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In this work we formulate the nonequilibrium dynamical renormalization group (ndRG). The ndRG represents
a general renormalization-group scheme for the analytical description of the real-time dynamics of complex
quantum many-body systems. In particular, the ndRG incorporates time as an additional scale which turns out
to be important for the description of the long-time dynamics. It can be applied to both translational-invariant
and disordered systems. As a concrete application, we study the real-time dynamics after a quench between two
quantum critical points of different universality classes. We achieve this by switching on weak disorder in a
one-dimensional transverse-field Ising model initially prepared at its clean quantum critical point. By comparing
to numerically exact simulations for large systems, we show that the ndRG is capable of analytically capturing
the full crossover from weak to infinite randomness. We analytically study signatures of localization in both real

space and Fock space.

DOI: 10.1103/PhysRevB.92.104401

I. INTRODUCTION

In equilibrium, renormalization group (RG) approaches
constitute one of the central concepts for the theoretical
description and understanding of many-body systems. One
major challenge in the field of nonequilibrium physics [1] is
the development of appropriate out-of-equilibrium generaliza-
tions. Recently, RG techniques have been developed [2—6] that
transfer the idea of scale separation to the out-of-equilibrium
dynamics of homogeneous quantum many-body systems. For
spin systems in the presence of strong disorder, RG techniques
have been formulated [7-9], applicable to initial states with
weak entanglement, that extend concepts of the strong-
disorder RG [10-12] to the nonequilibrium dynamical regime.
Although these RG methods constitute a key step towards
the analytical description of the nonequilibrium dynamics in
complex systems, controlling the long-time properties is still
a major challenge.

In this work, we present a nonequilibrium dynamical
renormalization group (ndRG) technique for the analytical
description of the quantum real-time evolution in complex
systems. The ndRG provides a general iterative RG prescrip-
tion for the full time-evolution operator without the need
of diagonalizing the complete Hamiltonian. The ndRG is
applicable to both homogeneous as well as disordered quantum
many-body systems. Importantly, the ndRG incorporates time
as an additional scale which turns out to be important for the
description of the long-time dynamics. The main idea behind
the ndRG is to separate resonant from off-resonant processes
on the basis of the energy—time uncertainty relation

h
AeAt 2, > ey

that expresses a fundamental limit onto the law of conservation
of energy within a scattering process monitored over a time
span At (Ref. [13]). In the asymptotic long-time regime,

1098-0121/2015/92(10)/104401(14)

104401-1

PACS number(s): 75.10.Pq, 05.70.Ln, 72.15.Rn

energy-conserving processes dominate the dynamics as ap-
parent, for example, in Boltzmann equations which de-
scribe the final asymptotic relaxation to thermal states in
homogeneous systems. For long but finite times ¢, however,
energy fluctuations are possible such that not only precisely
energy-conserving processes contribute, but also all those
with energy transfer Ae < h/(2t) as dictated by the energy—
time uncertainty relation. Therefore, we will classify all
processes with Ae < h/(2t) as “resonant” in the following.
The ndRG takes advantage of this limited energy resolution
by isolating resonant processes on the basis of a general
factorization property of the time-evolution operator. This
allows to treat the dynamics of these resonant processes,
although nonperturbative in nature, analytically.

We demonstrate the capabilities of the ndRG by applying it
to quantum quenches in the disordered transverse-field Ising
chain. We study the system’s critical dynamics by quenching
the system from its clean to its infinite-randomness critical
point. We achieve this by preparing the system in the ground
state of its homogeneous critical point and then studying its
dynamics in presence of weak disorder. We characterize the
resulting localization dynamics in both real as well as Fock
space. Within the recently developed concept on many-body
localization [14—17], it is particularly interesting that Fock-
space localization has been related to the fundamental question
of quantum ergodicity [14] and therefore to thermalization of
quantum many-body systems [1]. We show that the ndRG is
capable of describing the dynamics also in cases when the
initially weak perturbation flows to strong coupling.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the ndRG. First, we outline the general
idea and present the resulting ndRG equations in Sec. II A
that can be applied directly to any model system of interest.
The derivation of the ndRG is shown in detail in Sec. I B. In
Sec. II1, we then apply the ndRG to the disordered transverse-
field Ising chain.
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II. NDRG: NONEQUILIBRIUM DYNAMICAL
RENORMALIZATION GROUP

The ndRG, formulated in the following, is an iterative
coarse-graining procedure. It is designed to provide analytical
access to the full time-evolution operator of complicated
many-body problems without the need of diagonalizing the
complete Hamiltonian. As its main goal, it isolates resonant
from off-resonant processes as dictated by the energy—time
uncertainty relation [see Eq. (1)]. The off-resonant processes
are eliminated based on scale separation analogous to RG
procedures in equilibrium. The resonant processes, however,
that are nonperturbative in nature, cannot be eliminated in this
way and, if relevant, can drive the system to strong coupling.
Based on a general decoupling mechanism for time-evolution
operators we show that the dynamics of the resonant processes,
although nonperturbative, can still be accessible analytically
on all time scales. This is possible even though the system
might flow to strong coupling as we will demonstrate for the
disordered transverse-field Ising chain in Sec. III.

A. ndRG recipe

Consider a system whose Hamiltonian
Hy = HY + Va ()

at a given ultraviolet (UV) cutoff A can be decomposed into
an exactly solvable part H{ and a weak perturbation V,, with
an associated time-evolution operator

Pa(t) = exp[—i Hpt]. 3)

Notice that A could either be chosen as a momentum or energy
cutoff. Given that the UV cutoff takes a value A + AA we
now aim at reducing it to A by eliminating contributions
Viean Of Varan = Viiaa + Varaa involving particles
with momenta ¢g in the shell |g| € [A,A + AA] and thereby
generating a renormalized effective theory for the remaining
modes. Operators with a subscript A, e.g., HX, denote the
renormalized ones after the RG step from A + AA to A has
been made while those with a subscript A + AA refer to the
initial operators before the RG step is performed.

Importantly, we do not aim at integrating out all contri-
butions of modes in this shell, but only those which are
off resonant according to Eq. (1). The resonant processes
remaining in the Hamiltonian are finally dealt with on the basis
of a general factorization property of time-evolution operators.
This is the main feature of the ndRG and distinguishes it from
other RG schemes. The ndRG eliminates the off-resonant
contributions from the time-evolution operator Ppaa(f) =
exp[—i Ha4ant] by constructing explicitly a unitary transfor-
mation yielding

Prian(t) = e 58 Py(t)e )

with P, (t) = exp[—i Hat] containing the dynamics of the
remaining degrees of freedom. For a given Hamiltonian, the
ndRG scheme works according to the following prescription
which is straightforward to implement for a given model
system:
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(1) Identify the off-resonant processes V7, . , and decom-
pose

Vatan = Viian T Vaiaa- &)

(2) Determine the generator S, of the unitary transforma-
tion via

t
Sx — Sa(t) = —i/ dt'V an ). (6)
0
Here, V7, an(t) =Py (V7 anPYt)  with  PY(t) =
exp[—i HXI] the free time-evolution operator.
(3) Obtain the renormalized Hamiltonian
Hy = HXJrAA + VA<+AA + %[SA’VA>+AA]' (N

(4) Iterating the above steps by successively lowering the
cutoff A one obtains at the end of the ndRG transformation the
following representation of the full time-evolution operator:

P(t)=Ule "™y, H,=H’+VEK, (8)

with H? denoting the renormalized exactly solvable part
and VR the remaining resonant contributions. The unitary
transformation U, is a A-ordered exponential

U, = Tyeln S, 9)

with A° the initial and A, the final UV cutoff. 7, denotes A
ordering analogous to common time ordering. The dynamics
of this apparently complicated problem can be solved on the
basis of a factorization property of the time-evolution operator
for resonant processes:

—iH.t o, ,—iHt

e e H =iV (10)

These equations are valid up to second order in the
perturbation strength, and the extension to higher orders
is straightforward. In what follows, we will present the
derivation of the ndRG procedure. For readers interested in
the application of the ndRG for a concrete model system, it is
possible to directly consult Sec. III where the ndRG is applied
to the disordered transverse-field Ising model.

B. Derivation of the ndRG

As anticipated before, consider a Hamiltonian Hpap =
HR +an T Varaa that can be separated into an exactly
solvable part Hy ,, and a weak perturbation Vaiaa at a
UV cutoff A + AA. In order to derive the ndRG procedure,
let us first turn to an interaction picture with respect to the
free Hamiltonian HY at the desired final cutoff A after the RG
step has been performed. Of course, Hx is not known a priori
but has to be determined self-consistently in the end which is
straightforward to implement. In the interaction picture, the
time-evolution operator is

Prpan(t) = e I W), (11)

where

Wa(1) = T exp [—i / dt/[HA+AA(f/)—HX(l‘,)]:|7 (12)
0
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with Hayan(t) = expli HYt1Hpyap exp[—i HOt] and T de-
notes the usual time-ordering prescription. In the follow-
ing, time-dependent operators O(f) will always refer to
being time evolved in the interaction picture, i.e., O(t) =
expli HYt10 exp[—i HYt].

1. Disentangling theorem

The interaction picture representation of the time-evolution
operator Py (?)in Eq. (11) is still exact, for the complicated
models of interest, however, the time-ordered exponential
in Wx(¢) cannot be evaluated easily. The goal of the RG
procedure is not to find an approximate solution to Wy (f)
as a whole. Instead, we aim at an iterative sequence of
transformations by successively integrating out high-energy
degrees of freedom. For that purpose, we use a disentangling
theorem for time-ordered exponentials [18]:

Wa(t) = W (OWZ (1), (13)
where
W3 (@) =T exp |:—i / dt'ICA(t) |,
. (14)
Wi(t) =T exp |:—i/ dt’ VA(t/)i|,
0
and
Va(t) = (WL OI' [Hapan(®) — HY (1) — Ka()] WZ ().
(15)

While the operator W (¢) will be chosen such to eliminate
the desired processes, the operator V,(t) will determine
the renormalized Hamiltonian after the RG step.
The precise choice of the operator K, for the purpose
of the ndRG will be given in the following.

The aim of the ndRG is to find a representation of W ()
of the following form:

WZ(t) = e 52 0WeS (16)

for some suitable anti-Hermitian operator S, such thatexp[S, ]
is unitary. Before going into the details of how to derive this
identity, we first would like to illustrate its main consequences.
Using this identity, we obtain

t
Wi(@t)=Texp |:—i/ dt’ e 5258 V(1) e_SA(’,>eSAi|,
0

a7

which gives, because S, is independent of time,
t
Wi(t) = e ST exp [—i/ dt’ VA(t’):|eSA, (18)
0

by defining
Va = e [Hypan — Hy — Kple 5. (19)

Bearing in mind that, using Eqgs. (11) and (13), the time-
evolution operator Pxyaa() has been factorized according
to

Paran(®) = e IWZ WL 0), (20)
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one obtains
t
Pryan(t) = e A1 eS80 Texp [‘i f ar VA(r’ﬂeSﬁ
0

(21
which then yields

t
Pasan(®) = e Sre A T exp [—i f dt’VA(z/)]eSA. (22)
0

Now, one can switch back from the interaction to the original
picture such that

Paran(t) = e SaemilHRHVAl S (23)

which is the desired identity provided S, is chosen such
that HY) + V5 becomes the renormalized Hamiltonian after
eliminating the contribution V7, ., [see Eq. (7)]. In the
following, we now show how this can be achieved.

2. Magnus expansion

The crucial point is that W7 (¢) in Eq. (14) can be
evaluated approximately within a controlled expansion. The
main complications in computing W (¢) arise from the time-
ordering prescription that makes it difficult, and for interesting
problems impossible, to evaluate exactly. Most importantly,
the operator K, turns out to be proportional to the strength
of the weak perturbation such that a Magnus expansion is
applicable:

W3 (@) = exp |:—i / dt'ICA(t)
0

—l/ dt'/ dt”[’CA(t,)JCA(t”)]+-~~:|a (24)
2 Jo 0

which transforms the time-ordered exponential into a con-
ventional exponential on the expense of an infinite series.
Importantly, this expansion is controlled by a small parameter
which is the perturbation strength. Here, the Magnus expansion
is shown up to second order which is sufficient for the targeted
accuracy. In case of a larger desired precision, higher orders
of the Magnus expansion have to be included.

3. Generator of the ndRG transformation

In order to transform W (¢) into the desired form we choose

Ka= VA>+AA - %[SA’VA>+AA] (25)
with S, given by the simple integral

t
Sp — Sa(t) = —i / dt’ VI a0 (26)
0

Inserting this into the Magnus expansion [see Eq. (24)], one
obtains taking into account all contributions up to second order
in the perturbation strength

W(t) = eSA*SA(t)Jr%[SA,SA(T)]’ 27)

which, using the Baker-Campell-Hausdorff formula, is equiv-
alent to the desired expression

W3 (t) = e 58WeSn (28)
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again taking into account all contributions up to second order
in the perturbation strength.

4. Renormalized Hamiltonian

Having established the generator S, of the ndRG, it remains
now to determine the renormalized Hamiltonian after the RG
step. For that purpose, we use that the generator S, of the
transformation is proportional to the perturbation strength such
that the following expansion for Eq. (19) is applicable:

Va = Hpyqpan — HR —Ka
+ [SAsHA+AA - HY) — ’CA] +oee (29)

Using the choice for K, in Eq. (25) this gives

Va = HR+AA - H/Q + VA<+AA + %[SA7VA>+AA]

+ [SA7VA<+AA]» (30)

taking into account all terms up to second-order accuracy.
According to Eq. (23), the renormalized Hamiltonian is then
given by

Hy ZHR +Va= H2+AA + VA<+AA
+ HSA Viianl + 82, V5ianl- (31

Importantly, however, the last contribution [Sy, V5 raalcan be
neglected. This operator contains again contributions of modes
in the shell [A,A + AA] as it was for V7, ,, the strength of
[Sa, V5 anls however, is now of second order. Eliminating
this contribution in the same way as V7, 5, will then only
contribute beyond second order in the perturbation strength
in the renormalized Hamiltonian and is therefore beyond
the desired accuracy. Concluding, the final renormalized
Hamiltonian taking into account all contributions up to second
order in the perturbation strength reads as

Ha = HY op + Viiian + 280, Viianls (32)

which is the desired result presented already in Eq. (7).

C. Factorization of the time-evolution operator

At the end of the ndRG procedure, one ends up with a
Hamiltonian

H, = H® + VR (33)

By construction we have not eliminated all processes of the
perturbation V, but kept the resonant contributions VR that still
have to be accounted for. This seemingly complicated problem,
however, can be simplified substantially because the processes
in VR are resonant as the renormalized time-evolution operator
approximately factorizes:

. 10 _UR
e iHt/h e lH*t/ﬁe iV, t/h‘ (34)

This property can be seen in the following way. In the interac-
tion picture, the renormalized time-evolution operator obeys
expl[—i Hyt /h]=exp|—i Ht /R]T exp|—i fot dr'VR(t"/h]. As
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VR only contains resonant processes with Ag < h/(2t) we
have that VR(t) = expli H2t/R]VR exp[—i Ht/h] ~ VR is
approximately constant in time leading directly to the fac-
torization in Eq. (34).

In typical problems, the complexity of H originates from
the noncommutativity of H° and V while their individual
properties are much easier to determine. The major advantage
of Eq. (34) is the separation of the resonant processes of
the perturbation from the dynamics of the (renormalized)
unperturbed system whose individual time evolution can be
determined much easier as will be demonstrated for the Ising
model with disorder in the following.

D. Discussion

Summarizing, in this section we have introduced the ndRG.
In Sec. ITA, we have presented the ndRG recipe that can
be straightforwardly implemented for any model system of
interest. In Sec. 1B, a detailed derivation of the resulting
ndRG equations has been given.

Up to now we have not specified when to stop the ndRG
transformation. Of course, the ndRG always stops when there
are no remaining off-resonant modes as it will occur for the
random transverse-field Ising chain (see Sec. III). Importantly,
we can take advantage of the additional scale time appearing
in the ndRG. Specifically, consider a mode of energy &. As
the time-evolution operator only contains the product ez/h
we have that for times ¢ < ¢/h this mode is essentially inert.
In other words, all modes with energies ¢ < i/t are frozen
out and can be dealt with on a purely perturbative basis using
time-dependent perturbation theory. Therefore, we can stop the
ndRG transformation when the energy e, of the modes at the
UV cutoff A reaches e, = h/t and we obtain a time-dependent
final UV cutoff A, = A,(2).

This observation has important consequences. In particular,
consider a system with a strong-coupling divergence where
we leave the region of validity of the ndRG when reducing the
UV cutoff too much. Utilizing that for not too large times ¢
the ndRG transformation can be stopped at a UV cutoff A, (f)
which is large enough such that the strong-coupling divergence
is not yet effective it is still possible to describe the dynamics
of the system. In other words, the dynamics on not too long
times is still accessible on the basis of the ndRG although
the system might flow to strong coupling in the asymptotic
long-time limit.

We would like to emphasize that the ndRG can be
generalized also to other temporal dependencies of the
Hamiltonian beyond the quantum quench considered here.
This is possible because time itself constitutes an essential
element of this RG by construction as it is utilized explicitly
for the resonance condition, for example. In this context, it
might be particularly interesting to study crossovers to the
adiabatic limit by considering ramps instead of quenches
where universality such as Kibble-Zurek scaling [1,19,20] can
be observed. Moreover, the ndRG also inherits the potential
to extend RG ideas to periodically driven systems. This
is of particular interest in view of the recently discovered
energy-localization transitions [21] which represent a novel
class of nonequilibrium phase transitions in complex quantum
many-body systems.
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III. QUANTUM QUENCHES IN THE DISORDERED
TRANSVERSE-FIELD ISING CHAIN

In the previous section we have introduced the ndRG. It
is the aim of the following analysis to apply the ndRG to a
paradigmatic model system, the one-dimensional transverse-
field Ising chain [22]. The transverse-field Ising chain can be
solved exactly also in the presence of disorder. Therefore, it
is ideally suited to demonstrate the capabilities of the ndRG
by comparing to exact numerical simulations. In particular,
we aim at demonstrating that the ndRG is capable to describe
both the dynamics on intermediate time scales as well as in
the long-time limit which is a challenging task.

In noninteracting one-dimensional quantum systems, the
effect of arbitrarily weak randomness is substantial: all single-
particle eigenstates become localized [23]. As a consequence,
particles separated over distances larger than the localization
length cannot exchange information and are therefore essen-
tially unentangled. The localization dynamics for unentangled
initial states in one-dimensional systems shows universal
behavior [24,25] that can be attributed to a dynamical
renormalization-group fixed point [7,8] where localization
not only happens in real but also in many-body Hilbert
space [14,15]. But, how is information propagating within
a disordered landscape when the system is highly entangled
initially? In the remainder of this paper, we aim at studying
this question exemplarily for the disordered transverse-field
Ising chain.

A. Model and setup

To study the localization dynamics out of quantum corre-
lated states we consider a one-dimensional Ising model with
transverse-field disorder:

N
H=->%"[of0f, + ho/]. (35)

=1

|~

In equilibrium, the homogeneous system with #; = h shows a
quantum phase transition at 7 = 1 separating a ferromagnetic
(h < 1) from a paramagnetic (h > 1) phase [22]. According to
the Harris criterion [26], the quantum critical point is unstable
against weak disorder, and it has been shown that the system
flows to an infinite-randomness fixed point instead [12].

In this paper, we develop a dynamical theory for this flow
from weak to infinite randomness in nonequilibrium real-time
evolution where progressing time itself drives this crossover.
The quantum correlated state is initialized by preparing the
system in the ground state |iy) of the clean critical model
at hy = h = 1. The localization dynamics is generated by
switching on weak disorder suddenly inducing nonequilibrium
real-time evolution that is formally solved by

[Vo(1)) = P(t) IYo), P(t)=e"H1/M, (36)

The distribution for the random fields #/; is chosen such that
(In(hy))gis = 0 with (...)qs the disorder average. Thus, the
ground state of the system is located right at the infinite-
randomness critical point [12,27].

Contrary to typical condensed-matter systems where dis-
order is ubiquitous, systems of cold atoms in optical lattices
are clean, and disorder has to be imposed, for example, by
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laser speckle patterns [28] providing an ideal candidate for the
implementation of the anticipated nonequilibrium protocol.
Moreover, the model in Eq. (35) can also be simulated within
circuit QED [29] where disorder is also tunable [30].

Numerically, this model can be solved exactly for large
systems [31]. In this work, we will present exact results
for systems up to N = 3200 lattice sites. Due to the broken
translational invariance in presence of disorder, however, this
model is challenging for analytical methods. In equilibrium,
this system has been solved exactly in the vicinity of its
critical point both in the weak-disorder limit [32] and in
the vicinity of the infinite-randomness critical point [12].
Out of equilibrium, the dynamics in the vicinity of the
infinite-randomness critical point for weakly entangled initial
states has been studied analytically recently [8]. In this work,
we will address a complementary viewpoint: the localization
dynamics for strongly entangled initial states at weak disorder.
In particular, applying the ndRG to this model system will
serve as a benchmark for gauging the capabilities of the
methodology introduced in this work.

The transverse-field Ising model in Eq. (35) can be
diagonalized exactly by a mapping to a free-fermionic theory
using a Jordan-Wigner transformation [31]

H=17Y hcfe,— 1Y lcjer +efef,, +Hel  (37)
1 !

with ¢; fermionic annihilation operators at site / =1, ...,L.
For the numerical implementation we parametrize
hy=e", (38)

with n; € [—8,8] drawn from uncorrelated uniform distri-
butions, i.e., (7 )ais = 8782 /3, yielding (In(f;))qis = 0. As
emphasized before, this ensures that the system is located
right at the infinite-randomness critical point [12,27]. In the
analytical treatment we use the parametrization

& = h; — (hy)dgis- (39)

The strength of the disorder we characterize via the variance
o’ = (g12>dis which in the weak-disorder limit becomes o> —
82 /3. It is important to note that this parametrization, which is
a consequence of the condition (In(%;))q;s = 0, yields

g = (h1)dis,

82

=14+ —,

8 %

Therefore, a larger homogeneous critical transverse field

gc = 1+ 0%/2 is required to destroy the ferromagnetic order

as opposed to the case without disorder where g. = 1. This

is a consequence of the fluctuating local fields which can

locally decrease the homogeneous field when g; < 0 favoring
magnetic order.

g € [—4.48]. (40)

B. Summary of results

Based on the ndRG and corroborated by extensive numer-
ical simulations, we study the dynamics in the disordered
transverse-field Ising chain induced by a quantum quench
from the homogeneous to the infinite-randomness critical
point. We investigate the resulting localization dynamics from
two perspectives, namely, through localization in Fock as
well as real space. Here, we summarize our main findings,
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whose derivation and more detailed analysis can be found in
Sec. [IID.

Unlike in classical systems, a general understanding of
ergodicity for quantum many-body systems has not yet been
achieved [1]. Recently, however, a framework addressing this
fundamental problem has been proposed, many-body localiza-
tion [14—17], where the transition from ergodic to nonergodic
is associated with an Anderson localization transition in Fock
space [14]. In this work, we quantify the localization in Fock
space by studying the temporal deviation of the system from
its initial Fock state |1/) via the Loschmidt echo

L) = [{Yrole™ H 1) *. (41)

Due to its large-deviation scaling L(t) = exp[—NAi(?)]
[33-35] with A(¢) an intensive function we will consider A(¢) in
the following. We find that on intermediate time scales the rate
function A(¢) shows a very slow temporal logarithmic growth:

2
(1) = (MD)gis = % In2Jt/h), (42)

forh/(Jo) < t < h/(Jo?)with (... )qs denoting the average
over disorder realizations. An increasing A(f) implies an
increasing deviation of the time-evolved state from the initial
Fock state. The slow logarithmic growth of the Loschmidt
rate function we interpret as an indicator of Fock-space
localization: the system only very slowly departs from its initial
condition.

In the asymptotic long-time limit, the rate function ap-
proaches a constant value

o = lim ) = St (22 43
0o = Hm (1‘)—;11 25 ) (43)
We find that A, is related to the fidelity F = [{¥|¢o)| =
exp[—Nf] with |¢g) the ground state of the final Hamiltonian:

oo = 4(f)dis» (44)

by calculating F numerically exactly for large systems.
Therefore, the asymptotic long-time behavior of the Loschmidt
echo, containing, in principle, information about the full many-
body spectrum, is only determined by equilibrium ground-state
properties which we attribute to localization in Fock space.

Importantly, Fock-space localization and localization in real
space are typically connected [14,15]. While in homogeneous
systems local correlations decay in time this is not the case in
localized systems [36]. Signatures for retaining local memory
are contained in the long-time behavior of the autocorrelation
function [36,37]

1 N
x(t)=<NZ(6f(t)6f)c> : 45)
dis

=1

Here, (0" (t)0;"). = (0" (t)0}") — (0j°(t)){(0}") denotes the cu-
mulant and (...) = (Yy] ... |¥o) the average with respect to
the initial state.

Using the ndRG, we show in the following that the decay
of the local memory on intermediate time scales is algebraic:

X = Semn] 2 (46)
2 (wJt/R)3?  2m

e—in/4
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for h/(Jo) <t < h/(Jo?). Remarkably, the presence of
disorder induces a static time-independent contribution (up
to a phase factor) signaling a nondecaying local memory with
a weight o2 given by the strength of the random potential.
Therefore, the system shows localization complementing the
observed Fock-space localization in terms of the Loschmidt
echo above for real space. We confirm the preservation of local
memory using numerically exact simulations of the dynamics
for the asymptotic long-time limit where we find that that
Xoo = limy_, oo (X (1)) ais 7 O.

C. ndRG for the disorder transverse-field Ising chain

Having summarized the main results obtained in this work,
itis now the aim to show in detail their derivation on the basis of
the ndRG. First, we outline the exact analytical diagonalization
of the homogeneous system and then we represent the weak-
disorder perturbation in this basis. In Sec. III C 1, we construct
the generator S, of the ndRG and summarize the resulting
ndRG scaling equations for the spectrum and the disorder
strength. In Secs. III C 2 and III C 3, we show how these
scaling equations are determined within the ndRG. A detailed
treatment of the resonant process will be given in Sec. III C
4. The derivations of the results for the observables, already
summarized above, will be presented in Sec. III D.

According to the ndRG recipe given in Sec. IT A, we first
decompose the Ising Hamiltonian in Eq. (51) into an exactly
solvable part H° and a perturbation V which in the weak-
disorder limit is

V=> gcle. H' =H-V. (47)
1

The homogeneous part H® can be diagonalized explicitly
using Fourier transformation and a subsequent Bogoliubov
rotation [22]

_ L
~ VN

with tan(26;) = sin(k)/[g — cos(k)]. Then, the Hamiltonian
H° becomes

HO = epive. &= J(g—cosk) +sin*k. (49)
k

Ck Z eMe; = cos(B )y — i sin(@k)yik, (48)
I

In the present case where g = 1 4+ 02/2 [see Eq. (40)], the
Bogoliubov angles 6; can be determined asymptotically which
yields

@ —=Kk/4 for k> o2,
O = {k/(Zoz) for 0 < k « o2 (50)
with 6_; = —6,. In this basis, the disorder contribution V to

the Hamiltonian reads as
V= owrin + Y lmwyy, +Hel (D
Kk’ k'
where

Wi = Jgkfk’ COS[ek + Gk’]a
. . (52)
My = _ngk+k’ Sln[ek — ek’]/za

with gg = N71' Y, e Mg,

104401-6



NONEQUILIBRIUM DYNAMICAL RENORMALIZATION ...

1. ndRG generator and scaling equations

Applying the ndRG scheme to the Ising model in Eq. (51),
the disorder amplitude o takes the role of the perturbation
strength. At a given UV cutoff A, one obtains for the generator
S of the unitary transformation [see Eq. (6)]

Wi, 1 2m
Sy =) A€ el H.c.|,
A qu: [Ek—qukyq+E +EW4

(33)

with the restricted sum defined as
LD DI RN
kq

lglelA, A+AA] k<A Ex—E,|>Q

Here, we use the notation that capital energies E, and Ej
denote the final renormalized ones after the RG step has been
performed. Additionally, we have introduced the scale €2 that
is supposed to distinguish between resonant |Ey — E,| < 2
and off-resonant processes |Ex — E;| > Q, ie., Q ~ h/t,
according to the energy—time uncertainty relation in Eq. (1).
When physical quantities have been calculated, we replace €2
by Q = CHh/t in the end with C a nonuniversal constant. By
keeping 2 instead of Ch/t we are able to identify whether
some properties depend on the nonuniversal details of the RG
cutoff and have therefore to be interpreted with care.

Using Eq. (7) from the ndRG recipe, we obtain at the critical
point the following RG equations for the disorder strength o
and the low-energy spectrum &:

do? _ o

dN ~  TA?

dﬂ B 2%2!?\2 for |k| > o2, 55)
- 2

dA sy for [kl < o2,

which we derive in detail in Secs. III C 2 and III C 3.
Before, however, we aim at discussing shortly their main
consequences.

Let us first discuss the renormalization of the spectrum
&x for not too small UV cutoffs A > 2. To recapitulate, for
|k| > o2, the initial spectrum is approximately linear with &, A
Jk whereas for |k| < o> we have that &; ~ 0%/2 is constant
[see Egs. (49) and (40)]. According to Eq. (55), the linear
spectrum &; = vl|k| of the modes |k| > o? is modified due to
the RG only such that its velocity v(A) = J exp[—Za2 /(T A)]
obtains weak perturbative corrections for A > o>. Here, we
have neglected the flow of the disorder strength o2. As we
will analyze in the following, in this regime of the UV
cutoff, the disorder strength only acquires weak perturbative
corrections which will only contribute beyond second order in
the scaling equation for the spectrum. Similarly, for |k| < o2,
the scaling equation (55) can also be solved analytically.
This yields e (A) = JA — 20’2/7'[ — Z(O'Z/JT)LW{eXp[(A —
e/ /o)), with LW(x) the Lambert-W function and
er(A) is consequently a monotonously decreasing function
of A. Therefore, the initial ndRG flow for the spectrum only
leads to perturbative corrections at A >3 o> which we will
neglect in the following analysis.

When A — 02/2 where e, — g forall |[k| < A, however,
we have to stop the ndRG transformation because the remain-
ing modes k are now all resonant. Thus, according to the
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ndRG recipe given in Sec. IT A, there are now no off-resonant
processes that can be integrated out perturbatively and the UV
cutoff A, where the ndRG comes to an end is given by

o2

Ay = 5 (56)

Importantly, however, the dynamics of the system is still
accessible when stopping the ndRG transformation at this
cutoff A,. The reason for that is discussed in Sec. III C 4.

Notice that although the RG equation for the spectrum
does not contain any randomness, this does not mean that
the randomness is fully gone. In fact, it is hidden in the unitary
transformation connecting the extended states of the clean with
the localized wave functions of the disordered system.

As opposed to the spectrum, the disorder strength increases
during the ndRG. According to Eq. (55), we find that

o (A) = ——, (57)

displaying a strong-coupling divergence for A — o2/m. Be-
fore approaching this strong-coupling divergence the ndRG,
however, stops [see Eq. (56)]. Most importantly, this leaves
us within the regime of validity of the current weak-disorder
treatment.

In the following, we now aim at showing the derivation of
the scaling equations in Eq. (55).

2. Spectrum

We start by determining the renormalized spectrum. Based
on Eq. (7) of the ndRG recipe, S, in Eq. (53) generates the
following RG equation for the energies:

4lmy| |wig|*
E, —¢ AQ ql” q 7
k= "+Z [Ek—l-E E, — E

4|”lk |wk |2
A,Q q q

=& E + .
Eq et |:Ek + E, E, — E;

As |Ey — &| ~ AA (but not |E, — &), one can replace Ej
by &, on the right-hand side of the above equations. In the
following, we show how to evaluate the sums appearing in the
scaling equations in Eq. (58). For illustration we take

4 2
il (59)
q

(58)

Eq + &

which is a sum of |g| € [A,A + AA] over the random
variables ny,. As is the case in Wilson RG schemes, the width
of the momentum shell AA is small but still large enough
to host an extensive number of states. Then, in the equation
above, we sum over a large number of random variables. Thus,
to leading order we can replace the sum over the random
variables by the sum over its mean:

4 2 4 2 is
E 1amig |7 = E Hlmig |7 ais + corr. (60)
E, + & E, + &
q p q

The corrections involve random variables with an associated
probability distribution function that shows that their typical
magnitude scales as ~o2/+/N. The mean is zero as their sign
fluctuates. The variance, however, is finite and scales ~o* /N.
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Comparing this to the variance of the amplitudes wy; and
my that are of the order o2 /N, it is clear that the corrections
above will only contribute to third order and can therefore be
neglected within the current accuracy of second order. Using
Eq. (52) we have that (4|my,|*)as = o sin®(6x — 6,)/N
yielding for the sum

|4mkq|2 202 . 1
= — 6 — 6, . 61
E E, e~ N E sin” (6 q)Eq+8k (61)
q q

As |gl=A up to AA corrections and all remaining
contributions are now smooth functions of ¢, we can then
evaluate this expression exactly:

Z |4mkq|2 _ 2021 — cos(29k)cos(29A)A
E; + & T on Ex + &

A. (62)
q

Here, we have used 6_, = —0,, and sin%(6; —6,) +
sin?(6; + 65) = 1 — cos(26;) cos(20,). Inserting this result
into Eq. (58) and using an analogous analysis for the sums
over |wy,|* then yields the scaling equation for the following
scaling equation for the slow modes k:

der 0”14 cos(26;) cos(26,)

dN 7w Ep — &
B i 1 — cos(29k)cos(20/\)' 63)
T Ep+ &

Using the result for the Bogoliubov angles in Eq. (50), we see
that we have to distinguish two different cases. For k > o
where 0, = /4 — k/4 for k > 0 and 6_; = 6;, we have that,
for the low-energy modes &, < E4,

dSk 20’2 Ek b

— = ——, |k . 64

ia = 7 Mo (64)
When k < o2, on the other hand, 6, = k / 26?) according to
Eq. (50) such that

dey 202 1 2
——, |kl <o”. (65)

dN~ mw Ej—g
When neglecting the weak renormalization of the high-energy
modes in the linear regime, i.e., E5 ~ JA, then this gives
Eq. (55). Additionally, we have to determine the renormaliza-
tion of the eliminated fast modes whose energies E, have to
be chosen according to the self-consistency equation

o? ZA’Q[] — cos(26;) cos(26,)

E,=¢,+—
! ! Nk>0 Eq+ &

N 1 + cos(26;) cos(29q)i|

66
[ (66)

In the following, we will neglect the influence of this
renormalization of the eliminated modes E,. First of all, the
shift of E, compared to g, is perturbative in the disorder
strength o. But, most importantly, the eliminated modes are
now completely decoupled from the remaining ones and
therefore they do not influence the further RG transformation.
Being only interested in the leading behavior as a function
of o, we can therefore neglect this final renormalization and
replace E, by ¢, in the following.
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3. Disorder strength

Now, we derive the scaling equation [see Eq. (55)] for the
disorder strength. For that purpose, it is suitable to analyze the
superpositions

S = we —2myp_pr, g = Wi + 2mp_p, (67)

rather than the amplitudes wyy and my, themselves. The
reason for that is twofold. First, initially, before we start
the flow, these two functions can be easily connected to the
disorder strength via

_ i0+i6y _ —iO—iy
Sk = gk, g = gr—pe T (68)

These new random variables have zero mean, but a nonzero
variance that is solely given by the initial disorder strength
2

o
(i Pais = Ul 1PV ais = (Igk—r1*Dais = N ©)

Using the generator S, it is straightforward to determine their
change under one RG step for low energies when g;, & < Ep:

1 *
S = S — N ; Jreahiqs

| (70)
hiw = hie — N @hkqf,jq.
As a consequence, the variances transform as
(U fio 1 Pais = (| fow 1PV ais + E_12 Z(lfkq|2>dis<hk’q|2>d15a
o (1

1
(I 1Yais = (a1 Pais + E—sz Z(|hkq|2>dis<fk’q|2>dis~
q

As both the variances of fi; and A do not have a momentum
dependence initially they cannot acquire one during these
scaling equations. Thus, one can introduce the functions
F = N{|f|*)ais and H = N (|h|?)gs that obey the same scaling
equations accordingly:
dF dH FH
T T
Asboth H and F have the same initial condition [see Eq. (69)],
we have that H = F for all A and it follows that
dF F?
AN~ mEZ

(72)

(73)

As F characterizes the width of the distribution of the matrix
elements my and wyy, we identify F = H = o2 which gives
Eq. (55).

4. Resonant processes

In the last sections, we have constructed the ndRG transfor-
mation and we have discussed the resulting scaling equations
for the spectrum and the disorder strength. In order to obtain the
dynamics, however, we additionally have to study the influence
of the remaining resonant processes. To recapitulate the ndRG
recipe in Sec. II A, at the end of the ndRG transformation, the
time-evolution operator P(¢) can be represented in the form

P(t) = Ule e~V (74)
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In the following, we will give a detailed analysis of the resonant
processes contained in V*R. First, we outline that Vf can be
diagonalized approximately and therefore its time evolution
can be determined analytically which is remarkable because
resonant processes typically hamper analytical treatments due
to their nonperturbative nature. Second and most importantly, it
will be shown that this leads to a dynamical classification of the
relevance of a perturbation. In particular, it will be shown that
for times ¢ < o2/(hJ), the resonant processes are irrelevant,
whereas for times ¢ > o2 /(hJ) they become relevant.

For that purpose, let us analyze the spectrum of the resonant
processes VR. As VR only contains resonant contributions, we
have that

VE=>"Zwcler. T = siw O — lex — ewl).  (75)
kk’

with ®(x) the Heaviside step function. The diagonalization
of the full V® is difficult. Concentrating onto the low-energy
degrees of freedom that are supposed to contribute dominantly
at large times, analytical insight can be obtained. At low
energies, we have that &, ~ Jk for |k| > o? [see Eqgs. 49
and (40)]. For |k| < o2, on the other hand, the spectrum
ex = 02/2 becomes constant and all modes with |k| < 0% are
resonant such they are all contained in V.X. For the moment, let
us consider for g, only those modes with J|k — k'| < € for
all k and k and neglect the remaining resonant contributions
for |k| < o%. The influence of the latter ones will be analyzed
in the following. Using these approximations, we have that
S ~ 8- O — J|k — k’|). Then, V*R can be diagonalized
analytically via Fourier transformation yielding

VE=Y"a(@cla, (76)
!

with transverse fields g;(€2) depending on the width €2 of the
resonant processes. The probability distribution P(g,<2) of the
random diagonal elements g = g;(2) is Gaussian due to
the central limit theorem

T - o
P(g.Q) = /azme 8 /(oI (77)

This distribution P(g,S2) becomes increasingly narrow on
large times because 2 ~ h/t and therefore the typical
magnitude gy, ~ vVo2JQ ~ /ho2J/t of the effective local
transverse fields decreases for increasing time. It is important
to emphasize, however, that this does not imply that these
contributions are irrelevant. In particular, it is not the bare
fields g;(£2) that determine the time evolution of the resonant
contributions, but rather the product g;(2)t. Consequently,
considering this product we find that for times ¢ > h/Jo?
the resonant processes become relevant because gypt/h ~

Va2Jt/hbecomes of order O(1) whent = h/Jo>.

As emphasized before, VR in Eq. (76) does not contain
all the resonant processes. In particular, those modes with
|k| < o? have only been partially considered. However, it is the
aim of the following discussion to show that these remaining
contributions V,, only yield a perturbative correction to VR
which is beyond the current accuracy of second order in o. In
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terms of the fermionic operator ¢, [see Eq. (48)], we have that

Vao= ) 8w clen. (78)
[kl [k" <A

Because both of the sums over k and £’ run over a range
proportional to A, we get that V,, contributes to O(A2). As
we have that A, = 02/2 [see Eq. (56)], this gives corrections
of the order O(c*) to the Hamiltonian in Eq. (76) which can
be neglected within the current accuracy.

D. Results

The main results have already been summarized in
Sec. III B. In the following, we outline their derivation using
the ndRG and discuss their physical implications in detail.
First, we consider the localization properties in Fock space by
analyzing the dynamics of the Loschmidt echo in Sec. III D
1. Afterwards, we study localization in real space via the local
memory in Sec. [II D 2.

1. Localization in Fock space: Loschmidt echo

In order to evaluate the Loschmidt echo L(¢), defined
in Eq. (41), we use that the ndRG provides the following
representation of the time-evolution operator:

P(t)=Ule "My, H, = H® + VR, (79)

Commuting the exponential exp[—i H.t/h] past the unitary

transformation Ul we find that the Loschmidt echo can be
written as

L) = [l Ul U.lyo) P, (80)

with Ul(t) = expli H*t]Ui exp[—i H,t]. In order to arrive at
this identity, we have used that time evolution with the
Hamiltonian H, leaves the initial state |i) invariant up to
a phase:

e gy 25 e B ), (81)

with E, € R. This acquired phase, however, does not con-
tribute to the Loschmidt echo due to the modulus taken. In the
following, we show the derivation of this property. First of all,
due to the factorization property of the resonant processes [see
Eq. (10)], we have that

i _;iHO _;yR
e lH*t/h:e lH*t/ﬁe iV, t/h’ (82)

such that we can address the time evolution with H and
VR separately. The initial state |v/o) is, by construction of
the ndRG, an eigenstate of H? such that exp[—i H t]| o) =
exp[—i E.t]|Y). But, even more importantly, it is necessary
to estimate the influence of the resonant processes

¢V o), (83)

VE ="y ve + muey vl +Hedl. (84
kk

Here, Z,Z( denotes the sum over all momenta k and k" such that
|Ey — Ep| < Q.Importantly, my o |k — k'|for |k —k'| — 0
[see Eq. (52)], in contrast to wyr such that asymptotically
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VR - Z,?k wkk/y,j yi for t — 0o. As the initial state |yr)
is the vacuum for the y; operators by construction, i.e.,
Yel¥o) = 0, we have that VR|y) — 0 in the long-time limit.
Therefore, exp[—i VRt]|0) = [1). Notice that the property
that VR does not induce time evolution of the vacuum |v)
does not imply that its overall dynamics can be neglected.
In particular, the excitations on top of |y) contained in the
unitary transformation U, are strongly affected by it as will be
shown in the following.

As U, =Ty exp[f dAS,] [see Eq. (9)], and S5 by con-
struction only contains perturbative processes, one can perform
a cumulant expansion [38] up to second order in the disorder
strength o yielding

2

L(t) = , (85)

exp [/ dAdN {[Sp — SA(t)]SA/>]

with (...) = (¥ol...|¥o). For the final evaluation of this
expression it is necessary to determine the dynamics under
the resonant contributions VX for which all the neces-
sary steps have been presented already in Sec. IIIC4. In
terms of the Jordan-Wigner fermions ¢, that are connectpd
to the quasiparticles y; via ¢ = cos(6x)yx — i sin(@k)y_Tk,
we have that VR~ Y, g 1r©®(Q — J|k — K'|)c|cpr. This
can be diagonalized analytically by Fourier transforma-
tion yielding VR =7, gl(Q)c;cl where the g;(Q) are
random variables with an associated probability distribu-
tion P(g) =,/ % exp[—ng/(4UZQ)] [see Eq. (77)]. Thus,
we have that e/V<'cie™ ™V = 3 aqu(t)cr with g (t) =
N=LY, e k=Kl o=iei | For the diagonal element o(?),
one obtains then, for example, after disorder averaging
(ot (1)) ais = e~o QR Using Eq. (53) for S, this gives for
the Loschmidt echo rate function A(#) after disorder averaging

_ o2 7 k
A1) = (MO == — / dk / dq Ty,
Ax 0

8 cos[(ex + &,)t/Bla*(t) — 1

(64 + €1)? , (86)

for times t > h/Jo with Ty, =1 — cos(26;) cos(26,) and
A, the final value of the UV cutoff. The influence of the
resonant contributions is contained in the function a(t) that has
the property a(t) — 1 for h/Jo <t < h/Jo? and a(t) —
0 for t > h/Jo?. Using Eq. (77), the functional form of
a(t) can be estimated as a(t) = exp[—o2J Qt?/h?*] decaying
exponentially as a function of time because 2 ~ /i/t. As the
dynamics during the crossover at a time scale t ~ h/Jo?
depends on the details of the RG cutoff function via 2, we
expect that this crossover cannot be described quantitatively.

Figure 1 shows a comparison of the result in Eq. (86) with
the exact numerics obtained by the extensive simulations for
large systems up to N = 3200 using the methods outlined in
Ref. [39]. As one can see, the analytical result nicely matches
the exact solution except at the crossover time scale t ~ i/ J o>
where the analytical result depends explicitly on the RG
cutoff .

Using the result in Eq. (86), we find that on intermediate
times h/Jo < t < h/Jo? the Loschmidt echo rate function
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FIG. 1. (Color online) Dynamics of the Loschmidt rate function
A(1). (a) Logarithmic growth of A(f) on intermediate time scales.
Comparison of the numerically exact solution (points) to the loga-
rithmic growth (o/7)? In(2J¢C /h), C = const, found by the analytics
(line) on intermediate times for § = 0.05. For the exact numerics data
are shown for N = 3200 averaged over 1500 realizations of field
disorder. The constant C, only a subleading contribution for o — 0,
has been obtained by a fit to the numerical data. (b) Comparison of the
full analytical result of Eq. (86) with the exact numerics on all time
scales. Here, we have used § = 0.2, N = 3200, and 1500 realizations
of disorder. The agreement is very good except during the crossover
at times ¢ &~ /i/ Jo? where the analytical result explicitly depends on
the RG cutoff €.

(1) shows a slow logarithmic growth
o) = (/) In2Jt/h), 87)

as already mentioned before in Sec. IIIB. This analytical
result shows very good agreement with the exact numerics
(see Fig. 1). An increasing Loschmidt echo rate function
characterizes an increasing deviation of the time-evolved state
from its initial Fock state. We attribute the particularly slow
growth of A(7) to the expected nonergodicity and Fock-space
localization at the infinite-randomness fixed point [8].

For even longer times ¢ >> h/Jo?, the resonant processes
become of particular importance. As mentioned already
before, they are responsible for the decay of the function
a(t) — 0 for times ¢ > h/Jo”. From Eq. (86) we find that
as a consequence, the Loschmidt rate function A(f) saturates
to a constant value given by

hoo = At — 00) = (o/7)* In(o?). (88)

Remarkably, this result is nonperturbative in the disorder
strength, displaying a divergent second derivative in the limit of
vanishing disorder. This nonanalytic behavior of A, serves as
an indicator for the instability of the quantum phase transition
in the transverse-field Ising chain against disorder. This is a
consequence of the Harris criterion [26] when applied to the
current model system. Although the switched-on disorder in
our quantum quench scenario might be arbitrarily weak for
o — 0, the low-energy degrees of freedom in the disordered
Ising chain which are probed for asymptotically large times
are not adiabatically connected to those of the homogeneous
model.

Moreover, we find that the asymptotic long-time value A
is, remarkably, connected to a static equilibrium property,
as we will discuss in the following. Specifically, we also
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FIG. 2. (Color online) Relating the asymptotic long-time value
Aoo = A(t — 00) of the Loschmidt echo rate function to the fidelity
rate function f(8) as a function of the disorder strength §. Numerical
data for f (points) for different system sizes up to N = 3200 and
10* disorder realizations compared to the analytical formula (line)
oo = 02 1In(02D)/7? with D a fit parameter and o> = §2/3.

calculated numerically the fidelity F = |{¢o|¥o)| for our
model with |¢p) the ground state of the final disordered
transverse-field Ising chain. We have that F = exp[—Nf], in
the same way as the Loschmidt echo shows large deviation
scaling. Using the methods outlined in Ref. [39], we have
determined numerically exactly for large systems the fidelity
rate function f = —N~!In(F). We find that

hoo = 4f = 4(f)diss (89)

by comparing the numerical results for f to the analytical
result for Ao, in Eq. (88) (see Fig. 2). As one can see, the
agreement is very good. Remarkably, this identity relates
the Loschmidt echo, that, in principle, experiences the full
many-body spectrum, to mere ground-state properties con-
tained in the fidelity which we interpret as an indicator for
Fock-space localization and therefore nonergodicity of the
final Hamiltonian. A similar observation about the connection
between the asymptotic long-time limit of the Loschmidt echo
and the fidelity has been made recently for quantum quenches
in integrable and nonergodic Luttinger liquids [40].

An additional interesting implication of the result in
Eq. (89) is that using Eq. (88), the associated fidelity
susceptibility [41,42]

Xe = Fo?) = %ln(w (90)

do?|,_,
shows a logarithmic divergence. The fidelity susceptibility
characterizes the sensitivity of the ground-state wave function
against an infinitesimal change of a parameter which is o in the
present case. As a consequence, disorder, although arbitrarily
weak, leads to a drastic change of the ground-state wave
function at the quantum critical point of the homogeneous Ising
chain. This is in perfect agreement with the Harris criterion
according to which this quantum critical point is unstable
against disorder as already discussed below Eq. (89).
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Remarkably, the ndRG is capable to obtain this nonanalytic
behavior in the perturbation strength. This is possible because
the resonant processes can be accounted for explicitly, which
distinguishes the ndRG from other RG approaches.

2. Localization in real space: Local memory

After having discussed Fock-space localization properties,
we now turn to a study of the localization dynamics in real
space. As already outlined in Sec. III B, we are interested in
the dynamics of the local memory which can be characterized
via the autocorrelation function

1 N
x(t)=<NZ(0f(t)0f)c> : (2]
dis

=1

where (0} (t)0}" ). = (0] (t)o}*) — (0] (t)){0}") denotes the cu-
mulant and (...) = (Yol ... Vo).

The main results obtained for yx(#) have already been
summarized in Sec. III B. Here, we will show their derivation
and we will discuss the results in detail. In particular, we will
be interested on intermediate time scales h/oJ <t < h/o?J.
Using the Jordan-Wigner transformation and a subsequent
Fourier transformation, the autocorrelator y (¢) can be written
in the following way:

1 ]
X =75 > el (e ey
kk'q

— ({e] 1y OO el Cirrq))ais]. 92)

In order to obtain the dynamics of the fermionic operators cy
we have to determine the action of the unitary transformation
U, onto the quasiparticles y; which are connected to the ¢y
operators via a Bogoliubov rotation [see Eq. (48)]. To lowest
order in o we have that

m
, Wk
UlnU, =y + ZQ[ Ly, +
lgi=ik| & ~ %

2m kq 1

v ] 93)

e +e, 1

As before, the superscript €2 in Z";ﬁ; x| 1s supposed to mean a
sum over ¢ such that |e, — &¢| > €2. Based on this result, we
can decompose the autocorrelator into

x@®) = x°(t) + xa(0), (94)

where x°(r) only contains the zeroth-order contribution of the
transformed yj operators in Eq. (93), i.e., all those without the
Wiy and my, terms. The remaining contributions are collected
in y4(t) accordingly. In the following, we will analyze x°(¢)
and x,(¢) separately.

Let us first concentrate on x°(¢). Using Eq. (48) for the
connection between the ¢, and y; operators, one therefore
directly obtains that x°(¢) is of product form

X0 = xPOxd), (95)
with
T dk .
X1 = / — cos?(Gy)e "o,
T
° (96)
0 g dk =2 —iggt
Xz (1) = — sin” (O )e .
0 g
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Their long-time asymptotics can be obtained straightfor-
wardly. Using the formulas for the Bogoliubov angles in
Eq. (50), this yields

X?(I) H_Of e—2i]t/h+i7r/4
Cn)
0([) t—00 _L
X 2wt

As a consequence, this gives for the full x°(¢) the following
long-time asymptotics:

o tsoo 1 e 2t/hmin/4
x (1) — EW (98)

Having established the dynamics of x°(f), we now aim at
calculating the asymptotics of the remaining contribution
xa4(t). Using Eq. (93), x4(t) can be written after straightforward
algebra in the following form:

o1 ) oy
Xa) =i > sin(@, — 0,05 V(AR ) (99)
kpp’

with vf, = 0 for |p| < |k| and vz = 1 otherwise. The function
Al is defined as

AL =[cos(Bkyp)BY — i sin(6i1,)CT, ]

x [cos(@_,)C! +isin6_,)B"],  (100)
where
Bl = wyyp, e 1 — e e l/h
p.p P—
1 — plleptek/n
cl=2mp_, et (101)

&k—p +&p

Analyzing all of the contributions in Eq. (100) the asymptotic
long-time regime is dominated by a single one:

t>h/Jo

o . ey’
xa(t) =5 zmzsm(ep, — )ity 7

kpp'

X €08(6k+.p) O8Ok p ) (B CF ) - (102)
First of all, we note that the disorder average can
be performed at this point analytically where we use
that (wk+,,,p2mzfp,’p,)dis = —jog?N~! cos(26,) sin(26,,) [see
Eq. (52)]. Then, it is suitable to analyze the functional
dependence of the Bogoliubov angles which allows to isolate
the dominant contributions for the long-time asymptotics. The
leading behavior of the sum over p one obtains by use of
a stationary phase approximation in the vicinity of p ~ 7
while the sum over p’ is dominated by the long-wavelength
limit p’ ~ 0. Expanding all appearing functions around p ~
m and p’~ 0, one obtains after turning the sums into
integrals

xa(t) = 2021 (1) L (1) I5(t) (103)
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FIG. 3. (Color online) Autocorrelation function x () on inter-
mediate time scales 7i/(Jo) <t < h/(Jo?). Comparison of exact
numerics (points) for N = 2400 and 1000 realizations with the
analytic asymptotics [see Eq. (106)] (line) showing very good
agreement. Notice that there is no fit parameter involved.

with
—2iJt/h+im/4
Ii(t) = / d—pe—Zth/h+i(p_”)21t/4h N ﬁ’
2 NCAT
dp e—2ipJt/h _ ;
L(t) = &p ipgyn® 0 — % i "
2(1) / 5 ¢ > - 104)
dk €_ik2']t/4h -1 7 .
() =2 ure - I _ln/4'
3( ) T k2 — 1 = e
Therefore, this yields
o2 )
xa(t) —> ——e 21N (105)
4

which is a nondecaying constant (up to an oscillating phase
factor). Combining the results for x°(¢) in Eq. (98) and for
xa(t) in Eq. (105), we find that the full autocorrelator y (¢)
experiences the following decay on time scales h/Jo K t K
h)Jo?:

—in /4

> (106)
as already presented in Sec. IIIB. A comparison of the
numerical and analytical result is shown in Fig. 3, with the
agreement being remarkably good. Notice that there is no
fit parameter involved. The influence of disorder is solely
contained in the static contribution. The algebraic decay
o t73/% is also present in the homogeneous system without
disorder and originates from the dynamics of effectively freely
propagating quasiparticles. For longer times (see Fig. 4 which
will be discussed in more detail below), these algebraically
decaying oscillations die out, however.

That a nondecaying contribution to x(#) in the long-time
limit is related to localization and absence of ergodicity can be
seen in the following way. In the asymptotic long-time regime,
the final state of an ergodic thermalizing system is describable
by a canonical ensemble whose only dependence on the initial
state is the defining temperature [ 1]. Therefore, any initial local
information is lost which can be formally expressed by the fac-
torization property lim;_, o (0} (t)o;") = lim;_, oo {0}" ()) (0}").
As we are looking at the connected correlation function, this is
equivalent to ., = 0. Concluding, a nonzero ., 7# 0 implies
localization and absence of ergodicity.

L s € o’
H— - — - —
x(t) = e iRy 2m
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FIG. 4. (Color online) Long-time dynamics of the local memory
x(¢) for 6 = 0.8, N = 1000, and 1000 realizations. For times ¢ >
h/(Jo?), x(t) relaxes to a constant x., = lim,_,, x(¢) > 0 implying
localization and nonergodicity in real space.

On time scales up to t — h/(Jo?), the analytical result
in Eq. (46) predicts a nondecaying static contribution and
therefore localization and nonergodicity. What happens on
even longer time scales ¢ > h/(Jo?) is, concerning x ()
instead of A(7), beyond the scope of the present second-order
treatment of the used ndRG. In order to clarify the asymptotic
long-time behavior of y(¢), we have therefore studied this
problem numerically (see Fig. 4). We find that

Xoo > 0, (107)

again confirming the localized nature of the studied system.
The observed localization dynamics in real space reflects the
localized nature of final disordered transverse-field Ising chain
where the parameters are chosen such that the system is located
right at its infinite-randomness critical point. For the data of
the numerical simulations in Fig. 2, we have used a slightly
larger disorder strength § = 0.8 in order to be able to reach
the asymptotic long-time limit. However, this is still within
the regime of weak disorder, as one can see from Fig. 2
where the analytical weak-disorder result of the Loschmidt
echo rate function obtained using the ndRG is compared to
exact numerics. There, the weak-disorder results at a disorder
strength of § = 0.8 still fit well.

Summarizing, in this section we have studied localization
dynamics and ergodicity in real space on the basis of the local
memory y (f). On intermediate times, the local autocorrelation
function develops a static contribution [see Eq. (106)], which
is a precursor to localization in the long-time limit. There,
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we find that y, # 0 implying a nonvanishing local memory.
Thus, the system is nonergodic.

IV. CONCLUSION AND OUTLOOK

In this work, we have formulated the nonequilibrium
dynamical renormalization group (ndRG) for the analytical
description of the nonequilibrium dynamics in quantum many-
body systems. Contrary to conventional RG schemes, the
ndRG accounts for resonant processes which are important
for the description of the long-time dynamics.

We have demonstrated the capabilities of the ndRG by
applying it to quantum quenches in a complex and paradig-
matic model system, the disordered transverse-field Ising
chain. For quantum quenches from the homogeneous to the
infinite-randomness critical point we studied the localization
dynamics in real as well as in many-body Fock space.

In principle, the ndRG can be applied to any weakly per-
turbed exactly solvable system. Because the ndRG is capable
to account for resonant processes, although nonperturbative
in nature, it is especially suited to address the long-time
dynamics of interacting quantum many-body systems. This
encompasses questions of fundamental importance such as
thermalization as well as quantum ergodicity [1] and therefore
also for many-body localization [14—17]. In this context, it
is particularly noteworthy that the ndRG has already been
successfully applied for such systems [43].

Moreover, it is important to emphasize that the ndRG is not
only applicable to systems subject to a sudden switch of their
parameters in terms of a quantum quench but also to other
temporal dependencies of the Hamiltonian. In this context, it
might be of particular interest to apply the ndRG to periodically
driven systems where a novel class of nonequilibrium phase
transitions in interacting quantum many-body systems has
been discovered recently which have been termed energy-
localization transitions [21].

ACKNOWLEDGMENTS

The authors thank A. Polkovnikov and S. Kehrein for
valuable discussions. This work has been supported by the
DFG (SFB 1143 and GRK 1621), by the Austrian Science Fund
FWF (SFB FOQUS F4016), and by the Deutsche Akademie
der Naturforscher Leopoldina under Grant No. LPDS 2013-07.

[1] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[2] S. Kehrein, The Flow Equation Approach to Many-Particle
Systems (Springer, Berlin, 2006).

[3] J. Berges, A. Rothkopf, and J. Schmidt, Phys. Rev. Lett. 101,
041603 (2008).

[4] A. Mitra, Phys. Rev. Lett. 109, 260601 (2012).

[5] L. Mathey and A. Polkovnikov, Phys. Rev. A 81, 033605 (2010).

[6] A. Chiocchetta, M. Tavora, A. Gambassi, and A. Mitra, Phys.
Rev. B 91, 220302(R) (2015).

[7] R. Vosk and E. Altman, Phys. Rev. Lett. 110, 067204 (2013).

[8] R. Vosk and E. Altman, Phys. Rev. Lett. 112, 217204 (2014).

[9] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan,

Phys. Rev. X 4, 011052 (2014).

[10] C. Dasgupta and S. K. Ma, Phys. Rev. B 22, 1305 (1980).

[11] R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344
(1982).

[12] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).

[13] L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Pergamon, Oxford, England, 1991).

[14] B.L. Altshuler, Y. Gefen, A. Kameneyv, and L. S. Levitov, Phys.
Rev. Lett. 78, 2803 (1997).

[15] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. (NY)
321, 1126 (2006).

104401-13


http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevLett.109.260601
http://dx.doi.org/10.1103/PhysRevA.81.033605
http://dx.doi.org/10.1103/PhysRevA.81.033605
http://dx.doi.org/10.1103/PhysRevA.81.033605
http://dx.doi.org/10.1103/PhysRevA.81.033605
http://dx.doi.org/10.1103/PhysRevB.91.220302
http://dx.doi.org/10.1103/PhysRevB.91.220302
http://dx.doi.org/10.1103/PhysRevB.91.220302
http://dx.doi.org/10.1103/PhysRevB.91.220302
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.110.067204
http://dx.doi.org/10.1103/PhysRevLett.112.217204
http://dx.doi.org/10.1103/PhysRevLett.112.217204
http://dx.doi.org/10.1103/PhysRevLett.112.217204
http://dx.doi.org/10.1103/PhysRevLett.112.217204
http://dx.doi.org/10.1103/PhysRevX.4.011052
http://dx.doi.org/10.1103/PhysRevX.4.011052
http://dx.doi.org/10.1103/PhysRevX.4.011052
http://dx.doi.org/10.1103/PhysRevX.4.011052
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevB.22.1305
http://dx.doi.org/10.1103/PhysRevLett.48.344
http://dx.doi.org/10.1103/PhysRevLett.48.344
http://dx.doi.org/10.1103/PhysRevLett.48.344
http://dx.doi.org/10.1103/PhysRevLett.48.344
http://dx.doi.org/10.1103/PhysRevB.50.3799
http://dx.doi.org/10.1103/PhysRevB.50.3799
http://dx.doi.org/10.1103/PhysRevB.50.3799
http://dx.doi.org/10.1103/PhysRevB.50.3799
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014
http://dx.doi.org/10.1016/j.aop.2005.11.014

MARKUS HEYL AND MATTHIAS VOJTA

[16] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter
Phys. 6, 15 (2015).

[17] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys. 6,
383 (2015).

[18] N. G. van Kampen, Physica (Amsterdam) 74, 215 (1974).

[19] T. W. B. Kibble, J. Phys. A: Math. Gen. 9, 1387 (1976).

[20] W. H. Zurek, Nature (London) 317, 505 (1985).

[21] L. D’Alessio and A. Polkovnikov, Ann. Phys. (NY) 333, 19
(2013).

[22] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, England, 2011).

[23] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[24] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev. Lett.
109, 017202 (2012).

[25] M. Serbyn, Z. Papic, and D. A. Abanin, Phys. Rev. Lett. 110,
260601 (2013).

[26] A. B. Harris, J. Phys. C: Solid State Phys. 7, 1671 (1974).

[27] P. Pfeuty, Phys. Lett. 72, 245 (1979).

[28] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[29] O. Viehmann, J. von Delft, and F. Marquardt, Phys. Rev. Lett.
110, 030601 (2013).

PHYSICAL REVIEW B 92, 104401 (2015)

[30] O. Viehmann, J. von Delft, and F. Marquardt, New J. Phys. 15,
035013 (2013).

[31] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (NY) 16, 407
(1961).

[32] R. H. McKenzie, Phys. Rev. Lett. 77, 4804 (1996).

[33] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).

[34] A. Gambassi and A. Silva, Phys. Rev. Lett. 109, 250602
(2012).

[35] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110,
135704 (2013).

[36] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[37] S. Iyer, V. Oganesyan, G. Refael, and D. A. Huse, Phys. Rev. B
87, 134202 (2013).

[38] R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

[39] N. T. Jacobson, S. Garnerone, S. Haas, and P. Zanardi, Phys.
Rev. B 79, 184427 (2009).

[40] B. Dora, F. Pollmann, J. Fortagh, and G. Zarand, Phys. Rev.
Lett. 111, 046402 (2013).

[41] L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701
(2007).

[42] S.-J. Gu and H.-Q. Lin, Europhys. Lett. 87,
(2009).

[43] P. Hauke and M. Heyl, arXiv:1410.1491.

10003

104401-14


http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014701
http://dx.doi.org/10.1016/0031-8914(74)90121-9
http://dx.doi.org/10.1016/0031-8914(74)90121-9
http://dx.doi.org/10.1016/0031-8914(74)90121-9
http://dx.doi.org/10.1016/0031-8914(74)90121-9
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1016/j.aop.2013.02.011
http://dx.doi.org/10.1016/j.aop.2013.02.011
http://dx.doi.org/10.1016/j.aop.2013.02.011
http://dx.doi.org/10.1016/j.aop.2013.02.011
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.109.017202
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1103/PhysRevLett.110.260601
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1088/0022-3719/7/9/009
http://dx.doi.org/10.1016/0375-9601(79)90017-3
http://dx.doi.org/10.1016/0375-9601(79)90017-3
http://dx.doi.org/10.1016/0375-9601(79)90017-3
http://dx.doi.org/10.1016/0375-9601(79)90017-3
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevLett.110.030601
http://dx.doi.org/10.1103/PhysRevLett.110.030601
http://dx.doi.org/10.1103/PhysRevLett.110.030601
http://dx.doi.org/10.1103/PhysRevLett.110.030601
http://dx.doi.org/10.1088/1367-2630/15/3/035013
http://dx.doi.org/10.1088/1367-2630/15/3/035013
http://dx.doi.org/10.1088/1367-2630/15/3/035013
http://dx.doi.org/10.1088/1367-2630/15/3/035013
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1016/0003-4916(61)90115-4
http://dx.doi.org/10.1103/PhysRevLett.77.4804
http://dx.doi.org/10.1103/PhysRevLett.77.4804
http://dx.doi.org/10.1103/PhysRevLett.77.4804
http://dx.doi.org/10.1103/PhysRevLett.77.4804
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.101.120603
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.109.250602
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRevLett.110.135704
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRevB.87.134202
http://dx.doi.org/10.1103/PhysRevB.87.134202
http://dx.doi.org/10.1103/PhysRevB.87.134202
http://dx.doi.org/10.1103/PhysRevB.87.134202
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.1143/JPSJ.17.1100
http://dx.doi.org/10.1103/PhysRevB.79.184427
http://dx.doi.org/10.1103/PhysRevB.79.184427
http://dx.doi.org/10.1103/PhysRevB.79.184427
http://dx.doi.org/10.1103/PhysRevB.79.184427
http://dx.doi.org/10.1103/PhysRevLett.111.046402
http://dx.doi.org/10.1103/PhysRevLett.111.046402
http://dx.doi.org/10.1103/PhysRevLett.111.046402
http://dx.doi.org/10.1103/PhysRevLett.111.046402
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1103/PhysRevLett.99.095701
http://dx.doi.org/10.1209/0295-5075/87/10003
http://dx.doi.org/10.1209/0295-5075/87/10003
http://dx.doi.org/10.1209/0295-5075/87/10003
http://dx.doi.org/10.1209/0295-5075/87/10003
http://arxiv.org/abs/arXiv:1410.1491



