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To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES
consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome
sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were
identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1–5%) non-coding variants in
the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome
sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and,
to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding
variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K
Europeans via genotype imputation). The variants, genotypes, and association statistics from these
analyses provide the largest reference to date of human genetic information relevant to T2D, for use in
activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and
other novel analyses to detect associations between sequence variation and T2D.
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United States of America • South Korea • Singapore • Israel

Correspondence and requests for materials should be addressed to J.F. (email: flannick@broadinstitute.org).
#A full list of authors and their affiliations appears at the end of the paper.

OPEN

Received: 31 May 2017

Accepted: 2 November 2017

Published: 19 December 2017

www.nature.com/scientificdata

SCIENTIFIC DATA | 4:170179 | DOI: 10.1038/sdata.2017.179 1

mailto:flannick@broadinstitute.org


Background & Summary
Genome wide association studies (GWAS) have provided a valuable but incomplete window into the
genetic basis of type 2 diabetes (T2D)1. Common (minor allele frequency [MAF]>5%) variants at over
100 loci have been robustly associated with disease risk, but most have not yet been translated to causal
variants, effector transcripts, or disease mechanisms2. Because common variants from GWAS have
modest effect sizes, and because those previously published explain in aggregate only 10–15% of the
genetic basis of T2D3, it has been hypothesized that variants unexplored by GWAS might have a greater
impact on efforts to understand or treat T2D4,5.

To produce a more complete catalogue of rare, low-frequency, and common variants, the GoT2D and
T2D-GENES consortia analysed whole-exome and genome sequence data in up to 12,940 individuals
(6,504 T2D cases and 6,436 controls; Fig. 1a, Tables 1 and 2)3. First, to interrogate lower-frequency
(MAF>0.5%) variation genome-wide, 2,657 Northern and Central European individuals were selected by
GoT2D (1,326 cases, 1,331 controls) and characterized with a combination of low-pass (~5x) whole-
genome sequencing, deep (~82x) whole-exome sequencing, and high-density (2.5M) SNP genotyping.
Genetic variants from these assays were incorporated into a phased integrated panel (WGS panel),
capturing an estimated 99% of variants, genome-wide, present in more than 0.5% of individuals (Table 3).
Second, additional individuals from 10 cohorts spanning five ethnicities (European, Hispanic, South
Asian, East Asian, and African American) were characterized by deep (~82x) whole-exome sequencing by
T2D-GENES. The resultant T2D-GENES exome sequence data were combined with the GoT2D exome
sequence data to produce a second panel of variation (WES panel), capturing an estimated 99.7% of
coding variants present in more than 0.5% of the combined 12,940 individuals (Tables 4 and 5).

Each variant was tested for association with T2D under an additive genetic model. To increase power,
variants were then assessed in larger sample sizes via one of two means (Fig. 1b). Coding variants were
analysed in 79,854 additional individuals (28,305 T2D cases, 51,549 controls) via the Illumina Exome
Array, which captures 81.6% of European MAF>0.5% coding variants in the WES panel. Non-coding
variants (and coding variants absent from the Exome Array) were analysed in up to 44,414 additional
individuals (11,645 cases, 32,769 controls) via statistical genotype imputation; after quality control, this
analysis included 89% of variants observed in three or more individuals in the WGS panel. Each variant
was tested for association with T2D in the additional individuals, under an additive genetic model, and
association statistics were then combined with those from the sequence data via meta-analysis.

Collectively, these analyses suggest a limited role for low-frequency variation in the genetic basis of
T2D3. However, they also demonstrate an ability to identify novel hypotheses about the effects of gene
inactivation6, a resource of coding variants for calibrating cellular assays7, and a catalogue of noncoding
variants for use in statistical or functional fine mapping of GWAS signals3. The WGS panel also provides
a novel resource for genotype imputation8, with increased resolution for T2D-specific variants relative to
the 1000 Genomes (1000G) reference panel, as well as a means to calibrate simulation-based models of
population history9 or disease genetic architecture10.

Methods
These methods are a modified version of the descriptions contained in Fuchsberger et al.3.

Ethics statement
All human research was approved by the relevant institutional review boards and conducted according to
the Declaration of Helsinki. All participants provided written informed consent.

WGS (GoT2D integrated) panel generation
Ascertainment of individuals. Individuals were sampled from four studies: the Finland-United States
Investigation of NIDDM Genetics (FUSION) Study (493 cases, 486 controls), KORA (101 cases, 104
controls), the UKT2D Consortium (322 cases, 322 controls), and the Malmö-Botnia Study (410 cases, 419
controls). All individuals were of Northern or Central European ancestry. Cases were preferentially lean,
had (relatively) early onset T2D, or had a familial history of T2D; controls by comparison were
preferentially overweight or had low fasting glucose levels11. To decrease the likelihood of selecting T2D
cases who in fact had type 1 diabetes (T1D) or monogenic forms of diabetes (such as Maturity Onset
Diabetes of the Young), cases with an age of diagnosis below 35, testing positive for GAD antibodies, or
with a first-degree relative known to have T1D were not included. Statistics of the 2,657 individuals
ultimately included in the association analysis are provided in Table 1.

Many of these individuals were measured for cardiometabolic phenotypes other than T2D, including
glucose and insulin, anthropometrics, lipids, and blood pressure (Table 6).

DNA sample preparation. De-identified DNA samples were sent to the Broad Institute in Cambridge,
MA, USA (Malmö-Botnia and FUSION), the Wellcome Trust Centre for Human Genetics in Oxford, UK
(UKT2D), or the Helmholtz Zentrum München in Germany (KORA). DNA quantity was measured by
Picogreen (all samples) to ensure sufficient total DNA and minimum concentrations for downstream
experiments. Samples (Malmö-Botnia, FUSION, UKT2D) were then genotyped on a Sequenom iPLEX
assay for a set of 24 SNPs (one X chromosome and 23 autosomal SNPs), with only samples with high-
quality genotypes advanced for subsequent sequencing or genotyping.
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Exome sequencing. Genomic DNA was sheared, end repaired, ligated with barcoded Illumina
sequencing adapters, amplified, size selected, and subjected to in-solution hybrid capture using the
Agilent SureSelect Human All Exon v2.0 (Malmö-Botnia, FUSION, UK2T2D) or v3.0 (KORA) bait set
(Agilent Technologies, USA). Resulting Illumina exome sequencing libraries were qPCR quantified,
pooled, and sequenced with 76-bp paired-end reads using Illumina GAII or HiSeq 2,000 sequencers to
~82-fold mean coverage.

Genome sequencing. Whole-genome Illumina sequencing library construction was performed as
described for exome sequencing above, except that genomic DNA was sheared to a larger target size and
hybrid capture was not performed. The resulting libraries were size selected to contain fragment insert
sizes of 380 bp± 20% (Malmö-Botnia, FUSION, KORA) and 420 bp± 25% (UKT2D) using gel
electrophoresis or the SAGE Pippin Prep (Sage Science, USA). Libraries were qPCR quantified, pooled,
and sequenced with 101-bp paired-end reads using Illumina GAII or HiSeq 2,000 sequencers to ∼5-fold
mean coverage.

HumanOmni2.5 array genotyping and quality control (QC). SNP array genotyping was performed
by the Broad Genetic Analysis Platform. DNA samples were placed on 96-well plates and assayed using
the Illumina HumanOmni2.5-4v1_B SNP array. Genotypes were then called using Illumina
GenomeStudio v2010.3 with default clusters. SNPs with GenTrain score o0.6, cluster separation score
o0.4, or call rate o97% were considered technical failures at the genotyping laboratory and excluded
from further analysis. Next, 85 individuals with a genotype call rate below 98%, low genetic fingerprint
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Figure 1. Overview of data and analysis generation. Shown is a flowchart for variant calling, quality control,

and propagation of variants in both the WGS panel and WES panel. (a) Variant calling and quality control in

the WGS and WES panels. Individuals were characterized with one or more sequencing and genotyping

technologies, and then individuals and variants were excluded based on quality control metrics. The final WGS

panel consists of data from 2,857 individuals and 28.5M variants, while the final WES panel consists of data

from 13,008 individuals and 3.04M variants. (b) Assessing variants in larger sample sizes. Non-coding variants

from the WGS panel were studied via statistical imputation in 44,414 additional individuals from cohorts

within the DIAGRAM consortium. Coding variants from the WES panel were genotyped on the exome array in

79,854 additional individuals. Modified from Extended Data Fig. 1 of Fuchsberger et al.8.
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(24-marker panel) concordance, or estimated gender discordance were excluded from further analysis.
Finally, SNPs monomorphic across all individuals, failed by the 1000G Omni 2.5 QC filter, or with
Hardy-Weinberg equilibrium Po10− 6 were excluded from analysis.

Processing, quality control, and variant calling of sequence data. Sequence data were processed
and aligned to the human genome (build hg19) using the Picard (http://broadinstitute.github.io/picard/),
BWA12, and GATK13,14 software packages, following best-practice pipelines.

Sequencing coverage of each individual was computed based on the fraction of target bases with >20
reads aligned (exome sequencing) or average number of reads aligned across all bases genome-wide
(genome sequencing). Based on these metrics, we excluded from further analysis exome sequence data
(from 151 individuals) with coverage ≤20x in >20% of the target bases and genome sequence data (from
68 individuals) with average coverage ≤5x.

Possible DNA contamination of sequence data was assessed using verifyBamID15, either by direct
comparison of sequence and HumanOmni2.5 array genotypes (where available) or by indirect estimates
of contamination based on HumanOmni2.5 array allele frequencies. DNA samples with estimated
contamination >2% using either method were excluded from further analysis (data from 7 individuals in
the exome sequencing dataset and 59 individuals in the genome sequencing dataset). Uncontaminated

Figure 2. Summary of key quality control metrics for WGS and WES panels. We computed several metrics

to verify the sequencing accuracy of the study individuals. (a) Estimates of sensitivity of WGS panel. Shown is

the fraction of variants, as a function of minor allele count in the WGS sequenced individuals, estimated as

included in the WGS panel. Green circles show the total fraction of variants; green crosses show the fraction of

variants for hypothetical variants with a T2D odds ratio of 5 (because T2D cases are overrepresented in our

sample, the sensitivity to detect risk variants is increased). For comparison, shown are the fraction of variants

that are included in the 1000G Phase 1 dataset (blue circles) or HapMap panel (red circles). (b) Distribution of

minor alleles carried by individuals in the WES panel. For different populations within the WES panel, the

distribution of minor alleles carried is plotted across all individuals. A normal distribution indicates a lack of

systematic sequencing artefacts for any one individual, at least according to this metric. Afr-Am: African

American. (c) Comparison of principal components computed from SNPs and indels versus indels alone. We

calculated principal components for the European individuals in the WES panel using all variants in the panel

and then again using only indels. Adapted from Supplementary Tables 5 and 6, and Fig. 1a, in Fuchsberger

et al.8.
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DNA sample swaps were also detected via comparison of sequence and array data and corrected prior to
variant calling.

To identify single nucleotide variants (SNVs) from the whole-genome sequence data, we used two
independent SNV calling pipelines: GotCloud16 and the GATK UnifiedGenotyper14. We merged
unfiltered SNV calls across the two call sets and then processed the merged site list through the SVM and
VQSR filtering algorithms implemented by those pipelines. SNVs that failed both filtering algorithms
were excluded from further analysis. To identify SNVs from the whole-exome sequence data, we used the
GATK UnifiedGenotyper best-practices pipeline14.

To identify short insertions and deletions (indels) from the whole-genome sequence data, we called
variants using the GATK UnifiedGenotyper best-practices pipeline. Because indels are known to have
high false positive rates17, we applied more stringent criteria for indel QC than for SNV QC, excluding
indels that failed either the SVM or VQSR filtering algorithms. To identify indels from the whole-exome
sequence data, we used the GATK UnifiedGenotyper best-practices pipeline14.

To identify structural variants (SVs, or >100-bp deletions) from the whole-genome sequence data, we
used GenomeSTRiP18. To increase sensitivity after initial discovery of SVs, we merged the discovered sites
with deletions identified in 1,092 sequenced individuals from the 1000G Project17 and then genotyped the
merged site lists across the whole-genome sequenced individuals. After applying the default filtering
implemented in GenomeSTRiP, pass-filtered sites variable in any of the individuals were identified as
candidate variant sites. Among these candidate sites, we excluded variants in known immunoglobin loci
to reduce the impact of possible cell-line artifacts. We did not call SVs from the whole-exome
sequence data.

Integrated panel generation. We merged variants discovered from the three experimental platforms
into one site list. For individuals who had data from each of the three platforms, we then calculated
genotype likelihoods across all sites separately by platform: for the whole-genome sequence data, we used
GotCloud; for the exome sequence data, we used the GATK UnifiedGenotyper; and for the
HumanOmni2.5 data, we converted hard genotype calls into genotype likelihoods assuming a genotype
error rate of 10− 6. If a site was not assayed by one of the three platforms, it was ignored in likelihood
calculation for that platform.

We then calculated combined genotype likelihoods as the product of the genome, exome, and
HumanOmni2.5 likelihoods, assuming independence across platforms. Following a strategy originally
developed for the 1000G Phase 1 project17, we then phased the integrated likelihoods using Beagle19 (with
10,000 SNVs per chunk and 1,000 overlapping SNVs between consecutive chunks) and refined phased
genotypes using Thunder20 as implemented in GotCloud (with 400 states).

Using the genotypes from the integrated panel, we performed principal component analysis (PCA)
separately for each of the three variant types (SNVs, indels, SVs), using EPACTS on an LD-pruned

Figure 3. Completeness of additional variant genotyping. We calculated the fraction of variants in the WGS

and WES panel that were captured via either imputation or exome array genotyping, respectively. (a) The mean

imputation quality of variants in the WGS panel, as a function of their allele count in the WGS panel. Green

circles show imputation quality in Finnish individuals, while green crosses show imputation quality in British

individuals. For comparison, blue circles and crosses show imputation quality using the 1000G Phase 1 dataset

as a reference panel (instead of the WGS panel). (b) The number of coding variants in the WES panel present

on the exome array. Variants are stratified by annotation and frequency, and sensitivity calculations are shown

for variants in each ancestry group as well as overall. Panel (b) is reproduced from Supplementary Fig. 17 in

Fuchsberger et al.8.
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(r2o0.20) set of MAF>0.01 autosomal variants (with variants in large high-LD regions21,22 or with
Hardy-Weinberg Po10− 6 removed). Inspecting the first ten PCs for each variant type, we identified 43
outlier individuals based on PCs from SNVs and indels and 136 additional outliers based on PCs from
SVs; these 179 individuals were excluded from further analysis. Additionally, 38 individuals with close
relationships with other study individuals (estimated genome-wide identity-by-descent proportion of
alleles shared >0.20) were excluded from further analysis.

The final WGS panel contains genotypes from 2,874 individuals at 26.85M SNVs, 1.59M indels, and
11.88 K SVs. The final analysis set includes genotypes from 2,657 individuals at 26.20M SNVs, 1.50M
indels, and 8.88K SVs SVs (Table 3).

WES (GoT2D+T2D-GENES Multiethnic) panel generation
Ascertainment of individuals. In addition to the individuals within the WGS panel, additional
individuals, 10,242 of which were included in the final analysis, were chosen for whole-exome sequencing
from 10 studies: the Jackson Heart Study (500 African-American cases, 526 matched controls), the Wake
Forest School of Medicine Study (518 African-American cases, 530 matched controls), the Korea

Figure 4. Power of single variant analysis in the WGS panel, WES panel, imputation, and exome array

analyses. Shown is the power to detect an association with variants of varying population frequencies and T2D

odds ratios, at a relatively lenient significance level of α= 10− 4. Such a significance level would be insufficient to

establish an association due to the burden of multiple testing, but lack of association at this significance level

can place bounds on the maximum effect a variant has in the population. (a) Power for a variant of constant

frequency and effect across all populations in the WGS panel. (b) Power for a variant of constant frequency and

effect across all populations in the WES panel. (c) Power for a variant imputed from the WGS panel with

imputation accuracy r2= 0.8. (d) Power for a variant in both the WES panel and on the exome array. NA:

number of affecteds (cases); NU: number of unaffecteds (controls); K: presumed prevalence of T2D in the

population.
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Association Research Project (526 East-Asian cases, 561 matched controls), the Singapore Diabetes
Cohort Study and Singapore Prospective Study Program (486 East-Asian cases, 592 matched controls),
Ashkenazi (506 European cases, 355 matched controls), the Metabolic Syndrome in Men (METSIM)
Study (484 European cases, 498 matched controls), the San Antonio Mexican American Family Studies
(272 Hispanic cases, 218 matched controls), the Starr County Texas study (749 Hispanic cases, 704
matched controls), the London Life Sciences Population (LOLIPOP) Study (531 South-Asian cases, 538
matched controls), and the Singapore Indian Eye Study (563 South-Asian cases, 585 matched controls).
Potential T1D or MODY cases were excluded via similar approaches as for the whole-genome sequencing
experiment. Statistics of the individuals ultimately included in the association analysis are provided in
Table 2.

As for the WGS panel, many individuals were measured for additional cardiometabolic phenotypes
(Table 6).

Exome sequencing. DNA samples were obtained and sequenced in the same manner as described for
the exome sequencing component of the WGS panel.

Processing, QC, and variant calling. As for the exome sequence data within the WGS panel, sequence
data for the WES panel were processed and aligned to the human genome (build hg19) using the Picard,
BWA12, and GATK13,14 software packages and best-practice pipelines. Genotype likelihoods were
computed controlling for contamination. Hard calls (the GATK-called genotypes but set as missing at a
genotype quality [GQ] o20 threshold14) and dosages (the expected value of the genotype, defined as Pr
(RX|data)+2Pr(XX|data), where R is the reference and X the alternative allele) were computed for each
individual at each variant site. Hard calls were used only for quality control, while dosages were used in
downstream association analyses. Multi-allelic SNVs and indels were dichotomized by collapsing
alternate alleles into one category.

Individuals were excluded from analysis if they were outliers on one of multiple metrics: poor array
genotype concordance (where available), high number of variant alleles or singletons, high or low allele
balance (average proportion of non-reference alleles at heterozygous sites), or excess mean heterozygosity
or ratio of heterozygous to homozygous genotypes. Within this reduced set of individuals, we then
further excluded variants based on hard call rate (o90% in any cohort), deviation from Hardy-Weinberg
equilibrium (Po10− 6 in any ancestry group), or differential call rate between T2D cases and controls
(Po10− 4 in any ancestry group).

The final WES panel contains genotypes for 13,008 individuals at 2.93M SNVs and 111.9 K indels. The
set ultimately included in coding variant association analysis (after removal of individuals with close
relatives or of uncertain ancestry) contains genotypes for 12,940 individuals at 2.89M SNVs and 110.2 K
indels (Tables 4 and 5).

Assaying variants in larger sample sizes
Imputation from the WGS panel. We carried out genotype imputation, using existing SNP array data,
from the WGS panel into 44,414 individuals (11,645 T2D cases and 32,769 controls) from 13 studies
participating in the DIAGRAM consortium. Each study performed quality control independently. A
more detailed description of the analyzed individuals is available elsewhere3.

Exome array genotyping from the WES panel. We considered 28,305 T2D cases and 51,549 controls
from 13 studies of European ancestry, each genotyped with the Illumina exome array. Studies
independently called genotypes using the Illumina GenCall algorithm (http://www.illumina.com/
Documents/products/technotes/technote_gencall_data_analysis_software.pdf ) or Birdseed23. Individuals
were excluded if they had a low call rate (o99%), excess heterozygosity, high singleton counts, evidence
of non-European ancestry, discrepancy between recorded and genotyped sex, or discordance with prior

Ancestry Study Countries of
Origin

Num. of Cases (%
female)

Num. of Controls (%
female)

Total Sample
Size

European Finland-United States Investigation of NIDDM
Genetics (FUSION) Study

Finland 493 (41.5) 486 (45.2) 979

European Kooperative Gesundheitsforschung in der Region
Augsburg (KORA)

Germany 101 (44.5) 104 (66.3) 205

European Malmö-Botnia Study Finland, Sweden 410 (51.5) 419 (44.1) 829

European UK Type 2 Diabetes Genetics Consortium (UKT2D) UK 322 (46.2) 322 (82.2) 644

Total WGS Panel 1,326 1,331 2,657

Table 1. Summary of studies included in WGS panel. Shown are the number of individuals included in
association analysis for the GoT2D whole-genome sequencing study, stratified by their study of origin.
Columns from left show the ancestry of individuals in each study, the name of the study (or studies), the
country of origin for the individuals, the number of cases and controls, and the total number of individuals.
Reproduced from Extended Data Table 1 of Fuchsberger et al.8.
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SNP array or genotyping platform fingerprint data (where available). Variants were excluded if they had a
low call rate (o99%), deviation from Hardy-Weinberg equilibrium (Po10− 6), GenTrain score o0.6,
cluster separation score o0.4, or a suspect intensity plot based on manual inspection. After quality
control, missing genotypes were re-called using zCall24, and additional quality control was performed to
exclude poorly genotyped individuals (call rate o99% or excess heterozygosity) or variants (call rate
o99%). A more detailed description of the analyzed individuals is available elsewhere3.

Association analysis
WGS panel single variant analysis. For each variant in the WGS panel, we tested for association
between genotype and T2D in the 2,657 sequenced individuals. We used a logistic regression framework
(assuming an additive genetic model) with the Firth bias-corrected likelihood ratio test25,26 to test for
significance. Tests were adjusted for sex, the first two PCs computed based on genotypes from the
HumanOmni2.5M array, and an indicator function for observed temporal stratification based on
sequencing date and center.

Analysis of imputed datasets. In each of the thirteen studies within which variants from the WGS
panel were imputed, SNVs with minor allele count (MAC)≥ 1 were tested for T2D association under an
additive genetic model. Association tests were adjusted for study-specific covariates and performed using
either the Firth, likelihood ratio, or score tests as implemented in EPACTS (https://genome.sph.umich.
edu/wiki/EPACTS) or SNPTEST27. Residual population stratification for each study was accounted for
using genomic control28. Association statistics were then combined across studies, using a fixed-effects
sample-size weighted meta-analysis as implemented in METAL29.

WES panel single variant analysis. For each variant in the WES panel, we tested for association
between genotype and T2D in the 12,940 sequenced individuals. We computed separate association
statistics for each ancestry group using EMMAX30. Additionally, we performed association tests using the
Wald statistic, adjusting for ethnic-specific principal components after exclusion of related individuals.
For each test, we calculated genomic control inflation factors and corrected association summary statistics
(P-values and standard errors) to account for residual population structure.

We subsequently performed a fixed-effects meta-analysis of ancestry-specific association summary
statistics for each variant using (i) a sample-size weighting of P-values from the EMMAX analysis and (ii)
an inverse-variance weighting of effect size estimates from the Wald analysis. For the final results,
P-values were taken from the EMMAX analysis, and effect size estimates from the Wald analysis.

Ancestry Study Countries of
Origin

Num. of Cases
(% female)

Num. of Controls
(% female)

Total
Sample Size

African
American

Jackson Heart Study (JHS) US 500 (66.6) 526 (63.3) 1,026

African
American

Wake Forest School of Medicine Study (WF) US 518 (59.5) 530 (56.0) 1,048

East Asian Korea Association Research Project (KARE) Korea 526 (45.6) 561 (58.5) 1,087

East Asian Singapore Diabetes Cohort Study; Singapore Prospective Study
Program

Singapore
(Chinese)

486 (52.1) 592 (61.3) 1,078

European Ashkenazi US, Israel 506 (47.0) 355 (56.9) 861

European Metabolic Syndrome in Men Study (METSIM) Finland 484 (0) 498 (0) 982

European Finland-United States Investigation of NIDDM Genetics (FUSION) Finland 472 (42.6) 476 (45.0) 948

European Kooperative Gesundheitsforschung in der Region Augsburg (KORA) Germany 97 (44.3) 90 (63.3) 187

European UK Type 2 Diabetes Genetics Consortium (UKT2D) UK 322 (45.7) 320 (82.8) 642

European Malmö-Botnia Study Finland, Sweden 478 (54.8) 443 (43.8) 921

Hispanic San Antonio Family Heart Study (SAFHS), San Antonio Family
Diabetes/ Gallbladder Study (SAFDGS), Veterans Administration
Genetic Epidemiology Study (VAGES), and the Investigation of
Nephropathy and Diabetes Study Family Component (SAMAFS)

US 272 (58.8) 218 (58.7) 490

Hispanic Starr County, Texas US 749 (59.7) 704 (71.9) 1,453

South Asian London Life Sciences Population Study (LOLIPOP) UK (Indian
Asian)

531 (14.1) 538 (15.8) 1,069

South Asian Singapore Indian Eye Study Singapore
(Indian Asian)

563 (44.4) 585 (49.2) 1,148

Total WES Panel 6,504 6,436 12,940

Table 2. Summary of studies included in WES panel. Shown are the number of individuals included in the
GoT2D and T2D-GENES exome sequencing studies, stratified by their study of origin. Columns are as
described in Table 1. Reproduced from Extended Data Table 1 of Fuchsberger et al.8.
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Analysis of exome array datasets. In each study within which exome array genotyping was applied,
variants were tested for association with T2D via both the EMMAX and Wald tests. For the Wald test,
related individuals were excluded and statistics were adjusted for study-specific principal components.
For each study, P-values and standard errors were corrected based on the calculated genomic control
inflation factor.

Variants were then combined via a fixed-effects meta-analysis. EMMAX P-values were combined via a
sample-size weighted analysis, and Wald effect sizes were combined via an inverse-variant weighted
analysis. For the final results, P-values were taken from the EMMAX analysis, and effect sizes were
estimated from the Wald analysis.

Gene-level analysis. We first generated four variant lists (‘masks’) based on functional annotations
and observed allele frequencies. Annotations were computed based on transcripts in ENSEMBL 66
(GRCh37.66) using CHAoS v0.6.3, SnpEFF v3.131, and VEP v2.732. We then identified variants predicted
by at least one of the three algorithms in at least one mapped transcript to be protein-truncating ('for
example, nonsense, frameshift, essential splice site), denoted PTVs, or other protein-altering (for
example, missense, in-frame indel, non-essential splice site), denoted missense. We additionally used a
previously described procedure33 to identify subsets of missense variants bioinformatically predicted to be
deleterious: those annotated as damaging by each of Polyphen2-HumDiv, PolyPhen2-HumVar, LRT,
Mutation Taster, and SIFT were considered to meet ‘strict’ criteria, while those annotated as damaging by
one of these algorithms was considered to meet ‘broad’ criteria. We then calculated the MAF of each
variant based on the highest frequency across each of the five ancestry groups. We finally combined these
annotations to produce four masks: the PTV-only mask included PTVs, the PTV+NSstrict mask included
variants in the PTV-only mask as well as those meeting ‘strict’ criteria for deleteriousness, the PTV
+NSbroad mask included variants in the PTV-only mask as well as those with MAFo1% meeting ‘broad’
criteria for deleteriousness, and the PTV+missense mask included variants in the PTV+NSbroad mask as
well as those with MAFo1% annotated as missense.

We performed gene-level analysis using the MetaSKAT software package (v0.32)34, employing the
SKAT v0.93 library to perform a SKAT-O35 analysis within each ancestry group as well as across all
ancestry groups via meta-analysis. Within each ancestry group, we assumed homogenous allele
frequencies and genetic affects and adjusted for ethnic-specific axes of genetic variation after exclusion of
96 related individuals. For the meta-analysis, we used the MetaSKAT option to analyze genotype-level
data, allowing for heterogeneity of allele frequencies and genetic effects between ancestry groups. All
analyses were completed using the recommended ρ vector for SKAT-O: (0, 0.12, 0.22, 0.32, 0.52, 0.5, 1).

Code availability
All analyses were performed using publically available software packages, using versions and parameters
as described above.

Data Records
Genotypes and phenotypes from the WGS and WES panels are available at the European Genome-
phenome Archive (EGA, Data Citation 1 and Data Citation 2) and the database of Genotypes and
Phenotypes (dbGAP, Data Citation 3 to Data Citation 12).

The data in EGA are covered under a single data use agreement, which complies with all of the cohort-
specific data use restrictions. While this does limit data access according to the criteria of the most
restrictive cohort, it is the only mechanism through which the entire WES and WGS panels are available

Variant Type SNV Indel SV

N (%total) 25.2M (94%) 1.50M (5.6%) 8,876 (0.3%)

Function Coding Non-coding

N (%total) 888K (3.3%) 25.8M (96.7%)

Frequency spectrum Rare (MAFo0.5%) Low frequency (0.5%oMAFo5%) Common (MAF>5%)

N (%total) 6.26M (23%) 4.16M (16%) 16.3M (61%)

dbSNP b137 Novel

N (%total) 14.6M (55%) 12.1M (45%)

Table 3. Summary of variants in the WGS panel. Shown are aggregate statistics on the variants the WGS
panel, stratified by type (SNV, indel, or SV), function, frequency, and presence in dbSNP b137. Adapted from
Extended Data Table 2 in Fuchsberger et al.8.
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to investigators. Additionally, the EGA contains data from one cohort that could not be released to a US-
based repository. To download either the WGS or WES panel from the EGA, investigators must obtain
approval from a data access committee (DAC, t2dgenes-got2d-dac@broadinstitute.org) to analyze data
from all cohorts included in the study. The requester will receive an application packet that includes a
project proposal document and a Data Transfer Agreement (DTA). The requester must then provide to
the DAC a short description of their study, the proposed use of the data, an approval from the
Institution's IRB, and a signed DTA. Assuming IRB approval and an executed DTA, the process for
obtaining final approval from the DAC takes 4–6 weeks. Once approved, investigators can download
either a single VCF file with genotypes from all individuals in the WGS panel (Data Citation 1) or a single
VCF file with genotypes from all individuals in the WES panel (Data Citation 2).

If investigators cannot obtain approval to analyze all cohorts in the WES panel (e.g., commercial uses)
they can download cohort-specific data from dbGAP. Each cohort in dbGAP is subject to distinct data
use restrictions, and investigators can obtain separate VCF files, as well as the raw sequence reads, for
each of the cohorts.

The WGS and WES panels are accompanied by exclusion lists of variants and individuals (Data
Citation 1 and Data Citation 2). The WGS VCF file contains data from the full set of 2,874 individuals
and 28.45M variants that passed QC, with additional lists provided containing the 2,657 individuals and
17.69M variants included in association analysis. The WES VCF file contains the full set of 13,008
individuals that passed QC, with additional lists provided containing the 3.04M variants that passed QC
(the VCF includes a small number of variants that failed QC) and the 12,940 samples and 2.93M variants
included in association analysis. Additionally, the WES dataset includes lists of variants included in gene-
level analysis for each of the four analyzed masks.

Five datasets of association statistics are also available for download. Association statistics for variants
in the WGS panel are available from the whole-genome sequenced individuals or from those with
imputed genotypes (Data Citation 1). Association statistics in the WES panel are available from the
whole-exome sequenced individuals or from those genotyped on the exome array (Data Citation 2).
Additionally, gene-level association statistics from the whole-exome sequenced individuals are available
for each of the four variant masks (Data Citation 2).

A description of the datasets is available in Table 7. All association statistics are also available for
browsing and searching via the public Type 2 Diabetes Knowledge Portal at www.type2diabetesgenetics.
org. Through the portal, users can construct queries to find variants satisfying specified annotations and
association thresholds, both across the WES and WGS analyses as well as other GWAS datasets. Users
can also dynamically construct a set of variants within a gene and obtain a P-value from aggregate
association analysis within the WES individuals.

Technical Validation
Evaluation of variants in the WGS panel
We evaluated the variant sensitivity (fraction of true variant sites detected) of the WGS panel, based on
the 2,538 individuals with data from all three experimental platforms (low-pass whole-genome
sequencing, whole-exome sequencing, and HumanOmni2.5M array genotyping). To assess the sensitivity

Variant annotation All samples African-American East-Asian European Hispanic South-Asian

Synonymous SNV 627,630 237,430 178,232 192,282 156,231 211,218

Missense SNV 1,110,897 354,797 296,707 327,049 231,351 344,191

Start SNV 2,055 593 523 639 384 583

Nonsense SNV 26,321 7,188 6,668 8,030 4,660 7,339

Frameshift INDEL 26,901 6,605 6,159 7,515 4,155 6,609

Inframe INDEL 11,090 3,471 2,963 3,145 2,068 3,165

3′UTR SNV, INDEL 65,013 24,583 19,149 21,102 16,959 22,177

5′UTR SNV, INDEL 43,965 16,920 13,520 15,562 11,634 15,595

Intron SNV, INDEL 931,449 352,398 270,564 296,970 243,139 314,810

Essential splicing SNV, INDEL 14,286 3,648 3,454 4,108 2,301 3,744

Other splicing SNV, INDEL 128,644 45,876 35,413 38,263 30,301 41,122

Non-coding RNA SNV, INDEL 18,113 7,247 5,996 6,715 5,084 6,706

Intergenic SNV, INDEL 37,345 14,335 11,498 13,614 10,700 12,937

All 3,043,709 1,075,091 850,846 934,994 718,967 990,196

Table 4. Summary of variant annotations in the WES panel. Shown are aggregate statistics on variants in
the WES panel, stratified by predicted molecular function. Variant annotations are produced from the Variant
Effect Predictor32. Adapted from Extended Data Table 2 in Fuchsberger et al.8.
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of low-pass whole-genome sequencing alone, we computed the fraction of variants detected from whole-
exome sequencing that were also detected by low-pass whole-genome sequencing. Sensitivity estimates
were 99.8, 99.0, and 48.2% for common (MAF>5%), low-frequency (0.5%oMAFo5%), and rare
(MAFo0.5%) SNVs, respectively, and >99.9, 93.8, and 17.9% for common, low-frequency, and rare
short indels, respectively. We also assessed the coding SNV sensitivity of low-pass whole-genome
sequence data combined with exome sequence data, based on the proportion of HumanOmni2.5 SNVs
detected by either sequencing platform. Because HumanOmni2.5 SNVs are enriched for common
variants, we calculated an averaged sensitivity at each allele count, weighted by the number of exome-
detected variants given the allele count. Sensitivity estimates were 99.9, 99.7, and 83.9% for common, low-
frequency, and rare variants, respectively. These sensitivity estimates provide lower bounds on the
sensitivity of the full WGS panel, which combines HumanOmni2.5 SNP array data as well as the two
types of sequence data (Fig. 2a).

We further evaluated the genotype accuracy of the WGS panel for each of the three classes of variant
(SNVs, indels, and SVs). Across chromosome 20, concordance of low-pass whole-genome-sequence-
based SNV genotypes with exome-sequence-based genotypes was 99.86%, with homozygous reference,
heterozygous, and homozygous non-reference concordances of 99.97, 98.34, and 99.72%, respectively.
Concordance between exome-sequence-based SNV genotypes and HumanOmni2.5 genotypes was 99.4%,
with homozygous reference, heterozygous, and homozygous non-reference concordances of 99.97, 99.69,
and 99.88%, respectively. For indels genotyped with both low-pass whole-genome-sequence data and
exome-sequence data, concordance was 99.4%, with homozygous reference, heterozygous, and
homozygous non-reference concordances of 99.8, 95.8, and 98.6%, respectively.

To evaluate the genotype accuracy of SVs detected from the low-pass whole-genome sequence data, we
took advantage of the 181 individuals in our study who were previously included in the WTCCC array-
CGH based structural variant detection experiment36. Taking the WTCCC data as a gold standard, we
estimated genotype accuracy across 1,047 overlapping SVs (with reciprocal overlap >0.8) genome-wide.
The overall genotype concordance was 99.8%, with homozygous reference, heterozygous, and
homozygous non-reference concordances of 99.9, 99.6, and 99.7%, respectively.

Evaluation of variants in the WES panel
We assessed the overall sequencing quality of individuals in the WES panel by computing distributions of
global statistics, stratified by reported ancestry (Fig. 2b). After quality control, the number of non-
reference variants, mean heterozygosity, and average allele balance (fraction of non-reference reads at
heterozygous sites) per individual approximately matched a Gaussian distribution within each ancestry.
Concordance between genotypes from exome-sequence data and those from independent SNP arrays was
above 99% for the vast majority of individuals, with non-reference concordance above 99.5% for
individuals genotyped on the (highest-quality) OMNI array.

We also assessed bulk properties of indels within the WES panel. The length distribution of indels
showed an excess of variants with lengths a multiple of three, as expected. Additionally, principal
components computed from indels alone closely matched those computed from SNVs and indels
together (Fig. 2c).

Evaluation of imputation from the WGS panel
We computed the mean imputation quality as measured by the average squared correlation between
imputed genotypes and actual genotypes from leave-one-out cross-validation analysis. For variants of
allele count ≈100 or above in the WGS panel (corresponding to a frequency of 1.8%), average r2 values
were in excess of 0.8 for Finnish individuals and in excess of 0.6 for British individuals (Fig. 3a).

Variant Frequency All samples African-American East-Asian European Hispanic South-Asian

Rare (MAFo0.5%) 95.79% 83.30% 90.06% 89.19% 84.56% 89.89%

private 77.93% 53.79% 65.47% 51.80% 37.26% 61.55%

cosmopolitan 0.35% 1.80% 3.02% 1.88% 2.24% 1.73%

Low frequency (0.5%
oMAFo5%)

2.57% 10.36% 4.61% 5.52% 8.21% 5.10%

private 0.17% 1.43% 1.10% 0.26% 0.52% 1.02%

cosmopolitan 0.60% 1.50% 1.54% 1.94% 2.74% 1.62%

Common (MAF>5%) 1.65% 6.35% 5.33% 5.29% 7.23% 5.00%

private 0.09% 0.00% 0.00% 0.00% 0.01% 0.00%

cosmopolitan 1.50% 4.35% 5.17% 4.97% 6.88% 4.86%

Table 5. Summary of coding variant frequencies in the WES panel. Shown are aggregate frequency
statistics on coding variants in the WES panel, stratified by frequency. Counts and frequencies are shown for
variants specific to each ancestry, as well as overall. Private: unique to one ancestry group; Cosmopolitan:
observed across all ancestry groups. Adapted from Extended Data Table 2 in Fuchsberger et al.8.
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Evaluation of exome array sensitivity
We assessed the overlap of variants present on the exome array with those observed in the WES panel. As
the exome array primarily contains SNVs that are predicted to be protein altering, we focused on
nonsense, essential splice site, and missense variants; only variants passing QC in both sequence and
array data were included in the assessment. The fraction of variants in the WES panel on the exome array
was highest for Europeans, at 81.6%, and lowest in African-Americans, at 49.0% (Fig. 3b).

Evaluation of association tests
We used the genetic power calculator (http://zzz.bwh.harvard.edu/gpc/) to estimate power to detect T2D
association for each of the single variant analyses. All calculations assumed a T2D prevalence of 8%.
Figure 4 shows power estimates under optimistic scenarios, in which a variant is present in the WGS
panel (Fig. 4a), observed at equal frequency in all ancestries in the WES panel (Fig. 4b), imputed with
high (r2= 0.8) accuracy (Fig. 4c), or included on the exome array (Fig. 4d). We also computed power for
less optimistic scenarios3; if, for example, a MAF 1% variant is present in only one ancestry, it must have
an odds ratio of ~3.5 to achieve significance of P= 10− 4, rather than an odds ratio of ~1.8 were it to be
present in all ancestries.

Phenotype (units) WGS panel WES panel

Cases Controls Cases Controls

N Mean (s.d.) N Mean (s.d.) N Mean (s.d.) N Mean (s.d.)

Age (yr) 1326 54.9 (9.3) 1331 64.3 (8.6) 6506 57.9 (10.1) 6434 57.9 (13.0)

Age at diagnosis (yr) 0 — 0 — 3745 48.3 (10.4) 0 —

BMI (kg/m2) 1326 27.6 (4.9) 1326 30.6 (5.0) 6431 28.6 (5.6) 6381 27.8 (5.8)

Weight (kg) 0 — 0 — 5067 79.0 (18.3) 5063 73.9 (18.5)

Height (cm) 1326 168.9 (9.5) 1326 166.6 (9.1) 6433 165.9 (10) 6385 165.2 (10.4)

Waist-Hip Ratio 1114 0.94 (0.08) 1224 0.91 (0.1) 0 — 0 —

Hip circumference (cm) 1114 105.1 (9.7) 1224 109 (10.5) 4454 103.1 (11.0) 4301 102.8 (11.8)

Waist circumference (cm) 1114 98.6 (13) 1224 99.1 (13.1) 4995 99.8 (14.3) 5158 94.1 (13.9)

Fasting blood glucose (mmol/l) 22 9.9 (2.8) 1330 5.2 (0.53) 2837 8.6 (3.4) 5247 5.0 (0.56)

2-hour glucose (mmol/l) 0 — 0 — 637 13.9 (4.4) 1942 6.3 (1.8)

HbA1C (%) 0 — 0 — 4403 8.4 (15.1) 3098 5.6 (0.43)

Fasting blood insulin (μIU/ml) 7 1.26 (1.1) 1070 43.9 (41.2) 1993 19.6 (26.9) 4677 17.3 (25.6)

2-hour insulin (μIU/ml) 0 — 0 — 613 51.7 (60.4) 1222 37.1 (50.4)

2-hour C-peptide (ng/ml) 0 — 0 — 52 1.7 (1.4) 34 2.1 (1.9)

GAD antibodies (nmol/l) 0 — 0 — 484 3.3 (4.5) 0 —

Total cholesterol (mmol/l) 964 5.4 (1.2) 1283 5.7 (1.0) 5530 5.1 (1.2) 5813 5.3 (1.0)

LDL (mmol/l) 809 3.3 (1.0) 1275 3.7 (0.97) 4410 3.1 (0.98) 4583 3.4 (0.93)

HDL (mmol/l) 847 1.23 (0.35) 1282 1.4 (0.41) 5395 1.2 (0.35) 5811 1.4 (0.39)

TG (mmol/l) 963 2.0 (1.8) 1282 1.4 (0.7) 5524 2.0 (1.6) 5812 1.5 (0.89)

Systolic blood pressure (mmHg) 622 142 (21.2) 904 134.4 (18.1) 5143 135.8 (20.4) 5411 130.2 (19.9)

Diastolic blood pressure (mmHg) 622 83.4 (11.2) 904 80.6 (10.3) 5143 79.1 (11.4) 5411 78.6 (11.0)

Creatinine (μmol/l) 0 — 0 — 2819 85.8 (42.9) 3189 84.4 (33.3)

Leptin (ng/ml) 0 — 0 — 559 29.4 (23.4) 658 27.3 (23.9)

Adiponectin (μg/ml) 0 — 0 — 957 6.6 (5.4) 1733 6.6 (5.1)

Diabetes medication (%) 0 — 0 — 3770 70.7% 3622 0%

Lipids medication (%) 1187 19.7% 1213 11.1% 5688 38.4% 5569 14.6%

Blood pressure medication (%) 755 50.6% 726 34.6% 4589 58.8% 4451 30.8%

Table 6. Additional cardiometabolic phenotypes measured in individuals included in the WGS and
WES panels. For each phenotype, shown are the number of samples with the phenotype measured, the mean
value of the phenotype, and its standard deviation in cases within the WGS panel, controls within the WGS
panel, cases within the WES panel, and controls within the WGS panel. Some values should be used with
caution, such as glycemic measurements in diabetes cases, and others should likely be adjusted prior to use,
such as lipid values in individuals on lipid medications. Only the phenotypes directly available are listed in the
table; some unmeasured phenotypes (such as Waist-Hip Ratio for samples in the WES panel) can be inferred
from other phenotypes.
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For gene-based tests in the WES panel, we used a simulated haplotype data set (http://cran.r-project.
org/web/packages/SKAT/vignettes/SKAT.pdf) and estimated power as a function of (i) the phenotypic
variance, under a liability scale, explained by additive genetic effects and (ii) the percentage of variants
that were causal (50% or 100%). As for single-variant power calculations, we considered variants of
constant frequency across all five ancestry groups, as well as variants specific to one ancestry group. These
calculations suggested3 that, even under optimistic scenarios, genes must explain >1% of genetic variance
in order to achieve a moderately significant (Po10− 3) association in the WES panel.

To ensure that association statistics were well calibrated, we computed quantile-quantile (QQ) plots
comparing observed statistics to those expected under the null distribution. The vast majority of statistics
matched the expected distribution (suggesting good calibration of the association tests) with a deviation
from the null for common variant associations from the WGS panel, imputed genotypes, and exome
array genotypes (suggesting power to detect known positive control T2D-associated non-coding common
variants).

Usage Notes
The WGS and WES panels may be useful for simulation-based approaches that require individual-level
genotypes and phenotypes. In this case the full list of ‘QC+’ variants (not merely those included in the
T2D analysis) should be used, as the association analysis omitted very rare variants that might be useful
in other settings. The WGS panel can also serve as a reference panel for genotype imputation, particularly
in cases where an excess of haplotypes from T2D cases are required. Although more recent and larger
efforts such as the Haplotype Reference Consortium8 will provide greater imputation power for most use
cases, the WGS panel is not restricted based on minor allele count and includes indels and SVs.

Participants Genotyping Quality control Association
analysis

Resources Accession

2,874 Europeans from
the GoT2D
consortium analysis

5x whole-genome
sequencing, 82x exome
sequencing, SNP array

genotyping

Integration, phasing,
individual and

variant exclusions

Single variant
(allele count above

3)

Sequence reads phs000840.v1.p1

WGS panel, individual phenotypes phs000840.v1.p1
EGAS00001001459

Lists of individuals and variants in
association analysis, variant

association statistics

EGAS00001001459

13,008 individuals
from the T2D-GENES
consortium analysis

82x exome sequencing Individual and
variant exclusions

Single variant,
gene-level (four

masks)

WES panel, individual phenotypes for
all samples

EGAS00001001460

QC+ variant list, list of individuals
and variants in association analysis,
variant association statistics, gene-
level variant masks, gene-level

association statistics

EGAS00001001460

Sequence reads, genotypes and
phenotypes (Starr County

individuals)

phs001099.v1.p1

Sequence reads, genotypes and
phenotypes (JHS individuals)

phs001098.v1.p1

Sequence reads, genotypes and
phenotypes (SAMAFS individuals)

phs000849.v1.p1

Sequence reads, genotypes and
phenotypes (Singapore Chinese and

Singapore Indian individuals)

phs001097.v1.p1

Sequence reads, genotypes and
phenotypes (KARE individuals)

phs001096.v1.p1

Sequence reads, genotypes and
phenotypes (Ashkenazi individuals)

phs001095.v1.p1

Sequence reads, genotypes and
phenotypes (LOLIPOP individuals)

phs001093.v1.p1

Sequence reads, genotypes and
phenotypes (METSIM individuals)

phs001100.v1.p1

Sequence reads, genotypes and
phenotypes (WFS individuals)

phs001102.v1.p1

44,414 Europeans Imputation from WGS
panel

Imputation quality Single variant Imputation quality scores, variant
association statistics

EGAS00001001459

79,854 Europeans Illumina exome array
genotyping

Individual and
variant exclusions

Single variant Variant association statistics EGAS00001001460

Table 7. Summary of datasets. Datasets from the T2D-GENES and GoT2D studies consist of individual
genotypes and phenotypes as well as statistics from genome- or exome-wide association analysis. Quality
control has been performed to exclude problematic variants or individuals with problematic genotypes.
Datasets are available at dbGAP and the EGA.
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The most valuable data from the T2D-GENES and GoT2D studies are likely the catalogues of T2D
association statistics for low-frequency and common variation. These statistics may prove useful for fine
mapping or functional studies of T2D GWAS signals, in which enumeration of potential causal variants is
required, or for ‘reverse genetic’ approaches, in which estimates of the phenotypic effects of variants with
strong molecular effects are desired. For this usage, we advise investigators to query the T2D Knowledge
Portal at www.type2diabetesgenetics.org as a first step, as its goal is to provide a simple and continuously
updated means to query these and other association statistics. The portal is designed specifically for
queries about individual variants or those within a single gene or genomic locus, as well as variant- or
gene-level analyses for which investigators desire to adjust included variants, covariates, or individuals.
Users should note that data from the T2D-GENES and GoT2D studies are included in, and thus should
not be combined with data from, the Exome Aggregation Consortium (exac.broadinstitute.org).

Should investigators desire access to all association statistics, genome-wide, the files at EGA should be
used (as the T2D Knowledge Portal does not support bulk download of association statistics). For single
variant associations, a statistic in the largest available sample size should be used. Coding variant
association statistics present in both the WES panel analysis and the exome chip analysis can be safely
combined via meta-analysis, as can non-coding variant association statistics present in both the WGS
panel analysis and the imputation-based analysis; statistics should not, however, be combined across the
non-coding and coding variant analyses. Association results from the sequence or exome chip data
should not need to be filtered, but it is advisable to filter results from the imputation-based analysis
according to a threshold on imputation quality (e.g., r2>0.3). For gene-level analyses, investigators should
first use the aggregate association statistics and then dissect results by examining variant-level statistics
for each variant in the mask.

The pre-computed statistics should be sufficient for most investigators. Cases where recalculation of
associations may be appropriate include (a) conditional analyses, such as variant association controlling
for additional individual phenotypes or genotypes at different variants, (b) association analyses with
phenotypes other than T2D, and (c) novel statistical tests. In these cases, usage of the tests and inclusion
of the covariates described in the methods section is recommended, and only variants and individuals
present in the final ‘QC+’ analysis lists should be included.
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In both the HTML and PDF versions of this Data Descriptor, the author name Jason Flannick was
incorrectly listed as Flannick Jason.
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