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The theory of dynamical quantum phase transitions represents an attempt to extend the concept of phase
transitions to the far from equilibrium regime. While there are many formal analogies to conventional transitions,
it is a major question to which extent it is possible to formulate a nonequilibrium counterpart to a Landau-Ginzburg
theory. In this paper we take a first step in this direction by constructing an effective free energy for continuous
dynamical quantum phase transitions appearing after quantum quenches in the transverse-field Ising chain. Due
to unitarity of quantum time evolution this effective free energy becomes a complex quantity transforming the
conventional minimization principle of the free energy into a saddle-point equation in the complex plane of the
order parameter, which as in equilibrium is the magnetization. We study this effective free energy in the vicinity
of the dynamical quantum phase transition by performing an expansion in terms of the complex magnetization
and discuss the connections to the equilibrium case. Furthermore, we study the influence of perturbations and
signatures of these dynamical quantum phase transitions in spin correlation functions.
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I. INTRODUCTION

The theory of phase transitions plays a key role for the
understanding of equilibrium matter. Of particular importance
are continuous phase transitions, which exhibit scaling and
universality implying that macroscopic properties become
independent of microscopic details. A unifying description for
these transitions is provided by Landau-Ginzburg theory [1,2].
In the out-of-equilibrium regime, a temporal analog of phase
transitions has been introduced, termed dynamical quantum
phase transitions (DQPTs) [3–5]. These DQPTs are driven
not by a control parameter but rather occur as a function of
time. This leads to a nonanalytic temporal behavior in physical
quantities, which has recently been observed experimentally
[6,7]. While it has been shown that many properties of
equilibrium transitions such as robustness [8–11], dynamical
order parameters [6,9,12–14], or scaling and universality [8]
also apply to DQPTs, it remains a challenging problem to un-
derstand to which extent other central concepts of conventional
phase transitions such as Landau-Ginzburg theories can also
be formulated for DQPTs.

In this paper, we construct a dynamical analog to free en-
ergies for continuous DQPTs occurring in the nonequilibrium
dynamics of the transverse-field Ising chain. The key element
of our construction is to map the central object of DQPTs, the
Loschmidt amplitude, onto a conventional classical Ising par-
tition function with complex couplings for a certain quantum
quench [8,15]. In this way, we can utilize methods and concepts
for the equilibrium Ising model upon generalizing to complex
parameters, which straightforwardly allows us to formulate
the anticipated effective free energy. The unitarity of quantum
real-time evolution makes the effective free energy a complex
quantity. As a consequence, the conventional minimization
principle turns into a saddle-point condition in the plane of
the complex order parameter. We find that in the vicinity of

the saddle point the effective free energy admits an expansion
in powers of the complex magnetization, which plays the role
of the order parameter, analogous to what one would obtain
in the spirit of a Landau theory. Since our model is exactly
solvable, we can determine the expansion parameters from
first principles. We compare our findings for the effective free
energy to the equilibrium free energy of the classical Ising
chain.

The mapping of Loschmidt amplitudes to classical partition
function makes it also possible to formulate exact renormal-
ization group transformations which allows us to identify the
exact fixed points and therefore the nature of the DQPTs,
which are known to be of continuous type for the consid-
ered nonequilibrium setup [8]. In order to further investigate
similarities of DQPTs to conventional phase transitions, we
study the influence of various perturbations to our model via
their behavior under RG transformations. We find that those
weak perturbations which preserve the Z2 symmetry of the
transverse-field Ising chain, turn out to be irrelevant in the RG
sense, which for some cases was already known before [3].
Upon adding a longitudinal field in the ordering direction,
which breaks the Ising Z2 symmetry, we find that the nature
of the DQPT changes from continuous to first order.

Finally we connect the appearance of DQPTs in the
Loschmidt amplitude to the dynamics of a local observable.
Since the DQPT is associated with an unstable fixed point
and thus with a divergent correlation length, it is natural to
expect that the dynamics of spin-spin correlations is strongly
influenced by the underlying DQPT. We find that spin-spin
correlations show a marked signature of the DQPTs in that
they become maximal whenever a DQPT occurs, as observed
also in other contexts [8,16].

This paper is organized as follows. We start by giving
an introduction to the theory of DQPTs in Sec. II and an
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introduction to our studied model system, the transverse-field
Ising chain, in Sec. III. Afterwards we briefly summarize our
main results in Sec. IV and then in Sec. V we explain how
to map the Loschmidt amplitude onto a classical partition
function. After introducing the effective free energy in Sec. VI,
we use the complex magnetization to perform an expansion of
the effective free energy in the vicinity of the DQPT in the
spirit of Landau theory in Sec. VII. Finally, we move away
from the infinite quench taking into account perturbations both
in the initial and in the final Hamiltonians. In Sec. VIII we con-
sider symmetry-breaking perturbations and their influence on
DQPTs, while in Sec. IX we introduce a symmetry-preserving
perturbation.

II. DYNAMICAL QUANTUM PHASE TRANSITIONS

In the following we are interested in a genuine nonequi-
librium quantum regime where the state of the system cannot
be captured within equilibrium statistical physics in the sense
that it cannot be described through a partition function or
conventional free energy. Still systems can undergo a dynami-
cal quantum phase transition (DQPT) with physical quantities
showing nonanalytic properties as a function of time [3–5]. In
this paper, we study such nonanalytic temporal structures in
the nonequilibrium dynamics generated by so-called quantum
quenches [17]. In that context, the system is initially prepared
in the ground state |ψ〉 of a Hamiltonian H0. At time t = 0 the
system suddenly undergoes a change of its parameters such
that the dynamics is afterwards driven by a final Hamiltonian
H . Solving formally the Schrödinger equation gives for the
state |ψ(t)〉 at a time t :

|ψ(t)〉 = e−iH t |ψ〉. (1)

For the theory of DQPTs after such quantum quenches, a
central role is played by the Loschmidt amplitude:

G(t) = 〈ψ |ψ(t)〉 = 〈ψ |e−itH |ψ〉, (2)

which is the overlap between the initial (|ψ〉) and the time-
evolved state (|ψ(t)〉), respectively. Consequently, G(t) quan-
tifies the deviation from the initial condition. Due to the formal
similarities of G(t) to equilibrium partition functions Z(β), but
even more to so-called boundary partition functions [18], it is
suitable to define a dynamical analog of a free energy density
(up to normalization) as:

f (t) = − lim
N→∞

1

N
log(G(t)), (3)

with N denoting the number of degrees of freedom. As
conventional free energies can exhibit nonanalytic behavior
at phase transitions, so can f (t) in the thermodynamic limit.
In analogy to equilibrium, we define a DQPT as a point in
time where the effective free energy f (t) shows a nonanalytic
structure. While equilibrium phase transitions occur by varying
an external parameter such as temperature controllable from
the exterior, at a DQPT the system experiences nonanalytic
behavior triggered solely by its intrinsic dynamics.

The analogies between DQPTs and conventional phase
transitions are not limited to this formal level but rather extend
further. This includes scaling and universality at continu-
ous phase transitions where macroscopic properties become

independent of microscopic details. It has been shown that
these concepts can also be applied to DQPTs in the 1D Ising
chain [8]. Moreover, DQPTs appear to be robust against small
symmetry-preserving perturbations, meaning that their pres-
ence cannot make DQPTs disappear, but they only contribute
with some minor effects such as a shift in the critical time
[9–11]. Also dynamical order parameters have been identified
[6,12–14,19,20] which have been successful in characterizing
DQPTs occurring in topological systems [21–25].

III. MODEL AND NONEQUILIBRIUM PROTOCOL

In this paper we study the one-dimensional (1D) Ising model
in a transverse field:

H = −J
∑

n

σ z
nσ z

n+1 − h
∑

n

σ x
n , (4)

where σ z
n and σ x

n are the Pauli matrices acting on the nth lattice
site with n = 1,...,N and N the total number of sites. Here,
J denotes the spin-spin coupling and h the transverse field.
For convenience we choose periodic boundary conditions:
σ z

N ≡ σ z
1 . This choice, however, does not influence our results.

Since discrete symmetries cannot be spontaneously broken at
finite temperature in 1D systems characterized by short-range
interactions [26], the model does not show a finite-temperature
phase transition. However, at zero temperature the system
exhibits a quantum phase transition (QPT) [1] separating a
ferromagnetic phase (h < hc) from a paramagnetic one (h >

hc) where the critical point is given by hc = J/2 [27].
In the one-dimensional transverse-field Ising model with

short-range interactions DQPTs have been studied already in
great detail [3,8,19,28–33]. It has been found that DQPTs
occur whenever the system is quenched across the underlying
equilibrium quantum critical point. When interactions are long
ranged, DQPTs can also occur but appear to be not any more
linked to the model’s quantum phase transition. The DQPTs are
rather either related to a different class of dynamical transitions
in long-time steady states [7,34] or can occur even without
known connection to a another class of (nonequilibrium) phase
transitions [35–38]. The latter class of DQPTs have acquired
the notion of ‘anomalous.’

As anticipated, in this paper we consider the 1D transverse
Ising chain subject to a quantum quench. Specifically, we
prepare the system initially in the ground state

|ψ〉 = |→〉 :=
N⊗

n=1

|→〉n |→〉n = 1√
2

[|↑〉n + |↓〉n],

(5)

of our model at vanishing spin-spin coupling and nonzero
external field corresponding to the initial Hamiltonian:

Hi = H (t < 0) = −h
∑

n

σ x
n . (6)

At time t = 0, we switch to the opposite limit of h = 0 and
nonzero J which yields:

Hf = H (t > 0) = −J
∑

n

σ z
nσ z

n+1. (7)
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The quantum state evolves according to the final Hamiltonian,
therefore at time t it is given by:

|ψ(t)〉 = eitJ
∑

n σ z
nσ z

n+1 | →〉. (8)

For such a quench, it is well known that the system exhibits
DQPTs [3,8,29]. In Secs. VIII and IX we also discuss devia-
tions from this extreme protocol.

IV. MAIN RESULTS

As the main result of this paper we introduce a dynamical
analog f (m,t) of a free energy (Sec. VI) in the out of equi-
librium dynamics of the Ising model, with m ∈ C playing the
role of the order parameter, which in our nonequilibrium setup
becomes a complex magnetization. While thermodynamic
potentials in equilibrium statistical physics obey a minimizing
principle, we find that the physically relevant region of the
effective free energy landscape f (m,t) is determined by a
saddle point instead:

f (t) = sp
m∈C

f (m,t), (9)

where sp stands for saddle point taken here over the set of
complex magnetizations m ∈ C. In the equilibrium limit where
both f (m,t) and m are real, the saddle point turns back into
the minimization principle, signaling a strong similarity of our
construction to the equilibrium case. We compute f (m,t) via
an equivalent effective potential g(μ,t).

f (m,t) = sp
μ∈C

[mμ − g(μ,t)] , (10)

which is the analog to Legendre transforming the thermody-
namic potentials, with the magnetization m and the field μ

being conjugate variables. The saddle point solution yields
μ = μ(m,t), which is nothing but the analog of an equation of
state.

The DQPTs for the considered quantum quenches in the
Ising model are known to be critical points associated with an
unstable fixed point of an RG transformation and therefore to
exhibit scaling and universality [8]. This motivates us to study
the behavior of f (m,t) in the vicinity of the DQPT. We find
that f (m,t) admits an expansion in terms of m yielding:

f (m,t) =f0(t) + sign(θ )αm̃2(t) + O(m4(t)), (11)

m̃(t) = U (t)m, (12)

where f0(t) is a time-dependent function and U (t) =
exp[iθ (t)] represents a rotation in the complex plane. From the
exact solution of the model we find that α is a time-independent
constant and θ = (tc − t)/tc a linear function of the distance
to the critical point in the vicinity of the DQPT at time tc.

V. DQPTS OF THE 1D ISING MODEL

After having introduced our main results we now continue
by discussing DQPTs for the considered nonequilibrium sce-
nario and by outlining the main aspects of the methodology that
is used in the remainder for the exact solution of the problem.
Applying the quantum quench protocol discussed in Sec. III,
it is possible to write formally the Loschmidt amplitude, see

Eq. (2), as a conventional classical partition function [8].

G(t) = 〈→ |eit
∑

n σ z
nσ z

n+1 | →〉 = 1

2N
Tr eH, (13)

where H is a complex Hamiltonian defined as:

H = K
∑

n

σ z
nσ z

n+1, K = itJ. (14)

The only difference to the equilibrium case is that now the
couplings can also be complex K ∈ C. This effective classical
description offers various useful consequences such as exact
solvability [1] or the construction of exact renormalization
group transformations [2,39], as we will study in detail in the
following.

To see how it is possible to express formally the Loschmidt
amplitude as a conventional classical partition function, let us
use the property that the initial state |ψ〉 = | →〉 is equivalent
to an equally weighted linear combination of all spin configu-
rations |s〉 = |s1 . . . sN 〉, sn =↑↓ with n = 1, . . . ,N , along the
ordering direction of the Ising model:

|ψ〉 =
N⊗

n=1

[ |↑〉n + |↓〉n√
2

]
= 2− N

2

∑
s

|s〉. (15)

Since the operators in the Hamiltonian (14) do not flip the z

component of spins, the Loschmidt amplitude assumes a diag-
onal form in the z-spin configuration basis and therefore we
recover Eq. (13). The partition function of the 1D Ising model
is exactly solvable [1,2], e.g., via the transfer matrix technique
[40]. This procedure can be extended to complex couplings,
providing a simple expression for the Loschmidt amplitude
which can be evaluated directly in the thermodynamic limit,
i.e., N → ∞. For any N , the Loschmidt amplitude assumes
the form:

G = 1

2N
Tr T N , (16)

where T ∈ C × C is a complex-valued transfer matrix. Before
specifying the precise structure of T let us slightly generalize
our classical Hamiltonian H to

Hg = K
∑

n

σ z
nσ z

n+1 + B
∑

n

σ z
n , (17)

which will turn out to appear naturally in various contexts
discussed later on, e.g., when calculating the effective potential
g(μ,t) appearing in Eq. (10). For this extended Hamiltonian
the transfer matrix can be expressed as

T =
(

x−1y−1 x

x x−1y

)
, (18)

with

x = eK , y = eB . (19)

As opposed to the equilibrium case with real-valued couplings,
the transfer matrix T is not hermitian in our case. Nevertheless,
T can be expressed in terms of the right-left eigenvalues and
eigenvectors, which allows us to find an analytical expression
for the Loschmidt amplitude (13):

G(t) = 1

2N

(
εN

1 + εN
2

)
, (20)

174303-3



DANIELE TRAPIN AND MARKUS HEYL PHYSICAL REVIEW B 97, 174303 (2018)

FIG. 1. Absolute values of the eigenvalues ε1,ε2 of the transfer
matrix T (18) for μ = 0. Vertical lines are at t = π/4 and t = 3π/4
where the two eigenvalues cross each other and consequently the
system undergoes a DQPT.

where ε1 and ε2 are the two right eigenvalues of T . In the
thermodynamic limit, the eigenvalue with largest magnitude is
dominating:

G(t) = lim
N→∞

1

2N
εN , (21)

where ε = ε1 if |ε1| > |ε2| or ε = ε2 if |ε1| < |ε2|. Thus in this
model, nonanalytic structures occur at each time when there
is a crossing between the absolute value of the eigenvalues ε1

and ε2 [41], see Fig. 1.
While the complex partition function and thus the

Loschmidt amplitude can be computed exactly using the
transfer matrix technique, one can obtain additional insights
into the nature of the DQPTs by studying the behavior under a
RG transformation. This is particularly interesting in the limit
μ = 0 where in this way it has been shown that the appearing
DQPTs are critical points associated with an unstable fixed
point [8]. By performing a decimation RG upon integrating
out every second lattice site [39] one obtains the following
recursion relation

tanh(K ′) = tanh2(K) , (22)

determining the renormalized coupling K ′ after one step in
terms of the initial ones K . This relation is valid both in
and out of equilibrium with the only difference that in the
dynamical context the coupling K ∈ C. This RG equation
exhibits two fixed points K∗ = 0,∞ corresponding to the
infinite and zero temperature fixed points of the equilibrium
partition function. When plugging in the critical value Kc =
π/4 for the occurrence of the DQPT, one directly finds that the
coupling flows into the unstable K∗ = ∞ fixed point implying
scaling and universality [8].

VI. EFFECTIVE FREE ENERGY

Before introducing the effective free energy for the DQPTs,
it is useful to first outline how one can construct the free energy
in equilibrium statistical physics for the Ising model.

A. Equilibrium free energy of the Ising chain

Let us express the partition function Z(β) as:

Z(β) = e−βF (β) = Tr e−βH

=
∑

s

e−βH(s) =
∫

dMe−βF (M,β). (23)

Here, H(s) denotes the energy of a spin configuration s =
(s1,s2,...,sN ) with sn = ±1 and

e−βF (M,β) =
∑

s

e−βH(s)δ

(
M −

∑
n

sn

)
, (24)

defines the free energy F (M,β) at a fixed magnetization
M . Both F (M,β) and M are extensive, hence it is possible
to express them in terms of intensive quantities: F (M,β) =
Nf (m,β), m = M/N where N is the number of lattice sites.

In the thermodynamic limit, the free energy density f (β) =
F (β)/N in Eq. (23), is given by:

f (β) = min
m

f (m,β) = f (m∗(β),β), (25)

recovering the minimization principle of the free energy by
applying the Laplace’s method to the integral in Eq. (23). Here,
m∗(β) denotes the magnetization that fulfills the minimization
condition.

For later convenience, it will turn out to be useful to consider
also the Laplace transform of e−Nf (m,β) denoted by G(μ,β):

G(μ,β) =
∫

dm eNμme−Nf (m,β). (26)

Using general results from large-deviation theory [42] the
function G(μ,β), analogous to the Loschmidt amplitude G(t),
exhibits a particular functional dependence on system size N :

G(μ,β) = eNg(μ,β) , (27)

with g(μ,β) an intensive function. By applying again Laplace’s
method to the integral in Eq. (26), the relation between g(μ,β)
and f (m,β) is, up to corrections vanishing for N → ∞, a
Legendre transformation [42]:

g(μ,β) = sup
m

[μm − f (m,β)]. (28)

Equivalently, we get that:

f (m,β) = sup
μ

[μm − g(μ,β)], (29)

since the inverse of the Legendre transform is a Legendre
transform itself. Solving Eq. (28) for its supremum, i.e., μ =
df (m,μ)/dm, gives m = m(μ,β) which is nothing but the
equation of state (EoS) relating the two conjugate quantities
magnetization density m and field μ.

B. Effective free energies for DQPTs

Now, let us extend these concepts to the dynamical analog
of the partition function in Eq. (13). We know that we can
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formally consider the Loschmidt amplitude as a complex
partition function, see Eq. (16), meaning that the formalism
introduced in Sec. VI A can be used also in the nonequilibrium
context, taking into account that the Hamiltonian H is now
complex, see Eq. (14). Using the definition of G(μ,β) in
Eq. (26) and Eq. (24), we find that we can express G(μ,t)
in the following way:

G(μ,t) =
∑

s

eH(s,μ,t), H(s,μ,t) = H(s,t) − μ
∑

n

sn.

(30)

Therefore, G(μ,t) is again a classical partition function with
H(s,μ,t) a classical 1D Ising Hamiltonian with complex
parameters. G(μ,t) can be exactly solved using the method
introduced in Sec. V, see Eqs. (16), (20), and (21), leading in
the thermodynamic limit N → ∞ to the expression:

G(μ,t) = εN
1 + εN

2 −→
N→∞

εN , (31)

with ε1/2 the two right eigenvalues of the transfer matrix with
ε = ε1 when |ε1| > |ε2| or ε = ε2 otherwise. Consequently,
g(μ,t) is determined solely by the right eigenvalues of the
transfer matrix:

g(μ,t) = 1

N
log G(μ,t) 
 1

N
log(εN ) = log(ε). (32)

It remains now to compute the actually targeted quantity
f (m,t). Suppose we would already know f (m,t), then we can
use a saddle-point approximation in the thermodynamic limit
N → ∞ to determine g(μ,t) according to Eq. (26)

g(μ,t) = sp
m∈C

[μm − f (m,t)]. (33)

The saddle-point condition can be equivalently formulated as

μ = df (m,t)

dm
⇒ m = m(μ,t), (34)

which is the out-of-equilibrium counterpart to the equation
of state relating the two conjugate quantities m and μ. These
formulas, similar to Legendre transforms, can be inverted to
yield

f (m,t) = sp
μ∈C

[μm − g(μ,t)]. (35)

The resulting equation of state has a particularly physically
transparent form:

m = dg(μ,t)

dμ
= − 1

N

∑
n

〈
sz
n

〉
μ
, (36)

with 〈
sz
n

〉
μ

= 1

G(μ,t)
Tr

[
sz
n eH(s,μ,t)

]
, (37)

the local magnetization of a classical Ising model in the
presence of a (complex) longitudinal field μ and G(μ,t) the
analog to the partition function. Transfer matrix techniques
allow us to compute Eq. (36) exactly [1] at any N . Details
on the calculations are provided in Appendix A. Using then
Eq. (35) we can readily obtain the desired effective free energy
density f (m,t).

In general we find that at a fixed complex magnetization
density m there are multiple values of μ satisfying Eq. (36),
implying that there exist several saddle points located at

real part of
magnetization density

imaginary part of
magnetization density

FIG. 2. Dynamical analog of the equation of state for the complex
magnetization density m(μ,t) as a function of the complex magnetic
field μ for different times t . Left: Real part of the magnetization
density as a function of J t and μt . Crossing the vertical line J t =
π/4 the magnetization density has a jump if the external field μ is
different from zero. This reflects the nature of the DQPT occurring
at J t = π/4, which is continuouslike at vanishing field μ and first
order otherwise. The sudden jump comes from a switching of the
saddle point in Eq. (31), which affects m via Eqs. (36) and (37).
Right: Imaginary part of the magnetization density as a function of
J t and μt . This quantity does not have any nonanalyticities in the
J t-μt plane.

different complex fields μi , say. In the calculation of the
effective free energy we keep the value μ∗ of all μi which
contributes dominantly. Specifically, in the case of multiple
saddle points we have

e−Nf (m,t) =
∑

i

e−N[μim−g(μi ,t)] N→∞−→ e−N[μ∗m−g(μ∗)] , (38)

where μ∗ is chosen such that Re[μ∗m − g(μ∗)] < Re[μim −
g(μi)] for all i �= ∗. In this case all the other contributions are
exponentially suppressed in system size.

In Fig. 2 we show data for the equation of state m(μ,t) for
the case of a real-valued field μ ∈ R. As one can clearly see,
there appears a sharp structure at J t = π/4, where for μ = 0
the system experiences a continuous DQPT [8]. At nonzero
μ �= 0 we observe that the real part of m(μ,t) develops a
discontinuous behavior which we discuss in more detail in
Sec. VIII. The imaginary part mI (μ,t) = Im[m(μ,t)] on the
other hand appears to be continuous as a function of time across
J t = π/4. The observed sharp change in m(μ,t) originates
in a switching of the dominant saddle point. Accordingly,
this directly translates into sharp changes in the effective free
energy density f (m,t) which we show in Fig. 3. There, we
plot our final result for the real part fR(m,t) of the effective
free energy density [f (m,t) = fR(m,t) + ifI (m,t)] for two
different times in the vicinity of the critical time J tc = π/4
of the DQPTs, one for a time t < tc shortly before the DQPT
and for t > tc. As one can observe clearly, the DQPT reflects in
as a sudden π/2 rotation across tc. While we have illustrated
the equation of state in Fig. 2 for the case of a real field μ,
let us note that the full effective free energy density f (m,t) is
obtained from the dominant saddle point in the whole complex
μ ∈ C plane.

Finally, let us note how the full analog of a free energy
f (t) can be obtained from the knowledge of f (m,t). Following
Eq. (23) we again observe that in the out-of-equilibrium context
the integral over the magnetization in the thermodynamic limit

174303-5



DANIELE TRAPIN AND MARKUS HEYL PHYSICAL REVIEW B 97, 174303 (2018)

is dominated by a saddle point:

f (t) = sp
m∈C

f (m,t) , (39)

which is the formula outlined already in Sec. IV. Again we
find that in general there exists not a single saddle point, so
that we always take only the dominant contribution analogous
to before. As one can see from our data in Fig. 3 one can
directly identify a clear saddle point around m = 0, which is
central for expanding f (m) in powers of m as we discuss in
the following section.

VII. EXPANDING THE EFFECTIVE FREE ENERGY

On the basis of the calculations in the previous section it is
the aim of the following to study expansions of the effective
free energy in powers of the complex magnetization (37),
which plays the role of the order parameter in analogy to
conventional Landau theory. We have already seen that DQPTs
show typical features of equilibrium phase transitions, such
as the nonanalytic behavior of the effective free energy f (t)
at the critical time. What motivates the targeted expansion in
particular is that it is known from an exact RG analysis that
the studied DQPTs are of continuous nature [8] which makes
an analog to Landau theory particularly promising.

Let us again discuss Fig. 3 which shows the real partfR(m,t)
of the effective free energy density f (m,t) as a function of the
complex magnetization density m at two different times t close
to tc = π

4 of the DQPT: one value t = π
4 − π

32 < tc and one at
t = π

4 + π
32 > tc. We observe that for t < tc the minima are in

the corners of the first and third quadrant, while the maxima is
in the other two corners. As the time increases, the positions of
the maxima and minima rotate counterclockwise (not shown),
but at time t = tc, there is an additional sudden rotation of
π/2. This rotation one can clearly identify in Fig. 3. Analogous
considerations hold for the imaginary part.

Throughout all times we observe a saddle point at m = 0
suggesting that an expansion in powers of m is suitable. We
find that f (m,t) admits the following expansion:

f (m,t) = f0(t) + sign(θ )αm̃2(t) + O(m4), (40)

FIG. 3. Real part of the effective free energy at different times
in the complex magnetization density plane. Within the range of the
displayed m ∈ C the effective free energy f (m,t) does not exhibit
sudden jumps as happens in Fig. 7. This is a consequence of the
magnetization range which is chosen in such a way that g(μ,t) in
Eq. (32) and therefore f (m,t) is obtained through either ε1 or ε2

which are continuous functions of their variables. The plot on the left
is obtained with t < tc, in particular t = π

4 − π

32 , while the plot on the
right with t > tc, in particular t = π

4 + π

32 .

with

m̃ = U (t)m, U (t) = eiθ(t) . (41)

Here, f0(t) is a time-dependent function and α is a constant
in the vicinity of the DQPT at time tc whose value can be
determined from Eq. (10) with Eq. (40). The time dependence
of the angle θ (t) incorporates the slow counterclockwise
rotation mentioned already before. In the vicinity of the DQPT
we extract from the numerical solution a linear dependence of
the angle:

θ (t)
t→tc−→ tc − t

tc
. (42)

The sudden rotation of π/2 observed at the critical time tc is
not caused by the slow rotation eiθ(t) but rather by the change
of sign of θ encoded in sign(θ ), which switch the maxima of
the effective free energy with the minima and vice versa. In
particular, we find that this sudden change originates from a
switching of the dominant saddle point.

Now let us discuss the obtained results in light of conven-
tional Landau theory. At least in high dimensions one might
expect competing quadratic and quartic powers of the order
parameter appearing in the expansion of the free energy which
upon crossing a phase transition transforms the free energy
from having a single minimum to a double well landscape.
In the present example, however, the quartic term turns out
to not contribute significantly ruling out a competition as
one might expect from the conventional picture. On a formal
level, this can be attributed to our observation that α is to
leading order in the temporal distance to the critical point a
nonvanishing constant which leaves the quartic magnetization
density contribution always subleading. However, let us note
that this might also be attributed to the low dimensionality of
the system. The classical 1D Ising model does not exhibit an
extended symmetry-broken phase, but rather only a singular
point showing ferromagnetic order, namely at temperature
T = 0. There, the ground state is doubly degenerate and the
free energy f (m) is finite only on the two points m = ±1/2 and
infinite otherwise. In this sense it exhibits an analog to a double
well free energy landscape. At any nonzero deviation from this
singular T = 0 point, however, the free energy exhibits only a
single minimum at m = 0, since the system immediately enters
a disordered phase. Our observations for the dynamical case
are completely analogous to the equilibrium phenomenology
in that for any nonzero deviation from the critical point the
free energy is dominated by the quadratic contribution. What
is different, however, is that α nevertheless vanishes in the
T → 0 limit in equilibrium, which we don’t observe in the
dynamical context studied here. We conclude that a nontrivial
expansion of f (m,t) might require at least two dimensions
where the symmetry-broken phase is extended and not just a
singular point.

VIII. INFLUENCE OF A SYMMETRY-BREAKING
PERTURBATION

So far we have studied the properties of the system in a
special case for a quantum quench in the transverse-field Ising
chain for vanishing initial coupling and vanishing final trans-
verse field. Now we aim to study the influence of a longitudinal
field in the final Hamiltonian H , which in equilibrium is a
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μt

FIG. 4. Absolute value of the fixed point of the y variable. The
blue points indicate the couple of couplings (μt,J t) which flow to the
unstable fixed point.

relevant perturbation, onto the nature of the DQPTs. Let us
therefore suppose that the final Hamiltonian Hf is given by:

Hf = −J
∑

n

σ z
nσ z

n+1 − μ
∑

n

σ z
n . (43)

From the construction in Sec. V it follows immediately that
the Loschmidt amplitude can still be mapped onto a classical
partition function given by:

G(t) = TreH , H = K
∑

n

σ z
nσ z

n+1 + B
∑

n

σ z
n , (44)

with K = iJ t and B = iμt .
In the following we now aim to study the fixed points of

this resulting partition function using a standard decimation
RGs [2,39,43], which can be equally used for the complex
couplings appearing in our case. A suitable choice for the RG
parametrization is analogous to the one used in Eq. (19) with
x = eK and y = eB . Performing one RG step the system is
described by renormalized couplings and fields and therefore
new variables x ′ = eK ′

,y ′ = eB ′
which are related to x,y by

the RG equations [2,39]:

x ′ = (y + 1/y)1/2

(x4 + 1/x4 + y2 + 1/y2)1/4

(45)

y ′ = (x4 + y2)1/2

(x4 + 1/y2)1/2
.

In Fig. 4 we show the numerically obtained value |y∗| when
the RG has converged for varying initial conditions, which
captures our main findings that we aim to explain in the
following.

The above set of coupled RG equations exhibits two
different classes of fixed points:

(x∗ = 1; ∀y∗) −→ stable fixed point, (46)

(x∗ = 0; y∗ = 1) −→ unstable fixed point. (47)

real part of the magnetization density

FIG. 5. Real part of the magnetization density m(t) obtained from
the EoS (36) as a function of J t for different values of μ. The jump of
m(t) at the critical time J t = π/4 decreases linearly with the field μ.
This feature outlines the nature of the DQPT which is first-order-like
at nonzero field μ, while it is continuous at vanishing field μ = 0.

This is the same set of fixed points one encounters also in
the equilibrium case when starting from purely real couplings.
There is a line of stable fixed points corresponding to vanishing
spin-spin coupling K = 0 for any value for the field. On this
line of fixed points the physics is equivalent to uncorrelated
spins in an external field implying a vanishing correlation
length. On the contrary, the unstable fixed point is characterized
by a divergent spin coupling K → ∞ at vanishing field B = 0,
or in a more general sense B = 2πni with n ∈ Z. This fixed
point corresponds to the zero-temperature limit of the Ising
model without external field, which exhibits order in terms of
a nonzero magnetization.

Depending on the initial conditions (K,B) for the RG
transformation, the system ends up in different fixed points, see
Fig. 4. Because the Pauli matrices that appear in the Hamil-
tonian have eigenvalues ±1 and because of the exponential
structure of the Boltzmann weights, the complex partition
function is symmetric under μ �→ μ + nπ and J �→ J + nπ

for any n ∈ Z. Along the line of vanishing field B = 0 we
recover the DQPT at J t = π/4 or J t = 3π/4 associated with
the unstable fixed point of the unperturbed Ising model studied
before, which is indicated in the figure with a blue dot. As it
happens in equilibrium [39], a nonvanishing field B �= 0 in
general is a relevant perturbation attracting the system to a
different stable fixed point. However, we find in agreement
with previous work on quantum quenches that a DQPT still
exists [11]. As one can clearly see by following the vertical
line along J t = π/4 or J t = 3π/4 as a function of the field μ,
we find that |y∗| is not anymore continuous but rather acquires
a jump upon crossing the J t = π/4 line. In Fig. 5 we show data
for individual cuts for fixed magnetic fields μ showing again
the jumps in the magnetization. As a consequence the DQPT
turns from second to first order. Remarkably, however, there
appear still specific isolated points in the J -μ plane where
the DQPT becomes again continuous although the field is
nonzero as opposed to the equilibrium case where this is not
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possible. These specific points are located at μt = π/2 when
J t = 0,π/2, as indicated by the blue dots in Fig. 4.

As a consequence of the explicitly broken symmetry the
saddle point of the effective free energy f (m) shifts to a
nonzero value m �= 0 implying that the expansion in the
spirit of a Landau theory acquires a linear in m contribution.
Surprisingly, it can, however, happen for larger fine-tuned
fields that one of the specific continuous DQPTs for μt = π/2
are again encountered rendering the effective free energy
analogous to the continuous DQPTs studied already before.

IX. INFLUENCE OF SYMMETRY-PRESERVING
PERTURBATIONS

The perturbations considered in the previous section break
the symmetry of the Hamiltonian, while we now aim to
explore what happens when adding symmetry-preserving per-
turbations. For that purpose we use a perturbative analytical
approach to map the Loschmidt amplitude again onto classical
partition functions, which, however, might contain additional
couplings compared to the unperturbed one. Using RG trans-
formations we then study the influence of these perturbations,
in particular, whether they turn out to be relevant or not.

We start with perturbations that preserve on a Hamiltonian
level the Z2 symmetry of the model. Concretely, we consider
in the following a Hamiltonian (4) with a weak nonvanishing
initial coupling J0 � h0 and a final Hamiltonian containing
also a weak transverse field h � J .

A. Perturbations of the initial condition

Let us first discuss the influence of the perturbed initial
condition. The initial state, which is the ground state of
Eq. (4) before the quench, we approximate using an adapted
Schrieffer-Wolff (SW) transformation. Consider Hamiltonian
H given as a sum of an unperturbed one, H0, and a perturbation
λV with λ weak:

H = H0 + λV. (48)

Since here we are interested in how the ground state is modified
after the introduction of the perturbation, we aim to find
a unitary transformation U = eS analogous to a Schrieffer-
Wolff transformation [44] such that the eigenvalue equation
for the ground state: H |ψ ′〉 = E0|ψ ′〉 is transformed into
UHU †|ψ〉 = E0|ψ〉 with |ψ〉 = U |ψ ′〉 and UHU † = H0 +
O(λ2) within a perturbative construction. In other words, we
only require to find a transformed ground state and we do not
aim at finding the full diagonalized Hamiltonian. In the spirit
of a SW transformation, this can be achieved by U = eS with:

[S,H0]|ψ〉 = λV |ψ〉. (49)

To corrections of the order O(λ2), the eigenstate |ψ〉 of H can
be obtained via:

|ψ ′〉 = e−S |ψ〉, (50)

which in the limit J0 � h0 can be solved to yield:

|ψ ′〉 = exp

(
iJ0

4h0

∑
n

σ z
nσ z

n+1

)
|ψ〉. (51)

As a consequence of the introduction of a small spin-spin
coupling in the Hamiltonian H0, the new ground state is
obtained flipping nearest neighbors spins of the unperturbed
fully polarized ground state |ψ〉. For the Loschmidt echo G(t)
the result in Eq. (51) implies that G(t) = 〈ψ ′|e−iH t |ψ ′〉 =
〈ψ |e−iH t |ψ〉 because [S,H ] = 0. Thus, perturbations to the
initial condition don’t contribute in lowest order perturba-
tion theory, but rather only enter when taking higher order
corrections into account. Although straightforwardly possible
to incorporate, it is beyond the scope of the lowest-order
perturbation theory we address here.

B. Perturbations to the final Hamiltonian

After having discussed how to deal with perturbed initial
states, we now turn to perturbations in the final Hamiltonian.
In the limit where h � J , the Loschmidt amplitude (2), which
contains the 1D nearest neighbor Ising quantum Hamiltonian
(4), can be approximated to first order in h/J as a formal
partition function described by a classical Ising Hamiltonian
with next to nearest neighbor interactions using cumulant
expansion methods [8,16]. To obtain this result, we again
decompose on a general level our Hamiltonian H = H0 + λV

with H0 = −J
∑

n σ z
nσ z

n+1 and λV = −h
∑

n σ x
n . It is then

convenient to move from the Schrödinger to the interaction
picture, where the time propagator can be written as: e−iH t =
e−iH0tW (t) with W (t) = T exp (−i

∫ t

0 dt ′λV (t ′)) and V (t) =
eiH0tV e−iH0t such that we get for the time evolved state:

|ψ(t)〉 = exp(−iH t)|ψ〉 = exp(−iH0t)W (t)|ψ〉 (52)

=
∑

s

e−iEs t |s〉〈s|T e−i
∫ t

0 dt ′λV (t ′)|ψ〉 , (53)

where |s〉denotes the set of all spin configurations which are the
eigenstates of H0 with eigenenergies E0(s). Using this equation
we can now perform a cumulant expansion which up to lowest
order in λ yields [16]:

〈s|T e−i
∫ t

0 dt ′λV (t ′)|ψ〉
〈s|ψ〉 = e

−i
∫ t

0 dt ′ 〈s|λV (t ′)ψ〉
〈s|ψ〉 +O(λ2)

. (54)

Defining V (s,t) = i
∫ t

0 dt ′ 〈s|λV (t ′)ψ〉/〈s|ψ〉 we obtain the
following form for the Loschmidt amplitude for the fully
polarized initial condition:

G(t) = 1

2N

∑
s

e−itE0(s)−V (s,t) = 1

2N
Tr eH̃ , (55)

with H̃ (s,t) = −itE0(s) − V (s,t). For the concrete case of an
Ising chain in a weak transverse field we obtain again a classical
Ising model which includes also next-to-nearest neighbors:

H̃ = K
∑

n

σ z
nσ z

n+1 + B
∑

n

σ z
nσ z

n+2, (56)

where [8]:

K = 1 − cos(4tJ )

4J
h + iJ t,

(57)

B = −i
ht

2
+ i

h

8J
sin(4tJ ).
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C. Effective classical Ising model for both perturbations to the
initial state and final Hamiltonian

Combining this cumulant expansion with the results of the
perturbed initial condition derived before we again find that
the Loschmidt amplitude G(t) is given by H̃ in Eq. (55) to first
order in the perturbation strengths J0/h0 and h/J . To see this,
let us write

|ψ ′(t)〉 = e−iH t |ψ ′〉 = e−iH te−S |ψ〉. (58)

Commuting the SW transformation e−S past the time-evolution
operator yields:

|ψ ′(t)〉 = e−Se−iteSHe−S |ψ〉. (59)

To lowest order in J0/h0 and h/J we get that

eSHe−S = H + O
(

hJ0

Jh0

)
. (60)

Using this result, we obtain that G(t) = 〈ψ ′|ψ ′(t)〉 reduces to
the same result we had in Eq. (55).

D. Renormalization group analysis

In the following, we study the influence of the longer-ranged
couplings using RG arguments, which are different from
the ones used previously [1,43]. Let us introduce bond spin
operators [39] defined as τn = σ z

nσ z
n+1. Then, it is possible to

recast the Hamiltonian in (56) as a classical Ising Hamiltonian
with only nearest neighbor interactions and a longitudinal field
[39] and Eq. (56) becomes:

H̃τ = K
∑

n

τ z
n + B

∑
n

τ z
nτ z

n+1. (61)

This map is exact, but special care is needed when considering
the partition function, and thus the Loschmidt amplitude, since
Trσ eH̃ �= Trτ e

H̃τ . Here, Trσ refers to a trace over all spin
configurations of the original σ z

n Pauli matrices (σ -spin basis)
whereas Trτ to the trace over all configurations of the bond
spin operators (τ -spin basis). The reason for the difference
between the traces over the different sets of configurations is
the Z2 symmetry in the Hamiltonian H̃ which can be cast in
the form σ z

n → −σ z
n .

Let us give a brief example to better understand the origin
of the inequality of the traces: Trσ eH̃ �= Trτ e

H̃τ , although the
existence of an exact map between the two Hamiltonians.
For simplicity we consider a chain with N = 4 lattice sites
described by the Hamiltonian

Hσ = −
4∑

n=1

σ z
nσ z

n+1, (62)

with periodic boundary conditions. According to the exact
map, the corresponding Hτ reads:

Hτ = −
4∑

n=1

τn. (63)

When computing the partition function Zσ = Trσ eHσ using
the σ -spin basis, the trace becomes a classical object equal
to

∑
s e

∑
n snsn+1 , where sn is an eigenvalue of σ z

n . One can
easily realize that for each configuration s, the outcome of

the sum
∑4

n=1 snsn+1 can either be ±2 or 0. On the other hand,
using naively the map to the bond operators and considering
the partition function Zτ = Trτ eHτ = ∑

sτ e
∑

n sτ
n , with sτ

n is
eigenvalue of τn, it comes out that the sum

∑4
n=1 sτ

n can assume
the values ±2, ± 1,0 leading to a different result for the two
partition functions Zσ and Zτ . Generalizing what we observe
to the case with N = 2n, n ∈ N it is still possible to use the
bond map to compute Zσ , limiting the trace in Zτ over the
τ -spin configurations whose magnetization mτ = ∑

n sτ
n is an

even number. This effectively means that the number of domain
walls in the spin configurations for the σ operators is always an
even number for periodic boundary conditions that we use. Let
us define a projector Pe onto the subspace of an even number
of domain walls:

Pe = e−iπ
∑

n τn + 1 . (64)

Using Pe we can find a general relation between the two
partition functions:

Trσ eH̃ = Trτ
[
(e−iπ

∑
n τn + 1)eH̃τ

]
. (65)

The right-hand side of Eq. (65) can be decomposed into the
sum of two partition functions of the Hamiltonians H̃1 and H̃2

both given by (61), but one of the two (let’s say H̃2 for instance)
has an additional longitudinal field equal to −i π

2 :

Trσ eH (σ ) = Trτ eH̃1(τ ) + Trτ eH̃2(τ ), (66)

with

H̃1 = K
∑

n

τ z
n + B

∑
n

τ z
nτ z

n+1,

(67)

H̃2 =
(

K − i
π

2

) ∑
n

τ z
n + B

∑
n

τ z
nτ z

n+1.

In the end we have now mapped the Loschmidt amplitude
onto the sum of two partition functions for the bond spin
operators. These two partition functions admit an exact RG
transformation which was extensively discussed in Sec. VIII.

Summarizing, we find that after performing the exact RG
transformation the resulting Ising model for the bond spin
operators incorporates only a renormalized longitudinal field
with the initial spin couplings flowing to zero. Interpreting this
result in terms of the original spin degrees of freedom this fixed
point Hamiltonian is equivalent to a nearest-neighbor Ising
chain with renormalized couplings. Thus, the transverse field
constitutes an irrelevant perturbation in the RG sense leaving
the universal features of the DQPT invariant.

X. MAGNETIZATION FLUCTUATIONS

From the RG analysis the DQPT is associated with a diver-
gent correlation length. In the following we aim to show that
this becomes manifest in the dynamics of the magnetization
fluctuations:

C(t) = 1

N
〈ψ(t)|M2|ψ(t)〉, M =

∑
n

σ z
n , (68)

which can also be recast as:

C(t) = 1

N

∑
r,l

Crl(t), Crl(t) = 〈ψ(t)|σ z
r σ z

l |ψ(t)〉. (69)
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For the nearest-neighbor Cr,r+1(t) such a relation has already
been found in recent works [8,16]. We compute C(t) for the
general scenario of nonvanishing transverse fields 0 < h �
J in the final Hamiltonian discussed in Sec. IX, since h = 0
represents a singular limit. There, M(t) = M is a constant of
motion. Importantly, the nature of the DQPT for 0 < h � J

is the same as for the h = 0 case, as discussed in Sec. IX. As
will be derived directly afterwards, to leading order in h/J we
find the following result:

C(t) = h

2J
[1 − cos(4J t)], (70)

shown also in Fig. 6. For the nearest-neighbor correlations
similar observations have already been made recently [8,16].
The above result can be obtained based on the same techniques
as in Sec. IX. In particular, moving to the interaction picture we
are allowed to express the time-evolved state |ψ(t)〉 in terms
of a classical network of Ising spins as in Eq. (53), which leads
to the following form for Crl(t):

Crl(t) =
∑
s,s ′

eit(Es′ −Es )〈ψ |W †(t)|s ′〉〈s ′|σ z
r σ z

l |s〉〈s|W (t)|ψ〉,

(71)

where

W (t) = T exp

(
−i

∫ t

0
dt ′λV (t ′)

)
, λV (t) = eiH0tV e−iH0t ,

H0 = −J
∑

n

σ z
nσ z

n+1, V = −h
∑

n

σ x
n . (72)

Noting that 〈s ′|σ z
r σ z

l |s〉 = srslδs,s ′ , one of the two sums in
Eq. (71) vanishes. Moreover, in the limit h � J , we approx-
imate 〈s|W (t)|ψ〉 appearing in Eq. (71) to first order in h/J

according to Eq. (54). As a consequence, we obtain as a final
result that Crl(t) assumes a form analogous of the two-point

Jt

1

FIG. 6. Fluctuations of the magnetization C(t) as a function of
J t . The result has been normalized in such a way that the maximum
value is equal to one. We observe that the curve exhibits its maximum
when a DQPT occurs: at t = π/4 and t = 3π/4.

correlation function at equilibrium:

Crl(t) =
∑

s e
h

2J
[1−cos(4J t)]

∑
n snsn+1srsl∑

s e
h

2J
[1−cos(4J t)]

∑
n snsn+1

= Tr
[
eHσ z

r σ z
l

]
Tr[eH]

, (73)

where H = h
2J

[1 − cos(4J t)]
∑

n σ z
nσ z

n+1 and si is the eigen-
value of σ z

i . Since the above expression is a conventional
equilibrium correlation function, we can adopt transfer matrix
techniques [1] to obtain as the final result for the fluctuations
of the magnetization C(t) in Eq. (69):

C(t) = tanh
(

h
2J

[1 − cos(4J t)]
)

1 − tanh
(

h
2J

[1 − cos(4J t)]
) � h

2J
[1 − cos(4J t)],

(74)

where the approximation in Eq. (74) holds in the limit h � J .
As one can see from Fig. 6, the magnetization fluctuations

become maximal at those times where DQPTs occur. This
observation might already find a convincing explanation by
the divergent correlation length of the underlying DQPT.
Alternatively, one might adopt an interpretation of DQPTs as
a dynamical analog of conventional quantum phase transitions
which has been outlined in Refs. [5,45] and also experimentally
measured [7]. The Loschmidt amplitude G(t) is a projection
of the time-evolved state back onto the ground state of the
initial Hamiltonian, and in this way it quantifies the dynamics
in its ground state manifold, which can be thought of as
a nonequilibrium equivalent to zero temperature. From this
perspective, we observe from the theory of DQPTs that the
magnetization fluctuations diverge at the critical times in the
ground state manifold. Observables or correlation functions,
however, acquire their dominant contribution from elevated
energy densities beyond the ground state due to the energy
pumped into the system by the quantum quench. Interpreting
these excited energy densities as the nonequilibrium counter-
part to temperature, it is natural to expect that the divergent
magnetization correlations are then cut off at elevated energy
densities making the magnetization fluctuations finite. How-
ever, one can still observe the influence of the underlying
DQPT through the maxima of C(t) at the critical times.

XI. CONCLUSIONS

To further investigate the analogies between DQPTs and
conventional phase transitions, we introduce in this paper a
dynamical analog to a free energy density by using the for-
mal equivalence between Loschmidt amplitudes and classical
partition functions for the 1D transverse field Ising model.
While in equilibrium systems the free energy is a real-valued
function, the corresponding quantity in the nonequilibrium
regime becomes complex. As a consequence we observe that
the conventional organization principle of free energy mini-
mization is transformed into the more general form of a saddle-
point principle. Moreover, we find that the effective free energy
admits an expansion as a function of the complex-valued
magnetization, which plays the role of the order parameter,
in the spirit of the conventional Landau theory. Quartic terms
always appear to be subleading which we have traced back to
the property of the one-dimensional classical Ising chain, in
that it exhibits symmetry breaking only at zero temperature
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and therefore at a singular point. This makes a study in higher
dimensions, e.g., for the two-dimensional Ising model, where
the system exhibits an extended symmetry-broken phase,
particularly promising. Importantly, the presented formalism
of the construction of the effective free energy is independent
of dimensionality and can therefore be directly applied also,
for example, to the two-dimensional case. A further interesting
aspect in the future is to which extent analogous effective
free energies can be formulated for other systems beyond
Ising models. The formalism presented in this paper requires a
classical limit of the Loschmidt amplitude, meaning that it can
be expressed as a complex partition function of an effective
classical Hamiltonian. To which extent such a mapping is
possible on general grounds for other models than the Ising
systems studied here remains to be addressed in the future.
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APPENDIX A: MAGNETIZATION DENSITY

The equation of state (36) can be computed exactly in
the thermodynamic limit N → ∞. Let us recall the EoS
which relates the magnetization density m and the longitudinal
field μ:

mN = 1

G(μ,t)
Tr

∑
n

[
sz
ne

H(s,t)−μ
∑

l sl
]
. (A1)

As expected, Eq. (A1) says that the magnetization density is
given by the mean value of spins sz. Using transfer matrix
techniques, it is possible to solve exactly both the numerator
and the denominator of Eq. (A1). The latter was already
obtained in Eq. (31), while we now aim to compute the former:

Tr
∑

n

[
sz
ne

H−μ
∑

l sl
] = Tr[σzD

N ] = N
[
�1ε

N
1 + �2ε

N
2

]
,

(A2)

where

�1 = (1 − |α1|2)(|a|2 + |c|2)

1 + |α1|2 + (1 − α∗
1α2)(b∗a + d∗c)√

1 + |α1|2
√

1 + |α2|2
,

�2 = (1 − |α2|2)(|b|2 + |d|2)

1 + |α2|2 + (1 − α∗
2α1)(a∗b + c∗d)√

1 + |α1|2
√

1 + |α2|2
,

(A3)
α1(2) = −x−1(x−1y−1 − ε1(2)) , x = eK , y = eB . (A4)

The parameters a,b,c,d given by:

a = v2(2)

det(v)
, b = −v1(2)

det(v)
, c = −v2(1)

det(v)
, d = v1(1)

det(v)
,

(A5)

are well defined as long as det(v) �= 0 where det(v) stands
for the determinant. Since v is the matrix containing the right
eigenvectors v1, v2 of the matrix T introduced in Eq. (18), the
requirement det(v) �= 0 is equivalent to ask that v1, v2 are not

parallel. These eigenvectors are given by:

v1 = 1√
1 + |α1|2

(
1

α1

)
, v2 = 1√

1 + |α2|2
(

1

α2

)
. (A6)

From Eqs. (A2) and (31), we can extract the behavior of the
magnetization density m in the limit N → ∞ where assumes
the following form:

m = �, (A7)

where � = �1/2 according to ε = ε1/2.

APPENDIX B: RANGE OF VALIDITY OF
LANDAU THEORY

The polynomial expansion of the effective free energy in
terms of the complex magnetization m shown in Eq. (40) is
valid as long as the values of m are small enough to guarantee
that the effective free energy does not show any jumps. The
domain of validity depends on time, in particular it becomes
smaller and smaller as t approaches tc. This is shown in Fig. 7,
where the absolute value of the effective free energy has some
jumps and their location is more and more close to the origin
as the time flows toward the critical time. Exactly at that time,
the domain of validity has zero measure.

The origin of these jumps is due to the change of the
dominant eigenvalue ε1/2 appearing in Eq. (31). Expanding
the effective free energy in terms of m in the vicinity of the
origin, the magnetization density can be neglected compared to
g(h), and according to Eq. (29) the effective free energy can be
approximated as f (m) ∼ g(h) = −log(ε). From this formula
we can directly observe that the nonanalytic behavior of ε is
then reflected onto the effective free energy.

APPENDIX C: SCALING OF THE EFFECTIVE FREE
ENERGY CLOSE TO THE CRITICAL TIME

To test the validity of our result, we compare the dominant
effective free energy f (t) in Eq. (39) computed through the
exact result and with the polynomial expression in Eq. (40).
Figure 8 shows in blue the exact result corresponding to

FIG. 7. Absolute value of the effective free energy f (m,t) for the
following values of J t : first row J t = π 73

320 and J t = π 79
320 . Second

row:J t = π 81
320 andJ t = π 87

320 . The jumps of the effective free energy
f (m,t) are manifested in the plot as sudden changes of the colors dark
red and yellow.
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FIG. 8. Left: comparison between the exact result (blue continu-
ous line) and the one obtained through the expansion (40) (red dotted
line) of the real part of the dominant effective free energy (39). Right:
same analysis but of the imaginary part.

Eq. (39) where f (m,t) is given by Eq. (35), while the curve
coming from the expansion (40) is shown in red to leading term
in N . In the limit N → ∞, according to Eq. (39) the dominant
contribution of f (m,t) comes from f0 since the saddle point
condition is fulfilled at vanishing magnetization density m̃ =
0, therefore the constant term f0(t) in the expansion (40) is
given by

f0(t) = f (m = 0,t). (C1)

Moreover, Fig. 8 suggests the possibility to approximate
Re[f0] with a linear expression and Im[f0] with a Heaviside
theta function. In particular, Re[f0] = θδ + τ where θ and δ

take care, respectively, the change of sign and the value of
the slope, while τ provides a vertical shift of the curve. From
the fitting we find that δ � 0.92, τ � −1, and θ = | J tc−J t

J tc
|

as announced in Eq. (42). We can conclude that, close to the

FIG. 9. Real part of the expansion of effective free energy density
given by Eq. (40) at different times in the complex magnetization
density plane. The times chosen and the interval of the complex
magnetization density m are the same as the ones of Fig. 3 to allow
a direct comparison with that figure. The value of α coming from the
best fitting procedure is: α = 0.98 + 0.5i.

critical time, the real part of the free energy scales linearly like:
Re[f ] ∼ −| J tc−J t

J tc
|. As concerns the imaginary part, we have

that Im[f0] = −π
4 − sign(θ )π

4 , describing the sudden jump at
the critical time.

Another evidence supporting the validity of the polynomial
expansion of the effective free energy in Eq. (40) is the
similarity between Fig. 9, which shows the effective free
energy computed according to the Eq. (40) in the complex
magnetization plane, and Fig. 3, where the exact effective
free energy given by Eq. (35) is shown. The parameter α

appearing in Eq. (40) is obtained from fitting procedure, i.e.,
we minimize the difference between the exact formula (35)
and the expansion (40). In the end we get α � 0.98 + 0.5i.
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