments reveal a well-defined and stable orientation below the
ordering temperature. Such phenomena are called long-range order. In the FM case, all
moments are aligned parallel leading to a non-zero magnetization. For AFM, the magnetic
interaction forces neighboring moments to point into opposite directions. This way, two sub-
lattices are created that add up to zero magnetization. Strictly speaking, the latter only holds
true as long as both sublattices carry the same magnetic moments. Otherwise, a structure
with nonzero net magnetization is obtained called ferrimagnet. For all these configurations,
increasing the temperature results in thermal fluctuations competing with magnetic interac-

10
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tions. Eventually, the magnetic order is destroyed at the characteristic ordering temperature
TC. For AFM, it is usually denoted as Néel temperature TN. At temperatures far above the
ordering temperature, the magnetic moments are dominated by thermal fluctuations rem-
iniscent of the previously discussed paramagnet. For this regime, approximating magnetic
interactions by a mean-field approach for FM (or AFM) yields the Curie-Weiss Law,

χ =
µ0µ

2
eff

3kB

1

T −Θ
, (2.5)

with the Curie-Weiss temperature Θ [16, 18]. This quantity is standardly used to categorize
magnetic materials by fitting experimental magnetic susceptibility measurements in the high
temperature limit T � Θ. As a technical remark, the temperature-dependent magnetic
susceptibility is usually measured at a small but finite magnetic field to induce a detectable
magnetic moment. This method is called DC-susceptibility measurement. In Fig. 2.3(b),
typical inverse susceptibility curves χ−1(T ) of a FM (blue), an AFM (red), and a paramagnet
(black) are presented. Both the FM and the AFM order at TC/N, where deviations from the
Curie-Weiss law are expected. A positive Curie-Weiss temperature evidences dominating
ferromagnetic interactions. For AFMs, however, a negative value is observed. In the case of
Θ = 0, Eq. 2.4 for the pure paramagnet is recovered. Note that, in general, the Curie-Weiss
temperature Θ does not predict the ordering temperature correctly because the mean-field
approximation has limitations. Nevertheless, Θ and TC/N are usually assumed to be in the
same order of magnitude.
Susceptibility measurements χ(T ) can also serve as a direct probe for evidencing magnetic

order. At TC/N, an anomaly is commonly present as indicated in Fig. 2.3(b) for the AFM.
The shape of the transition depends on the system under investigation. Additonally to
magnetization measurements, there are many further complementary experimental methods
such as specific heat or elastic neutron scattering as the most direct probe, where magnetic
Bragg peaks appear in the ordered state [16, 30]. It is noted in passing that susceptibility
measurements are useful, too, to detect the freezing temperature Tf in spin glasses, where the
magnetic moments become frozen and point randomly into different directions [19]. Here,
the magnetic susceptibility χ = M/H depends on the history before the measurement. If
the sample is cooled below Tf in a magnetic field, M/H turns out to be nearly constant
[Fig. 2.3(c)]. If the sample is cooled in zero field, however, the susceptibility becomes clearly
distinct and shows a steep decrease below Tf . The freezing temperature is defined as the
point where the field cooled (FC) and the zero field cooled (ZFC) curves start to deviate
from each other [19, 29].
So far, only the ground state of FMs (AFMs) has been discussed. However, excitations

are crucial to fully understand a material. In conventional magnets, the most elementary
excitation in the ordered state is the magnon with its bosonic character. It evolves due to
the symmetry breaking at the ordering temperature (Goldstone theorem) [18]. In a very
basic picture, a magnon can be regarded as flipping a spin. In a FM, this is equivalent
to reducing the total magnetization by ∆S = 1. A more exotic excitation is the so-called
spinon. It carries a spin of 1/2 and, consequently, has fermionic character. Usually, spinons
are discussed in the context of one-dimensional spin chains, where they appear as domain
walls [16, 31], but they also attracted a lot of attention as possible excitations in frustrated
two-dimensional magnets. This will be discussed in the following section.
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2.2. Magnetic Frustration

Sometimes, a little frustration can make life interesting. - L. Balents [31]

Especially for magnetic systems, this certainly holds true. Magnetic frustration appears
when competing magnetic interactions can not be fully satisfied simultaneously. In a simple
picture, three Ising spins with antiferromagnetic (AF) interactions on a triangle illustrate
the concept of frustration well [Fig. 2.4(a)]. Spin 1 and 2 point in opposite directions.
For the third spin, however, concurrently meeting the AF configuration compared to 1 and
2 is not possible anymore. Hence, the system is frustrated. Since the effect originates
from a special spin arrangement, it is termed geometrical frustration. Many geometries
potentially show frustration, for example the Kagomé, triangular, square, or the Pyrochlore
lattice [31]. Besides the geometrical configuration, exchange frustration offers another
route for intriguing new physics. In this case, bond-dependent interactions between nearest
neighbors (NN) may result in frustrated spins, too [8, 32]. Such highly anisotropic behavior
requires special preconditions for realization in materials and will be discussed in more detail
in Sec. 2.2.2.
But what is the effect of magnetic frustration? Usually, each magnetic system undergoes

a symmetry-breaking transition as soon as magnetic interactions prevail over thermal fluc-
tuations at the ordering temperature [Sec. 2.1.5]. If frustration becomes dominant, however,
long-range order becomes increasingly suppressed, and the transition temperature shifts to-
wards lower temperatures. For comparing different materials, the frustration parameter
f = |ΘCW|/TN has been introduced [31, 33] as the ratio between Curie-Weiss and ordering
temperature. A large f indicates a strongly frustrated magnet. In some cases, the magnetic
order completely vanishes resulting in a liquid-like state with disordered spins, which is called
spin liquid [31].
In the classical limit of large spins, models exhibiting spin liquids often have a large degener-

acy of spin configurations. As standard example, AF coupled Ising spins on a two-dimensional
(2D) triangular lattice obtain residual entropy reminiscent of that degeneracy [34]. A similar
situation occurs in Pyrochlores with spins arranged on corner-sharing octahedra (3D). These
spins are Ising-like and point either into or out of the octahedra. Satisfying the ferromagnetic
NN interaction is not possible evoking frustration. The ground state for a single octahedron
are two spins "in" and two "out", which is already sixfold degenerate. Consequently, Py-
rochlores obtain a huge (classical) ground state degeneracy as well [31]. The ground states
are separated by a sizable energy barrier since several spins need to be flipped requiring finite
thermal fluctuations. If temperature is reduced to 0 K, however, the spins freeze in their
randomly distributed two-in-two-out configurations forming a spin ice. As a consequence,
magnetic moments become static in classical spin liquids at very low temperatures [31].
This aspect distinctly distinguishes quantum spin liquids (QSL) from their classical coun-

terparts. Quantum fluctuations are strongest for spin-1/2 systems and survive at zero tem-
perature. Therefore, magnetic moments remain dynamic and fluctuating in a QSL. The
ground state is not degenerated anymore but rather consists of a superposition of different
configurations. In this context, a widely used description is the resonating valence bond
(RVB), which originally has been postulated for the triangular lattice by Anderson [2]. Here,
all spins pairwise form a valence bond (spin singlet). That naturally accounts for the ob-
viously zero net magnetization of a QSL. Due to quantum fluctuations of the spins, the
valence bonds fluctuate between all possible configurations. Thus, the RVB state is the su-
perposition of all possible local singlet configurations [Fig. 2.4(b)]. The valence bonds do
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Figure 2.4. (a) Three AF Ising spins (J > 0) on a triangle as simplest example for magnetic
frustration, because not all interactions can be satisfied simultaneously. In total, six equivalent
ground states are possible. Consequently, the classical ground state is sixfold degenerated. (b)
The superposition of all possible spin singlet configurations (green ellipses) forms the highly
entangled QSL ground state. Following Anderson’s description it is called RVB state, and the
singlets fluctuate between different configurations even at 0 K [2, 31].

not necessarily only comprise neighboring spins and can have long-range character [31]. The
lowest possible excitation in the RVB state is the breaking of a valence bond equivalent to
flipping one single spin. This way, two unpaired spins are created, which can be separated
without further energy costs and, therefore, be treated as independent quasiparticles. They
both carry spin-1/2 since a single spin flip corresponds to ∆S = 1. This fractionalization is
a remarkable feature of those exotic quasiparticles called spinons. They are distinct from the
conventional magnetic exitations (the bosonic magnons), and a key characteristic of certain
QSL [31]. Besides their fascination in fundamental research, QSL might be a key for under-
standing high temperature superconductivity [3, 4]. Furthermore, the so-called Kitaev QSL
is ideally suitable for fault-tolerant quantum computing [8]. As a result, huge efforts have
been undertaken both from theoretical and experimental side for unveiling the mysteries of
QSL.
In the remaining two subsections, a brief overview is presented over the spin models rele-

vant to this work, namely the triangular and the honeycomb lattice. Both can host a QSL
depending on the considered interactions.

2.2.1. Triangular Lattice

From the residual entropy of Ising spins [34] over Anderson’s proposal of the RVB state [2]
to unexpected magnetization plateaus or other unusual phases [35] - for many years, the
triangular lattice has been subject to intriguing novel phenomena. New interest has been
aroused by the discovery of YbMgGaO4 six years ago. This material obtains magnetic ions
on a perfect triangular lattice and does not show any magnetic order down to at least 50 mK
despite a Curie-Weiss temperature of −4 K indicating strong frustration [36]. It triggered
huge theoretical efforts to investigate the phase diagram of triangular lattices. Similar to
many other magnetic systems, it can be described with the Heisenberg model [18]

H =
∑
〈ij〉

JijŜiŜj (2.6)

with the coupling constant Jij between magnetic moments i and j, which are expressed by
the spin operators Ŝi and Ŝj . The summation is done over bonds 〈ij〉, and Jij > 0 is defined
as antiferromagnetic interaction3. Two aspects are important not to confuse here. First,

3Sometimes, the summation is done for each site i, j, resulting in a factor 2 for Jij . Furthermore, the
convention Jij < 0 for antiferromagnetic interactions is also common.
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the coupling constant Jij must not be mixed up with the previously defined total angular
momentum Ĵ and its quantum number J . Second, the spin operators Ŝ represent any angular
momentum operator independent from the exact origin. Thus, it can also represent the total
angular momentum Ĵ. In order to avoid confusion, however, the notation Ŝ is preferable
in this context [18]. So far, the exchange couplings are assumed to be isotropic. In a more
generalized picture, Eq. 2.6 can be expressed as

H =
∑
〈ij〉

ŜiJijŜj , (2.7)

using the exchange matrix Jij , which can be split into a symmetric and an antisymmetric
part, Γij = Γji and Dij = −Dji, respectively. The latter stands for the Dzyaloshinsky-Moriya
(DM) interaction, which changes sign depending on the bond direction.

Jij = Γij +Dij =

 Jx Γxy Γxz

Γxy Jy Γyz

Γxz Γyz Jz

+

 0 −Dz Dy

Dz 0 −Dx

−Dy Dx 0

 (2.8)

Due to inversion symmetry, the DM interaction is forbidden in triangular lattices [37] leaving
the Hamiltonian

H =
∑
〈ij〉

ŜiΓijŜj . (2.9)

Naturally, the components of Γij depend on the distance between spin i and j. Strictly
speaking, Jx as well as all other components should have an index ij in Eq. 2.8, which is
omitted for the sake of clarity. This opens an infinitively large parameter space rendering
Eq. 2.9 impossible to solve in general. In many systems, however, it may be sufficient to
restrict to (next) nearest neighbor interactions that strongly reduces the complexity. But
even the pure nearest-neighbor Heisenberg model on the triangular lattice following from
Eq. 2.6, where only one free parameter is needed, is not exactly solvable. Thus, numerical
methods are required.
Up to here, lattice symmetry has been mainly ignored. For the specific case of a triangular

lattice, Eq. 2.9 can be transformed by symmetry considerations explained in detail in Ref. [38]
and takes the following form [7, 39],

H =
∑
m

[
HXXZ
m +H±±m +Hz±

m

]
. (2.10)

The summation index m represents interactions between nearest neighbors for m = 1, be-
tween next nearest neighbors for m = 2, etc. The first term stands for the XXZ-Hamiltonian,
which is directly derived from Eq. 2.9 for Jxm = Jym ≡ Jm and Jzm = ∆Jm when off-diagonal
terms are neglected,

HXXZ
m = Jm

∑
〈ij〉

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j + ∆Ŝzi Ŝ

z
j

)
. (2.11)

It reflects the anisotropy for the z−direction compared to the isotropic plane containing
the triangles. The extend of that XXZ anisotropy is encoded in the parameter ∆ [7]. The
remaining two Hamiltonians reflect bond-dependent terms resulting from strong SOC creating
highly anisotropic interactions [38],

H±±m =
∑
〈ij〉

2J±±m

[(
Ŝxi Ŝ

x
j − Ŝ

y
i Ŝ

y
j

)
cosφα −

(
Ŝxi Ŝ

y
j + Ŝyi Ŝ

x
j

)
sinφα

]
, (2.12)
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Hz±m =
∑
〈ij〉

2Jz±m

[(
Ŝyi Ŝ

z
j − Ŝzi Ŝ

y
j

)
cosφα −

(
Ŝxi Ŝ

z
j + Ŝzi Ŝ

x
j

)
sinφα

]
. (2.13)

The former term represents diagonal anisotropic interactions additional to the XXZ model,
while the latter describes the off-diagonal anisotropy. The bond-dependency is taken into
account by the prefactor φα = 0,±2π/3 [7, 39]. Eq. 2.10 is the most general Hamiltonian for
the triangular lattice and has been extensively investigated, especially in the last years. In
the isotropic case (∆ = 1, J±± = Jz± = 0) for nearest neighbors, the 120◦ ordered ground
state is obtained [5, 6] and not the RVB state as originally proposed by Anderson. Frustration
can be introduced, however, by extending this simplest model exploiting the large parameter
space. QSL phases can be identified theoretically for several combinations. Including second
nearest neighbors in the J1 − J2 Heisenberg model is one possibility, although the exact
QSL nature is not resolved yet [40–47]. Alternatively, the anisotropic interactions J±± and
Jz± can stabilize a QSL phase as well [38, 39, 48]. It should be noted, though, that all
these QSL are distinct from Anderson’s originally proposed RVB scenario [7]. Nonetheless,
the triangular lattice offers a fertile playground for the search of QSL. Understanding the
interplay between all possible interactions is essential, and exploring the phase diagram on
the triangular lattice still remains a highly active research field.
In Ch. 4, several materials with Yb3+ on a triangular lattice are investigated by tempera-

ture- and field-dependent thermodynamic measurements. All these examples obtain sizeable
frustration, sometimes even the absence of magnetic order down to the lowest accessible
temperatures. The possibility of hosting a QSL ground state is discussed in detail. For
YbMgGaO4, Eq. 2.10 is used for numerical calculations in order to reproduce the field-
dependent magnetization.

2.2.2. Kitaev Model: Honeycomb Lattice

In the previous section, anisotropic spin interaction have already been introduced [Eq. 2.13],
including the possibility of stabilizing a QSL phase. In the class of the so-called compass
models, such anisotropy is pushed to the extreme limit without any isotropic part. In order
to define a compass model, quantum degrees of freedom have to be arranged on a special
lattice. In the following, this degree of freedom will be denoted as spin (or pseudospin) Ŝ.
Most importantly, only certain spin components are interacting depending on the specific
bond. For the Kitaev model on the honeycomb lattice, each site obtains three bonds denoted
as γ = {x, y, z} in Fig. 2.5(a). The bond-dependent interactions can be summarized in the
Kitaev Hamiltonian [8, 22, 49, 50]

HK =
∑
〈ij〉γ

KγŜ
γ
i Ŝ

γ
j = K

∑
〈ij〉γ

Ŝγi Ŝ
γ
j , (2.14)

with the summation over all bonds 〈ij〉 and the exchange coupling K. The latter may depend
on the bond γ, but it is often considered as a constant. The convention without minus sign is
chosen here, and K < 0 implies FM interaction [22]. In the notation of Eq. 2.7 and Eq. 2.8,
this corresponds to the absence of DM interaction, Dij = 0, and non-zero elements for Γij
only on the diagonal with Γij = diag(Kx, 0, 0) on an X-bond, Γij = diag(0,Ky, 0) on a Y-
bond, and Γij = diag(0, 0,Kz) on a Z-bond. Eq. 2.14 reveals that nearest-neighbor spins
experience Ising interactions. The easy axis, however, depends on the bond. For minimizing
the energy for X-bonds, the spins require an alignment perpendicular to that bond. At the
same time, Y- and Z-bonds have the same condition, which cannot be satisfied simultaneously
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Figure 2.5. (a) Definition of Kitaev interactions on a honeycomb lattice from Ref. [22]. Each
(x,y,z)-bond reveals an orthogonal Ising easy axis, respectively. As a consequence, only 1/3 of
all bond interactions can be satisfied simultaneously. (b) Possible ground state configurations
following Ref. [50], underlining the strong frustration. For quantum systems, in a simple picture,
the ground state can be understood as a superposition of all spin configurations, forming an
entangled QSL state.

and is illustrated in Fig. 2.5(b) [50]. Consequently, strong frustration arises, and Kitaev could
show that the ground state of Eq. 2.14 is indeed a QSL, which is often referred to as Kitaev
Spin Liquid (KSL) [8]. A peculiarity of the Kitaev model is that it is a rare example of
an exactly solvable spin model [51]. Kitaev found further evidence that this specific QSL
is potentially ideally suitable for fault-tolerant quantum computing due to the emergence of
Majorana fermions with special topologocial properties [8, 52]. As a result, huge efforts have
been undertaken to design materials hosting such QSL.
In 2009, Jackeli and Khalliulin [21] suggested a possible realization of Kitaev’s model in

transition metal (TM) oxides. They investigated TM in an octahedral environment resulting
in a level splitting by the CEF [Sec. 2.1.2]. For heavy TM like the 4d and 5d elements, SOC
becomes crucially important,

HSO = λL̂Ŝ, (2.15)

because the SOC constant λ strongly increases towards larger atomic numbers Z [16]. Ac-
cordingly, the t2g levels further split into a lower jeff = 3/2 doublet and a higher jeff = 1/2
singlet [22]. For the d5 configuration illustrated in Fig. 2.6(a), the jeff = 1/2 singlet carries a
single hole. If the on-site repulsion is strong (limit of large Hubbard U), each d5 ion has one
localized hole in the jeff = 1/2 state [22]. That gives rise to local effective spin-1/2 magnetic
moments denoted as pseudo- or isospins [Fig. 2.6(b)] [21].
In a solid, beyond the single ion physics, these isospins interact, which is expected to

be highly anisotropic due to the influence of SOC [37]. As already mentioned above, the
way to the pure Kitaev model is paved by setting all elements of the exchange matrix Jij
from Eq. 2.8 to zero except of bond-dependent diagonal elements. Such peculiar situation
can be engineered by taking advantage of d5 ions in edge-sharing octahedral environment.
When restricting to NN interactions, the DM interaction is symmetrically forbidden. The
TM ions are connected via Ligand (L) ions. In the ideal case of 90° between TM-L-TM,
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2.2. Magnetic Frustration

Figure 2.6. (a) Lifting of the five-fold degenerated d5 state by an octahedral CEF combined
with SOC. In the limit of large Hubbard U, a hole is localized in the jeff = 1/2 state. This
effective isospin (or pseudospin) determines the ground state properties [21, 22]. (b) Real space
illustration of the jeff = 1/2 isospin up state with its uncommon shape. The resulting interactions
between such isospins are highly anisotropic. (c) Sketch of edge-sharing octahedra with the d5

transition metal (TM) and surrounding ligands (L). Two possible hopping pathways TM-L-TM
exist via the upper and lower pz ligand orbitals. For ideal 90° angles, the isotropic part cancels
out. The anisotropic part is exactly the Kitaev interaction. Panels (b,c) adapted from Ref. [21].
(d) Honeycomb structure in α-RuCl3 with Ru (Cl) in grey (green), adapted from Ref. [27].

two dominant electron hopping paths are expected for a given bond. In Fig. 2.6(c), the only
active orbitals together with the pz-orbital are projected onto the xy-plane. In the ideal
90° configuration, the isotropic part of the Hamiltonian is completely suppressed, and only
anisotropic interactions survive [21]. That part exhibit bond-dependent Ising axes, which
is in exact analogy to the Kitaev model from Eq. 2.14. Jackeli’s and Khalliulin’s discovery
triggered enormous interest into the synthesis of new heavy TM compounds with d5 ions
arranged on a honeycomb lattice like in Fig. 2.6(d) for α-RuCl3. As first promising results,
the 2D honeycomb iridates Na2IrO3 [53] and later α-Li2IrO3 [54] have been synthesized which
show inherent Kitaev interactions [55, 56], as well as the up-to-date most promising Kitaev
candidate material α-RuCl3 [23, 57, 58]. The same holds true for the 3D honeycomb materials
β-/γ-Li2IrO3 [59].
All these materials, however, show a magnetically ordered ground state due to interactions

beyond the Kitaev model, which is inevitable in real materials. Several mechanisms may
prevent the idealized Jackeli-Khalliulin configuration. Other hopping paths such as direct
TM-TM hopping cannot be completely suppressed in general. Furthermore, the eg-orbitals
are ignored, and local distortions of the octahedral environment or deviations from the 90°
angle in TM-L-TM bonds act against the assumptions of Jackeli and Khalliulin. Moreover,
couplings between NNN and beyond cannot be avoided, which can symmetrically allow DM
interactions. Altogether, the Hamiltonian in real materials has to be extended beyond the
pure Kitaev model. As a result, the quest for a real-world KSL remains fairly challenging and
has not been successful from the experimental side so far. Nevertheless, Kitaev interactions
are present, and sometimes even dominating, in all of the above mentioned materials [22].
For each system, the complex ground state Hamiltonian has to be explored on its own by
combining all results from both experimental and theoretical side. Both research fields often
cross fertilize each other in this context. Progress will certainly be achieved in the next years,
yet finding materials with pure Kitaev interactions probably remains an unfeasible task.
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In Ch. 5, low-temperature thermodynamic measurements on the Kitaev candidate material
α-RuCl3 are presented. This material is vividly debated due to the discovery of a half-
quantized thermal Hall conductivity [13, 60, 61]. Generally, this is considered to be a strong
evidence for the celebrated KSL and, thus, of Majorana fermions in α-RuCl3. In this work,
the magnetic field dependence of α-RuCl3 is explored inside the ordered state and beyond
the phase transition through the putative QSL state. The experimental data are used to
establish the phase diagram of α-RuCl3 and discussed in the context of Refs. [13, 60–62].

2.3. Thermodynamic Relations

The focus of this work is on thermodynamic measurements in the millikelvin range. Conse-
quently, it is important to repeat some thermodynamic basics. They are crucial to understand
the definition of the heat capacity, its link to the entropy, as well as the derivation of some
Maxwell relations for the Grüneisen parameter. In the following, only reversible processes
are considered.
One of the fundamental aspects is the first law of thermodynamics. In a closed system

(particle number N constant), the thermodynamical potential of the internal energy U can
only be changed by the exchange of the heat δQ or the work δW with its surrounding [63],

dU = δQ+ δW. (2.16)

The convention is chosen here that positive δQ (or δW ) increases the internal energy, whereas
negative δQ (or δW ) results in a decreasing internal energy. In other words, δQ > 0 is
equivalent to a heat transfer into the system, and δW > 0 means that the surrounding does
work on the system. The heat δQ is directly connected to the entropy change dS,

δQ = TdS. (2.17)

There are various expressions possible for the work δW . Volume work changes the pressure
p and the volume V of the system. Magnetic work depends on the total magnetic moment m
(unit: A m2 = J T−1) and the magnetic field B. In analogy, electric work depends on the total
electrical moment and the electrical field, but does not play a role here. First, the volume
work is discussed. A system with a pressure p can perform work by changing its volume V .
If it expands (dV > 0), the system does work on its surrounding reducing the internal energy
of the system (δWVol < 0), and vice versa if the volume shrinks. Consequently, δW = −pdV ,
and the first law of thermodynamics can be rewritten as

dU = TdS − pdV. (2.18)

The internal energy U = U(S, V ) is here a function of its natural variables entropy S and
volume V . Via Legendre transformation, more thermodynamic potentials can be derived [63,
64]. Besides the Gibbs energy G and the enthalpy H, an important example is the Helmholtz
free energy F = F (T, V ), which is transformed from the internal energy via F = U − TS
and that has the following differential form,

dF = −SdT − pdV. (2.19)

The definitions of dU , dF , dG, and dH can be used to derive the so-called Maxwell re-
lations [65]. A convenient mnemonic for these relations are shown in Fig. 2.7(a). Each
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Figure 2.7. Thermodynamic square as a mnemonic for deriving the Maxwell relations adapted
from Ref. [64]. (a) δW = −pdV neglecting magnetic field B and magnetic moment m. (b,c)
Derivation of the Maxwell relations in Eqs. 2.20 and 2.21. (d) δW = −mdB keeping the volume
V and pressure p constant.

thermodynamic potential (U, F , G, H) is shown in red, and the corners next to them show
their natural variables (V , T , p, S), respectively. This "thermodynamic square" can also
be used to derive the differential forms of the thermodynamical potentials such as Eq. 2.18
and Eq. 2.19 which will not be discussed here4. The Maxwell relations are formed in the
following way. First, two neighboring natural variables have to be chosen, for example S and
p in Fig. 2.7(b). Next, their derivative is formed following the dotted arrow, ∂S/∂V and
∂p/∂T , and its ending denotes the constant variable. The sign of each expression, respec-
tively, depends on the arrows in the square of Fig. 2.7(a). If it connects the starting and the
ending point of the dotted arrow in Fig. 2.7(b), a positive sign has to be chosen. This way,
the following relation is found,

+

(
∂S

∂V

)
T

= +

(
∂p

∂T

)
V

. (2.20)

Another example is shown in Fig. 2.7(c) using the neighboring natural variables S and V .
Following the dotted arrow results in

+

(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

. (2.21)

The two other possible relations can be found elsewhere [65]. As soon as magnetic moments
are allowed in the thermodynamic system, another possibility for doing work needs to be
introduced, δWmag = Bdm [63, 64]. Therefore, the first law of thermodynamics is expanded,

dU = TdS − pdV +Bdm. (2.22)

The Legendre transformation for the Helmholtz free energy takes the form F = U−TS−mB
resulting in

dF = −SdT − pdV −mdB. (2.23)

As a consequence, more Maxwell relations become possible, and a new thermodynamic square
has to be drawn [Fig. 2.7(d)]. Note that the potentials are rearranged and that the arrows

4For further information, please refer to Ref. [64].
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point into a different direction. Moreover, pressure p and volume V need to be kept constant.
Following the same procedure explained above, the relation(

∂S

∂B

)
T

=

(
∂m

∂T

)
p

(2.24)

is found [64], which will be helpful in Sec. 2.5, where the magnetic Grüneisen parameter is
discussed. Many other important connections between measured quantities, such as the heat
capacity, and thermodynamic potentials and variables can be derived. Those relevant to this
work will be discussed in the following sections.

2.4. Specific Heat

The specific heat C of a material is an important quantity in order to understand the under-
lying physics. It consists of several contributions from e. g. phonons or conduction electrons
(see following chapters) and is very often used as a standard measurement to identify tran-
sitions like magnetic ordering or superconducting transitions. Furthermore, the temperature
or field dependence C(T ) and C(B), respectively, are very useful as input for new theoret-
ical models as well as a benchmark of existing ones. In the following sections, a detailed
description of the specific heat with its possible contributions are presented, following mainly
Refs. [24, 66].

2.4.1. Definition of Heat Capacity and Specific Heat

The heat capacity of a system describes how much heat δQ is needed to increase the system
temperature by dT . The heat capacity is defined as

Cx =

(
δQ

dT

)
x

, (2.25)

where x are state variables that are kept constant. Relevant variables are, for example, the
volume V , the pressure p or the magnetic field B. Consequently, two different heat capacities
can be defined in a non-magnetic system where the magnetization and the magnetic field can
be ignored. In combination with the first law of thermodynamics Eq. 2.18, the following
expressions can be derived [63],

CV =

(
δQ

dT

)
V

=

(
∂U

∂T

)
V

, Cp =

(
δQ

dT

)
p

=

(
∂U

∂T

)
V

+

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

. (2.26)

Both expressions look similar except of the additional terms in C p. It can be shown that
C p and C V are linked by the volume expansion coefficient α at constant pressure and the
isothermal compressibility κT [64–66],

Cp − CV =
α2

κT
V T, α =

1

V

(
∂V

∂T

)
p

, κT = − 1

V

(
∂V

∂p

)
T

. (2.27)

In this work, the heat capacity measurement is performed at constant pressure, not at con-
stant volume. While it is essential to distinguish C p and C V in gases, the difference becomes
negligible in solids, especially at temperatures below 30 K. Therefore, C p and C V can be
considered equal in this thesis [66, 67]. In analogy, the heat capacity in magnetic systems can
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be expressed either at constant magnetization, CM , or magnetic field, CB, respectively [19,
64]. This will not be further discussed here. From experimental side, it is only possible to
perform measurements at constant magnetic field B and pressure p. Due to the discussed
assumptions above, CB and C p will not be explicitly distinguished anymore in the following,

CB = Cp =

(
δQ

dT

)
B,p

≈ T
(
∂S

∂T

)
B,p

. (2.28)

To better compare the heat capacity of different samples, the absolute values are usually
normalized and thereafter called specific heat. In this thesis, the normalization is in respect
to the molar number n resulting in the unit J K−1 mol−1,

Cp,mol =
Cp

n
=
Cp

m
M. (2.29)

Here, m and M denote the mass and the molar mass, respectively. In the experimental
part, most measured specific heat data have been normalized according to Eq. 2.29 unless
explicitly stated differently, and the subscript mol is omitted in general.
The definition of the heat capacity in Eq. 2.25 is just phenomenological so far. It only

quantifies the amount of energy that the system can absorb in a certain temperature win-
dow. This is defined by the possible excitations that contribute to the internal energy U
of the system. The excitations may be completely different in their origin, like phonons,
conduction electrons or magnons, but they sum up to the total heat capacity of the specific
material. Therefore, the heat capacity is a powerful instrument to identify possible excita-
tions, especially when the temperature dependence is known. An important contribution in
metals, for example, are the conduction electrons which can be treated as Fermi gas with the
heat capacity depending linearly on the temperature [24],

CV,el = γT. (2.30)

In this work, the electronic contribution does not play a role because all investigated materials
are insulators. More important are the ubiquitous excitations of the lattice, better known as
phonons, that will be shortly summarized in the following section.

2.4.2. Lattice Contribution (Phonons)

The specific heat of the lattice vibrations at low temperatures was already subject of in-
tense discussions more than 100 years ago. In 1907, Einstein provided an explanation for its
decrease upon cooling but failed regarding a correct low-temperature expansion [24]. Some
years later, the Debye model significantly improved the understanding of the phononic con-
tribution. Similar to Einstein, Debye considered the atoms of a solid as quantum mechanical
oscillators. In his model, however, these oscillators are coupled, which results in a frequency
dispersion that is not constant. The dispersion is approximated by ω(q) = vq with the sound
velocity v and the wave vector q. To avoid infinite frequencies causing divergent density of
states, the Debye frequency ωD is introduced as cut-off, ω < ωD, which is determined by the
number of atoms N in the solid [24]. These assumptions can be used to calculate the heat
capacity of the phonons in solids with one atomic species,

CV =

(
∂U

∂T

)
V

= 9NkB

(
T

ΘD

)3 ∫ xD

0

x4 exp(x)

(exp(x)− 1)2
dx, (2.31)
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with x = ~ω/kBT and xD = ~ωD/kBT . Moreover, the famous Debye temperature ΘD has
been introduced, kBΘD = ~ωD, with the Boltzmann constant kB and the Planck constant
~. The Debye temperature depends on the material and defines relevant temperature scales.
For high temperatures, T � ΘD, Eq. 2.31 reduces to

CV = 3NkB, CV,mol = 3NAkB = 3R (2.32)

with the gas constant R. This is equivalent to the Dulong-Petit law, the classical result for
the specific heat of solids [24]. In the low-temperature limit T � ΘD, the heat capacity can
be determined as

CV ∼
(
T

ΘD

)3

. (2.33)

Indeed, the experimental data of solids can be described extremely well by this cubic tempera-
ture dependence. Typical values for the Debye temperature are in the order of some ∼ 100 K,
strongly depending on the material [24]. According to Eq. 2.33, the phononic contribution
vanishes rapidly towards lowest temperatures. Since the relevant temperature ranges are
mainly below 2 K in this work, the phonons only play a minor role in most investigated
materials.

2.4.3. Schottky Anomaly of the Two-Level System: Relevance to the
Nuclear Contribution Cnuc

Another possibility to absorb energy is the two-level system indicated in the inset of Fig. 2.8(a).
Here, the energy gap is given as ∆ = Egap/kB in units of Kelvin. If N noninteracting and
nondegenerate two-level systems are considered, the specific heat per mole can be calculated
with the following formula [19],

CV = NkB

(
∆

T

)2 exp
(

∆
T

)[
exp

(
∆
T

)
+ 1
]2 . (2.34)

This contribution to the heat capacity is called Schottky anomaly and plotted normalized
per mole in Fig. 2.8(a) for a gap of ∆ = 1 K and a logarithmic temperature scale. At very
low temperatures, T � ∆, the thermal energy is too small to excite the system, and the
specific heat vanishes towards zero exponentially5. As soon as the temperature becomes
comparable to the energy gap, transitions to the excited state are possible increasing the
internal energy. Therefore, the specific heat starts to grow quickly and, eventually, forms a
broad peak at T ∼ 0.42∆. In the limit of T � ∆, the ground and the excited state become
equally populated, and the system cannot absorb energy anymore. Consequently, the specific
heat has to decrease and follows a power law behavior,

CV ∼
1

T 2
, (2.35)

for temperature high enough above the enery gap ∆. The expression for multilevel systems
becomes more complicated to calculate, but the resulting specific heat curve looks similar
compared to the more simple two-level system [19]. Another important fact is the entropy
related to the Schottky anomaly. For the two-level system, it approaches R ln(2) per mole

5To be more precise, there exists also a temperature-dependent prefactor (∆/T )2 indicated in Fig. 2.8(a).
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Figure 2.8. (a) Schottky anomaly in the specific heat of a two-level system with an energy gap
of ∆ = 1 K. The maximum is located at T ∼ 0.42∆. The high-temperature part shows a 1/T 2

dependece, whereas the increase for T � ∆ goes, in principle, exponentially. (b) Entropy related
to the Schottky anomaly. At high temperatures, T � ∆, the entropy approaches R ln(2).

in the high-temperature limit [Fig. 2.8(b)]. A more detailed interpretation of the expected
entropy values is presented in Sec. 2.6.
Interestingly, the physical origin of the two- or multilevel system does not influence Eq. 2.34.

The only relevant quantity is the level splitting encoded in ∆. One example are the energy
levels resulting from CEF splitting, but they do not play a role in this work because, in
general, ∆CEF � 10 K. The energy gap to the first excited CEF level in NaYbO2, for example,
is as large as ∼400 K [68], and even larger in YbMgGaO4 [69]. Nevertheless, the Schottky
anomaly sometimes becomes important in the sub-Kelvin range. As already mentioned in
Sec. 2.1.1, the atomic nuclei can carry a nuclear moment, which is much smaller than the
moments of the electrons and, thus, usually neglectable. For the specific heat, however, the
nuclei may become important because there are at least two degenerate levels if a nuclear
magnetic moment exists. This degeneracy is lifted by internal or external magnetic fields,
which results in a Schottky anomaly. Another possible level splitting without magnetic field
can appear if a nuclear electric quadrupolar moment interacts with internal electric field-
gradients. In most cases, the nuclear splitting ∆ is fairly small, and the Schottky peak
appears at very low temperature below 10 mK [19]. The high temperature tail with its
1/T 2 behavior, however, can still be measurable up to several 100 mK. This work focuses
on measurements in the millikelvin range, and evidence for a nuclear Schottky anomaly has
been found, for example, in KYbS2 and NaYbO2 [Ch. 4]. Unless otherwise stated, it is
not explicitly distinguished between quadrupolar and nuclear magnetic contribution because
they show the same 1/T 2 evolution. In the following, they are both referred to as nuclear
contribution with the specific heat

Cnuc =
α

T 2
. (2.36)

The parameter α is a measure of the overall nuclear level splitting. In principle, it can be
used to obtain information about the internal magnetic field at the nucleus position, which
is produced by the magnetization of the atom.
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2.4.4. Magnetic Contribution Cm

As soon as the electrons of a material carry a magnetic moment, new excitations may arise.
Naturally, they contribute to the specific heat as well, and their temperature dependence
strongly depends on the specific scenario. Some standard examples are shortly introduced
here together with several relevant examples in frustrated magnets.
The specific heat of insulating materials can be expressed by the sum of the following

contributions,
C = Clat + Cnuc + Cm. (2.37)

In materials with magnetic ordering, the spin waves are the elementary excitations with its
already mentioned quasiparticle, the magnon [19]. In 3D ferromagnets, linear spin wave
theory results in Cm∼ T 3/2 far below the ordering temperature [19]. Antiferromagnetically
ordered magnets are expected to show Cm∼ T 3 in 3D [19] and Cm∼ T 2 in 2D [70, 71],
respectively. So far, these are gapless excitations with a characteristic power law behavior.
There are also gapped exitations possible when an excitation gap ∆ appears in the energy
spectrum. In this case, the specific heat follows an exponential behavior, Cm∼ e−∆/T .
In general, the exact form can be more complicated including a temperature dependent
prefactor, as can be seen in Ref. [72] in the case of a 2D gapped AF. In the end, the exact
formula depends on the specific magnon dispersion. It is noted in passing that the low-
temperature evolution of the gapped two-level system described in Eq. 2.34 also shows the
exponential form in the specific heat.
Additionally to the ordered states, there is an abundance of possible spin liquid ground

states that has been theoretically discovered [31], which potentially show a different evolution
of the specific heat. Here, magnons are not relevant anymore because of the lacking magnetic
order. One prominent example are QSL with a spinon Fermi surface in analogy to the
electronic Fermi surface in metals. Thus, spin liquids with spinon excitations should have
a magnetic specific heat linear in temperature, Cm∼ T [73, 74]. However, corrections to
the spinon Fermi surface can lead to a sublinear behavior, Cm∼ T 2/3 [75]. Another type
of spin liquid are the so-called Dirac QSL, where a quadratic evolution can be expected,
Cm∼ T 2 [76]. On the other hand, this can be easily confused with conventional spin glasses
with frozen spins, where a quadratic behavior can be found as well Cm∼ T 2 [77, 78].
In summary, there is no simple uniform expression for the magnetic contribution in the

specific heat. It strongly depends on the system of interest, and the interpretation may easily
lead to confusion. Nevertheless, the heat capacity is a powerful method to benchmark the
expected physics in all materials, as long as it can be trustably separated from other emerging
contributions. The latter will be a central aspect in Ch. 4 in the discussion of KYbS2 and
NaYbO2.

2.5. Magnetic Grüneisen Parameter Γmag

The Grüneisen parameter, or Grüneisen ratio, Γλ has been widely used for the investigation of
quantum critical points (QCP) [79–81], where the Grüneisen parameter is predicted to show
universal divergent behavior [82]. At the QCP, an external control parameter λ suppresses
the transition temperature of a system to zero [83]. This can be done, for example, by
applying pressure or a magnetic field. Consequently, it is essential to distinguish between
the structural and the magnetic Grüneisen parameter, Γstruc and Γmag, respectively. The
structural Grüneisen parameter is often simply denoted as Γ whereas the magnetic Grüneisen
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parameter can be also found as ΓB or ΓH . They are defined in the following and very similar
way [83],

Γstruc = − 1

V T

(∂S/∂p)T
(∂S/∂T )p

, (2.38)

Γmag = − 1

T

(∂S/∂B)T
(∂S/∂T )B

. (2.39)

Both contain the derivative of the entropy in respect to the control parameter λ as well as
its temperature derivative. In this work, several materials have been intensively investigated
in magnetic fields. Consequently, the magnetic Grüneisen parameter can be a valuable tool
to track the field-evolution of these systems and is discussed in the rest of this section.
The definition of the magnetic Grüneisen parameter in Eq. 2.39 can be transformed into a

less abstract form using Eq. 2.28,

Γmag = −(∂S/∂B)T
CB

, (2.40)

and the Maxwell relation in Eq. 2.24,

Γmag = −(∂m/∂T )B
CB

= −V (∂Mvol/∂T )B
CB

= −(∂Mmol/∂T )B
CB,mol

. (2.41)

This provides experimental access to the magnetic Grüneisen ratio by measuring the specific
heat and the temperature-dependent magnetization to calculate its temperature derivative.
On the other hand, this requires two measurements with different setups, which takes a lot
of time. Additionally, magnetization measurements at very low temperature are fairly chal-
lenging. Thus, a more direct route to the magnetic Grüneisen parameter is highly required.
Indeed, Eq. 2.39 can be rewritten using the following identity [64, 83],(

∂X

∂Y

)
Z

= − (∂Z/∂Y )X
(∂Z/∂X)Y

⇒ Γmag =
1

T

(
∂T

∂B

)
S

. (2.42)

The temperature change induced by a magnetic field with constant entropy is the adiabatic
magnetocaloric effect. Using an alternating-field method described in Sec. 3.5, this is the
easiest and most accurate way to measure the magnetic Grüneisen parameter, which is even
possible at very low temperatures far below 100 mK [83].
The field-dependence of the magnetic Grüneisen parameter is ideally suitable to detect

field-induced 2nd order phase transitions, where entropy is accumulated resulting in a maxi-
mum in S(B). Consequently, the entropy derivative with respect to the field, ∂S/∂B, becomes
zero at the critical field. From Eq. 2.40, it becomes evident that the magnetic Grüneisen pa-
rameter Γmag(B) requires a sharp sign change from negative to positive at the transition field
because CB > 0 for all fields [84].
Furthermore, Γmag(B) might show a maximum at a 1st order transition when the en-

tropy shows a downwards step, equivalent to a large value of ∂S/∂B. This interpretation,
however, is much more complicated than a clear and abrupt sign change because the mag-
netic Grüneisen parameter includes two different quantities, the heat capacity CB and the
derivative of the magnetization, ∂M/∂T . If there are, for example, several field-dependent
contributions in the heat capacity, this might result in anomalies in the Grüneisen parameter
that are difficult to interprete. Similar problems may arise in the magnetization because even
small amounts of impurities can strongly influence the magnetization and, thus, its derivative.
This is the same reason why the temperature-dependence of the magnetic Grüneisen ratio,
Γmag(T ), is sometimes difficult to analyse and understand. In this work, only field-dependent
measurements of Γmag are presented to follow the field evolution of several QSL candidates.
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2. Basic Concepts

2.6. Entropy

In the short part about thermodynamics, the entropy has already been mentioned several
times due to its connection to a heat flux into (or out of) a macroscopic system. A different
approach to determine the entropy comes from statistical physics using a microscopic picture
such as the previously discussed two-level system [Sec. 2.4]. For this purpose, some terms
have to be introduced first. A closed system, as discussed in Sec. 2.3, is called canonical
ensemble. The system is in contact to a thermal bath and, thus, can exchange energy. The
canonical partition function is defined in the following way [85],

Zc =
∑
n

exp

(
− En

kBT

)
. (2.43)

The thermodynamical potential of the (Helmholtz) free energy F is directly connected to the
canonical partition function [85],

F = −kBT ln(Zc). (2.44)

This allows to calculate the entropy in the canonical ensemble [85],

S = −∂F
∂T

= kB ln(Zc) + kBT
∂

∂T
ln(Zc). (2.45)

Now, the aforementioned two-level system is shortly revisited. It shall be defined that the
ground state and the excited level have the energy of zero and E, respectively. In this case,
the partition function takes the following form,

Zc = 1 + exp

(
− E

kBT

)
. (2.46)

For N independendent two-level systems, the entropy after normalization by the molar num-
ber n = N/NA turns out to be

S2-Lvl = kB

{
ln

[
1 + exp

(
− E

kBT

)]
+

(
E

T

)
exp (−E/kBT )

1 + exp (−E/kBT )

}
. (2.47)

This is equivalent to the curve in Fig. 2.8(b). The high temperature-limit of Eq. 2.47 can be
easily calculated and results in

lim
T→∞

S2-Lvl = R ln (2), (2.48)

as already shown graphically in Fig. 2.8(b). This observation can be generalized for multilevel
systems. Each new level i contributes to the partition function with an additional term
exp (−Ei/kBT ). In the limit of T → ∞, the only remaining part of the entropy of a n-level
system is again the logarithmic term,

lim
T→∞

Sn-Lvl = R ln (n). (2.49)

From a physical point of view, this result can be used to draw conclusions on the ground
state of a magnetic system. If its effective spin has the value of Jeff = 1

2 , 1,
3
2 , ... and the

degeneracy in mJ is lifted, for example by a magnetic field, a two/three/four/...-level system
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2.6. Entropy

is created. Consequently, the expected molar entropy released at high temperatures can be
easily calculated by

lim
T→∞

S = R ln (2Jeff + 1), (2.50)

which will become especially important in Sec. 4.3. Despite its importance, there is unfor-
tunately no direct possibility to measure the entropy. On the other hand, it is connected
to measurable parameters. One prominent example is the specific heat from the previous
section directly using Eq. 2.25 with δQ = TdS,

Cx = T

(
∂S

∂T

)
x

. (2.51)

This provides direct access to the entropy S(T ) from the measurement of the specific heat
by integrating Cx(T )/T ,

S =

∫ T

0

Cx
T ′

dT ′. (2.52)

It is advisable to collect heat capacity data at temperatures as low as possible to come close
to the starting condition of the integral T0 = 0 K. Moreover, it is important to distinguish
between different contributions in the heat capacity. The nuclear contribution, for example,
leads to an increase of the heat capacity towards lower temperature in the millikelvin range.
Consequently, the entropy related to the magnetic moment from Jeff is overestimated if the
nuclear contribution is not substracted carefully. Of course, the more contributions, the more
complicated becomes the extraction of the magnetic entropy.
The field-dependent magnetic Grüneisen parameter combined with the heat capacity offers

another route to gain information about the entropy. In this case, it provides insight into
the evolution in a magnetic field. The following expression follows immediately from the
definition of the magnetic Grüneisen parameter in Eq. 2.40,

∆S(B) =

∫ B

B0

Γmag(B′)C(B′)dB′. (2.53)

It should be noted that the measurements of Γmag(B) and C(B) at a fixed temperature T
do not contain enough information to determine the absolute value of the entropy. For this
purpose, S(T ) has to be determined at a certain field in an additional measurement to shift
∆S(B) onto the correct absolute values. A natural option would be at zero-field. If this is
not feasible, another possibility can be a measurement at higher fields [86]. In many cases,
however, the exact absolute values are not the most important information. It allows to
follow the entropy change over, for example, phase transitions, where pronounced anomalies
are usually expectable. Therefore, the field-dependent entropy ∆S(B) in this work is always
given in relative values.
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3. Measurement Setup and Analysis

In this chapter, all measurement devices and techniques are presented that are used in this
thesis. Reaching temperatures far below room temperature is nontrivial, espcially for the
millikelvin range, and requires special equipment. For that purpose, the Physical Property
Measurement System (PPMS) and the dilution refrigerator MK4 are used. Customized RuO2

thermometers were utilized for accurate temperature measurements in the millikelvin regime.
The challenging calibration process in magnetic fields down to 22mK is described in detail.
Furthermore, the setups are shown for measuring heat capacity, magnetic Grüneisen param-
eter, and magnetization in the MK4. Additionally, the analysis methods are introduced.

3.1. Heat Capacity in the PPMS

The PPMS from Quantum Design covers an extensive temperature range from above room
temperature down to 2 K. Using liquid helium, temperatures down to 4.2 K as the helium
boiling temperature are directly accessible. For reaching lower temperatures, helium gas is
pumped from the helium bath lowering the vapor pressure. As a consequence, liquid helium
evaporates. Due to the latent heat, this process requires energy from the environment and,
thus, reduces the temperature. This way, the lowest temperatures achievable are ∼1.8 K.
In this work, the PPMS has been used below 30 K for heat capacity measurements which

are based on the relaxation method. For more details please refer to the PPMS manual [87].
The PPMS heat capacity puck consists of a platform with a thermometer and a heater
mounted from below. The sample is attached onto the platform by Apiezon N-Grease. In
order to account for the platform heat capacity including N-Grease, two subsequent mea-
surements are required. First, the heat capacity of the puck together with some N-Grease
is determined. Second, the sample is fixed by the already applied N-Grease and measured
again. Subsequently, the sample heat capacity is obtained by subtraction.

3.2. Dilution Refrigerator MK4

For numerous materials, measurements in the millikelvin range are crucial to understand the
underlying physics. However, reaching temperatures below 1 K is challenging. By pumping
4He, the minimum temperature is 0.83 K requiring a multitude of pumps [88]. Using the
lighter 3He isotope can provide temperatures down to 0.3 K [88]. For covering temperatures
even down to the microkelvin range [89], adiabatic demagnetization is often used in space
applications [90] but is usually limited to one-shot measurements. Consequently, continuosly
cooling 3He-4He dilution refrigerator are the method of choice in research laboratories for
more than 50 years.
Those refrigerators take advantage of the special properties of mixtures containing both

helium isotopes, 3He and 4He. At 2 K and below, such mixtures are in the (suprafluid) liquid
state. Upon cooling, this liquid separates, and two different phases coexist with different 3He
concentrations. By reaching very low temperatures (T . 0.1 K), the 3He rich phase eventually
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3. Measurement Setup and Analysis

Figure 3.1. (a) Schematic circulation of the 3He-4He-mixture in the Dilution Unit (DU),
following Ref. [88]. The phase separation between 3He and 4He necessary for the main cooling
process takes place in the mixing chamber (MC). Consequently, the MC is the coldest part of
the DU. (b) Sketch of the dilution refrigerator MK4 with the helium and the nitrogen bath as
well as the magnetic coils. The DU is shown in dark green, where the sample holder is attached.
The sample is cooled by a thermal link from the MC and is located in the field center between
the magnetic coils. More details can be found in the main text.

becomes pure 3He. In the diluted phase, however, the 3He concentration approaches 6.6 %
as a constant concentration. This can be explained quantum mechanically and, in principle,
stems from the binding energy between 3/4He atoms combined with the fermionic and bosonic
character of 3He and 4He, respectively [19, 88]. Removing 3He atoms from the diluted phase
will be balanced by transferring 3He from the pure to the diluted phase. This process requires
a mixing enthalpy ∆H per atom which is prortional to the cooling power Q̇,

Q̇ ∼ x∆H. (3.1)

Here, x denotes the 3He concentration in the diluted phase. Since this stays constant and
does not go to zero even for T = 0 K, dilution refrigerators maintain a high cooling power
even at ultra low temperatures [88]. As a result, commercially fabricated devices like the
MK4 are nowadays able to typically approach T . 10 mK.
So far, no technical details have been mentioned, which are highly nontrivial compared to

simple pumping of 4He gas, where the cooling effect comes from the evaporation of liquid
4He. In Fig. 3.1(a), a minimal example of a Dilution Unit (DU) is sketched. The phase
boundary between the pure and the diluted phase is situated in the Mixing Chamber (MC)
with the latter being located on the bottom (higher density). The diluted phase is connected
to the Still which is held at elevated temperatures around 0.7 K. Due to their different vapor
pressures, most of the 3He evaporates, while 4He remains as a (suprafluid) liquid. This
drastically reduces the 3He concentration in the Still below 1 %. This creates an osmotic
pressure "pumping" 3He atoms from the diluted phase to the Still. Accordingly, 3He atoms
cross the phase boundary from pure to diluted phase resulting in a cooling power dependent
on the particle flow. To keep the osmotic pressure strong, the gas phase in the Still, containing
mainly 3He, is constantly removed by a conventional pump at room temperature (Still line in
Fig. 3.2). The pumped gas mixture is cleaned in the N2- and the He-trap at 77 K and 4.2 K,
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3.2. Dilution Refrigerator MK4

Figure 3.2. Pumping lines of the MK4 including the DU. The direction of the gas flow is
shown by the arrows. The red dotted lines indicate electrical insulation by plastic flanges and
sealings to suppress disturbing electrical noise from the pumps and to prevent ground loops. The
turquoise color is representative for the circulating 3He-4He-mixture. In the large Still line, the
mixture is pumped away from the Still (see Fig. 3.1), and filtered in the N2 and the He-trap,
respectively. Subsequently, the mixture enters the DU again through the Condenser line, where
it is precooled by pumping the 1 K-Pot and recondenses into the liquid state. The evaporating
4He from the main bath is collected by the recovery system of the physics institute.

respectively, where impurities such as oxygen or nitrogen become frozen and stick to the wall.
Thus, they are prevented to enter the DU to avoid blockages. The purified mixture enters
the DU again through the Condenser line [Fig. 3.2]. After several precooling and liquefaction
steps (1 K-Pot), it is transferred back to the MC as a liquid closing the 3He-4He circuit.

In this work, almost all measurements have been performed in the dilution refrigerator
MK4 in the low temperature laboratory of Experimental Physics VI (University of Augs-
burg)1, schematically shown in Fig. 3.1(b). The DU is a Kelvinox from Oxford Instruments.
Before starting the circulation of the 3He-4He-mixture, the DU is precooled to 4.2 K using
the huge main bath (liquid 4He). During the normal operation mode of the MK4, however,
the DU needs to be thermally decoupled from the main bath. Therefore, it is protected by
the Inner Vacuum Chamber (IVC), which provides ultra high vacuum (UHV) conditions to
minimize heat flow to the DU. The DU is fairly complex and contains many heat exchangers,
precooling stages such as the 1 K Pot, and further equipment (heater, diagnostics). Further-
more, a Sorb pump is installed which adsorbs 4He at lowest temperatures maintaining the
UHV in the IVC. Otherwise, heat leaks to the "hot" 4He bath will evaporate the 3He-4He
mixture preventing the cooling process.
The MK4 is equipped with a 18 T superconducting magnet cooled to 4.2 K by the 4He

main bath2. The measurement setup containing the sample is located in the field center and
cooled by a thermal link to the MC in the DU3 [Fig. 3.1(b)]. The MC is situated in a field-

1MK4: Mischkühler 4. Located in the same lab is the MK3, whereas MK2 is in Göttingen.
2Above 16 T, the magnet requires further cooling down to 2 K by the so-called Lambda pump.
3Very often, the temperature regulation plate (TRP) is used for cooling the sample (heat capacity, Γmag)
or the whole measurement cell (magnetization). The TRP is coupled to the MC by a copper cable
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3. Measurement Setup and Analysis

compensated zone taking advantage of the so-called cancellations coils attached to the main
magnet. This way, devices mounted on the MC plate are not influenced by the magnetic
field. Additionally to the main magnet, two smaller, equally winded copper coils can create
an independent uniform magnetic field up to 25 mT if the current through the coils flows in
the same direction. Here, the conversion factor for the coils is 1 A ≡ 3.277 mT. If the current
direction of one coil is reversed, a gradient field is created. Near the field center in between
the coils, the field strength changes linearly along the axial axis of the coils with a maximum
value of ±1.5 T m−1 and a conversion factor of 1 A ≡ 0.202 T m−1 [Fig. 3.1(b)]. The former
setting can be used to apply an oscillating current inducing an oscillating magnetic field
superimposed to the main magnet. In this way, the magnetic Grüneisen parameter Γmag of
the sample can be determined [Sec. 3.5]. The latter case with its gradient field is utilized for
magnetization measurements [Sec. 3.6].
Dilution refrigerators including their customized measurement setups are highly optimized,

and proper grounding is essential. For heat capacity or magnetic Grüneisen ratio measure-
ments, the sample including platform, heater, and thermometer are thermally isolated from
the environment. The customized thermal link to the bath of the MK4 (MC or TRP) is
rather weak. Thus, below 100 mK, even tiny amounts of heat generated by electrical noise
may result in pronounced temperature increase because of the very small absolute sample
heat capacity in the order of µJ K−1. Connecting an arbitrarily grounded power supply to, for
example, a heater can trigger undesired sample warming. This prevents to cool the sample
down to the base temperature of the MK4 and severely limits the accessible temperature
range. In the magnetization setup, on the other hand, such heating effects are usually less
severe due to its strong coupling to the thermal bath [Sec. 3.6], but the required capacitance
measurement is extremely sensitive to electrical noise. Therefore, many wires have to be
shielded in order to avoid catching noise, and shields must be grounded, too. In combina-
tion with the vast variety of measurement devices, diagnostics, and other equipment such as
connecting pumping lines, a fairly complex grounding situation arises [Fig. 3.3].
In the following, a short overview on the MK4 grounding is presented. Ideally, it should

be kept in the current form. To a certain point, however, this setting was determined by trial
and error and, consequently, there might be similar functioning configurations. The basic
concept is the central copper grounding block placed on the stainless steel plate of the MK4
cryostat. It is connected to the so-called lab ground which is installed in the low temperature
laboratory. The lab ground is separated from the normal house ground, which is usually
utilized as reference potential. By using the standard plug in the common power socket, each
device in the physics building is automatically on the house ground. This potentially induces
noise and may disturb the highly sensitive MK4 measurements. Accordingly, considerable
efforts have been undertaken (a) to separate the whole MK4 setup from the house ground
and (b) to optimize the grounding configuration.
First, we consider the former task (a). The most obvious potential contacts to the house

ground are the pumping lines [Fig. 3.2]. Consequently, the Still, 1 K Pot, and both helium
recovery lines have to be attached by plastic flanges. The Condenser line with its particular
click-connecting system is permanently insulated at the He-trap input [Fig. 3.2]. Furthermore,
three isolating transformers are used for the main magnet power supply Mercury iPS, the
amplifier for the modulation/ gradient coils and the measurement rack containg devices such
as LakeShore (LS) resistivity bridges or Keithley SourceMeters. In contrast, the Gas Handling

(∅1 mm). Unlike the MC, the TRP can be heated above 1 K without breakdown of the 3He-4He circulation.
Accordingly, the accessible temperature range is expanded.
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Figure 3.3. Grounding concept of the MK4 with the central copper block (Cu), which is
connected to the Lab Ground. Black lines represent power cords. The insulating transformators
separate the house grounding from the measurement devices, the magnet power supply, and the
amplifier used for the modulation/ gradient coils. Yellow lines are cables used for grounding of
the thermometer (Th) and heater (H) filter boxes, the LakeShore scanner boxes (Sc) as well as
the dilution unit (DU) and the cryostat plate. For the sake of clarity, all other connections to
the DU (pumping lines, thermometer/ heater diagnostics) are omitted here. Green lines denote
diagnostics cables to devices such as LakeShore bridges, Keithley SourceMeters, or between
scanner and filter boxes. The red dotted lines indicate that the cable shielding is not connected.
This avoids ground loops between the scanner and filter boxes or a connection to the house
grounding of the measurement control PC via GPIB.

Rack is on the house ground. The only connection to the MK4 is realized by its diagnostic
cable (27 pin Fischer connector) to measure the temperature of the 1 K-Pot, MC, etc. Its
shield is not connected through the diagnostics filter box (Th/H) preventing contact to the
house ground [Fig. 3.3]. Last but not least, the GPIB to USB adapter has to be galvanically
disconnected from the PC with the measurement programs.
The second assignment (b) is addressed by a copper block (Cu) directly linked to the

specially installed lab ground in the low temperature lab. The copper block serves as the
central point for all MK4 grounding cables, which are fixed here for connecting the following
parts depicted in Fig. 3.3.

• Both thermometer filter boxes (Th: 1x platine, 1x enclosure)

• Heater filter box (H: 1x platine, 1x enclosure)

• Filter box diagnostics (Th/H): DU thermometer and heater controlled by Gas Handling
Rack

• Each LakeShore scanner box (Sc)

• Stainless steel plate of the MK4 cryostat

• DU (for example at a screw)
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3. Measurement Setup and Analysis

Depending on the specific measurement setup4, the connector strip for powering the mea-
suring devices can be connected to the central copper block, too (not shown in Fig. 3.3). It
is of crucial importance that the only electrical contact between those listed items is via the
copper block. They must not be connected directly. Otherwise, ground loops are inevitable,
which may cause heating or inaccurate measurements. For this purpose, the shielding be-
tween thermometer filter and scanner box are not connected in the plug indicated by the red
dotted line. In general, those cable shieldings must be isolated against the DU as well which
is fulfilled at the Fischer connectors at the DU which is not illustrated in Fig. 3.3 for the sake
of clarity. The same holds true for the diagnostics filter box (Th/H). Furthermore, care has
to be taken to avoid touches between filter and scanner box enclosures.
Several devices are not grounded on the copper block. The main magnet power supply

Mercury iPS has several connections to the MK4 setup. Besides the insulated main magnet
power line and the Switch heater, two levelmeter exist for determining the current He and
N2 filling status. Their cable shielding is connected to the cryostat and, this way, the iPS
becomes grounded. As previously pointed out, the Gas Handling Rack is set onto the house
ground.
All in all, the MK4 cryostat should be floating if the copper block is disconnected from the

lab ground. This can be identified by measuring the resistance to the house ground which, in
this case, should be at least in the MΩ range. Accordingly, that can be employed for checking
the grounding configuration.
Potential problems are pumping lines touching the stainles steel plate, contact between

helium recovery line and Mercury iPS, and connecting the Sub-D plug between Gas Handling
Rack and Mercury iPS. The latter would be necessary if the main magnet shall be controlled
by the rack, which is usually not required. Furthermore, it should be noted that the MK3 is
on the same lab ground like the MK4, too. If a shortcut to the house ground exists here, it
will affect the MK4 as well. The same holds true for all other existing lab grounding blocks,
e.g. in the PPMS laboratory (EPVI). As far as known, other chairs are not using the lab
ground.
As a closing remark, the typical MK4 measurement time is discussed. Unlike the PPMS

with its routine 1-2 days duration, a dilution refrigerator measurement covers at least several
days due to the time consuming sample preparation (up to 1-2 days), cool down (1 day),
and warm up (1 day) procedure. Additionally, the measurement time drastically depends
on the sample itself, the number of samples measured in one run, and the properties of
interest. If only standard characterization C(T ) at zero field is involved, very few further
days of measuring heat capacity may be sufficient. Frequently, extensive investigations are
required including temperature and field dependent measurements. This way, measuring
several weeks or even months in a single run is not unusual. Accordingly, the samples to be
measured should be chosen with care, and, ideally, all have been already characterized as far
as possible using the PPMS.

4The older Lake Shore Bridge LS 370 seems to be grounded by its Scanner box. Thereby, all other devices
are grounded as well by the GPIB connections and, additionally, the connector strip over the LS370 plug.
In general, the GPIB connections create an inescapable ground loop unless huge efforts are undertaken.
However, this does not seem to affect the measurements.
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Figure 3.4. Overview of the RuO2 thermometer production. (a,b) Top and side view of the
pristine RuO2 chips later used, for example, in the heat capacity cell. The dotted lines indicate
the need of removing parts of the contacts as well as thinning of the insulating alumina layer
by suitably fine sandpaper. (c) Comparison between pristine and polished chip. (d) RuO2

thermometer after being contacted by the superconducting wires.

3.3. Thermometer Calibration

Thermometry plays a crucial role in entirely different disciplines. For mountain expeditions,
the temperature is a crucial aspect deciding about success or fatal failure. Numerous in-
dustrial processes such as silicon wafer growth or chemical reagents production depend on
precise temperature control. But also fundamental research requires accurate temperature
determination in order to reveal underlying physical principles. Overall, relying on precise
temperature measurements is important for abundant applications, and correct thermometer
calibration is essential.
In this work, resistive RuO2 thermometers have been prepared for determining tempera-

tures far below 100 mK in magnetic fields up to nearly 18 T. This calls for a careful calibration
to account for the temperature- and field-dependent thermometer resistance, which requires
appropriate reference thermometers. The calibration procedure is described in detail in the
following sections, including descriptions of the thermometer in use, and the calibration limits
and errors are discussed.

3.3.1. RuO2 Thermometer: Preparation and Calibration Setup

In the setup described in Sec. 3.4 and Sec. 3.5, a thermometer has to satisfy various condi-
tions. First, its heat capacity needs to be small compared to the investigated samples. That
guarantees fast thermalization and prevents disturbance of any measurement. Second, its
dimensions are restricted by the sample as well. Ideally, the thermometer is not larger than
the samples. Otherwise, problems with mounting the thermometer may occur. In this work,
sample dimensions are typically in the order of several millimeter. Finally, heat flow to the
thermal bath due to thermometer wires should be minimized. Commercially available ther-
mometer do not meet all these criteria simultaneously, and, additionally, readily calibrated
thermometers below 100 mK are precious, if available.

To this end, semiconducting RuO2 chips (KOA Europe, Product Series: RK73B 1E 0402)
are employed in this work as resistive sensors with a resistance of ∼ 2 kΩ at room temper-
ature. These chips have lateral sizes of ∼ 0.5×1 mm2 (or ∼ 1×1 mm2, depending on the
batch), a thickness of 0.3 mm before polishing [Fig. 3.4(a,b)] and very tiny heat capacity
at low temperatures. They are commonly used in an entirely different context, e.g. in the
automotive industry, and inexpensive due to their mass production. Towards low tempera-
tures, their resistivity exponentially increases providing excellent sensitivity for temperature
changes below 1 K. They are contacted by superconducting wires strongly reducing heat flow
from the thermal bath in the millikelvin range. Thus, the RuO2 chips perfectly suit all above
mentioned preconditions.
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3. Measurement Setup and Analysis

The preparation of the chips comprises several steps. First, the chips should be trained by
at least 20 cooling-warming cycles from room temperature to 4.2 K. This is needed because
the first cooling to such low temperature may cause microscopic cracks in the material and
alter the chip resistance. After that procedure, the chip stays approximately unaffected upon
further cycles. This could be further investigated by repeatedly measuring the temperature-
dependent resistance of a selected RuO2 chip in the PPMS. In a next step, the insulating
alumina layer is thinned by grinding as far as possible. This reduces its heat capacity and op-
timizes the thermal coupling between RuO2 layer and the sample, to which the thermometer
is attached during a measurement [Fig. 3.4(b,c)]. Subsequently, the original multifilament
superconducting wire (Supercon Inc) has to be customized as well. It consists of ∼30 NbTi
filaments with copper cladding. The copper is removed by HNO3 except of both ending parts
that are protected by nail polish. They are needed for contacting the thermometer in the
measurement setup. By cutting most filaments except of 2-3, the thermal conductance of
the superconducting wire by phonons is greatly reduced. Finally, two wires are fixed to the
RuO2 chip by silver epoxy, an electrically conductive two-component glue from Epo-Tek. For
ensuring good electrical contact to the sample, the whole chip is heated to ∼80 °C for at least
several hours. The other sides of the wires are used for conducting a 4-point resistivity mea-
surement, see Fig. 3.8(a). Note, that the superconducting filaments are extremely filigree,
and the handling is delicate. Any tension on the filament has to be avoided in order to avert
rupture. Unfortunately, repairing broken filaments is not feasible.
For the calibration, six RuO2 chips (SB 1-6) were fixed on a massive silver block by GE

Varnish. SB 3 could not be calibrated because the connection was lost at lowest temperatures.
SB 6 was an old thermometer used in measurements before this thesis, but it turned out to
be defect due to a strong kink in the last remaining superconducting wire. A very thin paper
soaked by GE varnish was attached between silver and chip to prevent electrical shorts. The
silver block was mounted to the MC plate by a silver rod to ensure optimal thermal contact.
The rod length was chosen in a way that the chips were located in the magnetic field center of
the MK4. For reducing eddy current heating induced by magnetic fields, the silver block and
rod were slitted, and the slits were filled by a plastic foil. The reference thermometer CMN
and Cernox were attached to the MC plate, where they were unaffected by the magnetic
field because of its suppression due to the cancellation coils [Sec. 3.2]. The functionality of
both CMN and Cernox are explained in more detail in the following section. Two additional,
differently constructed thermometers were mounted on the MC plate and calibrated, too
(ICE2, SB 7). They were used for measuring the MC or TRP temperature in subsequent
experiments.

3.3.2. Reference Thermometer: CMN Device and Cernox

Independent of the individual setup, each calibration requires a reference. Here, the reference
has to cover a wide range from ultra low temperatures far below 100 mK up to nearly 10 K.
At the same time, the reference must be highly accurate. In order to fulfil these criteria,
two independent thermometers are used in this work [Fig. 3.5]. Below about 200 mK, a
device containing the paramagnetic salt cerium magnesium nitrate (CMN) was employed
consisting of two coils [91]. The embedded water molecules in the crystal structure causes
large distances between the magnetic cerium ions resulting in an extremely low Curie-Weiss
temperature θCW,CMN in the order of several 0.1 mK [88]. Applying a sinus current of ∼5 µA
by a Stanford Research lock-in amplifier (SR830) induces a 90° phase-shifted voltage UCMN

in the second coil being proportional to the magnetic susceptibility χ. In order to obtain

36



3.3. Thermometer Calibration

Low T

High T

≤ 200mK

≥ 200mK

SRD CMN

CX

ICE 2

SB 1

SB 2 SB 4

SB 7

SB 5

U

T

~1/T

R

T

RuO2

RuO2

Figure 3.5. Thermometer calibration - schematic overview. Thermometer to be calibrated
are depicted on the right. Subsequently, the RuO2 thermometer (green) are used in the heat
capacity and magnetic Grüneisen setup. The thermometer ICE2 and SB7 (purple) serve for
temperature measurements of the TRP or MC. For the calibration procedure, two parts can
be distinguished. At very low temperatures, the CMN thermometer obtains eminent precision
due to its signal with paramagnetic 1/T behavior. Its calibration slightly varies after each
warming-cooling cycle. Accordingly, the CMN first requires an in-situ calibration by the Fixed-
Point Device SRD containing several superconducting materials with different, exactly known
transition temperatures Tc (upper panel, blue). At temperatures beyond ∼300 mK, the CMN
accuracy rapidly decreases, and the externally calibrated Cernox CX is utilized as reference
thermometer (lower panel, red). Combining both CMN and Cernox, in principle, a temperature
range from below 30 mK up to room temperature is covered. In this work, ICE2, SB 7, and the
RuO2 thermometers are calibrated up to 8 K because, in general, more elevated temperatures are
irrelevant in a dilution refrigerator. Note, that the ICE2 thermometer was used for recalibrating
the CMN after an unexpected, but inevitable warming-cooling cycle.

a reasonable signal-to-noise ratio, careful signal leads shielding is mandatory. Therefore, a
BNO cable is used for transporting the secondary voltage signal from the low impedance
filter box, which is usually used for heaters, to the Lock-In Amplifier. A BNO cable contains
two shielded signal leads, and the difference between those two conductors is determined as
UCMN. This way, both conductors are shielded, respectively, all the way from the cryostat to
the measurement device.
In general, the susceptibility of paramagnetic salts follows the Curie-Weiss Law, χ ∼

UCMN ∼ 1/(T − θCW), resulting in diverging behavior for temperatures close to the Curie-
Weiss temperature θCW. As a result, the CMN device is extremely sensitive in the lower
millikelvin range. Unfortunately, the CMN calibration slightly changes after each warming
and cooling cycle due to, e.g., tiny losses of crystal water in the unavoidable IVC vacuum
at room temperature. Therefore, a prior in-situ calibration is necessary before being a valid
reference. To this end, the Fixed Point Device SRD is utilized. It contains several supercon-
ducting materials, whose transition temperatures are exactly known. Note, that the ICE2
was used to recalibrate the CMN after an unexpected, but inevitable warming up of the
dilution fridge (detailed explanation in Sec. 3.3.3).
At high temperatures, however, the accuracy of the CMN thermometer becomes poor

because the CMN signal is proportional to the Curie-Weiss susceptibility. For this purpose,
a second reference was bought from Oxford Instruments including a calibration file. The
resistive thermometer Cernox X112017 covers a range from nominally 100 mK to 325 K and
was used as reference for T ≥ 150-200 mK. Its resistance was measured by a LS Bridge for
calculating the corresponding temperature. This reference thermometer allows to extend the
calibration range for the RuO2 thermometers up to several Kelvin.
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Figure 3.6. (a) Calibration of the CMN at the AuIn2 transition. In the same way, the other
superconducting transitions are analysed. (b) Fit through the nine calibrated CMN points. This
way, the CMN becomes calibrated over the whole temperature range, and its signal UCMN can
be used to calculate the temperature.

3.3.3. Calibration of the CMN Thermometer by a Fixed Point Device

After each cooling from room temperature to lowest temperatures, the CMN has to be newly
calibrated. With its signal UCMN(T ) ∼ 1/(T − θCW), several UCMN(T ) points has to be
measured at precisely known temperature values. Subsequently, a fit function is applied to
these data,

UCMN(T ) = U0 + C/(T − θCW), (3.2)

with the offset U0, the constant C and the Curie-Weiss temperature θCW as free fitting
parameter. In this work, the Fixed Point Device SRD1000 was used as reference for the CMN
thermometer. It is a ready-to-use instrument fabricated by HDL (Hightech Development
Leiden) including all measurement units and most connecting cables. It contains ten materials
with superconducting transitions covering a wide temperature range from 15 mK to 1.2 K.
The SRD signal measurement is very similar compared to the CMN device. A current
through the primary coil induces a voltage in the secondary coil, in which all ten materials
are located. At its transition temperature, each material causes a voltage drop when becoming
superconducting, respectively. Accordingly, such a voltage drop in the secondary coil can be
paralleled to the accurately known transition temperatures Tc. The simulteously measured
signal UCMN can be assigned to a temperature Tc, which is shown exemplarily in Fig. 3.6(a)
for the AuIn2 transition. Here, the horizontal axis shows the ICE2 resistance because, at that
moment, this thermometer was not calibrated yet. Note that smaller resistance is equivalent
to higher temperature. This way, up to ten data points can be acquired for the fit from
Eq. 3.2. In this work, the Wolfram (W) transition at 15 mK was not accessible leaving
Beryllium (Be) as the lowest data point [Fig. 3.6(b)]. The Curie-Weiss temperature from the
fit amounts to ∼0.9 mK being reasonably close to the expected value of several 0.1 mK [88].
For a highly accurate CMN calibration, it is essential to prevent shifts of the supercon-

ducting transition temperatures due to remanent magnetic fields from flux pinning in the
superconducting magnet. To this end, the MK4 main magnet was warmed up close to the
nitrogen boiling temperature of 77 K before the calibration procedure. This way, it entered
the normal conducting state, all pinned fluxes were removed, and the remanent field safely
becomes zero. In addition, the SRD device is equipped with a cancellation coil, which can be
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3.3. Thermometer Calibration

used for suppressing remaining fields such as the earth magnetic field or the remanent field
of the MK4 main magnet. It is shown in the Appendix that this is not needed for the cali-
bration in this work [Fig. A.1]. It is noted in passing that the CMN is potentially affected by
small magnetic fields, too, but the MK4 cancellation coils were sufficient to guarantee valid
temperature determination. This is evidenced by the thermometer ICE2, which is located in
the field-compensated zone, too. The calibration curve RICE 2(T ) determined by combining
CMN and Cernox did not change between 0 T and 17.5 T [Fig. A.2]. Consequently, the CMN
thermometer is not influenced by stray fields of the MK4 main magnet.
After the successful CMN calibration, the SRD device unfortunately had to be sent back

to the group in Dresden because it was only borrowed from them. The RuO2 calibration
was not started yet. For dismounting the SRD, the whole setup had to be warmed up, and,
accordingly, the CMN calibration had to be checked after the subsequent cool down. For
this purpose, the ICE2 thermometer was calibrated by the SRD at the nine superconducting
transitions Tc. These points were used to recalibrate and validate the CMN device after the
unexpected warming-cooling cycle.

3.3.4. Calibration of the RuO2 Thermometers

The RuO2 chips used in this work are from two different batches. The most apparent differ-
ence concerns the lateral size with 1× 0.5 mm2 for SB 1/2 and 1× 1 mm2 for SB 4/5. More
importantly, both batches obtain a non-negligible magnetoresistance, i.e., their resistance
at a given temperature depends on the magnetic field. This requires several independent
calibrations for each thermometer at a variety of fields. Here, the chips were calibrated from
0 to 16 T in 1 T steps. Beyond 16 T, the necessary additional cooling of the main magnet
makes measurements cumbersome. As a result, only 17.5 T was calibrated here. A smaller
increment was chosen at low fields (0.5 and 1.5 T) as well as at 15.5 T. The latter is in the
field region where the superconductivity of the wires breaks down at low temperatures.
The calibration procedure for the RuO2 thermometers is time-consuming but rather straight-

forward. All thermometers are very strongly thermally coupled to the MC plate in order to
avoid any temperature gradients. As soon as all thermometers are in equilibrium, each RuO2

thermometer resistance RSB x (RICE 2) is determined and assigned to the simultaneously mea-
sured CMN and Cernox temperature TCMN and TCernox, respectively. In order to obtain a
dense number of data points, the MC was warmed up in small steps (∆T/T ∼ 3%), and the
equilibrium was guaranteed by checking the slope of CMN, ICE2 and SB1. Following this
procedure, each RuO2 thermometer obtains its own RSB x(T ) curves, exemplarily shown for
SB 1 in Fig. 3.7(a) at 0 T. Both references CMN and Cernox agree very well. Weak devia-
tions appear only around ∼ 100 mK being the lower calibration limit of the Cernox (inset)
and at higher temperatures, where the CMN becomes less accurate. For each calibration
curve, a crossover temperature had to be defined where the overlap was best, which was
usually between 150 and 200 mK (dotted line in the inset). The CMN was used for the lower
temperature range, and the Cernox covered higher temperatures.
For obtaining a continuos calibration curve, each RSB x(T ) was plotted in the form ln(T )

over C − ln(R−R0) with R0 being roughly comparable to the room temperature value and
C = 11.2, which is an arbitrarily chosen, fixed constant for shifting the data [Fig. 3.7(b)].
This was fitted by a polynomial function,

ln(T ) =
n∑
k=0

akx
k, (3.3)
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Figure 3.7. (a) Exemplarily for all other RuO2 thermometers, the SB 1 resistance is plotted
over CMN and Cernox temperature. The data points are acquired in 3 % steps. It is waited at
each step until all thermometers are in thermal equilibrium. In this example, the crossover from
CMN to Cernox as reference was defined at the dotted line (inset), where the overlap was best.
(b) Fit of the data by polynomial function (details in the text). (c) Evaluation of the fit quality
by calculating the difference between fit and data in percent. The deviation is less than 0.4 %
over the whole field range except for the lowest temperatures. Even there, the discrepancy is
below 1 %. (d) Jumps in the resistance over temperature shifting to lower temperatures for higher
fields. This is due to the breakdown of superconductivity in the wires. The inset illustrates the
sizeable magnetoresistance at 1 K in the batch SB4/5, whereas it is less prominent in the batch
SB1/2. Furthermore, the breakdown of superconductivity can also be seen close to 16 T.

with ak as free fitting parameter, x = C − ln(R − R0) and n = 12 or 14, respectively.
The parameter R0 was adjusted until the fit following Eq. 3.3 was sufficiently precise. This
was evaluated by calculating the difference between fit and measured data in percent as
shown in Fig. 3.7(c). Here, the maximum fit deviation from the data amounts to 0.4 %.
Naturally, the discrepancy becomes larger at ultra-low temperatures below ∼30 mK, but is
still less than 1 %. In the program used for determining the sample temperature, the current
temperature is calculated by using the parameter C, R0, and ak in combination with the
measured thermometer resistance R,

T = exp

(
n∑
k=0

akx
k

)
. (3.4)

As already mentioned, RSB x(T ) was measured at 22 different fields for all thermometers.
This takes the magnetoresistance into account, which is different for each RuO2 batch and
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3.3. Thermometer Calibration

illustrated in the inset of Fig. 3.7(d) at 1 K. Here, SB 5 changes its resistance by more than
5 %, whereas SB 1 remains roughly constant. At lower temperatures, the magnetoresistance
becomes even more pronounced, underlining the importance of the field calibration, which is
shown in more detail in the Appendix [Fig. A.3].
Besides magnetoresistance, there is another peculiar observation which manifests in a jump

at ∼ 16 T. At this field, superconductivity is suppressed. The same behavior appears in the
temperature dependence at higher fields marked by the arrows in Fig. 3.7(d). Consequently, a
precise temperature determination is not feasible in the breakdown region, which is discussed
in more detail in the following section.

3.3.5. Calibration Limits and Error Estimation

Knowing the valid RuO2 calibration range is extremely important due to few shortcomings.
In principle, the calibration holds between the lowest and highest measured temperatures
∼22 mK and ∼ 8 K, respectively. Yet, the fit formula of Eq. 3.4 is not capaple to account
for jumps. For this reason, the previously mentioned superconducting breakdown can not
be included and represents an upper limit for the RuO2 calibration fit. As a consequence,
using Eq. 3.4 might return erroneous values because of lacking implicit limits. Calculating
a temperature by measuring RRuO2 outside the calibrated range potentially arises in huge
deviations to the actual temperature. In practice, however, crossing the superconducting
transition results in peculiar temperature values, which makes it simple to detect that limit.
Furthermore, a central topic is the calibration accuracy being composed of several con-

tributions. First, the two reference thermometers are potential error sources. The Cernox
obtains an absolute error of 4 mK at 1.4 K, which is equivalent to less than 0.3 % relative
error. For lower temperatures, no further information are available. Nevertheless, it is not
expected that the relative error towards 100 mK increases strongly because the Cernox resis-
tance grows rapidly upon cooling below 1 K ensuring precise temperature determination. As
an upper limit, 1 % relative error at 100 mK can be assumed. For the CMN, the discrepancy
between fit and calibration points at Tc from the SRD is below 1 %. Besides, the CMN fit
was checked concerning slight variations in determining UCMN at Tc as explained previously
[Fig. 3.7(a)]. The relative error turned out to be robust. Second, the RuO2 fit deviates from
the data points by less than 1 % below 30 mK and less than 0.4 % above that temperature
as shown in Fig. 3.7(c). This can be generalized for all thermometers by crosschecking sev-
eral calibrations. Finally, the measurement of the RuO2 resistance gives rise to a relative
error being below 1 % [92]. This roughly results in similar deviations for the temperature
calculation following Eq. 3.4. Overall, the RuO2 thermometer error can be estimated to be
around 2 % or below. In general, of course, a larger relative error can be expected at very
low temperatures of e.g. T = 50 mK because a rather small absolute error of 1 mK is already
equivalent to the above mentioned 2 %.
The RuO2 calibration might change after several years with numerous cooling-warming

cycles, which might stress the semiconducting layer, the wires or the contacts. However,
ICE 2 was crosschecked by the SRD after 3.5 years. The temperature calculated by the
former calibration resulted in ∆T/T < 1 % underlining the thermometer stability. The
thermometers in the heat capacity cells have not been crosschecked, but similar stability is
expected if treated carefully.
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Figure 3.8. (a) Top view of a heat capacity cell. The sample (light blue) is mounted on a
sapphire platform (grey) which is thermally insulated from the surrounding cell body by fishing
wires. The RuO2 thermometer (black) as well as the thermal link (red) are fixed onto the
sample. The thermal link is a thin bronze or brass wire with different diameters, which is chosen
in respect to the sample properties and is connected to the thermal bath (TRP or MC). The
heater is located below the platform. (b) Side view of the setup. (c) Close-up view of a sample,
where thermometer and thermal link are mounted.

3.4. Heat Capacity Setup

The possibilities for measuring heat capacity are numerous, but the appropriate choice de-
pends on the sample. In this work, samples with small size (≤ 5 mm) and mass (≤ 20 mg)
and, therefore, small absolute values of heat capacity (≤ 20 µJ K−1) are measured using a
quasi-adiabatic heat pulse method and/ or a relaxation method. Both will be described in
detail in the following sections as well as the used setup, which is specially designed for the
above mentioned requirements. A schematic top view is shown in [Fig. 3.8(a)].
The sample holder is a thin sapphire plate with a thickness of less than 0.2 mm and a

lateral size of 6 × 6 mm2. To ensure good thermal insulation from the environment, it is
fixed by fishing wires with a diameter of ∅ ≤ 0.1 mm. A resistive heater similar to the
RuO2 thermometer chips is glued below the platform with an epoxy (Stycast 1266), which
is illustrated in the side view in Fig. 3.8(b). In comparison to the thermometers, the heaters
have a lower room temperature resistance of several 100 Ω. Ideally, the heater resistance shows
only a small temperature dependence at low temperature5. The sample is centered above the
heater and usually fixed with small amounts of GE varnish. Since this varnish contains some
dissolvents that might dissolve very sensitive samples like α-RuCl3, Apiezon N grease is used
in rare cases. The next step is to mount the RuO2 thermometer on top of the sample, again
using GE varnish (or Apiezon N grease). Until now, the thermal coupling of the sample to
the environment is very weak since the fishing wires as well as the superconducting wires of
the thermometer and the heater, respectively, are poor thermal conductors at temperatures
below 1 K. Compared to the PPMS, this gives the opportunity to choose a thermal link with
an appropriate thermal conductivity κ. One (or more) bronze (∅ = 22 µm, 52 µm) or brass
wire (∅ = 10 µm) is used in the MK4 and fixed on the sample using silver paste [Fig. 3.8(c)].
The other side of the wire is connected to a silver plate that acts as thermal bath since it is
directly connected to the TRP (or MC) by thick silver wires. The appropriate choice of the
thermal link is very important. It is always a compromise and varies from sample to sample.

5The heaters in cell 2, 3, and 4 fulfill this condition with a resistance change below 1 % between 4 K and
50 mK. In cell 1, however, the resistance changes by ∼ 10 % and needs to be measured once at the
beginning of each new run.
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For calculating the heat capacity, the sample’s temperature response T (t) is measured upon
changing the heat flow (see Sec. 3.4.1 and Sec. 3.4.2). On the one hand, a stronger thermal
link results in a faster temperature response. If this process is too quick, T (t) does not
contain enough data points to ensure adequate fitting, which is required to guarantee high-
quality results. Consequently, the thermal link must not be too strong. On the other hand,
very weakly coupled samples have long relaxation times, and approaching the desired base
temperature takes a lot of time or might even become impossible. Furthermore, each heat
capacity data point costs a lot of time. To realize a good compromise between these two
undesired limits, the sample’s heat capacity C guides the way. In first approximation, the
heat capacity is linked to the thermal conductivity κ and the relaxation time τ , C = κτ
(see Sec. 3.4.1). Consequently, careful pre-characterization of the heat capacity in the PPMS
down to 2 K or, even better, to 400 mK is extremely valuable. This can be used to estimate
the expected heat capacity evolution in the millikelvin range and to choose a thermal link
that provided adequate conditions for comparable samples measured in previous runs.
In the following, two different methods used in this work for the determination of the heat

capacity are explained in detail.

3.4.1. Relaxation Method

Yet resembling the PPMS heat capacity option, the setup for the MK4 has slight but im-
portant differences influencing the relaxation method analysis. In contrast to the PPMS
setup, the thermal link to the bath and the thermometer are not directly attached to the
platform, but on top of the sample. Additionally, temperatures below 1 K potentially give
rise to nuclear heat capacity contribution(s) Cnuc of the sapphire platform (Al2O3) but also
of the sample itself. If the spin-lattice relaxation time tn is not neglectable, the nuclear spin
temperature Tn is not in thermal equilibrium with the sample, Tn(t) 6= TSa(t). On the other
hand, it can be assumed that thermometer (Th), sample, platform and heater (H) are ideally
thermally coupled, i.e., TSa(t) = TPl/H/Th(t), which will be justified later. Again, this is
distinct compared to the PPMS, where sample and platform temperature might differ due to
poor thermal coupling. All in all, the heat flow scheme is fundamentally changed [Fig. 3.9(a)]
and calls for a detailed discussion.
The thermal link between sample and bath has the thermal conductivity kSB in units

of J K−1 s−1. Analogously, the thermal coupling between nuclear contribution(s) Cnuc and
platform (or sample) is denoted as kn. Both thermometer and heater obtain negligible heat
capacity and, thus, do not contribute to the total heat capacity Ctot = CSa + CPl, which
comprises sample and platform heat capacity. By applying a voltage UH to the resistive
heater, a current IH is flowing through the heater generating the power PH = RHI

2
H. This

way, the sample temperature TSa can be adjusted. Using the heat flow scheme, two equations
are derived for the temperature response of the sample TSa(t) and the nuclear contribution
Tn(t),

(I) Ctot
dTSa(t)

dt
= PH(t)− kSB [TSa(t)− Tbath]− kn [TSa(t)− Tn(t)] ,

(II) Cnuc
dTn(t)

dt
= −kn [Tn(t)− TSa(t)] .

(3.5)

The left side denotes the temperature change due to the total incoming power derived from
Pin = dQin/dt with C = dQin/dTin. The right side accounts for external power sources as
well as heat flow because of temperature differences to directly coupled reservoirs. Tbath is
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the constant bath temperature. For measuring the heat capacity, the system initially has
to be in thermal equilibrium. To this end, a heater power Pi is applied and waited until
dTSa(t)/dt = 0 implying that TSa = Tn. Subsequently, a heater power Pf is set at t = t0
causing a temperature increase. By analysing the measured temperature response TSa(t),
information about the heat capacity CSa and Cnuc can be established.
If the spin-lattice relaxation time tn = Cnuc/kn is small, and, thus, the spin relaxation very

fast, then nuclear spins and lattice are always in equilibrium, TSa(t) = Tn(t). This holds true
if the nuclear heat capacity is very small (Cnuc � Ctot) or if nuclear spins and lattice are
ideally coupled (kn � kSB). In this case, Eq. 3.5 simplifies to

C ′tot

dTSa

dt
= PH − kSB [TSa − Tbath] . (3.6)

This can be easily solved for t ≥ t0 resulting in a single exponential increase of the sample
temperature,

TSa = Tbath +
Pf

kSB
−∆T exp

[
− t− t0
C ′tot/kSB

]
= Tf −∆T exp [−(t− t0)/τ ] . (3.7)

Here, Tf denotes the final sample temperature in equilibrium, ∆T = Tf − Ti with Ti as the
starting temperature, and τ the relaxation time of the sample including platform and nuclear
contribution. More importantly, the total heat capacity is calculated by C ′tot = kSB · τ with
kSB = ∆P/∆T = (Pf − Pi)/(Tf − Ti). Note, that now the nuclear contribution is included
in the total heat capacity analogous to the platform heat capacity, C ′tot = CSa +CPl +Cnuc.
This way, a simple fit function following Eq. 3.7 can be used for extracting the heat capacity.
However, if the spin-lattice relaxation time tn becomes comparable to the sample relaxation

time, the solution of Eq. 3.5 becomes more complicated. The differential equation system
has been solved in Python, and the solution now comprises two exponential functions,

TSa = Tf −∆T1 exp [−(t− t0)/τ1]−∆T2 exp [−(t− t0)/τ2] ,

∆T1,2 = A1,2
kn

Ctot
,

τ1,2 =
2

α∓ β
, α =

kn

Cnuc
+
kSB + kn

Ctot
, β =

√(
kn

Cnuc
− kSB + kn

Ctot

)2

+ 4
k2

n

CtotCnuc
.

(3.8)

The prefactors A1,2 depend on the starting conditions, and, again, Tf denotes the temper-
ature in the final equilibrium state. The response of the sample temperature containing
two exponential contributions is well-known in the literature as the 2τ -effect. It applies to
different situations, e.g., in the PPMS, where it occurs in the case of insufficient thermal
coupling between the sample and platform [87]. Furthermore, a similar situation containing
nuclear contributions with a finite spin-lattice relaxation time has been reported as well [93].
Yet, the exact solution for the temperature response depends on the setup resulting in subtle
differences in Eq. 3.8.
In Fig. 3.9(b,c), two different parameter sets are exemplarily used to calculate the sample

temperature response due to the heater power step ∆P following Eq. 3.8. The first graph
illustrates the case of tn = Cnuc/kn � CSa/kSB. The temperature TSa(t) follows a single ex-
ponential behavior, which is even more obvious in the inset with ∆T (t) in a logarithmic scale.
A linear behavior is obtained, which is followed by the convergence to the end temperature
Tf . This indicates the lack of a second exponential contribution. This further justifies the fit
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Figure 3.9. (a) Heat flow scheme of the relaxation method according to the setup in use
[Fig. 3.8(a,b)]. Sample, platform, thermometer (Th) and Heater (H) are assumed to be ideally
thermally coupled. The thermal link connects sample and thermal bath with the thermal con-
ductivity kSB. Nuclear spins may give rise to nuclear heat capacity contribution(s) Cnuc, which
potentially are decoupled from the lattice. This is taken into account by the thermal conductivity
kn, which is directly linked to the spin lattice relaxation time tn = Cnuc/kn. (b) The case of small
tn, where the nuclear contribution is ideally coupled to the sample/ platform. The temperature
response to a heater power step ∆P is calculated by Eq. 3.8 using the parameter given in the
inset. The temperature relaxes to a final value Tf following a single exponential behavior, which
can be easily fitted following Eq. 3.7. This way, the total heat capacity including the nuclear
contribution is extracted. (c) In the case of large tn, the temperature response now includes two
exponential contributions easily identifiable in a logarithmic plot (inset). This can not be fitted
by Eq. 3.7. Using Eq. 3.8 is highly challenging, if not impossible, because the number of possible
solutions is abundant, and several starting parameter are unknown (kn, Cnuc, Ctot, A2). Even t0
is challenging because of the slightly delayed temperature reaction. It is noting in passing that
the plots of ∆T (t) in the inset of (b) and (c) are shifted by a constant offset of 0.1 mK to be able
to illustrate the convergence of Tf for t→∞ in the logarithmic plot.

function Eq. 3.7 for such situations. In the second graph with tn ∼ CSa/kSB, however, two
different linear slopes are clearly visible in the inset certainly excluding the single exponential
analysis.

There are two important outcomes from Eq. 3.8 and Fig. 3.9(b,c). On the one hand, a large
sample heat capacity CSa naturally causes a single exponential temperature response making
it possible to use Eq. 3.7. On the other hand, this is not fulfilled as soon as the sample heat
capacity becomes small and comparable to the nuclear contribution. To be more precise,
the spin-lattice compared to the sample relaxation time is decisive. In this case, Ctot can
not be calculated straightforwardly by a double exponential fit with τ1,2 as free parameter
using Ctot = kSB · τ1/2 or a similar simple expression. The sample temperature response
TSa(t) on the applied heater power PH has to be fitted using the whole fit formula Eq. 3.8.
This becomes fairly challenging, or even almost impossible with adequate accuracy, if several
parameter besides Ctot are unknown.
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Figure 3.10. Potential problems of the relaxation method. (a)-(c) 2τ behavior in measurements
of a sample with very tiny heat capacity below 1 K (α-RuCl3), especially beyond 7 T. Published in
Ref. [94], copyrighted by the American Physical Society. For moderate fields, a single exponential
fit describes the data perfectly. At high fields, the 2τ effect is clearly observed in the inset of
(c). This corroborates the influence of nuclear contribution here. The single exponential fit
function can not be used for extracting the heat capacity. (d-e) Measurements of a NaYbO2

powder pellet published in Ref. [68], copyrighted by the American Physical Society. In such
powder samples, the grain boundaries decreases the internal thermal conductivity. At very low
temperatures, this may result in thermal gradients along the sample height. Accordingly, the
temperature measured by the thermometer increases delayed compared to the heater step. This
is absent at high temperatures (d) but clearly present at low temperatures which is best visible
in the inset of (e). As a result, the start of the fitting range has to be adapted. In order to avoid
such issues, very thin pellets are advisable.

For α-RuCl3 discussed in Ch. 5, the sample heat capacity at low temperatures becomes
extremely small in the order of 0.01 µJ K−1 especially at fields beyond BAF2

c ∼ 7 − 7.6 T.
Fig. 3.10(a-c) shows the sample temperature responses TSa(t) at 500 mK for three different
fields pointing along the [110] direction (details in Ch. 5). At B = 7 T in (b), the sample heat
capacity is relatively large and the single exponential behavior not surprising (inset). Both
for (a) 3.2 T and (c) 10 T, the sample heat capacity is significantly smaller. Nevertheless, only
(c) shows 2τ behavior prominently visible in the inset. This suggests that the 2τ origin is due
to a decoupled nuclear contribution, which is enhanced in high magnetic fields. Furthermore,
it excludes poor sample coupling because otherwise a 2τ effect should be observed in (a), too.
This justifies the assumptions for the heat flow scheme in Fig. 3.9(a). Similar observations
have been made in KYbS2, where the heat capacity analysis at high fields showed pronounced
2τ behavior at very low temperatures.
Besides the 2τ effect, another peculiarity can complicate the analysis with the single expo-

nential fit. Samples with weak internal thermal conductivity are prone to internal tempera-
ture gradients. As a consequence, the thermometer temperature increases delayed compared
to the heater step. This is most prominent at very low temperatures because, in general,
thermal conductivity decreases quickly in the millikelvin range [19]. Naturally, powder sam-
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Figure 3.11. (a) Scheme of the quasiadiabatic pulse method, published in similar form in
Ref. [95], copyrighted by the American Physical Society. A short heat pulse of 1 s is applied
causing a heat input ∆Q = ∆P · 1 s. Accordingly, the sample temperature steeply increases. In
ideal adiabatic conditions, the increase would be ∆T , and the heat capacity can be calculated by
C = ∆Q/∆T . Due to the weak thermal link, however, heat flows to the thermal bath, which is
responsible for the exponentially decreasing temperature after the heat pulse. This complicates
an accurate ∆T determination, which has to be evaluated by an equal area construction using the
extrapolated relaxation part. (b) Nearly perfect conditions for a precise ∆T determination with a
rather weak thermal link compared to the sample heat capacity at the current temperature. The
exponential fit and, thus, ∆T does not depend on the fitting range. On the other hand, this heat
capacity data point takes roughly 10 min making the measurement time consuming. (c) Here,
the thermal link is too strong in relation to the sample heat capacity preventing quasiadiabatic
conditions. The exponential fit heavily depends on the fitting range making reasonable ∆T
estimations impossible.

ples are predestined for this behavior due to abundant grain boundaries. In this work, a
NaYbO2 powder pellet was investigated [Ch. ]4.2.2 showing this behavior. At elevated tem-
peratures, TSa(t) immediately increases and can be described perfectly by a single exponential
fit function over the whole time range [Fig. 3.10(d)]. Below 100 mK, however, the tempera-
ture reaction is clearly delayed which is better visible in the inset. After some time, TSa(t)
follows again the single exponential behavior. Consequently, the lower fit limit is not set at
t = t0 = 0 s but at ∼100 s. This has to be adapted manually for every relaxation curve.
As a closing remark, poor thermal coupling between sample and platform or sample and

thermometer should result in similar delays in TSa(t).

3.4.2. Heat Pulse Method

As a second approach, the heat pulse method has been utilized for determining the sample
heat capacity [96]. As starting condition, the sample is in thermal equilibrium at a constant
temperature T0. Next, a short heat pulse of 1 s is applied causing a heat input ∆Q = ∆P ·1 s.
This results in a steep temperature increase ∆T and a subsequent relaxation back to T0

[Fig. 3.11(a)]. By assuming quasiadiabatic conditions, the heat capacity is calculated by
C = ∆Q/∆T including sample and all other contributions.
There are two potential complications for this method. First, evaluating ∆T can be chal-

lenging. It is not simply defined as ∆T = Tmax − T0 using the peak temperature Tmax. This
would return too small ∆T values because the heat flow to the thermal bath reduces Tmax

compared to ideal adiabatic conditions. Consequently, the correct value has to be recon-
structed. To this end, the relaxation part after the pulse is fitted by a single exponential
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function and extrapolated. By an equal area construction, T ′ is identified and employed for
calculating ∆T = T ′−T0 [Fig. 3.11(a)]. For this method, nearly ideal conditions are fulfilled
in Fig. 3.11(b). The fit function describes the data perfectly and is nearly independent on
the fit range. The long relaxation time compared to the pulse corroborates the quasiadiabac
conditions and, therefore, T ′ can be determined fairly accurately. It becomes problematic,
however, when this is not fulfilled [Fig. 3.11(c)]. Here, the relaxation time is comparable
to the pulse. The fit strongly depends on the fit range preventing a reasonable analysis.
Accordingly, the thermal link [Fig. 3.8(a)] should always be chosen carefully in respect to
the relaxation time, which is connected to the sample heat capacity, τ = CSa/κSB. This
guarantees a compromise between a slow enough relaxation process providing quasiadiabatic
conditions (τ � 1 s) and an acceptable waiting time to reach the desired lowest temperature.
The second potential problem has already been discussed in Sec. 3.4.1. As soon as there

is a strongly decoupled heat capacity contribution resulting in 2τ behavior, the heat pulse
analysis becomes fairly challenging. It often results in an overshoot of the temperature with a
very steep temperature increase and decrease followed by the slower relaxation part. It is not
obvious how to evaluate ∆T in this case. As a first approximation, it is sometimes possible
to restrict to a single exponential function refering to the slower relaxation part. However,
this should be crosschecked by the relaxation method.
In general, both relaxation and pulse method confirm each other with high accuracy

[Fig. 3.12(a)]. The software written during this work offers different measurement options
regarding pulse and relaxation method. For temperature dependent heat capacity measure-
ments (T sweep), combining both methods is convenient because the relaxation method
naturally sets a new starting temperature for a subsequent heat pulse. This way, two data
points are acquired by two independent methods, respectively, at roughly identical temper-
atures. If it is preferable to save time, T sweeps can also be performed by relaxation steps
alone. For field dependent measurements (B sweep), either pulse or relaxation method can
be applied at a predefined temperature and subsequent fields.
As a closing remark, it should be mentioned that, in principle, several samples can be

investigated at the same time because the heat capacity cells can be stacked. The new
software is not restricted to a predefined number of samples measured in parallel. The
limiting parameter, however, are currently the number of heat capacity cells (4) as well as
the available LakeShore Bridges (3). Furthermore, it is problematic that the lower cells are
not exactly located in the field center anymore. If measurements have to be performed in
magnetic fields, the whole inset has to be lifted and suitable spacers used. Nevertheless, it is
advisable to use as many cells as possible for each run if there are enough samples available.
Especially for characterizing many samples in zero field, this can save a lot of time.

3.4.3. Background Subtraction

For samples with very tiny heat capacity, it is crucial to carefully subtract the background
contribution, which is also called "addenda" in the following. It has to be determined by
independent measurements using the setup described in Fig. 3.8(a,b) without the sample.
Thereafter, the addenda is subtracted from the measurement including cell, adhesives, ther-
mometer, and sample in order to obtain the sample’s heat capacity [Fig. 3.12(b)],

CSa = Ctot − Cadd. (3.9)

As already mentioned in Sec. 3.4.1, the 2τ effect can complicate the analysis. This behavior
also emerges in the addenda measurement most likely due to the nuclear contribution of
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Figure 3.12. (a) Comparison between pulse and relaxation method for Ba3InIr2O9 at 0 T.
Both measurements match perfectly. (b) Background (Addenda) subtraction for α-RuCl3 at
2 K. The addenda (grey) has been determined in an independent measurement using the setup
from Fig. 3.8(a,b) without sample. The sample heat capacity (red) is obtained by the subtraction
of the background from the total heat capacity (black). In this work, that procedure is usually
only important above 1 K because of the rapidly diminishing background heat capacity towards
low temperatures. Below 1 K, it is only mandatory for few samples with tiny heat capacity.
For comparison, the absolute heat capacity of Ba3InIr2O9 in (a) amounts to 0.5 µJ K−1 and
9.2 µJ K−1 at 0.2 K and 1 K, respectively.

aluminium in the sapphire platform (Al2O3). As a result, determining the background below
1 K is not possible at the moment. At first glance, this is highly problematic for measure-
ments in the milikelvin range. Fortunately, the background becomes fairly tiny below 1 K
in the order of 10 nJ K−1. Consequently, this does not affect the low temperature behavior
of the majority of samples measured in this work with typically ≥ 1 µJ K−1 around 1 K.
Nevertheless, the background should be always kept in mind. Especially at temperatures far
above 1 K, the background might become large enough to play a role. Additionally, samples
like α-RuCl3 with rapidly vanishing heat capacity below TN ∼ 7 K definitely require the
background subtraction.

3.5. Magnetic Grüneisen Parameter Γmag

Measuring the magnetic Grüneisen parameter Γmag via the magnetocaloric effect (MCE)
requires quasiadiabatic conditions such that Eq. 2.42 from Sec. 2.5 is fulfilled [83],

Γmag =
1

T

(
∂T

∂B

)
S

.

In this case, Γmag can be determined by applying a weak oscillating magnetic field BAC

with an amplitude ∆B superimposed on the field from the main magnet Bmain. Due to
the MCE, this induces oscillations ∆T of the sample temperature. For this purpose, the
heat capacity setup can directly be used and both heat capacity and Grüneisen parameter
measured during the same run. In Fig. 3.13(a), very clear temperature oscillations are shown
produced by the magnetic field oscillations with frequency f around an offset B0, which is
very close to zero. The field oscillations are determined indirectly by a measurement of the
modulation coil current via the voltage drop at a resistance of 3.75 mΩ. A current of 7.63 A
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3. Measurement Setup and Analysis

through the coils produces a modulation field with ∆B = 25 mT [97]. Consequently, the ratio
25 mT/7.63 A can be used for calculating BAC(t) from the ICoil(t) measurement. The AC
field is superimposed by the static field produced by the main magnet, here Bmain = 2.7 T.
The static field, however, does not induce a MCE and is not included in Fig. 3.13(a) to only
visualize the AC part of the magnetic field. Consequently, the main magnetic field does not
need to be taken into account in the following fit functions. In order to extract ∆B and ∆T ,
the raw data are fitted by

BAC(t) = ∆B sin [2πf(t− t0)] +B0,

T (t) = ∆T sin [2πf(t− t0)] + ∆T2f cos [4πf(t− t0)] + b0 + b1t+ b2t
2.

(3.10)

In general, a phase shift t0 has to be considered. Ideally, both B(t) and T (t) obtain the
same phase shift, but in reality they may slightly differ due to delayed temperature response.
Furthermore, gradual temperature shifts are taken into account by a polynomial function
b0 + b1t + b2t

2 if, e.g., the sample is still relaxing towards a constant temperature. Most
importantly, if eddy currents occur, Ieddy ∼ dB/dt = 2πf∆B cos (2πft), a second oscillation
arises. It shows a doubled frequency compared to the MCE because eddy current heat-
ing is proportional to the square of the eddy current, I2

eddy ∼ f2∆B2[1 + cos(2π2ft)] [83].
Consequently, a second oscillating part with doubled frequency is required capturing the so-
called 2f oscillations. They occur in metallic samples and can seriously hinder an accurate
analysis [83]. But also insulating materials with small absolute heat capacity may show 2f
oscillations due to the background signal from, e.g., metallic wires in the cell. In Fig. 3.13(a),
however, this problem is not present, and the fit function perfectly matches the raw data. By
averaging all temperature data points, Γmag is calculated at Bmain and Tavg using Eq. 2.42.
An example for 2f oscillations is presented in Fig. 3.13(b) for α-RuCl3. At 7.6 T (upper

panel), the sample heat capacity is comparably large, and no 2f behavior is visible. Beyond
8 T, the heat capacity rapidly decreases. Accordingly, the 2f signal increases (middle) and
eventually dominates the whole temperature response (lowest panel). Nevertheless, the fit
still describes the raw data well allowing evaluation of Γmag.
On the other hand, it is advisable to avoid 2f whenever possible to improve the accuracy.

In general, eddy currents are efficiently suppressed by lowering the amplitude ∆B and/ or
the frequency f . Yet, the latter is at the expense of fast measurements. Furthermore, a lower
limit for the frequency is naturally given by the sample relaxation time τ (see Sec. 3.4.1).
In order to maintain quasiadiabatic conditions, 1/f � τ has to be fulfilled. This prevents
strong heat flow to the thermal bath during an oscillation period, which would result in a
decreased ∆T . For that reason, the frequency could not be reduced below ∼ 0.1 Hz in the
case of α-RuCl3 with its tiny heat capacity and, consequently, rather fast relaxation with
small τ . At the same time, an upper frequency limit exists as well. If the oscillation is too
fast, the internal thermalization can not keep up. In both cases of too high or too small
frequency, ∆T and, accordingly, Γmag, is underestimated. Therefore, the frequency has to be
chosen carefully [83]. To ensure an adequate frequency choice, constant values of Γmag has
been checked for at least two different frequencies.
Compared to the heat capacity, the background subtraction is more subtle because the

measured Γmag,tot comprises two contributions, ∂Mtot/∂T and Ctot (Eq. 2.41 in Sec. 2.5),
potentially both being influenced by the cell background [95]:

Γmag,tot = −∂Mtot/∂T

Ctot
= −∂MSa/∂T + ∂MCell/∂T

CSa + CPl
=

Γmag,Sa · CSa + Γmag,Cell · CPl

CSa + CPl
.

(3.11)
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Figure 3.13. (a) Determination of Γmag. The oscillating magnetic field BAC induces tempera-
ture oscillations because of the magnetocaloric effect (MCE) in the investigated material KYbS2.
The fit functions Eq. 3.10 perfectly match the raw data and are used to extract ∆B and ∆T
for calculating Γmag at the main magnetic field Bmain and Tavg. (b) Example for 2f contri-
butions in the insulator α-RuCl3 published in Ref. [95], copyrighted by the American Physical
Society. Beyond 8 T, the sample heat capacity becomes small and background contributions
from e.g. wires important. That results in additional oscillations with doubled frequency due to
eddy current heating complicating accurate evaluation of Γmag. (c,d) Background subtraction
following Eq. 3.12 for samples with small heat capacity (here α-RuCl3, published in Ref. [94],
copyrighted by the American Physical Society). The position of the characteristic features re-
main unchanged, and only the amplitude is slightly changed after subtraction (compare "Raw
data" and "Sample", upper panel). Yet, this becomes important for very small signals like in
α-RuCl3 beyond 8 T, see panel (d). Here, the raw data become negative due to the background
while the subtracted data stay positive and go to zero. In such cases, a subtraction is definitely
required.

Here, Γmag,Cell and CPl denote the background contribution from the platform or, more
general, the whole cell including e.g. wires. They both are measured in an independent run
without the sample. From Eq. 3.11, the following expression can be derived for extracting
the true Grüneisen parameter of the sample Γmag,Sa,

Γmag,Sa = Γmag,tot +
CPl

CSa
(Γmag,tot − Γmag,Cell) . (3.12)

As soon as CSa � CPl, then Γmag,Sa = Γmag,tot and, consequently, no background subtraction
is required. For samples with small heat capacities, however, the background should be
subtracted carefully. Fig. 3.13(c,d) shows exemplarily the subtraction for α-RuCl3 at 1 K.
The characteristic features like sign changes or maxima remain unchanged [Fig. 3.13(c)], and
only the amplitude changes slightly. Nevertheless, the subtraction becomes crucial at high
fields, where both heat capacity and Γmag rapidly decrease [Fig. 3.13(d)]. Γmag,tot (raw data)
becomes negative above ∼ 10 T. Only upon subtracting the background following Eq. 3.12,
it can be shown that Γmag,Sa goes to zero while staying positive. The data scattering above
∼ 13.5 T presumably originates from the strong 2f oscillations and the very tiny sample
signal. In general, a paramagnetic material is expected to show positive Γmag because of
∂M/∂T < 0, which converges towards zero upon approaching the field-polarized state.
As a closing remark to the section of the Grüneisen parameter, a potential problem in the
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Figure 3.14. (a) Magnetic Grüneisen measurement Γmag(B) of KYbS2 at low temperature,
T = 100 mK, and an oscillation frequency of f = 0.1 Hz. The blue data points suggest a
strong hysteresis between up and down sweep. This behavior is absent when long waiting times
are applied before the measurement (black and red points). Consequently, the hysteresis is an
artefact. Details can be found in the text. (b) Temperature of KYbS2 over time showing a
possible scenario of taking raw data for one Grüneisen ratio data point. Details again explained
in the text. A modulation field of 2 mT and a frequency of 0.1 Hz is kept constant during
the whole time. Between 100 s and 300 s, the main magnet is swept to 0.8 T increasing the
temperature above 200 mK. Surprisingly, the temperature oscillations are not constant after the
field sweep is finished. The inset shows the temperature over 20 s at t ∼400 s and t ∼1000 s,
respectively. Clearly, the oscillations at t ∼1000 s have a smaller amplitude. It could also be
shown that the sign of the oscillations can be reversed shortly after the field sweep, depending
on the field sweep direction. Therefore, the measurement results depended on the waiting time
after the sweep. This behavior was only found in the region of the hysteresis artefact.

measurement process is explained. It was observed in one of the last runs and neither could
be solved nor addressed to a specific issue. Fig. 3.14(a) shows the field dependent magnetic
Grüneisen parameter Γmag at 0.1 K. All curves were measured with the frequency f = 0.1 Hz
for KYbS2 at very low temperatures, T = 100 mK. The blue data points suppose a hysteresis
between up and down sweep in the field range of 0.3 and 3 T. The down sweep even shows
a sign change at ∼ 1.7 T. This was fully reproducable in several measurements even though
2f oscillations complicated the analysis. If there was a long waiting time twait before the
measurement, however, then this strange hysteresis was not observable anymore.
In order to explain that curiosity, the measurement procedure has to be explained in

more detail. Each data point in Fig. 3.14(a) is determined in the following manner. First,
the magnetic field is swept to the target value Bi. In general, this increases the sample
temperature and, accordingly, the temperature has to relax to the desired value. In the
measurement program, this is guaranteed by a fixed waiting time twait. The exact value has
to be adjusted before starting the program and depends from the sample relaxation time τ .
It is always the same for each data point. As a general rule of thumb, twait is usually set in
the range between 30 s and 10 min. After that time, the temperature and field oscillations
are measured for several periods and analysed in order to calculate Γmag. Subsequently, the
measurement protocol is restarted by sweeping the field to Bi+1.
Exemplarily, Fig. 3.14(b) depicts a possible scenario for measuring a Γmag point at 0.8T

and ∼ 110 mK. The modulation coil parameter are fixed to 2 mT and 0.1 Hz. As described
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above, the main magnet is swept to 0.8 T raising temperature up to 220 mK. Furthermore,
the temperature oscillations are strongly enhanced because the total change of the field
amplitude is magnified by the main magnet. Subsequently, the temperature rapidly decreases
but the temperature does not stabilize even after more than 10 min. More importantly, the
temperature oscillations are not constant, too. At ∼ 400 s, the peak-to-peak amplitude
including the 2f oscillations are roughly 1 mK. In contrast, the peak-to-peak value at 1000 s
is only 0.3 mK. The amplitude ∆T1 is affected in the same way, which was confirmed by
fitting the oscillations after different waiting times. As a consequence, the Γmag results
depend on the chosen twait values, which is highly problematic. This behavior was only
present in the KYbS2 measurements at temperatures far below 250 mK and in the field range
where the putative hysteresis appears. Most interestingly, it was dependent on the previous
main magnetic field, which explains the hysteresis for short waiting times. Yet, waiting a
long time before measuring the oscillations seems to guarantee reasonable Γmag evaluation
as shown in Fig. 3.14(a).
It could be shown that the temperature oscillations show the very same behavior of

"damped" 2f oscillations when the situation is vice versa, namely, the modulation coil is
ramped up to e.g. 2 mT at a constant main magnetic field. Strangely enough, ramping the
modulation coil to 0 and back again to 2 mT does not result in the same "damping" curve
because the 2f appeared to be already weaker.
Unfortunately, for all observations, it can only be conjectured about the reason of this

odd behavior. Maybe changing the field induces a current flow in a weakly damped resonant
circuit, and its oscillations may influence the modulation coil. But, to be honest, this is
purely speculative and not a satisfying explanation. As a guide for future measurements,
however, it might be advisable to check the Γmag dependence on different waiting times at
the lowest measured temperature, or to measure once in up and down steps. It is not clear
at the moment if this is a general problem in the MK4 or only specific to KYbS2.

3.6. Faraday Magnetometer

Investigating the magnetization is crucial for understanding the underlying physics of mag-
netic materials but challenging at very low temperatures. Using the DC method or the vibrat-
ing sample magnetometry (VSM) option like in the Magnetic Property Measurement System
(MPMS from Quantum Design) requires large in-situ movements of the sample. Therefore,
this is not applicable in a dilution refrigerator because mechanical friction generates strong
heating. As a consequence, a static method is required in such demanding environments. To
this end, a Faraday magnetometer has been installed for this work.
The setup is sketched in Fig. 3.15(a) and mainly follows Sakakibara et al. [98]. The central

part is the capacitor formed by a fixed brass plate and the Stycast 1266 stamp with its silver
epoxy coated bottom side. Great care has to be taken to guarantee a parallel plate alignment.
The sample is placed on top of the stamp, which is fixed by a pair of phosphorbronze wires
with a diameter of 0.125 µm. This way, the sample platform and, consequently, the upper
capacitor plate can slightly move up or down upon a force acting along the z-direction. It
will later become clear that this force depends on the sample magnetization M. In contrast
to the MPMS methods, this movement is in the range of µm and does not heat the setup.
The lower capacitor plate is carefully insulated against the remaining metallic cell body.
Fig. 3.15(b) depicts a magnetometer in top view under the microscope. The upper plate from
the Stycast stamp (not visible in this perspective) is electrically contacted by a thin gold wire
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Figure 3.15. (a) Sketch of the Faraday Magnetometer. (b) Top view of a magnetometer under
the microscope. (c) The upper magnetometer is shown in (b) and was used for the measurements
presented in this work. The lower device was developed for measurements in combination with
two Goniometer in order to minimize disturbing torque effects.

(∅ = 25 µm), which is barely viewable in the current magnification. The larger magnetometer
shown in Fig. 3.15(c) was used for the magnetization measurements presented in this work.
The smaller one was developed to be combined with two goniometers to minimize disturbing
torque effects. The goniometers can be controlled in-situ, which limits the diameter of the
magnetometer dimensions. Details are given in the end of this section.
In the following, the measuring principle is explained in detail. Additionally to the main

magnetic field in z-direction, an inhomogenic field is applied by two identical coils with
same absolute value of current but in opposite directions6. In good approximation, the
magnetic field strength in the center between the coils changes linearly along z [97] generating
a constant field gradient ∂Bz/∂z for this direction. The sample holder is directly located in
that region, and, accordingly, a force F acts on the sample,

F = ∇(M ·B) = ∇(MxBx +MyBy +MzBz). (3.13)

Since Mx,y,z does not depend on the direction, and the lateral field gradient can usually
be assumed to be negligible compared to the vertical component [98], ∂Bx/∂x, ∂By/∂y �
∂Bz/∂z, this can be simplified to

Fx = Fy = 0, Fz = Mz
∂Bz

∂z
. (3.14)

The resulting force changes the distance between the capacitor plates by δ which can be
detected by an Andeen-Hagerling AH 2500A/ AH 2550A capacitance bridge. The distance
change δ is directly proportional to Fz under the assumption of parallel capacitance plates.
Using C = ε0A/d for the capacity, this can be expressed as [98]

Fz ∼ δ = d0 − d = ε0A

(
1

C0
− 1

C

)
, (3.15)

where C0 and C denote the capacity value without and with applied gradient field and a
distance of d0 and d, respectively, while ε0 stands for the dielectric constant and A for the

6The same coils are used like for the Grüneisen measurement but with a different connector. This way,
the current direction can be switched for additionally applying either a small uniform magnetic field or a
gradient field. Both are additional to and independent of the main magnetic field.
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3.6. Faraday Magnetometer

capacitor area. The sign of the force depends on the definition of the z -direction. In the
choice of Fig. 3.15(a), a negative gradient field increases the capacity by a downwards force.
By combining Eq. 3.14 and Eq. 3.15, the z component of the magnetization can be linked to
the capacitance change,

Mz = k0

(
1

C0
− 1

C

)
. (3.16)

The proportionality constant k0 includes the gradient field ∂Bz/∂z as well as all other con-
stant parameters related to the setup. For determining the field dependent magnetization,
the measurement process comprises two parts. First, the gradient field is set to zero and
the main magnetic field is slowly swept to the desired value. In parallel, the capacity C0(B)
is measured. This measurement is advisable to eliminate disturbing torque effects in the
analysis. Otherwise, that can lead to a capacity change even without gradient field, as ex-
plained later. Second, this procedure is repeated but now with a gradient field ∂Bz/∂z 6= 0
for evaluating C(B). The magnetization M(B) is calculated by using Eq. 3.16 with C0(B)
and C(B). Analogically, that protocol can be used for temperature dependent magnetiza-
tion measurements. It is advisable to check at least once in a run, preferably at the lowest
measured temperature, if there is a hysteresis between up and down sweep because of a too
fast sweep rate.
In principal, the maximum gradient field values specified for the gradient coils in the MK4

are ±1.5 T/m. Yet, the amplifier used in the setup limits this to ∼ ±1 T/m, which is rather
small compared to other laboratories with superconducting gradient coils and ±10 T/m [98,
99]. It can be shown, however, that

Mz = k1

(
1

C−1 T/m
− 1

C+1 T/m

)
, (3.17)

with C±1 T/m being the capacity at the respective field gradient and k1 = k0/2. This way,
the signal to noise ratio can be improved by a factor of 2 by measuring C−1 T/m(B) instead
of C0(B).
In Fig. 3.16(a), an exemplary field dependent capacity measurement for YbMgGaO4 along

the c-direction at 2 K is presented. For better comparison, three different gradient fields
are used. For 0 T/m, up and down sweep are perfectly on top of each other confirming an
adequate sweep rate. Both ±1 T/m are symmetric around 0 T/m and used for calculating
the magnetization M(B) shown in the inset. For absolute units, it has to be compared with
a MPMS measurement at the same temperature and scaled accordingly. Furthermore, the
reliability of the measurement is confirmed by obtaining a good scaling of the two M(B)
data sets from the Faraday magnetometer and the MPMS, respectively.
In the following, the origin of the capacitance change at zero gradient field is explained.

For zero gradient field, the force Fz should be also zero according to Eq. 3.14. Anisotropic
materials, though, can experience another force due to the torque effect τ . In the example
of the strongest possible anisotropy, the Ising model with g‖z 6= 0 and g⊥z = 0, a magnetic
moment can only be induced along the z -direction (easy axis). Consequently, an Ising magnet
with the magnetic moment m in a magnetic field B experiences a torque τ = m × B to
minimize its potential energy U = −m ·B. In real materials, a field oriented perpendicular
to the easy axis magnetizes the sample as well because g⊥z = 0 never strictly holds true.
That direction is denoted as hard axis/ plane. Nevertheless, each material tends to align
its easy axis parallel to the field for the same reason as the pure Ising magnet. Regarding
the Faraday magnetometer, this leads to the tilting of the sample including the stamp with
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Figure 3.16. (a) YbMgGaO4 at 2 K as an example measurement for determining the field
dependent magnetization M(B) along the easy direction (inset, alternative units). The gradient
fields ±1 T/m are symmetric around 0 T/m and comparable to the additional torque effect re-
sponsible for the capacity change at 0 T/m. (b) Measurement at the same temperature but the
field perpendicular to the easy axis. The torque effect dominates the whole field range making
a reasonable analysis impossible (inset).

the capacitor plate. Therefore, the capacitance can change even for ∂Bz/∂z = 0 T m−1 due
to the torque effect possibly disturbing the measurement, especially when the plates start
to strongly deviate from being parallel. The torque effect is most pronounced for highly
anisotropic samples (g‖ � g⊥) and fields far away from being parallel to the easy axis.

In the example of YbMgGaO4 in Fig. 3.16(a), a weak anisotropy is present with the easy
axis along the crystallographic c-direction with g‖ = 3.7 and g⊥ = 3.0 [100]. The magnetic
field is intended to be exactly along c, but a small misalignment gives rise to the torque effect
in zero gradient field. The analysis, however, allows to obtain reliable results, as shown by
the presented magnetization M(B) in the inset. In general, this becomes more problematic
if the field is applied perpendicular to the easy axis. If a sample misalignments exists, a
pronounced torque effect can be expected. Accordingly, the analysis is severely affected.
Such a questionable situation is presented in Fig. 3.16(b) for YbMgGaO4 with the field close
to the hard ab-plane perpendicular to the easy axis c. The torque dominates the whole field
range being greatly enhanced compared to the difference between the ±1 T/m curves. The
resulting calculated magnetization curve reveals many jumps and can not be used.

In principle, such a problem can be circumvented if the magnetic field is applied exactly
parallel to the hard axis. Due to the symmetric arrangement, no magnetization along the
easy axis is induced and the torque effect suppressed. For realizing this scenario, an in-situ
tilting of the magnetization cell is ideal, which is possible by using two goniometers (at-
tocube, ANGt101res-B1-112, ANGp101-A7-045). Both cover angles roughly between −3...3°
along perpendicular directions spanning a range large enough for accounting typical sample
misalignments of ∼ 1°. Due to space limitations, a smaller magnetization cell was developed
[Fig. 3.15(c)]. It was first tested at 4.2 K without goniometer using a sample of YbMgGaO4

with the field applied parallel to the c-direction.
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Figure 3.17. First test of the smaller
Faraday magnetometer mounted with-
out goniometer using YbMgGaO4 at
4.2 K and B ‖ c. The magnetization
curve measured in the larger magne-
tometer at 2 K [Fig. 3.16(a)] was used
for scaling at 10 T. The comparison in-
dicates reasonable results from the new
magnetometer, except of some problems
at lower fields (inset).

The resulting magnetization curve is shown in
Fig. 3.17 in comparison to the magnetization at 2 K
from Fig. 3.16(a) determined by the older and larger
magnetometer. Both curves are scaled to overlap at
10 T, where the material saturates. This comparison
indicates reasonable results of the new magnetome-
ter, except of some problems at lower fields (inset of
Fig. 3.17). In a next step, the goniometers have to be
mounted as well to be able to align the sample. In-
situ rotation in the millikelvin range strongly heats
the setup, and all alignment steps to eliminate the
torque effect should be performed at elevated temper-
atures of e.g. 4.2 K. The corresponding settings are
then kept during the whole run allowing, in principle,
measurements at millikelvin temperatures. During
this work, the extremely time consuming tests for the
goniometer setup could not be finished yet. Among
other difficulties, the wiring is particularly challenging
because the setup requires somewhat flexible cables
due to the goniometer movements. Otherwise, the go-
niometer might be blocked with impending damages,
or the electrical contact to the capacitor plates might

be broken and lost. Clearly, this calls for further optimization in order to realize previously
impossible measurements along the hard axis of anisotropic materials.
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4. Yb3+ on a Triangular Lattice

Very often, theoretical breakthroughs inspire experimentalists to expand the frontier of the
unkown – but sometimes, it is the other way round. The discovery of YbMgGaO4 in 2015
opened a completely new field in the context of quantum spin liquids (QSL). It is a triangular
lattice antiferromagnet (TLAF) based on the rare-earths ion Yb3+ and does not show long-
range order down to at least 50 mK. It triggered enormous interest in exploring 4f ions in the
triangular configuration and lead to the discovery of several possibilities to stabilize a QSL
phase in the theoretical phase diagram. The microscopic origin of the unusual behavior in
YbMgGaO4, however, remains vividly debated because of its site-mixing of the non-magnetic
ions Mg2+/Ga3+. Therefore, YbMgGaO4 fuelled the search for rare-earth TLAF without
structural disorder that was eventually successful in 2018 in the AYbX2 family with NaYbO2,
NaYbS2, or KYbS2, to name just a few potential QSL candidates. Further compounds are
already available or will certainly follow due to the abundant possible variations in this
material class. Furthermore, beyond QSL physics, TLAF exhibit a plethora of field-induced
phases that are still subject to active research. Consequently, the AYbX2 compounds offer
a rich playground for benchmarking recently developed theoretical concepts.
In this chapter, several Yb3+ TLAF materials are investigated. Each section starts with

a summary of relevant information about the compound, respectively, followed by the ther-
modynamic measurements performed in this work. For YbMgGaO4, the possible scenario of
spin freezing is investigated as well as its unexpected field evolution. KYbS2 and NaYbO2

are thoroughly characterized using specific heat and magnetic Grüneisen parameter. The
field-temperature phase diagram is established for both materials. Finally, KBaYb(BO3)2 is
introduced as a potentially frustrated magnet with very weak interactions. This allows pos-
sible applications for adiabatic demagnetization refrigeration down to the millikelvin range.

4.1. Influence of Disorder in the QSL Candidate YbMgGaO4

The report on the synthesis of YbMgGaO4 attracted immediate attention. Many publications
appeared in the last years, and excellent reviews are already available [7, 101]. The following
summary of relevant results on YbMgGaO4 are mainly based on Ref. [7]. Despite a Curie-
Weiss temperature of ΘCW ∼−4 K, heat capacity measurements did not show any long-range
magnetic order in this material down to 60 mK. Its residual entropy becomes too small to
expect a phase transition below 60 mK, and, thus, it most likely remains disordered even at
0 K [36]. YbMgGaO4 was an extremely promising example of a real-world QSL candidate on
a triangular lattice – especially intriguing since that geometrical arrangement has been the
theoretical prototype to host a QSL [2]. However, the microscopic origin of this potential QSL
in YbMgGaO4 was not understood. Anderson’s original proposal of a QSL in the isotropic
nearest-neighbor (NN) Heisenberg model turned out to exhibit 120° long-range order as
the true ground state [5, 6]. Consequently, the existing theories had to be expanded for
explaining YbMgGaO4. It was found that anisotropic NN interactions (J±±, Jz±) as well as
isotropic next-nearest neighbor (NNN) interactions (J2) can act in favor of a QSL state [7].
Soon, the first single crystals became available allowing field-dependent measurements along

59



4. Yb3+ on a Triangular Lattice

different crystallographic directions, and non-neglectable J±± and Jz± have been proven
by electron-spin resonance (ESR) [100]. Additionally, a next nearest neighbor coupling J2

should be considered as well [102, 103]. Altogether, YbMgGaO4 seems to potentially fulfill
the preconditions for exhibiting a QSL.
Other measurements pushed the spin liquid interpretation, too. Inelastic neutron scattering

revealed a broad continuum [102, 104] that has been interpreted as evidence for fractionalized
excitations. A spinon Fermi surface in YbMgGaO4 has been proposed [104, 105], yet another
INS report convincingly interprets exactly that high-energy part of the spectrum as evidence
of nearest neighbor RVBs [106]. The latter is particularly thrilling because of the analogy
to Anderson’s original proposal on the triangular lattice [2]. The low-energy part, however,
cannot be explained by the gapped RVB state because the apparent power law in specific heat
evidences gapless excitations of the ground state [36, 102]. That observation supported the
interpretation of YbMgGaO4 as a gapless U(1) QSL, where theoretical calculations predict a
power-law exponent of 2/3 in specific heat [75, 104, 105, 107] coinciding well with experiment.
Additionally, muon spin relaxation (µSR) excludes any spin freezig or static long-range order
down to 50 mK further supporting the QSL scenario [108].
On the other hand, serious doubts on YbMgGaO4 as clean and perfect QSL have arisen, too.

The lack of magnetic thermal conductivity clearly contradicts expectations of free spinons
that should be able to transport heat [109]. A possible interpretation are localized spinons
with very short mean free path caused by the site disorder of Mg2+/Ga3+ sharing the same
crystallographic site. Though being non-magnetic, the arbitrary distribution of those two
ions generates locally different environments for the Yb3+ ions. That directly affects the
physical properties of YbMgGaO4, which has been proven by thoroughly analysing the CEF
excitations [69]. This randomness may influence the magnetic interactions and could be the
key for understanding the suppression of magnetic order. Interestingly, the proposed ratio
of J2/J1 ∼ 0.2 [102, 103] suggests YbMgGaO4 to be deep in the stripe phase region of the
theoretical phase diagram [10], which is clearly not realized experimentally. The randomness,
however, may "melt" the magnetic order, possibly leading to a mimicry of a QSL [10, 11]. In
this vivid debate, another report challenged the QSL interpretation because ac-susceptibility
measurements may indicate a spin glass freezing in YbMgGaO4 at 100 mK similar to the
related compound YbZnGaO4 [12].
To investigate that scenario further, temperature-dependent dc-magnetization experiments

as an excellent tool for detecting possible spin freezing have been performed in this thesis. A
temperature range down to 40 mK in fields up to 1 T has been covered. The single crystals
grown by Yuesheng Li (EP VI, University of Augsburg) have been used for all presented
measurements, and the results including discussion have been published in Ref. [110].
Fig. 4.1(a,b) shows M(T ) scaled by |H| = |B|/µ0 in the low temperature regime T <

400 mK for the in-plane and out-of-plane field direction H ⊥ c and H ‖ c, respectively. Each
curve has been measured from 40 mK up to 2 K either with previous field cooling (FC) or
zero field cooling (ZFC). Obviously, a kink is observable around ∼ 100-200 mK comparable to
the ac-susceptibility report. However, several aspects speak against a conventional spin glass
freezing scenario. (i) For a spin glass, a splitting between FC and ZFC curves is expected
around the freezing temperature, where the ZFC data should significantly decrease [111–
113]. This behavior is clearly absent even at fields as small as 0.01 T, which is far below the
exchange coupling J0/gµB ∼ 1 T. (ii) If the kink inM(T ) signaled spin freezing, no direction
dependence would occur in contradiction to the measurements with T

‖
kink ∼ 100 mK and

T⊥kink ∼ 200 mK. The factor of 2 between those two temperatures most likely reflects the
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Figure 4.1. Temperature dependent magnetization of YbMgGaO4 between 40 mK and 400 mK
in small applied fields pointing (a) parallel and (b) perpendicular to the c-direction. A kink is
visible around Tkink=100-200 mK. The directional dependence of Tkink cannot be explained by
the formation of a conventional spin glass. No splitting between ZFC and FC measurements is
present, another argument speaking against spin freezing at Tkink. (c), (d) Magnetization up to
2 K for both field directions, respectively. The power law behavior above Tkink does not fit to
spin glass scaling with a freezing temperature of Tkink. Data published in Ref. [110], copyrighted
by the American Physical Society. All graphs (a)-(d) have been scaled to absolute values by
using the MPMS measurement of Yuesheng Li [110]. Data published in Ref. [110], copyrighted
by the American Physical Society.

anisotropic magnetic couplings in YbMgGaO4, Jzz ∼ 1 K and Jxx = 2J± ∼ 2 K. (iii) The
anomaly is shifted towards elevated temperatures by applying stronger magnetic fields. In a
spin glass, a suppression of the freezing temperature is expected [114]. (iv) The spin dynamics
in a spin glass slow down upon lowering the temperature until, eventually, the spins fall out
of equilibrium and freeze at the characteristic temperature Tf . Above Tf , scaling behavior
is expected with χ ∼ (T − Tf)

γ [115]. YbMgGaO4 at 0.01 T indeed reveals a power law
above the anomaly with an exponent of γ ∼ 1/3 [Fig. 4.1(c,d)], but the fitting also yields
Tf ≈ 0 K instead of ∼100 mK. Consequently, spin glass scaling does not apply to YbMgGaO4.
Altogether, the temperature-dependent magnetization measurements confirm that the spins
do not freeze in YbMgGaO4, corroborating the results of µSR experiments [108]. Further
insight into the ground state is provided by another INS measurements with very small
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background allowing to probe the low-energy spin excitations in YbMgGaO4 [110]. They
are clearly distinct from the high-energy spectrum, strongly suggesting the coexistence of
valence bonds and a significant amount of unpaired spins. The propagation of the latter by
rearranging valence bonds requires a finite amount of energy, which would not be needed in
the pure RVB picture [110]. These additional low-energy states are located in the RVB gap
and present down to lowest energies resulting in the gapless ground state of YbMgGaO4 [7].
The movement of orphan spins is restricted to few neighbors resembling the interpretations
of confined spinons that cannot transport heat [109]. A plausible reason for the limited
propagation is the already mentioned site-mixing between Mg2+/Ga3+.
While the influence of structural disorder on the presumed QSL ground state has been

discussed to great extend, its implications on the field-evolution remained unclear for quite
some time. In general, 2D triangular magnets feature a plethora of field-induced states [35].
A prominent example is the formation of the up-up-down (uud) phase accompanied by a
magnetization plateau at 1/3 of the saturation magnetization MSat. It has been evidenced
experimentally, for example, on the Co2+ triangular lattice compound Ba3CoSb2O9 [116–
118]. Similar behavior has been observed in the AYbX2 family [119, 120] that will be dis-
cussed in Sec. 4.2. Interestingly, this pattern does not apply for YbMgGaO4, which will
be demonstrated in the rest of this section. The presented methods and results have been
published in Ref. [121], and the following paragraphs are closely related to that publication.
The experimental magnetizationM(H) has been determined down to 40 mK and up to 10 T

by a Faraday magnetometer in the dilution refrigerator MK4. With this setup, measurements
were only possible with the magnetic field applied along the c-direction because in-plane
field directions (H ⊥ c) were not feasible due to strong torque effects at fields above 1 T.
Thus, Fig. 4.2(a) shows only the out-of-plane direction (H ‖ c). For this configuration,
the expected saturation magnetization MSat is 1.86µB/Yb3+ using the previously reported
g-values of g‖ = 3.72 [100] and MSat = gµBJeff from Sec. 2.1.3 with the effective total
angular momentum Jeff = 1/2. The saturation is reached at H‖Sat ' 5 T. The linear increase
above M‖Sat stems from Van Vleck contributions due to the CEF levels. Even at the lowest
temperature of 40 mK, a clear indication of the 1/3-magnetization plateau is absent, although
a nonlinear behavior is present at approximately MSat/3. In the magnetic susceptibility as
the first derivative, χ = dM/dH, that change of slope results in a plateau in χ(H) located
around 1.8 T for H ‖ c [Inset of Fig. 4.2(a)]. Notably, there is no apparent difference between
750 mK and 40 mK. Consequently, that anomaly cannot originate from broadening of a
putative magnetization plateau by thermal fluctuations because they should become almost
fully suppressed at such low temperatures. Thus, it must be intrinsic to YbMgGaO4. These
results are in accordance with MPMS measurements down to 500 mK [121]. The in-plane field
direction has been measured there, too, that reveals very similar behavior. The susceptibility
plateau, however, is located at ∼ 3.5 T which is approximately twice the value compared to
the out-of-plane direction. The magnetization data presented here and in Ref. [121] agree
with Steinhardt et al. [122], where the magnetization has been measured indirectly down
to 24 mK by the tunnel diode oscillator technique and torque magnetometry. They report
similar values of saturation magnetization, H‖Sat ' 4− 5 T and H⊥Sat ' 7− 8 T. Furthermore,
their suggested field-induced crossover matches the plateaus in χ(H). All in all, the field
evolution of YbMgGaO4 turns out to be unusual compared to other TLAF [116–120].
The field evolution of YbMgGaO4 can be probed by other measurement techniques, too.

The field-dependent specific heat at very low temperatures of 200 mK is shown in Fig. 4.2(b).
In general, several contributions have to be considered in the heat capacity, but the condi-
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Figure 4.2. Field-dependent thermodynamic measurements on YbMgGaO4 in the dilution
refrigerator MK4, published in Ref. [121], copyrighted by the American Physical Society. (a)
Magnetization down to 40 mK and up to 10 T with field applied along the c-direction. In the
inset, the susceptibility shows a nonmonotonic field-evolution with a plateau around 1.8 T. This
in agreement with MPMS measurements down to 500 mK [121]. (b) Specific heat for both
field directions at 200 mK. The position of the plateaus in χ(H) from Ref.[121] is marked by
dotted lines. In the same field range, the slope of C(H) changes, and H ‖ c reveals a plateau,
too. Inset: Evolution of entropy at 200 mK, reminiscent of the specific heat behavior. The
entropy has been shifted by 0.07R ln 2 according to the zero-field entropy [36]. (c), (d) Magnetic
Grüneisen parameter Γmag for both field directions and several temperatures. In summary, none
of the presented measurements indicate a field-induced phase transition in YbMgGaO4.

tion T � 1 K safely allows to neglect the phonons. Furthermore, no conduction electrons
are present because of the the insulating behavior of YbMgGaO4. A nuclear contribution
may appear at 200 mK but should increase at higher fields, which is clearly absent in the
measured field range. Consequently, the presented specific heat is governed by the magnetic
contribution. Applying a magnetic field results in a rapid suppression of the specific heat [36,
102, 109] due to the gradually growing gap in the low-lying excitations [123]. Intriguingly,
the evolution is nonmonotonic since a plateau feature is clearly visible for H ‖ c. It ap-
pears exactly in the same field region like the plateau in χ(H) [Fig. 4.2(a)]. For H ⊥ c,
such a plateau cannot be identified unequivocally, but the change of slope followed by the
linear slope between ∼2.5 T and ∼4 T well matches the broad plateau region in χ(H) from
Ref. [121], too.
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4. Yb3+ on a Triangular Lattice

The magnetic Grüneisen parameter Γmag(H) is highly sensitive to field-induced phase tran-
sitions. An abrupt sign change from negative to positive would indicate a sharp maximum in
the field-dependent entropy, typical for a 2nd order phase transition, due to the Maxwell rela-
tion µ0∂S/∂H = ∂M/∂T = −ΓmagC. Such characteristic behavior is absent in YbMgGaO4

for both field directions [Fig. 4.2(c,d)]. On the other hand, a minimum in Γmag is observed
near the plateau regions of χ(H), which is more pronounced for H ‖ c. This can be related
to a change in the slope of the entropy directly obtained by integrating −ΓmagC. The field-
dependent entropy is presented in the inset of Fig. 4.2(b). Indeed, the field direction H ‖ c
reveals a plateau in the same field range like specific heat and magnetic susceptibility. The
other field direction, H ⊥ c, is reminiscent of the specific heat by only changing the slope,
which explains the weaker response in the magnetic Grüneisen ratio [Fig. 4.2(d)]. Finally, at
high fields, both magnetic Grüneisen parameter tend to become zero above the saturation
field, respectively, because the polarized state with an increasing gap is approached and the
field-dependent entropy becomes rapidly suppressed.
Altogether, the presented thermodynamic measurements exclude thermodynamic transi-

tions in YbMgGaO4, which is also corroborated by magnetostriction [121]. In a next step,
the unusual plateau in the magnetic susceptibility is discussed in more detail. As a first
interpretation, the nonlinearity in M(H) might result from a smeared 1/3 plateau due to
the structural disorder in YbMgGaO4. This will be evaluated in the following paragraphs
by numerical methods. All Monte Carlo magnetization curves have been calculated by Ilia
Iakovlev (Theoretical Physics and Applied Mathematics Department, Ural Federal Univer-
sity, Ekaterinburg). Subsequently, his magnetization results have been used for the averaging
procedure developed to mimic structural disorder, which has been implemented in Origin C
by the author of this thesis.
The general Hamiltonian for interacting spins on a triangular lattice has been introduced

in Eq. 2.10 in Sec. 2.2.1, Hexch =
∑

m

[
HXXZ
m +H±±m +Hz±

m

]
, with the summation over NN

(m = 1), NNN (n = 2), etc. The first term reflects the XXZ anisotropy parametrized
in ∆. All studies on YbMgGaO4 coincide in the presence of easy-plane anisotropy with
∆ < 1, but the determined values vary between 0.54 and 0.88 depending on the chosen
microscopic scenario [7]. The second and third term in the Hamiltonian represent diagonal
and off-diagonal anisotropy condensed in the exchange couplings J±±m and Jz±m , respectively.
A serious obstacle in numerically simulating this Hamiltonian is the quantum nature of
YbMgGaO4. Exact diagonalization naturally includes quantum effects, but is limited to
very small lattice sizes. Therefore, a different approach is realized using the classical spin
Hamiltonian

H = Hexch −
∑
i

HSi −
∑
i 6=j

b(H)ij (SiSj)
2 , (4.1)

where the exchange Hamiltonian from Eq. 2.10 is extended by the Zeeman term to account
for magnetic fields and by the biquadratic exchange imitating quantum fluctuations [124].
The biquadratic coupling is optimized by the following formula, where the procedure from
Ref. [124] has been slightly modified,

b(Hα) = Jzz1

[
0.0536(1− 0.03Hα

√
Hα

Sat −Hα)
]
n. (4.2)

Hα
Sat denotes the saturation field for a given field direction α, and n is an integer. The g-

factor anisotropy in YbMgGaO4 is taken into account by scaling the magnetic field after the
numerical simulation, respectively.
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4.1. Influence of Disorder in the QSL Candidate YbMgGaO4

Table 4.1. Overview of the exchange parameters for the spin Hamiltonian of Eq. 4.2. Refs. [100,
103] are the frameworks for the models A and B, respectively. For the latter model, the second-
neighbor coupling J2 is added using the same J2/J1 ratio. Table adapted from Ref. [121].

Model ∆ J±±1 /J1 Jz±1 /J1 J2/J1 g‖ g⊥

A 0.88 0.176 0.176 0.18 3.81 3.53
B 0.54 0.086 0.02 0.18 3.72 3.06

For calculating the magnetization from the Hamiltonian of Eq. 4.2, the classical Monte Carlo
(MC) method with the Uppsala Atomistic Spin Dynamics (UPPASD) package is used. The
temperature has been adjusted to T = 0.15Jzz for the presented graphs with Jzz = ∆J1. As
already mentioned, all Monte Carlo simulations have been performed by Ilia Iakovlev, and
further technical details can be found in Ref. [121].
Quantitatively identifying the exchange couplings in YbMgGaO4 has been subject of vivid

debates [7]. In this work, two representative parameter sets are used based on different
measurement techniques. They are summarized in Table 4.1. Model A is in close relation
to the results of terahertz and neutron spectroscopy [103]. In that report, the influence of
NNN interactions has been corroborated proposing a finite ratio J2/J1 = 0.18. This study,
however, is far from unambiguously fixing all parameter, and the values of J±±1 /J1 = 0.4(3)
and Jz±1 /J1 = 0.6(6) obtain large uncertainties. For Model A, the parameter space has been
explored in the limits of [103], and the values of Table 4.1 could describe the experimental
data best. Model B stems from the first analysis of the microscopic spin model in YbMgGaO4

using the Curie-Weiss temperature and ESR measurements. It is augmented by interactions
beyond NN with the same ratio J2/J1 = 0.18 from Model A.
Calculating the magnetization for both models results in steplike features exemplarily

shown in Fig. 4.3(a) for model B, H ⊥ c. Interestingly, the clearly visible plateaus formed
around 1/2 of the saturation magnetization being distinct to the anticipated 1/3 plateau.
Model A reveals comparable results for both field directions. In that sense, model B with
H ‖ c deviates slightly from the other cases because the step is present without plateau.
In general, the formation of a 1/2 plateau is not uncommon on the triangular lattice. The
so-called up-up-up-down (uuud) phase has been evidenced by quantum simulations in the
case of sizable NNN couplings J2/J1 > 0.125 [125]. YbMgGaO4 would naturally be located
in that regime, yet the situation might be more complex due to the additional anisotropic
couplings. Nevertheless, all curves do not represent the experimental data at all, compare
Fig. 4.2(a) and [121], because the structural disorder has been neglected so far. That effect
will be simulated by a procedure explained step by step in the next paragraph.
The random occupation of the Mg2+/Ga3+ sites creates locally differently charged envi-

ronments for the Yb3+ ions influencing their CEF levels [69]. Furthermore, the magnetic
exchange couplings in YbMgGaO4 change as well. It has been shown that the randomness
changes the absolute value of J1, while the other parameter ∆, J±±1 /J1, and Jz±1 /J1 re-
main constant in good approximation [126]. Therefore, for simulating the randomness in the
magnetization, the following assumptions are made: (i) The J1 values in the crystal follow
a Gaussian distribution. (ii) J2 is Gaussian distributed as well with a constant J2/J1 ra-
tio. (iii) ∆, J±±1 /J1, and Jz±1 /J1 remain fixed, too. Altogether, these three assumptions
can be taken into account by first calculating the pristine magnetization M(H)prist using
an averaged value Javg resulting, for example, in Fig. 4.3(a). Subsequently, the field of that
curve is rescaled by a factor f = J1/Javg reflecting different exchange couplings depending on
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Figure 4.3. (a) Model B with H ⊥ c, Javg = 2.26K, and T = 0.15Jzz
1 results in the presented

M(H) and χ(H) curves. Here, no averaging procedure over different values of J1 has been
performed. Calculating χ(H) reveals that it does not match the experimental data. Monte
Carlo simulation performed by Ilia Iakovlev. (b) Simulating random exchange couplings by
averaging of the M(H) curve. The original curve from (a) is equivalent to f = 1. The other
factors, f = 0.55 and f = 1.45, represent two different values of J1. They contribute with a
smaller weight w to the averaged curve following Eq. (4.3). The factors’ weight follows a Gaussian
distribution w(f), as shown in the inset. The obtained averaged M(H) curve is presented in
purple. (c) Calculated χ(H) for model A after averaging using Javg = 1.63K with 2σ = 0.53 Javg,
n = 5, T = 0.15Jzz

1 for H ‖ c and 2σ = 0.61 Javg, n = 2, T = 0.15Jzz
1 for H ⊥ c. (d) Calculated

χ(H) for model B after averaging using Javg = 2.26K with 2σ = 0.46 Javg, n = 6, T = 0.05Jzz
1

for H ‖ c and 2σ = 0.6 Javg, n = 5, T = 0.15Jzz
1 for H ⊥ c. This parameter set coincides best

with the experimental behavior. For comparison, the dotted lines represent the experimental
data measured at 500mK [121]. Graphs published in Ref. [121], copyrighted by the American
Physical Society.

the local environment. The form of the magnetization curve with step and plateau remains
untouched, but these anomalies including saturation magnetization shift to lower or higher
fields depending on the factor f [Fig. 4.3(b)]. Consequently, such scaled magnetization curves
correspond to different exchange couplings J1. The distribution of J1 is implemented by the
weighting factor w [Inset of Fig. 4.3(b)], and factors with a weight w < 0.01 are discarded.
In the example of Fig. 4.3(b), this is equivalent to J1/Javg of 0.1 and 0.9, respectively, or

66



4.1. Influence of Disorder in the QSL Candidate YbMgGaO4

to a full width at half maximum (FWHM) of ∼ 0.7 with the standard deviation σ ∼ 30 %.
Most of the weight is located in the interval of Javg ± σ, where the total variation of J1 is
about ∼ 60 %, which is comparable to the results of the simulations in Ref. [126]. In order
to average over all factorized magnetization curves, the following sum is applied,

M(H)avg =

∑n
i=0wifiM(H)prist∑n

i=0wi
, (4.3)

resulting in the averaged magnetization curve in Fig. 4.3(b). For all curves presented in
this work, 201 fi values are used, and the parameters for the Gaussian distribution of w are
summarized in Table 4.2 for each model and field direction.
The averaged curves for χ(H) in model A and B are presented in Fig. 4.3(c,d). The

experimental data at 500 mK from Ref. [121] are indicated by dotted lines in Fig. 4.3(d). Both
models can reproduce the experimental plateau features in the magnetic susceptibility, and
the calculated order of magnitude matches well, too. The position of the plateau, however,
is in much better agreement in model B using Javg = 2.26 K, where the factor of about 2
between H ⊥ c and H ‖ c is obtained. The previously reported values for the exchange
coupling of J = 1.8 K [100] and J = 2 K [103], where structural disorder has been neglected,
are slightly lower, but still comparable. On the other hand, the MC calculations do not agree
with the experiment for fields below 1 T. A natural explanation might be quantum effects in
the proximity to the disordered state that are not captured by the classical MC method. An
example for strong quantum fluctuations in such a regime have been found in a frustrated
square lattice [127]. Furthermore, the plateaus in the experimental data are broader than
the simulated ones. Nevertheless, the qualitative evolution above 1 T can be captured very
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Figure 4.4. 1/3-magnetization plateau
in NN Heisenberg model. Applying the
averaging procedure cannot reproduce
the plateau in the susceptibility observed
in YbMgGaO4 (inset, red line). Graph
adapted from Ref. [121], copyrighted by
the American Physical Society. Origi-
nally from Ref. [128].

well. Another interesting aspect is the influence of
the chosen parameter on the simulated magnetiza-
tion. Model A and B are far from being the un-
ambiguous choice due to the huge parameter space.
Several trends can be identified by changing differ-
ent parameter. The plateau in χ and its position is
rather insensitive to weak variations of J±±1 and Jz±1

up to a limit of 0.4Jzz1 , where the uuud order with the
1/2 plateau might become suppressed by the strong
off-diagonal couplings. The second important param-
eter is the extend of XXZ anisotropy ∆. A smaller
value than suggested in Ref. [103] is required to repro-
duce the plateau positions indicating a pronounced
XXZ anisotropy in YbMgGaO4. At the same time,
this appears to be a lower limit because a stronger
anisotropy with ∆ < 0.5 does not produce a plateau
in χ(H) in H ‖ c anymore. Finally, the impact of the
NNN exchange can be estimated from Fig. 4.4, where
J2/J1 = 0 favors the 1/3-magnetization plateau. The
averaging procedure does not result in the experimen-
tal anomalies. This strongly supports the presence of

substantial J2 in YbMgGaO4.
Altogether, all presented measurements unambiguously exclude the existence of a plateau

phase that is in contrast to other TLAF such as Ba3CoSb2O9 [116–118] or several QSL can-
didates in the AYbX2 family [119, 120]. The difference to these materials is the structural
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4. Yb3+ on a Triangular Lattice

Table 4.2. The chosen parameter for the averaging procedure are summarized here. They are
used to obtain the averaged χ(H) curves in Fig. 4.3(c) and Fig. 4.3(d). The standard deviation
is denoted as σ, and the interval Javg ± σ carries most of the total weight. Table adapted from
Ref. [121].

Model FWHM (% of Javg) J1,min/max 2σ (% of Javg)

A, H ‖ c 62 0.2/1.8Javg 53
A, H ⊥ c 71 0.08/1.92Javg 61
B, H ‖ c 54 0.3/1.7Javg 46
B, H ⊥ c 70 0.1/1.9Javg 60

randomness in YbMgGaO4 that, in turn, randomize exchange couplings. It is expectable
that such a phenomenon intrinsically broadens all possible field-induced transitions. The
simulation of the magnetization data in Fig. 4.3(c,d) indicate a strong distribution of Javg.
Consequently, the randomness in YbMgGaO4 might smear out any anomaly related to a
plateau phase, resulting in a smoothly evolving magnetization curve. The susceptibility and
the specific heat as second derivatives of the free energy, however, reveal a nonmonotonic be-
havior in form of a plateau. Again, this is distinct to the usual behavior [Inset of Fig. 4.2(f)]
and can be explained by simulating randomness effect using the averaging procedure ex-
plained above. The different plateau positions for in-plane and out-of-plane fields underline
the presence of XXZ anisotropy in YbMgGaO4. Interestingly, the MC calculations cannot
describe the experimental χ(H) curves, when the common 1/3-magnetization plateau of the
uud order is averaged [red curve in the inset of Fig. 4.2(f)]. The 1/2 plateau as a result
of the uuud phase, however, can reproduce these features. Therefore, the anomalies in the
susceptibility and specific heat of YbMgGaO4 might be vestiges of the 1/2 plateau. The
chosen value J2/J1 = 0.18 > 0.125 deduced from Ref. [103] lies in the range where uuud
order is anticipated [125] corroborating the influence of second nearest neighbors. On the
other hand, neutron scattering experiments of YbMgGaO4 show a shift of spectral weight
from the M-point towards the K-point by applying intermediate fields [122]. This has been
associated with the uud order and the 1/3 plateau, and could not be reproduced with the
parameter sets presented here. Further investigations are certainly needed to clarify that
issue.
In place of simulating the magnetization by the presented microscopic spin model, the

evolution of the magnetic susceptibility might be described in a different, more phenomeno-
logical manner. As illuminated by the temperature-dependent magnetization measurements
[Fig. 4.1], the zero-field ground state of YbMgGaO4 can be well understood as a combination
of valence bonds and free unpaired spins. Those orphan spins may be polarized fairly quick,
and the plateau in χ(H) as the change of slope in the magnetization refers to fully polar-
ized orphan spins. Breaking the valence bonds requires a conversion from the singlet to the
triplet state that likely needs higher energies and, thus, stronger magnetic fields resulting in
the observed nonmonotonic field evolution.
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4.2. Disorder-Free QSL Candidates in the Family of AYbX2

YbMgGaO4 was the pioneer material in exploring spin liquid physics on 2D triangular rare
earth systems. The structural randomness, however, introduces an additional component
that complicates its microscopic scenario. Consequently, similar material systems without
disorder were highly desired. In 2018, several promising candidates have been identified
in the family of AYbX2 [129], where A and X stand for alkali metals (K, Na, Cs) and
chalcogens (O, S, Se), respectively. Site-mixing between non-magnetic ions is absent here.
NaYbO2, NaYbS2, CsYbSe2 and NaYbSe2, for example, do not show magnetic ordering
but fluctuating spins down to lowest temperatures [7], reminiscent of spin liquid physics.
Interestingly, the appearance of field-induced phases such as magnetization plateaus strongly
resembles other triangular magnets such as Ba3CoSb2O9. Therefore, the AYbX2 materials
offer a rich playground on exploring novel phases in triangular magnets. In this work, two
members have been investigated, namely KYbS2 and NaYbO2. Extended thermodynamic
measurements have been performed in temperatures down to far below 100 mK and fields up
to 15 T. KYbS2 is available as single crystals, and two different field directions have been
examined. For NaYbO2, however, single crystal growth has not been successful so far, and a
powder pellet has been investigated. Both samples have been prepared by Franziska Grußler
(EP VI, University of Augsburg).

4.2.1. Single Crystals of KYbS2

The first report about KYbS2 in 2020 [130] presented several thermodynamic measurements.
Magnetic susceptibility does not indicate any long-range ordering down to 1.9 K, and zero-
field heat capacity extends the temperature range without magnetic order down to 400 mK.
The Curie-Weiss temperature has been determined to be −5 K and −12 K for fields ori-
ented out-of-plane (perpendicular to the triangular planes, B ‖ c) and in-plane (B ⊥ c),
respectively [130]. This estimation might be improved by using field-dependent magnetiza-
tion measurements M(B) beyond the saturation magnetization in order to fix the Van-Vleck
contribution and to improve the susceptibility fit [7]. Nevertheless, the frustration parameter
f = ΘCW/TN > 10 indicates strong frustration in KYbS2. Many aspects remain unclear due
to the lack of data below 400 mK and especially in magnetic fields, where other AYbX2 ma-
terials show interesting behavior [68, 119, 131, 132]. In this work, an extensive single crystal
study has been performed to shed further light on this potential QSL candidate. The ther-
modynamical properties specific heat, magnetic Grüneisen parameter, and entropy change
have been measured in a temperature range between 50 mK and 3 K in fields up to 15 T for
B ‖ c and B ⊥ c.
All heat capacity measurements in this chapter have been performed by using the relaxation

method [Sec. 3.4.1]. The lattice contribution is considered to be around 10 mJ K−1 mol−1 at
3 K [130] and, thus, is negligible in the investigated temperature range. Furthermore, the
cell background is subtracted in all presented data. Ccell(T ) has been estimated using a
previous addenda measurement and becomes negligible below ∼2 K [Fig. 4.5(a)]. It should
be noted that the background might be even overestimated here. In the original addenda
measurement, N-Grease has been used, which was needed for the solvent-sensitive α-RuCl3
sample (see Ch. 5). For the KYbS2 crystal with its chemical stability, however, the usual
approach was applied with a very small amount of GE Varnish due to the tiny sample
size. Nevertheless, another highly time-consuming background measurement with GE varnish
instead of N-Grease is not necessary due to the large sample signal.

69



4. Yb3+ on a Triangular Lattice

Fig. 4.5(a) shows the sample heat capacity CSa(T ) of the KYbS2 single crystal at zero-field
down to 50 mK. It reveals a very broad maximum between around 1 K and 3 K reproducing
the results of Ref. [130], yet the two presumed distinct peaks are not resolved here. Such
a broad feature is characteristic for several AYbX2 materials [68, 119, 120, 129, 131, 133–
137] as well as for YbMgGaO4 [36]. It can be interpreted as a crossover to the spin liquid
state, marking the onset of short-range correlations [36, 68]. Below 1 K, the specific heat
decreases down to ∼100 mK. In zero field, the Yb3+ quadrupolar moments give rise to
a Schottky anomaly at ultra low temperatures. Consequently, the increase towards below
100 mK stems from the high-temperature part of the nuclear contribution. Altogether, no
lambda-type anomaly is detected in the whole accessible temperature range. This strongly
indicates the absence of long-range ordering down to at least 50 mK resulting in a lower limit
of the frustration parameter f ≥ 100. It underlines the extremely high degree of frustration
in KYbS2 and provides first evidence of a possible QSL ground state. However, a subtle
aspect deserves attention. At around 200 mK, marked by the dotted line in red, a weak kink
is visible in C(T ), whose origin is not obvious. Ordinary bulk long-range magnetic order,
though, can be excluded since it should be much more pronounced.
In order to further investigate the zero-field data, the nuclear contribution has to be sub-

tracted. For this purpose, the low temperature specific heat is carefully fitted. The high-
temperature part of the nuclear Schottky anomaly can be well approximated by Cnuc = α/T 2.
As insulating material, the only further contribution for KYbS2 results from the unknown
magnetic excitations. Here, two possibilities are considered. First, gapless excitations would
give rise to a power law, Cm,pow = bT p [68, 138, 139]. Second, the specific heat of a 2D
AF gapped magnet well below the gap (T � ∆) can be expressed as exponential behavior
with a temperature dependendent prefactor, Cm,exp = A(x2 + 2x+ 2)e−x with x = ∆/T and
A ∼ 1/J , assuming a quadratic gap dispersion, εk ≈ ∆ + Jk2 [68, 72]. It should be men-
tioned that the gap ∆ must not be confused with the amount of XXZ anisotropy discussed
in Sec. 4.1.
In Fig. 4.5(b), both fitting functions are used to describe the low temperature specific heat

up to ∼150 mK as indicated by the gray dotted line. At first sight, both least square fits
describe the data well in this small fitting range. First, the power law expression is discussed
in more detail. The resulting power exponent turns out to be p = 1.8. This value is robust
upon reducing the fitting range down to 110 mK. Increasing the interval to 250 mK, on the
other hand, clearly worsens the fit quality and reduces p to 1.5 [Fig. 4.5(c)]. Therefore, the
kink at around 200 mK limits the valid temperature range of the power law expression. Now,
let us turn to the gapped scenario that returns a small gap of ∆ = 0.24 K. This fit function,
however, has a slightly lower R value than the power law fit and might show small deviations
from the data marked by the arrows in Fig. 4.5(b). A larger fitting range results in the same
gap ∆ = 0.25 K [Fig. 4.5(c)], but then the assumption T � ∆ does not hold anymore. The
small possible fitting range makes it difficult to judge the validity of the concurrent functions
in zero field, but, overall, a gapless behavior seems to describe the data better.
Applying magnetic fields rapidly suppresses the kink around 200 mK allowing an expansion

of the fitting interval. Therefore, the same fit functions for C(T ) are compared at 1 T with
B ⊥ c and a fitting range up to 300 mK [Fig. 4.5(d)]. The fit quality of the gapped function
is drastically reduced. The same yet weaker tendency is visible for the data at 0.125 T
[Fig. 4.5(e)], where the kink is not fully suppressed yet, as discussed later. The results with
a fitting interval comparable to Fig. 4.5(b) show again that the power law fit seems to be
favorable. It is noted that a field of 0.125 T is already in the same order of magnitude like
the putative zero-field gap ∆ = 0.24 K [Fig. 4.5(b)] using B ∼ kB∆/g⊥µB ∼ 0.1 T. Thus,
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Figure 4.5. (a) C(T ) of KYbS2 in zero field. Black data points represent C(T ) after subtraction
of the cell background (purple, negligible below ∼2 K). No long-range magnetic order can be
found down to 50 mK, yet a weak kink appears around 200 mK (red dotted line). Phononic
contributions are neglectable below ∼3 K [130]. The increase below 100 mK is due to the nuclear
contribution. (b) Determination of the nuclear contribution by fitting the low-temperature part
up to 150 mK with CSa = α/T 2 + Cm, here in zero field. Two different approaches are used for
the magnetic contribution. For the red curve, a gapless ground state is assumed with a power
law. A gapped 2D AF system shows a characteristic exponential behaviour. Both describe
the data well, but the gapped function slightly deviates from the data, indicated by the arrows
and a slightly lower R-value. (c) Larger fitting range up to 250 mK. The power law becomes
problematic due to the above mentioned kink around 200 mK. The exponential fit seems to be
better, but the required condition T � ∆ is not fulfilled anymore. (d, e) Low temperature fits
at small fields of 1 T and 0.125 T, respectively. The power law fit shows better agreement with
the data. (f) Zero field magnetic heat capacity Cm(T ) and Cm(T )/T of KYbS2 after subtracting
the nuclear contribution. The power law behavior is indicated by the blue line. The crossover
to the presumable QSL state is indicated by the maximum in Cm(T )/T at T ∗.

the putative gap from the zero-field fit could already be closed by such small fields. However,
the deviations between fit and data points tend to be consistently at the same positions like
at 0 T. Consequently, it is concluded that KYbS2 at zero-field and below 200 mK most likely
reveals gapless behavior. This certainly deserves closer attention, and probing the ground

71



4. Yb3+ on a Triangular Lattice

state at ∼100 mK by, for example, inelastic neutron scattering (INS), muon spin relaxation
(muSR) or nuclear magnetic resonance (NMR) would be interesting.
After subtracting the respective nuclear contribution with α = 4.22(3) J K mol−1 using the

gapless fit in Fig. 4.5(b), the magnetic specific heat is plotted in Fig. 4.5(f). In Cm(T )/T
(right axis), the anomaly at 200 mK is even more clearly visible. Furthermore, a pronounced
maximum is visible at T ∗, which is interpreted as a crossover to a short-range correlated
state [68, 130] and added to the phase diagram established later [Fig. 4.12]. The blue line
represents the power law behavior with an exponent of p = 1.8 being close to 2. The exponent
of a power law can in principle benchmark theoretical models because of its direct connection
to the low-temperature excitations. Therefore, the presumed power law exponent of p = 2 is
discussed in the next paragraphs.
In the case of a potential spinon Fermi surface, an exponent of p = 1 is expected [73],

which has been experimentally observed in triangular QSL compounds such as the organic
materials κ-(BEDT-TTF)2Cu2(CN)3 [74] and EtMe3Sb[Pd(dmit)2]2 [140], or in the 6H-B
phase of Ba3NiSb2O9 [141]. Corrections to the spinon Fermi surface can change the exponent
to p = 2/3, as discussed for YbMgGaO4 [Sec. 4.1]. The quadratic behavior in the specific
heat of KYbS2 seems to be clearly distinct.
An exponent of p = 2 can be found in many scenarios, though, for example for some spin

glasses [77, 78] or 2D AF magnons [70, 71, 78]. It is also present in QSL candidates, but
in a (hyper)kagomé lattice (Na4Ir3O8, ZnCu3(OH)6Cl2) [139, 142] or in a spin-1 system in
the 3D phase 3C-Ba3NiSb2O9 [141]. Thus, they are probably not relevant for KYbS2. Some
triangular lattice materials with magnetically disordered ground state such as NiGa2S4 and
Ba3CuSb2O9 show C(T ) ∼ T 2 [11, 143], but the latter only in an intermediate temperature
regime, while the former is a S = 1 system with quadrupolar order [141, 144, 145]. Last
but not least, the quadratic specific heat could be related to a Dirac QSL, as suggested for
the strongly frustrated 2D triangular S=1/2 material Sr3CuSb2O9 [76]. While the possible
connection to such a QSL scenario is thrilling, more evidence is certainly needed to support
that conclusion, especially in the light of the small fitting interval in Fig. 4.5(b).
A natural next step is the direct comparison with other AYbX2 compounds without ap-

parent order. This turns out to be difficult in many cases because the zero-field specific
heat has only been measured down to 400 mK [120, 131, 134, 136, 146], or with very few
data points [129, 134], which seriously hinders clear interpretations. In NaYbO2, on the one
hand, Cm ∼ T 2 has first been anticipated down to 200 mK [133], but the analysis turned out
to be more complex [68], see also Sec. 4.2.2. A quadratic specific heat evolution has been
suggested for NaYbS2, too, which was interpreted as a signature of a Dirac QSL [134]. Their
fit, however, includes only five data points, and the specific heat has to be extended to much
lower temperatures for more confident statements. In a study on NaYbSe2 single crystals,
the nuclear contribution subtraction remains unclear to some extend [119]. Furthermore, the
data show several humps, which severely limits the conclusion of a potentially linear spe-
cific heat. The report on powder samples [135] did not analyse the low-temperature specific
heat. Therefore, the underlying microscopic scenario in KYbS2 remains unclear so far, and
additional measurements in the 100 mK region are crucially important. Local probes such
as µSR or NMR can evidence dynamically fluctuating spins even at lowest temperatures,
which is a key feature of a QSL. Ac-susceptibility and FC/ZFC dc-magnetization are very
sensitive to spin freezing as well and would be useful to exclude spin glass physics. Neutron
scattering could confirm the absence of magnetic order and benchmark theoretical models by,
for example, determining points of spectral weight accumulation in the Brillouin zone [68].
After discussing the properties in zero field, the focus is now shifted towards a different as-
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Figure 4.6. Magnetic specific heat Cm(T )/T after subtraction of the nuclear contribution to
follow the evolution of the low-temperature kink around 200 mK discussed in the context of
Fig. 4.5(f). Small magnetic fields up to 0.25 T result in slight enhancement but preserves the
kink. Further increasing the field, however, suppresses the kink and recovers Cm ∼ T 2 (dotted
line) independent from the applied field direction (a),(b) B ‖ c and (c),(d) B ⊥ c, respectively.

pect. The triangular lattice in general hosts a plethora of field-induced states [35]. One
prominent example is the up-up-down (uud) state, which manifests in a 1/3-magnetization
plateau and has been initially proposed in the isotropic NN Heisenberg model [128]. This has
been verified experimentally, for example in Ba3CoSb2O9 [116–118]. Despite the potential
QSL ground state, that is clearly distinct to the simple NN Heisenberg model, KYbS2 might
reveal similar non-trivial states in magnetic fields. Intriguingly, magnetization plateaus have
already been observed in other AYbX2 materials such as NaYbO2 [68], NaYbSe2 [119] and
CsYbSe2 [120]. A pronounced anisotropy is present in these materials – the plateau is only
detected for applying the magnetic field in the ab–plane of the triangular lattice. Similar
behavior is expected for KYbS2.
Consequently, the effect of magnetic fields on KYbS2 is investigated in detail for both

in-plane (B ⊥ c) and out-of-plane (B ‖ c) field directions. As a first aspect, a closer look
is taken on the evolution of the aforementioned kink around 200 mK. Fig. 4.6 depicts the
magnetic specific heat divided by temperature, Cm(T )/T , after the subtraction of the nuclear
contribution as explained later. Both field directions reveal similar behavior. For fields up
to 0.25 T, the specific heat becomes slightly enhanced at lowest temperatures, but the kink
is still visible [Fig. 4.6(a,c)]. Further increasing the magnetic field has two effects. First, the
specific heat at lowest temperatures is suppressed. Second, the kink broadens and finally
vanishes above fields of 0.5 T leaving a robust power law behavior close to T 2, as indicated
by the dotted lines in Fig. 4.6(b,d).
In a next step, the nuclear contribution is examined systematically by fitting the low-

temperature part of the specific heat. The Schottky peak shifts towards higher temperatures
upon increasing magnetic fields [Fig. 4.7(a,b)]. All curves are fitted by assuming gapless
magnetic excitations, CSa(T ) = Cnuc(T ) + Cm,pow(T ) = α/T 2 + bT p, from lowest available
temperatures up to around 300 mK for B ⊥ c, whenever reasonable. For B ‖ c, the fit-
ting range can be expanded to 400 mK because no disturbing features are induced by the
magnetic field. The chosen fit function perfectly describes the experimental data for both
field directions. This way, the nuclear contribution Cnuc(T ) can be subtracted to obtain the
magnetic specific heat Cm(T ) for each field, respectively. At high enough fields, KYbS2 will
eventually enter the polarized state by opening a gap, but even at 11 T applied in the easy-
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Figure 4.7. Fitting of the heat capacity of KYbS2 at lowest temperatures assuming a power
law for gapless magnetic excitations, C = α/T 2 + bT p (details in the main text). (a),(b) The fit
function perfectly describes each of the chosen representative data sets. The fitting range is from
the lowest available temperatures up to 400 mK (300 mK) for B ‖ c (B ⊥ c), whenever possible.
More details are summarized in the Appendix (Fig. A.4 and Table A.3). The fit parameter α is
used for subtracting the nuclear contribution from each curve, respectively. (c) Even for 11 T,
the 2D gappped function cannot account correctly for the magnetic contribution excluding the
opening of a gap. (d) Field dependence of the nuclear contribution parameter α. For the out-of
plane field direction,

√
α grows nearly linearly. The in-plane direction, however, shows a distinct

change of slope between 3 T and 6 T. This indicates the presence of a magnetization plateau in
KYbS2 (details in the main text). (e) Evolution of the power law exponent p. Starting from
∼ 1.5 at lowest fields, it smoothly tends towards 2 for B ‖ c. The field direction B ⊥ c, however,
scatters between 1 and nearly 3, especially in the range of the presumed plateau phase region.
For both field directions, p at 0 T is taken from the smaller applied fitting range, see Fig. 4.5(b).

plane (B ‖ c), the 2D gapped function is significantly worse than the power law [Fig. 4.7(c)].
These results evidence gapless excitations in KYbS2 in the whole measured field range yet
the nature of the ground state and, thus, of the excitations changes upon applying in-plane
magnetic fields. This can exemplarily be seen in Fig. 4.7(b) for an in-plane field of 6 T, where
a magnetic ordering peak is induced.
Before further highlighting the field-induced order, the evolution of the nuclear fitting

parameter α is discussed in detail [Fig. 4.7(d)]. While
√
α for out-of-plane fields increases

roughly linearly, the in-plane direction is different. Starting from ∼ 3.5 T, the slope becomes
less steep and increases again around ∼ 6 T. The exact

√
α values slightly depend on the

selected fitting range, but the observed slope change in α is robust (see Appendix, Fig. A.4
and Table A.3). To further evaluate this anomaly, the meaning of α has to be revisited
again. It is a measure of the nuclear level splitting ∆ (including both quadrupolar and
Zeeman contributions) with α ∼ ∆2 when expanding the Schottky formula in the limit of
T � ∆ [Sec. 2.4.3]. The splitting is directly linked to the local magnetization of the respective
ion such as Yb3+ [147]. Consequently, in a first approximation, a nonmonotonic behavior in√
α(B) indicates an anomaly in the magnetization M(B). Fig. 4.7(d) for B ⊥ c resembles a
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magnetization plateau and, thus, gives a first hint on a nontrivial field evolution of KYbS2.
The highly anisotropic behavior in KYbS2 is additionally witnessed by the power exponent
p of the presumed gapless excitations. The values for the field direction of B ‖ c show a
smooth evolution, starting from p ∼ 1.5 at lowest fields and converging towards p ∼ 2. The
field of 0 T stands as an exception if the smaller fitting region is chosen, as explained above.
For B ⊥ c, however, the exponent starts to deviate from p = 2 when coming close to the
presumed plateau. Especially the exponents at the fields of 3 T and 5 T are clearly distinct
compared to neighboring fields, but the exponents also obviously deviate from p = 2 between
5.5 T and 6.5 T. It is noted that the field of 10 T results in a rather abrupt change of the
exponent, too, despite being far above the plateau region. The p values are robust under
different fitting ranges [Fig. A.4], and the fitting parameters α, p, and b are summarized for
all fields in the Appendix [Table A.2].
Let us now return to the field-induced magnetic ordering. Fig. 4.8 shows the magnetic

specific heat of KYbS2 between 400 mK and 2 K for two different field directions. In the case
of out-of-plane magnetic fields, the specific heat remains nearly unchanged up to fields of
13.5 T and is only slightly suppressed [Fig. 4.8(a)]. For in-plane fields, however, magnetic
order is induced. A relatively broad maximum starts to appear in the specific heat, located
around 600 mK at 2 T, which becomes increasingly sharp for higher magnetic fields. It is
most prominent for the fields of 4 T and 4.5 T [Fig. 4.8(b)]. The lambda-type peak evidences
field-induced magnetic order with a pronounced temperature dependence. The maximum
first shifts towards higher temperatures, but it eventually reveals the opposite trend for fields
above 4.5 T [Fig. 4.8(c)]. This non-monotonic behavior of the phase transition is typical for
the uud state and very similar to, for example, NaYbSe2 [119]. At even higher fields above
7 T, the ordering peak smears out until the specific heat becomes completely suppressed at
12 T due to the formation of the field-induced polarized state.
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Figure 4.8. Magnetic specific heat Cm(T ) of KYbS2 between 400 mK and 2 K after subtracting
the nuclear contribution Cnuc. (a) Fields up to 13.5 T along the hard axis (B ‖ c) lead only to
a weak suppression of the specific heat as indicated by the arrow. (b) Applying magnetic fields
in the easy-plane (B ⊥ c) induces magnetic order visible as a peak, which is marked by the
colored arrows for selected fields. The peak shifts towards higher temperatures upon increasing
the field. (c) For fields above 4.5 T, the ordering peak moves to lower temperatures (colored
arrows), becomes broad again and finally vanishes. At 12 T, KYbS2 approaches the polarized
state, and the specific heat is rapidly suppressed.
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Figure 4.9. Magnetic specific heat of KYbS2 divided by temperature, Cm(T )/T , for in-plane
fields (B ⊥ c, nuclear contribution subtracted). For some representative fields, the arrows
indicate the maximum position used for the phase diagram. (a) The temperature dependence
of 3 T clearly deviates from comparable fields. (b) Here, 5 T and 5.5 T with their change of
slope are distinct to neighboring fields, too. (c) The constant slope of 10 T might result from
the suppression of specific heat upon approaching the polarized state. (d)-(f) Evolution of the
magnetic entropy from integrating Cm(T )/T . At 3 K and 0 T, 60 % of the expected R ln 2 for
J = 1/2 systems is reached. The field-induced order is visible by the clear change of slope.

In order to establish a phase diagram, the phase boundaries have to be followed carefully.
On the one hand, Cm(T ) gives first valuable insights. On the other hand, Cm(T )/T provides
the opportunity to additionally track the crossover T ∗ defined in Fig. 4.5(f). Therefore,
the latter is presented in Fig. 4.9 between 60 mK and 3 K (nuclear contribution subtracted)
where several aspects draw attention. First, the maximum in zero-field in Fig. 4.9(a) shifts
towards lower temperatures until the above described magnetic order sets in. On the high-
field side, the maximum remains visible up to 9 T yet becomes fairly broad [Fig. 4.9(c)]. For
some representative fields, the colored arrows mark the position of transitions or crossovers.
Second, the low temperature specific heat becomes rapidly suppressed by the field-induced
magnetic order [Fig. 4.9(a)]. A remarkable exception is the field of 3 T, where the specific
heat reveals a constant temperature dependence down to the lowest measured temperatures.
Obviously, the excitations appear to be distinct compared to the data at similar fields of 2.5 T
and 3.5 T, consistent with the results of the power law exponent [Fig. 4.7(e)]. Fig. 4.9(b)
shows the opposite trend. Increasing the magnetic field enhances the specific heat at low
temperatures again. Two curves, though, reveal anomalous behavior compared to the other
fields. Both specific heat curves at 5 T and 5.5 T obtain a change of slope or even a kink
around 400 mK. The huge scatter of the data below 100 mK is a result from the very low
heat capacity. Finally, the 10 T curve also seems to become nearly constant towards lower
temperatures [Fig. 4.9(c)]. However, this simply might be due to the complete suppression
of the specific heat upon approaching the saturation magnetization. Altogether, the specific

76



4.2. Disorder-Free QSL Candidates in the Family of AYbX2

heat of KYbS2 shows a non-trivial evolution in magnetic fields, as already discussed in the
context of Fig. 4.7(d,e).
The temperature-dependent measurements are completed by the calculation of the mag-

netic entropy S(T ) [Fig. 4.9(d-f)]. At 3 K and 0 T, it reaches ∼60 % of the expected value for
a spin-1/2 system, R ln 2. This is consistent with [130], where data down to only 400 mK are
used. The rest of the ground state entropy is released at higher temperatures, comparable to
other AYbX2 materials [131, 132]. The magnetic order induced by magnetic field is accompa-
nied by a sharp increase of the entropy, visible best for the data at 4.5 T [Fig. 4.9(d)]. Larger
magnetic fields shift entropy towards lower temperatures in combination with a decrease at
3 K. Eventually, the entropy becomes suppressed in the strongest applied magnetic fields
because entropy is shifted towards higher temperatures [Fig. 4.9(e,f)].
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Figure 4.10. Field dependence of the Grüneisen
parameter Γmag(B) of KYbS2 for various temper-
atures down to 100 mK and fields up to 14 T. The
arrows mark presumed phase transitions used for
the phase diagram [Fig. 4.12]. At these positions,
a (sharp) sign change from negative to positive is
visible indicating a 2nd order phase transition.

To further explore the phase diagram,
field-dependent measurements at constant
temperatures are highly advantageous. The
magnetic Grüneisen parameter Γmag(B) is
ideally suitable for detecting field-induced
phase transitions. Consequently, it has been
measured up to 14 T for the relevant direc-
tion B ⊥ c for several temperatures between
2 K and 100 mK [Fig. 4.10]. The data at
elevated temperatures of 2 K and 1.5 K do
not show any anomalies except of a broad
maximum at 10.8 T. It becomes increas-
ingly sharp by lowering the temperatures
down to 100 mK, yet the height becomes
smaller again below 250 mK. The position
is nearly unchanged over the whole tempera-
ture range indicated by the dotted grey line.
Such a distinct maximum in the Grüneisen
parameter indicates a strong decrease in the
field-dependent entropy, which will be dis-
cussed later. Most likely, it is related to
the closeness to the polarized state and may
mark a crossover. Despite that high-field
feature, decreasing the temperature down
to 500 mK reveals further anomalies in the
Grüneisen parameter [Fig. 4.10(a)]. An-
other maximum as well as a minimum ap-
pear around ∼ 3 T and ∼ 5 T indicative for
decreasing and increasing entropy, respec-
tively. These features, however, can not be
interpreted as a phase transition. Typical for
a 2nd order phase transition is a sign change
from negative to positive Γmag values exactly
at the critical field in combination with di-
vergent behavior [82, 84, 148, 149]. Indeed, several relevant sign changes can be detected for
250 mK marked by the purple arrows in Fig. 4.10(b). Those at 2.9 T and 5.3 T are clearly
evidencing such a phase transition and can be confirmed down to 100 mK by the arrows in
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Fig. 4.10(c). That result coincides well with the above discussed fields in Cm(T )/T reveal-
ing distinctly different low-temperature behavior. It should be noted that the 350 mK data
show the sign change at ∼ 5.3 T, too (orange arrow), but not at ∼ 2.9 T, where only a very
weak kink is visible. Furthermore, the 500 mK curve shows a signature (green arrow) yet
without sign change. Nevertheless, this feature is interpreted as a phase transition because
it resembles a sign change shifted by additional contributions.
Besides the two discussed sharp features, two further sign changes might be relevant at

250 mK. The arrow at ∼ 12 T probably marks the transition to the fully polarized state.
It is also observable at 350 mK and 150 mK (purple, orange, and blue arrows). At 100 mK,
however, the signal becomes too weak to resolve that anomaly anymore. The last remaining
sign change at ∼ 1.7 T is far more speculative. It might indicate a change of the presumable
QSL ground state to a different state. Yet, that sign change is only visible for the data
at 350 mK (left orange arrow), and it seems to be shifted upwards for lower temperatures.
Nevertheless, it may still be present, and the exact nature of this presumable phase transition
remains unclear. An alternative scenario might be a first order transition at 2.2 T, where
a maximum can be detected. A comparable signature in the Kitaev material α-RuCl3 has
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Figure 4.11. Field dependence of the (a) specific
heat and (b) entropy change, C(B) and ∆S(B), re-
spectively. Arrows indicate anomalies taken for the
phase diagram. The grey arrow in the specific heat
marks the evolution of the presumed crossover at
high fields. Colored arrows stand for transitions or
crossovers at different temperatures, respectively.

been interpreted that way [94, 95]. Conse-
quently, this field region certainly deserves
further attention in the future. After dis-
cussing the field evolution of the Grüneisen
parameter, the field-dependent specific heat
is investigated for the same field direction up
to 14 T [Fig. 4.11(a)]. The data at the high-
est temperatures of 2 K and 1.5 K show a
monotonic decrease except of a broad max-
imum at highest fields, which is visible for
all temperatures yet slightly shifted (grey
arrow). Similar to the high-field features
in Γmag(B), it most likely results from the
closeness to the polarized state. It should
be noted here that the raw data analysis
at high fields (B & 11 T) and low temper-
atures (T ≤ 350 mK) becomes problematic
due to 2τ -behavior, which can not be fitted
by a single exponential function. The 2τ fit,
however, requires too many unknown start-
ing parameter and can not be employed in
a reasonable way yet, see Sec. 3.4.1. There-
fore, the increase towards highest fields espe-
cially at 250 mK is probably not a transition,
but an artefact of the problematic analysis.
At 1 K, a maximum appears in the spe-

cific heat around 4 T, which splits into two
separate peaks upon lowering the tempera-
ture further. At the lowest temperature of

250 mK, the original two peaks become very broad (left and right arrow). More features ap-
pear at this temperature as a peak at 5.4 T and the more subtle kink at 3.3 T. In summary,
Fig. 4.11(a) confirms the critical fields determined from Γmag(B).
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As a next step, the relative change of the field-dependent entropy is calculated using ∂S/∂B =
−ΓmagC from Eq. 2.40. The results are shifted such that ∆S = 0 J K−1 mol−1 at the highest
measured field, respectively. As expected, the entropy at high temperatures monotonically
vanishes. The steep decrease at high fields is visible for all temperatures, and the inflection
point of ∆S(B) is equivalent to the peak in the Grüneisen parameter Γmag(B) around 11 T.
At 1 K, a prominent minimum evolves around 4 T that becomes steeper for lower temper-
atures. Eventually, it changes the form at 250 mK, where several maxima appear. They
correspond to the previously discussed sign changes in Γmag(B).
Using all collected information, the field-temperature phase diagram can be drawn, which

has not been reported yet. The phase boundaries have been tracked by specific heat, C(T )/T
and C(B), as well as the magnetic Grüneisen parameter Γ(B). The entropy change ∆S(B) is
included as a color map after normalization to the maximum value ∆Smax for each tempera-
ture, respectively. This is needed to reasonably compare the entropy change between highest
and lowest temperature. Fig. 4.12 reveals the phase diagram of KYbS2. The determined phase

Figure 4.12. Phase diagram of KYbS2 under in-plane mag-
netic fields (B ‖ c). Dotted lines are guides to the eye and
indicate a phase transition. The open rectangular symbols
mark a crossover to the presumed QSL phase. The open
circular symbols at high fields probably indicate another
crossover.

transitions follow the entropy evo-
lution very well corroborating the
previous analysis. No magnetic
order has been found in specific
heat C(T ) in zero-field down to
50 mK. Therefore, KYbS2 is ex-
tremely frustrated with f ≥ 100
and a prime candidate for a po-
tential QSL. The maximum in
C(T )/T at lower fields has been
interpreted as a crossover towards
the presumed QSL, indicated by
the open rectangular symbols in
Fig. 4.12. A central feature of
the phase diagram is the dome-
like structure with its maximum at
4 T and 1 K. Its non-monotonic
behavior strongly resembles the
formation of the uud state typi-
cal for triangular lattices [35] and
is most likely responsible for the
field-induced magnetic ordering in
KYbS2. The presumed uud phase

seems to persist down to lowest measured temperatures in KYbS2, which is distinct to clas-
sical theoretical calculations restricted to nearest-neighbors [124, 150]. This might be due
to quantum effects or indicate an influence of the next-nearest neighbors exchange coupling
J2. On the experimental side, the uud phase in several triangular magnets is suggested to
survive down to 0 K, for example, in Ba3CoSb2O9 [118, 151] and, in particular, in the related
compound NaYbSe2 [119]. This coincides well with KYbS2.
Increasing the magnetic field destroys the uud configuration, and the canted phase is formed

at lowest temperatures, sometimes also called V-phase. At highest fields, the V-phase is left
towards the fully polarized state around 12 T, where the Grüneisen parameter shows another
sign change. Unfortunately, this is only visible for lowest temperatures. Before entering the
fully polarized state, there might be a crossover marked by the open circles in Fig. 4.12. Its
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origin is not clear at this point. Another peculiarity is the shape of V-phase boundary. It
appears to have a concave form and does not converge to 0 K at a finite field. This is rather
different compared to the experimental phase diagrams of other 2D triangular magnets such
as Ba3CoSb2O9 [118, 151] or RbFe(MoO4)2 [152] as well as to the classical theoretical phase
diagram [124, 150]. It might be a result of the determination of the phase transition in
C(T )/T , where the maximum becomes very broad above 8 T. Additional measurements to
track this phase boundary would be very interesting.
The other possibility to leave the uud state is to lower the magnetic field towards the

presumed QSL at lowest temperatures. Interestingly, another phase might evolve between
the uud and the QSL phase, which is indicated by C(B) and Γmag(B). A similar behav-
ior has been suggested for NaYbSe2, yet the lowest measured temperatures are not below
400 mK [119]. The additional phase could be related to the distorted 120° arrangement (Y-
phase). In the classical phase diagram of TLAF, the Y-phase connects the 120° ordered
ground state in zero-field with the field-induced uud state [35, 124, 150]. Apparently, KYbS2

has a different zero-field ground state, but applying magnetic field may destroy the QSL
phase already before the formation of the plateau phase, which could recover the Y-phase.
In summary, several phases have been identified in KYbS2. The exact nature, however, can

not be probed by the presented thermodynamic measurements. Further measurements are
therefore highly required. Neutron scattering will provide detailed insights into the nature
of the zero-field ground state. Despite most likely confirming the absence of long-range
magnetic ordering, detecting fractionalized excitations would be a fingerprint of the QSL.
Additionally, local probes such as µSR and NMR can exclude possible spin freezing and
evidence dynamically fluctuating spins at lowest temperatures. The field-induced phases are
interesting as well. The most direct way for evidencing the uud state is the 1/3-plateau in the
field-dependent magnetizationM(B). Furthermore, neutron scattering in magnetic fields like
in NaYbO2 [153] would be extremely valuable to benchmark the proposed phase diagram.
Finally, these measurements provide crucial input for developing a microscopic model to
shed light on the exact position of KYbS2 in the theoretical phase diagram. QSL on the
triangular lattice can be stabilized by considering nearest and next-nearest neighbors in the
J1-J2 model, but the off-diagonal terms in the spin Hamiltonian can favor such state, too [7].
Which scenario holds for KYbS2 will certainly be central key aspects of future studies.

80



4.2. Disorder-Free QSL Candidates in the Family of AYbX2

4.2.2. Polycrystalline NaYbO2

NaYbO2 as a potential QSL candidate has been first reported by Liu et al. in 2018 [129].
They showed specific heat and ac-susceptibility of several AYbX2 compounds down to tem-
peratures below 100 mK with no sign of magnetic order. This triggered immediate interest
and established NaYbO2 as a disorder-free QSL with fluctuating spins even at lowest tem-
peratures [68, 133]. Moreover, the field evolution has been investigated as well, suggesting

Figure 4.13. (a) Crystal
structure of NaYbO2. (b)
Triangular arrangement of the
Yb3+ ions. Graph adapted
from Ref. [68], copyrighted by
the American Physical Soci-
ety.

a rich phase diagram [132, 153]. In this work, the specific heat
of NaYbO2 is presented in detail down to 70 mK and up to 14 T.
Similar to the previous section about KYbS2, the nuclear con-
tribution is discussed and subtracted carefully. Parts of the pre-
sented specific heat measurements have already been published
in Ding et al. [68]. NaYbO2 crystallizes in the R3̄m space group
like YbMgGaO4 and KYbS2 [Fig. 4.13(a)]. The Yb3+ ions form
a perfect triangular lattice with a distance of 0.334 nm to near-
est in-plane neighbors [Fig. 4.13(b)]. The triangular planes are
well separated by layers of Na+, and the larger interplane dis-
tance of 0.582 nm suggests strong quasi two-dimensional char-
acter of the material. In analogy to KYbS2, no structural disor-
der is present in NaYbO2 because site-mixing of non-magnetic
ions is not possible [68]. This is in contrast to YbMgGaO4 (see
Sec. 4.1), rendering NaYbO2 an ideal candidate to explore QSL
physics without structural disorder.
Fig. 4.14(a) shows the specific heat of NaYbO2 between

70 mK and 20 K in zero field. The dilution refrigerator MK4
was used up to 4 K, and the PPMS measurements from
Franziska Grußler extended the temperature range towards
higher temperatures. The cell background has been subtracted
for both measurements. The inset shows that it becomes neg-
ligible below 2 K. Furthermore, a PPMS measurement of the
non-magnetic reference NaLuO2 (F. Grußler) is used to sub-
tract the lattice contribution that becomes neglectable at low
temperatures as well. Consequently, the resulting magnetic
specific heat Cm(T ) of NaYbO2 is dominating the depicted

temperature range. It reveals a broad maximum around 2 K reproducing the results of [132]
and [153]. The latter presumed a weakly visible double peak structure that, in turn, is not
present here. Most importantly, the specific heat shows no sign of magnetic order down to
70 mK rendering NaYbO2 a promising QSL candidate. In the light of a Curie-Weiss tem-
perature of ΘCW ∼ −6 K [68, 132], the empirical frustration parameter evidences strong
frustration, f & 85.
At low temperatures, the specific heat reveals an upturn [Fig. 4.14(b)]. Like in KYbS2, the

Yb3+ nuclei create a Schottky anomaly at ultra low temperatures. The quadrupolar splitting
of the nuclei levels is responsible for that anomaly in zero field, and applying magnetic
fields shifts the Schottky peak towards higher temperatures. This nuclear contribution Cnuc

complicates the specific heat analysis. Thus, its subtraction is extremely desirable. In analogy
to KYbS2, the specific heat at lowest temperatures is fitted with C(T ) = Cnuc + Cm =
α/T 2 + bT p, assuming gapless excitations for the magnetic contribution. The exponential
counterpart of a gapped system is excluded because it describes the data worse, see Fig. A.7 in
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Figure 4.14. (a) Specific heat of NaYbO2 in zero field. PPMS measurements at higher tem-
peratures performed by Franziska Grußler. The phonon contribution C lat is subtracted using
the non-magnetic reference NaLuO2, which vanishes rapidly below 5 K. The cell background in
the MK4 is subtracted as well and becomes negligible below 2 K (inset). No magnetic ordering
is visible down to the lowest temperature of 70 mK. (b) The upturn below 100 mK stems from
the nuclear contribution. Gapless behavior is assumed for the fitting function C = α/T 2 + bT p

(see main text). However, fitting the data turns out to be ambiguous. The results depend on the
chosen fitting interval leading to different low temperature evolutions (inset). Another possibility
to subtract the nuclear contribution in zero field is shown in blue. Here, the linear extrapolation
(EP) of the results in low fields is used, described in detail in Fig. 4.15(a). Consequently, the
exact low temperature behavior remains unsettled to some extent. (c,d) Specific heat in various
magnetic fields. Assuming gapless magnetic excitations (power law) results in perfect agreement
between fit and data, in contrast to a gapped fit function. (e) Attempt to fit magnetic specific
heat Cm(T ) in zero field up to 250 mK to stress the difference compared to the measurement
at B = 0.5 T. The nuclear contribution was subtracted using the extrapolation explained in
Fig. 4.15(a). A single power law or aingle gapped function is not satisfactory, but two power
laws with the exponents of ∼0.5 and ∼2.9 are a possibility to describe the experimental data well.
This fit, however, is ambitious to some extent because the fit results are rather sensitive to the
fitting interval and the nuclear contribution subtraction. Data partially published in Ref. [68],
copyrighted by the American Physical Society.

the Appendix, where also all fitting parameters (α, p, prefactor b) are summarized [Table A.4].
Unfortunately, the power law function in zero field remains problematic as well. Three
different approaches to subtract the nuclear contribution are presented in the following. First,
using a fit range up to 250 mK does not represent the data perfectly and, specifically, seems
to overestimate the nuclear contribution (Fit I, red, in Fig. 4.14(b)). Second, reducing the
temperature interval down to ∼ 150 mK allows, on the one hand, a much better fit (Fit
II, green). On the other hand, such a small range might not have enough data points for
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Figure 4.15. (a) Field-dependence between 0.5 T and 9 T of
√
α that parameterizes the strength

of nuclear contribution. Lines are guide to the eye. The slope clearly changes between 3 T and
5 T giving rise to a plateaulike feature. This indicates the formation of a field-induced phase. The
inset shows the dependence of α(0 T) for Fit I (red) and Fit II (green). The linear extrapolation
(EP) of α(B) is presented in blue using fields between 0.5 T and 1.25 T. (e) Evolution of the
power exponent p. The exponents at B ≤ 0.25 T depend on the chosen fit range. Except of these
fields, p is close to 2. At 5.5 T, the exponent clearly exceeds p = 2, which is maybe related to
the destruction of the plateau phase.

reliable results. The third approach determines the zero-field nuclear contribution indirectly.
If small magnetic fields are applied, Cm(T ) can be perfectly described by a simple power law,
for example at 0.5 T and higher fields in Fig. 4.14(c,d). This way, the nuclear contribution
parameter α can be determined at those fields. Subsequently, α(0 T) is estimated by linearly
extrapolating α(B) between 0.5 T and 1.25 T towards zero field as shown in Fig. 4.15(a).
Subtracting the nuclear contribution with α = 5.1(2) J K mol−1 (Fit I), α = 4.09(7) J K mol−1

(Fit II), and α = 3.66(9) J K mol−1 (from extrapolation: EP) yield different specific heat
below 200 mK. This is visualized best by plotting Cm(T )/T , which is shown in the inset of
Fig. 4.14(b). The data might become constant indicating Cm(T ) ∼ T (Fit II), but Cm(T ) ∼
T p with p < 1 or even a similar low temperature kink like in KYbS2 (Fit I) could be reasonable
as well. A linear specific heat might indicate spinons in NaYbO2, but this interpretation
remains speculative as long as the nuclear contribution subtraction is not unambiguously
solved. Definitely, the magnetic specific heat in zero-field up to above 200 mK cannot be
described by a single power law function. However, two power laws, Cm(T ) = bT p + dT q,
are sufficient to fit the data reasonably well when the extrapolated nuclear contribution is
used for the subtraction [Fig. 4.14(e)]. The resulting power law exponents of q ∼ 2.9 and
p ∼ 0.5 vaguely resemble the T 3 behavior of 3D antiferromagnetic magnons and the magnetic
contribution of YbMgGaO4 in zero-field with T 0.7, respectively. On the other hand, this
two power law fit is strongly sensitive to the chosen fitting interval and the subtraction of
the nuclear contribution. Furthermore, four independent fitting parameter are used in the
rather small fitting range between 70 mK and 250 mK. Other fit functions might account
for the observed behavior as well. Thus, this approach should not be overestimated, and
the exact behavior remains speculative to a certain point. For more confident statements
and, in particular, to confirm the validity of fit range II, further data points at even lower
temperatures would be crucial, yet technically challenging.
As a triangular lattice material, NaYbO2 is expected to exhibit interesting field-induced

behavior. Before focusing on higher temperatures, the nuclear contribution is examined sys-
tematically. Fig. 4.14(d) shows several specific heat curves for representative magnetic fields

83



4. Yb3+ on a Triangular Lattice

up to 9 T. As already mentioned above, they can be perfectly fitted by C(T ) = α/T 2 + bT p

up to 250 mK evidencing gapless excitations. Similar to KYbS2, the field-evolution of the
nuclear contribution parameter α does not evolve monotonically [Fig. 4.15(a)] and indicates
the formation of a plateau phase between 3 T and 5 T. This coincides with magnetization
data revealing a 1/2-plateau [68], which appears in the J1-J2-model for J2/J1 > 0.125 [125].
Inelastic neutron scattering suggests the onset of such a phase at 2.75 T, too, yet the phase
was identifed as the 1/3-plateau [153]. While the exact origin might still remain under de-
bate, the nuclear contribution parameter evidences the non-trivial field evolution of NaYbO2,
in close analogy to KYbS2. Moreover, the power law exponent p vaguely resembles KYbS2

as well [Fig. 4.15(b)]. The exponent is close to p = 2 except at very low fields (B ≤ 0.25 T),
where considerable lower values are obtained, depending on the chosen fit range. Further-
more, the exponent at the field of 5.5 T stands as an exception, too, because of its larger
value. This might be related to the destruction of the presumed plateau phase. Nevertheless,
the evolution of the power law exponent in NaYbO2 seems to have fewer anomalous features
than in KYbS2, especially upon entering the plateau phase, compare p ∼ 1 for KYbS2 at 3 T
[Fig. 4.7(e)]. One possible explanation is that a NaYbO2 powder pellet has been measured.
This naturally averages over all crystallographic directions, rendering all anomalies less pro-
nounced. On the other hand, NaYbO2 and KYbS2 might simply reveal distinct plateau
phases (1/2 vs. 1/3), where potentially different behavior could be expected. This would, in
turn, indicate different J2/J1-ratios in those compounds.
The appearance of the plateau phase can be followed by heat capacity, too. Here, the focus

is on temperatures below 2 K. Fig. 4.16(a-d) depicts the temperature-dependent magnetic
specific heat Cm(T ) between 300 mK and 2 K after subtracting the nuclear contribution for
each field, respectively. For the data at 2 T, a bump manifests at ∼ 500 mK. It evolves into a
lambda-type peak shifting towards higher temperatures with increasing fields being sharpest
and most pronounced at ∼ 1 K for the field of 5 T. By further increasing the field, this peak
becomes suppressed roughly staying at the same temperature. At the same time, a second
feature appears as a kink that is marked by an arrow in Fig. 4.16(c). For 9 T and higher
fields, only a broad maximum remains in the magnetic specific heat, which becomes rapidly
suppressed upon approaching the polarized state above 10 T.
In order to track these anomalies better, the specific heat divided by temperature, Cm(T )/T ,

is used in accordance with Ranjith et al. [132]. Fig. 4.16(e,f) show the measured data from
80 mK up to 2 K after subtracting the nuclear contribution. As a side note, all curves mea-
sured down to below 300 mK follow a power law as discussed above. In analogy to the
analysis of KYbS2, the maximum in zero-field is interpreted as the crossover to the pre-
sumed QSL state (black arrow). Applying a magnetic field first shifts this maximum to lower
temperatures, but the opposite trend is observed after exceeding 2 T, as already discussed
(colored arrows). Above 5 T, the double peak becomes better visible than in Cm(T ) and can
already be identified at 5.5 T (orange arrows). The 9 T curve might still show a weak leftover
of the right peak around 900 mK (brown arrow with question mark), but it is completely
vanished for even higher fields. The left peak persists as a broad maximum probably even
up to 12 T, which is very close to the saturation of NaYbO2 [68, 132]. Remarkably, the
two peaks neither seem to merge nor to be suppressed to zero temperature. The vanishing
at finite temperature might indicate a first order transition. As a closing remark on the
temperature-dependent measurements, the entropy S(T ) calculated from Cm(T )/T seems to
be very similar to KYbS2. Roughly 65 % of the expected entropy of R ln 2 is reached at
a temperature roughly comparable to the exchange coupling in NaYbO2, T ∼ 4 K [68]. At
20 K, the magnetic entropy saturates at approximately 90 % of R ln 2, see Appendix Fig. A.7.
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Figure 4.16. Tracking of field-induced phase transitions in NaYbO2. (a)-(d) Magnetic specific
heat Cm(T ) between 300 mK and 2 K. At 2 T, a broad bump appears that is transformed to
a sharp lamda-type peak for higher fields up to 5 T. Further increasing the field suppresses
the peak and induces a second anomaly [arrows in panel (c)]. Above 9 T, the remaining broad
maximum smears out and vanishes when the polarized state is approached. (e)-(f) Magnetic
specific heat divided by temperature Cm(T )/T between 80 mK and 2 K. This allows to follow
several anomalies easier. Especially the double peak structure is better visible, for example in
the 5.5 T data [orange arrows].

In the following, the field-evolution up to 4 T of the Grüneisen parameter and specific heat
are briefly discussed. Time limitations in the measurement plan thwarted more detailed
measurements towards higher fields. Nevertheless, first insights can be gained even with the
reduced field range.

The Grüneisen parameter Γmag(B) is presented in Fig. 4.17(a) for temperatures between
150 mK and 2 K. It strongly resembles the behavior of KYbS2. The data at high temperatures
are featureless, but anomalies start to become visible upon lowering the temperaure. A first
clear evidence of a 2nd order phase transitions appears at ∼ 3 T in the data at 200 mK(right
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purple arrow). It confirms the onset of the plateau phase in the nuclear contribution param-
eter α [Fig. 4.15(a)]. At this temperature, a second sign change from negative to positive
is visible around 2 T (left purple arrow), which may indicate another second order phase
transition. The alternative scenario of a first order transition at 2.3 T at the position of
the broad maximum has been discussed in KYbS2. Apart from the nature of the putative
phase transition, it might simply be explained as the suppression of the QSL favoring the
more common Y-phase expected in TLAF [35, 124, 150] before transforming into the plateau
phase. Nevertheless, the exact origin remains speculative at this point. Complementary to
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Figure 4.17. Field evolution of NaYbO2

up to 4 T. (a) Magnetic Grüneisen parame-
ter Γmag(B). The data at 200 mK and below
show an abrupt sign change at 3 T indicat-
ing the formation of the plateau phase. The
overall behavior is similar to KYbS2, includ-
ing the potential sign change marked by the
arrow in purple around 2 T. (b) Specific heat
C(B) and (c) entropy change ∆S(B) indicate
the onset of the plateau phase above 3 T as
well.

the magnetic Grüneisen parameter, the specific
heat C(B) has been measured, too. It does not
show any anomaly in the measured field range
at elevated temperatures of 2 K [Fig. 4.17(b)].
Nonetheless, the onset of the plateau phase
around 3 T becomes visible in the data below
1 K, where the maximum looks very similar to
the KYbS2 specific heat data. Beyond 4 T, an-
other maximum is expected, when the plateau
phase is left. It is worth mentioning that the
temperatures T ≤ 200 mK exhibit a maximum
around small fields of 0.2 T. That is again in
analogy to KYbS2 and can be seen in C(T ) at
lowest temperatures and fields as well, see Ap-
pendix Fig. A.6. The entropy change ∆S(B) is
presented in Fig. 4.17(c). It has been shifted such
that ∆S(4 T) = 0 J K−1 mol−1. Having higher
fields up to the polarized state would be ex-
tremely advantageous for a better direct compar-
ison between the data at different temperatures,
similar to the discussion in KYbS2. The steep
entropy reduction due to plateau phase can be
clearly identified in the curves at temperatures
below 1 K, though.
With the thermodynamic measurement re-

sults, the phase diagram of NaYbO2 can be
drawn [Fig. 4.18]. There are several similarities
compared to KYbS2. The presumed QSL phase
is located in the low-temperature and low-field
limit. Several reasons support that interpreta-
tion. Zero-field specific heat data do not show
any sign of long-range order down to ∼ 70 mK
despite some ambiguities in the exact subtraction
of the nuclear contribution. µSR measurements
show fluctuating spins down to 100 mK [68].
Moreover, the spectral weight in neutron scatter-
ing accumulates at the K-point [68] as predicted

from theory for a Dirac QSL [39]. Furthermore, ac-susceptibility excludes spin freezing
as well [129, 133]. These results firmly establish NaYbO2 as a promising QSL candidate.
The QSL phase is destroyed by applying medium magnetic fields, which is evidenced by
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at least one sign change in the Grüneisen parameter indicative of a 2nd order phase transi-
tion. Subsequently, the system enters another region associated with a plateau phase in the
magnetization M(B) at ∼500 mK [68, 132]. The plateau forms around half of the satura-
tion magnetizationMSat/2 suggesting the up-up-up-down (uuud) phase, indicating a sizeable
next-nearest neighbor interaction, J2/J1 > 0.125 [125]. This is in contrast to the original
proposal of the uud phase by analysis of neutron scattering data [133, 153]. Consequently,
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Figure 4.18. Phase diagram of NaYbO2. At low
fields, it strongly resembles the phase diagram of
KYbS2. The open rectangular symbols mark the
crossover to the presumed QSL phase. The field-
dependence of the magnetic Grüneisen parameter
Γmag(B) was only measured up to 4 T and could
not be used to track the expected transition from
the plateau to the canted phase (V phase). In con-
trast to KYbS2, an additional phase seems to be
stabilized at intermediate temperatures. Dotted
lines indicate phase transitions.

the exact nature of this phase remains un-
settled so far. In sharp contrast to KYbS2,
NaYbO2 reveals two phase transitions in
C(T ) measurements above T ≥ 5.5 K repro-
ducing Ranjith et al. [132]. An additional
phase seems to be stabilized as soon as the
anticipated canted V-phase is destroyed by
increasing the temperature. This is clearly
different compared to the phase diagram of
KYbS2 in Fig. 4.12 or to other triangular
magnets [118, 119, 151, 152]. The two tran-
sitions do not merge up to 9 T, and at higher
fields, the second transition seems to be com-
pletely suppressed. This may indicate a
1st order phase transition. Indeed, neutron
scattering data suggest a similar scenario by
detecting a hysteresis behavior between up
and down sweep of the magnetic field. Bor-
delon et al. find evidence for a different,
non-collinear magnetic order when sweeping
the field from 10 T down again [153]. How-
ever, this was shown for temperatures below
100 mK and, thus, can not be responsible for
the phase appearing between ∼ 500 mK and
1 K. It would be interesting to repeat the
neutron scattering experiment in that higher
temperature range. Another possible expla-
nation for the two phase transitions is the
polycrystalline nature of the sample. If, for example, the V-phase can be stabilized for dif-
ferent field directions, but with different ordering temperatures, measuring a powder pellet
might give rise to the presented phase diagram. Single crystalline samples would definitely
help to clarify that issue, but the synthesis seems to be impossible so far.
Additionally, the presented temperature dependent experiments alone do not seem to

be sensitive to the expected phase transition between the plateau and the putative V-
phase. Consequently, additional field-dependent specific heat and Grüneisen parameter mea-
surements up to 12 T are crucial to track this transition, as already seen in the case of
KYbS2. Moreover, they could be used to calculate the entropy change ∆S(B) over the
whole phase diagram, like it is shown in the phase diagram of KYbS2. This might help to
follow the two phase transitions in more detail. Using the temperature-dependent entropy
S(T ) =

∫
C(T )/TdT only vaguely tracks the lower transition, as shown in the Appendix

[Fig. A.8].
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4.3. Adiabatic Demagnetization in KBaYb(BO3)2

Besides the AYbX2 compounds, other rare-earth based 2D triangular lattices have been ex-
plored in order to discover more spin liquid candidates. The Ytterbium borates are one exam-
ple with a huge variety of different chemical compounds [154–161]. Like in YbMgGaO4, the
Yb3+ ions form a Kramers doublet ground state with an effective spin Jeff = 1/2. Geometri-
cal frustration combined with strong quantum effects due to the low spin potentially prevents
magnetic ordering. The following section focuses on powder samples of KBaYb(BO3)2 grown
by K. Kavita (EP VI, University of Augsburg). Several thermodynamic measurements are
analysed and potential practical applications of this material presented. This section refers to
a large extent to Ref. [162], where most of the results have been published. The PPMS mea-
surements of KBaYb(BO3)2 and KBaLu(BO4)2 have been performed by K . Kavita together
with Yoshifumi Tokiwa (both from EP VI, University of Augsburg). Interestingly, the PPMS
measurement only worked if the internal thermal conductivity of the KBaYb(BO3)2 sample
was increased by mixing with silver powder before pressing the pellet. The contribution of
silver was subtracted after the measurement.

Figure 4.19. Crystal struc-
ture of KBaYb(BO3)2, adapted
from Ref. [162] (Creative Commons
Attribution 4.0 International Li-
cense). The triangular arrange-
ment of Yb3+ is indicated by the
blue lines. The black lines show
the relative displacement between
neighboring triangular layers.

The crystal structure of KBaYb(BO3)2 is depicted in
Fig. 4.19. The YbO6 octahedra are arranged on a trian-
gular lattice in the ab-plane, indicated by the blue lines
that represent the shortest distance to neighbouring Yb3+

of 5.41Å. That configuration potentially gives rise to
frustration comparable to the previously discussed materi-
als. The out-of-plane distance between Yb3+ is marginally
larger (6.64Å), which could cause additional frustration
because the triangular layers are shifted in respect to each
other. Furthermore, Ba2+ and K+ occupy the same crys-
tallographic site and, despite of separating the Yb3+ lay-
ers, introduce structural disorder. This leads to a lo-
cally differently charged environment of the Yb3+ ions that
may result in random exchange couplings comparable to
YbMgGaO4, as described in Sec. 4.1 [10, 11, 69, 121]. All
these effects potentially suppress magnetic order. In this
sense, KBaYb(BO3)2 might reveal QSL behaviour compa-
rable to YbMgGaO4 and initiated its synthesis and char-
acterization [154, 155, 163].
Due to the larger distance between the magnetic ions,

KBaYb(BO3)2 is expected to show much weaker mag-
netic interactions compared to YbMgGaO4, KYbS2 and
NaYbO2. This is evidenced by the magnetization M(H)
at 500 mK, where thermal fluctuations are still dominat-
ing over magnetic interactions. It can be fully described

by the Brillouin function characteristic of a paramagnet [162]. Fitting the temperature
dependent magnetic susceptibility with a fixed van-Vleck term of χ0/µ0 = 0.0111µBT−1

yields an effective magnetic moment of µeff = 2.28µB and a Curie-Weiss temperature of
ΘCW = −60(2) mK [162]. This can be used to estimate the NN exchange coupling on a
triangular lattice [7, 68, 164], J = (2/3)ΘCW ∼ 40 mK, being approximately two order of
magnitudes smaller than in NaYbO2 (J ∼ 4 K [7, 68]) or YbMgGaO4 (J ∼ 2 K [7]). Conse-
quently, ultra low temperatures T � J would be required to explore cooperative magnetism
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4.3. Adiabatic Demagnetization in KBaYb(BO3)2

in KBaYb(BO3)2, which is extremely challenging, or even impossible, and clearly beyond the
scope of this work.
The apparent paramagnetic behavior dictates the magnetic specific heat of KBaYb(BO3)2

down to the lowest measured temperatures [Fig. 4.20(a)]. Here, the non-magnetic reference
KBaLu(BO3)2 has been subtracted as phonon reference. In zero field, no magnetic ordering
is visible down to 50 mK except of a small anomaly near 400 mK. It only contributes ∼ 1 %
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Figure 4.20. (a) Specific heat of KBaYb(BO3)2
in magnetic fields up to 5 T. Solid lines are fits to
the Schottky peak. (b) Entropy of KBaYb(BO3)2.
Magnetic fields shift the entropy of the ground
state doublet towards higher temperatures. Adi-
abatic demagnetization from 5 T to 0 T at 2 K
should reach temperatures below ∼ 50 mK, indi-
cated by the black arrow. (c) Exctracted gap val-
ues from the Schottky fit of the specific heat. The
slope corresponds to the saturation magnetization.
Data partially published in Ref. [162] (Creative
Commons Attribution 4.0 International License).

of the expected entropy R ln(2) in an effec-
tive spin-1/2 system, and, thus, most likely
stems from a small impurity phase [162].
A similar anomaly is present in the re-
lated compound NaBaYb(BO3)2, too [156].
Therefore, KBaYb(BO3)2 remains disor-
dered down to at least 50 mK, which con-
firms the paramagnetic state. Integrating
Cm/T gives direct access to the entropy
change [Fig. 4.20(b)]. The zero-field en-
tropy related to the Yb3+ Kramers doublet
is mostly released below 50 mK that explains
the upturn in the specific heat below 300 mK
towards lowest temperatures. The doublet
is split by magnetic field creating a two-level
system (mj = ±1/2), which gives rise to a
Schottky anomaly in the specific heat, and
higher magnetic fields increase the tempera-
ture of the peak position [Fig. 4.20(a)]. Con-
sequently, the entropy curves are shifted to
higher temperatures as well. At 5 T, only
∼ 10 % of R ln 2 is released at 2 K. If the
field is sweeped to 0 T under adiabatic con-
ditions, then the temperature has to de-
crease to ensure constant entropy. The end
temperature is expected to be well below
50 mK, as indicated by the black arrow in
Fig. 4.20(b). This is the concept of cool-
ing by adiabatic demagnetization, and the
potential of KBaYb(BO3)2 will be exam-
ined in more detail later. First, the Schot-
tky anomaly in the specific heat is analysed
quantitatively.
KBaYb(BO3)2 exhibits a pronounced

easy-axis anisotropy evidenced by the g-
factors, g⊥ = 2.4 and g‖ = 4.2, that have
been determined in single crystalline sam-
ples [163]. The gap due to the Zeeman split-
ting of the ground state doublet depends
on the field direction following ∆⊥(‖) =

2µSatB = 2g⊥(‖)JeffµBB [163] – an effect that has to be taken into account here because
the specific heat has been measured on a powder pellet. In that case, the small polycrystals

89

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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have random orientations. In a first approximation, each direction in space contributes with
an individual Schottky anomaly,

CSchottky,powder(T ) =
Ca(T ) + Cb(T ) + Cc(T )

3
. (4.4)

Ca/b/c(T ) represents a two-level Schottky anomaly, respectively, in the form of Eq. 2.34
normalized per mole. In KBaYb(BO3)2 with no in-plane anisotropy, the a- and b-directions
are equivalent resulting in

CSchottky,powder(T ) =
2 · C⊥(T ) + C‖(T )

3
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This formula allows perfect fitting of the Schottky anomalies, and the gap evolution can
be simultaneously determined for both field directions, H ‖ c and H ⊥ c, respectively
[Fig. 4.20(c)]. The saturation magnetization is exctracted by the slope yielding µSat‖ =
2.02(1)µB and µSat⊥ = 1.20(1)µB. These results agree very well with the single crystal study
of Pan et al. [163]. In order to explore possible frustration effects, however, temperatures far
below ΘCW ∼ 60 mK would be required. Consequently, statements on potential QSL physics
in KBaYb(BO3)2 are not feasible with the presented studies, as already mentioned above.
While the ground state of KBaYb(BO3)2 remains elusive so far, its practical implications in

the context of adiabatic demagnetization refrigeration (ADR) are highly promising. The en-
tropy evolution in KBaYb(BO3)2 is a strong indicator that it can be used for efficient cooling
to the millikelvin range. Thus, an actual cooling test has been performed in the quasiadia-
batic environment of the MK4. A ∼280 mg pellet has been prepared, where KBaYb(BO3)2
was mixed with fine silver powder (Ag, 10-50 µm) in equal weights and sintered at 600 °C to
improve the internal thermal conductivity. It has been mounted onto the sapphire plate of
the heat capacity setup by GE Varnish, and the RuO2 thermometer on top allows tracking
of the pellet temperature [Fig. 4.21(a)]. This setup is designed to minimize thermal contact
with the surrounding, which guarantees a very weak thermal coupling to the thermal bath
(TRP). The heat flow from and to the pellet, Q̇ = κ∆T , is furthermore drastically reduced
by giving feedback control to the TRP to minimize ∆T = Tpellet − TTRP. After applying a
magnetic field of 5 T, the sample is cooled down to 2 K to reach the starting point of the de-
magnetization cooling indicated in Fig. 4.20(b). Then, the magnetic field is sweeped to zero
using a rate of 0.25 T/min [red curve in Fig. 4.21(b)]. Immediately, the pellet temperature
starts to decrease [black curve] and finally reaches temperatures below the calibration limit
of the thermometer (∼22 mK). The minimal temperature is estimated to be around 16 mK
by extrapolating the thermometer calibration [162]. The spike around 80 mK is most likely
an artefact from the flux pinning in the superconducting magnet. After reaching the lowest
temperatures, the pellet slowly begins to warm up due to the weak but finite coupling to
the surrounding. The TRP, for example, remains at elevated temperatures because it cannot
follow the rapid pellet cooling anymore around 400 mK [dotted line in gray]. Furthermore,
the metallic shielding in the MK4 with temperatures in the order of ∼ 100 mK emits thermal
radiation and provides additional heating.
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Figure 4.21. (a) Setup for adiabatic demagnetization of KBaYb(BO3)2 under optimized condi-
tions in the MK4. The KBaYb(BO3)2 pellet has been mixed with silver powder to increase the
internal thermal conductivity . It is fixed in a heat capacity cell on a sapphire plate. (b) Example
for a cooling process in the MK4 starting at 2 K and 5 T. The measured sample temperature
gives feedback control to the thermal bath (TRP). Sweeping the magnetic field to zero starts the
cooling of the sample that becomes too fast for the TRP to follow. The sample base temperature
is below the thermometer calibration of ∼ 22 mK. (c) Setup for adiabatic demagnetization of
KBaYb(BO3)2 in a more realistic application in the 14 T PPMS. The pellet is insulated to the
surrounding by several means (straw, plastic screws, Teflon spacer). (d) Brass cap for shielding
the setup against external radiation. (e) Cooling curve in the PPMS starting at 2 K and 5 T.
The base temperature at 0 T is approximately 40 mK. The warming time up to 2 K can be en-
larged by actively cooling the brass stage using another ADR material (YbPt2Sn, details in the
text). Similar figures published in Ref. [162] (Creative Commons Attribution 4.0 International
License).

The cooling curve of KBaYb(BO3)2 further strongly suggests the absence of magnetic order-
ing down to the lowest measured temperatures. A phase transition at the Néel temperature
TN would result in a kink or plateau-like anomaly due to an accumulation of entropy at the
phase transition. Below TN, the entropy rapidly goes to zero and, thus, the ordering tem-
perature would constrain the minimal reachable temperature. Consequently, KBaYb(BO3)2
remains disordered down to at least ∼ 20 mK that, as a side note, results in a frustration
parameter of f ≥ 3.
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Naturally, the cooling efficiency of KBaYb(BO3)2 strongly depends on the chosen setup.
The dilution refrigerator offers an extremely cold thermal bath that is not realized in prac-
tical applications. In order to demonstrate a more realistic cooling performance, the 14 T
PPMS of Quantum Design has been used, where the surrounding is not colder than ∼2 K. A
KBaYb(BO3)2/Ag pellet of 4.02 g is mounted on an adapted resistivity puck [Fig. 4.21(c,d)].
The heat flow from the puck to the sample is reduced by mounting a second platform sep-
arated by two Teflon spacer and plastic screws in combination with a plastic straw. Like in
the dilution refrigerator setup, a RuO2 thermometer is glued on top of the pellet. External
thermal radiation is suppressed by the brass shield shown in Fig. 4.21(d). The test has been
performed in a 14 T PPMS in the HiVac mode. Starting from 2 K, sweeping the magnetic
field from 5 T to zero reduces the temperatures down to at least 40 mK. As expected, the
temperature increases much faster than in the MK4 and approaches 2 K after ∼ 50 min.
Nonetheless, this would provide enough time for transport measurements, for example the
electrical resistivity of a sample attached to the cooling pellet.
The time at lowest temperatures can be easily expanded by actively cooling the brass

shielding, too. For this purpose, another ADR compound (YbPt2Sn) is inserted into the brass
cap as indicated by the sketch in Fig. 4.21(e). That metallic material shows excellent cooling
properties due to its high density of magnetic moments. Although the Yb3+ are packed very
close to each other, they reveal unusually small magnetic interactions and develop short-range
order only around 250 mK [165, 166]. Therefore, attaching an YbPt2Sn piece of ca. 21 g to
the shielding should reduce thermal radiation. Indeed, the KBaYb(BO3)2 pellet reaches
slightly lower temperatures and, most importantly, stays more than one hour below 100 mK
[red curve in Fig. 4.21(e)]. The rapid increase towards 2 K is comparable to the blue curve.
This indicates that the shielding returns to thermal equilibrium with the warm environment
and cannot function as additional cooling stage anymore. Further improvements are certainly
possible by enhancing the cooling performance of the second cooling stage. In summary, the
presented setup is competitive compared to the commercial ADR stage of the PPMS. Those
devices reach a base temperature of 100 mK using the paramagnetic salt chromium potassium
alum (CPA) with typical time of 2 hours below 1.9 K [167].
After providing the proof of concept in a practical application, it is of great interest to

unscramble the mechanism that renders KBaYb(BO3)2 a promising cooling material. This
might pave the way to design even more optimized ADR compounds among the rare earth
borates. First, some general aspects have to be considered. The concept of ADR is based
on materials in the paramagnetic state, where the entropy strongly depends on the magnetic
field. An ideal ADR compound to achieve ultra-low temperatures needs to fulfill several crite-
ria. (i) Low ordering temperature. Typically, magnetic moments undergo a phase transition
towards an ordered state at the ordering temperature TN around their Curie-Weiss temper-
ature. Then, entropy usually rapidly goes to zero, which effectively constrains the lowest
final temperature to approximately Tf∼TN [88, 90]. This is directly linked to the interac-
tion strength, Tf ∼ J [162]. Therefore, cooling materials for the millikelvin range incorporate
crystal water to expand the crystal structure and enlarge the distance between magnetic ions.
This, in turn, reduces magnetic interactions and enables lower end temperatures. (ii) High
density of magnetic ions. This guarantees adequate cooling power per volume, but it is in
direct conflict with the first requirement when crystal water is used to artificially increases
the volume of the unit cell. (iii) Maximal entropy change. The entropy related to the ground
state multiplet depends on the paramagnet’s effective spin, S = R ln(2Jeff + 1). A large spin,
however, entails stronger interaction, which is again contrary to (i) [90]. Consequently, if very
low end temperatures are required, it is usually at the expense of lower cooling power [90].
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Table 4.3. Comparison of different adiabatic demagnetization refrigeration materials. Tmo de-
notes the magnetic order temperature, SGS stands for the entropy of the ground state multiplet,
and R is the gas constant. The following abbreviations are used: MAS: Mn(NH4)2(SO4)2· 6H2O
(manganese ammonium sulfate [168]), FAA: NH4Fe(SO4)·12H2O (ferric ammonium alum [168]),
CPA: KCr(SO4)·12H2O (chromium potassium alum [169]), CMN: Mg3Ce2(NO3)12·24H2O
(cerium magnesium nitrate [170]). Table adapted from Ref. [162] (Creative Commons Attri-
bution 4.0 International License).

Material Tmo mag. ion/Vol. SGS SGS/Vol.
(mK) (nm−3) (mJK−1 cm−1)

MAS [168] 170 2.8 R ln(6) 70
FAA [168] 30 2.1 R ln(6) 53
CPA [169] 10 2.2 R ln(4) 42
CMN [170] 2 1.7 R ln(2) 16
KBaYb(BO3)2 <22 6.7 R ln(2) 64
YbPt2Sn [165] 250 12.9 R ln(2) 124
Yb3Ga5O12 [171] 54 13.2 R ln(2) 124

Frustration and structural disorder, both present in KBaYb(BO3)2, provide an ideal compro-
mise to combine these requirements. They suppress the magnetic ordering far below ΘCW

and allow to achieve much lower temperatures. Furthermore, an amplification of the magne-
tocaloric effect is possible in frustrated magnet if soft modes are present [172]. Table 4.3 lists
several state-of-the-art materials with cooling ability in the millikelvin range. KBaYb(BO3)2
shows a much higher density of magnetic ions per volume than the paramagnetic salts MAS,
FAA, CPA, and CMN that contain crystal water. The ground state entropy used for the
cooling process is estimated as SGS = R ln(2Jeff + 1) because all materials approximately
use the full entropy of their ground state multiplet in moderate fields [162]. MAS and FAA
have a larger value than KBaYb(BO3)2 due to the higher spin compensating the lower ion
density. That makes their entropy to volume ratio SGS/V comparable. However, those
two salts magnetically order at 170 mK and 30 mK, respectively, whereas KBaYb(BO3)2 po-
tentially reaches temperatures below 20 mK. Even lower temperatures can be achieved by
CPA and CMN, yet at the cost of reduced SGS/V . Due to its magnetic frustration and
structural randomness, KBaYb(BO3)2 combines dense magnetic ions with an ultra low end
temperature, which allows fabrication of more compact ADR devices. It should be noted
that there are even higher densities possible in other Yb-based compounds such as YbPt2Sn
or Yb3Ga5O12. However, the lowest achievable temperature is limited by magnetic ordering
at around 250 mK and 54 mK, respectively [165, 171]. All in all, KBaYb(BO3)2 can compete
with the performance of standard materials for ADR in the millikelvin range.
Most importantly, paramagnetic salts as established ADR compounds for T ≤ 100 mK

have two enormous drawbacks compared to KBaYb(BO3)2. First, thermally contacting the
insulating salts requires advanced production methods because the crystals have to incorpo-
rate a metallic framework. Second, these cooling materials must not be heated or exposed
to vacuum because the huge amount of crystal water destabilizes the crystal. Evaporation
of the crystal water is irreversible, thus, the materials easily degrade requiring air-tight seal-
ings. The water-free KBaYb(BO3)2 overcomes these problems. For the pellet on the adapted
PPMS setup, Yb-borate powder has been ground, mixed with silver powder, and pressed into
the desired form. Subsequently, it has been sintered at several 100 °C. The chemical stability

93

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


4. Yb3+ on a Triangular Lattice

under vacuum condition is proved by the experiment in the MK4 with typical pressures of
1× 10−6 mbar in the IVC at room temperature. Therefore, KBaYb(BO3)2 can be used under
extreme conditions without further sealing, for example in ultra-high vacuum applications
such as millikelvin scanning tunneling microscopes (STM), where baking out the sample
chamber including the ADR pill is highly desired [173].
Despite the already highly promising perfomance of KBaYb(BO3)2, there still might be

potential for improvement. Replacing Yb3+ by another rare-earth ion with higher spin would
drastically increase the amount of available entropy. The Gd3+ compound probably has a spin
degree of freedom of 7/2 at lowest temperatures [154, 155] resulting in S = R ln(8), a factor of
3 larger compared to KBaYb(BO3)2. High spin values have been proposed for Dy3+ or Ho3+,
too. On the other hand, higher spin values render magnetic interactions stronger. Indeed,
the Curie-Weiss constant in KBaGd(BO3)2 is around 1 K [154, 155]. Thus, it is very unlikely
that cooling down to 20 mK is possible. Nevertheless, there is potential to suppress this order
by introducing more structural disorder in a doping series such as KBaGd1−xYbx(BO3)2 to
combine low end temperature and high entropy. It might be even promising to add more
rare-earth ions for maximizing the disorder and the entropy at the same time. Another
interesting approach is the replacement of non-magnetic ions, for example K by Na or Ba
by Sr to vary the distance between the rare-earth ions. This could be used to adjust the
strength of magnetic interaction J . Additionally, it might be worth a try to maximize the site-
disorder between the non-magnetic ions using elements with comparable radii, for example
by going from K to Rb and from Ba to Sr. Altogether, this could allow to fine-tune the
entropy curves and to tailor the compound exactly to the required starting temperature and
magnetic field of the specific ADR application. Furthermore, other rare-earth borates could
be suitable for ADR as well. Recently, Ba3YbB9O18 has been reported to obtain a Curie-
Weiss temperature of 77 mK [161], which is comparable to KBaYb(BO3)2. The temperature
evolution below 300 mK as well as the field-evolution of the entropy are unknown, though,
but further investigations might be auspicious. In summary, exploring the rare-earth borates
in detail may reveal further highly competitive and water-free ADR materials.
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5. Field Evolution of the Kitaev Material
α-RuCl3 for Various In-Plane Field
Directions

After Jackeli’s and Khalliulin’s proposal to realize Kitaev’s model, several honeycomb mate-
rials such as Na2IrO3, α-Li2IrO3 (5d5), and α-RuCl3 (4d5) have been intensively investigated.
Despite sizeable Kitaev interactions, they do not host a zero-field KSL because a magneti-
cally ordered ground state is formed at low temperatures [22]. The same holds true for the
recently proposed Kitaev materials based on the 3d7 ion Co2+, for example in Na3Co2SbO6,
Na2Co2TeO6, and BaCo2(AsO4)2 [174, 175]. In the specific case of α-RuCl3, zigzag magnetic
order evolves below TN∼ 7–8 K [176–178]. It is a Mott insulator with jeff = 1/2 [23, 57, 179]
and sizeable spin orbit coupling (SOC), λ ∼ 0.10–0.15 eV [179]. α-RuCl3 is monoclinic at
room temperature [27, 176] and undergoes a structural first order phase transition with a
large hysteresis at around 150 K [15, 180]. The low-temperature structure is still subject
of debates, but the magnetic response at low temperature shows approximate six-fold sym-
metry for in-plane fields due to the honeycomb arrangement of the Ru3+ ions, as shown by
angle-dependent heat capacity measurements [62]. Neutron scattering in zero field reveals a
continuum commonly interpreted as evidence for fractionalized excitations [181, 182]. Fur-
thermore, signatures of Majorana fermions have been reported in the entropy [181, 183],
and a broad continuum in THz spectroscopy persisting up to at least 100 K could be con-
nected to fractionalized excitations, too [184, 185]. Altogether, α-RuCl3 is concluded to be
in proximity to a Kitaev spin liquid [186, 187]. Moderate in-plane magnetic fields of ∼ 7 T
suppress the magnetic order, which might unveil underlying spin liquid physics. Excitingly,
this exact field range beyond magnetic order features a half-integer quantized plateau in the
thermal Hall conductivity κxy [13] expected for the Kitaev spin liquid and, thus, considered
to evidence Majorana fermions in α-RuCl3. Additionally, the peculiar sign structure of κxy
under rotating the magnetic field in the honeycomb planes might further support the spin
liquid scenario [60]. Especially the last discoveries attracted huge attention and put α-RuCl3
forward as a prime candidate among other Kitaev materials.
Nevertheless, some inconsistencies are remaining because broad features in neutron scatter-

ing can also be explained by multi-magnon processes that do not require proximity to a spin
liquid [58, 188–190]. Moreover, even the experimental observation of the sign structure in κxy
upon rotating the in-plane field direction does not necessarily evidence a spin liquid. This
behavior can appear in the partially-polarized phase as well [191]. Another study reported
a pronounced temperature dependence of κxy betwen 3.5 K and 5.5 K rendering a constant
half-quantized plateau questionable [192]. Furthermore, the plateau seems to be suppressed
towards lower temperatures far below the half-quantized value [193], which is inconsistent
with the Majorana fermion scenario [191]. Additionally, the field region of the thermal con-
ductivity plateau varies between B = 7–9 T [13], B = 7–9 T [61], and B = 10–12 T [60], and
strong sample dependence has been reported [61]. The latter might originate from disorder,
which can suppress the half-integer plateau [194]. Interestingly, Tanaka et al. proposed the
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formation of a gapless topological spin liquid phase for an in-plane field direction B ‖ b as
soon as magnetic order is suppressed [62]. This strongly suggests that another phase transi-
tion must occur upon leaving this gapless phase towards the gapped partially-polarized state.
Several studies reported anomalies that might support this scenario, but they appear to be
fairly weak [14, 15]. Very recently, strong quantum oscillations in the thermal conductivity
κxx have been observed in the presumed field-induced spin liquid state interpreted as evi-
dence for a spinon Fermi surface [192]. It remains unclear, though, why these oscillations are
already visible deep in the ordered state. Moreover, the question arises how the anticipated
gapless spinon Fermi surface can be reconciled with the gapped spectrum present for most
in-plane field directions [62]. Altogether, the existence of a field-induced spin liquid phase in
α-RuCl3 is controversially discussed, and the measurements presented in the following try to
shed light on the field evolution in α-RuCl3.
In this work, the field-dependence of α-RuCl3 has been investigated in detail by thermo-

dynamic measurements of the specific heat and the magnetic Grüneisen parameter down
to 200 mK in fields up to 14 T. The single crystals have been grown by Vladimir Tsurkan
(EP V, University of Augsburg). The angle-dependence of in-plane fields has been carefully
studied to thoroughly establish the field-temperature phase diagram for different field direc-
tions. Furthermore, the entropy evolution under magnetic field has been determined, and
implications on the presumed spin liquid phase are discussed. Moreover, the entropy change
between zero field and 14 T is compared to expected values. The chapter is concluded by
a short comparison of zero-field specific heat of samples from different laboratories. Most
results have been published in [94, 95].
It is well known that α-RuCl3 is prone to stacking faults. The Ru3+ ions are arranged on

2D honeycomb layers, which are only weakly coupled by van-der-Waals forces. Therefore,
the honeycomb planes are easily shifted by moderate shear force resulting in stacking faults.
Several studies showed the influence of different stacking sequences. The ABC stacking re-
sults in a single transition at TN ∼ 7–8 K [176], which is nowadays considered to be the proof
of high-quality crystals. As soon as ABAB stacking is introduced by cutting or uncareful
handling of the sample, a second transition can be observed at TN,2 ∼ 14 K [176, 195]. Some-
times, even more transitions or anomalies are found, for example, in the specific heat [178,
183, 195]. It is general consent that stacking faults have to be avoided in order to probe
the intrinsic properties of α-RuCl3. Therefore, each α-RuCl3 crystal should be thoroughly
characterized to confirm a single transition at around TN ∼ 7–8 K.
As a consequence, the sample for the dilution refrigerator was chosen carefully. Fig. 5.1(a)

shows the magnetization of three different samples measured in the MPMS together with
Anton Jesche and Yoshifumi Tokiwa (EP VI, University of Augsburg). A field of 1 T has been
applied parallel to the honeycomb planes (B ⊥ c∗). Sample MK4 (red data points) does not
show any kinks except at TN∼ 7 K. Most importantly, and in contrast to Sample A (green), no
kink appears at around 14 K. Consequently, this sample has been used for all measurements
in the MK4. The absence of transitions above TN has been additionally confirmed by a
PPMS zero-field specific heat measurement [Fig. 5.1(b)] that has been repeated after the
first runs in the dilution refrigerator. This result confirms that no stacking faults are induced
by mounting or dismounting the sample.
Before discussing implications of the measurements on the presumed spin liquid state,

several technical but important aspects have to be mentioned. The setup in the MK4 is
shown in [Fig. 5.1(c,d)]. The sample is fixed by N-Grease as described in Sec. 3.4. For each
run, the cell is tilted by one or two brass wedges (10°, 15°, or 20°). This allows to adjust the
in-plane field direction in ±5° steps for different combinations of the wedges.
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Figure 5.1. (a) Characterization via magnetization of three α-RuCl3 samples. Sample MK4
does not show any additional anomaly except of TN∼ 7 K. The exact in-plane field direction has
not been determined here. (b) Specific heat before and after the first measurements in the dilution
refrigerator. (c,d) Setup in the MK4. The rotation of the magnetic field in the honeycomb
planes is controlled by using combinations of brass wedges. (e) Background subtraction for the
field-dependent heat capacity C(B) at 2 K. (f,g) Examples for background subtraction for the
field-dependent magnetic Grüneisen parameter Γmag(B) that becomes increasingly important
at low temperatures and high magnetic fields, where the sample signal becomes tiny. Graphs
partially published in Refs. [94, 95], copyrighted by the American Physical Society.

The specific heat of α-RuCl3 becomes rapidly suppressed in the ordered state below TN.
Therefore, careful background subtraction is crucially important. The addenda heat capacity
of the cell including N-Grease and thermometer, Cadd, has been measured in an additional run
without the sample and is directly subtracted from the total heat capacity, CSa = Ctot−Cadd,
as shown in Fig. 5.1(e), see also Sec. 3.4.3. Below 1 K, the addenda could not be determined
due to 2τ behavior in the raw data [Sec. 3.4.1]. Thus, a background subtraction is not
feasible anymore. The same holds true for the magnetic Grüneisen parameter below 1 K
because the cell’s heat capacity needs to be taken into account as well [Sec. 3.5]. It is
important to note, however, that the main features in the field spectrum are independent of
the background subtraction. The field-dependent magnetic Grüneisen parameter at 2 K in
Fig. 5.1(f) exemplifies this very well. The most prominent anomalies at BAF1

c and BAF2
c at

about 6–7 T, marked by red arrows, do not change their position by the addenda subtraction.
Similar behavior can be seen for the broad sign change at ∼ 2 T that might be related to
domain rearrangements [178]. At high fields and low temperatures, though, the magnetic
Grüneisen parameter turns out to be tiny, and the subtraction procedure becomes increasingly
important [Fig. 5.1(g)]. The combined signal of sample and cell is negative at 1 K above
10 − 12 T, depending on the field direction, but the sample alone clearly approaches zero
while staying positive. It is noted in passing that the origin of the negative background
signal remains unclear.
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After these more technical remarks, the focus of the next paragraphs will be on the field-
and angle-dependence of the magnetic Grüneisen parameter Γmag(B). First, the direction
of the magnetic field in the honeycomb planes has to be carefully determined. For this
purpose, several measurements at 2 K are shown in Fig. 5.2(a-d) with different in-plane
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Figure 5.2. Magnetic Grüneisen parameter Γmag(B)
of α-RuCl3 for magnetic fields applied in the honeycomb
plane. (a-d) Angle-dependence at 2 K. (e) Estimation of
the deviation of Φ = 0° from B ‖[010]. Graphs partially
from Ref. [94], copyrighted by the American Physical
Society.

field directions. The abrupt sign change
from negative to positive at BAF2

c is in-
dicative of a 2nd phase transition to-
wards the disordered phase of α-RuCl3.
The maximum at BAF1

c is interpreted as
a 1st order phase transition to an inter-
mediate ordered phase, where interlayer
couplings become relevant [196]. Both
BAF1
c and BAF2

c depend strongly on the
chosen field angle. The critical fields
clearly decrease upon rotating the field
from B ‖[010] (Φ = 0°) [Fig. 5.2(d)] to-
wards B ‖[110] (Φ = 30°) [Fig. 5.2(a)].
This is equivalent to the field being
parallel and perpendicular to Ru-Ru
bonds, respectively, as indicated by
the honeycomb sketches. Therefore,
BAF1
c and BAF2

c can be used to deter-
mine the exact field direction of each
measurement. The comparison to ac-
susceptibility results [196] shows excel-
lent agreement of the angle-dependence
of the critical fields at 2 K [Inset of
Fig. 5.2(c)]. The error of the angle
Φ can be estimated by Γmag(B) at
0.5 K [Fig. 5.2(e)]. The curves for Φ =
+5° and Φ = −5° do not overlap per-
fectly between 7 T and 7.5 T. Conse-
quently, Φ = 0° might deviate by 1–2°
from B ‖[010]. Strictly speaking, the
angle Φ = 20° corresponds to Φ = 100°.
This angle has been measured first [95],
and the cell has been fixed in a differ-
ent configuration rotated by 90° com-
pared to the other angles. The perfect
accordance in the inset of Fig. 5.2(c),
however, corroborates the six-fold sym-
metry at low temperatures reported in
Ref. [62]. It is noted in passing that
the magnetic Grüneisen parameter for
the field direction perpendicular to the
honeycomb planes (Fig. 5.2(a), B ‖ c∗)

does not show any signal in the whole accessible field range. This is expectable due to the
strongly anisotropic behavior in α-RuCl3. During this last measurement, the sample was
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applied along the (a,b) [110] and (c,d) [010] directions, respectively. The temperature range is
between 0.5 K and 5 K and allows to track the evolution of the field-induced phase transitions in
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c can be easily identified by the abrupt sign change. The maximum at lower fields
can be assigned to BAF1

c , see the exemplary arrows. BAF1
c is more pronounced for B ‖[110].

Graphs published in Ref. [94], copyrighted by the American Physical Society.

cleaved at around 13 T because the field applied along the hard axis induced a too strong
torque effect.
Besides the calibration of the in-plane field angle, Fig. 5.2(a-d) provides first insights into

the evolution of α-RuCl3 beyond magnetic order. For all field directions, no indication of
phase transitions above BAF2

c can be found, which does not support the spin liquid scenario.
The only anomaly is a weak change of the slope that is visible best in Fig. 5.2(b) for Φ = 20°.
Before having a look on this high-field analysis in detail, the evolution of BAF1

c and BAF2
c

are discussed first. In Fig. 5.3, both phase transitions are investigated carefully using the
magnetic Grüneisen parameter Γmag(B) at temperatures down to 0.5 K for the field applied
along [110] (Φ = 30°) and [010] (Φ = 0°), respectively. The background is not subtracted
here because the specific heat measurements C(B) are much more time-consuming and, thus,
are only available for selected temperatures. As mentioned above, this does not affect the
position of the phase transitions.
First, the transition towards the disordered phase, BAF2

c , is discussed, which is the domi-
nating part of the measurement. For B ‖[110] (Φ = 30°), the sign change from negative to
positive is shifted towards lower fields for increasing temperatures and T > 2 K [Fig. 5.3(b)].
This behavior is expectable because stronger thermal fluctuations destroy the magnetic or-
der. Surprisingly, BAF2

c shows the opposite trend below 2 K, where lowering the temperature
results in a smaller critical field [Fig. 5.3(a)]. Very similar behavior can be found for the field
applied along the [010] direction [Fig. 5.3(c,d)]. In other words, a small field range exists
in the phase diagram where α-RuCl3 becomes magnetically ordered upon cooling but enters
the disordered phase again when the temperatures is further lowered. This is additionally
confirmed by specific heat measurements that will be discussed later [Fig. 5.4]. Such a reen-
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trant or inverse melting behavior has been proposed in some anisotropic spin models [197–
199]. Thus, it might be interesting from theoretical side to look for this behavior in extended
Kitaev models that are relevant for α-RuCl3.
The second prominent anomaly is the transition BAF1

c that occurs between two distinct
zigzag-ordered states [196]. It is interpreted to be of 1st order [196, 200] and, thus, character-
ized by a maximum in Γmag(B) that corresponds to a downward step in the field dependent
entropy. In Fig. 5.3, it is indicated by arrows for selected temperatures. For B ‖[110], BAF1

c

can be easily determined below 3 K. It is transformed into a kink at higher temperatures
and cannot be identified anymore above 4 K [Fig. 5.3(a,b)]. The identification of BAF1

c for
B ‖[010], however, is more challenging because it appears to be weaker. Additionally, it is
located much closer to the dominating BAF2

c . For temperatures of about 2.5 K, the maximum
is clearly visible [Fig. 5.3(d)]. When the temperature is decreased, this maximum becomes
broadened and cannot be determined unambiguosly anymore [Fig. 5.3(c)]. It is presumed
that BAF1

c is hidden by the BAF2
c anomaly that becomes increasingly pronounced below 1 K.

On the other hand, it cannot be excluded from that measurement whether BAF1
c is completely

suppressed at these temperatures and does not survive down to 0 K. For temperatures above
2.5 K, BAF1

c evolves very similar to the field direction along [110] and vanishes above 4 K.
The specific heat C(B) serves as a complementary thermodynamic measurement and offers

an independent investigation of the phase diagram. Moreover, it allows the calculation of the
field dependent entropy change via integration of ∂S/∂B = −ΓmagC. Fig. 5.4(a,b) shows the
specific heat and entropy change with fields along both [110] and [010] up to 14 T at 1 K and
2 K, respectively. For better comparison between those temperatures, both quantities have
been scaled by T 2. The entropy has been shifted such that ∆S(14 T) = 0 J mol−1 K−1. In
the specific heat, the phase transition BAF2

c appears as a rather sharp peak and dominates
the spectrum for both field configurations. In contrast, BAF1

c is visible only for the field
applied along the [110] direction. At 1 K, a second peak is present that is smeared out at
higher temperatures. For B ‖[010], BAF1

c is most likely hidden in the steep increase of BAF2
c

for all temperatures. This coincides well with the results from the Grüneisen parameter
Γmag(B). The field-dependent entropy change strongly resembles the specific heat evolution
and shows very similar features. Above BAF2

c , the specific heat and the entropy become
rapidly suppressed without any further phase transition.
A direct comparison of the specific heat between different in-plane field angles is presented

in Fig. 5.4(c-f) for several temperatures. As already reported in Ref. [62], the anisotropy
for fields around the [010] direction is rather weak because the Φ = 5° data points cannot
be distinguished from the measurement with Φ = 0° [Fig. 5.4(c-e)]. Increasing the angle
further results in a shift of BAF2

c towards lower fields and the development of a kink at BAF1
c

for Φ = 20°, especially at 1 K [Fig. 5.4(c,d)]. This evolution coincides again very well with
the Grüneisen parameter. It should be noted here that the absolute specific heat values of
Φ = 20° at high fields differ from the other directions. Its data points are expected to be
between the measurements of the [010] and [110] field orientations, and not below both. A
natural explanation would be the background subtraction. The cell addenda has only been
measured once, and the amount of N-Grease has been estimated. Consequently, deviations
potentially occur between measurements with different amount of N-Grease. Indeed, all
measurements on α-RuCl3 used the same setup without removing the sample and, therefore,
the same amount of N-Grease, except of Φ = 20°. Thus, the subtracted background might be
too large in the case of Φ = 20° or too small for the other angles. As a first approximation,
an error of 0.1 µJ K−1 in the background measurement would be enough to reproduce the
expected heat capacity for Φ = 20° at 2 K. That value could be realistic for N-Grease at
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Figure 5.4. Field-dependent heat capacity C(B) and relative entropy ∆S(B) of α-RuCl3 at 1 K
and 2 K for (a)B ‖[110] and (b)B ‖[010], respectively. No indication of a phase transition beyond
BAF2

c can be found (b-d) Additional results of C(B) for more in-plane angles. At 0.5 K and 0.2 K,
2τ behavior appeared at high fields. Using the (inappropriate) single exponential function to
analyse the raw data results in the unphysical increase of C(B) above 10 T at T ≤ 0.5 K. Graph
partially from Ref. [94], copyrighted by the American Physical Society.

this temperature. Ideally, the addenda including N-Grease is independently determined in
each run before mounting the sample. While this standard approach works well for PPMS
measurements, it is usually not feasible in the dilution refrigerator due to severe time issues.
However, this might be advisable for future measurements on samples with comparably small
heat capacity. Nevertheless, this does not affect the statements based on the specific heat
measurements because the addenda evolves rather smoothly [Fig. 5.1(e)].

The specific heat has also been measured at very low temperatures of 0.5 K [Fig. 5.4(e)].
The phase transition BAF2

c is clearly resolved, and the same holds true for BAF1
c for [110].

Above ∼10 T, however, the specific heat begins to grow again. This unphysical behavior
in the partially-polarized phase is an artefact from the already mentioned 2τ behavior that
impeded correct fitting of the raw data in this field range as well as a reasonable background
subtraction. Details can be found in Sec. 3.4.1 or in [94]. Interestingly, the increase of the
specific heat at high fields remains monotonic. A sharp phase transition comparable to BAF2

c

is clearly absent. This holds true even at 200 mK [Fig. 5.4(f)], which is more than one order
of magnitude smaller than the reported temperature of the thermal conductivity plateau [13].
Altogether, the specific heat does not support the scenario of an additional phase above BAF2

c

before entering the partially-polarized state.
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Figure 5.5. Evolution of Γmag(B) beyond BAF2
c

for various in-plane field angles at (a) 1 K and (b)
0.5 K, respectively. Additional phase transitions are
absent. For 0.5 K, the background was not pos-
sible explaining the negative values. The dotted
lines mark the position of the shoulder-like anoma-
lies (see main text). Graph partially from Ref. [94],
copyrighted by the American Physical Society.

In order to further evaluate the high-field
evolution, a closer look onto the mag-
netic Grüneisen parameter is presented
in Fig. 5.5. As already mentioned, Γmag(B)
does not show any phase transition above
BAF2
c . Even at temperatures as low as 1 K,

only weak anomalies appear in the form of
a shoulder or a change of slope. Upon low-
ering the temperature down to 0.5 K, the
anomalies become more pronounced as in-
dicated by the dotted lines. For angles
along or close to the [010] field direction,
even two shoulders might be identified. In
general, they seem to be located at higher
fields for B ‖[010] compared to B ‖[110],
in qualitative agreement with exact diago-
nalization (ED) results [94]. Such features
can be interpreted using the generic ex-
pression of the Grüneisen ratio for gapped
phases, Γλ(T → 0) = ∆′/∆. Here, λ is the
tuning parameter, which is the magnetic
field in the example of α-RuCl3. When
the gap closes, ∆ → 0, then ∆′ automati-
cally changes sign from negative to positive.
This results in divergent behavior in Γ at
the critical tuning parameter λcrit, which is
characteristic for a QCP and can be seen in
α-RuCl3 at BAF2

c . Clearly, this cannot be
the origin of the high-field anomaly above BAF2

c . An abrupt change in the excited states,
however, creates a discontinuity in ∆′ that results in a downward jump in Γ for T → 0. At
higher temperatures, this smears out to a shoulder anomaly as shown by ED calculations
in [94, 95]. Consequently, the high-field feature(s) in α-RuCl3 can be assigned to level cross-
ing(s) of the first excited states and are not related to a transition from the suggested spin
liquid towards the partially-polarized state.
Further evidence for the absence of a field-induced KSL phase can be found in the field-

dependent entropy that decreases rapidly towards zero without any anomaly beyond BAF2
c for

both field directions [Fig. 5.4(a,b)]. This is not compatible with a KSL scenario, especially in
the case of the [010] field direction. Here, a gapless spin liquid has been proposed [62], which
should create a pronounced signature in the entropy upon entering the gapped partially-
polarized state with a first order transition. Instead, the vanishing entropy clearly indicates
a monotonically growing gap above BAF2

c in accordance with a topologically trivial state
beyond BAF2

c .
The presented thermodynamic measurements can be condensed into the phase diagram of

α-RuCl3. It is shown in Fig. 5.6(a,b) for the field directions along [110] and [010], respectively.
Most importantly, the results in this work do not support the existence of a KSL beyond
BAF2
c . The phase boundary of BAF2

c , however, shows a non-monotonic, inverse melting
behavior that can be followed for both field directions. The critical field BAF2

c derived from
the Grüneisen parameter is independently confirmed by the specific heat data below 2 K. The

102



5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0
0

1

2

3

4

5

6

 GB

    C
T

 (
K

)

B (T)

B ∥ [010] AF I A
F

 I
I

(b)

0

1

2

3

4

5

6

 GB

    C

T
 (

K
)

B ∥ [110]

AF I

AF II

(a)

-0.4

-0.2

0.0

0.2

0.4

G
B
 (

T
-1

)

B ∥ [110]

 6 K  4 K

 3 K  2 K

 1 K  0.5 K

BAF2
c

BAF1
c

(a)

5.5 6.0 6.5 7.0 7.5 8.0

-0.4

-0.2

0.0

0.2

0.4

G
B
 (

T
-1

)

B (T)

 6 K  4 K

 3 K  2 K

 1 K  0.5 K

B ∥ [010]

BAF2
c

BAF1
c

( b)

Figure 5.6. Phase diagram of α-RuCl3 for in-plane
magnetic fields along [110] and [010], respectively. BAF2

c

shows a non-monotonic evolution towards lowest tem-
peratures and indicates anarrow region where inverse
melting seems to occur. For BAF1

c , this is only present
for B ‖[110]. Graph from Ref. [94], copyrighted by the
American Physical Society.

discrepancy at higher temperatures in
Fig. 5.6(a) might be a result of the
broadened peak in the specific heat, see
Fig. A.9 in the Appendix. This ren-
ders the determination of the critical
field probably less precise than from
the Grüneisen parameter with its sign
change. It is worth mentioning that
the phase boundary of BAF1

c looks sim-
ilar to BAF2

c only for the field direction
parallel to B ‖[110]. That observation
is supported by the Clausius-Clapeyron
equation for a first order transition,
dBAF1

c /dT = −∆S/∆M [201]. Here,
∆S and ∆M describe the evolution
of the entropy and the magnetization
across the phase transition, respec-
tively. From experiments [27, 180] fol-
lows ∆M > 0, which requires a negative
contribution in the entropy, ∆S < 0,
at the phase transition if dBAF1

c /dT >
0. Indeed, ∆S < 0 can be found for
B ‖[110] around BAF1

c [Fig. 5.4(a)], but
not for B ‖[010] [Fig. 5.4(b)].
After establishing the phase diagram,

the field-dependent entropy is revisited.
Fig. 5.7(a) shows the direct comparison of the entropy evolution at 1 K for fields along the
[110] and the [010] direction, respectively, with the normalization ∆S(0 T) = 0 mJ mol−1 K−1.
Surprisingly, the change of the entropy ∆S(0 T)−∆S(14 T) is as large as 0.8 mJ mol−1 K−1

and 0.65 mJ mol−1 K−1, respectively. The upper entropy limit expected from the magnon
gap in α-RuCl3 of ∆mag = 1.6 meV [202] can be approximated by a two-level system for
T � ∆mag. This provides an upper limit of Smag = 0.0014 mJ mol−1 K−1 in zero field at
1 K. Applying magnetic fields further opens the gap and reduces the entropy of the system,
but the calculated value is far below the actually measured entropy change.1 Therefore, the
unexpectedly huge entropy difference in α-RuCl3 between zero field and 14 T must have a
different origin. One possibility might be strong magnetoelastic effects in α-RuCl3 that result
in field-dependent phononic contribution. This could be interesting for future theoretical and
experimental investigations, for example with magnetostriction or inelastic x-ray scattering
measurements. On the other hand, if there were low-energy states in the gap that, for
example, have been missed in the neutron scattering experiments due to the elastic line of
1 meV [202], this could naturally explain the entropy decrease in field. These additional
states might be related to a minor fraction of free spins, which might be sample dependent.
To further elucidate the latter hypothesis, four different samples have been compared by

means of zero-field heat capacity down to 500 mK [Fig. 5.7(b,c)]. One sample has been grown
at the University of Toronto (UT) by Subin Kim from the group of Young-June Kim, two

1Even the lower limit from the error bar in [202], ∆mag = 1.4 meV, with Smag = 0.013 mJ mol−1 K−1 cannot
explain the observed behavior.
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5. Field Evolution of the Kitaev Material α-RuCl3

Figure 5.7. (a) Evolution of the field-dependent relative entropy ∆S(B) up to 14 T at 1 K for
the field applied along [110] and [010], respectively. The entropy change between the partially-
polarized state at 14 T and zero field is indicated by the dotted lines. It is much larger than
expected for a 2D AF with a gap of 1.6 meV [202]. (b) Magnetic specific heat of four different
samples at zero field. The data are presented on a log-scale over the inverse temperature. All
samples deviate from the expected gapped behavior (compare dotted line, details in the main
text). Moreover, the sample ORNL is distinct to the other samples. This can be also seen in
panel (c), where two different transition temperatures are observed (7 K vs 8 K).

samples have been prepared at the University of Augsburg (UA#1, UA#2) by Vladimir
Tsurkan (Experimental Physics V), and the last one has been synthesized at the Oak Ridge
National Laboratory (ORNL) by Jiaqiang Yan. Before having a closer look onto the results,
some technical details should be discussed. Several different measurement devices in different
temperature ranges have been utilized for determining the heat capacity, as summarized in
Table 5.1. Sample UT, for example, did not fit into the 3He heat capacity puck and, thus,
could not be measured in the PPMS or the DynaCool. Luckily, the setup of the dilution
refrigerators has a bigger dimension that allowed mounting of the sample. Moreover, the
MK3 has been used for sample UT because the MK4 was occupied at that time. It is
noteworthy, too, that UA#1 is the sample, which has been extensively examined in the
dilution refrigerator MK4. All results in the context of this thesis presented so far are from
this sample.

In Fig. 5.7(b), the zero-field magnetic specific heat is shown. For all samples, the phononic
contribution Clat = βT 3 has been subtracted using β = 1.0 J mol−1K−4 [183]. The data are
plotted as log (Cm) over T−1. If the sample’s specific heat follows an exponential behavior,
it should appear as a straight line. For comparison, the dotted line shows the specific heat of
a gapped 2D antiferromagnet, C2D,∆ = AT (x2 + 2x+ 2) exp (−x) with x = ∆/kBT and the
prefactor A [72], using a gap of ∆ = 1.6 meV [202] and A = 0.04 J mol−1 K−2. The latter has
been adapted to roughly match the heat capacity below TN. None of the α-RuCl3 samples
follows a straight line in Fig. 5.7(b) because they begin to bend around ∼ 2 K. This is a clear
indication for additional states in the gap of α-RuCl3. They are present for all samples and
do not depend on the presence or absence of additional transitions above TN because UA#2
shows a second transition at 14 K, evidenced in Fig. A.9 in the Appendix. Furthermore, a
pronounced difference is visible between sample ORNL and the other three samples. This
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Table 5.1. Overview of the zero-field heat capacity measurements on different α-RuCl3 samples.
Measurements have been performed in Augsburg either in the dilution refrigerators MK4 or
MK3, or with the 3He-Option in the 0 T PPMS or the DynaCool. Tmax denotes the highest
measured temperature, respectively. Sample UT is too large to be mounted on the 3He puck and,
thus, would need to be cutted. Sample UA#1 has been destroyed during the last measurement
when B ‖ c∗ was applied [Fig. 5.2(a)]. Sample UA#2 has been measured by Anton Jesche. For
sample UT, Noah Winterhalter-Stocker strongly supported the measurement in the MK3.

MK4 MK3 3He: 0T
PPMS

3He:
DynaCool

Tmax Still ok?

UA#1 3 – 3 – 8 K, 30 K no
UA#2 – – – 3 20 K no
UT – 3 7 7 7 K yes
ORNL – – 3 – 20 K yes

cannot be attributed to problematic analysis of the background in the dilution refrigerator
setup since Sample UA#2 has been measured independently with the 3He option but matches
UA#1 and UT very well. Consequently, the higher specific heat in the samples of Augsburg
and Toronto seem to be the result of a higher concentration of in-gap states. This appears
to be correlated to the position of the transition temperature TN as presented in Fig. 5.7(c),
where several PPMS/ DynaCool measurements are compared. The heat capacity peak of
UA#1/2 is located at TN ∼ 7 K, whereas ORNL reveals TN ∼ 8 K. This discrepancy is
consistent with several papers where, in most cases, either the former [15, 176, 177, 182, 200]
or the latter [195] dominant transition temperature has been reported, but sometimes also in
between [180, 202] or even below [178, 183]. It has been shown that inducing stacking faults
with the ABAB sequence can shift TN towards 8 K, accompanied with the emergence of the
second transition at 14 K [176]. This implies more stacking faults in crystals if TN ∼ 8 K,
which definitely cannot be confirmed here. The ORNL sample does not obtain any sign of
an additional transition at 14 K [Fig. A.9] and, additionally, seems to potentially feature less
in-gap states that might be related to impurities, as explained below. Consequently, the
puzzle of different Néel temperatures in α-RuCl3 remains unresolved and certainly deserves
further attention.
At this point, it can only be speculated about the origin of the additional in-gap states.

A natural explanation would be free spins due to impurities that could also explain the
entropy decrease in Fig. 5.7(a), which is much larger than expected. However, the samples
UA#1, ORNL, and UT have all been characterized carefully without any signs of impurities
or stacking faults. Therefore, they are considered to be of excellent quality, where only
intrinsic properties should be releveant. Furthermore, the reproducibility of the zero-field
specific heat and their connection to the Néel temperature speak against random impurities.
Consequently, further systematic investigations are highly desirable. A direct comparison
between the samples UA#1, UT, and ORNL would be very interesting regarding the field-
evolution of Γmag(B) and C(B) in combination with ∆S(B). The latter is expected to
show a smaller entropy reduction between 0 T and 14 T. It would also clarify if a different
TN influences, for example, the evolution of BAF1

c and BAF2
c . Moreover, neutron scattering

experiments on various samples could be helpful, with the focus on the low-energy spectrum
below 1.6 meV. Last but not least, these additional states pose the question how they may
impact the half-integer plateau or the oscillations in the thermal conductivity.
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5. Field Evolution of the Kitaev Material α-RuCl3

In summary, extensive thermodynamic measurements on α-RuCl3 have been presented using
in-plane magnetic fields up to 14 T and temperatures down to at least 0.5 K. The in-plane
field angle Φ has been varied in 5° steps by rotating the cell with brass wedges. The direct
comparison to ac-susceptibility measurements allows the calibration of Φ(B). Interestingly,
neither Γmag(B) nor C(B) indicate a field-induced transition beyond BAF2

c , which speaks
against a spin liquid phase in α-RuCl3. This observation is corroborated by the entropy
change ∆S(B) that vanishes rapidly towards zero above BAF2

c . Here, a pronounced sig-
nature would be expected upon leaving the putative spin liquid state, at least for the field
applied along the [010] direction with the proposed gapless KSL from Ref. [62]. The shoulder-
like anomalies in Γmag(B) at high fields can be attributed to crossings of the first excited
states [94, 95]. Careful measurements of Γmag(B) reveal a non-monotonic behavior of the
phase boundary BAF2

c and suggest an inverse melting scenario. For B ‖ [110], this can also
be seen for BAF1

c . Here, further theoretical investigations are required to verify that possibil-
ity in realistic microscopic models of α-RuCl3. Moreover, the comparison between different
samples has shown that additional efforts should be undertaken to clarify the origin of the
presumed states in the gap of α-RuCl3.

106



6. Summary

The search for quantum spin liquids (QSL) has inspired physicists for decades. On the
theoretical side, strong progress has been achieved by identifying an abundance of QSL on
various lattice geometries. The experimental evidence of a clean QSL, however, remains a ma-
jor challenge in solid state physics. Real materials usually exhibit additional, but undesired
interactions, driving them away from more basic microscopic models. One main aspect of a
QSL is its inherent quantum entanglement that can be investigated experimentally by neutron
scattering. Another characteristic feature is the absence of magnetic ordering down to 0 K.
Consequently, thermodynamic probes down to the lowest technically accessible temperatures
are essential for classifying potential QSL candidates. This work focused on thermodynamic
measurements of specific heat, magnetic Grüneisen parameter, and the magnetization in the
millikelvin range in order to illuminate different aspects in several frustrated magnets. All
samples were provided by various colleagues, who are listed explicitly at the beginning of
each section, respectively.
Reliable thermometry was crucial for all experiments in this work. I fabricated several

small-size thermometers (0.5× 1 mm2 or 1× 1 mm2) by contacting polished RuO2 chips with
superconducting NbTi wires to minimize undesired heat flow to the chip. Subsequently, I
carefully calibrated these thermometers down to 22 mK in fields up to 17.5 T to account
for the magnetoresistance of RuO2. The commercial thermometer Cernox X112017 and a
CMN thermometer were used as reference. The latter contains a paramagnetic salt, which I
calibrated by a Fixed Point Device with precisely known superconducting transition temper-
atures. The customized, field-calibrated RuO2 thermometers are used for all heat capacity
and magnetic Grüneisen parameter measurements. Additionally, the commercial thermome-
ter ICE 2 was calibrated in the same temperature range for magnetization measurements,
but also for diagnostic purposes on the temperature regulation plate (TRP).
I performed measurements on two different material classes. A large part was devoted to

the investigation of several Yb3+ based triangular lattices [Ch. 4], on which the resonating
valence bond (RVB) state was proposed - the prototype of a QSL. The second part comprised
the field-dependent evolution of the Kitaev material α-RuCl3. Here, the possible scenario of
a field-induced Kitaev spin liquid (KSL) beyond magnetic order is discussed [Ch. 5]. Most
of the results are already published in Refs. [68, 94, 95, 110, 121, 162] and will be briefly
summarized in the following paragraphs.
YbMgGaO4 was the first Yb3+ based QSL candidate, and strong efforts have been un-

dertaken to understand its apparent disordered state down to the lowest temperature. My
temperature-dependent measurements on YbMgGaO4 provided valuable input to the vivid
discussions about this material. I showed by comparison of field cooled and zero field cooled
data that conventional spin freezing can be excluded, in contrast to the conclusions from ac-
susceptibility results [12]. This could be seen as support of the quantum spin liquid (QSL)
ground state in YbMgGaO4.
On the other hand, several reports proposed the scenario of a spin liquid mimicry in

YbMgGaO4 due to the structural disorder from the Mg2+/Ga3+ site mixing [10, 11]. My
field-dependent magnetization measurements provided further arguments for the importance
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6. Summary

of the structural randomness. Triangular lattices in antiferromagnets (TLAF) with Heisen-
berg interactions commonly show a 1/3-magnetization plateau due to the up-up-down (uud)
phase, but YbMgGaO4 is clearly distinct. MPMS measurements from Y. Li showed the
absence of any plateau in M(B) for in-plane and out-of-plane field directions B ⊥ c and
B ‖ c, respectively. The susceptibility as the field-derivative χ = dM/dH, however, shows
a plateau anomaly for both field directions, which might be regarded as the vestige of a
strongly smeared magnetization plateau. I confirmed these results for B ‖ c down to 40 mK,
where thermal fluctuation are completely suppressed and cannot account for any broadening.
Consequently, this unusual behavior must be intrinsic. I simulated the effect of structural
randomness by developing an averaging procedure assuming random exchange couplings due
to the locally different environment of each Yb3+ ion. This procedure was applied on Monte
Carlo simulations of I. Iakovlev, who calculated M(B) curves using various realistic param-
eter sets for YbMgGaO4. His data suggest that YbMgGaO4 without randomness should
form the up-up-up-down (uuud) phase with a 1/2- instead of a 1/3-plateau. As soon as the
randomness is taken into account by applying the averaging protocol, I reproduced the ex-
perimental behavior with the plateaus as well as their relative position in χ(B) for both field
directions. This result corroborates the influence of structural randomness in YbMgGaO4.
The AYbX2 family attracted considerable interest because they realize a triangular lattice

of Yb3+ ions without structural disorder. KYbS2 belongs to this group and was suggested
to be strongly frustrated [130]. I performed extensive temperature- and field-dependent
thermodynamic measurements on a single crystal, which expands the temperature range down
to 50 mK and investigates for the first time its field-evolution. The zero-field specific heat
shows no sign of a phase transition down to the lowest temperatures, confirming the strongly
frustrated ground state of KYbS2. The only anomaly is a very weak kink at ∼200 mK. The
interpretation of the zero-field specific heat is complicated by the contribution from a nuclear
Schottky anomaly, that can be described as Cnuc = α/T 2 and becomes dominant below
100 mK. The fitting of the low-temperature part using C = Cnuc + Cm = α/T 2 + bT p was
most reasonable, but only in a small interval up to the anomaly around 200 mK. Nevertheless,
it confirms gapless behavior of the magnetic specific heat, that might be close to quadratic
behavior. This could point towards a Dirac QSL, but other scenarios such as spin glass
behavior can account for this, too. Further investigations like neutron scattering, NMR, or
µSR at lowest temperatures are highly desirable to probe the spin dynamics of the ground
state.
KYbS2 shows pronounced anisotropic behavior under magnetic fields. Out-of-plane fields

(B ‖ c) only very weakly influence the specific heat even at 15 T. Applying an in-plane mag-
netic field (B ⊥ c), however, induces magnetic order in KYbS2, which becomes suppressed
again at higher fields. This indicates the formation of the plateau phase expected for TLAF.
I also found a non-monotonic behavior of the nuclear contribution parameter α(B) and of
the power law exponent p(B) in the field region of the presumed plateau. I showed further
evidence for an intermediate phase by the field-dependent magnetic Grüneisen parameter
Γmag(B) as well as two more possible transitions at lowest temperatures. In combination
with the specific heat C(B), I calculated the entropy change ∆S(B) and established the
temperature-field phase diagram of KYbS2 for the first time. In order to confirm the possible
uud state, magnetization measurements would be ideal to detect the anticipated 1/3-plateau.
NaYbO2 is another AYbX2 compound that was pushed forward as QSL candidate. I dis-

cussed the zero-field specific heat, where no magnetic order is detectable down to 70 mK
evidencing strong magnetic frustration. Similar to KYbS2, the low-temperature part includ-
ing the nuclear contribution is difficult to analyse, and I discussed several possibilities to
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quantify the nuclear contribution. Overall, a power law behavior seems to describe the data
better than the exponential counterpart, which indicates gapless behavior in NaYbO2. The
power law exponent p depends on the chosen subtraction and might be close to 1 and, thus, be
related to spinons. This interpretation could be validated by expanding the lowest measured
temperatures down to below 50 mK in order to increase the fitting interval. Since NaYbO2 is
only available as polycrystalline sample, such a measurement is technically challenging due
to the very small internal thermal conductivity of the powder pellet.
Applying magnetic fields induces magnetic order in NaYbO2, in some sense comparable

to KYbS2. At higher fields, however, I found two phase transitions in C(T ), confirming
previously reported results [132]. The origin of this second phase is not known yet, which
certainly deserves further attention. My field-dependent measurements of the specific heat
and the magnetic Grüneisen parameter were only performed up to 4 T. It would be interesting
to expand this field range up to polarized state to investigate the field-dependent entropy
change over the whole constructed phase diagram.
The Yb3+-borate KBaYb(BO3)2 was also proposed as an alternative frustrated triangular

lattice. The magnetic interaction in this material, however, is in the order of J � 100 mK,
which is more than one order of magnitude smaller than in YbMgGaO4 or in the AYbX2

materials due to its larger Yb3+-Yb3+ distance. Consequently, KBaYb(BO3)2 remains para-
magnetic even at very low temperatures. I evidenced the absence of magnetic ordering by
specific heat measurements down to 50 mK, in agreement with a previous report [163]. Ap-
plying a magnetic field opens a gap that results in a pronounced Schottky anomaly. Its
maximum depends on the gap size and, thus, on the magnetic field, Tmax ∼ ∆ ∼ B. In other
words, increasing the field shifts the entropy S(T ) towards higher temperatures. This makes
KBaYb(BO3)2 an ideal candidate for adiabatic demagnetization refrigeration (ADR). I tested
its performance using a pellet mixed of KBaYb(BO3)2 and silver powder for enhancing the
internal thermal conductivity. Using the starting parameters of 2 K and 5 T under optimized
conditions, the minimal end temperature is below 22 mK in zero field. In combination with
its comparable entropy per volume ratio, KBaYb(BO3)2 is highly competitive compared to
established materials such as the paramagnetic salts FAA or CPA. These salts, however,
obtain severe disadvantages because of their delicate production in a metallic framework and
their chemical instability in vacuum or upon heating due to their embedded crystal water.
KBaYb(BO3)2 is free from these drawbacks. It is stable in vacuum and can be baked out up
to 600 °C, which is crucial for UHV applications. Furthermore, KBaYb(BO3)2 can be simply
mixed with silver powder for increasing the thermal conductivity and pressed into the desired
form. Altogether, this renders KBaYb(BO3)2 an extremely promising candidate for ADR in
the millikelvin range, which is for example needed for quantum computers.
Further performance improvements are possible by replacing Yb3+ by other rare-earth ele-

ments such as Gd3+ with higher spin to increase the available entropy per volume. Moreover,
the distance between rare-earth ions and, thus, their magnetic interaction can be controlled
by changing the non-magnetic ions, e.g. from K to Na or Ba to Sr. This way, fine tuning
of the entropy curves might be possible. This would, in principle, allow exact tailoring of
the cooling performance to the specific application making this material family extremely
attractive for industrial purposes.
In Ch. 5, the focus switches towards the Kitaev candidate α-RuCl3, where Ru3+ ions are

arranged on a honeycomb lattice. Sizeable Kitaev interactions in this material raised the hope
of a realization of the celebrated KSL, but it orders in zero-field in an antiferromagnetic zigzag
pattern at the Néel temperature of TN∼ 7 K. On the other hand, magnetic field can suppress
the magnetic order, which might unveil the underlying spin liquid physics. Excitingly, a half-
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quantized plateau in the thermal Hall conductivity was reported, exactly where magnetic
order is suppressed. This is considered to be the ultimate proof of a field-induced KSL. As a
consequence, another phase transition towards the partially polarized state should be visible,
but several studies only found extremely weak anomalies. This motivated my field-dependent
thermodynamic measurements on α-RuCl3, where I applied in-plane magnetic fields along
various directions in the honeycomb planes to account for the in-plane anisotropy.
The magnetic Grüneisen parameter Γmag(B) is highly sensitive to field-induced phase tran-

sitions and was measured at temperatures down to 500 mK. I observed two transitions at
BAF1
c and BAF2

c , where the former is related to a change of the ordering vector inside the
zigzag phase, and the latter to the suppression of the magnetic order. Both critical fields
reveal nonmonotonic behavior below T < 2 K, where inverse melting may occur. This has
been theoretically proposed in some anisotropic spin models, and it would be interesting, if it
can be found as well in realistic microscopic models of α-RuCl3. Beyond BAF2

c , a very weak
shoulder appears, becoming more pronounced at lower temperatures. In strong collaboration
with D. Kaib, this anomaly could be identified as a level crossing of the first excited states,
and not a phase transition due to a change of the ground state from the presumed KSL to
the partially polarized phase.
My field-dependent specific heat measurements C(B) provide further insights, and it can

be used in combination with Γmag(B) to calculate the entropy change ∆S(B) up to 14 T.
Both specific heat and entropy change show a clear maximum at BAF2

c , but they are less
sensitive for BAF1

c , especially for fields parallel to Ru-Ru bonds (B ‖ [010]). After the
magnetic order is suppressed at BAF2

c , both vanish rapidly without any further anomaly.
This is clearly incompatible with the suggested gapless KSL phase for B ‖ [010] [62] because
a strong signature in the entropy is expectable upon entering the gapped partially polarized
phase. Altogether, my results speak against a field-induced spin liquid phase in α-RuCl3
because of the missing transition to the partially polarized state.
Finally, I found that the field-induced entropy decrease between 0 T and 14 T is too large

for the magnon gap in α-RuCl3 with ∆ = 1.6 meV [202]. The origin could be field-dependent
phononic contributions, but additional states in the magnon gap could naturally account
for this behavior, too. The latter interpretation is supported by my zero-field heat capacity
measurements on several samples grown in different laboratories. All samples show a larger
heat capacity at low temperature than expected for the anticipated gap. Moreover, the exact
Néel temperature TN, which varies between different reports, might be connected to the
amount of in-gap states. Further investigations are highly desired to solve this surprising
puzzle.
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A. Additional Data and Measurements

A.1. Summary of Measured Samples

Table A.1. Overview of samples and measurements presented in this work. Single crystals and
powder pellets denoted as SC and PP, respectively. For the KBaYb(BO3)2:Ag pellets, the mass
ratio is given. For α-RuCl3, the angle Φ = 0° and Φ = 30° are defined for a magnetic field applied
in the honeycomb planes parallel to Ru-Ru bonds, B ‖[010], and perpendicular to Ru-Ru bonds,
B ‖[110], respectively.

Formula Sample Mass (mg) Run MK4 Grown by Measurement

KBaYb(BO3)2 PP 2.69 11, 13 K. Kavita 1

+Ag (1:1) PP ? PPMS K. Kavita 1

+Ag (1:1) PP 278.5 21 K. Kavita Ad. Cooling
+Ag (1:1) PP 4018 PPMS K. Kavita Ad. Cooling

YbMgGaO4 SC 16.33 17 (B ‖ c) Y. Li 4,5

SC 10.48 18 (B ⊥ c) Y. Li 4

NaYbO2 PP 3.00 23 F. Grußler 1,2,3

PP ? PPMS F. Grußler 1

NaLuO2 PP ? PPMS F. Grußler 1

KYbS2 SC 0.33 40 (B ‖ c) F. Grußler 1

SC 0.33 41 (B ⊥ c) F. Grußler 1,2,3

α-RuCl3 SC 6.63 V. Tsurkan
Φ = 20° 35, 36 1,2,3

Φ = 5° 44 3

Φ = 15° 45 3

Φ = −5° 46 3

Φ = 0° 47 2,3

Φ = 30° 48 2,3

α-RuCl3 SC 16.5 PPMS V. Tsurkan 1

α-RuCl3 SC 16.84 MK3 S. Kim 1

α-RuCl3 SC 11.45 DynaCool J. Yan 1

1C(T )
2C(B)
3Γmag(B)
4M(T )
5M(B)
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A. Additional Data and Measurements

A.2. Calibration of the RuO2 Thermometers
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Figure A.1. Influence of the compensation coils on the Fixed Point Device (FPD). The super-
conducting transition temperature of AuIn2 is suppressed by the compensation coils both in (a)
the xy-plane and (b) the z-direction. The linear fits through the data points exactly match the
transition temperature with zero current. Consequently, the compensation coils were not needed
during the calibration.
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Figure A.2. Calibration of the thermometer ICE2, which is located on the MC plate in the
field-compensated zone of the MK4 together with the CMN and the Cernox reference thermome-
ters, respectively. Even the highest applied field of 17.5 T does not influence the calibration of
the ICE2. Consequently, the CMN thermometer provides a valid temperature determination
independent of the magnetic field.
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Figure A.3. Magnetoresistance up to 17.5 T of the thermometers SB1 and SB5 at several
temperatures from 50 mK up to 8 K. Both thermometers are directly located in the field center
and representative for their batch (details in main text, Sec. 3.3) and show opposite behavior
(negative and positive magnetoresistance for SB1 and SB5, respectively). Furthermore, the
resistance change is much stronger in the batch of SB5. The large positive jump at high fields,
which is visible first in the data at 430 mK, results from the breakdown of the superconductivity
in the NbTi wires. At higher temperatures, this transition becomes shifted towards much lower
fields.
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A.3. Information on Heat Capacity Fits in KYbS2

Table A.2. Overview of fitting parameter for the nuclear and the magnetic contribution
in KYbS2 according to Cm = α/T 2 + bT p. The units of α and b are 10−4 J K mol−1 and
Jmol−1K−(p + 1), respectively. The fit range is chosen from the lowest measured temperature
up to 300 mK, whenever possible.

B⊥ 0 T 0.125 T 0.25 T 0.5 T 0.75 T 1 T 1.25 T 1.5 T 2 T 2.5 T 3 T

α 3.53 3.27 3.03 3.68 4.27 4.88 6.31 6.47 9.63 11.69 13.00
p 1.78 1.50 1.46 1.72 1.85 1.93 2.06 1.98 2.10 1.98 0.97
b 5.34 3.13 2.78 4.12 4.92 5.72 7.03 6.54 8.29 6.94 1.20

B⊥ 3.5 T 4 T 4.5 T 5 T 5.5 T 6 T 6.5 T 7 T 8 T 9 T 10 T 11 T

α 17.21 19.25 20.59 20.29 23.41 24.85 28.90 30.39 38.23 52.27 59.27 72.64
p 1.82 1.97 2.16 1.38 2.63 2.61 2.51 2.26 1.83 1.64 0.89 1.94
b 2.14 1.36 1.49 0.88 7.77 7.49 9.04 8.85 6.26 5.11 1.33 1.74

B‖ 0 T 0.125 T 0.25 T 0.375 T 0.5 T 0.75 T 1 T 1.25 T 1.5 T

α 3.80 3.36 3.03 3.02 3.22 3.41 3.83 4.14 4.61
p 1.91 1.46 1.50 1.57 1.63 1.71 1.78 1.82 1.86
b 6.86 2.90 3.09 3.35 3.59 3.78 4.00 4.14 4.30

B‖ 2 T 3 T 6 T 9 T 12 T 13.5 T 15 T

α 5.66 7.59 20.25 43.90 72.81 88.73 100.01
p 1.86 1.86 2.05 1.98 2.02 2.19 2.25
b 4.26 4.28 4.86 4.09 4.13 5.16 4.70
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Figure A.4. Dependence of fitting parameters of the nuclear contribution α and the power law
exponent p on different upper limits of the fitting interval (200 mK, 300 mK, 400 mK). Dotted
line on the left side is guide to the eye to see change of slope more clearly indicating the onset
of the plateau phase. For a few fields, the upper limit had to be chosen differently, which is
summarized in detail in Table A.3.
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Table A.3. Influence of fitted temperature range on fitting results. B⊥, Tend and α are given
in T, mK and 10−4 J K mol−1 , respectively. The upper limit of the temperature interval was
chosen to 200 mK, 300 mK or 400 mK, whenever possible. For Fig. 4.7(d,e) in the main text, the
upper limit of 300 mK is used as long as this was reasonable. Deviations from the upper limit
are marked and explained below the table.

B⊥ Tend α p Tend α p Tend α p

0 201 3.34 1.59 145(2) 3.53 1.78 401 3.29 1.50
0.125 202 3.26 1.49 153(2) 3.27 1.50 403 3.28 1.47
0.25 200 3.07 1.54 151(2) 3.03 1.46 399 3.07 1.53
0.5 201 3.68 1.72 305 3.68 1.72 402 3.65 1.69
0.75 202 4.20 1.76 305 4.27 1.85 403 4.21 1.80
1 206 4.79 1.80 298 4.88 1.93 358(2) 4.87 1.92
1.25 205 6.16 1.97 297 6.31 2.06 357(2) 6.22 2.03
1.5 204 6.15 1.66 296 6.47 1.98 356(2) 6.51 2.02
2 203 9.21 1.87 293 9.63 2.10 337(2) 9.71 2.14
2.5 199 11.47 1.84 301 11.69 1.98 398 11.39 1.90
3 197 12.98 0.97 298 13.00 0.97 298(2) 12.98 0.98
3.5 203 17.50 2.03 308 17.21 1.82 406 17.16 1.80
4 200 19.26 2.16 303 19.25 1.97 400 19.34 2.12
4.5 205 20.59 2.10 297 20.59 2.16 410 20.58 2.36
5 199(1) 19.84 0.96 301 20.29 1.38 397 20.51 1.58
5.5 203 23.52 2.87 256(2) 23.41 2.63 256(2) 23.44 2.63
6 201 24.61 2.39 305 24.85 2.61 403 25.12 2.79
6.5 205 28.80 2.41 307 28.90 2.51 369(2) 29.13 2.65
7 206 29.05 1.97 299 30.39 2.26 359(2) 30.64 2.30
8 196 38.26 1.83 298 38.23 1.83 298(2) 38.26 1.82
9 199 52.66 1.73 250(3) 52.27 1.64 250(3) 52.24 1.64
10 199(1) 57.18 0.51 302 59.27 0.89 398 59.36 0.92
11 - - - 510(4) 72.64 1.94 404 72.92 2.10

(1)Fitting range too small for reasonable fit.
(2)Smaller fitting range chosen to avoid problems with kinks/ humps/ ordering peak/ ...
(3)Bad fit quality if Tend is set to higher values.
(4)Higher fitting range more reasonable because of large Cnuc.
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A.4. More Details on NaYbO2
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Figure A.5. Specific heat of NaYbO2 including the nuclear contribution at lowest temperatures
and zero field. Comparison between different presumed fit functions for the magnetic contribution
Cm(T ). The fitting range is chosen up to 250 mK (left) and 150 mK (right). In both cases, the
gapped function describes the data worse.
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Figure A.6. Specific heat including nuclear contribution of NaYbO2 below 500 mK at low
fields. (a) The specific heat at very small fields of 0.125 T and 0.25 T seems to be enhanced
at lowest temperatures compared to the zero-field measurement. This is in agreement with the
C(B) data in Fig. 4.17(b). In contrast, the specific heat at 0.5 T gets suppressed. (b) Evolution
of the specific heat up to 2 T. The curves start to overlap above 0.5 T and ∼0.2 K. At lower
temperatures, the nuclear contribution dominates with increasing fields.
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Figure A.7. Entropy evolution of NaYbO2. All entropy curves are normalized to zero at the
lowest measured temperature, respectively, which is around 70-90 mK. (a) Zero field up to 20 K
(PPMS measurement for higher temperatures performed by Franziska Grußler). At T ∼ 4 K,
comparable to the exchange coupling in NaYbO2 [68], approximately 65 % of R ln 2 is reached,
and the remaining entropy is released at higher temperatures. The zero-field entropy finally
saturates at 0.9 R ln 2 at 20 K close to the expected value of R ln 2 of a spin-1/2 system. (b)
Change of the entropy curves by applying magnetic fields up to 5 T. The field-induced order can
be clearly seen in the steep increase near 1 K, where a lot of entropy is released. (c) Increasing
the magnetic field to 9 T suppresses that sharp anomaly and restores the more continuos release
of entropy. Unfortunately, other fields have only been measured down to 300 mK and could not
be included here due to their unkown entropy evolution below 300 mK, resulting in problems
with obtaining absolute values.

Table A.4. Overview of fitting parameter for the nuclear and the magnetic contribution in
NaYbO2 according to Cm = α/T 2 + bT p. The units for α and b are 10−4 J K mol−1 and
Jmol−1K−(p + 1), respectively. The fit range is chosen from the lowest measured temperature
up to 250 mK. For 0 T, the values of Fit I and Fit II are given, as explained in Fig. 4.14 and in
the main text.

Field 0 T (I) 0 T (II) 0.125 T 0.25 T 0.5 T 0.75 T 1 T 1.25 T

α 5.14 4.09 5.36 3.75 4.90 5.66 6.45 6.86
p 1.43 1.06 1.24 1.37 1.99 2.17 2.21 2.21
b 1.59 0.81 1.33 1.72 3.64 4.09 4.08 3.86

Field 1.5 T 2 T 3 T 4 T 5 T 5.5 T 9 T

α 7.45 8.53 11.12 11.52 11.51 12.98 17.95
p 2.14 2.04 1.99 2.03 2.10 2.45 2.08
b 3.44 3.12 3.20 1.74 1.18 2.07 4.44

Table A.5. Entropy values from KYbS2 at 4 T (partially interpolated) to shift ∆S(B) values of
NaYbO2 at 4 T assuming strong similarities in the entropy evolution in both compounds. These
values are used to calculate the normalized entropy in the left phase diagram in Fig. A.8.

T (mK) 150 200 400 600 800 1.6 2
S (J K−1 mol−1) 0.080 0.094 0.104 0.225 0.483 1.691 1.748
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Figure A.8. Two different possibilities to present the entropy evolution in the phase diagram
of NaYbO2 [Fig. 4.18]. On the left side, KYbS2 served as a reference to shift the entropy of
NaYbO2 at 4 T. The idea is here to use the similarities between KYbS2 and NaYbO2. First, all
NaYbO2 curves are shifted such that ∆S(T, 4 T) = 0 J K−1 mol−1. Subsequently, these values are
shifted by the interpolated KYbS2 values at 4 T summarized in Table A.5 and then normalized to
the maximum value for each temperature, respectively. The resulting color plot roughly follows
the evolution of the phase transitions/ crossover. The phase diagram on the right side uses the
entropy calculated from S(T ) =

∫ C(T )
T dT . Several fields have only been measured down to

300 mK resulting in the black areas at low temperatures. The contour of the plateau phase is
visible. The second transition line at higher fields and temperatures does not follow an obvious
constant entropy line in this representation.
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A.5. Additional Information on α-RuCl3
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Figure A.9. Left side: Field-dependent specific heat of α-RuCl3 at 4 K and 5 K partially used
for the phase diagram in Fig. 5.6(a). Right side: Comparison of zero-field specific heat between
sample UA#2 and ORNL. UA#2 shows an additional transition at T = 14 K induced by stacking
faults, which does not influence the position of the lower transition at 7 K [see Fig. 5.7(c)]. This
sample was not used for the magnetic Grüneisen parameter and specific heat measurements in
the dilution refrigerator MK4.
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