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Abstract

Background: As investigations of disease modifying drugs aim to slow down progression of Alzheimer’ disease
(AD) biomarkers to reliably track disease progression gain more importance. This is especially important as clinical
symptoms, including psychometric measures, are only modestly associated with the underlying disease pathology,
in particular at the pre-dementia stages. The decision which biomarkers to choose in clinical trials is crucial and
depends on effect size. However, longitudinal studies of multiple biomarkers in parallel that allow direct comparison on
effect size are scarce.

Methods: We calculated effect size and minimal sample size for three common imaging biomarkers of AD,
namely amyloid deposition measured with PiB-PET, neuronal dysfunction measured with FDG-PET and cortical
thickness measured with MRI in a prospective 24-month follow-up study in a monocentric cohort of early AD.

Results: Post hoc power calculation revealed large effect sizes of Cohen’s d for PiB-PET and cortical thickness
and a small effect size for FDG-PET (1.315, 0.914, and 0.341, respectively). Accordingly, sample sizes for PiB-PET
and cortical thickness required significantly smaller sample sizes than FDG-PET to reliably detect statistically
significant changes after 24 months in early AD (n = 7, n = 12, and n = 70, respectively).

Conclusion: Amyloid imaging with PET and measuring cortical thickness with MRI are suitable biomarkers to
detect disease progression in early AD within a small sample.
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Background
While there is still no definite treatment for the cause of
Alzheimer’s disease (AD), modifying therapies that aim
to slow down disease progression are under investiga-
tion. Primary endpoints in these trials are usually mea-
sures of cognitive functions such as the Alzheimer’s
Disease Assessment Scale - Cognitive Subscale (ADAS-
cog) [1] or the Clinical Dementia Rating Scale (CDR)
[2–5]. However, the progression of clinical symptoms
varies among patients with AD and is not always closely

associated with the progression of underlying disease,
namely beta-amyloid (Aβ) and tau deposition in conju-
gation with synaptic and neuronal loss [6]. The presenta-
tion of clinical symptoms could be modified by brain
cognitive reserve capacity [7] and other factors, for ex-
ample ceiling and floor effects of psychometric tests
such as the ADAS-Cog [8]. Thus, to assess the efficacy
of disease modifying therapies, biomarkers reflecting the
characteristic histopathological features of AD might be
more suitable than psychometric tests [9]. Biomarkers
for Aβ accumulation are positive uptake of an amyloid
tracer, such as 11C-Pittsburgh compound B (PiB), on
positron emission tomography (PET) and decreased
Aβ1–42 in cerebrospinal fluid (CSF) [6]. Biomarkers for
tau pathology include tau PET and CSF p-tau. Bio-
markers for neuronal dysfunction include specific
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regions with reduced 18F-fluordeoxyglucose (FDG) up-
take on PET, and for neuronal loss atrophy on magnetic
resonance imaging (MRI) and elevated t-tau protein in
CSF [6]. The vast majority of these biomarkers have
been studied in terms of specificity, validity, change over
time, and correlation with clinical symptoms and other
biomarkers [10–18]. However, there are only very few
long-term follow-up studies investigating more than two
biomarkers at multiple time points within the same pa-
tient cohort and not all biomarkers were available for all
subjects in these studies [19–21]. To our knowledge, no
previous study investigated effect sizes and minimal
samples sizes to detect changes of these biomarkers
within one monocentric cohort over time.
In this long-term predefined 24-month follow-up

study we set out to determine effect sizes and minimal
sample sizes for three imaging biomarkers in the same
monocentric Alzheimer’s disease cohort: Aβ deposition
measured with PiB-PET, neuronal dysfunction measured
with FDG-PET, and neuronal loss measured by cortical
thickness on MRI.

Methods
Ethics statement
The study protocol was approved by the German radi-
ation protection authority and the ethics committee of
the School of Medicine of the Technical University of
Munich, Munich, Germany (reference number 1285/05).
All patients provided written informed consent prior to
any study-specific procedures and all clinical investiga-
tions were conducted in accordance with the principles
of the Declaration of Helsinki.

Patient recruitment and study design
Patients were recruited from the outpatient clinic of the
Centre for Cognitive Disorders at the Department of
Psychiatry, Klinikum rechts der Isar, Technical Univer-
sity of Munich, School of Medicine, Munich, Germany.
They underwent a standardized diagnostic procedure in-
cluding a neuropsychological evaluation as described
previously [22]. This workup included an interview with
the patient and an informant, obtaining demographic
data, medical history, and concomitant medication as
well as physical, neurological, and psychiatric examina-
tions, a neuropsychological evaluation including the
Mini-Mental State Examination (MMSE) [23], the Con-
sortium to Establish a Registry for Alzheimer’s Disease
Neuropsychological Assessment Battery (CERAD-NAB)
[24], a routine laboratory screening test, and Apolipo-
protein E genotyping [25]. The severity of cognitive im-
pairment was rated on the Clinical Dementia Rating
scale sum of boxes (CDR-SOB) [26]. It is calculated by
adding the ratings of the individual domains of the CDR,
resulting in a sum-score between 0 and 18. This allows

for a finer gradation and monitoring of symptom pro-
gression than using the CDR-global score which gives
information about the over-all severity of dementia on a
scale between 0 and 3 [27, 28]. Accordingly, while
changes in individual categories increase the CDR-SOB
score the CDR-global score may remain unchanged. As
a consequence, associations between clinical worsening
of dementia and changes of individual biomarkers might
be missed.
Imaging procedures included cranial MRI to assess

structural brain abnormalities and cortical thickness,
cerebral FDG-PET to determine neuronal metabolic def-
icit, and cerebral PiB-PET to assess brain amyloid depos-
ition. All baseline assessments were completed within 1
month for each subject. Follow-up assessments were
planned to take place 24 months after the initial
evaluation.
In order to participate in this study, subjects needed to

have AD typical hypometabolism on FDG-PET [29], as
well as positive PiB uptake on visual analysis of the
scans. Scans were evaluated by an experienced nuclear
medicine specialist. All study participants met the Na-
tional Institute on Aging and Alzheimer’s Association
(NIA-AA) diagnostic criteria for early Alzheimer’s dis-
ease [6, 30], and can be placed in the Alzheimer’s con-
tinuum (A + T*(N)+: evidence of abnormal biomarkers
for Aβ and neuronal injury; a biomarker for tau is not
available as indicated by the asterisk) [31]. CDR-sum of
boxes (SOB) scores of the subjects ranged between
0.5–9.0.
Exclusion criteria were described previously [22] and

included other neurologic or psychiatric disorders, major
morphologic or vascular MRI abnormalities, and patients
with other possible causes of cognitive impairment such
as psychotropic medication or major abnormalities in
routine blood testing.

Brain imaging
Patients underwent cranial MRI examinations on a Sie-
mens 1.5 Tesla Magnetom Symphony scanner using a
standardized imaging protocol which consisted of a 3D
T1 dataset (TR 1520ms, TE 3.93 ms, 256 × 256 matrix,
flip angle 15°, 1 mm slices), axial T2 weighted turbo-
spin-echo images (TR 4510ms, TE 104 ms, 19 slices,
voxel dimensions 0.6 mm × 0.5 mm × 6.0 mm), coronal
T1 weighted spin echo images (TR 527ms, TE 17ms, 19
slices, voxel dimensions 0.9 mm × 0.9 mm × 6.0 mm), T2
weighted gradient echo images (TR 725, TE 29, 19 slices,
voxel dimensions 0.7 mm × 0.7 mm × 6.0 mm), and axial
FLAIR images (TR 9000 ms, TE 105 ms, TI 2500 ms, 3
mm slices). Datasets were normalized to the MRI MNI-
template in SPM8 to collect warping parameters for PET
images. FDG-PET images were obtained using a Sie-
mens ECAT HR+ PET scanner (CTI, Knoxville, Tenn.,
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USA). Subjects received 370MBq FDG at rest with eyes
closed. Patients were positioned with the head parallel to
the canthomeatal line within the gantry. Thirty minutes
after injection, PET imaging was performed under stand-
ard resting conditions (eyes closed in dimmed ambient
light). A sequence of one frame of 10 min and two
frames of 5 min was started and later summed into a
single frame. Image data were acquired in 3D mode with
a total axial field of view of 15.5 cm. A transmission scan
was acquired after completion of the emission scan for
attenuation correction [32]. PiB-PET examinations were
performed on the same scanner and followed a stan-
dardized protocol [33]. All patients were injected with
370MBq PiB at rest outside the scanner. 30 min later
they were placed in the scanner. At 40 mininutes post-
injection, three 10-min frames of data acquisition were
started and later summed into a single frame (40–70
min). Acquisition was carried out in 3D mode, and a
transmission scan was carried out to allow for later at-
tenuation correction.
The PiB and the FDG images were co-registered and

normalized to the MNI space using the warping parame-
ters of the MRI and smoothed using a Gaussian kernel
of 10 mm× 10mm × 10mm [34]. PiB-PET, FDG-PET,
and MRI of the brain were processed according to previ-
ously described standardized protocols using statistic
parametric mapping software 8 (SPM 8 Wellcome De-
partment of Cognitive Neurology, London, UK) in
MATLAB 12 (The MathWorks, Inc., Natick, Massachusetts,
USA) and FreeSurfer software Stable release version 5.1.0
[10, 14, 32, 34–37] (http://surfer.nmr.mhg.harvard.ed/;
http://www.freesurfer.net/fswiki/
VolmeRoiCorticalThickness).

Statistical analyses
To control for between-subjects differences in PiB up-
take, standardized uptake value ratios (SUVRs) were ob-
tained by calculating the cerebral to cerebellar vermis
(C/cv) ratio for each patient as demonstrated previously
[10, 34]. SUVRs of FDG uptake in AD signature regions
[38] were similarly obtained with the exception that the
pons was used as reference region (C/pons) [10]. The
anatomical ROIs were defined using an established tem-
plate [37]. For both PET modalities mean standard up-
take volume values were calculated for 100% of voxels
for each ROI.
Global cortical thickness score per participant was cal-

culated using the averaged cortical thickness values as
defined in the Desikan-Killiany-Tourville (DKT) proto-
col [39] in FreeSurfer software as described previously
[36].
Differences between baseline and follow-up examin-

ation for all patients, irrespectively of the clinical stage
within the AD continuum, were calculated for PiB

uptake, FDG uptake, cortical thickness, CDR-SOB and
MMSE and adjusted to a 24months follow-up period.
Based on mean values and standard deviations post-

hoc effect sizes (Cohen’s d) and minimal sample sizes
(n) to detect a statistically significant change (two-tailed
test, α = 5%, β = 20%) of each biomarker were calculated
using G*power 3.1 [40, 41].

Results
Patients
The early AD patient sample is described in Table 1.

Effect sizes of imaging biomarkers and minimal sample
sizes
Post hoc power calculation for PiB-PET, FDG-PET, and
cortical thickness revealed effect sizes of Cohens’s d =
1.315, 0.341, and 0.914, respectively. Accordingly, sample
sizes of at least n = 7 for PiB-PET, n = 70 for FDG-PET,
and n = 12 for cortical thickness are required to detect
statistically significant changes of AD imaging bio-
markers over time with a power of 80% (α = 5%, β =
20%). Results of global imaging data and power analyses
for effect sizes and minimum sample sizes are shown in
Table 2 and Fig. 1.

Discussion
Post hoc power calculation revealed large effect sizes for
PiB-PET and cortical thickness, and a smaller effect size
for FDG-PET with regards to sensitivity to pick up AD
progression over a pre-defined follow-up interval of 24
months in an early AD sample. Although true effect
sizes tend to be overestimated in smaller samples and
therefore minimum sample sizes would probably need to
be larger than estimated based on our results, amyloid
PET and cortical thickness require markedly smaller
sample sizes compared to FDG-PET to monitor AD dis-
ease progression with surrogate biomarkers.
The strengths of our study include long-term follow-

up data of three imaging biomarkers measured in paral-
lel within a monocentric sample. Follow-up occurred
after a predefined interval of 24 months. We specifically
defined inclusion and exclusion criteria, biomarkers, and
the interval between baseline and follow-up to match tri-
als investigating disease modifying drugs in early AD.
Hence, our results might contribute to selecting bio-
markers and estimate sample sizes for tracking pathog-
nomonic AD changes by surrogate biomarkers in future
AD trials.
The strength of a monocentric sample might also be

conceived as a limitation as clinical trials are multi-
centric. The biggest limitation, however, is the sample
size. While the number of participants is sufficient for
the applied statistics, results would be more robust using
larger sample sizes from multiple centres. Although we
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aimed for the follow-up examination to take place after
24 months in some cases this was not obtainable. We
adjusted for time deviations assuming a linear change
which could be debated [42]. According to the model of
Jack et al. biomarkers in AD change in a specific order
over the course of the disease [42]. In this study, differ-
ent measures typically showing more or less dynamic
changes during the stage of early AD were assessed. At
this point, it is important to keep in mind that we did
not set out to compare how well suited the individual

biomarkers are to support the diagnosis of AD pathology
rather than to investigate how well they are suited to
show progression in an early AD cohort such as it would
be recruited for a clinical trial. In addition, one could
argue that there might be better ways to analyse the
imaging measures. Chen et al. and Su et al. both saw sig-
nificantly greater power to detect Aβ increase on amyl-
oid PET after 24 months when using cerebral-to white
matter SUVR changes instead of using the cerebellum as
reference region [18, 43]. Also other factors influencing
the rate of amyloid accumulation such as white matter
hyperintensities [44], baseline SUVR [45], and the status
of markers for amyloid and neuronal injury at baseline
[21] would have to be taken into account when planning
biomarker assessments for a clinical trial. Chen et al. cal-
culated minimal sample sizes for an assumed 12-month
clinical trial. Comparable to the results of our study
samples of n = 8 for Aβ positive subjects with probable
Alzheimer’s dementia and n = 13 for Aβ positive subjects
with MCI would be necessary to detect a 25% decrease
of Aβ SUVR [18]. Considering the high sensitivity and
specificity of FDG-PET to detect AD [46] we were sur-
prised by its comparably small effect size regarding mon-
itoring of disease progression. A possible explanation
could be the method of evaluating FDG uptake. In
contrast to amyloid PET where there is no or minimal
specific tracer uptake in the reference region SUVRs for
FDG-PET are obtained using a reference region with
specific tracer uptake. Although reference regions
chosen for FDG-PET are thought to be less affected by
Alzheimer’s disease, in a complex network system like
the brain, neuronal activity in one region might affect
neuronal activity in other regions and thus could pos-
sibly affect uptake in the reference region and conse-
quently SUVRs between baseline and follow-up. While
results from dynamic tracer imaging might be more

Table 1 Patients characteristics

Number of subjects (n) 17

Male / Female 10 (58.8%) / 7 (41.2%)

Early AD (MCI due to AD /
mild dementia due to AD)

9 (52.9%) / 8 (47.1%)

Mean ± SD (Min – Max)

Age at BL [years] 66.76 ± 6.34 (55–77)

Time to follow-up [months] 26.59 ± 2.21 (23–30)

CDR-global (BL) 0.70 ± 0.25 (0.5–1)

ΔCDR-global after 24 months 0.46 ± 0.51 (0.5–2)

CDR-SOB (BL) 4.09 ± 2.12 (0.50–9.00)

ΔCDR-SOB after 24 months 2.29 ± 2.74 (− 2.09–6.92)

MMSE (BL) 23.65 ± 3.39 (16–28)

ΔMMSE within 24 months −4.64 ± 4.59 (− 13.33–2.88)

ApoE ε4 allele carrier status
Homozygous/ heterozygous/ non-carrier

3 / 8 / 6

MCI Mild cognitive impairment, AD Alzheimer’s disease, SD Standard deviation,
min Minimum, max Maximum, BL Baseline, CDR-SOB Clinical dementia rating
scale-sum of boxes, Δ Changes between baseline and follow up adjusted to a
24 months follow up period, negative values indicate decrease, positive values
indicate increase compared to BL, MMSE Mini-mental state examination, ApoE
Apolipoprotein E

Table 2 Biomarker characteristics

Mean ± SD
(Min - Max)

Effect size
(Cohen’s d)

Minimal
sample size
(n)

FDG AD-ROIs/pons (BL) 1,28 ± 0.15
(1.01–1.51)

Δ (FDG AD-ROIs/pons)
within 24 months

−0.05 ± 0.15
(− 0.37–0.32)

0.341 70

PiB global/cerebellar vermis
(BL)

1.63 ± 0.22
(1.37–2.16)

Δ (PiB global/cerebellar
vermis) within 24 months

0.12 ± 0.09 (−
0.05–0.25)

1.315 7

Cortical thickness global (BL)
[mm]

2.31 ± 0.23
(1.87–2.80)

Δ Cortical thickness global
within 24 months [mm]

−0.14 ± 0.15
(− 0.45–0.11)

0.914 12

SD Standard deviation, min Minimum, max Maximum, FDG 18F-
fluordeoxyglucose, AD-ROIs Alzheimer’s disease signature regions of interest,
BL At baseline, PiB 11C-Pittsburgh compound B, global Region of interest
equals entire grey matter, Δ Changes between baseline and follow up
adjusted to a 24 months follow up period, negative values indicate decrease,
positive values indicate increase compared to BL

Fig. 1 Effect sizes and minimal sample sizes based on post-hoc
power calculations for the individual biomarkers to monitor disease
progression in early AD in a prospective 24-month follow-up study.
n: number; FDG-PET: 18F-fluordeoxyglucose positron emission
tomography; PiB-PET: 11C-Pittsburgh compound B (PiB)
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robust acquiring this data is more complex and necessi-
tates invasive procedures such as arterial blood lines.
Under the consideration of patients’ safety and feasibility
it might not be a suitable approach during a clinical
trial.
Lastly, the selection of and the confinement to imaging

markers could be debated. Despite already comparing
three different biomarkers in the same highly charac-
terised cohort, other biomarkers such as tau-PET, CSF
or blood based biomarkers might be even more powerful
to monitor disease progression. Although we did not in-
vestigate any of the 18F-labeled tracers for Aβ it can be
reasoned that results would be similar to the results we
described for 11C labelled PiB-PET. However, this would
have to be further investigated.

Conclusion
When considering study designs amyloid imaging with
PET and measuring cortical thickness with MRI are
powerful biomarkers requiring relatively small sample
sizes to monitor disease progression in early AD.
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