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The advent of IoT devices in combination with Human Activity Recognition (HAR)

technologies can contribute to battle with sedentariness by continuously monitoring the

users’ daily activities. With this information, autonomous systems could detect users’

physical weaknesses and plan personalized training routines to improve them. This

work investigates the multimodal fusion of smartwatch sensor data for HAR. Specifically,

we exploit pedometer, heart rate, and accelerometer information to train unimodal and

multimodal models for the task at hand. The models are trained end-to-end, and

we compare the performance of dedicated Recurrent Neural Network-based (RNN)

and Convolutional Neural Network-based (CNN) architectures to extract deep learnt

representations from the input modalities. To fuse the embedded representations when

training the multimodal models, we investigate a concatenation-based and an outer

product-based approach. This work explores the harAGE dataset, a new dataset for

HAR collected using a Garmin Vivoactive 3 device with more than 17 h of data. Our best

models obtain an Unweighted Average Recall (UAR) of 95.6, 69.5, and 60.8% when

tackling the task as a 2-class, 7-class, and 10-class classification problem, respectively.

These performances are obtained using multimodal models that fuse the embedded

representations extracted with dedicated CNN-based architectures from the pedometer,

heart rate, and accelerometer modalities. The concatenation-based fusion scores the

highest UAR in the 2-class classification problem, while the outer product-based fusion

obtains the best performances in the 7-class and the 10-class classification problems.

Keywords: artificial intelligence, human activity recognition, multimodal fusion, ubiquitous computing,

smartwatch sensor data

1. INTRODUCTION

According to the World Health Organization (WHO), physical inactivity is a serious public health
concern with serious implications in people’s health, as it can be a risk factor for diabetes,
depression, high blood pressure, or obesity. Physical activity is beneficial not only for physical
health, but also for wellbeing (Fox, 1999; Penedo andDahn, 2005). Hence, there is a need to develop
new, digital, and personalized tools that engage their users to exercise with the goal to have a more
active, and healthier life. The research performed on the field ofHuman Activity Recognition (HAR)
can contribute to achieve this goal. This field of knowledge aims to develop technologies able to
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recognize and, therefore, monitor the activities that users do. The
exploitation of this information has a wide range of applications
in many different domains, such as healthcare, fitness, athletics,
elderly care, security, or entertainment.

Commercial smartphones are equipped with embedded
sensors, including accelerometers and gyroscopes, which make
them suitable to recognize human activities (Khan et al., 2010;
Bayat et al., 2014; Chen and Shen, 2017). Previous works in the
literature explored different machine learning techniques, such
as hidden Markov models (Ronao and Cho, 2014), unsupervised
learning (Kwon et al., 2014), and deep learning (Ronao and
Cho, 2016; Hassan et al., 2018) for HAR using smartphone
sensor data. Smartwatches are a high-potential device for this
task as well (Weiss et al., 2016; Shahmohammadi et al., 2017;
Mekruksavanich and Jitpattanakul, 2020) because of their market
penetration in society, which is increasing every year, and
the embedded sensors they contain, which can be used to
retrieve pedometer, photoplethysmographic, and accelerometer
measurements (Lara et al., 2012). Furthermore, their location on
the users’ wrist seems advantageous to capture human activities.

This work investigates the multimodal fusion of pedometer,
heart rate, and accelerometer information to train end-to-
end models for HAR. One of the goals of this work is to
determine which modalities are more suitable to be fused for
the task at hand. Based on the tensor fusion layer presented by
Zadeh et al. (2017), we propose using an outer product-based
approach to fuse the embedded representations of the input
modalities. The performance of this approach is compared with
a concatenation-based approach, which we use as a baseline.
The embedded representations of the input modalities are learnt
using dedicated Recurrent Neural Network-based (RNN) or
Convolutional Neural Network-based (CNN) architectures. Our
experiments explore the harAGEdataset, a new smartwatch-
based HAR dataset collected using a Garmin Vivoactive 3 device.
The dataset contains more than 17 h of data from 19 participants
while lying, sitting, standing, washing hands, walking, running,
climbing stairs, doing strength and flexibility workout activities,
and cycling.

The rest of this article is laid out as follows. Section 2 first
highlights relevant related works in the literature. Section 3
presents the dataset employed, while Section 4 describes the
methodology followed. Section 5 analyzes the results obtained
from the experiments performed, and Section 6 concludes this
article and suggests some future work directions.

2. RELATED WORK

The problem of HAR is an active topic in the research
community. A large body of knowledge has tackled the problem
from a computer vision perspective (Khaire et al., 2018; Qi et al.,
2018), exploiting color, depth, and even skeletal information.
We can consider these as passive approaches, as they require
cameras overseeing the scene to perform inferences. On the other
side, we can consider as active approaches those that use body-
worn sensors for recognizing human activities. In this case, the
sensors themselves experience the activities, and, therefore, the

FIGURE 1 | Diagram illustrating the infrastructure implemented to collect the

harAGEdataset and the technologies used to transfer the data between the

involved nodes. The front-end design of the customized smartwatch app is

depicted on the left.

sensormeasurements can be directly used to infer them. Research
on this topic has been conducted using dedicated heart rate
sensors (Tapia et al., 2007), inertial/magnetic sensors (Altun and
Barshan, 2010), or accelerometer sensors (Lin et al., 2018).

A wide range of sensors are embedded in consumer, smart
devices nowadays, including smartphones and smartwatches.
Their high penetration in society has motivated the use of data
collected with such devices for HAR purposes (Ahmed et al.,
2020; Ashry et al., 2020; Mekruksavanich and Jitpattanakul,
2020; Wan et al., 2020). From a user-centered perspective,
the field of HAR has traditionally focused on recognizing
the activities individuals do. Nevertheless, recent works are
considering the problem from a Multi-user Activity Recognition
(MAR) perspective, which addresses the activities that a group of
individuals do to achieve a common goal (Li et al., 2020).

Multimodal approaches have been used in a wide variety
of problems and applications to complement and enrich the
information embedded in a single modality. Different fusion
techniques, from simple to complex, have been explored
for this purpose. Examples of simple fusion techniques
include the element-wise sum or product of the features
extracted from different modalities, or even their simple
concatenation. Among themore complex techniques, researchers
have investigated circulant fusion (Wu and Han, 2018), gated
fusion (Kim et al., 2018), memory (Priyasad et al., 2021),
graph neural networks (Holzinger et al., 2021), and even
transformers (Prakash et al., 2021).

3. DATASET

This work explores the first version of harAGE : a new
smartwatch-based dataset for HAR collected using a
customized smartwatch app running on a Garmin Vivoactive
3 device (Mallol-Ragolta et al., 2021). The app reads the
accelerometer, the heart rate, and the pedometer information
available from the built-in embedded sensors. While the
accelerometer information is sensed at 25Hz, the sampling rate
of the heart rate and the steps information is 1Hz. The back-end
of the smartwatch app encapsulates the data into a JSON
message, which is sent in close to real-time into a customized,
encrypted, and secure server via the Internet using the HTTPS
protocol (cf. Figure 1).
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TABLE 1 | Summary of the activities included in the harAGEdataset, the number

of participants collected for each activity, and the amount of data available

time-wise.

Activity Participants Duration

(HH):MM:SS

Resting 19 1:25:24

Lying 19 1:39:01

Sitting 18 1:31:25

Standing 18 1:35:51

Washing hands 18 53:40

Walking 18 2:23:59

Running 16 1:58:28

Stairs climbing 18 2:17:23

Strength Workout 18 53:05

Flexibility Workout 18 56:50

Cycling 13 1:36:40

∑

19 17:11:46

The recruited participants followed a protocol especially
designed for the collection of the harAGEdataset. The
participants started with a resting phase during 5 min to
collect their heart rate at rest, avoiding stressors and external
stimuli. This measurement can be used as the baseline heart
rate for each individual participant. Then, they performed a
sequence of static activities including lying, sitting, and standing.
These three activities were performed twice: first without
moving, and then allowing reasonable free movements. Each
one of these activities was performed during 3 min. Next, we
asked participants to simulate washing their hands, without
running water, also for 3 min. Although this activity was rarely
included in previous HAR datasets found in the literature, the
current pandemic context and the favorable placement of the
smartwatch in the participants’ wrist motivated its inclusion in
the data collection protocol.

The following dynamic activities were included next in
the protocol: walking, running, climbing stairs (both upstairs
and downstairs), and cycling. Furthermore, each one of these
activities was performed three times at low, moderate, and high
intensities during 3 min each. Intensity levels are subjective, as
these depend on several factors, such as the previous physical
condition of the participants. Thus, to capture this variability in
our dataset, we relied on the participants themselves to set their
own thresholds for each intensity level. Before the cycling set
of activities, we incorporated a set of workout activities in the
protocol. These activities included two sets of strength workout
activities (squats and arm raising exercises), and two sets of
flexibility workout activities (shoulder roll and wrist stretching
exercises). These four activities were performed for 1.5 min each.

To guarantee the safety measures against the COVID-19
pandemic, the dataset was mainly collected outdoors. This
scenario posed a challenge, as the data transfer between the
smartwatch and the server when the participants were outdoors
was performed via the 4G connection of the smartphone

with which the smartwatch was paired. The back-end of the
smartwatch app discards the old measurements unsuccessfully
sent to the server as a preventive measure to avoid running
out of memory because of an overflow of the internal buffers
implemented to temporarily store the sensed measurements
before being transmitted. As the 4G connection might slow
down the data transmission, the amount of measurements
buffered might be larger and, therefore, prone to losses. This was
the reason why the measurements received from each activity
occasionally contained discontinuities. As a pre-processing stage
and to ensure the continuous stream of information, we trimmed
the received data into segments of at least 20 s of consecutive
sensor measurements. These segments are then used to populate
the dataset.

This first version of the harAGEdataset contains 17 h 11min
46 s of data from 19 participants (9 f, 10m), with a mean
age of 41.73 years and a standard deviation of 7.97 years.
Before the data collection, participants read and signed an
Informed Consent Form (ICF), which was previously approved
by the competent ethics committee. A summary of the
different activities considered in the dataset, and the amount
of data available for each activity is provided in Table 1. Some
participants partially completed the activities included in the
protocol because of data transmission issues, or the impossibility
to get access to a bike for the cycling-related activities.

4. METHODOLOGY

This section presents the methodology followed in this work to
train end-to-end models for HAR using multimodal smartwatch
data (cf. Figure 2). Section 4.1 describes the pre-processing
applied to the raw measurements, Section 4.2 introduces
the models implemented, and Section 4.3 summarizes their
training details.

4.1. Data Preparation
In this passage, we describe the pre-processing applied to the
raw measurements, which is different for each modality. After
the pre-processing stage, the resulting information from each
modality is segmented using windows of 20 s length and a 50%
overlap or without overlap, depending on whether the data is
used for training or testing purposes, respectively. While each
window contains 20 data points for the pedometer and the
heart rate measurements, it contains 500 data points for the
accelerometer measurements. The pre-processing applied to each
modality is described below.

4.1.1. Pedometer Measurements

The Garmin Vivoactive 3 device allows retrieving the number
of steps performed by the user since midnight. The absolute
number of steps is not a suitable feature to model the current
human activity, as the cumulative effect caused by the nature of
the embedded sensor conditions themeasurements. For instance,
a high number of steps does not necessarily mean that the user
is currently exercising, as the physical activity might have taken
place a while—or even a long—ago. Instead, we hypothesize
that the first and the second order derivatives computed from
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FIGURE 2 | Block diagram illustrating the system implemented, which receives the measurements from the pedometer, heart rate, and accelerometer modalities, and

outputs the probability of the current sample to belong to the different activities considered.

the absolute number of steps could be more suitable features to
characterize the users’ activities, as these could model the velocity
and the acceleration of the users’ steps instantaneously. Hence, in
our experiments, we use the first and the second order derivatives
of the pedometer information as the features to extract from
this modality.

4.1.2. Heart Rate Measurements

The characteristics of the human heart while exercising are
person-dependent, as they might depend on a wide range
of variables, including age, physical condition, or existing
pathologies, among others. To remove this personal bias from
our data, we compute the median of the heart rates collected
from each participant during the resting activity individually
and use this measurement as the personal, baseline heart rate.
We opt for computing the median to avoid considering the
outliers in the raw measurements. The heart rate measurements
collected from all the activities performed by each participant
are debiased using the corresponding personal, baseline heart
rate. For this modality, we also compute the first and the
second order derivatives of the debiased heart rate signals in
order to better characterize their dynamics over time. Finally,
we normalize the debiased heart rate signal by a factor of
220 BPM (beats per minute), which is widely considered as
the maximum heart rate of a human being. Although the
maximum heart rate is age-dependent from a theoretical point
of view (Fox and Naughton, 1972), we disregard this factor and
apply the same normalization parameter to all participants in the
dataset. Therefore, in our experiments, we use the first and the
second order derivatives of the debiased heart rate signals, and
their normalized representation as the features to extract from
this modality.

4.1.3. Accelerometer Measurements

It is sometimes possible to identify a person just by the way
how she or he walks or moves. This observation leads us

to hypothesize that the accelerometer measurements collected
using a smartwatch can contain personal information that might
interfere in the intrinsic movements of the activities considered
in the harAGEdataset. To overcome this issue, we first read
all the accelerometer measurements available in the dataset for
each individual user separately and compute the median of
the measurements in the x-, y-, and z-axes. We then use this
information to debias the raw accelerometer measurements in
a personalized manner. A 1-dimensional Gaussian filter, using
a Gaussian kernel with a standard deviation of 1, is used to
remove noises and smooth the accelerometer measurements in
the 3 different axes separately (Zhuang and Xue, 2019). We
finally compute the first and the second order derivatives of
the debiased, filtered accelerometer measurements in order to
better characterize the dynamics of this modality over time. Thus,
in our experiments, we use the debiased, filtered accelerometer
measurements and their first and second order derivatives as the
features to extract from each axis of this modality.

4.2. Models Descriptions
The end-to-end models implemented in this work are composed
of three different blocks: (i) the first block extracts dedicated deep
learnt representations from the modality-dependent sequence
of features defined in Section 4.1 (cf. Section 4.2.1), (ii) the
second block, which is enabled when trainingmultimodal models
only, is in charge of fusing the embedded representations of
the modalities selected (cf. Section 4.2.2), and (iii) the third and
final block is responsible for performing the actual classification
(cf. Section 4.2.3).

4.2.1. Deep Features Extraction

This block in the architecture is modality-specific; i. e. , a
dedicated feature extraction block processes the sequences
of features from each modality separately. We compare two
different network architectures for this task: an RNN, and a
CNN. We use RNNs and CNNs as deep feature extractors,
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TABLE 2 | Summary of the descriptive statistics (µ: mean, σ : standard deviation)

computed from the UAR scores obtained when assessing the unimodal and the

multimodal binary classification-based end-to-end models using nested

LOSO-CV.

UAR [%]
RNN CNN

µ σ µ σ

f steps 88.6 9.7 88.4 9.2

f hr 82.8 15.2 85.2 12.4

f xyz 70.2 19.3 90.9 13.5

f steps⊕hr 91.0 13.0 94.7 8.4

f steps⊗hr 92.9 7.2 91.8 13.7

f steps⊕xyz 89.3 13.2 91.5 13.2

f steps⊗xyz 88.6 12.8 88.3 11.4

f hr⊕xyz 85.8 14.4 95.2 8.3

f hr⊗xyz 86.6 14.1 92.6 13.2

f steps⊕hr⊕xyz 93.7 6.4 95.6 5.5

f steps⊗hr⊗xyz 90.5 15.1 95.4 4.6

The results compare the use of an RNN-based and a CNN-based architecture to extract

deep learnt representations from the input modalities, and the fusion of the embedded

representations in the multimodal models using a concatenation-based (represented with

⊕) and an outer product-based (represented with ⊗) approach. The bold values highlight

the best results using each architecture.

since they have been extensively used in the literature for such
purpose. The RNN implements a single layer, bidirectional Gated
Recurrent Unit-Recurrent Neural Network (GRU-RNN) with 8
hidden units. The CNN implements a single 1-dimensional
convolutional layer with 8 filters, a kernel size of 2, and a stride of
1. Following this convolutional layer, we use 1-dimensional batch
normalization, and the output is transformed using a Rectified
Linear Unit (ReLU) function. A 1-dimensional adaptive average
pooling layer is implemented at the end of this convolutional
block, so it produces 2 features per filter. The parameters of
the RNN- and the CNN-based architectures are designed, so
they both produce 16 deep learnt features at the output. This
way, we can fairly compare the performances between both
approaches. The dimensionality of the deep learnt features is
also engineered, so the resulting embeddings from the outer
product-based fusion when training the multimodal models have
a reasonable dimensionality in terms of computational cost.

4.2.2. Multimodal Fusion

One of the goals of this work is to investigate the suitability of
using an outer product-based approach to fuse the embedded
presentations learnt from different modalities in the problem
of HAR. As a baseline, we use the simplest fusion method:
the inner concatenation of the deep learnt representations from
each modality. Representing these embedded representations
for the pedometer, heart rate, and accelerometer modalities as
f steps, f hr , and f xyz , respectively, we mathematically define the
concatenation-based fusion as:

FIGURE 3 | Confusion matrix computed from the predictions inferred using

the RNN-based approach exploiting f steps⊕hr⊕xyz as input features. The static

class includes the lying, sitting, and standing activities, while the dynamic class

includes the walking, running, stairs climbing, and cycling activities. Each cell

contains the absolute and the relative number of samples of the actual class

(row) classified into each possible activity of the recognition set (column). The

relative information is also depicted using a color-scale: dark colors illustrate

high percentages, while light colors, low percentages.

TABLE 3 | Summary of the descriptive statistics (µ: mean, σ : standard deviation)

computed from the UAR scores obtained when assessing the unimodal and the

multimodal standard HAR-based end-to-end models using nested LOSO-CV.

UAR [%]
RNN CNN

µ σ µ σ

f steps 30.2 11.1 30.7 5.6

f hr 32.9 5.3 34.6 5.9

f xyz 40.6 16.5 56.9 14.9

f steps⊕hr 51.4 10.1 47.7 13.7

f steps⊗hr 55.8 12.5 50.7 12.8

f steps⊕xyz 53.7 16.1 52.3 10.7

f steps⊗xyz 58.2 11.4 58.2 7.3

f hr⊕xyz 59.9 15.6 62.8 16.8

f hr⊗xyz 62.5 12.6 68.3 13.7

f steps⊕hr⊕xyz 59.7 14.8 69.5 14.4

f steps⊗hr⊗xyz 57.0 11.3 69.5 12.2

The results compare the use of an RNN-based and a CNN-based architecture to extract

deep learnt representations from the input modalities, and the fusion of the embedded

representations in the multimodal models using a concatenation-based (represented with

⊕) and an outer product-based (represented with ⊗) approach. The bold values highlight

the best results using each architecture.
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FIGURE 4 | Confusion matrix computed from the predictions inferred using the CNN-based approach exploiting f steps⊗hr⊗xyz as input features. Each cell contains the

absolute and the relative number of samples of the actual class (row) classified into each possible activity of the recognition set (column). The relative information is

also depicted using a color-scale: dark colors illustrate high percentages, while light colors, low percentages. Empty cells indicate no samples from the actual activity

are classified into the corresponding class.

f steps⊕hr⊕xyz =





f steps
f hr
f xyz



 . (1)

The dimensionality of the resulting embedded representation
from the concatenation-based fusion is R

16×m, where m
indicates the number of modalities to be fused. When all three
modalities are fused together (m = 3), the resulting embedded
representation is ∈ R

48. The outer product-based fusion
proposed is inspired by the tensor fusion layer presented by
Zadeh et al. (2017) and can be mathematically defined as:

f steps⊗hr⊗xyz =

[

f steps
1

]

⊗

[

f hr
1

]

⊗

[

f xyz
1

]

. (2)

When the three modalities are fused together, the outer product
generates a cube with the following properties: (i) the original
representations are preserved in the edges of the cube, (ii) each
face of the cube contains information from the fusion of two
modalities, and (iii) the inner part of the cube fuses information
from the three modalities all together. The fused representation

is flattened before being fed into the final, classification block
of the network. The dimensionality of the resulting embedded
representation from the outer product-based fusion is R(16+1)m .
When all three modalities are fused together (m = 3), the
resulting embedded representation is ∈ R

4913.

4.2.3. Classification

The classification block of the network implements two fully
connected layers, preceded by a dropout layer with probability
0.3. The number of input neurons in the first fully connected
layer depends on the number of modalities to be fused during
the training process. The output of this layer produces a 16-
dimensional representation, which is transformed using a ReLU
activation function. This transformed representation is fed into
the second fully connected layer, which contains asmany neurons
at the output as activities we need to classify our samples into, and
uses a Softmax activation function. This way, the network outputs
can be interpreted as probability scores.

4.3. Networks Training
For a fair comparison among the models, these are all trained
under the exact same conditions. The pseudorandom number
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TABLE 4 | Summary of the descriptive statistics (µ: mean, σ : standard deviation)

computed from the UAR scores obtained when assessing the unimodal and the

multimodal multi-class harAGE-based end-to-end models using nested LOSO-CV.

UAR [%]
RNN CNN

µ σ µ σ

f steps 21.1 7.7 20.7 8.3

f hr 23.6 3.9 24.1 4.7

f xyz 34.3 11.7 43.4 12.5

f steps⊕hr 38.2 9.1 33.2 9.1

f steps⊗hr 38.5 9.2 35.8 9.1

f steps⊕xyz 46.5 10.4 41.3 11.1

f steps⊗xyz 47.4 10.5 51.0 12.5

f hr⊕xyz 46.3 12.9 46.8 11.6

f hr⊗xyz 48.7 12.9 60.5 13.6

f steps⊕hr⊕xyz 56.6 10.1 54.8 13.3

f steps⊗hr⊗xyz 49.7 9.6 60.8 12.8

The results compare the use of an RNN-based and a CNN-based architecture to extract

deep learnt representations from the input modalities, and the fusion of the embedded

representations in the multimodal models using a concatenation-based (represented with

⊕) and an outer product-based (represented with ⊗) approach. The bold values highlight

the best results using each architecture.

generator is seeded at the initialization of the models for
reproducibility purposes. The networks are trained to minimize
the Categorical Cross-Entropy Loss, using Adam as the optimizer
with a fixed learning rate of 10−3. The metric selected to compare
the inferred and the ground truth information is the Unweighted
Average Recall (UAR). This metric allows us to account for
the potential imbalance of the windowed sequences of data
generated for the different activities. Hence, we define (1 −

UAR) as the validation error to monitor the training progress.
Network parameters are updated in batches of 64 samples and
trained during a maximum of 150 epochs. We implement an
early stopping mechanism to stop training when the validation
error does not improve for 20 consecutive epochs. To assess
the models, we follow a nested Leave-One-Subject-Out Cross-
Validation (LOSO-CV) approach, splitting the data in the inner
loop into 5 participant-independent folds. Each fold in the inner
loop is trained during a specific number of epochs. Therefore,
when modeling all the training material in the outer loop and
to prevent overfitting, the training epochs are determined by
computing the median of the training epochs processed in each
fold. The resulting model is tested on the initially excluded
participant. In compliance with the LOSO-CV approach, we
apply this routine recursively, so each participant in the dataset
can be used to test the performance of the trained models.

5. EXPERIMENTAL RESULTS

This section summarizes the experiments performed in this
work and analyzes the results obtained. The resting activity is

excluded from our experiments as, from a conceptual point
of view, it can overlap with the lying, sitting, and standing
activities. Nevertheless, the information collected during the
resting activity is used in the context of our study to compute the
personal, baseline heart rate (cf. Section 4.1.2). The pedometer
information from 3 participants included in this first version
of the harAGEdataset is corrupted. Consequently, we exclude
all the data from these participants to train the models object
of this study. We assess the performance of the models
described in Section 4.2 from three different perspectives.
Section 5.1 addresses the task as a binary classification problem.
For this, we cluster the original activities into those that are
static and those that are dynamic. We exclude the samples
corresponding to the washing hands, strength workout, and
flexibility workout activities. Section 5.2 tackles the recognition
of the standard HAR dataset. In this case, we aim to model
the lying, sitting, standing, walking, running, stairs climbing,
and cycling activities and, therefore, we formulate the task as
a 7-class classification problem. Finally, Section 5.3 addresses
the task as a 10-class classification problem, targeting the
automatic recognition of the whole set of activities considered
in the harAGEdataset. Model performances are assessed by
computing the UAR between the inferred and the ground
truth annotations.

5.1. Binary Classification
The results obtained when tackling the task as a binary
classification problem are summarized in Table 2. Analyzing
the results, we observe that the multimodal models improve
the performance of the unimodal models in most of the cases
investigated. Comparing the performance of the multimodal
models using the concatenation-based and the outer product-
based approaches, the results indicate the suitability of the
concatenation-based approach in this context, as it outperforms
the outer product-based approach in 6 out of the 8 scenarios
compared. When using the RNN-based architecture to extract
deep learnt representations from the input modalities, the best
UAR of 93.7% is obtained with the model exploiting the
pedometer, the heart rate, and the accelerometer modalities fused
using the concatenation-based approach. The highest UAR of
95.6% is achieved by the CNN-based architecture exploiting the
three modalities together fused using the concatenation-based
approach. The confusion matrix computed by comparing the
activities inferred by this model and the ground truth annotations
is depicted in Figure 3.

5.2. Standard HAR Classification
The results obtained when tackling the task as a 7-class
classification problem are summarized in Table 3. The first
observation of the results allows us to state that the multimodal
models outperform the unimodal models in most of the cases
investigated. The multimodal models using the RNN-based
architecture to extract deep learnt representations from the
input modalities and fusing the embedded information with
the outer product-based approach surpass the models using the
concatenation-based fusion in 3 out of the 4 scenarios compared.
The multimodal models using the CNN-based architecture and
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FIGURE 5 | Confusion matrix computed from the predictions inferred using the CNN-based approach exploiting f steps⊗hr⊗xyz as input features. Each cell contains the

absolute and the relative number of samples of the actual class (row) classified into each possible activity of the recognition set (column). The relative information is

also depicted using a color-scale: dark colors illustrate high percentages, while light colors, low percentages. Empty cells indicate no samples from the actual activity

are classified into the corresponding class.

fusing the embedded representations with the outer product-
based approach improve the performance of the concatenation-
based fusion in 4 out of the 4 cases compared. Although the
f steps⊕hr⊕xyz and the f steps⊗hr⊗xyz models obtain the same mean
from the individual UAR scores, the variance associated to the
latter is lower. Hence, we consider the f steps⊗hr⊗xyz model as the
better of the two. The model using the RNN-based architecture
with the highest UAR score of 62.5% fuses the heart rate, and the
accelerometer modalities with the outer product-based approach.
The model with the highest UAR of 69.5% implements the
CNN-based architecture and fuses the pedometer, the heart rate,
and the accelerometer modalities with the outer product-based
approach. The confusion matrix computed by comparing the
activities inferred by this model and the ground truth annotations
is depicted in Figure 4.

5.3. Multi-Class harAGE Classification
The results obtained when tackling the task as a 10-class
classification problem are summarized in Table 4. The results
obtained indicate that the multimodal models surpass the
unimodal models in most of the cases. From the results, we
also observe that the multimodal models fusing the embedded

representations with the outer product-based approach
outperform the concatenation-based fusion in all the cases
investigated with one exception: the multimodal RNN-based
network fusing the pedometer, heart rate, and accelerometer
information using the concatenation-based approach surpasses
the outer product-based fusion. The model with the best
performance using the RNN-based architecture scores a UAR
of 56.6%, exploiting the pedometer, the heart rate, and the
accelerometer modalities fused with the concatenation-based
approach. The highest UAR of 60.8% is obtained with the
CNN-based model that fuses the pedometer, the heart rate, and
the accelerometer modalities using the outer product-based
approach. The confusion matrix computed by comparing
the activities inferred by this model and the ground truth
annotations is depicted in Figure 5. As it can be seen in the
confusion matrix, the strength and the flexibility workout
activities are the most difficult ones to be recognized and cause
the highest confusion. While the samples corresponding to the
strength workout activities tend to be misclassified into the stairs
climbing and the cycling activities, the samples corresponding to
the flexibility workout activities tend to be mainly misclassified
into the stairs climbing activity.
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6. CONCLUSIONS

This work focused on the use of an outer product-based approach
to fuse the embedded representations learnt from the pedometer,
the heart rate, and the accelerometer information collected
using a smartwatch for the problem of HAR. The best results
obtained when tackling the task as a 2-class, 7-class, and 10-
class classification problem were achieved with the multimodal
models using a CNN-based architecture to extract deep learnt
representations from the pedometer, the heart rate, and the
accelerometer modalities as input data. The outer product-based
fusion obtained the highest UAR scores in the 7-class, and the 10-
class problems, and ranked the second highest UAR score in the
2-class problem. These results supported the suitability of fusing
the pedometer, the heart rate, and the accelerometer information
with the proposed outer product-based approach for the task at
hand.

The pre-processing applied to the accelerometer
measurements is one of the limitations of this work. As
described in Section 4.1.3, we computed the personal, debiasing
parameters for the accelerometer measurements using all the
data available from the current participant in the dataset. In
a real-life scenario, these parameters should be computed and
updated on the fly. In terms of model performance, we expect the
trainedmodels to underperformwhen a new user uses the system
for the first time, and improve as the user keeps using the system,
once the personal, debiasing accelerometer parameters stabilize.

Further research directions include the investigation of other
techniques to fuse the information from the available modalities.
Additionally, exploring whether the high performance of the
binary classification problem can be used to improve the
performance of the N-class classification problems—with N >

2—in a multi-task or a transfer learning set up might also be
worth researching.
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