
Vol.:(0123456789)1 3

Health Care Management Science 
https://doi.org/10.1007/s10729-022-09590-8

Homogeneity and Best Practice Analyses in Hospital Performance 
Management: An Analytical Framework

Mansour Zarrin1 · Jan Schoenfelder1 · Jens O. Brunner1 

Received: 18 May 2021 / Accepted: 10 January 2022 
© The Author(s) 2022

Abstract
Performance modeling of hospitals using data envelopment analysis (DEA) has received steadily increasing attention in the 
literature. As part of the traditional DEA framework, hospitals are generally assumed to be functionally similar and therefore 
homogenous. Accordingly, any identified inefficiency is supposedly due to the inefficient use of inputs to produce outputs. 
However, the disparities in DEA efficiency scores may be a result of the inherent heterogeneity of hospitals. Additionally, 
traditional DEA models lack predictive capabilities despite having been frequently used as a benchmarking tool in the lit-
erature. To address these concerns, this study proposes a framework for analyzing hospital performance by combining two 
complementary modeling approaches. Specifically, we employ a self-organizing map artificial neural network (SOM-ANN) 
to conduct a cluster analysis and a multilayer perceptron ANN (MLP-ANN) to perform a heterogeneity analysis and a best 
practice analysis. The applicability of the integrated framework is empirically shown by an implementation to a large dataset 
containing more than 1,100 hospitals in Germany. The framework enables a decision-maker not only to predict the best perfor-
mance but also to explore whether the differences in relative efficiency scores are ascribable to the heterogeneity of hospitals.

Keywords Cluster Analysis · Data Envelopment Analysis · Hospital Efficiency Analysis · Artificial Neural Networks · 
Heterogeneity Analysis

Highlights 

• A novel framework for homogeneity and best practice 
analyses of hospitals

• Combining DEA with artificial neural networks for clus-
tering and homogeneity analysis

• Study the influence of heterogeneity of hospitals on the 
relative efficiency

• Best performance predictions that reveal a large potential 
for improvement

• Supporting managers in designing a stepwise efficiency 
improvement plan

1 Introduction

The Federal Statistical Office1 of Germany reports that the 
costs of inpatient hospital care amounted to around 91.3 bil-
lion euros in 2017, 3.9% higher than in 2016 (87.8 billion 
euros). Health care costs are driven primarily by hospitals 
around the world. Because of this, hospitals must constantly 
monitor and improve their efficiency. Data Envelopment Anal-
ysis (DEA) is one of the most effective tools for measuring 
efficiency, and it is widely used to evaluate the efficiency of 
decision-making units (DMUs). Nowadays, the use of DEA is 
rapidly expanding and its usage for hospital efficiency meas-
urement is widely accepted (Kohl et al. 2019). In particular, 
basic DEA models have two major issues including restric-
tions by some fundamental assumptions such as homogeneity 
of DMUs in the dataset (Dyson et al. 2001; Brown 2006) as 
well as lack of predictive capabilities while they are frequently 
used as a benchmarking tool. In the following, we introduce 
these two issues and then explain the main aims of our study.

Homogeneity In the DEA context, homogeneity of a 
set of DMUs means that all DMUs operate in the same 
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environment and pursue the same target with the same pro-
cesses. Although significant research has been conducted 
on the heterogeneity of DMUs, many studies utilize the 
homogeneity assumption as pointed out by Haas and Mur-
phy (2003) and Wojcik et al. (2019). The applicability of 
the homogeneity assumption in a sample is usually based 
on the implicit knowledge of investigators conducting 
DEA (Dyson et al. 2001). As elucidated by Samoilenko 
and Osei-Bryson (2010), two factors are important to 
assume the homogeneity of DMUs in DEA models. The 
first one that is known as semantic homogeneity brings up 
the common sense and logic concerned with the meaning 
assigned to all DMUs in the sample by decision-makers. 
The second factor is scale homogeneity, where the deci-
sion-maker must ensure that the functional similarity of 
DMUs would not be affected by the input and output lev-
els. Paying no attention to either of these assumptions can 
heavily influence the results of a DEA application (Dyson 
et al. 2001). The differences may stem from the type of 
ownership, the hospital size, and the differences in politi-
cal and legal environments where the hospitals operate. 
In the production process, environmental variables are 
not considered to be traditional inputs and are assumed 
to be out of the managers’ control. The debate about the 
best ways to incorporate these variables into DEA is still 
ongoing. Even assuming that the complete consideration 
of all influential environmental variables is possible, this 
will cause a lower level of discrimination because of the 
resulting substantial increase in the number of inputs and 
outputs (Dyson et al. 2001; Samoilenko and Osei-Bryson 
2010).

The impact of the hospital environment can be mod-
eled implicitly by grouping similar DMUs to their 
transformation capacity (or technology) together. This 
requires a technique that uncovers categories in the 
large and multidimensional dataset of DMUs. Incorpo-
rating environmental variables in DEA studies has tra-
ditionally relied on the two-stage model (Cooper et al. 
2011). This approach employs the traditional inputs and 
outputs in the first stage to compute DEA efficiency 
scores, which are then regressed against the environ-
mental variables (Simar and Wilson 2007). Since both 
ends of the 0 − 1 distribution are restricted, it is often 
appropriate to use a censored regression model (such 
as Tobit) for these data. DEA estimates are corrected 
for environmental effects using regression coefficients. 
As a result, all efficiency scores will be aligned with 
the same environment, say the sample mean. However, 
there is a flaw in this approach. In classical regression, 
variables are assumed to be independent and identically 

distributed. According to Simar and Wilson (2007), the 
DEA efficiency scores considered as the dependent 
variable in the regression analysis are serially corre-
lated. Therefore, conclusions from the results of this 
type of study should be drawn with caution. Rather, 
the method can be regarded as exploratory, indicating 
which environmental variables are most influential in 
performance. Another acknowledged approach (Brown 
2006; Dyson et al. 2001) to address this issue is to clus-
ter the DMUs into homogenous sets according to some 
similarities in their environment. Using cluster analysis, 
we can identify homogeneity between different clusters 
based on their similarity.

To illustrate how clustering may improve efficiency 
estimates, consider a sample of 6 DMUs that use an input 
to generate one output, as shown in Figure 1. DEA bench-
marks actual DMU behavior against a set of best practice 
frontiers. These frontiers create the production possibil-
ity set (PPS). As a measure of overall performance, the 
distance from the DMUs to the frontier is calculated. Best 
practices, therefore, play a prominent role in calculating 
the efficiency score. Figure 1 below shows the differences 
between three different PPSs. As we perform a DEA to 
measure the efficiency of all six DMUs together, DMUs 
A1 and A2 create the efficient frontier. The PPS consists 
of the area enclosed by this efficient frontier line, plus the 
horizontal line that extends down from A1 and the verti-
cal line that extends right from A2 . The four DMUs B1 , 
C1 , B2 , and C2 are identified by the DEA as inefficient, 
and their efficiency can be evaluated by referring to the 
frontier lines. The efficiency of B1 , for example, within 
this PPS is evaluated by OB1�

∕OB1 = 0.73 . This unit is 
inefficient since it underperforms compared to the set of 
efficient DMUs: {A1,A2} . It is referred to as the reference 
set or peer group of the DMU B1 . Nevertheless, when we 
implement clustering before running the DEA, two dis-
tinct clusters are detected: cluster 1 (vertical stripes area) 
includes A1 , B1 , and C1 , and cluster 2 (horizontal stripes 
area) includes A2 , B2 , and C2 . In cluster 1, the efficient 
frontier is formed by A1 and B1 , the DMU that was pre-
viously shown to be inefficient. C2 , the DMU that was 
previously indicated as inefficient, now forms the efficient 
frontier of cluster 2 together with A2 . This example illus-
trates how the clustering can contribute to the estimation 
of efficiency behind identifying similar DMUs forming the 
PPS. Clustering may be a useful approach for determining 
homogeneity and heterogeneity in data sets. To help iden-
tify homogenous groups, clustering techniques maximize 
homogeneity within a group and heterogeneity between 
groups. Therefore, the resulting inefficiency scores will 
not be influenced by, e.g., economies of scale.
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Traditional DEA models can present several traps for the 
unwary because of the issue of homogeneity. By analyzing the 
transformative capacity of hospitals, this study aims to exam-
ine the source of differences in the inefficiency of hospitals.

Predictive capabilities When managers of inefficient 
hospitals receive the results of a DEA, they usually have 
subsequent requests, including the possibility of keeping 
a watchful eye on progress by analyzing what-if scenarios 
during operational phases and setting target performance 
levels. Therefore, hospitals must be capable of setting up 
actionable targets that are specific and measurable. Addi-
tionally, analyzing hypothetical scenarios via an adaptive 
estimation capability can be a valuable addition to assist 
managers in the monitoring process during the operational 
phase of change. Although there have been successful mod-
els to measure the comparative efficiency of competing 
units, little attention has been given to including predict-
ability in the performance measurement framework (Kohl 
et al. 2019). As a second objective, this study explores 
what level of improvement is needed to see an inefficient 
hospital become efficient by approximating the efficient 
frontiers of each cluster and predicting the best perfor-
mance of each inefficient hospital within its cluster (com-
pared to its leader). Additionally, it facilitates the control-
ling process during implementation by adding value to 
if-then scenarios.

2  Literature Review and Contribution

This section reviews the literature relevant to DEA mod-
els, neural networks in DEA, clustering in DEA, and the 
hypothesis tests developed for comparing two groups of 
DMUs. This section also summarizes our contribution to 
the literature.

Model Selection The basic DEA model introduced by 
Charnes, Cooper, and Rhodes, known as CCR, evaluates the 
relative efficiency of a set of DMUs (Charnes et al. 1978). 
Using a variable return-to-scale (VRS) setting, Banker et al. 
(1984) advance the CCR model. This model is called the 
BCC model. As radial models, CCR and BCC deal with pro-
portional changes in outputs or inputs. Using these models, 
the efficiency score is the proportional maximum output (or 
input) expansion (or reduction) ratio common to all outputs 
(or inputs) (Tone 2017, 2001). The assumption that these 
factors will behave proportionally is too restrictive in real-
world situations. A further limitation of radial models is 
ignoring slacks in calculating efficiency scores. Non-radial 
Slacks-Based Measure (SBM) models have been developed 
to address these restrictions. SBM DEA models do away 
with the proportional change assumption and deal directly 
with slacks. The DEA model has been recognized to be a 
powerful tool for performance analysis and benchmarking, 
spanning a wide range of industries and functional areas, 

DMU { , } { , } { , }

A1 Efficient Efficient –

B1 1

1
= 0.73 Efficient –

C1 1

1
= 0.80

1

1
= 0.80 –

A2 Efficient – Efficient

B2 2

2
= 0.78 – 2

2
= 0.82

C2 2

2
= 0.93 – Efficient

Fig. 1  Contribution of clustering to measuring efficiency
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including healthcare (Kohl et al. 2019; Almeida Botega et al. 
2020; Araújo et al. 2014). In a recent study on the German 
hospital market, Schneider et al. (2020) investigate hospital 
urgency scores (noting the average level of medical urgency 
in all cases treated at a hospital) are compared to technical 
efficiency. They use the data of 1,428 hospitals throughout 
Germany for the years 2015, 2016, and 2017. Simar and Wil-
son (1998) promote bootstrapping as a resampling method 
for DEA, which has become one of the most commonly used 
methods in hospital DEA applications (Kohl et al. 2019). 
There are two main reasons why it is relevant to DEA. DEA 
estimates tend to be positively biased (Nedelea and Fannin 
2013; Mitropoulos et al. 2014) because the estimated pro-
duction frontier is determined by the units included in the 
sample. A DMU does not use every input/output combina-
tion that is theoretically possible. Hence, the estimated fron-
tier of efficient DMUs is typically too low, even if efficient 
DMUs are not missing for other reasons (Simar and Wilson 
2004). DEA, therefore, assigns efficiency scores that are 
biased upward because the DMUs are assumed to be closer 
to the production frontier than they actually are. This upward 
bias can be corrected via the bootstrapping procedure by cre-
ating significance intervals for the efficiency estimates. Our 
study uses an input-oriented SBM DEA model, in contrast 
to previous studies (Kwon 2017; Samoilenko and Osei-Bry-
son 2010, 2008; Omrani et al. 2018), which mostly utilized 
radial models. We conduct a statistical analysis to determine 
whether the SBM estimates are significantly biased upward 
in comparison to the bootstrapped DEA model.

DEA and Machine Learning Few studies have attempted to 
reinforce DEA models with machine learning such as arti-
ficial neural networks (ANNs) for hospital performance 
evaluation despite the established effectiveness of these 
approaches (Kohl et al. 2019). Generally, incorporating 
ANNs with DEA can be categorized into two distinct 
research streams. The first consists of studies comparing 
DEA to ANN as an alternative way of assessing efficiency 
(Athanassopoulos and Curram 1996; Santín et al. 2004). 
According to the second stream of research, ANN can be 
used as a complement to DEA to gain potential advan-
tages. Clustering is one of the machine learning methods 
used in the literature for subdividing a dataset of DMUs 
into subsets (clusters) according to how similar the obser-
vations are within each cluster. Several algorithms have 
been developed in the literature for conducting cluster-
ing (Saxena et al. 2017). Among these techniques, three 
general approaches comprising hierarchical, two-step, 
and partitional clustering have been used as complements 
to DEA to handle the scale heterogeneity of samples in 
the dataset (Mahmoudi et al. 2019; Omrani et al. 2018; 
Samoilenko and Osei-Bryson 2010). The application 

of clustering in the literature can be divided into two 
approaches. One approach is applying clustering to the 
results of a DEA to facilitate creating multiple reference 
subdivisions from the original set of DMUs (Bojnec and 
Latruffe 2008). Second, each DMU is compared with only 
a subset of its reference set. In the presence of dataset 
heterogeneity, we can use this approach to isolate the 
multiple homogenous subsets (Herrera-Restrepo et al. 
2016; Samoilenko and Osei-Bryson 2010). In clustering, 
it is also important to specify the appropriate number of 
clusters. The quality of partition and cluster validity has 
been assessed by several authors using different indices 
(Rocci and Vichi 2008). The Caliński-Harabasz index 
(CH-index), the Silhouettes, and the Davies-Bouldin cri-
teria were found to be acceptable in a study of cluster-
ing conducted by Łukasik et al. (2016). In the literature, 
details regarding these two criteria and how they are cal-
culated can be found, for example, in Ünlü and Xantho-
poulos (2019).

Efficiency Comparison This study advances the bench-
marking paradigm suggested by Samoilenko and Osei-
Bryson (2010), which is an extension of Samoilenko and 
Osei-Bryson (2008), by successfully integrating the clus-
tering and ANN prediction models into an SBM DEA. In 
Samoilenko and Osei-Bryson (2010), the averages of the 
relative efficiencies of clusters are used to analyze het-
erogeneity. A cluster that has a higher average efficiency 
is referred to as a leader, and a cluster with a lower aver-
age efficiency is referred to as a follower. Their method is 
imprecise because they compare DEA estimates using the 
mean value of the efficiency scores without considering 
the distribution of the estimates. The mean value becomes 
an inappropriate measure when the frequency distribution 
of the efficiency scores is skewed (Weisberg 1992). Sev-
eral studies have been conducted where DEA estimation 
distributions between two groups of DMUs are compared 
by developing both parametric and non-parametric statisti-
cal tests. Banker et al. (2010) develop two sets of paramet-
ric and three non-parametric tests. The idea of comparing 
two groups of DMUs is combined with a heterogeneity 
analysis in our study. Additionally, we apply our frame-
work to a setting with more than one pair consisting of one 
leader and one follower.

Our contribution proposes an analytical framework con-
sisting of three stages. We design SOM-ANN for cluster-
ing, followed by an SBM DEA model that calculates the 
relative efficiency of the clustered hospitals. We develop 
two MLP-ANNs to generate: (i) the transformative capacity 
model (TCM) to analyze the homogeneity, and (ii) the best 
practice model (BPM) to predict the level of improvement 
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desired, to achieve efficient operation. The rest of the paper 
follows this structure. In Section 3, we describe the research 
methodology and the multi-stage analytical framework com-
bining SOM-ANN, SBM DEA, and MLP-ANN. The dataset 
of German hospitals used to demonstrate the framework’s 
applicability is presented in Section 4. The results of the 
implementation of the framework are presented in Section 5. 
Section 6 concludes with a discussion of future research 
directions and conclusions.

3  Methodology

In this section, we describe our proposed framework (see 
Figure 2). The framework contains three main stages: 1) 
Clustering using SOM-ANN, 2) efficiency analysis, and 
3) heterogeneity and predictability analyses. Each stage is 
described in detail in the following subsections.

3.1  Stage 1: Cluster Analysis

We use an SOM-ANN architecture because SOMs are non-
linear techniques that can summarize and analyze numer-
ous aspects of variability in a complex, large, multivariate, 
multi-dimensional dataset (Hudson et al. 2011). In contrast 
to more traditional clustering methods (such as K-means), 
SOM-ANN, without imposing a structure on the input/
output variables, identifies natural groupings by produc-
ing a succinct organization based on similarities among 
the transformation capacity. As network optimization 
remains a challenging task, SOM-ANN settings such as 

initial neighborhood size, topology, and distance functions 
have been determined by trial and error (Emrouznejad and 
Shale 2009; Kwon 2017). We also study alternative clus-
tering approaches that are based on the hospitals’ natural 
characteristics: their size (number of beds) and ownership 
type. The size-related clusters are: small ( beds < 500 ), 
medium ( 500 ≤ beds < 1, 000 ), and large ( beds > 1, 000 ), 
while the ownership type clusters are: public, non-profit, 
and private. This allows us to determine whether natural 
clustering produces high-quality clusters for hospitals and, 
consequently, ensures homogeneity within those clusters 
by comparing the quality indicators calculated for SOM 
clustering and natural clustering. The function developed 
for our clustering approach in Python 3.8 is presented in 
Appendix A.

3.2  Stage 2: Efficiency Analysis

We run the input-oriented SBM DEA model under VRS 
settings to calculate the efficiency score of each hos-
pital in each cluster. The mathematical formulation 
is presented in Appendix B. We also provide details 
regarding how to calculate the projections based on the 
slacks determined by the SBM DEA model. In DEA 
applications, the orientation is chosen based on which 
parameters managers have more control over (Cooper 
et al. 2004). While marketers, referral sources, and other 
methods such as reputation management, can sometimes 
generate additional patients for hospitals (Ozcan 2014), 
we use an input orientation under the assumption that 
hospital managers can more readily control the resources 

Fig. 2  Proposed analytical framework
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used for patient treatments. Thus, we are interested in the 
amount by which the resources/inputs (e.g., staff) can be 
reduced proportionately without reducing the number of 
treated patients. The downside of using an input-oriented 
model is the limited applicability when demand for care 
is higher than the supplied capacity. While this situation 
may occur for specific treatment types such as chemo-
therapy or respiratory assistance temporarily, the Ger-
man healthcare system is set up to continuously assess 
long-term capacity requirement projections and to react 
to demand changes with di-/investments into treatment 
capacities on a state level, so that supply and demand are 
balanced in the long run.

Furthermore, to determine whether SBM DEA estimates 
are biased upward or not, we perform a statistical test analy-
sis (explained in the following subsection) between the SBM 
DEA estimates and bootstrapped DEA estimates produced 
by implementing the algorithm developed in Daraio and 
Simar (2007) with the conduct of 200 bootstrap iterations. 
For brevity, we will not repeat the steps of the algorithm 
here, however, the reader may refer to Daraio and Simar 
(2007) for more details.

3.2.1  Efficiency Comparison of Two Groups of Hospitals

A DEA estimator of the production frontier is a fully-fledged 
statistical methodology (Banker 1993) by which we can con-
struct a variety of statistical tests based on efficiency scores 
represented as stochastic variables. Appendix C describes 
the comparison algorithm in detail. After indicating the 
existence of a statistical difference between G1 and G2 , we 
reperform the appropriate tests under the one-tailed null 
hypothesis to indicate whether the efficiency of G1 is greater 
than G2 or vice versa. Throughout the study, all hypothesis 
tests are performed with a significance level of 5%. Follow-
ing this procedure, we label the leader and follower in each 
pair of hospitals.

3.3  Stage 3: Heterogeneity and Best Practice 
Analyses

In this stage, two MLP-ANN architectures are designed 
in two different ways, which are explained in detail in the 
following subsections. The first architecture supports the 
scale heterogeneity analysis and the second one is used to 
predict the actual output level necessary for an inefficient 
hospital to be efficient. The MLP-ANN maps complex 
unknown relationships in the dataset because (i) MLP-
ANNs have a stochastic learning process, which mini-
mizes the chance of being trapped in local minima, and (ii) 
there is no necessity to specify and know the relationships 

within the dataset. This architecture, the multilayer feed-
forward network, is mostly used with the backpropagation 
algorithm.

3.3.1  Heterogeneity Analysis

A model of transformative capacity for each cluster is gener-
ated by creating and training an MLP-ANN. Here, it is pro-
posed that score estimates obtained from DEA can be indi-
rectly employed to investigate the factors influencing relative 
efficiency scores (Hoff 2007; Samoilenko and Osei-Bryson 
2010). The DEA efficiency score calculation, however, is 
hampered by the unavoidable misspecification of the model 
when determining which inputs are converted into which 
outputs. Therefore, the decision-maker needs to know the 
correct transformation function of inputs into the outputs 
used for conducting the modeling of these estimated scores 
by DEA. We generate and analyze the transformative capac-
ity model for cluster k denoted by TCMk . For each cluster, 
the designed MLP-ANN is trained using the set of input 
variables (number of beds, physicians, and nurses) as input 
nodes and the set of output variables (number of adjusted 
inpatients, outpatients, and surgeries) as output nodes. This 
is analogous to the way that input data can be transformed 
into outputs by a given cluster. Then, we investigate for any 
leader-follower-pair whether the relative efficiency score of 
the follower improves when comparing the efficiency score 
distribution of the follower, using the simulated outputs of 
the follower employing TCMk of its leader k . When the effi-
ciency score of the follower improves, there is a reason to 
recommend that the disparity between the original efficien-
cies of the leading and following clusters is partly due to the 
differences in transformative capacity. To analyze the scale 
heterogeneity (scalability), we use the original inputs and 
outputs of the follower and the initial inputs and simulated 
outputs of its leader obtained from the TCMk (follower k ) for 
any leader-follower pairs. If the efficiency of the leader is 
still higher than the follower, then we can say that scale het-
erogeneity plays a part in explaining the disparity between 
the relative efficiencies of the leading and following cluster. 
In other words, even with the less efficient process of the 
transformative capacity (i.e., TCMk , follower k ), the leader 
remains relatively more effective. Visual description is given 
in Stage 3 of the framework presented in Figure 1 as “Pro-
cedure 1: Heterogeneity Analysis.”

3.3.2  Best Practice Analysis

The second MLP-ANN architecture is designed to deliver 
improved estimation precision due to its pattern mapping 
and learning capabilities as a complementary method to 
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DEA. The objective of this analysis is to investigate the 
predictive capabilities of ANN when used alongside DEA. 
To this end, the MLP-ANN architecture is trained based on 
inputs and outputs of the hospitals in each cluster as the 
input layer and their SBM DEA efficiency scores (see Stage 
2 in Figure 1) as the target nodes. Managers can benefit 
from this analysis in two different ways. First, in a capital-
intensive and competitive environment such as in the hospi-
tal setting, the ability to estimate input/output levels beyond 
the calculated relative efficiency scores is essential for per-
formance benchmarking in real-world applications (Ozcan 
2014). Therefore, the first way this analysis can be used by 
decision-makers is to estimate the efficiency level that can be 
reached by using a given level of inputs to produce a given 
level of outputs. Second, the analysis allows managers to set 
stepwise improvement goals by utilizing what-if scenarios 
for each inefficient hospital to become an efficient unit, not 
only in its cluster but also in other clusters without requiring 
a new DEA. For example, we conduct further experiments 
to investigate the potential of the proposed framework based 
on the leader-follower strategy. While DEA has powerful 
optimization capabilities and a wide range of applications, 
it has restrictions when working with new or unobserved 
data sets. If a new DMU is added to a sample and the DEA 
model is rerun, the results might be completely different 
as this new DMU might alter the PPS. Hence, the second 
way this analysis helps managers is to calculate the relative 
efficiency score of a new or hypothetical hospital by using 
BPMs trained to learn efficiency patterns existing in the mar-
ket. This provides managers with alternative paths leading 
toward best practices, which typically occur at the planning 
stage and before implementation. Visual description is also 
given in Stage 3 of the framework presented in Figure 1 as 
“Procedure 2: Best Practice Analysis.”

4  Data Set and Descriptive Statistics

The proposed framework in this study is examined in the 
context of a large dataset of hospitals recorded by the Fed-
eral Joint Committee2 in Germany in 2017. The raw dataset 
includes all the hospital quality reports of the reporting 
year 2017. In this study, the information on standard input 
and output variables for performance assessment of hospi-
tals (Kohl et al. 2019; Tone 2017) was extracted from these 
reports. Appendix D provides more details about the data 
sources and a flowchart of the steps involved in data pre-
processing. The processed dataset includes 1,124 hospitals.

Kohl et al. (2019) provide some insights into standard 
input/output settings in their review of hospital DEA studies. 
Their report indicates that the parameters most used in hospi-
tal DEA applications are beds, nurses, physicians, inpatients, 
and outpatients. These measures are suitable for describing 
the service process of a hospital as stated by Ozcan (2014). A 
hospital’s capacity can be measured by the number of beds it 
has. Physicians and nurses play the main role in the hospital’s 
service process. Therefore, the input factors can be considered 
as beds (Beds), nurses (Nurses), and physicians (Physicians). 
In our sample, we use full-time equivalents (FTE) of physi-
cians and nurses. As for the outputs, we use the most common 
output variables used in the literature (Kohl et al. 2019): the 
number of adjusted inpatients (Adjusted Inpatients) and the 
number of outpatients (Outpatients). Patients’ conditions need 
to be considered when evaluating inpatient cases, as not every 
patient requires the same level of care. Following a prior study 
on efficiency measuring of the German hospital market (Sch-
neider et al. 2020), we apply the case-mix adjustment based 

Table 1  Descriptive statistics of inputs and outputs of dataset (after preprocessing)

* Including all types of physicians such as specialist, non-specialist, and external in full-time equivalent (FTE) unit.
** Including all types of nurses such as pediatric, geriatric, auxiliary, and general in the FTE unit.

Statistic Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries

Mean 386.1 131.7 295.2 20,051.6 39,713.2 16,991.7
Standard Error 10.2 5.0 9.5 634.5 2,486.7 606.6
Median 283.0 79.7 199.6 12,262.1 20,780.0 9,795.5
StD 340.5 168.2 318.3 21,253.4 83,368.1 20,335.6
Kurtosis 9.8 28.3 20.7 15.6 137.6 11.9
Skewness 2.5 4.3 3.6 3.0 9.7 2.8
Minimum 50.0 6.0 11.0 628.8 11.0 1.0
Maximum 3,011.0 2,066.7 3,695.7 204,827.6 1,568,896.0 178,580.0
Sum 434,023.0 147,983.0 331,815.8 22,497,902.8 44,637,688.0 19,098,719.0
Confidence Level (95.0%) 19.9 9.8 18.6 1,244.9 4,879.0 1,190.1

2 In German: Gemeinsamer Bundesausschuss. https:// www.g- ba. de/

https://www.g-ba.de/
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on the relative length of stay for groups of hospital diagnoses 
(according to the International Classification of Diseases Tenth 
Revision [ICD-10] codes) as suggested by Herr (2008). The 
German Federal Statistical Office3 publishes hospital statistics 
on average lengths of stay for each diagnosis group. In addition 
to these outputs, we consider the number of surgeries based 
on OPS-54 codes (Surgeries). This output plays a major role in 
generating net revenue for hospitals. Table 1 represents some 
descriptive statistics regarding the inputs and outputs of the 
hospitals in our dataset.

5  Results and Discussion

This section presents the key experimental results of each 
stage of the proposed framework. We interpret and explain 
how far these results support the hypothesis and answer the 
research questions.

5.1  Results of Cluster Analysis

For the optimal number of clusters, we create a list of 54 
distinct two-dimensional hexagonal layer topologies. We 
then run the SOM-ANN for each topology of this list to 
generate clustering vectors. For each clustering vector, three 

quality criteria are calculated: CH-index, Silhouettes, and 
Davies-Bouldin (see Appendix E). We then calculate the 
quality indicators for the clusters resulting from the size and 
ownership. The results are presented in Table 2. When com-
pared to the best SOM clustering, size (small: beds < 500 , 
medium: 500 ≤ beds < 1, 000 , and large: beds > 1, 000 ) and 
the ownership (public, non-profit, and private.) of hospitals 
provide low-quality clusters. Interestingly, clustering based 
on ownership is ineffective when identifying homogeneity 
within a group of hospitals and heterogeneity across groups, 
yet this approach is adopted often in DEA hospital applica-
tions with multiple stages (Ozcan 2014; Jacobs et al. 2006; 
Herr 2008). In identifying homogenous groups, size (number 
of beds) clustering performs better than ownership; however, 
they are both outperformed by SOM. By using SOM-ANN, 
we have three clusters and can calculate the efficiency scores 
of hospitals in each cluster.

5.2  Results of Efficiency Analysis

We calculate the efficiency of each hospital and the projec-
tions calculated for each hospital using an input-oriented 
SBM DEA under the VRS setting. SBM DEA estimates 
( GSBM ) are compared to bootstrapped DEA estimates ( GBT ) 
produced by the implementation of the algorithm developed 
by Daraio and Simar (2007) to determine if they are biased 
upward. Table 3 presents the results of the comparison. In 
all three clusters, efficiency scores are skewed. They follow 
neither an exponential nor a half-normal distribution.

Mann–Whitney tests reveal that the distribution underly-
ing input-oriented SBM estimates is not significantly different 

Table 2  Results of comparing the clustering approaches

*  A high score is achieved when clusters are dense and well separated.
**  The score ranges from −1 for incorrect clustering to +1 for dense and well-separated clustering.
***  A value closer to zero indicates a better partition.

Clustering Approach No. of hospitals CH-index* Silhouette** Davies-Bouldin***

Size Small: 853 Medium: 201 Large: 70 647.35 0.48 1.08
Ownership Non-profit: 450 Private: 238 Public: 436 25.77 -0.11 7.59
SOM Cluster 1: 186 Cluster 2: 249 Cluster 3: 689 874.54 0.57 0.76

Table 3  Comparison of bootstrapped DEA and SBM estimates

Cluster Mean
(Bootstrapped DEA, SBM)

StD
(Bootstrapped DEA, SBM)

Median
(Bootstrapped DEA, SBM)

p-value
(H0 ∶ G

SBM
= G

BT
;H1 ∶ G

SBM
≠ G

BT
)

1 (0.8078, 0.8300) (0.1066, 0.1364) (0.8259, 0.8465) 0.5540
2 (0.6439, 0.6862) (0.1295, 0.1760) (0.6469, 0.6575) 0.5650
3 (0.6797, 0.6891) (0.1259, 0.1716) (0.6808, 0.6610) 0.5332

4 Chapter 5 of OPS (Operationen- und Prozedurenschlüssel) which is 
the German modification of the International Classification of Proce-
dures in Medicine.

3 https:// www. desta tis. de/

https://www.destatis.de/
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from the distribution underlying bootstrapped DEA esti-
mates. The p-values indicate that the null hypothesis should 
be retained. We then continue our analysis using the input-
oriented SBM DEA model. Table 4 summarizes the results of 
the relative efficiency scores calculated for the clusters and all 
hospitals. As a result of clustering, both the mean and median 
efficiency scores as well as the number of efficient hospitals 
increase. Table 5 shows that the amounts by which inputs 
need to be reduced proportionately (while keeping the outputs 
constant) are significantly diminished after applying cluster 
analysis. For example, the number of beds that hospitals need 
to reduce, on average, to become efficient before clustering is 
60% higher than after clustering. Clustering all hospitals in one 
group may conceivably distort the results since an important 
assumption of DEA is that all DMUs are homogenous.

5.3  Results of Heterogeneity and Best Practice 
Analyses

This section presents the results of the last stage of the 
proposed framework. First, the simulated output sets for 

each cluster are generated based on the TCMs created by 
MLP-ANN. The first procedure of Stage 3 is focused on 
determining: (i) whether the relative efficiency score of 
hospitals in a certain cluster improves if we consider the 
TCM of other clusters, and (ii) identifying the differences 
that are partially due to scale heterogeneity. The second 
part of the analysis aims at exploiting the non-linear 
mapping capabilities of MLP-ANN by using the input and 
output data of each cluster as input nodes (input layer) and 
assigning their efficiency scores received from DEA-SBM 
as target nodes (output layer). We develop both MLP-
ANNs using an end-to-end open-source platform called 
TensorFlow in Python 3.8. We set the mean absolute 
percentage error (MAPE) as the performance measure due 
to its scale independence, interpretability, and simplicity. 
For training, validation, and testing, we use a random data 
division function. The training function updates weight and 
bias values based on “Adam”, a stochastic optimization 
method developed by Kingma and Ba (2014). More details 
regarding the parameters of the developed MLP-ANNs are 
provided in Appendix F.

Table 4  Descriptive statistics of efficiency scores before and after clustering

Statistics Cluster 1 Cluster 2 Cluster 3

Before clustering After clustering Before clustering After clustering Before clustering After clustering

Mean 0.7135 0.8300 0.6034 0.6862 0.5964 0.6891
Standard Error 0.0124 0.0100 0.0108 0.0112 0.0071 0.0065
Median 0.6898 0.8465 0.5905 0.6575 0.5633 0.6610
StD 0.1688 0.1364 0.1706 0.1760 0.1865 0.1716
Kurtosis -0.1618 0.0765 0.4956 -0.5742 0.0077 -0.4841
Skewness -0.0005 -0.5851 0.4991 0.3601 0.7116 0.3184
Minimum 0.2202 0.3352 0.2161 0.2973 0.1959 0.2516
Maximum 1.0 1.0 1.0 1.0 1.0 1.0
Efficient DMUs 20 39 9 34 41 84

Table 5  Descriptive statistics of input excesses before and after clustering

Statistics Beds Physicians Nurses

Before clustering After clustering Before clustering After clustering Before clustering After clustering

Mean 155.92 96.32 50.94 36.98 115.83 90.68
Standard Error 4.45 3.81 1.73 1.65 3.21 3.05
Median 120.25 57.30 34.66 20.42 85.34 63.91
Mode 0.00 0.00 0.00 0.00 0.00 0.00
StD 149.02 127.60 57.97 55.37 107.75 102.09
Kurtosis 28.48 48.18 15.45 21.59 12.93 17.23
Skewness 3.50 4.66 3.19 3.92 2.74 3.17
Maximum 2,062.56 1,982.96 568.81 559.61 1,169.14 1,165.43
Sum 175,254.98 108,266.58 57,253.24 41,565.68 130,189.20 101,929.65
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5.3.1  Results of Heterogeneity Analysis

For each cluster, we design an MLP-ANN to create a TCM 
( TCMk,∀k ∈ {1, 2, 3} ). Using the TCMs of the other two 
clusters, we simulate the output values of adjusted inpatients, 
outpatients, and surgeries for each cluster. For example, in 
the case of Cluster 1, we import the actual inputs (Beds, 
Physician, and Nurses) of this cluster to the TCMs generated 
for Cluster 2 ( TCM2 ) and Cluster 3 ( TCM3 ) to generate two 
simulated output sets for Cluster 1. The simulated outputs 
are then substituted for the actual outputs of Cluster 1, and 
the new relative efficiency scores are calculated. As a result, 
we have three sets of efficiency scores for Cluster 1 based on 
three sets of outputs: the original outputs, simulated outputs 
using TCM’s Cluster 2 ( TCM2 ), and simulated outputs using 
TCM’s Cluster 3 ( TCM3 ). C

TCM
k
�

k
,∀k, k

�

∈ {1, 2, 3}andk ≠ k
� 

represents the set of relative efficiency scores calculated 
based on actual inputs of Cluster k and the simulated outputs 
obtained from TCMk

′ . The MAPE values calculated for each 
TCM are presented in Table 6. Surgeries show the highest 
MAPE value among the outputs, likely because its variance 
is higher than that of other outputs across all three clusters.

We must first define the leader-follower relationship for 
all cluster pairs by comparing the efficiency of two groups of 
hospitals. The efficiency scores of all clusters are skewed, as 
shown in Table 4. Following that, according to the algorithm 
developed for comparing efficiencies, we check whether the 
efficiency is distributed exponentially or half-normally for 
each pair of hospitals ( G1 and G2 ). Based on the Q-Q (Quan-
tile-Quantile) plots of all clusters, they do not appear to have 
come from populations with an exponential or half-normal 
distribution. Therefore, we conduct the Mann–Whitney test 
to determine if one hospital cluster is stochastically more 
efficient than the other, i.e., determining the leader and the 
follower of the pair. Table 7 shows the results of comparing 
the distribution of efficiency scores of all clusters, including 

their leader and/or follower. There is no significant differ-
ence in efficiencies underlying Clusters 2 and 3. Therefore, 
in this pair, no leader (or follower) can be identified. How-
ever, if we only compare the mean efficiency scores (see 
Table 4) and determine the leader solely based on them, 
Cluster 3 emerges as the leader. In this regard, comparing 
the efficiency of two groups of hospitals only based on mean 
values could lead to the wrong detection of leaders. Based 
on the Q-Q plots of the simulated outputs, the new efficiency 
score sets are neither exponentially nor half-normally dis-
tributed. Therefore, we compare efficiency scores using the 
Mann–Whitney test (see Table 7).

Transformative capacity We utilize the actual inputs and the 
simulated outputs of the follower using TCM of its leader 
and compare the resulting efficiency scores with the original 
efficiency of the follower. Consider the results reported in 
Table 8 for Clusters 1 and 2 as one instance. Cluster 1 is the 
leader of Cluster 2. The results indicate that the efficiency 
of Cluster 2 as a follower, based on its actual inputs and 
the TCM1 outputs ( CTCM1

2
 ), has increased compared with its 

initial efficiency score, i.e., C2 < C
TCM1

2
 . This means that 

the difference between the relative efficiencies of Cluster 1 
(leader) and Cluster 2 (follower) is caused by the disparities 
in their transformative capacities. However, this conclusion 
is not valid for Cluster 3 ( C3 > C

TCM1

3
 ) as the other follower 

of Cluster 1. For the pair 
{
C2,C3

}
 , whose leader (follower) 

cannot be identified, this analysis should not be conducted. 
If we compared the mean values, the leader-follower analy-
sis would proceed as follows: the average efficiency score 
C
TCM3

2
 is equal to 0.8838, a significant increase from the 

initial average efficiency score (0.6862). Thus, we could 
infer that the disparity in efficiency scores has to do with 
their differences in transformative capacity. However, as no 
leader/follower was identified in the first place, the efficiency 
distributions of the two clusters could not be determined to 

Table 6  Best settings of the 
designed MLP-ANNs for 
simulating outputs

Transformative 
capacity model

Layers Train:Test:Validation 
Ratio

MAPE of the test dataset

Adjusted 
Inpatients

Outpatient Surgeries

TCM1 [20, 10, 10] 75:20:5 15% 16% 24%
TCM2 [20, 10, 10] 80:15:5 7% 10% 14%
TCM3 [20, 10, 10] 80:15:5 6% 6% 11%

Table 7  Comparing relative 
efficiency scores via Mann–
Whitney test

Pair 
{
G1,G2

}
p-value
(H0 ∶ G1 = G2,H1 ∶ G1 ≠ G2)

Result of hypothesis tests Leader

{
C1,C2

}
0.0000 C1 > C2 C1{

C1,C3

}
0.0000 C1 > C3 C1{

C2,C3

}
0.6785 C2 = C3 –
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be significantly different. We can conclude that there are 
instances where the difference between the relative efficien-
cies of hospitals in Germany is due to disparities in their 
transformative capacities.

Scale heterogeneity (scalability) We compare the original 
efficiency of a follower with the efficiency scores of its 
leader (based on the actual inputs and the simulated out-
puts by the TCM of the follower). Results are reported in 
Table 8. In the case of Clusters 1 and 2, the distributions of 
the initial efficiency score of the follower ( C2 ) and the dis-
tributions of the efficiency score calculated based on TCM2 
for the leader ( CTCM2

1
 ) are compared. Since CTCM2

1
 is greater 

than C2 , Cluster 1 remains the leader of Cluster 2. Thus, 
scale heterogeneity partially explains the difference in rela-
tive efficiencies between Clusters 1 and 2. For Cluster 3, the 
other follower of Cluster 1, similar results can be observed 
( C3 < C

TCM3

1
 ). Overall, there is no case in which the relative 

efficiency score of the leader is smaller than the relative 
efficiency score of the follower. There is no case in which 
the new relative efficiency scores of a leader are stochasti-
cally lower than those of the follower. In this way, we can 
argue that a part of the reason for the disparities between the 
relative efficiency scores of followers and leaders is scale 
heterogeneity. This indicates that in the German hospital 
market, despite the less efficient process of TCM (i.e., fol-
lower), the leading hospitals are relatively more efficient 
than the following ones.

5.3.2  Results of Best Practice Analysis

Similar to the first procedure, our next step is to find the best 
settings for the newly designed MLP-ANNs (i.e., BPMs) 

for our best practice analysis of hospitals. The performance 
measure of the trained BPMs is reported in Table 9. In each 
case, a low MAPE indicates a good fit and generalizability.

The frontier function can be viewed as the upper limit of 
the support of the density of hospitals in the input and output 
space. On the efficient frontier, concavity and monotonicity 
assumptions are assumed to be preserved by DMUs. How-
ever, the bootstrapped estimates do not necessarily preserve 
the concave monotone increasing condition. As a result, 
BPMs are trained based on the SBM DEA estimates where 
concave monotonic properties of the efficient frontier are 
preserved (Pendharkar 2005, 2011; Kwon 2017).

To elaborate, we look at one inefficient hospital in Cluster 
2, for instance, which has an efficiency score of 0.7422. The 
SBM DEA projections suggest reducing the number of beds 
by 27%, physicians by 21%, and nurses by 24%. In terms 
of output, the projection calls for increasing the number of 
outpatients by 16%, adjusted inpatients by 5%, and surgeries 
by 887%, which sounds unrealistic. It is now necessary for 
the management of this hospital to have a list of possible 
improvement scenarios that determine what efficiency level 
can be achieved by using a given level of inputs to provide 
a given level of outputs. Re-running the DEA for every sce-
nario setting is one option. If, however, we want to keep the 
PPS unchanged, we cannot consider scenarios with lower 
reduction rates than those predicted by input projections 
or higher expansion rates than those set by output projec-
tions. By reducing beds by 35% and keeping the remaining 
factors unchanged, DEA might form a new PPS according 
to the new data. However, the designed BPM of Cluster 2 
( BPM2 ) can predict the desired level of this hospital’s best 
performance in any setting without concern over creating 
a new efficient frontier. Table 10 presents the estimation 
results on possible improvement scenarios for this hospi-
tal and shows the projected efficiency increase that can be 
achieved by decreasing inputs and/or increasing outputs. As 
we can see from Scenario 7, the management of the hospital 
under study does not have to follow the projections derived 
from the DEA (e.g., unrealistic increasing the number of 
surgeries by about 900%) to become efficient in the peer 
group. Compared to SBM projections, these changes sound 
more realistic and applicable. For varying input levels, the 

Table 8  Results of comparing relative efficiency scores calculated based on the TCMs via Mann–Whitney test

Analysis Leader Follower G1 G2 p-value
(H0 ∶ G1 = G2;H1 ∶ G1 ≠ G2)

Result of hypothesis tests

Transformative Capacity 1 2 C2 C
TCM1

2
0.0002 C2 < C

TCM1

2

1 3 C3 C
TCM1

3
0.0000 C3 > C

TCM1

3

Scale Heterogeneity 1 2 C2 C
TCM2

1
0.0164 C2 < C

TCM2

1

1 3 C3 C
TCM3

1
0.0000 C3 < C

TCM3

1

Table 9  Best settings of the designed MLP-ANNs for best practice 
analysis

Cluster Layers Train:Test:Validation 
Ratio

MAPE of 
the test 
dataset

1 [8, 8] 75:20:5 8%
2 [10, 10] 80:15:5 8%
3 [10, 10] 80:15:5 7%
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proposed approach can support managers in setting optimal 
levels of outputs (e.g., the number of adjusted inpatients 
or outpatients). The same analysis and investigation can be 
applied to every other inefficient hospital.

Furthermore, we conduct additional experimentation to 
explore the potential of the proposed framework based on 
the leader-follower strategy. The results presented in Table 7 
can also be utilized to measure hospitals’ efficiency within 
a managerial network. In cases where a leader-follower 
strategy can be applied, managers of inefficient or weakly-
efficient hospitals can utilize the BPM(s) of their leader(s) 
as well. Consider a hospital that is part of a private hospi-
tal group with 15 hospitals in Cluster 2 and 10 hospitals 
in Cluster 1, which is the leader of Cluster 2. As reported 
in Table 11, the relative efficiency score obtained from the 

SBM DEA model for this hospital is 0.5797 based on origi-
nal inputs and outputs. The projection of this hospital sug-
gests that drastic changes would be required to become an 
efficient hospital in its Cluster 2: reducing the number of 
beds by 33%, physicians by 53%, and nurses by 40%, and 
increasing the number of outpatients, and surgeries by 2% 
and 35%, respectively. As a result of Scenario 5, we need 
less reduction in inputs and less expansion of outputs gener-
ated by the hospital to become efficient when using BPM1 
(leader).

The results show that a nondiscriminatory standard DEA 
for all hospitals would fail to account for differences in scale 
heterogeneity, differences in transformational capacities, and 
likely other exogenous factors that vary between hospitals 
of the same group. The non-linear mapping and adaptive 

Table 10  Possible improvement scenarios for an inefficient hospital using its cluster’s BPM

Actual inputs and outputs Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries Efficiency
256 46.5 172.92 19,474.2 7,175 220 0.7423

Projections 188
(-27%)

36.9
(-21%)

130.97
(-24%)

19,474.2
(0%)

15,085.3
(110%)

2,170.8
(887%)

1.0000

Improvement scenarios 1 -5% -10% -5% 0% 10% 20% 0.7462
2 -10% -10% -5% 0% 10% 40% 0.7526
3 -15% -15% -10% 0% 10% 60% 0.7708
4 -20% -15% -10% 5% 20% 80% 0.7964
5 -25% -20% -10% 5% 20% 100% 0.8907
6 -30% -20% -15% 5% 20% 150% 0.9599
7 -35% -10% -15% 10% 30% 150% 0.9958
8 -40% -10% -15% 10% 30% 150% 1.0250
9 -45% -10% -15% 10% 30% 0% 1.0224
10 -50% -10% -15% 10% 30% 0% 1.0374

Table 11  Possible improvement scenarios for another inefficient hospital using its leader’s BPM

Actual inputs and outputs Beds Physicians Nurses Adjusted Inpatients Outpatients Surgeries Efficiency
341.0 130.5 275.2 18,313.5 22,221.0 12,969.0 0.5797

Projections 226.8
(-33%)

61.8
(-53%)

165.2
(-40%)

18,313.5
(0%)

22,717.5
(2%)

17,564.8
(35%)

1.0000

Improvement scenarios 1 -5% -10% -5% 0% 0% 5% 0.9055
2 -10% -10% -10% 0% 0% 10% 0.9248
3 -15% -15% -15% 0% 2% 15% 0.9531
4 -20% -15% -20% 0% 2% 20% 0.9717
5 -25% -20% -25% 0% 2% 25% 0.9969
6 -30% -20% -30% 0% 5% 30% 1.0159
7 -35% -30% -35% 5% 10% 35% 1.0472
8 -40% -30% -40% 5% 15% 0% 1.0621
9 -45% -30% -45% 5% 0% 0% 1.0677
10 -50% -30% -50% 10% 0% 0% 1.0891
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prediction capabilities of our trained BPMs allow for the 
compensation of the lack of predictive capabilities of stand-
ard DEA models, which are still frequently used as bench-
marking tools. Therefore, the framework proposed in this 
study can assist managers in setting any performance targets 
for their hospitals over time.

6  Conclusions

There are limited economic resources available to hospitals. 
Therefore, it is essential to determine how the resources 
are being utilized and whether they are being distributed 
appropriately. DEA has been used in numerous studies. 
However, if hospitals operate under different environments, 
basic DEA alone may not be the best approach and may need 
some complementary approaches to deal with violations of 
its assumptions. In this study, we propose a framework for 
improving the discriminatory and estimation power of DEA. 
Traditional DEA classifies DMUs in the sample as efficient 
or inefficient, whereas the proposed framework can account 
for heterogeneity as a result of the size of the dataset and its 
ability to transform the data. As complementary to DEA, 
the framework designs two different architectures of neural 
networks, namely SOM-ANN and MLP-ANN.

The framework examines the hospital dataset that the 
Federal Joint Committee of Germany recorded in 2017. To 
ensure complete accuracy and robustness in calculations, 
many preprocessing steps are involved in each stage of the 
framework due to the vast and complex dataset. The pro-
posed framework possesses improved prescriptive capabili-
ties over DEA approaches in a heterogeneous environment. 
The developed framework may also contribute to the crea-
tion of continuous improvement opportunities by promoting 
the best management practices within a group of hospitals. 
The proposed framework advances the current benchmark-
ing paradigm of hospitals by learning the optimal perfor-
mance pattern of hospitals on the efficient frontier of each 
group. By using what-if and identifying improvement sce-
narios, the framework can assist decision-makers in evalu-
ating efficiencies. There are clearly defined stages in this 
study’s framework, and different methods are employed as 
part of each stage. Analyzers can address the effect of envi-
ronmental variables on heterogeneity without adding addi-
tional variables to DEA models. The key findings of this 
study can be summarized as follows:

• Natural clustering of hospitals (i.e., based on ownership 
or size) would not reveal homogeneity within groups of 
hospitals, nor would it identify heterogeneity between 
groups of hospitals.

• According to the SBM DEA estimates, the distribution 
underlying the bootstrapped DEA estimates is identical 
to the distribution underlying the SBM DEA estimates.

• The differences in the relative efficiency of some German 
hospitals can be due to differences in their transformation 
capacities rather than inefficient input usage in producing 
outputs. Furthermore, a part of the reason for the dispari-
ties between the relative efficiency scores of hospitals is 
scale heterogeneity.

• The trained BPMs can compensate for the lack of predict-
ability of standard DEA models due to their nonlinear 
mapping and adaptive prediction abilities.

Most studies ignore the heterogeneity pitfall even though 
it is widely recognized that DEA studies can be compro-
mised by it. DEA would be more robust if methods were 
developed to prove the reliability and correctness of results. 
DEA models alone cannot resolve the major problems in 
hospital performance management that arise from operat-
ing in an environment heterogeneous in nature. Because 
exogenous factors are complex and multiplicative, identify-
ing and measuring them is challenging. Consequently, the 
process of selecting a reference set for every hospital should 
be handled cautiously. As demonstrated by well-established 
quality indicators, it is interesting to note that, contrary to 
previous findings (Tiemann et al. 2012; Herr 2008), cluster-
ing hospitals based on ownership failed to create homoge-
neity within a group and heterogeneity between groups of 
hospitals under study. The findings are also different from 
what one would intuitively expect to find in the context of 
performance management of hospital markets. For example, 
one could assume that the relative homogeneity of hospitals 
would allow for simple emulation of successful policies: if 
a hospital pursues the goal of increasing its output produc-
tion efficiency, then such a goal can be accomplished by 
adopting the strategy of a better-performing peer. However, 
the adoption of a strategy of a better-performing hospital 
may not work in the German hospital market since not all 
hospitals represent a homogenous group. As the results of 
our clustering show, not every better-performing hospital is 
a better-performing peer for any other hospital. Neverthe-
less, we acknowledge this research is not without limitations. 
While clustering has been used to determine heterogeneity, 
it remains unclear what exactly constitutes heterogeneity. 
As heterogeneity is a relative concept that often requires 
intimate knowledge of the problem domain, this issue falls 
outside the scope of this study. The proposed framework can 
therefore be explored further in future research to examine 
the sources of heterogeneity, such as the differences in hos-
pital environments.
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Appendix A. SOM function

In Figure 3, we present the function developed and used for 
clustering which is based on the SOM-ANN. The function 

is developed by using Scikit-learn (https:// scikit- learn. org/) 
which is an open-source platform for machine learn-
ing. However, the main codes can be also provided upon 
request.

Fig. 3  Function developed for clustering based on the SOM-ANN

Appendix B. Input‑oriented SBM DEA model 
under VRS

We have a set of hospitals in each cluster as Uj 
∀j ∈ N = {1, 2,… , n} , each hospital having m inputs 
X =

(
x1j, x2j,… , xmj

)
 and s outputs Y =

(
y1j, y2j … , yrj

)
 . The 

linear input-oriented SBM model under the VRS assumption 
can be written as Model (1).

(1.1)min�h = 1 −
1

m

m∑

i=1

s−
i

xih

(1.2)s.t. xih =
∑n

j=1
xij�j + s−

i
,∀i = 1,… ,m

(1.3)yrh =

n∑

j=1

yrj�j − s+
r
,∀r = 1,… , s

where �h is the SBM-efficiency score of DMUh . s− and s+ 
are the vector of input and output slacks, respectively. � is 
a non-negative vector and can modify the production pos-
sibility set by imposing some constraints on it, such as the 
VRS constraint 

∑n

j=1
λj = 1 . The optimal solution of the SBM 

DEA model can be defined as 
{
�∗
h
,�

∗
, s−∗, s+

∗
}
 . Figure 4 

presents the function developed for solving Model (1) using 
Gurobi Optimizer (more information available at: https:// 
www. gurobi. com/) in Python 3.8.

Definition 1 .  (Projection). The projection of 
DMUo =

(
xo, yo

)
 onto the efficient frontiers can be defined 

(1.4)
n∑

j=1

�j = 1

(1.5)s−, s+,� ≥ 0, t > 0

https://scikit-learn.org/
https://www.gurobi.com/
https://www.gurobi.com/
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by an optimal solution of the input-oriented SBM DEA 
model as Eq. (2) (Tone, 2001, 2017).

The projected DMU
p

h
=
(
x
p

h
, y

p

h

)
 is SBM-input-efficient 

(Tone 2001). We use the SBM DEA model to compute 
efficiency scores for each hospital in the second stage of 
our proposed framework, relative efficiency analysis. Fol-
lowing this, the framework generates projections of the 
efficiency requirements for each inefficient hospital to 
become efficient.

(2)
(
xp
o
, yp

o

)
=
(
xh − s−∗, yh + s+∗

)

Appendix C. Efficiency comparison of two 
hospital groups

The algorithm that is developed for efficiency comparison 
of two DMU groups ( G1 and G2):

Calculate the skewness of inefficiencies of both groups.
If the inefficiencies are not skewed (symmetrically 
distributed), conduct the efficiency comparison based on 
the mean values. A parametric test such as the unpaired 
Student’s t-test might be appropriate (Banker et  al. 
2010).

Fig. 4  Function developed for solving SBM DEA model
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If the inefficiencies are either positively or negatively 
skewed (asymmetrically distributed), the following are 
the procedures for testing the null hypothesis of a differ-
ence in efficiency between G1 and G2:

Step 3.1: Determine whether inefficiencies in G1 and G2 
exhibit exponential distributions by using the Quantile-
Quantile (Q-Q) plots. If so, the test statistic is therefore 
calculated as 

�∑
j∈G1

�∗
j
∕‖G1‖

�
∕
�∑

j
�
∈G2

�∗
j
� ∕‖G2‖

�
 and 

assessed to the critical value of the F distribution with �
2 ⋅ ‖G1‖, 2 ⋅ ‖G2‖

�
 degrees of freedom under the null 

hypothesis that there is no difference between them 
(Banker 1993).

Step 3.2: Determine whether inefficiencies in G1 and G2 
exhibit half-normal distributions by using Q-Q plots. If 
so, the test statistic is therefore calculated as �
∑

j∈G1

�
�∗
j

�2

∕‖G1‖
�
∕

�
∑

j
�
∈G2

�
�∗
j
�

�2

∕‖G2‖
�

 a n d 

assessed to the critical value of the F distribution with �
‖G1‖, ‖G2‖

�
 degrees of freedom under the null hypoth-

esis that there is no difference between them.

Step 3.3: In the absence of such assumptions in steps 3.1 
and 3.2, use a non-parametric test, such as Kolmogorov–
Smirnov or Mann–Whitney tests. The results of the study 
conducted by Banker et al. (2010) indicate that the Mann–
Whitney test performs better than Kolmogorov–Smirnov 
concerning error types I and II. Next, run the Mann–
Whitney test to determine whether one of the random 
variables is stochastically greater than the other. In a com-
bined and ordered sample of G1 and G2 , the Mann–Whit-
ney statistic is calculated by counting how many times 
each �∗

j
, j ∈ G1 occurs before �∗

j
� , j

�

∈ G2 . Define the ran-
dom variable as Eq. (3).

Then, Mann–Whitney’s statistic is given by 
U =

∑
j∈G1

∑
j
�
∈G2

Djj
� . Mann and Whitney (1947) prove 

that for large samples of G1 and G2 ( ‖G1‖and‖G2‖ ≥ 30 ), 
Mann–Whitney’s statistic is normally distributed 
with the mean of � = ‖G1‖ ⋅ ‖G2‖∕2 and the vari-
ance of �2 =

�
‖G1‖ ⋅ ‖G2‖ ⋅

�
‖G1‖ + ‖G2‖ + 1

��
∕12 . 

Therefore, the large-sample (more than 20 observa-
tions) Mann–Whitney’s test statistics can be approxi-
mated via ‡ = (U − �)∕� which follows a normal 
standard distribution function. Note, since there are 
a number of ties (i.e., the ranks of efficient DMUs) 
in each cluster, we need to revise the variance as 

(3)Djj
� =

{
1𝜌∗

j
< 𝜌∗

j
�

0 otherwise

�2

revised
= �2

⋅

�
1 −

∑
t f

3
t
− ft∕f

3
t
− ft

�
 , where t varies over 

the set of tied ranks and ft represents frequency of the 
rank t  . A further complication is that since we approx-
imate a discrete distribution via a continuous one it is 
desirable to apply a continuity correction on the ‡-score 
as ‡corrected = U − � − 0.5 ⋅ sign(U − �)∕�.

Appendix D. Data preprocessing

In this study, the proposed framework is examined in the 
context of a large dataset of hospitals that were originally 
classified by the Federal Joint Committee (G-BA) in 
Germany in 2017. Data protection regulations prevent the 
dataset from being publicly available. Nevertheless, G-BA 
would send a copy to researchers upon official request (more 
information: https:// www.g- ba. de/ engli sh/). In the German 
healthcare system, the G-BA, founded on 01.01.2004 due to 
the Healthcare Modernization Act, is the highest decision-
making body. They establish guidelines that determine 
which medical treatments approximately 73 million insured 
people can claim. Furthermore, the G-BA establishes quality 
assurance measures for hospitals and healthcare practices. 
It is their responsibility to properly implement quality-
improving measures. The implementation of individual 
quality assurance measures should be delegated as part of 
this overall responsibility. For the reporting year 2017, raw 
data includes all hospital quality reports from hospitals, 
the State Office for Quality Assurance, and the Institute for 
Quality Assurance and Transparency in Health Care at the 
end of medical transcription (MT). The preprocessing steps 
applied to the dataset in this study are illustrated in Figure 5. 
Our dataset covers the following periods:

• Hospitals MT periods: October 15th to November 15th, 
2018, and November 23rd to December 15th, 2018,

• State Office for Quality Assurance and Institute for Qual-
ity Assurance and Transparency in Health Care MT peri-
ods: November 15th to December 15th, 2018, and

• the subsequent reports of the State Office for Quality 
Assurance and the Institute for Quality Assurance and 
Transparency in Health Care occurring from January 
20th to 23rd, 2019.

Appendix E. Quality criteria for clustering 
approaches

Figure  6 shows the three quality criteria - CH-index, 
Silhouettes, and Davies-Bouldin - calculated to assess the 
homogeneity within hospitals clusters and the heterogeneity 

https://www.g-ba.de/english/
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Fig. 5  Data preprocessing steps
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between clusters. These criteria are calculated in the function 
developed for the SOM (Figure 3). Clusters that are dense 
and well separated achieve a high score on the CH-index. 
A clustering score of −1 is assigned for incorrect clustering, 
whereas a clustering score of +1 is assigned to dense and well-
separated clustering. Davies-Bouldin with a value close to zero 
indicates a more effective partition. Results show that cluster 
[1,3] outperforms other clusters on all three quality criteria.

Appendix F. Developed MLP‑ANNs 
for creating TCM and BPM

As shown in Figure 7, we have developed functions to create 
the TCMs and BPMs respectively by using two open-source 
platforms for machine learning: TensorFlow (more informa-
tion available at: https:// www. tenso rflow. org/) and Scikit-learn 
(more information available at: https:// scikit- learn. org/).

Fig. 6  Quality criteria of 
clusters
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Fig. 7  Functions developed for creating TCMs and BPMs
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