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Abstract

Rising global temperatures over the last decades have increased heat exposure

among populations worldwide. An accurate estimate of the resulting impacts

on human health demands temporally explicit and spatially resolved monitor-

ing of near-surface air temperature (Ta). Neither ground-based nor satellite-

borne observations can achieve this individually, but the combination of the

two provides synergistic opportunities. In this study, we propose a two-stage

machine learning-based hybrid model to estimate 1 × 1 km2 gridded intra-

daily Ta from surface skin temperature (Ts) across the complex terrain of Israel

during 2004–2016. We first applied a random forest (RF) regression model to

impute missing Ts from the Moderate Resolution Imaging Spectroradiometer

(MODIS) Aqua and Terra satellites, integrating Ts from the geostationary Spin-

ning Enhanced Visible and InfraRed Imager (SEVIRI) satellite and synoptic

variables from European Centre for Medium-Range Weather Forecasts'

(ECMWF) ERA5 reanalysis data sets. The imputed Ts are in turn fed into the

Stage 2 RF-based model to estimate Ta at the satellite overpass hours of each

day. We evaluated the model's performance applying out-of-sample fivefold

cross validation. Both stages of the hybrid model perform very well with out-

of-sample fivefold cross validated R2 of 0.99 and 0.96, MAE of 0.42�C and

1.12�C, and RMSE of 0.65�C and 1.58�C (Stage 1: imputation of Ts, and Stage

2: estimation of Ta from Ts, respectively). The newly proposed model provides

excellent computationally efficient estimation of near-surface air temperature

at high resolution in both space and time, which helps further minimize expo-

sure misclassification in epidemiological studies.
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1 | INTRODUCTION

Numerous studies worldwide have demonstrated a robust
relationship between outdoor temperature and mortality.
Although temperature effects may vary geographically
due to acclimatization, minimum mortality typically
occurs at about the 76th percentile of the annual temper-
ature (Guo et al., 2014), increasing with both lower
(Analitis et al., 2008) and higher temperature. Exposure
to extreme ambient temperatures during heat waves is
increasingly associated with adverse health effects
(Ye et al., 2012; Gasparrini et al., 2015; Shi et al., 2015)
such as adverse birth outcomes (Basu et al., 2010; Kloog
et al., 2015); increasing cardiac output and peripheral
blood circulation, which may promote dehydration and
renal failure (Schwartz et al., 2004); and increases in
blood viscosity and cholesterol (Keatinge, 1997). The
2003 European heat wave, for example, was estimated to
result in as many as 40,000 excess deaths that are attrib-
uted to heatstroke, hyperthermia, dehydration, cardiovas-
cular, respiratory, and neurologic diseases (Fouillet
et al., 2006). Worse still, heat waves often coincide with
extreme air pollution events at large scale (Schnell and
Prather, 2017; Zhang et al., 2017). These synergistic
impact modifiers may further impair human health at a
level greater than the sum of their individual parts
(Stafoggia et al., 2008; Chen et al., 2018).

Most projections of global climate change predict
more frequent and more intense extreme heat waves
(Coumou and Rahmstorf, 2012; IPCC, 2014). Although it
is hard to predict precise outcomes in terms of direct
heat-related mortality (Guo et al., 2018), it is clearly
important to be able to model heat exposure and its
health impacts, especially with regard to vulnerable
populations, such as the elderly, the chronically ill, and
people living alone (Rosenthal et al., 2014). This requires
accurate ambient near-surface air temperature (Ta) data
that are temporally explicit and spatially resolved.

Regarding the latter challenge, previous epidemiologi-
cal studies typically employed air temperature measure-
ment at weather stations that are more densely installed
in or close to urban areas rather than rural areas
(Basu, 2009). This takes limited account of large variabil-
ity of air temperature in space and time, not least because
of the urban heat island effect, where the temperature in
cities is higher relative to their rural surroundings
(Arnfield, 2003; Oke et al., 2017). Assigning a unique Ta

for regions of varying geographical and socio-economic
features could introduce exposure error, leading to a neg-
ative bias in results (Zeger et al., 2000) and thus
compromising the representativeness of those studies.

To minimize error in assessing human exposure to
extreme ambient temperature, an increasing number of

studies have started to employ scattered ground-based Ta

and spatially resolved satellite-borne surface skin temper-
ature (Ts) measurements to attain high-resolution contin-
uous spatio-temporal Ta (Vancutsem et al., 2010; Benali
et al., 2012; Kloog et al., 2012, 2014; Zhu
et al., 2013, 2017; Kilibarda et al., 2014; Weiss et al., 2014;
Oyler et al., 2015). For a more detailed review on the
methodologies used we refer to Zakšek and Schroedter-
Homscheidt (2009); Lin et al. (2012); and Bechtel
et al. (2014).

Ts and Ta differ in terms of measurement technique
and medium sensed. Ts is the surface radiometric temper-
ature confined to the instantaneous field-of-view of the
sensor (Prata et al., 1995), while Ta refers to the near-
surface thermo- or aerodynamic air temperature mea-
sured by a thermometer (Li et al., 2013), usually at a
height of 1.5–2.0 m above the ground. The discrepancy
between Ts and Ta is caused by the location-specific fea-
tures of the surface energy balance, in particular the
parcelling of the incoming radiant flux into sensible heat
(which creates a difference in air temperature), and latent
flux (which leads to a difference in the moisture content
of the air). Changes in the near-surface air temperature
(Ta) typically lag the development of the surface tempera-
ture (Ts) by several hours. The two temperature measures
are further found to converge at vegetated places with
high soil moisture, or on cloudy days (Prigent
et al., 2003). Several previous studies relied on calibrated
Ta–Ts relationships to map daily minimum, mean, and
maximum Ta, rather than Ta at hourly intervals, due to
the temporal limitations of satellite data. The techniques
applied include linear mixed effects models (Kloog
et al., 2017; Rosenfeld et al., 2017), spatio-temporal
regression-kriging (Kilibarda et al., 2014), and advanced
statistical regression (Benali et al., 2012; Janatian
et al., 2017). Despite overall good performance [with root
mean square error (RMSE) normally <2�C, and coeffi-
cient of determination (R2) > 0.90], the inability of those
models to capture the diurnal variation of exposure may
to some extent restrict their application. At the other
extreme, although geostationary satellites can provide
temporally explicit Ts at 15 min intervals, their coarse
resolution of normally > 3 km cannot capture the intra-
urban variation of Ta, making them inadequate for health
exposure analysis in cities (Freitas et al., 2013).

Physically-based numerical models can also simulate
air temperature from micro to regional scales, ranging
from several meters to tens of kilometres (Mirzaei and
Haghighat, 2010; Georgescu et al., 2015). To attain a spa-
tial resolution capable of resolving heterogeneous urban
features, regional climate models (RCMs) are coupled
with urban parameterization schemes for downscaling Ta

(Chen et al., 2011; Wang et al., 2012; Hamdi et al., 2014;
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Grossman-Clarke et al., 2016). Numerical models can pre-
dict Ta under different future climate and urban develop-
ment scenarios. However, the urbanized meso-scale climate
models are computation-intensive and require great exper-
tise to implement. Thus, they have not yet been widely
employed in epidemiological studies. In comparison, urban
climate models coupled with simplified energy balance
schemes constitute a computationally efficient and accurate
alternative (Masson et al., 2002; Erell and Williamson, 2006;
Bueno et al., 2013; De Ridder et al., 2015). These models
typically require a detailed description of urban morphology
and apply forcing at the boundary level or from rural refer-
ence stations under the same meso-scale weather (Kaplan
et al., 2016; Zhou et al., 2019). This may restrict their appli-
cation to regions with high-quality geospatial databases and
well-maintained weather stations.

To overcome limitations existing in previous studies
(i.e., lack of a computation-efficient model capable of esti-
mating diurnally explicit Ta), we propose a two-stage
machine learning based hybrid approach to estimating
high-resolution (1 × 1 km2) intra-daily (in line with satel-
lite overpasses) Ta from Ts across Israel for the period
2004–2016. The model incorporates remotely sensed Ts

from polar-orbiting and geostationary satellites, synoptic
meteorological variables from reanalysis data, and bio-
physical and socio-economic features accounting for the
variation of Ta.

The machine learning technique underlying the pro-
posed model is the random forest regression—an ensem-
ble learning technique consisting of a large number of
decision trees. Each tree is constructed using a subset of
data that is independently sampled and identically dis-
tributed (Breiman, 2001; Liaw and Wiener, 2002). Its ran-
domness stems from the number of trees grown and the
number of features used in splitting at each node, making
it robust against both outliers and overfitting
(Breiman, 2001). Due to its high estimative performance
and efficiency in implementation (Wright and
Ziegler, 2017; Hengl et al., 2018), it has already been
applied in estimating particulate matter (PM) exposure
(Brokamp et al., 2017; Stafoggia et al., 2019), but is rare
in studying heat exposure (Li and Zha, 2018).

The objective of this research is to propose a computa-
tionally efficient model capable of seamless estimation of
Ts and Ta at high resolution in both space and time. Such
models are of great importance in research of heat-related
impacts on health. Specifically, this study contributes to
research aiming at minimizing the misclassification of
heat exposure in Israel, where the intensity, length, and
number of heat waves have increased by a factor of six to
eight since the 1960s (Kuglitsch et al., 2010), and are pro-
jected to increase still further (Hochman et al., 2018a;
Hochman et al., 2018b).

2 | DATA AND METHODS

2.1 | Study area and meteorological data

The study area includes the entire land territory of the
State of Israel, with a total area of about 21,670 km2.
Located at the eastern coast of the Mediterranean Sea,
Israel is about 470 km from north to south and 135 km
wide at the widest point. Despite its small size and elon-
gated shape, Israel's terrain is characterized by extreme
variations in elevation, with the lowest point in the Jor-
dan Rift Valley (~430 m below sea level) and the highest
point on Mount Hermon (+2,807 m above sea level), as
shown in Figure 1.

As per altitude, latitude, and the dominant climate
condition, Israel is divided into four geographical regions:
the Mediterranean coastal plain, the Central Hills, the
Jordan Rift Valley and the Negev Desert (Ochsenwald
et al., 2019).

Precipitation is unevenly distributed over time and
across regions. The rainy cool winter lasts from
November to March, while rainfall is fairly rare in the
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FIGURE 1 Digital elevation map (DEM) of Israel and the

location of 85 IMS weather stations [Colour figure can be viewed at
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rest of the year. Annual precipitation ranges from
1,000 mm in the north Golan Heights to nearly 30 mm in
the extreme south. The heterogeneity in precipitation has
in turn resulted in a diversity of biomes (land cover types)
across Israel.

Israel has a total population of about 8.9 million
inhabitants in 2018 (Central Bureau of Statistics, 2018)
exhibiting a pronounced heterogeneous spatial distri-
bution: The urban agglomerations on the coastal plain
accommodate more than half of state's population,
whereas the Negev desert in the south is sparsely
inhabited.

Figure 1 shows the location of 85 weather stations of
the Israel Meteorological Service (IMS) employed in this
study. We acquired hourly Ta from those stations cover-
ing the period 2004 to 2016.

2.2 | Remotely sensed surface skin
temperature

The daily Moderate Resolution Imaging Spectro-
radiometer (MODIS) land surface temperature (LST)
products (version 6) are collected at about 1 × 1 km2 reso-
lution from the MODIS sensors on board the Aqua
(MYD11A1) and Terra (MOD11A1) satellites. The data
used here cover the years 2004 to 2016 for the entire area
of Israel corresponding to MODIS tiles h20v05, h20v06,
h21v05, and h21v06. The Aqua and Terra satellites over-
pass the same location on Earth's surface twice per day,
but with slightly varying times depending on their (polar)
orbits. We retrieved the overpass time (in local solar
time) for each MODIS LST value. When the overpass
time for a pixel is not produced due to, for example, cloud
contamination, the average overpass time in the scene
(distinguished between day- and nighttime) is assigned.

Accounting for the slight variability in overpass times,
the mean local solar time of four satellite overpasses dur-
ing the period investigated is about 1,100 (Terra-Day),
1,300 (Aqua-Day), 2,200 (Terra-Night), and 0200 (Aqua-
Night). We converted the local solar time to local time
(LT) in Israeli Standard Time (IST, UTC + 2) using Equa-
tion (1) (Wan, 2013):

LT in ISTð Þ=Local Solar Time− longitude=15+2 ð1Þ

We then rounded the local time to the nearest hour.
In contrast with polar-orbiting satellites (such as the

aforementioned Aqua and Terra satellites), geostationary
satellites such as the Spinning Enhanced Visible and
InfraRed Imager (SEVIRI) onboard the Meteosat Second
Generation (MSG) satellites can provide continuous
observation of Ts with high temporal resolution—but

lower spatial detail. SEVIRI provides infra-red images
every 15 minutes with a nadir spatial resolution of 3 km,
which is geometrically degraded at large off-nadir view
angles. In this study, we downloaded the SEVIRI LST
data from LSA SAF (https://landsaf.ipma.pt/en/products/
land-surface-temperature/lst, accessed on April 21, 2019)
aggregated to hourly means. For Israel, the spatial resolu-
tion of the grid cell is about 4 × 4 km2.

2.3 | ERA5 reanalysis data

The ERA5 data are the fifth generation of the European
Centre for Medium-Range Weather Forecasts' (ECMWF)
atmospheric reanalysis of the global climate (Copernicus
Climate Change Service [C3S], 2017). ERA5 is produced
using data assimilation techniques based on ECMWF's lat-
est Integrated Forecasting System (IFS). The IFS combines
model data with all available historical in-situ and space-
borne observations with stringent quality control. ERA5
provides hourly estimates of atmospheric and surface
parameters from 1979 onward at 0.28125� (31 km) world-
wide, but can be bilinearly interpolated to any custom grid.
Given the aim of this study, we integrated the following
ERA5 parameters (summarized in Table 1) into the model:
(a) skin temperature, (b) 2 m temperature (Ta at 2 m
height), (c) boundary layer height, (d) 10 m wind speed
[horizontal eastward (U) + northward (V) components],
(e) soil temperature layer 1 (0–7 cm), and (f) total cloud
cover. These parameters may be used to describe the surface
energy balance, and thus are expected to account for the
complex land surface-atmosphere interactions (Jin and
Dickinson, 2010). The wind speed used in the model is the
root of the sum of the squared U and V wind components.
We downloaded the ERA5 data from 2004 to 2016 at 0.125�

(~10 km) for Israel via the Copernicus Climate Change
Service (C3S) Climate Data Store (https://cds.climate.
copernicus.eu, accessed on April 21, 2019).

2.4 | Geospatial variables

Given the data availability and relevance, we incorpo-
rated the following geographical and socio-economical
predictors into the model to account for the spatio-
temporal variability of air temperature.

2.4.1 | NDVI

We used MODIS-derived monthly Normalized Difference
Vegetation Index (NDVI) products (version 6) at 1 × 1 km2

resolution from Aqua (MYD13A3) and Terra (MOD13A3)
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satellites. The NDVI value for each grid cell is the mean of
the two datasets. NDVI is computed as the ratio of the dif-
ference in spectral reflectance between near infrared and
red wavebands to the sum of the reflectance of the same
two bands (Tucker, 1979). It quantifies the relative abun-
dance and health status of vegetation varying in time and
space. NDVI values range from −1 to 1: a higher value
indicates dense photosynthetically active vegetation,
whereas senesced and dead plants, inorganic materials
(e.g., rocks), and water courses normally have a low or
even negative NDVI. For every timestep, each grid cell
was assigned the mean NDVI of the month when the
observation was taken.

2.4.2 | Road and population density

To calculate population density, we used the population
estimates for the year of 2012 collected from 3,067 census
units (as polygons) across Israel by the Israeli Central
Bureau of Statistics (Central Bureau of Statistics, 2014).
The population estimates are homogenously dis-
aggregated into a grid of 10 × 10 m2 raster cells and then
re-allocated to the MODIS grid of 1 × 1 km2 cells. Simi-
larly, road density, defined as the total length of roads
within a 1 × 1 km2 cell, is generated based on the road
vector data from the Israel survey bureau mapping ser-
vice (Survey of Israel, 2013), using the line density tool in
the ArcGIS 10.6 (Esri, 2018).

2.4.3 | Distance to large bodies of water

Water bodies have a higher specific heat capacity than
land, and are expected to modify mesoscale climate con-
ditions, and thus have to be taken into proper account
in the model. We calculated the distance of each grid
cell to the nearest water body by applying the distance

function in R sf package (Pebesma, 2018) on the
1:10,000,000 coastline data version 4.1.0 from the Natu-
ral Earth portal (https://www.naturalearthdata.com/
downloads/10m-physical-vectors/10m-coastline/,
accessed on 01/04/2019).

2.4.4 | Elevation and slope aspect

The elevation assigned to each MODIS grid cell (1 km
resolution) is the mean value calculated from 30 m raster
data provided by the Advanced Spaceborne Thermal
Emissions and Reflection Radiometer (ASTER) global
digital elevation model version 2 (GDEM V2). As the
compass direction a slope faces (aspect) can influence the
insolation during the daytime, we applied the aspect
function in ArcGIS 10.6 (Esri, 2018) on the elevation data
to calculate the slope aspect of each grid cell. Analo-
gously, we aggregated the output to 1 km in line with the
MODIS grid.

2.4.5 | Urban and vegetation fractions

The urban and vegetation fractions are derived from the
100 m land use and land cover data for the year 2014
from the Israeli Central bureau of Statistics (Central
Bureau of Statistics, 2015). The land use and land cover
data have 39 categories, which were regrouped into five
classes: urban built-up, mining, water courses, vegetation
(forest, orchard, and shrubland), and desert (barren).

2.5 | Statistical methods

We propose a two-stage hybrid model approach based on
random forest regression to estimate Ta from Ts, as
shown in Figure 2.

TABLE 1 ERA5 parameters used in this study

Name Units
Short name
in ERA5

Spatial
resolution

Temporal
resolution

Skin temperature K skt 0.125�(~10 km) Hourly, 2004–2016

2 m air temperature K 2t

Boundary layer height m blh

10 m U wind component (zonal velocity, horizontal
eastward wind component)

m s−1 10u

10 m V wind component (meridional velocity,
horizontal northward wind component)

m s−1 10v

Soil temperature level 1 K stl1

Total cloud cover (0–1) tcc
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First, we imputed Ts values for missing Ts grid cells
(obscured by cloud cover, etc.). Then we fed the imputed
Ts data for each grid cell into the Stage 2 model to esti-
mate Ta at the same spatial and temporal resolution. We
performed the random forest regression using the R
ranger package (Wright and Ziegler, 2017) wrapped in
mlr package (Bischl et al., 2016).

2.5.1 | Stage 1 model: Imputation of
MODIS Ts

Given the large volume of the MODIS Ts data available for
training (on average > 33 million instances each year), the
random forest regression was applied on data of each
month individually to the missing values in the MODIS Ts.
Predictor variables for the Stage 1 model are Ts from the
SEVIRI data set, hour of overpass, and spatial coordinates
(latitude and longitude), as well as synoptic variables from
ECMWF's ERA5 reanalysis datasets including skin temper-
ature (skt), 2 m air temperature (2 t), level 1 soil tempera-
ture (stl1), boundary layer height (blh), total cloud cover
(tcc), and wind speed. The acronyms in parentheses refer to
the short names of parameters in the ECMWF nomencla-
ture. The Stage 1 model is expressed below as Equation 2.

TMODIS
s

~RF
TSEVIRI
s ,hour, long:, lat:, sktERA5,2tERA5,

blhERA5, stl1ERA5, tccERA5,windERA5

 !

ð2Þ

Like MODIS, SEVIRI data are also limited to clear-sky
conditions. However, the hourly SEVIRI data, in contrast
with four daily overpasses of the MODIS, may incorporate
more information pertaining to the diurnal and seasonal pat-
terns. The additional information could facilitate imputing

data gaps in the SEVIRI data. We interpolated the SEVIRI
Ts based on the Seasonal Trend Decomposition using the
Loess (STL) algorithm (Cleveland et al., 1990) employed in
the R forecast package (Hyndman and Khandakar, 2008).
The STL divides a time series into the underlying trend, sea-
sonality and remainder. We linearly interpolated the season-
ally adjusted data and added back the seasonal component.

We applied a fivefold cross-validation (CV) resampling
scheme to tune the Stage 1 model and to estimate its perfor-
mance. The tuning seeks to identify the optimum hyper-
parameters resulting in the best model performance, which
we evaluate with the overall mean squared error (MSE). As
the MSE decreases monotonously and converges asymptoti-
cally with growing num.trees (Oshiro et al., 2012; Probst
and Boulesteix, 2017), num.trees was set to 300. In the Stage
1 model, we only tuned the number of features (mtry).

Validation of the model was performed using a five-
fold CV resampling scheme, which partitions the dataset
into five approximately equal-sized subsets. Each subset
is iteratively used for testing model performance, while
the remaining 4 subsets comprise the training set. Overall
model performance was estimated by calculating the
“out-of-sample” Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE), maintaining a complete sep-
aration between data used to train the model and data
used to test its performance.

2.5.2 | Stage 2 model: Imputation of Ta
from Ts

After obtaining the imputed gap-free Ts for all grid ele-
ments, we performed the random forest regression again
to calibrate Ta measurements from the IMS stations and
the corresponding Ts. The model is based on the data col-
lected from the entire period of investigation, 2004–2016.

Random Forest
Regression

Random Forest
Regression

Geo-
database

LSTSEVIRI

(hourly)

LSTMODIS

(gap-free)

LSTSEVIRI 

(imputed)

5-fold 
CV

Hyperparameter 
tuning

LSTMODIS

NDVIMODIS

(monthly)

Skin temperature (skt)

2m temperature (t2)

Boundary layer height (blh)

Soil temperature L-1 (stl1)

Total cloud cover (tcc)

ERA-5 Data

1 km gridded Ta 

Time series 
imputation

Wind speed (wind)

Road density

% vegetation 

Pop. density

Elevation

Distance to water

Slope aspect

% urban

IMS Ta 

(hourly)

Stage 2: Imputation of measured Ta TT

Stage 1: Imputation of MODIS TsTT

FIGURE 2 Schematic diagram of the two-stage model of estimating 1 km gridded Ta [Colour figure can be viewed at wileyonlinelibrary.com]
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Stage 2 of the model is described by Equation (3):

Ta ~RF ðTMODIS�
S ,DoY,Year,NDVIMODIS,Population Density,

Road Density,Slope Aspect,Elevation,

Water Distance,Urban Fraction,Vegetation FractionÞ
ð3Þ

To evaluate the model's capacity to capture the
spatio-temporal variability of Ta, we disaggregated the
overall performance into spatial and temporal compo-
nents year by year. The spatial component contrasts the
station-wise difference between the annual mean of
observed and estimated Ta in the 85 ground stations,
whereas the temporal one contrasts at each station the
difference in daily Ta between the observation and the
estimation, detrended by subtracting its actual value from
the respective annual mean (Kloog et al., 2017; Stafoggia
et al., 2017).

Once calibrated and validated using fivefold cross-val-
idation, we applied this model to estimate Ta for all grid
cells throughout the study area and period.

3 | RESULTS

3.1 | MODIS overpass time

Figure 3 illustrates the temporal distribution and the per-
centage of clear-sky conditions during the MODIS satel-
lite overpasses for each month in 2016. The MODIS
images captured from June to October are mostly cloud-
less, except for the Aqua-Night overpass, since summer
weather in Israel is characterized by the occasional for-
mation of low-level clouds at night, which dissipate soon
after sunrise. For Terra-Night and Aqua-Day, the pre-
dominant overpass time is LT2200 and LT1300, respec-
tively, whereas there is not a major overpass time for
Terra-Day and Aqua-Night.

3.2 | Performance of the stage 1 model

Figure 4 illustrates an imputed image of MODIS Terra-
Day Ts at LT1100, January 20, 2016 using the Stage
1 model, in contrast with the original image with a total
cloud cover of 55%. Model performance is evaluated for
all visible pixels (i.e., pixels not obscured by cloud).
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Though it was mostly overcast in the North of Israel dur-
ing this overpass, the model was still able to generate
sound clear-sky Ts estimation over the region with an
RMSE of 0.54�C, and an MAE of 0.35�C.

The RMSE and MAE of the Stage 1 model for each
month from 2004 to 2016 are shown in Figure 5 and

Figure 6, respectively. The Stage 1 model achieved an
overall RMSE of 0.65�C and MAE of 0.42�C, with small
annual fluctuations. However, both performance mea-
sures exhibit pronounced bimodal monthly variability:
the model performs relatively well during the winter
months (December–January–February, hereafter DJF),
whereas the performance declines in May and October.
In cloudless months (June–July–August, hereafter JJA),
the model's performance returns to an average level.

We attribute this seasonality to the relative abun-
dance of clear-sky data in each month that exhibits
remarkable spatial and temporal (Figure 3) fluctuation.
The spatio-temporal variation of multi-annual monthly
mean clear-sky ratio (CSR) across Israel is provided in
the Supporting Information (SI) Figure S1.

To quantify the fluctuation of cloudiness across sea-
sons for each grid cell, we proposed a measure denoted
as Normalized Difference Cloudiness (NDC) that is
defined as follows:

NDC=
CSRJJA−CSRDJF

CSRJJA+CSRDJF
, ð4Þ

where CSRJJA, CSRDJF represent the respective clear-sky
ratios, defined as the ratio of clear-sky observations to the
total number of overpasses, for the months JJA (the driest
months dominant by cloudless skies), and for DJF where
the precipitation is most likely to happen in Israel, that
is, with the highest cloud cover. As CSRJJA is always

FIGURE 4 An example of imputing MODIS Terra LST image

at LT1100 on January 20, 2016 with a total cloud cover of 55%

[Colour figure can be viewed at wileyonlinelibrary.com]
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larger than CSRDJF, the NDC ranges theoretically
between 0 and 1, whereby smaller values indicate less
fluctuation in clear-sky conditions throughout the year.

As shown in Figure 7b, the South of Israel is generally
less cloudy and presents less variability in the clear-sky ratio
across seasons, whereas the clear-sky ratio in the region of
Judaean Mountains (central) and Northern Mountains var-
ies significantly with seasons. This spatio-temporal hetero-
geneity resulted in varying data abundance/availability of
each region, and thus in varying regional representativeness
in the model. In the cloudless period of the year, for exam-
ple, during the summer, each region is equally represented
in the training datasets, whereas in the rainy season the
data from the South prevail. In comparison, data in the
transition period between the rainy and sunniest seasons
are well mixed but with a high degree of fragmentation in
the central part of the country.

Given the spatial autocorrelation that underlies numer-
ous methods for the spatial interpolation (Cressie, 1993),
data predominantly collected from contiguous geographical
areas (in the case of both dry and rainy seasons) exhibit a
higher degree of correlation and thus enable good predict-
ability from the training to the testing datasets. This
explains the inverted “U” curve by displaying the relation-
ship between the RMSE and the clear-sky ratio for each
month in the study period (Figure 7a). The model's perfor-
mance is the highest in the rainy winter, as the model is
mostly evaluated in the south. Its performance falls in the
transition period and then rises again in the summer, as in
the summer the model deals with the entire country.

3.3 | Performance of the stage 2 model

The Stage 2 model achieved very good CV performance
with RMSE of 1.58�C, MAE of 1.12�C and coefficient of

determination (R2) of 0.96 (a scatterplot is given in the SI
Figure S10). The linear regression of the observed versus
the estimated Ta across all hours results in a slope of 1.01
and an intercept of −0.27�C, implying a tendency of the
model to slightly underestimate large Ta (over 27�C) and
over-estimate small Ta for the left-out stations.

The variation of performance across weather sta-
tions is provided in the SI (Figures S2–S4). The model
performs equally well for each station based on the
out-of-sample fivefold cross-validation. No spatial pat-
tern exists across stations, except that a station at the
southern end of the Dead Sea exhibits a significantly
lower R2, which we attribute to the systematic or ran-
dom measurement error in the weather station data or
satellite data. As this station is located on an earth
levee in the shallow south basin of the dwindling Dead
Sea, the MODIS LST algorithm typically applied for
homogenous land surfaces may become less effective
for mudflats and result in dubious estimation of LST
(Wan, 2014).

However, the performance varies slightly between
hours. For scatterplots of observed and estimated Ta for
each overpass hour across all years, we refer to
Figure S11 in the SI. Figure 8 presents the variation of
performance measures (overall and disaggregated into
spatial and temporal components) for each overpass
hour across all years based on the fivefold cross-valida-
tion. The model captures both spatial and temporal vari-
ation of Ta with little fluctuation both among hours and
years, except for the Aqua nighttime hours LT0000 –
LT0200. The relatively lower performance with larger
inter-annual variance could be ascribed to the relatively
lower clear-sky data coverage in those hours than other
satellite modes throughout the year (Figure 3). The
detailed annual values of performance measures are
provided in SI, Figures S5–S9.
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For all measures, the model's performance reaches a
local extremum (either minimum or maximum) in 2010
(SI, Figures S5–S9), that is, the model becomes less capa-
ble in estimating Ta in that year. We hypothesized that
the heat wave that swept across the Northern Hemi-
sphere in 2010 could account for the relatively poor per-
formance (Coumou and Rahmstorf, 2012). In Israel, 2010
was the warmest year ever recorded, with an annual
average temperature 2–3�C above the long-term average
of 1981–2000 (IMS, 2015). Despite the challenges posed
by the unusual weather, the model attained a mean
RMSE of 1.66�C and mean MAE of 1.2�C, which are
smaller than the anomaly in the annual average
temperature.

Figure 9 presents the spatial pattern of multi-annual
mean estimated Ta at each overpass hour from the Stage
2 model. The estimations ranged from 11.4�C to 26.3�C
with notable diurnal variation. The daytime and nighttime
mean Ta are 20.5�C and 17.7�C, respectively. The Jordan
Rift Valley and the Hermon mountain on the Golan
Heights present constant hot and cold spots throughout
day- and nighttime, respectively. This may highlight the
remarkable relevance of elevation in accounting for the
variability of temperature. Other terrain features such as
the Judaean Mountains in central Israel and the Negev
dune field (marked with dashed magenta triangle in
Figure 10) are also clearly discernible.

Figure 10 shows the daytime and night multi-annual
mean estimated Ta. The major metropolitan areas in Israel,
for example, Tel Aviv, Haifa, and Beer Sheva, constitute
constant hot spots with more pronounced contrast during
nighttime than daytime. This can be ascribed to the urban
heat island effect arising from the anthropogenic

modification of natural landscapes and the consequent
atmospheric and thermophysical changes in the urban
boundary layer (Arnfield, 2003; Oke et al., 2017).

The only exception is Jerusalem, where its hilly ter-
rain and relatively high altitude dampen the amplitude of
temperature variation within the city. The sharp topo-
graphical gradient around Jerusalem from the Mediterra-
nean Coast, via the Judaean Plateau, and further to the
Dead Sea Depression, also obscures the contrast of urban
temperature to its surroundings.

4 | DISCUSSION

This paper presents a two-stage machine learning based
hybrid approach to estimating seamless intra-daily
1 × 1 km2 Ta from multi-sourced Ts across Israel for
2004–2016. The model demonstrates a good capacity for
estimating spatial and temporal variation of Ta at high
resolution. To our best knowledge, this study constitutes
one of the first efforts towards an hourly estimate of heat
exposure across a large geographical area based on a
data-driven hybrid approach.

In terms of conventional error statistics (e.g., RMSE
and R2), our model performs comparably to a previous
study by Rosenfeld et al. (2017) and outperforms others
(Kloog et al., 2012, 2014, 2017). These studies use linear
mixed effects models to regress daily extrema/mean Ta

on Ts for a given MODIS overpass, whereby the regres-
sion coefficients can vary from day to day. As each sat-
ellite overpass fluctuates periodically with orbits,
ignoring such dynamics may result in a certain degree
of uncertainty.
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Our model differs from previous ones in the esti-
mated temperature measures (quasi-hourly versus daily
extrema, averages), region of interest (Israel versus
France, the US, etc.), and time span of the period of
investigation (multiple years versus single year). All these
factors impede an effective communication and inter-
comparison of results. It is therefore difficult to conclude
that our model is superior to the previous ones. Neverthe-
less, a random forest-based model does manifest marked
advantages over linear mixed effects models.

First, a two-stage RF-based model achieves greater
ease of operation than multi-stage linear mixed effects
models requiring to temporally and spatially smooth Ta

with a thin-plate spline (Kloog et al., 2012; Rosenfeld
et al., 2017). The smoothing procedure in particular is
found to result in overfitting (Stafoggia et al., 2019).
Although linear mixed effects models allow regression
coefficients between Ta and Ts to vary by day, the
assumption that Ta varies linearly with Ts is in any sense
questionable, especially in countries with extremely
diverse landscape and climate like Israel. Rather, the lin-
ear mixed effects model is regarded as a compromise
between computational efficiency and estimation accu-
racy. In contrast, random forests do not assume a linear
relationship. A random forest consisting of a number of
independent trees can easily be parallelized, endowing it
with excellent performance in speed.

Second, a random forest model does not entail a
priori filtering of features (removal of features assumed

to be irrelevant), and the ensuing transformation. A ran-
dom forest model can reveal feature importance, that is,
how each feature contributes to outcomes estimation
(Breiman, 2001). Features accounting less for the vari-
ability of Ts/Ta are less frequently selected in splitting
nodes in trees. Nevertheless, we do consider the rele-
vance of each feature fed into our model viewing the
underlying physics, as a recent study suggested that
inclusion of counterproductive features could result in
over-fitting and worsen estimation performance (Meyer
et al., 2018).

Moreover, because random forests can analyse
nonlinear relationships and high-order interactions
between variables (Basu et al., 2018), it is not required to
transform features using for example, standard score nor-
malization or box cox transformation to meet the normal-
ity assumption of the linear regression (and its variants).

One unanticipated finding of this study was an
inverted “U” shaped performance curve as a function of
clear-sky ratio in the Stage 1 model, which we attributed
to the uneven distribution of cloud in space and time.
This is of crucial importance in any data-driven model-
ling schemes, as it implies that varying representation of
groups in training/testing data sets may result in a model
more adapted to the over-representative groups.

Autocorrelation, commonly present in spatial data
(Tobler, 1970), might also affect the performance esti-
mate. It is prone to overestimate the performance if train-
ing/testing data sets are predominated by spatial

FIGURE 9 Spatial pattern of multi-annual (2004–2016) mean of the estimated Ta at each MODIS overpass hour, obtained from the

Stage 2 model. Daytime hours are shown in the upper panel, and nighttime hours in the lower one [Colour figure can be viewed at

wileyonlinelibrary.com]
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continua. To what extent the dynamics of spatio-
temporal arrangement of data could influence the esti-
mated outcomes remains a topic of debate for
future work.

Kloog et al. (2014) reported a slightly better model
performance in urban areas than rural ones, whereas
Benali et al. (2012) indicated the opposite, that is, homo-
geneous surfaces like forests are more predictable. These
contrasting findings suggest de facto the complexity
between competing factors determining performance,
that is, the density of monitoring sensors, and the hetero-
geneity of respective land forms.

On the one hand, weather stations and monitoring
sensors are much more densely installed close to human
settlements (e.g., cities, and villages) than in remote rural
areas, resulting in a better estimation for urban areas
over the rural. On the other hand, urban landscape is
characterized by enormous heterogeneity in morphology
and socio-economic properties, resulting in notable
micro-climate variability within short distances (tens of

meters). It is difficult to estimate urbanized Ta because it
is the result of an ensemble of effects from different
influencing factors.

In this study, we used 85 weather stations scattered
across Israel, which are more densely installed in the
populous North and Central Districts than in the south-
ern Negev Desert. Meanwhile, we see a weaker tendency
of further densifying the current monitoring network,
especially in the sparsely populated South of Israel. The
adverse conditions associated with the insufficient moni-
toring sensors may still hold in the near future. To attain
an accurate estimate of heat exposure for all locations,
we suggest a stratified modelling strategy—a random for-
est model for homogenous land use and land covers of
large spatial extent, enhanced with established
computation-efficient urban canopy climate models for
heterogenous urban areas (e.g., Masson, 2000; Erell and
Williamson, 2006; Bueno et al., 2013; De Ridder
et al., 2015). This goes beyond the scope of this study but
constitutes a basis for future work.

Despite an overall good performance of our model,
we acknowledge several limitations of this study.

Though we have increased the number of daily Ta

estimations by decomposing the satellite overpass time,
there are still several hours missing. A truly hourly esti-
mation of Ta is still in demand. A model incorporating
the diurnal cycle of both Ta and Ts could pave the way
(Zakšek and Oštir, 2012).

We imputed Ts for cloud-contaminated grid cells at
Stage 1 using models trained mostly by clear-sky Ts. The
imputed Ts may neither reflect the real Ts under clouds
nor serve as a good proxy to Ta, as Ts and Ta converge in
highly cloudy locations (Prigent et al., 2003). Irrespective
of this discrepancy, the imputed Ts is indiscriminately
(without introducing weighting) fed into the Stage
2 model. An unanswered question is to what extent error
propagates through stages, and whether a random forest
model trained with weighted data samples could improve
the estimation performance.

5 | CONCLUSION

In this study, we proposed a two-stage machine learning
based approach to estimating near-surface air tempera-
ture (Ta) from remotely sensed surface skin temperature
(Ts). It enables a seamless estimation of Ts and Ta at high
resolution in both time and space, while achieving good
performance and computational efficiency. The novel
method takes advantage of an extensive catalogue of
geospatial data sets that are becoming increasingly avail-
able at a global scale, endowing it with excellent scalabil-
ity and transferability. Though focusing specifically on
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Israel, the model presented in this study can be easily
replicated to any other regions where comparable
geospatial databases are available. The outcomes help
further minimize exposure misclassification in epidemio-
logical studies and may also benefit a wide range of
stakeholders including policy-makers, urban-planers, and
insurance firms. As urbanization and climate change pro-
ceed, incorporating their impacts into daily routine has
gradually become a cross-sectoral modus operandi. This
is exactly where a high-resolution continuous spatio-
temporal Ta database could come into full play.
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Zerefos, C.S., Türkeş, M. and Luterbacher, J. (2010) Heat wave
changes in the eastern Mediterranean since 1960. Geophysical
Research Letters, 37(4), L04802. https://doi.org/10.1029/
2009GL041841.

Li, L. and Zha, Y. (2018) Mapping relative humidity, average and
extreme temperature in hot summer over China. Science of the
Total Environment, 615, 875–881. https://doi.org/10.1016/j.
scitotenv.2017.10.022.

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F.
and Sobrino, J.A. (2013) Satellite-derived land surface tempera-
ture: current status and perspectives. Remote Sensing of Envi-
ronment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008.

Liaw, A. and Wiener, M. (2002) Classification and regression by
randomForest. R News, 2, 18–22.

Lin, S., Moore, N.J., Messina, J.P., DeVisser, M.H. and Wu, J. (2012)
Evaluation of estimating daily maximum and minimum air
temperature with MODIS data in east Africa. International
Journal of Applied Earth Observation and Geoinformation, 18
(1), 128–140. https://doi.org/10.1016/j.jag.2012.01.004.

Masson, V. (2000) A physically-based scheme for the urban energy
budget in atmospheric models. Boundary-Layer Meteorology, 94
(3), 357–397. https://doi.org/10.1023/A:1002463829265.

Masson, V., Grimmond, C.S.B. and Oke, T.R. (2002) Evaluation of
the town energy balance (TEB) scheme with direct measure-
ments from dry districts in two cities. Journal of Applied Meteo-
rology, 41(10), 1011–1026. https://doi.org/10.1175/1520-0450
(2002)041<1011:EOTTEB>2.0.CO;2.

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M. and Nauss, T.
(2018) Improving performance of spatio-temporal machine
learning models using forward feature selection and target-
oriented validation. Environmental Modelling and Software,
101, 1–9. https://doi.org/10.1016/j.envsoft.2017.12.001.

Mirzaei, P.A. and Haghighat, F. (2010) Approaches to study urban heat
Island – abilities and limitations. Building and Environment, 45
(10), 2192–2201. https://doi.org/10.1016/j.buildenv.2010.04.001.

Ochsenwald, W.L., Sicherman, H., et al. (2019) Israel. Encyclopædia
Britannica: Encyclopædia Britannica, Inc..

Oke, T.R., Mills, G., Christen, A. and Voogt, J.A. (2017) Urban Cli-
mates. Cambridge: Cambridge University Press.

Oshiro, T.M., Perez, P.S. and Baranauskas, J.A. (2012) How many
trees in a random forest? In: Perner, P. (Ed.) Machine Learning
and Data Mining in Pattern Recognition. MLDM 2012. Lecture
Notes in Computer Science, Vol 7376. Berlin, Heidelberg:
Springer, pp. 154–168.

Oyler, J.W., Ballantyne, A., Jencso, K., Sweet, M. and Running, S.
W. (2015) Creating a topoclimatic daily air temperature dataset
for the conterminous United States using homogenized station
data and remotely sensed land skin temperature. International
Journal of Climatology, 35(9), 2258–2279. https://doi.org/10.
1002/joc.4127.

Pebesma, E. (2018) Simple features for R: standardized support for
spatial vector data. The R Journal, 10(1), 439–446. https://doi.
org/10.32614/RJ-2018-009.

Prata, A.J., Caselles, V., Coll, C., Sobrino, J.A. and Ottle, C. (1995)
Thermal remote sensing of land surface temperature from satel-
lites: current status and future prospects. Remote Sensing Reviews,
12(3–4), 175–224. https://doi.org/10.1080/02757259509532285.

Prigent, C., Aires, F. and Rossow, W.B. (2003) Land surface skin
temperatures from a combined analysis of microwave and
infrared satellite observations for an all-weather evaluation of
the differences between air and skin temperatures. Journal of
Geophysical Research, 108(D10), 1–14. https://doi.org/10.1029/
2002JD002301.

Probst, P. and Boulesteix, A.-L. (2017) To tune or not to tune the
number of trees in random forest? Journal of Machine Learning
Research, 18, 1–18.

Rosenfeld, A., Dorman, M., Schwartz, J., Novack, V., Just, A.C. and
Kloog, I. (2017) Estimating daily minimum, maximum, and
mean near surface air temperature using hybrid satellite
models across Israel. Environmental Research, 159(March),
297–312. https://doi.org/10.1016/j.envres.2017.08.017.

Rosenthal, J.K., Kinney, P.L. and Metzger, K.B. (2014) Intra-urban
vulnerability to heat-related mortality in New York City,
1997–2006. Health & Place, 30, 45–60. https://doi.org/10.1016/j.
healthplace.2014.07.014.

Schnell, J.L. and Prather, M.J. (2017) Co-occurrence of extremes in
surface ozone, particulate matter, and temperature over eastern
North America. Proceedings of the National Academy of Sciences,
114(11), 2854–2859. https://doi.org/10.1073/pnas.1614453114.

Schwartz, J., Samet, J.M. and Patz, J.A. (2004) Hospital admissions
for heart disease. Epidemiology, 15(6), 755–761. https://doi.org/
10.1097/01.ede.0000134875.15919.0f.

Shi, L., Kloog, I., Zanobetti, A., Liu, P. and Schwartz, J.D. (2015)
Impacts of temperature and its variability on mortality in New
England. Nature Climate Change, 5(11), 988–991. https://doi.
org/10.1038/nclimate2704.

Stafoggia, M., Bellander, T., Bucci, S., Davoli, M., De, H.K., De, D.
F., Gariazzo, C., Lyapustin, A., Michelozzi, P., Renzi, M.,
Scortichini, M., Shtein, A., Viegi, G., Kloog, I., Schwartz, J., de
Hoogh, K., de' Donato, F., Gariazzo, C., Lyapustin, A.,
Michelozzi, P., Renzi, M., Scortichini, M., Shtein, A., Viegi, G.,
Kloog, I. and Schwartz, J. (2019) Estimation of daily PM10 and
PM2.5 concentrations in Italy, 2013–2015, using a spatiotempo-
ral land-use random-forest model. Environment International,
124(November), 170–179. https://doi.org/10.1016/j.envint.2019.
01.016.

Stafoggia, M., Schwartz, J., Badaloni, C., Bellander, T.,
Alessandrini, E., Cattani, G., de' Donato, F., Gaeta, A.,
Leone, G., Lyapustin, A., Sorek-Hamer, M., de Hoogh, K.,
Di, Q., Forastiere, F. and Kloog, I. (2017) Estimation of daily
PM10 concentrations in Italy (2006–2012) using finely resolved
satellite data, land use variables and meteorology. Environment
International, 99(2017), 234–244. https://doi.org/10.1016/j.
envint.2016.11.024.

Stafoggia, M., Schwartz, J., Forastiere, F. and Perucci, C.A. (2008)
Does temperature modify the association between air pollution
and mortality? A multicity case-crossover analysis in Italy.
American Journal of Epidemiology, 167(12), 1476–1485. https://
doi.org/10.1093/aje/kwn074.

6120 ZHOU ET AL.

https://doi.org/10.1016/j.rse.2014.04.024
https://doi.org/10.1016/j.rse.2014.04.024
https://doi.org/10.1002/joc.4705
https://doi.org/10.1002/joc.4705
https://doi.org/10.1029/2009GL041841
https://doi.org/10.1029/2009GL041841
https://doi.org/10.1016/j.scitotenv.2017.10.022
https://doi.org/10.1016/j.scitotenv.2017.10.022
https://doi.org/10.1016/j.rse.2012.12.008
https://doi.org/10.1016/j.jag.2012.01.004
https://doi.org/10.1023/A:1002463829265
https://doi.org/10.1175/1520-0450(2002)041%3C1011:EOTTEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3C1011:EOTTEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3C1011:EOTTEB%3E2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041%3C1011:EOTTEB%3E2.0.CO;2
https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.buildenv.2010.04.001
https://doi.org/10.1002/joc.4127
https://doi.org/10.1002/joc.4127
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1080/02757259509532285
https://doi.org/10.1029/2002JD002301
https://doi.org/10.1029/2002JD002301
https://doi.org/10.1016/j.envres.2017.08.017
https://doi.org/10.1016/j.healthplace.2014.07.014
https://doi.org/10.1016/j.healthplace.2014.07.014
https://doi.org/10.1073/pnas.1614453114
https://doi.org/10.1097/01.ede.0000134875.15919.0f
https://doi.org/10.1097/01.ede.0000134875.15919.0f
https://doi.org/10.1038/nclimate2704
https://doi.org/10.1038/nclimate2704
https://doi.org/10.1016/j.envint.2019.01.016
https://doi.org/10.1016/j.envint.2019.01.016
https://doi.org/10.1016/j.envint.2016.11.024
https://doi.org/10.1016/j.envint.2016.11.024
https://doi.org/10.1093/aje/kwn074
https://doi.org/10.1093/aje/kwn074


Survey of Israel (2013) Survey of Israel, 2013.
Tobler, W.R. (1970) A computer movie simulating urban growth in

the Detroit region. Economic Geography, 46, 234. https://doi.
org/10.2307/143141.

Tucker, C.J. (1979) Red and photographic infrared linear combina-
tions for monitoring vegetation. Remote Sensing of Environ-
ment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)
90013-0.

Vancutsem, C., Ceccato, P., Dinku, T. and Connor, S.J. (2010) Eval-
uation of MODIS land surface temperature data to estimate air
temperature in different ecosystems over Africa. Remote Sens-
ing of Environment, 114(2), 449–465. https://doi.org/10.1016/j.
rse.2009.10.002.

Wan, Z. (2013) MODIS Land Surface Temperature Products Users'
Guide. Available at: https://lpdaac.usgs.gov/documents/118/
MOD11_User_Guide_V6.pdf [Accessed 07th April 2020].

Wan, Z. (2014) New refinements and validation of the collection-6
MODIS land-surface temperature/emissivity product. Remote
Sensing of Environment, 140, 36–45. https://doi.org/10.1016/j.
rse.2013.08.027.

Wang, J., Feng, J., Yan, Z., Hu, Y. and Jia, G. (2012) Nested high-
resolution modeling of the impact of urbanization on regional
climate in three vast urban agglomerations in China. Journal of
Geophysical Research, 117(D21), 1–18. https://doi.org/10.1029/
2012JD018226.

Weiss, D.J., Atkinson, P.M., Bhatt, S., Mappin, B., Hay, S.I. and
Gething, P.W. (2014) An effective approach for gap-filling con-
tinental scale remotely sensed time-series. ISPRS Journal of
Photogrammetry and Remote Sensing, 98, 106–118. https://doi.
org/10.1016/j.isprsjprs.2014.10.001.

Wright, M.N. and Ziegler, A. (2017) Ranger: a fast implementation
of random forests for high dimensional data in C++ and R.
Journal of Statistical Software, 77(1), 1–17. https://doi.org/10.
18637/jss.v077.i01.

Ye, X., Wolff, R., Yu, W., Vaneckova, P., Pan, X. and Tong, S. (2012)
Ambient temperature and morbidity: a review of epidemiologi-
cal evidence. Environmental Health Perspectives, 120(1), 19–28.
https://doi.org/10.1289/ehp.1003198.

Guo, Y.Y.L., Gasparrini, A., Armstrong, B., Li, S., Tawatsupa, B.,
Tobias, A., Lavigne, E., de Sousa Zanotti Stagliorio Coelho, M.,
Leone, M., Pan, X., Tong, S., Tian, L., Kim, H., Hashizume, M.,
Honda, Y., YYL, G., Wu, C.-F., Punnasiri, K., Yi, S.,
Michelozzi, P., Saldiva, P.H.N. and Williams, G. (2014) Global
variation in the effects of ambient temperature on mortality.
Epidemiology, 25(6), 781–789. https://doi.org/10.1097/EDE.
0000000000000165.

Zakšek, K. and Oštir, K. (2012) Downscaling land surface tempera-
ture for urban heat Island diurnal cycle analysis. Remote Sens-
ing of Environment, 117, 114–124. https://doi.org/10.1016/j.rse.
2011.05.027.

Zakšek, K. and Schroedter-Homscheidt, M. (2009) Parameterization
of air temperature in high temporal and spatial resolution from
a combination of the SEVIRI and MODIS instruments. ISPRS
Journal of Photogrammetry and Remote Sensing, 64(4), 414–421.
https://doi.org/10.1016/j.isprsjprs.2009.02.006.

Zeger, S.L., Thomas, D., Dominici, F., Samet, J.M., Schwartz, J.,
Dockery, D. and Cohen, A. (2000) Exposure measurement error
in time-series studies of air pollution: concepts and conse-
quences. Environmental Health Perspectives, 108(5), 419–426.
https://doi.org/10.1289/ehp.00108419.

Zhang, H., Wang, Y., Park, T.W. and Deng, Y. (2017) Quantifying
the relationship between extreme air pollution events and
extreme weather events. Atmospheric Research., 188, 64–79.
https://doi.org/10.1016/j.atmosres.2016.11.010.

Zhou, B., Kaplan, S., Peeters, A., Kloog, I. and Erell, E. (2019) “Sur-
face”, “satellite” or “simulation”: mapping intra-urban microcli-
mate variability in a desert city. International Journal of
Climatology, 2019, 1–19. https://doi.org/10.1002/joc.6385.

Zhu, W., Lű, A. and Jia, S. (2013) Estimation of daily maximum and
minimum air temperature using MODIS land surface tempera-
ture products. Remote Sensing of Environment, 130, 62–73.
https://doi.org/10.1016/j.rse.2012.10.034.

Zhu, W., Lű, A., Jia, S., Yan, J. and Mahmood, R. (2017) Retrievals
of all-weather daytime air temperature from MODIS products.
Remote Sensing of Environment, 189, 152–163. https://doi.org/
10.1016/j.rse.2016.11.011.

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Zhou B, Erell E,
Hough I, et al. Estimating near-surface air
temperature across Israel using a machine learning
based hybrid approach. Int J Climatol. 2020;40:
6106–6121. https://doi.org/10.1002/joc.6570

ZHOU ET AL. 6121

https://doi.org/10.2307/143141
https://doi.org/10.2307/143141
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/j.rse.2009.10.002
https://doi.org/10.1016/j.rse.2009.10.002
https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf
https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1029/2012JD018226
https://doi.org/10.1029/2012JD018226
https://doi.org/10.1016/j.isprsjprs.2014.10.001
https://doi.org/10.1016/j.isprsjprs.2014.10.001
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1289/ehp.1003198
https://doi.org/10.1097/EDE.0000000000000165
https://doi.org/10.1097/EDE.0000000000000165
https://doi.org/10.1016/j.rse.2011.05.027
https://doi.org/10.1016/j.rse.2011.05.027
https://doi.org/10.1016/j.isprsjprs.2009.02.006
https://doi.org/10.1289/ehp.00108419
https://doi.org/10.1016/j.atmosres.2016.11.010
https://doi.org/10.1002/joc.6385
https://doi.org/10.1016/j.rse.2012.10.034
https://doi.org/10.1016/j.rse.2016.11.011
https://doi.org/10.1016/j.rse.2016.11.011
https://doi.org/10.1002/joc.6570

	Estimating near-surface air temperature across Israel using a machine learning based hybrid approach
	1  INTRODUCTION
	2  DATA AND METHODS
	2.1  Study area and meteorological data
	2.2  Remotely sensed surface skin temperature
	2.3  ERA5 reanalysis data
	2.4  Geospatial variables
	2.4.1  NDVI
	2.4.2  Road and population density
	2.4.3  Distance to large bodies of water
	2.4.4  Elevation and slope aspect
	2.4.5  Urban and vegetation fractions

	2.5  Statistical methods
	2.5.1  Stage 1 model: Imputation of MODIS Ts
	2.5.2  Stage 2 model: Imputation of Ta from Ts


	3  RESULTS
	3.1  MODIS overpass time
	3.2  Performance of the stage 1 model
	3.3  Performance of the stage 2 model

	4  DISCUSSION
	5  CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


