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Abstract The concept of derivative is characterised with reference to four basic
mental models. These are described as theoretical constructs based on theoretical
considerations. The four basic mental models—local rate of change, tangent slope,
local linearity and amplification factor—are not only quantified empirically but are
also validated. To this end, a test instrument for measuring students’ characteristics
of basic mental models is presented and analysed regarding quality criteria.

Mathematics students (n= 266) were tested with this instrument. The test results
show that the four basic mental models of the derivative can be reconstructed among
the students with different characteristics. The tangent slope has the highest agree-
ment values across all tasks. The agreement on explanations based on the basic
mental model of rate of change is not as strongly established among students as one
would expect due to framework settings in the school system by means of curricula
and educational standards. The basic mental model of local linearity plays a rather
subordinate role. The amplification factor achieves the lowest agreement values. In
addition, cluster analysis was conducted to identify different subgroups of the stu-
dent population. Moreover, the test results can be attributed to characteristics of the
task types as well as to the students’ previous experiences from mathematics classes
by means of qualitative interpretation. These and other results of students’ basic
mental models of the derivative are presented and discussed in detail.
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G. Greefrath et al.

Ausprägungen von Grundvorstellungen zur Ableitung bei
Mathematikstudierenden

Zusammenfassung Der Begriff der Ableitung wird anhand von vier Grundvor-
stellungen charakterisiert. Diese werden als theoretische Konstrukte beschrieben,
die auf theoretischen Überlegungen beruhen. Die vier Grundvorstellungen – lokale
Änderungsrate, Tangentensteigung, lokale Linearität und Verstärkungsfaktor – wer-
den empirisch quantifiziert und validiert. Zu diesem Zweck wird ein Testinstrument
zur Messung der Charakteristika dieser Grundvorstellungen von Lernenden erstellt,
bzgl. Gütekriterien ausgewertet und an Mathematikstudierenden (n= 266) getestet.
Die Ergebnisse zeigen, dass die vier Grundvorstellungen der Ableitung bei den Ler-
nenden mit unterschiedlichen Merkmalen rekonstruiert werden können. Die Tangen-
tensteigung weist über alle Aufgaben hinweg die höchsten Übereinstimmungswerte
auf. Die Übereinstimmung bei Erklärungen, die auf der Grundvorstellung der lo-
kalen Änderungsrate beruhen, ist bei den Studierenden nicht so stark ausgeprägt,
wie man es aufgrund der Rahmenbedingungen im Schulsystem durch Lehrpläne
und Bildungsstandards erwarten würde. Die Grundvorstellung der lokalen Linearität
spielt eine eher untergeordnete Rolle. Der Verstärkungsfaktor erzielt die geringsten
Übereinstimmungswerte. Darüber hinaus wurde eine Clusteranalyse durchgeführt,
um verschiedene Untergruppen der Schülerpopulation zu identifizieren. Die Tester-
gebnisse können mittels qualitativer Interpretation auf Merkmale der Aufgabentypen
sowie auf die Vorerfahrungen der Studierenden aus dem Mathematikunterricht zu-
rückgeführt werden. Diese und weitere Ergebnisse zu den grundlegenden mentalen
Modellen der Studierenden zur Ableitung werden ausführlich dargestellt und disku-
tiert.

Schlüsselwörter Ableitung · Grundvorstellung · Struktur · Testinstrument

1 Basic Mental Models

The concept of basic mental models (in German: “Grundvorstellungen”) has been
well established in German-speaking didactics of mathematics for many years. It is
used to describe, from a subject-didactic perspective, the content-related meaning
learners should attribute to or actually give a mathematical concept (vom Hofe
1995, 1996; vom Hofe and Blum 2016). To distinguish between the prescriptive and
the descriptive aspect of basic mental models (vom Hofe et al. 2005), we use the
following terms according to Greefrath et al. (2021b):

� Normative basic mental models are interpretations of a mathematical concept that
learners should generally and ideally develop. “They work as educational guide-
lines, following a particular educational goal and describing adequate interpreta-
tions of the use of mathematical concepts.” (Hefendehl-Hebeker et al. 2019, p. 32)
These basic mental models are identified by didactic analyses of the mathematical
concept (see Sect. 2 for the derivative of a function). They specify learning objec-
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tives for mathematics lessons and provide orientation to teachers when designing
their lessons.

� Individual basic mental models are the specific formations of normative basic
mental models in a person’s mind. They result from individual learning processes.
An individual basic mental model can be described as the individual cognitive
structure that a person has built up with content-related references to the respec-
tive normative basic mental model. The extent to which both are in accordance
may vary with time and from person to person.

The notion of basic mental models is related to the theoretical framework of
“concept image”, that has been established in the didactics of mathematics since at
least the 1980s. Tall and Vinner (1981) describe the concept image of a mathematical
concept as “the total cognitive structure that is associated with the concept, which
includes all the mental pictures and associated properties and processes. It is built
up over the years through experiences of all kinds, changing as the individual meets
new stimuli and matures” (p. 152). A person’s concept image can comprise several
individual basic mental models of the respective mathematical concept. These indi-
vidual basic mental models are components of the concept image—parts of the entire
cognitive structure related to the mathematical concept (Greefrath et al. 2021b). For
example, the individual concept image of a person for the first derivative of a func-
tion might encompass the basic mental models of tangent slope and local rate of
change (see Sect. 2).

The relationship between the notion of basic mental models (“Grundvorstellun-
gen”) and the cognitive-psychological theory of “schemes” and “mental models”
is thoroughly discussed by Kleine et al. (2005). They classify this mathematical
didactic concept in the framework of psychological theories by identifying “Grund-
vorstellungen” as mental models of a mathematical content.

In the following, we use the term basic mental models in the two above-men-
tioned meanings: On the one hand, normative basic mental models of the concept
of the first derivative of a function are presented, as they were worked out on the
basis of subject-didactical analyses. A structured methodology framework for pro-
cesses of identification of normative basic mental models is described by Salle and
Clüver (2021). On the other hand, results of a test are presented, which measures
whether and to what extent persons’ individual basic mental models of the deriva-
tive are in accordance with normative basic mental models and can be activated
in corresponding mathematical situations. The results are then analysed and the
concept as well as the structure of students’ self-reported basic mental models are
discussed critically (based on a cluster analysis). This approach enables a more in-
depth analysis of cognitive activities of learners. It also allows conclusions regard-
ing the professional knowledge of prospective and active teachers, as noted, for
example, by Castro Gordillo and Pino-Fan (2021, p. 34): “Very few studies focused
on comparing didactic-mathematic knowledge of in-service and pre-service teachers
aimed at identifying features of the teachers’ didactic-mathematical knowledge on
specific topics that can establish a line between pre-service and in-service teachers’
knowledge for teaching.”
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Table 1 Overview of basic mental models (BMM) of the first derivative of a function at a point

BMM of the local rate
of change (RC)

The derivative gives the local rate of change of a variable

BMM of the tangent
slope (TS)

The derivative gives the slope of the tangent to the graph

BMM of the local
linearity (LL)

The graph is locally approximately linear, and the derivative indicates the
slope of this straight line

BMM of the amplifi-
cation factor (AF)

The derivative indicates how strongly small changes in the independent vari-
able affect the dependent variable: �y � m � �x

2 Basic Mental Models of the Derivative

Difficulties in understanding the concept of derivative are seen at various lev-
els (Bressoud et al. 2016) and are also still found among students at university
(Fuentealba et al. 2017). A valid concept definition and concept image, and espe-
cially basic mental models are required for teaching processes, otherwise difficulties
in teaching the concept of derivative are predeterminated (Desfitri 2016).

The concept of basic mental models of the derivative, as presented by Greefrath
et al. (2016) and Weigand et al. (2017) serves as a theoretical framework for the test
construction and the empirical studies. The authors have identified four basic mental
models in the normative sense of the concept of the first derivative of a function at
a point—an overview is provided by Table 1.

2.1 Basic Mental Model: “Local Rate of Change”

Local changes and, in particular, the speed of processes of change in quantities can
be captured quantitatively with the rate of change concept. The development of the
basic mental model of the derivative as a local rate of change (RC) is based on the
understanding of the mean rate of change, but then requires a qualitatively different
understanding, as the local rate of change—unlike the mean—is not a quotient, but
instead is the limit of quotients.

The understanding of the concept of rate or rate of change is difficult and allows
many points of view (Feudel and Biehler 2021; Herbert and Pierce 2012; McDer-
mott et al. 1987; Teuscher and Reys 2010; Zandieh 2000). For example, Teuscher
and Reys (2010, p. 519) describe that students at different levels have difficulties
conceptualising the idea of a rate of change and McDermott et al. (1987, p. 504)
highlight typical difficulties in physical motion contexts, to establish relationships
between rates of change and the slope of graphs. Herbert and Pierce (2012, p. 94)
demonstrate that there are learners for whom the rate of change is a single variable,
while for others it is made up of two changes (change in the x- and y-value). The lack
of linking mathematical content to other contexts is also picked up by Carli et al.
(2020); here particular value is cared for different forms of representation. Orton
(1983) already noted that learners have difficulties in recognising the relationship
between mean rates of change in intervals and local rates of change at a point.
In view of this, he recommended that rates of change be calculated above all ap-
proximately numerical. In particular, the difficulty in understanding the quotient as
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a measure of the relative size of two quantities can hinder students’ understanding
of the rate of change (Byerley et al. 2012).

Thompson and Thompson (1996; 1994) show that teaching the basic mental
model of “local rate of change” places considerable demands on teachers. To teach
the rate of change, physical contexts are considered beneficial (Chau et al. 2021).

With regard to the formation of this basic mental model, it can thus be seen as
an objective that learners are able to give meanings to both the independent and
the dependent variable as well as to the derivative as the local rate of change in
functional relationships (vom Hofe and Blum 2016, p. S241).

2.2 Basic Mental Model: “Tangent Slope”

The development of the basic mental model “derivative as tangent slope” (TS) goes
hand in hand with the conceptual difficulty of forming the concept of a tangent to
a function graph at all. The classical approach is usually motivated geometrically
with the help of secants of the function graph, whose slope can be determined easily
using the coordinates of the two points of intersection with the function graph.
Here one draws on experience with linear functions and slope triangles (slope as
“geometric ratio” and “algebraic ratio”, see Nagle et al. 2013, p. 1493). The tangent
at a point of the function graph is then defined as the straight line that passes through
this point and has a slope equal to the limit of the secant slopes.

This is a substantial extension of the tangent concept, which school students have
built up for tangents to circles in lower grades. In this context, the idea of a “clinging
straight line” is helpful (see Blum and Törner 1983; Danckwerts and Vogel 2006).
The tangent is understood as being a straight line that “clings” to the graph locally.
This extends significantly the “one point of contact concept” (see Tall 2013). In
the corresponding process of extending the scope of the concept (Weigand 2015,
p. 264 ff.), learners can have problems understanding that the tangent and graph can
have any number of common points—e.g. they can also be identical (Biza 2011).

We would like to point out a difference between the concept image for a tangent
by Vinner (2002) and our concept of basic mental models according to Sect. 1.
We regard the tangent as subordinate to the derivative and restrict ourselves to
mathematically correct conceptions. Vinner (2002) sees the concept images more
generally. With the concept of tangent visual representations or merely a collection
of impressions or experiences could be connected. This also includes mathematically
not (completely) correct conceptions of tangents. In contrast to this, basic mental
models are valid perceptions of a concept.

Tangent slope and local rate of change are very common and also both associated
with the algebraic representation of a function (Habre and Abboud 2006). There are
also subject-specific preferences of students, namely that of mechanical engineering
students develop towards the rate of change conception in terms of the derivative,
while those of mathematics students develop towards the tangent slope conception
(Bingolbali et al. 2007).
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2.3 Basic Mental Model: “Local Linearity”

Kirsch (1979) described the basic mental model of local linearity (LL) with the help
of the “function microscope”. Here the derivative is considered from the following
perspective: If we “zoom in” on the graph of a differentiable function more and more
at one point, the graph increasingly appears to be a straight line. The derivative is
the slope of this straight line. Software for dynamic mathematics is very suitable for
the development of this basic mental model. Zooming is easy to do, the section of
the graph displayed on the screen becomes increasingly less different from a straight
line. In addition to using such function plotters, for the formation of this basic mental
model, Tall (2009) also proposes sketching the graph of the derivative function given
the known graph of the initial function. That is, we consider an arbitrary function f at
a point and look for a linear function that approximates the behaviour of the function
locally as closely as possible (Teague 1996). Consideration of the derivative as the
slope of the linear function which, among all linear functions, best approximates the
given function f at x (vom Hofe and Blum 2016) also fits this concept. For this basic
mental model, there could be connections to the tangent slope, because in a case
study, descriptions of the derivative as a tangent were often found, which was not
seen as a point-specific object, but also as a (linear) function defined on an interval
(Park 2013).

The basic mental model of local linearity is also the basis of applications: For
example, in growth models, the time dependency of the size of a population is often
described locally—i.e., in a small time interval—by a linear relationship.

2.4 Basic Mental Model: “Amplification Factor”

With the basic mental model of the amplification factor (AF), the derivative is viewed
as a proportionality factor of a functional relationship, which indicates how small
changes to the independent variable affect the dependent variable. Lax and Terrell
(2014, p. 113) describe this with the words “derivative as sensitivity to change”
and “derivative as stretching”. The latter expresses that a function f maps a small
interval around a value x to an interval of about m times the length where m= f ’(x)
(see Greefrath et al. 2016, p. 112). The amplification factor concept cannot only
be applied to the derivative, but also to the difference quotient (see Malle 2003).
Mamolo and Zazkis (2012) report that university students have difficulties with tasks
that require this basic mental model. It is possible that the students observed had an
insufficiently developed basic mental model of the derivative as amplification factor.

3 Research Questions

In the preceding section, we presented theoretical considerations on basic mental
models of the derivative concept; in particular, we described four basic mental mod-
els, which are based on our prior research central when dealing with the derivative
concept. We understand these basic mental models as being a theoretical construct,
which is to be empirically quantified and validated in the following. Based on this
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construct, the question arises to what extent these basic mental models of test persons
can be empirically reconstructed.

Accordingly, our first research question is:

Q1: Is the theoretically derived four-dimensional model valid against empirical
test data?

We focus on university students and not on school students as, according to
the education standards and curricula, basic mental models of the derivative are
developed in the second stage of secondary education (ISCED level 3) and the test
persons should already have completed the corresponding schooling up to university
entrance level. Furthermore, we restrict ourselves to students of mathematics in
teacher training courses or degree courses, as we expect stronger characteristics of
the basic mental models in this group and the opportunity arises to examine the
effects of mathematics studies on individual basic mental models. The answer to Q1
will be given by the construction and validation of a test instrument that measures
to what extent self-reported students thinking corresponds to the four basic mental
models.

Having this instrument available, the questions regarding which basic mental
models the students have actually developed and how this knowledge can be rec-
onciled with existing empirical findings are also of interest. This raises the second
central question for us, which we want to explore in this paper:

Q2: Which characteristics of basic mental models of the derivative can be found
among students of mathematics?

We already mentioned that different basic mental models could be developed
in one’s mind and that it is even the goal to develop all these basic mental mod-
els, because different problem-solving situations require different perspectives, and
therefore also different basic mental models. However, these basic mental models
could exist on different levels of agreement, and they could be of varying significance
in persons’ minds. Q2 asks for these different levels of agreement, characteristics of
basic mental models in different situations and within different groups of students.

In order to discuss the two research questions, the development and structure
of a test to answer these questions and the method for checking the quality of the
test, particularly its reliability and validity, are described in the following. We then
present the results of a study with mathematics students.

4 Study Design

4.1 Instrument

A test was developed to assess the existence of individual basic mental models of
the derivative. This test has been published and is freely available (Greefrath et al.
2021a). The test measures the degree of commonalities between one’s individual
thinking and given reasonings. The methodology of the test to measure basic mental
models is to present arguments to the participants in which certain basic mental
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models occur and ask them specific questions about whether the style of reasoning
is consistent with their own thinking process. The core idea of the test is to refer
to one special situation and to offer participants different argumentations that are
based on certain basic mental models. The participants are asked to what extent
these argumentations are close to or consistent with their own thinking. The test
does not evaluate how familiar a participant is with the situation, but it determines
the acceptance of argumentations with each basic mental model concerning the
situation. If a participant compares a special argumentation with his/her own thinking
and gives a high rank to “The explanation exactly matches my way of thinking.”,
it is a very strong hint that the corresponding basic mental model is embedded in
his thinking. This procedure is consistent with the procedure already described in
Greefrath et al. (2021b) for measuring basic mental models of integrals.

Each task presents a mathematical situation as a stimulus and four correct argu-
mentations within the context of this situation as possible responses (corresponding
to four basic mental models). The test persons are asked to mark for each item on
a five-point Likert scale to what extent the respective answer corresponds to their
thinking. The Likert scales measure the self-reported congruence between the stu-
dents’ thinking and the explanation based on a certain basic mental model given in
the item. To simplify language, we call this measure the “extent of agreement with
a particular basic mental model” or the “extent to which the basic mental model
is realized within an individual”. Despite this simplifying language one should be
aware that the test only is—with some measurement error—an indicator of the non-
observable construct “basic mental model”. Several factors may contribute to this
error. First, the item formulation may not correspond to the normative basic mental
model. To minimize this error, we had experts’ feedback on the items in the pilot
phase of test development. A second source may be that students simply do not
understand explanations in the intended way or it may be that some students sys-
tematically over- or underestimate the similarity of their own thinking and the given
explanations. However, we assume that there is no clear bias caused by this error
sources so that they just add to some Gaussian noise.

Table 2 Task contexts of the test instrument (Greefrath et al. 2021a)

Task 1 Explanation of the derivative of a function at a point

Task 2 Description of the situation at the maximum of a function graph

Task 3 Description of the situation at the inflection point of a path-time graph

Task 4 Explanation of the non-differentiability of a function at a point

Task 5 Explanation of the situation at the inflection point of a graph of bacterial growth

Task 6 Explanation of the derivative at two different points of a function graph

Task 7 Explanation of the derivative of the sinus function graph at the origin

Task 8 Explanation of non-differentiability with the help of the graph of a function

Task 9 Explanation of the situation at the inflection point of a graph of flying altitude

Task 10 Explanation of the factor rule for a given function

Task 11 Description of a quantity near the maximum with the help of a graph

Task 12 Description of the behaviour of two different function graphs at a point

Task 13 Explanation of non-differentiability with the help of the graph of a function
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Table 3 Example task from the test for assessing basic mental models of the derivative (Greefrath et al.
2021a)

The derivative f ’(x) of a function f at a point x can be explained in different ways!

Please tick to what extent the explanation
given matches your own reasoning:
–– : “The explanation does not match my
way of thinking at all.”
++ : “The explanation exactly matches my
way of thinking.”

– – – o + ++

The derivative gives the current rate of
change at point x.

� � � � �

The derivative gives the slope of the tan-
gent at a point of the graph of f.

� � � � �

Near x, the graph can be approximated
well by a straight line. The derivative gives
the slope of this straight line.

� � � � �

If one moves a small distance Δx to
the right or left of x, the function value
changes by Δy � f 0.x/ � Δx:

� � � � �

The test of basic mental models of the derivative consists of 13 tasks (Table 2), an
example of a task is shown in Table 3. Furthermore, general data on the test persons
is acquired (age, gender, school-leaving qualification, school mathematics grade,
course of study, number of semesters). This is formulated for university students
of mathematics in teacher training courses or bachelor/master degree courses in
scientific disciplines.

The test was piloted and developed further in several stages. It was part of a larger
test that also included a section on integral calculus. A detailed description of the
development process is given in Greefrath et al. (2021b).

4.2 Random Sample

With regard to the research questions, a cross-sectional survey of students—from
four universities (Augsburg, Bayreuth, Münster & Würzburg)—was undertaken in
an online format addressing students enrolled in university courses in Analysis 1,
typically taken by students of mathematics and physics as well as mathematics
teacher students. The selection of the respective courses at the named locations was
made against the background that students usually take Analysis 1at the beginning
of their studies. Subject didactic courses were not included in the survey in order to
obtain a result as unbiased as possible—in relation to basic mental models.

Of the 384 submissions, 266 were fully completed test sheets. All the following
evaluations relate to this group. The gender distribution (109m, 152f, 5 other/rather
not say) can be explained by the relatively high proportion of student teachers. The
questionnaire was administered to students in introductory courses in the beginning
of their first year at university. Yet the mean number of semesters was surprisingly
high at 3.5 with a standard deviation of 2.4 and median of 2. However, students in
their first year were the largest group (n= 185)—n1= 99 in their 1st semester, n2= 86
in the 2nd semester. The most experienced students were in their 8th semester.
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4.3 Evaluation Method

For the statistical evaluation, the Likert scales were coded by natural numbers from
the interval from 1 to 5 (5 means highest agreement). Incomplete cases were not
taken into consideration. The reliability in the scales was estimated with Cronbach’s
alpha and Guttman’s Lambda4. The dimensionality of the overall construct was
determined by means of a scree plot and Vernier’s MAP test and checked by ex-
plorative and confirmatory factor analysis. All evaluations were performed with R
(https://www.r-project.org).

5 Results

5.1 Structure of Students’ Self-reported Basic Mental Model Agreement

5.1.1 Descriptive-explorative Statistics

The mean values and standard deviations of the scales of the four basic mental
models of differential calculus in the validation sample are shown in Table 4. Floor
or ceiling effects did not occur in any of the test parts. Table 5 shows the estimates
of the reliabilities of the scales. The correlations of the scales (sum scores) are
included in Table 6. A more precise analysis of the scales shows that for the scale
of the tangent slope, the scale homogeneity measured with Cronbach’s alpha can be
improved slightly by omitting item 10b (it would then be 0.82). This item is also
found to be comparatively “weak” with respect to the item-total-correlation which
is used to compute its discriminatory power. In the case of the other three scales
there was no single item whose exclusion would have increased Cronbach’s alpha.
Table 7 shows the item-total-correlation of all items.

Table 4 Mean values and stan-
dard deviations of the scales of
differential calculus

RC TS LL AF

Mean value 3.72 4.27 3.56 2.72

Standard deviation 0.74 0.73 0.86 0.88

Table 5 Estimates of the relia-
bilities

RC TS LL AF

Cronbach alpha 0.76 0.79 0.86 0.90

Lambda 4 0.78 0.83 0.88 0.90

Table 6 Correlations of the
scales

RC TS LL AF

RC 1 0.63 0.54 0.66

TS – 1 0.68 0.35

LL – – 1 0.55

AF – – – 1

K
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Table 7 Item-total-correlations
of the items

RC TS LL AF

Task 1 0.55 0.37 0.45 0.56

Task 2 0.51 0.49 0.54 0.55

Task 3 0.48 0.41 0.59 0.69

Task 4 0.28 0.42 0.45 0.51

Task 5 0.32 0.66 0.69 0.65

Task 6 0.45 0.63 0.78 0.70

Task 7 0.60 0.58 0.45 0.71

Task 8 0.31 0.49 0.65 0.63

Task 9 0.48 0.73 0.58 0.73

Task 10 0.32 0.13 0.43 0.63

Task 11 0.60 0.58 0.66 0.51

Task 12 0.67 0.71 0.64 0.68

Task 13 0.33 0.55 0.52 0.65

5.1.2 Factor Analyses

For further examination of the test, an explorative factor analysis (both orthogonal
varimax rotation and non-orthogonal oblimin rotation) was carried out. The scree
plot shows a clear kink after the fourth eigenvalue so that, in compliance with the
theory of test construction, four factors can be assumed. TheMAP test (Velicer 1976;
implementation in the R package EFA.dimensions) also gives the dimension 4. If
the factor analyses are performed with four factors, the items are almost completely
assigned according to the theoretical postulates (see appendix).

Moreover, confirmatory factor analyses (CFA) were also carried out to check
reliability of scores of the construct by another test. CFA is an adequate technique
for this purpose according to Ziegler and Hagemann (2015), especially if tests
are performed to detect correlations of residual errors. These tests were performed
using the modification index test (T. A. Brown and Moore 2012) with the help of
the modindices feature of lavaan. Only four of all possible combinations of error
residual were suspicious with �2 > 3.84. However, letting these error residuals
freely correlate had almost no influence on overall model fit (reported below).

According to Mardia’s test (performed with the R package QuantPsyc), there is
a substantial violation of the multivariate normal distribution assumption. Therefore,
and because the sample size is not sufficient for asymptotic distribution-free (ADF)
methods, as in Greefrath et al. (2021b), the structural equation models were estimated
by means of the WLSM estimation method in lavaan (R package).

Model 1: Firstly, a model was estimated, which consists of four independent sub-
models, each of which is a reflexive measurement model for the four scales in terms
of the theoretically postulated items for the respective basic mental model. The four
latent variables were assumed to be normalised. Latent correlations are allowed.

Model 2: To further see how the four scales load upon the general understanding
of the derivative by basic mental models, a model with a latent second order variable
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Table 8 Model comparison SEM: WLSM Model 1 Model 2

CFI 0.94 0.89

TLI 0.94 0.87

RMSEA 0.045 0.064

SRMR 0.081 0.093

was estimated, which is also normalised and loads on the four latent basic mental
model variables. The other aspects of this model are the same as in model 1. The
path weights of the second order variables in model 2 are: RC: 1.4, TS: 0.35, LL:
0.88, AF: 1.28

Model fit indices for both models are reported in Table 8. The good fit of model 1
together with the adequate fit of model 2 support for the postulated four-dimensional
model. The fact that the latent correlations in model 1 are of modest size further
support that the conclusion the four-dimensional model reflects the data’s structure
well.

5.1.3 Cluster Analyses

Cluster analyses were performed in R with the factoextra package to describe the
distribution of the preferences for the basic mental models in the group of test
persons.

Firstly, we examined how many clusters should be formed ideally both by using
the gap statistics and the silhouette method. The gap statistic (Tibshirani et al. 2001)
is an advanced method that compares the total within cluster variation for different
numbers of clusters with their expected values under some null distribution. The
estimate of the optimal number of clusters is the one that maximizes the gap statistic.
The silhouette method (Rousseeuw 1987) evaluates for all clustered objects which
cluster besides its own one would be best. A good clustering is then one for which the
minimal average distance to other clusters is maximal. The analysis for both methods
was carried out with the function fviz_cluster from the R package factoextra with
the default Euclidean distance measure. For both methods three clusters are optimal,
but for gap statistics the four or five cluster solutions score only minimally weaker,
so all this seems sensible. There is no clear picture when assessing the criterion of
the reduction of the sum of squares within the clusters; three or four clusters seem
possible. The calculations were therefore carried out for three as well as for four
clusters.

For the solution with three clusters, the following Table 9 shows the numbers
of the students in the clusters and the midpoints of the clusters regarding the basic
mental model scores. Unlike the above tables, the values for the basic mental models
are normalised. A solution with four clusters is given in Table 10.

K



Mathematics Students’ Characteristics of Basic Mental Models of the Derivative

Table 9 Solution with three
clusters

C1 C2 C3

n 89 57 110

RC 0.40 0.02 –0.33

TS 0.38 –0.81 0.11

LL 0.47 –0.46 –0.14

AF 0.58 0.16 –0.56

Table 10 Solution with four
clusters

C1 C2 C3 C4

n 66 55 50 85

RC –0.32 0.55 0.01 –0.11

TS –0.02 0.44 –0.85 0.23

LL –0.54 0.64 –0.36 0.22

AF –0.75 0.82 0.28 –0.11

5.2 Characteristics of Students’ Basic Mental Models of the Derivative

Following validation, the test can be used for further studies. As shown, no items
have to be removed from the test. It therefore seems possible to use the same sample
for some content-related evaluations.

5.2.1 Basic Mental Models of the Derivative in Comparison

We first consider the mean values of the self-reported basic mental model agreement
given by the students as explanations for their own reasoning across all 13 test
tasks (see Table 11). The last row contains the mean value across all items for
the respective basic mental model as well as the total standard deviation across
the population for the overall scale produced by averaging. The measured variation
includes the variation in the population and the different measurement characteristics
of the individual items.

Across all items, explanations based on the basic mental model of tangent slope
are closest to the students’ own thinking. The explanations based on the basic mental
models rate of change and local linearity are less strongly agreed on, while the basic
mental model amplification factor is most rarely viewed as being consistent with the
students’ own reasoning. The mean values of the explanation agreements with the
basic mental models tangent slope, rate of change and local linearity lie above the
middle of the scale. Only the explanation with the basic mental model amplification
factor lies slightly below it on average.

With one exception, within the individual tasks (see Fig. 1), explanations on basis
of the basic mental model tangent slope got highest agreement. Only in task 10 does
the item for explanation based on rate of change have an agreement value (M= 3.56)
that lies above the value for the agreement to explanation based on tangent slope
(M= 3.19).

In all tasks, the explanation based on the basic mental model amplification factor
has the lowest agreement value. The distance to the agreement values for the classes
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Table 11 Basic mental models as explanations for own reasoning (mean values M and standard
deviations SD)

Rate of change Local linearity Tangent slope Amplification factor

Task M (SD) M (SD) M (SD) M (SD)

Task 1 4.19 (1.17) 3.58 (1.17) 4.55 (0.85) 2.38 (1.24)

Task 2 3.54 (1.17) 3.48 (1.28) 4.68 (0.77) 2.89 (1.30)

Task 3 4.08 (1.00) 3.74 (1.25) 4.18 (1.02) 2.59 (1.23)

Task 4 3.47 (1.30) 3.46 (1.23) 3.84 (1.19) 2.27 (1.18)

Task 5 4.43 (0.90) 3.20 (1.27) 4.66 (0.63) 3.17 (1.31)

Task 6 3.64 (1.11) 3.17 (1.32) 4.51 (0.84) 2.46 (1.19)

Task 7 3.56 (1.17) 4.31 (0.86) 4.64 (0.70) 3.00 (1.29)

Task 8 3.96 (1.06) 3.11 (1.37) 4.36 (0.96) 2.71 (1.25)

Task 9 4.35 (0.83) 4.03 (1.05) 4.65 (0.57) 2.78 (1.28)

Task 10 3.56 (1.23) 3.30 (1.25) 3.19 (1.20) 2.72 (1.22)

Task 11 3.62 (1.14) 3.89 (1.07) 4.35 (0.78) 3.58 (1.14)

Task 12 4.20 (0.93) 4.00 (1.07) 4.60 (0.68) 2.99 (1.27)

Task 13 2.73 (1.34) 3.89 (1.13) 4.31 (0.93) 2.48 (1.22)

Total 3.79 (0.74) 3.63 (0.86) 4.35 (0.73) 2.77 (0.88)

of explanations on the other basic mental models is quite considerable in some cases.
This distance is the smallest for task 5 (amplification factor M= 3.17; local linearity
M= 3.20) and task 11 (amplification factor M= 3.58; rate of change M= 3.62). Task 5
(see Fig. 2) describes the growth behaviour of bacteria and asks about the meaning
of a certain point on the x-axis, which indicates the inflection point of the graph.
Task 11 (see Fig. 3) shows the number of cars in a tunnel as a function of the speed
and the change in behaviour near the maximum is addressed.

Within the respective tasks, on average, the agreement to explanation based on
basic mental model of local linearity most often takes third place after the tan-
gent slope and rate of change. In task 13, the explanation based on local linearity

Fig. 1 Basic mental models as explanations per task
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5. The following figure shows the number of bacteria in a nutrient solu�on depending on �me 
(in hours). 

The special role of the �me can be explained in different ways.

Fig. 2 Task 5 (stimulus)

11. The following graph shows how many cars per hour may drive through a tunnel depending on 
the speed .
Near the maximum, in the interval between 11 m/s and 12 m/s, this number changes only 
slightly. 

This rela�onship can be described in different ways.

Fig. 3 Task 11 (stimulus)
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13. A func�on has the graph as shown.

This func�on is not differen�able at point 0. This can be explained as follows:
…

Fig. 4 Task 13 (stimulus)

(M= 3.89) is selected in second place after the explanation based on tangent slope
(M= 4.31). In this task (Fig. 4), a function that is not differentiable at point 0 is
represented graphically and an explanation is offered for each basic mental model
(see test instrument in Greefrath et al. 2021a).

The explanation based on basic mental model tangent slope was chosen as show-
ing the highest agreement with students’ way of thinking in all tasks—with the
exception of task 10. There the factor rule should be explained using an example,
without the graph being shown. The task where the explanation with the tangent
slope received the strongest agreement is task 2. The statement named here is that
the tangent is horizontal at the maximum of the graph.

5.2.2 Tasks with High Explanation Potential Due to Basic Mental Models from the
View of the Students

For the didactic discussion, it is of interest which tasks activate agreement with
the explanations based on basic mental models most strongly on average from the
students’ point of view. Even though the tangent slope is the preferred explanation
within almost all tasks, the overall image of the explanations with basic mental
models differs among the tasks. If we consider all selected basic mental models in
total, the two tasks 9 and 12 are those for which the explanations based on basic
mental models were chosen most clearly in total. Here the individual agreement
values for three of the four explanations are above 4.0. Both tasks use a graph. One
of the two tasks describes a pure mathematical problem (behaviour of f .x/ D x2

and g.x/ D x4 at point 1 in comparison), the other is an applied mathematical
problem (flying altitude h of a glider depending on the time t at the inflection point).
A distinct point on the graph is considered in each case.

Also of interest are tasks in which the agreements with basic mental models
based explanations occur roughly equally strong. Task 11 (see Fig. 3) is particularly
noticeable. This task has the third largest mean value after tasks 9 and 12, but by
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Table 12 Graphic vs. non-
graphic representations

Graphic Non-graphic Wilcox p

RC 3.74 3.68 0.44

TS 4.41 3.78 0.00

LL 3.61 3.39 0.00

AF 2.81 2.41 0.00

Table 13 Study experience Semesters≤ 2 Semesters> 2 Wilcox p Effect size d

RC 3.77 3.78 0.982 0.01

TS 4.42 4.24 0.001 –0.24

LL 3.66 3.57 0.454 0.08

AF 2.72 2.79 0.510 0.05

comparison, a very small standard deviation. The basic mental model agreement
mean values are therefore relatively close to each other and at the same time rel-
atively high. Such a task therefore seems suitable for activating all basic mental
models in largely the same way.

5.2.3 Graphic Representations

The majority of the task contexts in the test include graphic representations of
functions. Three of the contexts do not use graphic representations. For each of the
four basic mental models, a scale was formed, which consists of the items that do
not include any graphic representations (tasks no. 1, 4, 10) and a scale whose items
include a graph (tasks no. 2, 3, 5, 6, 7, 8, 9, 11, 12, 13). Table 12 shows that, apart
from the rate of change, all classes of explanations based on basic mental models
could be sensitive for presentation of a function graph, and that in these cases the
agreement with the explanations based on the basic mental models is increased
significantly.

5.2.4 Study Experience

It can be assumed that the relevance of the basic mental models changes under the
influence of experiences in university studies. To test this, the test persons were
divided into students with a maximum of two semesters of study experience (129)
and those with at least three semesters (133; four students did not provide any
information on their semester). The agreements on explanations based on the basic
mental model are understood to be the value of the total score of the respective scale
for the basic mental model (see Table 13).

The results show a largely unchanged self-reported basic mental model agreement.
If one differentiates according to whether the test persons have already taken the
course Didactics of Analysis or a course with this content, differences can be seen:
After the completion of this course the agreement on explanations based on rate
of change is weighted significantly higher; the agreement on explanations based on
amplification factor is also weighted higher, with p= 0.07, not significantly higher.
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However, the subgroup of students who had already taken a didactics course was
relatively small (16).

6 Discussion

This study focussed on the two research questions which asked on the one hand
for the empirical description of the structure of students’ self-reported basic mental
models (Q1) and on the other hand for the actual existing characteristics of the basic
mental models among students (Q2).

6.1 Structure of Students’ Self-reported Basic Mental Model Agreement
(Research Question Q1)

The validity of the tests used here was ensured through expert interviews (Greefrath
et al. 2021b). The reliabilities of the scales of the basic mental models are good.
Their correlations are so large that, as expected, they reveal relationships, but they
are still so small that the scales can be considered to be separate.

The highest correlations were found between the basic mental models of tangent
slope and local linearity, tangent slope, and local rate of change as well as between
amplification factor and rate of change. This is also in line with previous studies.
If the tangent is not considered as a point-specific object, but within an interval
(Park 2013), then the correlation of tangent slope and local linearity is obvious. In
contrast, tangent slope and local rate of change can be considered related through
their algebraic representation (Habre and Abboud 2006), especially through the
calculation of the secant slope. This could indicate that the idea of the tangent as
a “clinging straight line” (Danckwerts and Vogel 2006) is not very widespread.
In addition, the relationship between amplification factor and local rate of change
could be explained if the rate of change is considered as a quotient of two quantities
(Byerley et al. 2012; Herbert and Pierce 2012).

The analysis of the individual items of the scales does not give any indication
that an item should be eliminated as being unsuitable. Only item 10b is to be
viewed as being critical in this respect.1 However, to retain the symmetry of the test
with four items each for all tasks and because the improvement in reliability that
would be achieved would be marginal, this item was not excluded. The findings
of the explorative factor analysis and the dimension analysis prove that the four
dimensions of the theoretical model of the basic mental models of the derivative can
also be separated in the empirical data. This is also supported by the confirmatory
factor analysis.

We therefore obtain the following central result: The test we designed shows
that the four normatively developed basic mental models of the derivative—rate of
change, tangent slope, local linearity and amplification factor—can be empirically
proven and separated.

1 This is the item on the tangent slope in task 10 of the test: “On transition from f(x) to 2 � f .x/, slope
triangles to tangents are stretched by a factor of 2 in the direction of the y-axis.”.
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6.2 Characteristics of Students’ Basic Mental Models of the Derivative
(Research Question Q2)

In the following we summarize the results concerning the four basic mental models,
concerning the meaning of graphical representations, the relation between students
in initial and advanced studies and the possible differences of characteristics of basic
mental models of different kinds of students.

Concerning the Tangent Slope The explanations based on the tangent slope have
the highest agreement values across all tasks. This not only applies to the tasks with
graphic representations (where the higher agreement was to be expected), but also
to the tasks, in which there was no graph (this is the case for tasks 1, 4 and 10). On
the one hand, this is in line with previous empirical studies (Feudel 2015). On the
other hand, the high discriminatory power for the item on the tangent slope in task 9
is surprising, since this task deals with the speed of a change process. It could have
been supposed that due to the prior experience in such application tasks obtained in
class, a very close link between the rate of change concept and tangent slope exists.
However, Nagle et al. (2013) have already shown that the rate of change concept
is hardly manifested among students. But the correlation between the tangent slope
item 9d and the rate of change item 9b is only 0.23.

Concerning the Rate of Change The dominance of the agreement on explanations
based on the basic mental model tangent slope among students is particularly inter-
esting against the background that the educational standards particularly emphasise
the rate of change in the context of the derivative within the central idea of functional
relationship: “interpret the derivative in particular as a local rate of change” (KMK
2012, p. 20). The concept of the rate of change, however, is less strongly manifested
among the students studied than expected. This was also found by Witzke and Spies
(2016) within the scope of their qualitative results. They conclude the following
from their results: “the widely propagated idea to introduce terms of calculus in the
context of the instantaneous rate of change ... does not seem to have a sustainable
effect on the views of the students” (Witzke and Spies 2016, p. S149).

This result can be explained well with the hurdles to understanding that occurred
in the empirical studies of this concept (Herbert and Pierce 2012; McDermott et al.
1987; Orton 1983). They are due to more in-depth mathematical challenges with this
basic mental model, such as the existence of the limit value of the difference quotient
or the relationship between average and local rate of change. Our results therefore
indicate the need for sustained supporting measures to develop this basic mental
model (see Feudel and Biehler 2021). Concerning current mathematics teaching in
school, significantly broadened measures are required to strengthen this concept.
This should be possible, as the concept of rate of change is also considered to be
essential by teachers and it fits also well with applications in analysis lessons (Erens
and Eichler 2019).

Concerning the Local Linearity The explanations based on the basic mental
model local linearity often achieves at least the third-highest level of agreement
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and in task 13 even the second-highest level of agreement.2 The concept of local
linearity normally plays a rather subordinate role in analysis teaching at school.

However, the idea of the function magnifying glass—often with “zooming into
the graph” with appropriate software—has a long tradition with many suggestions
for analysis teaching (Elschenbroich et al. 2014). Moreover, the importance of this
basic mental model should not be underestimated, particularly for mathematical
education at universities, as it is a fundamental concept in many analysis courses
(vom Hofe and Blum 2016).

In task 13, the high agreement value for this explanation could be due to the
“kink-free” graphs. Thus, local linearity would have a particular significance in
contrast examples of differentiability. Such examples, that locally are similar to the
graph of the absolute value function, could have a particular significance for the
understanding of the derivative and for the formation of this basic mental model
(Tsamir et al. 2006).

Concerning the Amplification Factor The explanations based on the basic mental
model amplification factor achieves the lowest agreement values. This was also to be
expected against the background of the usual introductions to the derivative concept
and the way of dealing with derivatives in mathematics lessons. The amplification
factor possibly has a particular significance, if a situation is to be described in
individual distinct points (extreme points, inflection points). This is suggested by
the tasks in which the amplification factor was chosen more strongly. Further in-
depth research is certainly needed regarding the development of this basic mental
model.

Concerning Graphical Representations As supposed—we were able to show
that a graphic representation included in the task clearly influences the response
behaviour with regard to the agreement on explanations based on the basic mental
model tangent slope. If this visual support is missing, as in task 10 for example, the
tangent slope has only weak discriminatory power within the scale.

Concerning Students in Advances Semesters The test results also allow a com-
parison of test persons in the initial semesters and advanced semesters. In general,
there does not appear to be a very large change in the characteristics of basic mental
models during the study period at university. There is even a trend towards a slight
reduction in the basic mental model characteristics as an increase, which could
possibly be expected. Here, we can only speculate about the reasons for this. For
example, the strong focus on symbols in university mathematics could be decisive
for this. However, if we differentiate according to whether test persons have already
attended the course Didactics of Analysis, students weight expressions based on the
rate of change significantly higher after completing this course. There might also be
subject-specific developments of basic mental models, especially for local rate of
change and tangent slope, for different study programmes that could not be further
investigated in this population, but give rise to further studies (Bingolbali et al. 2007).

2 This task shows the graph of a function that is non-differentiable at a point.
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This at least shows the possibility of specific development of basic mental models
of the derivative through appropriate interventions. While there is a range of empir-
ical studies on self-assessment, beliefs (Voss et al. 2013), on concept development
(Roos 2020) and on the development of the professional knowledge of mathematics
students (Baumert and Kunter 2013; Kaiser et al. 2017), a lack of research on the
development of basic mental models during mathematics studies at university still
exists. Available specific test instruments cover knowledge concerning derivatives
(Aydın and Ubuz 2015), but not concerning basic mental models.

Different AgreementOn BasicMentalModels in Different Groups of Students
It is also possible that the basic mental models differently manifest in different
subgroups of the student population. A cluster analysis with three or four clusters
was carried out for this reason. A possible interpretation of the clusters consists of
one group each, which

� uses all basic mental models (Table 9, C1 or Table 10, C2),
� prefers the geometric basic mental models (TS, LL) less (Table 9, C2 or Table 10,

C3).

In the solution with three clusters, the third group would consist of the students
who only prefer the basic mental model of tangent slope (Table 9, C3). In the
solution with four clusters there would on the one hand be a group that prefers
few basic mental models in general (Table 10, C1) as well as a group that prefers
explanations based on the geometric basic mental models (Table 10, C4).

These clusters could explain different results of various studies (Feudel and
Biehler 2021; Nagle et al. 2013; Witzke and Spies 2016), as there are possibly
subgroups of students with specific preferences and also those who can use all basic
mental models. In particular, the preference for geometric basic mental models is
also found in Vargas González et al. (2021).

6.3 Limitations of the Study

As the description of the concept of basic mental models of the derivative shows, it
is a complex construct, which cannot be easily covered by a test. With the scales,
it is only possible to make statements about basic mental models, which refer to
the selection and rating of predefined possible answers. These items represent a cer-
tain operationalisation, which could also have an influence on agreement through
the choice of certain terms. To avoid an excessively long test, predefined possible
answers and selected contexts were used. This allows a reliable measurement of the
ability dimensions, however it can lead to lower validity. In addition, some state-
ments about the characteristic of basic mental models of the derivative could only
be obtained due to trends in the data on a qualitative level. These require more in-
depth analyses and corresponding empirical evidence. Furthermore, the test does
not evaluate whether the participants are able to solve the given problems in the
tasks. It is assumed that the participants are familiar with the given task situations,
because the problems dealt with are largely standard problems in calculus courses
at high school. However, the test does not give an answer to the question whether
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the ability to solve a task influenced the choice of the explanations based on the
basic mental models. Moreover, further research on the development of basic mental
models during university mathematics studies could help to clarify the results found
between first-year students and advanced students. The present study design was not
sufficient to answer this question, as this would require a longitudinal study.

7 Conclusions

From the results of these empirical studies, conclusions can be drawn in at least three
respects: firstly, with regard to the theoretical and empirical further development of
the concept of basic mental models, secondly with regard to the relationship between
basic mental models and representations or problem contexts, and finally and thirdly
with regard to mathematics teaching.

� A further development of the test should be discussed regarding the formulation
of the items related to the different basic mental models. Which characteristic for-
mulations express a certain basic mental model adequately in a specific situation?
Furthermore, the question arises which task types or problem contexts particu-
larly emphasise certain basic mental models. The main aim here is to increase the
discriminatory power between the different basic mental models.

� Regarding the relationship between basic mental models and representations or
problem contexts, the test performed here provides indications of the relationship
between the activation of a certain basic mental model and the specifics of tasks.
This concerns, for example, relationships between the tangent slope and graphical
representations, between the amplification factor and particularly distinct points
in graphical representations of functions, or between local linearity and contrast
examples of differentiable functions. More in-depth studies are necessary for the
local rate of change, in particular in relationship to applied situations. The results
obtained on a qualitative level need to be verified on an empirical level.

� Regarding mathematics teaching in school, learning environments are to be devel-
oped that focus on the development of certain basic mental models of the deriva-
tive. In particular with respect to the development of the basic mental model of the
rate of change, more application-oriented approaches should be chosen (Hitt and
Dufour 2021). However, this should be viewed as a long-term goal, as the current
findings do not yet provide empirically verified results.

Complementary to our results on basic mental models of the integral (Greefrath
et al. 2021b), more precise information about basic mental models of the derivative
could now be obtained. In a next step, the relationships to the academic performance
as well as between the constructs can also be examined.

Two important objectives are identified with regard to further studies. On the
one hand, it is the development of a test to verify basic mental models among
learners—both school students and university students. On the other hand, the aim
is to develop adequate teaching and learning strategies for the development of basic
mental models in mathematics lessons.
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8 Appendix

Table 14 Loadings of the
explorative factor analysis (cut
off 0.4; items without loading
>0.4 were removed)

Factor 1 Factor 2 Factor 3 Factor 4

Interpretation
of the
factors

“AF” “TS” “LL” “RC”

VF A1d 0.54 – – –

VF A2c 0.51 – – –

VF A3d 0.65 – – –

VF A4d 0.48 – – –

VF A5a 0.61 – – –

VF A6d 0.65 – – –

VF A7c 0.68 – – –

VF A8c 0.63 – – –

VF A9a 0.76 – – –

VF A10c 0.63 – – –

VF A11b 0.49 – – –

VF A12d 0.65 – – –

AR A1a – – – 0.62

AR A3a – – – 0.53

AR A7b – – – 0.43

AR A9b – – – 0.47

AR A12a – – – 0.65

AR A13c 0.52 – – –

VF A13d 0.67 – – –

TS A1b – 0.46 – –

TS A2a – 0.50 – –

TS A5c – 0.70 – –

TS A6a – 0.60 – –

TS A7d – 0.58 – –

TS A9d – 0.69 – –

TS A11a – 0.57 – –

TS A12b – 0.70 – –

TS A13a – 0.48 – –

LL A2b – – 0.54 –

LL A3c – – 0.42 –

LL A5b – – 0.71 –

LL A6b – – 0.75 –

LL A8a – – 0.65 –

LL A9c – – 0.52 –

LL A11c – 0.41 0.51 –

LL A12c – – 0.55 –

LL A13b – – 0.51 –
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Table 14 (Continued) Factor 1 Factor 2 Factor 3 Factor 4

Up to here, the factors are in line with the theory. The following
assignments differ from the theoretical predictions:

AR A2d 0.50 – – –

AR A4a 0.42 – – –

AR A11d 0.48 – – –
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