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In this paper, we revisit collapse and revival oscillations in superfluids suddenly quenched by strong local
interactions for the case of a one-dimensional Bose-Hubbard model. As the main result, we identify the inherent
nonequilibrium quantum many-body character of these oscillations by revealing that they are controlled by a
sequence of underlying dynamical quantum phase transitions in the real-time evolution after the quench, which
manifest as temporal nonanalyticities in return probabilities or Loschmidt echos. Specifically, we find that the
timescale of the collapse and revival oscillations is, first, set by the frequency at which dynamical quantum phase
transitions appear, and is, second, of emergent nonequilibrium nature, since it is not only determined by the final

Hamiltonian but also depends on the initial condition.
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I. INTRODUCTION

Starting from the observation of collapse and revival os-
cillations for a Bose-Einstein Condensate matter wave [1],
the field of nonequilibrium quantum many-body physics
has seen rapid development. Experiments in quantum sim-
ulators, such as ultracold atoms or trapped ions, among
others [2-5], have in the meantime observed various inher-
ently dynamical quantum phenomena such as prethermaliza-
tion [6-8], particle-antiparticle production in lattice gauge
theories [9], dynamical quantum phase transitions (DQPTs)
[10-12], many-body localization [13-15], or discrete time
crystals [16—18]. Within the anticipated collapse and revival
experiment, a Bose-Einstein condensate (BEC) is suddenly
quenched by strong local on-site interactions, which leads to
a periodic decay and reappearance of a peaked structure in the
bosonic momentum distribution characteristic of a BEC [1]
or the visibility of interference patterns [19-21]. While many
aspects of this experiment have been theoretically addressed
[22-28], it has remained elusive whether there is a general
dynamical principle underlying these collapse and revival
oscillations, which can explain some central questions that are
still unanswered, such as concerning the timescale of these
oscillations.

In this paper, we reexamine the collapse and revival oscil-
lations for the case of superfluid order in a one-dimensional
Bose-Hubbard model (BHM) subject to a sudden quench
of strong local interactions. As for the collapse and revival
experiment, we observe a periodic sequence of decay and
reappearance of the zero-momentum peak in the bosonic
distribution function, see Fig. 1. It is the main result of this
paper to identify the collapse and revival oscillations as a
genuine nonequilibrium quantum many-body phenomenon (i)
by relating them to DQPTs [29-32], and (ii) by revealing
the origin and emergent nonequilibrium nature of the asso-
ciated timescale. Specifically, we find that the collapse and
revival oscillations are controlled by a sequence of underlying
DQPTs that are characterized by a nonanalytic behavior as a
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function of time contained in the Loschmidt amplitude,

G@t) = (Yole ™ ), (1)

where |1/y) denotes the initial condition and H the Hamilto-
nian driving the quantum real-time dynamics. G(¢) quantifies
the amplitude to return to the initial condition and is therefore
a natural measure for the collapse and revival of the properties
of the initial state such as the zero-momentum peak. As the
main result of this paper, we observe that the timescale ¢, for
the collapse and revival oscillations matches the periodicity at
which the system experiences DQPTs. In this way, we provide
an explanation of the timescale for these oscillations and link
them to a phenomenon that provides general principles of
quantum real-time evolution. Importantly, we show that ¢*
is an emergent nonequilibrium timescale without an equilib-
rium analog depending both on the initial condition and the
final Hamiltonian parameters and therefore t* is not set, for
example, just by the gap of the final Hamiltonian.

II. MODEL AND SETUP

The BHM describes interacting bosons on a lattice close
to the aforementioned experiment [1]. We take the underlying
lattice to be one-dimensional, yielding the following Hamilto-
nian:

L1 UL
Hgam(J,U) = _Jzajai-ﬁ-l + a,-THm + B Zni(ni -1,

i=1 i=1
(2)

where a; is the annihilation operator for a boson on site
i and n; = a'a; the corresponding occupation. The lattice
consists of L sites and for convenience we choose open
boundary conditions, which, however, has no influence on our
main results. The properties of the Hamiltonian Hgpm(J, U)
are determined by the dimensionless ratio s = J/U between
hopping amplitude J and interaction strength U. At zero
temperature, a quantum phase transition of the Kosterlitz-
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FIG. 1. Collapse and revival oscillations in the real-time evo-
lution of the quasimomentum distribution n;(z) for a superfluid
suddenly quenched by strong local interactions. The system is
initially prepared in the superfluid ground state of a one-dimensional
Bose-Hubbard model with L = 120 lattice sites for modest initial
interactions U; with s; = J;/U; = 0.36, where J; denotes the initial
hopping amplitude. After quenching the system suddenly at time
t =0tosy =Jr/U = 0.05, the system exhibits a periodic sequence
of collapse and revival oscillations of the zero quasimomentum peak.
The inset shows a magnification of the area at low quasimomenta
enclosed by the red rectangle.

Thouless type occurs for unit filling at s, ~ 0.297 separating
a Mott insulating for s < s. from a superfluid phase for s > s,
[33-37].

To model the collapse and revival oscillations, we initialize
the system in a superfluid ground state |y) of the BHM for
s > s.. At time ¢ = 0, the interaction is suddenly quenched to
a large value with s < s, inducing nonequilibrium real-time
dynamics which can be formally solved by

[Wo(t)) = e ™ |yo) A3

where H denotes the final quenched Hamiltonian.

Just as in the collapse and revival experiment [1] and in
related theory papers [26], we study the properties of this
quenched system via the quasimomentum distribution,

n (1) = (Yo @)l | Yo () » 4
where e =bib, with b =1/VLY e*a; for k=
—n,—n +2rx/L,..., 7. The dynamics of n(¢) is shown

for a representative set of parameters in Fig. 1. Since
the system is initially prepared in a superfluid state, the
quasimomentum distribution shows a macroscopic occupation
at zero momentum k = (0. Upon quenching strong local
interactions U, ni(t) exhibits on transient timescales a decay
of the superfluid signature at k = 0, leading to a spread of
occupation across the whole Brillouin zone, see the blue
shade in Fig. 1. After this decay, the zero-momentum peak,
however, reappears again. This sequence of collapses and
revivals continues periodically. In the limit of very strong
interactions s — 0, the time-dependence distribution rn () is
perfectly periodic in time. For nonzero 0 < s < s, instead,
the peak height at n;_(z) exhibits an additional decaying
envelope for the subsequent revivals. Still, if the decay time
is longer than the revival time, the periodic character of the

collapse and revival oscillations is clearly present. This point
will be discussed in greater detail later in the main text.

We have obtained this data and the results in the remainder
of this paper using numerical simulations based on matrix
product state (MPS) techniques. The ground states of the
BHM model show sufficiently low entanglement entropy to
be accurately represented by MPS [38] with a small bond
dimension [39]. The initial ground state we compute by means
of thedensity matrix renormalization group algorithm [40]. To
perform the real-time evolution of the initial state under the
quantum quench we use the time-evolving block decimation
(TEBD) [41]. A temporal linear growth of the entanglement
entropy limits the maximally achievable evolution time T
to T =20/U, up to which our numerics remain accurate.
For TEBD, we have used a fourth-order Trotter formula for
factorization of the time evolution operator with a time step
8t < 0.002/U. We also note that an MPS representation of
vectors allows for accurate computation of very small over-
laps, necessary to compute G(¢) without resorting to high-
precision linear algebra [38,40]. To ensure convergence of
the results, we have determined that further reduction of §¢
or increasing the bond dimension beyond m = 200 used in
this paper gives no noticeable improvement on the computed
Loschmidt echos.

III. DYNAMICAL QUANTUM PHASE TRANSITIONS

As outlined in the introduction, it is the purpose of this
paper to link the collapse and revival oscillations as seen in
Fig. 1 to DQPTs and therefore to a genuine nonequilibrium
critical phenomenon. Before addressing this connection in
detail, let us first outline some basic properties of DQPTs.

The theory of DQPTs provides an extension for the con-
cept of phase transitions to the nonequilibrium dynamical
regime [29,31]. While equilibrium transitions are driven by
external control parameters such as temperature or pressure,
DQPTs are caused solely by the system’s internal unitary
dynamics. The central object is the Loschmidt amplitude G(¢),
see Eq. (1), and the related probability £(¢) = |G(t)|* called
the Loschmidt echo. Formally, G(¢) resembles equilibrium
partition functions at complex parameters [29,31]. Accord-
ingly, it is suitable to introduce dynamical analogs to free-
energy densities. In the following, we will consider mainly
the dynamical free-energy density A(¢) corresponding to the
Loschmidt echo £(¢) defined as

1
M) =—7 log[|G(®)I*]. S

As conventional free-energy densities can become nonana-
lytic at phase transitions, so can the dynamical counterpart
A(?) in the thermodynamic limit, but now at critical times,
which is the defining feature of DQPTs. Recently, DQPTs and
their signatures have been observed experimentally in quan-
tum simulators realized in trapped ions [10], ultracold atoms
[12,42], quantum walks [43,44], nanomechanical oscillators
[45], and superconducting qubits [46]. It has been shown that
many important properties of equilibrium transitions beyond
mere nonanalytic behavior are also shared by DQPTs. This
includes, for example, their robustness against symmetry-
preserving perturbations [47-50]. Moreover, dynamical order
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FIG. 2. (a) Real-time evolution of the zero-quasimomentum peak
ng—o(t) of the bosonic distribution function for different system sizes
and the same parameter values as in Fig. 1, displaying the collapse
and revival oscillations. The dashed lines indicate the position of
the first two minima of n;_y(¢), which defines the timescale ¢z.
(b) Dynamics of the Loschmidt echo rate function A(#). The dashed
lines mark the location of the first two DQPTs and their temporal
distance gives the timescale tpopr of the appearance of DQPTs. The
inset shows the sharpening for increasing system size L.

parameters have been constructed [12,51-56] and measured
[12,43,44,46], Landau theories have been formulated [57], as
well as scaling and universality have been identified [49,57]
for specific models.

IV. RESULTS

Along the lines of our main goal of connecting collapse
and revival oscillations to DQPTs, we compare in Fig. 2
the dynamics of the zero-quasimomentum occupation #;—o(t)
to the evolution of the dynamical counterpart of the free-
energy density A(z) for the same parameters as in Fig. 1.
While n;—o(¢) shows clearly the discussed collapse and revival
oscillations of the superfluid order, A(¢) exhibits a sequence
of sharp structures in its real-time evolution. Moreover, the
location of these sharp features in time appears correlated with
the minima in n;—o(?), as we will discuss more quantitatively
below.

The sharp structures in time appearing in A(f) become
sharper for increasing system size L, as we show for one case
in the inset of Fig. 2(b). We conclude that these features even-
tually turn into nonanalytic kinks in the thermodynamic limit,
which is the defining property of a DQPT. Importantly, the
system experiences not only a single DQPT in consequence of
the considered quantum quench, but rather a whole sequence,
the first three of which are contained in the time interval
shown in Fig. 2. Clearly, finite-size effects for the kinks
become stronger at larger times, so we restrict our analysis to
involve only the first two DQPTs. Further, finite-size effects
also appear to become more important upon increasing s;, i.e.,
when choosing the initial superfluid at weaker interactions,
such that we limit ourselves to s; < 1 in the remainder.

Comparing the time traces of ng—o(t) to A(t) in Fig. 2
already suggests a correlation between the time of collapse,

T T
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FIG. 3. Dependence of the collapse and revival oscillations as
well as the DQPTSs as a function of the final Hamiltonian param-
eter sy =J;/Us at L =120 and s; = 0.36. (a) The dynamics of
the zero-quasimomentum peak 7;_o(¢) exhibits stronger decay and
longer oscillation timescales upon increasing s¢. (b) Evolution of the
Loschmidt echo rate function A() also shows a shift toward larger
times of the DQPTs as well as an increased damping for larger s.

identified with a local minimum of n;_(¢), and the occurrence
of a DQPT. We will now study this link more quantitatively by
comparing directly the timescales: t¢g for the periodic decay
of the zero-quasimomentum peak and tpgpr for the sequence
of DQPTs. We extract tcr and tpgpr as indicated in Fig. 2 via
the temporal difference between two minima in rnz—o(¢) and
between two DQPTs, respectively.

In Fig. 3(a), we show our numerically obtained data for
the zero-quasimomentum occupation ng—o(t) upon varying
the parameter sy of the final Hamiltonian for a fixed initial
condition of s; = 0.36. For very small sy, the collapse and
revival oscillations are very prominent. Upon increasing sy,
the oscillation period grows together with faster decay of the
signal. Starting from sy = 0.1, this reduces the visibility of the
collapse and revival pattern making it difficult to resolve tcg.
We limit our discussion in the following only to those cases
where the oscillations are significantly visible for the first two
collapses. In Fig. 3(b), we additionally show our obtained data
for the dynamical free-energy density A(¢). In this case, the
ratio of maximal to minimal value of the A(¢) decreases as
well with larger s;. This alone does not impair our ability to
extract tpgpr even for relatively large s, ~ 0.1, unlike Tcg.

What becomes a challenge is that typically for larger s the
function A(t) has a tendency to become smoother, requiring
larger values of L to locate a nonanalytic peak. The time at
which it occurs is also defined by the fact that except narrow
time intervals around DQPTs, the function A(?) is practically
L-independent. The size of these intervals shrinks as L is
increased [see inset of Fig. 2(b)]. This provides an estimate
of location of the DQPT.

In Fig. 4, we now compare the timescales 7cg and tpgpr
as defined in Fig. 2. We plot these as a function of the
final parameters s, for three initial conditions given by s; =
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FIG. 4. Comparison of the timescale for the collapse and revival
oscillations tcg and the timescale tpgpr for DQPTs for different
initial conditions s; as a function of the final Hamiltonian parameter
sy at L =120. The dashed and solid lines show 7¢r and Tpgpr,
respectively. The different colors blue, red, and black refer to dif-
ferent initial conditions s; = 0.36, 0.45, 1.0. The fine-dashed curve
displays the equilibrium timescale 7o = 27 /A set by the gap A of
the final Hamiltonian.

0.36,0.45, 1. In addition, we include as a reference also
the timescale tp = 2mh/A associated with the gap A of
the final Hamiltonian. For sy = 0, the collapse and revival
oscillations occur with a period tcg = 27s/U [1,26], which
is just a consequence of the discrete equidistant spectrum of
the Hamiltonian H; = U ), n;(n; — 1). Consequently, all the
timescales have to agree in this limit, as one can also clearly
identify in Fig. 4. Upon increasing s, one can see corrections
to the sy = 0 limit. Here, 7cg and tpgpr stay close to each
other while 7o deviates significantly. However, we observe
slight deviations between tcr and Tpopr Which we attribute to
three possible origins: (i) finite-size effects that lead to slight
shifts of both of the timescales, as one can already see from
Fig. 2, (ii) the reduced visibility of the collapse and revival
signal upon increasing sy as discussed before, and (iii) slight
systematic shifts in estimating oscillation frequencies from
the first two minima for damped signals. Clearly, however,
7cr and Tpopr go hand in hand with each other whereas 7
behaves completely differently. Further, 7cg and tpgpr exhibit
a marked influence of the initial conditions. All these obser-
vations suggest that the collapse and revival oscillations are
associated with an emergent nonequilibrium timescale with no
equilibrium counterpart. Since this nontrivial timescale also
appears in the nonanalyticities of the Loschmidt echo, we
conclude that these oscillations are controlled by a sequence
of underlying DQPTs. This interpretation aligns well with
previous papers that have found a relation between order pa-
rameter dynamics and DQPTs in other models [29,51,58-61]
as well as in a recent experiment [10].

V. CONCLUDING DISCUSSION

Closed nonequilibrium quantum many-body systems can-
not be characterized by thermodynamic means. On the one
hand, this allows us to relax equilibrium constraints such as
the equal a priori probability of the microcanonical ensemble,

which can lead to quantum states with properties that are
inaccessible in a thermodynamic context such as time crystals,
for instance [16,17,62—65]. On the other hand, this shifts the
theoretical description from the Hamiltonian level to a more
challenging one at the time evolution operators U (t) level.
This can be seen, for instance, from one central result of our
paper, which is that the collapse and revival oscillations are
described by an emergent nonequilibrium timescale that is not
only determined by the properties of the final Hamiltonian
but also depends on the initial condition. Most importantly,
studying U(¢) adds an additional scale into the problem,
which is time ¢ itself. The theory of DQPTs provides a
general framework to incorporate time explicitly and to study
the properties of time evolution operators U (¢), since, for
instance, the central object G(¢) can be interpreted as a matrix
element of U (¢).

Recently, quenches and DQPTs in related models exhibit-
ing collapse and revival oscillations for states breaking a
continuous symmetry have been investigated in other contexts
[28,59]. For the work on the O(N) model [59], an extension
of the Loschmidt echo to the case of a broken continuous
symmetry has been proposed in terms of the full return proba-
bility to the ground-state manifold, involving projections of
the time-evolved state to all states within the ground-state
manifold. This appears different at first sight from the scenario
we study in the present paper, since we only consider a single
overlap. Importantly, however, we have chosen a setup with a
fixed particle number according to the experimental situation
[1,26] where the conjugate phase is undefined. Therefore, the
initial condition constitutes a superposition including all states
in the degenerate ground-state manifold and thereby all the
projections are naturally included. While the close connection
between the order parameter dynamics and DQPTs has also
been observed for many other models exhibiting a discrete
symmetry breaking [10,29,51,58-61,66—68], a recent paper
has questioned this connection for specific models exhibiting
a superfluid to Mott insulator transition in equilibrium [28].
Although we also study a system with such a transition, it is
important to emphasize a central difference making a direct
comparison challenging, which is the underlying integrability
of the models studied in Ref. [28]. These therefore exhibit
stable modes, as their elementary excitations don’t show
scattering as opposed to our case, which leads to a much more
complex dynamics. And this appears to be a crucial aspect
since we find evidence that, beyond the atomic limit, the
collapse and revival oscillations in our model are an inherent
quantum many-body phenomenon that cannot be related to an
approximation involving independent stable modes.

The initial experiment has been performed in a three-
dimensional optical lattice [1]. Our theoretical considerations
use a chain instead, leading immediately to the question of
how our results might extend to higher dimensions and, in
particular, whether the oscillations are similarly related to
DQPTs. This cannot be addressed by means of the MPS for-
malism used here. Recently, however, DQPTs in Ising models
beyond the one-dimensional limit have been studied using ex-
act diagonalization techniques [69] and a stochastic approach
to nonequilibrium quantum real-time dynamics [69]. In the
future, the simulation of two-dimensional systems might, in
principle, be within reach of projected-entangled pair states
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[70]. However, let us emphasize that the Loschmidt echo still
naturally provides a measure for the departure from and return
to the initial superfluid state and therefore of the collapse and
revival oscillations.

While collapse and revival oscillations can be experimen-
tally accessed straightforwardly using time-of-flight imag-
ing [2], measuring Loschmidt amplitudes or echos remains
a challenge. Recently, however, the return probability, i.e.,
Loschmidt echo, for condensed bosons in an ultracold atom
setup has been estimated [8], which gives hope that our theo-
retical predictions might become observable in the near future.
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