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X-ray edge singularity in optical spectra of quantum dots
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In this work we investigate the x-ray edge singularity problem realized in noninteracting quantum dots. We
analytically calculate the exponent of the singularity in the absorption spectrum near the threshold and extend
known analytical results to the whole parameter regime of local level detunings. Additionally, we highlight the
connections to work distributions and to the Loschmidt echo.
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I. INTRODUCTION

In condensed-matter theory the x-ray edge singularity
constitutes one of the most important paradigms, appearing
in a variety of different contexts. In the x-ray edge problem
one probes the response of a fermionic system, interacting or
noninteracting, subject to a sudden local perturbation. Its origin
lies in the study of x-ray spectra of simple metals where it was
shown that the absorption or emission of a photon corresponds
to the sudden switch on or off of a local potential scatterer
embedded in a noninteracting Fermi sea.1–4 Since then x-ray
edge physics has been found in a variety of different systems,
such as Luttinger liquids with impurity,5 Anderson impurity
and Kondo models,6–10 resonant tunneling current-voltage
characteristics through localized levels,11,12 fermionic systems
with gapped spectra,13 decoherence in two-level systems,14 or
work distributions.15

In quantum-dot experiments x-ray edge physics has been
found in resonant tunneling current-voltage characteristics
through localized levels16 where the I -V curves display edge
singularities I ∼ θ (V − V0)(V − V0)−γ (Refs. 11 and 12) as
a function of the applied bias voltage V at zero temperature,
with an exponent γ that is determined by the associated local
perturbation. At nonzero temperatures T the singularity gets
smeared and IT γ becomes a universal function of eV/kBT ,17

as has been demonstrated in numerous experiments.17,18

In this work we focus on the realization of the x-ray edge
problem in noninteracting quantum dots by means of optics
experiments. The possibility of tuning the system parameters
in quantum dots enables one to vary the relevant quantity in the
x-ray edge problem: the phase shift δ of the conduction-band
electrons. We analytically calculate the absorption line shape
near the threshold of a suitably initialized quantum dot at
zero temperature, extending the known analytical results6,7

to the whole parameter regime of local level detunings. This
is an important generalization of x-ray edge physics to an
experimentally accessible setup, and it constitutes one of the
very few examples that allows for exact solutions. We show
that the absorption spectrum can be identified with a work
distribution19 for a local quench in a resonant level model.
Moreover, we highlight the connection to the Loschmidt
echo, which can be related to the Fourier transform of the
absorption spectrum.15,20 Thus the presented setup allows for
the measurement of the Loschmidt echo in a condensed-matter
system by means of optical spectra.

The paper is organized as follows. First, we outline the
experimental setup that allows us to mimic the x-ray edge
problem in quantum dots. Then we calculate the absorption
spectrum near the threshold via an associated Riemann-Hilbert
problem.21 In the end we show the results and point out the
relation to work distributions and to the Loschmidt echo.

II. MODELING THE ABSORPTION PROCESS AS
A QUENCH IN AN EXTENDED RESONANT

LEVEL MODEL

Below, we present a possible experimental realization
of x-ray edge physics in noninteracting quantum dots
coupled to an electronic reservoir following the ideas of
Helmes et al.9 and Türeci et al.10 In Fig. 1 a schematic picture
of the setup is shown. Consider a narrow quantum dot with a
large splitting of the single-particle energies. In the following
we will assume that the two spin channels are decoupled
such that we can restrict ourselves to a single channel of
spinless fermions. One possible realization of this decoupling
is presented in the Appendix. The decoupling of the two spin
degrees of freedom eliminates spin fluctuations that can lead
to a strongly correlated low-energy state characterized by the
Kondo resonance at the Fermi energy in the local density
of states. This scenario has been investigated recently in
Ref. 10. As argued in the Appendix, the formation of a Kondo
resonance is avoided in the case where charge fluctuations on
the quantum dot are sufficiently strong. This can be achieved
through a strong coupling between the quantum dot and the
conduction band.

By varying the back gate voltage Vg , the quantum dot
can be tuned in such a way that the topmost occupied level
lies far below the Fermi surface, (εF − εh)/� � 1, provided
the level splitting is large enough. Here, � = πρ0V

2 denotes
the level broadening, with ρ0 being the density of states at the
Fermi level and V the hopping amplitude of electrons between
dot and reservoir. Thus, the lower level can be considered
occupied. If an incident laser beam with angular frequency ω

excites the electron from the lower level into the upper one,
a positively charged hole is left behind. Due to a capacitative
coupling Ueh between the excited electron and the hole, the
upper level εi is shifted to lower energies εf . The localized
hole not only interacts with the dot electron, it also establishes
a local potential for the conduction-band electrons. Assuming
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FIG. 1. (Color online) Schematic picture of a quantum dot
coupled to a fermionic reservoir, which allows us to study x-ray edge
physics in absorption spectra of quantum dots. The photon absorption
of a suitably initialized quantum dot implements a sudden switch-on
of the tunnel coupling between dot and fermionic reservoir due to a
capacitative coupling between the excited electron and the residual
hole. For details see the text.

that the hole is stable such that it can be considered static, at
least compared to the other time scales in the problem, we can
model this system by the following initial (before absorption)
and final (after absorption) Hamiltonians:

Hi =
∑

k

εk :c†kck :+εic
†
dcd ,

Hf =
∑

k

εk :c†kck :−g
∑
kk′

:c†kck′ :+εf c
†
dcd (1)

+V
∑

k

[c†kcd + c
†
dck] + �E.

For one particular experimentally relevant realization of these
model Hamiltonians, see the Appendix. The hole degree of
freedom already has been integrated out and is contained
in a constant energy shift �E of the final Hamiltonian.
The operator c

†
k creates an electron with wave vector k in

the reservoir. Note that the quantum numbers k refer to an
effective one-dimensional chiral description of the electronic
degrees of freedom. Thus, we assume s-wave scattering, which
allows for a reduction to a one-dimensional problem. For
convenience, the wave vector k is measured relative to kF . The
colons : · · · :denote normal ordering with respect to the Fermi
sea. We measure the single-particle energies relative to the
Fermi level, i.e., εF = 0. The operator c

†
d creates an electron

on the upper level of the quantum dot whose energy differs
depending on if a photon has been absorbed or not.

The Hamiltonians in Eq. (1) without the potential scattering
term have been introduced in the context of the x-ray edge
problem by Kotani and Toyozawa6,22 to describe the x-ray
spectra of metals with incomplete shells. They solved the
problem analytically in the vicinity of the threshold for the case
where the final local level lies far above or below the Fermi

energy. Moreover, they phenomenologically inferred from
their analytical results the threshold behavior of the absorption
spectrum over the whole parameter space. A similar problem
at finite temperatures has been investigated in the context of
decoherence in charge qubits.23 The combined influence of
a local potential scatterer and a virtual bound state was first
discussed by Kita et al.,7 who solved the problem analytically
for the case where the final local level energy lies above the
Fermi level, i.e., εf > 0.

The aim of this work is to extend the known analytical
zero-temperature results to the whole parameter regime of
local level detunings with a general framework that can
also be useful in other contexts. This includes, for example,
decoherence in charge qubits coupled to a defect level.23,24

III. ABSORPTION SPECTRUM

Assuming that the coupling between the system and the
light field is small, one obtains for the absorption spectrum
A(ω), the rate at which photons are absorbed, in second order
of the coupling (Fermi’s golden rule) at zero temperature,

A(ω) = κ
∑

n

|〈en|c†d |ψ0〉|2δ[ω − (en − egs)]. (2)

Here, |ψ0〉 denotes the ground state of the initial Hamiltonian
with energy egs and |en〉 is a complete orthonormal eigenbasis
of the final Hamiltonian with corresponding energies en. The
constant prefactor κ contains the experimental details such as
the intensity of the incident laser beam and the system–light-
field coupling. Representing the δ function by an integral over
phase factors, one can relate A(ω) to a dynamical correlation
function G(t) via Fourier transformation,

A(ω) = κ

∫
dt

2π
ei(ω−εi )t G(t), (3)

with

G(t) = 〈0|eiHi te−iHf t |0〉. (4)

Here, |0〉 = c
†
d |ψ0〉 denotes a product state of the Fermi

sea for the conduction-band electrons with a filled local
d orbital. In view of the x-ray edge problem, G(t) is the
equivalent to the core-hole Green’s function. The dynamical
correlation function G(t) in Eq. (4) is an important quantity
also in other physical contexts. The quantity L(t) = |G(t)|2
is the Loschmidt echo that allows for a quantification of the
irreversibility of a system,15,20 here Hi , under a perturbation,
here Hf − Hi . Moreover, G(t) is the characteristic function
of a work distribution P (ω) for a quench from Hi to Hf ,
where P (ω) = κ−1A(ω) is the probability of having performed
the work ω on the system under this protocol.19 The relation
between absorption spectra and work distributions, which is
evident from a physical point of view, has been worked out
recently.25 A photon when absorbed provides its energy ω

to the system, which is equivalent to having performed the
work ω.

Analytic results for the dynamical correlation function
G(t) in the asymptotic long-time limit t → ∞ have been
obtained for the case where the final energy εf of the local
d level lies above the Fermi level, i.e., εf > 0.7 In the case
without a potential scatterer, Kotani and Toyozawa6 calculated
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analytically the characteristic function G(t) in the limit where
the final local energy level lies far above or far below the Fermi
level. In both systems, the long-time behavior of the dynamical

correlation function G(t) is algebraic, G(t)
t→∞−→ (iηt)−γ , γ =

(1 − δ/π )2, with an exponent γ that only depends on the phase
shift δ of the conduction-band electrons at the Fermi level in
the presence of the local perturbation. The prefactor η is a
high-energy scale of the order of the bandwidth. Due to the
Friedel sum rule, δ/π is the screening charge that determines
the exponent according to the rule of Hopfield.26

In the following, we will extend the known results to
the whole parameter regime, including also the case where
εf � 0. Although the problem is in principle quadratic, the
mathematical difficulty stems from the fact that, in contrast
to the original x-ray edge problem, an additional dynamical
degree of freedom, the local d level, and its coupling to the
fermionic reservoir are switched on. As a consequence the
additional degree of freedom acquires a finite lifetime.

The absorption process creates two local perturbations:
the potential scatterer as well as the coupling to a localized
level. The time scale for the local level to hybridize with the
conduction band is set by the inverse �−1 of the equilibrium
level broadening �. Thus, for times t 	 �−1 the local level is
effectively decoupled and the dynamics are controlled solely
by the potential scatterer. This then leads to the following
picture. For times smaller than the inverse bandwidth W−1,
t 	 W−1, the time evolution of G(t) is nonuniversal and is
controlled mainly by high-energy excitations. In the interme-
diate regime W−1 	 t 	 �−1, the dynamics is dominated by
the local potential scatterer, with the local level still effectively
decoupled. This is then equivalent to the original x-ray edge
problem such that the amplitude G(t) decays algebraically
G(t) ∼ (iηt)−α2

, with η being a high-energy scale of the order
of the bandwidth. The exponent α = δ∗/π is set by the phase
shift δ∗ for the potential scattering Hamiltonian in Eq. (1) with
V = 0. The dynamics of the system for times t � �−1 are
given by the full Hamiltonian and will be determined via the
combined influence of the hybridization as well as the potential
scatterer. In the following we will calculate the dynamics in
the asymptotic long-time regime t � �−1 for all local level
detunings εf , yielding that again G(t) ∼ (iηt)−(1−δ/π)2

decays
algebraically with an exponent that is determined by the phase
shift δ.

Due to the quadratic nature of the problem - the final and
initial Hamiltonians are both bilinear in fermionic operators -
the characteristic function G(t), which is a thermal expectation
value of exponentials in Hi and Hf , can be reduced to a single-
particle problem. Functions such as G(t) can be represented
in terms of determinants12,27,28

G(t) = det M, M = 1 − f + f R, (5)

of matrices in the single-particle space due to the Slater
determinant structure of the initial state. The matrix R with
matrix elements

Rll′ = 〈|clR̂c
†
l′ |〉, R̂ = eiHi te−iHf t , l,l′ = k,d, (6)

where | 〉 is the true vacuum without any fermion, is essentially
determined by the single-particle subspace of R̂. The operator
R̂ can be idenitified as the time-evolution operator of H =
Hf in the interaction representation with respect to the free
Hamiltonian H0 = Hi . The matrix elements of R reduce to
the retarded Green’s functions of the final Hamiltonian up to
a phase. The initial state is encoded in the matrix f :

fdd = 1, fdk = fkd = 0, fkk′ = δkk′θ (−k). (7)

It will be convenient to separate the dynamics of the additional
dynamical degree of freedom, the local d level, from the
dynamics of the conduction-band electrons. For that purpose,
we write the matrix M in a block notation

M =
(

A B

C D

)
, (8)

where

A = Mdd , Bk = Mdk, Ck = Mkd , Dkk′ = Mkk′, (9)

such that one obtains, by use of an elementary property of the
determinant,

G(t) = det M = (A − BD−1C) det D, (10)

where BD−1C = ∑
kk′ BkD

−1
kk′ Ck′ is a scalar. Note that this

separation of one degree freedom is formally similar to the
treatment of a bound state in the x-ray edge problem in
Ref. 21. However, in the present setup the additional d level
is a dynamical degree of freedom, whereas a bound state is
a static object. The matrix D now only includes reservoir
states such that det D can be calculated with techniques known
from the original x-ray edge problem. But the separation of
the reservoir and d-level degrees of freedom comes at the
cost of finding the inverse D−1 of an infintely large matrix.
Using the Riemann-Hilbert method by d’Ambrumenil and
Muzykantskii,21 however, the evaluation of the determinant of
D is equivalent to finding its inverse D−1. In the context of the
response of a fermionic system subject to a local perturbation,
the auxiliary Riemann-Hilbert problem first appeared in
Ref. 29. Subsequently, it has been used in the theory of full
counting statistics30 and for the x-ray edge problem21,31 even
under nonequilibrium conditions.32 In the context of quantum
inverse scattering problems, the Riemann-Hilbert problem is
a well-established technique for evaluating determinants.33

The inversion of the matrix D cannot be done exactly, but
only asymptotically for large times t � �−1. For details, see
Ref. 21. In this asymptotic limit it is well known that only
the low-energy excitations in the vicinity of the Fermi level
are relevant for the dynamics. Assuming that the scattering
matrix S(E) for the conduction-band electrons in presence of
the local perturbation is only weakly dependent on energy,
one can approximate S(E) by its value at the Fermi level
S(E) ≈ S(EF ) = e2iδ . Here, δ is the corresponding phase
shift. Within this approximation, the inversion of the matrix
D is then equivalent to solving a singular integral equation
with a Cauchy kernel.21 Such singular integral equations can
be solved analytically due to their relation to Riemann-Hilbert
problems.21,34 For the long-time limit of the generating funtion
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G(t), one thus obtains

G(t)
t��−1−→ (iηt)−γ , γ = (1 − δ/π )2, (11)

in agreement with the known results for the case εf > εF and
consistent with the Hopfield rule of thumb.26 Thus, the known
asymptotic behavior extends to the whole parameter regime as
already shown in numerous numerical calculations.7,22,35 This
result constitutes one of the rare cases where it is possible to
obtain exact analytical solutions.

Equation (11) expresses the asymptotic behavior of the
generating function G(t) in terms of the parameters η and
δ. The quantity η, a high-energy scale of the order of the
bandwidth, cannot be obtained analytically, as is usually
the case for all the analytical treatments of the x-ray edge
problem.1–4 The phase shift δ of the electrons at the Fermi level
is a nonuniversal quantity that depends on a lot of details, such
as the full free fermionic dispersion relation. Thus, in general
it can only be determined numerically for a given system. Only
in special cases it is possible to arrive at general statements
about δ; for the case of a weak potential scatterer, for example,
see Ref. 4; for a far-detuned local level |εf − εF | � �, see
Ref. 6. If the final local level energy is resonant with the Fermi
level, i.e., εf = εF , we have δ/π = 1/2.

In the context of the initial problem, a quantum dot subject
to a laser field, we have to bear in mind that the system actually
exhibits two spin channels. If the laser excites electrons of
both spins, the problem is still separable in the spin degree of
freedom, i.e., G(t) = G↑(t)G↓(t), and the dynamics of each
spin component is governed by the Hamiltonians in Eq. (1).
The exponent γ of the asymptotic long-time decay of the
generating function G(t) gets contributions from both spin
channels, i.e., γ = γ↑ + γ↓, with γσ = (1 − δσ /π )2 and δσ is
the phase shift of the spin-σ electrons at the Fermi level. If
the incident laser beam is circularly polarized it is possible
to address just one of the two electronic spin species; spin-↑
for example. In this case, only one spin-↑ electron is excited
from the core hole into the upper local level. Again, the total
exponent γ = γ↑ + γ↓ is given by two contributions. For γ↑ =
(1 − δ↑/π )2 we then get the same result as in Eq. (11). The
spin-↓ contribution, however, is different as the absorption
process does not excite a spin-↓ electron in the dot. Thus, we
get an exponent γ↓ = (δ↓/π )2 due to the presence of the local
potential scatterer generated by the absorption of the spin-↑
electron.

Absorption lineshape. From Eq. (11), one can deduce
the behavior of the absorption lines hape near the threshold
analytically,

A(ω)
ω→ωth∼ θ (ω − ωth)(ω − ωth)γ−1, (12)

which shows the typical power-law singularity. The singularity
is a consequence of the singular behavior of the initial
Fermi-Dirac distribution of the conduction-band electrons
at zero temperature. Thus, at nonzero temperatures T the
singularity is cut off;37 see Ref. 31 for the finite-temperature
generalization in the context of the Riemann-Hilbert method.
In Fig. 2, numerical renormalization group (NRG) data for
the absorption spectrum are shown. For light frequencies ω in
the vicinity of the threshold, the analytical power-law results
included as thin solid lines fit perfectly to the exact NRG
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FIG. 2. (Color online) Absorption spectrum A(ω) as a function
of the incident light frequency ω near the threshold frequency ωth

for different final energies εf of the quantum dot level at zero
temperature. For simplicity we restrict ourselves to the case g = 0
without a potential scatterer. Here, � = πρ0V

2 denotes the half-width
of the hybridized level in the quantum dot, with ρ0 being the
noninteracting density of states at the Fermi level. The thick lines
are results obtained by NRG calculations.36 The thin lines show the
analytic power-law results, which fit perfectly the exact NRG data in
the asymptotic low-frequency regime for |ω − ωth| 	 �. For details,
see the main text.

results. The analytical curves in Fig. 2 are obtained by a fit of
the high-energy scale η that cannot be obtained analytically
by the present appoach, as mentioned before. The phase shift
δ, however, is not fitted; rather, it is obtained within the NRG
independently of the absorption spectrum.

Work distribution. In view of the equivalence to a work
distribution, the existence of the threshold in the absorption
spectrum is evident. In the beginning, the system is prepared
in the ground state of the initial Hamiltonian. The minimum
energy, i.e., work, that has to be provided to the system
by switching on the coupling to the resonant level, is
the ground-state energy difference between initial and final
Hamiltonians. Thus, it is impossible for a photon of energy
less than the ground-state energy difference to be absorbed.
The singular behavior of the absorption spectrum shows that
the dominant excitations that are created by the absorption
process are low-energy excitations in the vicinity of the Fermi
level.

Loschmidt echo. As already mentioned before, the charac-
teristic function G(t) is also related to the Loschmidt echo,15,20

L(t) = |G(t)|2 = |〈0|eiHi te−iHf t |0〉|2. (13)

The Loschmidt echo quantifies the stability of motion in
time of a system; in this case the Hamiltonian Hi , under
a perturbation Hf − Hi . Thus, for long times t , Eq. (11)
states that, no matter how small the local perturbation is,
the time evolution of the state |0〉 with the final Hamiltonian
drives the system into a subspace of the Hilbert space
that is orthogonal to the initial state. From the Anderson
orthogonality catastrophe38 it is known that the ground state
of the final Hamiltonian is contained in this subspace. The
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system as a whole, however, does not evolve into the ground
state of the final Hamiltonian |0f 〉, as the overlap of both wave
functions |〈0f |e−iHf t |0〉|2 = |〈0f |0〉|2 ∼ N−α2

with α = δ/π

being constant in time. Here, N is the particle number. Thus,
the vanishing behavior of G(t) for t → ∞ cannot be simply
traced back to the Anderson orthogonality catastrophe,38 i.e.,
the vanishing overlap between ground-state wave functions.
For the original x-ray edge model including only the potential
scatterer, it has been shown that the characteristic scaling
behavior of overlaps with system size is valid not only for
the ground-state wave function overlap, but also for low-lying
excited states |ε〉.3,39 Here, the energies ε are measured
relative to the ground-state energy of the final Hamiltonian.
For a finite-size system it has been shown by the authors in
Ref. 39 that, the function σ (En = nW/N ) = ∑En+�E

ε=En
|〈ε|0〉|2

[W is the bandwidth] has a scaling behavior similar to that
in the Anderson orthogonality catastrophe, namely σ (En) ∼
(n/N )α

2−1 ∼ Eα2−1
n , provided the energy En is small. This

scaling behavior in energy is intimately connected to the
scaling behavior with system size in the der Anderson or-
thogonality catastrophe; however, it is an extension to excited
states. The asymptotic power-law behavior of L(t) is therefore
not just a consequence of the vanishing ground-state overlap,
but instead is due to the existence of a multitude of low-energy
excitations satisfying the characteristic scaling behavior also
found in the Anderson orthogonality catastrophe.

Due to the correspondence between absorption spectra and
work distributions, we know that the average energy in the
system Ef = 〈0|Hf |0〉 after the switch-on of the perturbation
is larger than the ground-state energy E

gs

f of Hf . After the
quench the system has (on average) an excess energy w =
Ef − E

gs

f , in the context of the work distribution one can term
w the dissipated work. The asymptotic long-time behavior
of the Loschmidt echo L(t) suggests that in course of time
the system redistributes this excess energy completely into a
multitude of low-energy excitations.

IV. CONCLUSION

In this work we have discussed the x-ray edge singularity
in optical spectra of quantum dots. We presented a general
framework that allows one to determine analytically the
singular threshold behavior of absorption spectra in quantum
dots at zero temperature. This establishes an important
generalization of x-ray edge physics to experimentally ac-
cessible environments that can be used to observe x-ray edge
physics in a controlled setup. Moreover, we highlighted the
correspondence of the spectra to work distributions and to
the Loschmidt echo. The presented framework might also
be useful in other contexts such as decoherence in charge
qubits.
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APPENDIX: MODEL AND EXPERIMENT

In this Appendix we present one possible absorption
experiment whose effective description is governed by the
Hamiltonians in Eq. (1). Consider a single semiconductor
quantum dot embedded in a Schottky diode structure. Such
quantum dots coupled to a fermionic reservoir can generically
be described by Anderson impurity models:

H =
∑
kσ

εkc
†
kσ ckσ + V

∑
kσ

[c†kσdσ + d†
σ ckσ ]

+
∑

σ

ε0d
†
σdσ + Ud

†
↑d↑d

†
↓d↓. (A1)

The operator c
†
kσ creates an electron in the reservoir with

spin σ and wave vector k that is measured relative to kF .
The quantum numbers k refer to an effective chiral one-
dimensional description; see also the main text. The quantum
dot is modeled by a single level with energy ε0 in each spin
channel. The operator d†

σ creates one electron of spin σ on
the dot. The two spin channels are coupled via the local onsite
interaction of strength U . The hybridization � = πρ0V

2, with
ρ0 being the noninteracting density of states, constitutes a
second important energy scale. For a semiconductor quantum
dot in such a Schottky diode structure, � can be tuned up
to such large values that U and � are of the same order.
For � > U renormalization group studies reveal that the
physical properties of the system are dominated by fixed
points that correspond to the noninteracting limit of the above
Hamiltonian with U = 0.40 In this regime it is therefore valid
to assume that the two spin channels are decoupled, each of
which can be modeled by a resonant level Hamiltonian H̃ . Due
to this decoupling we can restrict ourselves to a single channel
of spinless electrons in the following:

H̃ =
∑

k

εkc
†
kck + ε0d

†d + V
∑

k

[c†kd + d†ck]. (A2)

This is the effective description of the quantum dot before the
absorption of a photon. As explained in the main text, one
effect of the absorption is the shift of the local level energy
ε0 → ε0 − Ueh via the attractive electron-hole interaction Ueh.
Additionally, the absorption is associated with the switch on
of a local potential scatterer for the electrons in the reservoir
such that we have the following initial (Hi) and final (Hf )
Hamiltonians:

Hi =
∑

k

εkc
†
kck + ε0d

†d + V
∑

k

[c†kd + d†ck],

Hf =
∑

k

εkc
†
kck + (ε0 − Ueh)d†d (A3)

+V
∑

k

[c†kd + d†ck] − g
∑
kk′

c
†
kck′ .

155413-5



M. HEYL AND S. KEHREIN PHYSICAL REVIEW B 85, 155413 (2012)

Let W be the unitary transformation that diagonalizes Hi , i.e.,

Hi = WHiW
† =

∑
k

ε̃kc
†
kck + εid

†d, (A4)

where the matrix elements of W are defined by the equations

WdW † = Wddd +
∑

k

Wdkck,

(A5)
WckW

† = Wkdd +
∑
k′

Wkk′ck′ .

It is straightforward to show that all matrix elements have a
square-root scaling with system size, i.e., Wll′ ∼ L−1/2 with
l = k,d. In the new basis the final Hamiltonian equals

Hf = WHf W † =
∑

k

ε̃kc
†
kck + εf d†d

+
∑

k

[Ṽ c
†
kd + Ṽ ∗d†ck] −

∑
kk′

g̃kk′c
†
kck′ , (A6)

where the new coupling constants are given in terms of the
matrix elements of W in the following way:

εf = εi − g

∣∣∣∣∣
∑

k

Wkd

∣∣∣∣∣
2

, Ṽ = −g
∑

k

Wkd ,

(A7)

g̃kk′ = −g
∑
qq ′

W ∗
qkWq ′k′ − UehW

∗
dkWdk′ .

Here, we have neglected all terms whose contribution vanishes
in the thermodynamic limit. For the singular behavior of
the absorption spectrum at the threshold, only low-energy
excitations are relevant. For the description of the low-energy
sector one can replace the coupling constants g̃kk′ → g̃00 by
their values at the Fermi level. In conclusion, we have shown
one possible experimental scenario that leads to the model
Hamiltonians in Eq. (1).
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