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Abstract
In this workwe formulate an efficientmethod for the description of fullymany-body localized systems
inweak contact with thermal environments at temperatureT. The key idea is to exploit the
representation of the system in terms of quasi-local integrals ofmotion (l-bits) to efficiently derive the
generator for the quantummaster equation in Born–Markov approximation.We,moreover, show
how to compute the steady state of this equation efficiently by using quantum-jumpMonte-Carlo
techniques aswell as by deriving approximate kinetic equations ofmotion. As an example, we consider
a one-dimensional disordered extendedHubbardmodel for spinless fermions, for whichwe derive
the l-bit representation approximately by employing a recently proposedmethod valid in the limit of
strong disorder andweak interactions. Coupling the system to a global thermal bath, we study the
transport between two leadswith different chemical potentials at both of its ends.We find that the
temperature-dependent current is captured by an interaction-dependent version ofMott’s law for
variable range hopping, where transport is enhanced/lowered depending onwhether the interactions
are attractive or repulsive, respectively.We interpret these results in terms of spatio-energetic
correlations between the l-bits.

1. Introduction

Many-body localization (MBL) has emerged as a newparadigm for phase structures in interacting quantum
matter protected by the underlying robust nonergodicity imposed by strong disorder [1–6]. This has led to the
discovery of novel topological or symmetry-broken phases [4, 7–11], which cannot exist in thermalizing
systems, with the particularly prominent example of time crystals breaking not only spatial but also temporal
symmetries [12–16]. Althoughmany signatures ofMBLhave been accessed experimentally [17–24], dissipation
induced by a remaining coupling to an environment, even if weak, has turned out to have a crucial impact onto
the long-time dynamics [24–33]. Specifically, external bathswith large bandwidths and delocalized excitations
are expected to forceMBL systems towards thermalization, which destabilizes the nonergodic properties central
for the anticipated new phase structures. However, it is a challenge to theoretically describe interactingmany-
body systems coupled to thermal environments for concretemicroscopicmodels.

A standard approach to describe the dynamics of an open system is to use a quantumLindbladmaster
equation under Born–Markov approximation [34], where the dissipation processes due to theweak coupling to
the environment are included in terms of a set of quantum jumpoperators. For thermal environments, the
dissipation is captured by quantum jumps between different eigenstates of the system. Thus, in order to
compute the generator of themaster equation, it is necessary to fully diagonalize the system. This is challenging
formost interacting quantum systems, with the computational effort generally growing exponentially with
system size. This difficulty is also reflected in the fact that previous studies are either limited to small system sizes
[32, 35–40] ormake rather specific assumptions regarding the properties of the environment, e.g. describing it
by classical noise [33, 41] or by dephasing processes corresponding to an infinite-temperature thermal
environment [27–31, 42].
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Herewe propose to exploit the l-bit representation [43–48] ofMBL systems to address the diagonalization
problem. The existence of an extensive number of quasi-local integrals ofmotion inMBL systemsmakes them
special in the sense that they are interacting quantum systemswhose fullmany-body spectrum can be accessed
efficiently.While deriving explicitly the l-bit representation is in general a demanding task, the difficulty grows
only polynomially with system size [49–52]. Utilizing the l-bit representation, we derive a Lindbladmaster
equationwhich describesMBL systemsweakly coupled to thermal environments. In order to perform concrete
calculations, we consider the limit of strong disorder andweak interactions andmake use of a recently proposed
efficient approximatemethod [53], where the l-bits are in leading order obtained by a single-particle
transformation.Note that a better approximation for the l-bits can be obtained systematically, e.g. by treating
the omittedmatrix elements perturbatively [28, 50, 51].

Although it is still computationally demanding to solve the full dynamics of themaster equation, the steady
state of the system in theweak coupling limit can be calculated efficiently. In this case, the steady state is diagonal
in the eigenbasis given by the Fock states of the single-particleHamiltonian under our approximation. Thus it
can be obtained through classicalMonte-Carlo simulations bymapping the Fock-space occupation probabilities
to a classical randomwalk.

We benchmark ourmethod by studing a spinless fermionicHubbard chainwith strong onsite disorder and
weak interactions. The system is coupled to a phonon bath at temperatureT. Further, we couple the chain at
both ends to fermionic reservoirs with a chemical potential difference. This gives rise to a nonequilibrium
current-carrying steady state, which reduces to the conventional linear response regime in the limit of vanishing
chemical potential difference.We showhow to solve the Lindbladmaster equationwhich describes the
dynamics of the systembymeans of classical quantum-jumpMonte-Carlo simulations [54]. In order to push
our description to even larger systemswe use a further simplification of themaster equation in terms of a kinetic
theory, which shows excellent agreement with theMonte-Carlo simulations for small system sizes, but with the
advantage that it allows us to reach system sizes of the order of 100 lattice sites.

Using this formalism, we investigate the transport properties of the nonequilibrium steady state (NESS).We
firstmap out the full temperature dependence of the induced current for the noninteracting problem. At
asymptotically low temperatures we observe that the current becomes temperature-independent due to the
coherent evolution of particles across the full chain, occurringwith an amplitudewhich is exponentially
suppressed as a function of system size. Upon increasing temperature beyond this system-size dependent
asymptotic regime, we recover a conductivity followingMott’s law for variable-range hopping (VRH),

T Texp 0s µ -[ ], which is well-studied for Anderson localized systems of noninteracting particles [55].We
take this as afirst indication that our approach captures the relevant physics. At even higher temperature,
transport crosses over to a simple activated regimewhere T Texp 1s µ -[ ]. There, particles can overcome
typical energy barriers imposed by the strong disorder potential on short distances as opposed toVRH,which is
characterized by longer-ranged tunneling processes involving smaller energy changes.We then apply our
approach to theweakly interacting case at strong disorder. In the temperature regimewhere the Anderson
system showsVRH,we again find that transport followsMott’s law, in agreementwith the analytical prediction
of [56]. However, theMott temperatureT0 ismodified by interactions. Depending onwhether interactions are
repulsive or attractive,T0 increases or decreases with respect to the noninteracting Anderson insulating case.We
interpret themodifications ofT0 in terms of interaction-induced changes in the spatio-energetic correlations
among the local integrals ofmotion in theMBL system.

The paper is organized as follows. In section 2, we present a general scheme to addressMBL systems in the
presence of thermal baths.Wefirst write out a Lindbladmaster equation for the l-bits. In the next step, we
simplify it further by neglecting the particle-hole dressingwhich is reasonable in the regime of strong disorder
andweak interactions. In section 3, we describe themodel (figure 1)whichwewill study in order to benchmark
our approach. This is followed by the introduction of the quantum-jumpMonte-Carlomethod and the kinetic
theory that we utilize to solve the Lindbladmaster equation in section 4. A goodmatch of the results between
these twomethods is shown. In section 5, we study the transport properties of the steady state for the

Figure 1. Schematic illustration of themodel under consideration. An open tight-binding chain of interacting spinless fermions
(green dots) in a randompotential (brown curve) is coupled to a global heat bath at temperatureT (blue box). This global bath induces
phonon (blue dot)-assisted heat exchangewith the system and two local baths (yellow boxes) at the endswith different chemical
potentials (μL andμR), which induce particle transport through the chain.
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noninteracting system. The discussion for the interacting system is presented in section 6. Finally, a summary of
themain results is given in section 7 to conclude.

2.Master equation formany-body localized systems in the presence of thermal baths

When a quantum system is brought intoweak contact with a thermal environment, the impact of the
environment can be captured by quantum jumps between different eigenstates of the system. The rate at which
such a process occurs depends on the energy difference of the corresponding states. Formost interacting
quantum systems, however, the full spectrum is hard to obtain, so already deriving the equations ofmotion of
the system in the presence of a thermal environment is challenging.We approach this problemby exploiting the
fact thatMBL systems posses an extensive number of integrals ofmotion [43–46]. Thismakes them very special
in the sense that they are interacting quantum systemswhose fullmany-body spectrum can be accessed.We
make use of this fact tofind equations ofmotion forMBL systems in thermal environments.

2.1. Born–Markovmaster equation
Weare interested in the typical setup of open quantum systems described by the totalHamiltonian

H H H H . 1tot SB B= + +ˆ ˆ ˆ ˆ ( )

Here, Ĥ denotes theHamiltonian of the systemunder investigation, H b bB w= åa a a aˆ ˆ ˆ†
describes the bathwith

bosonic or fermionic annihilation operator bâ for themodewith energy ÿωα, and HSB
ˆ is the system-bath

coupling operator, whose overall strength γwe assume to be small. The bath is assumed to be in thermal
equilibriumwith temperatureT and chemical potentialμ.

In theweak-coupling limit ( 0g  ) and assuming large thermal baths, the dynamics of the reduced density
matrix TrB totr r=ˆ { ˆ }of the system after tracing out the bath, can be described using the Born–Markov and the
rotatingwave approximation. This gives rise to a Lindbladmaster equation [34]

H L L L L H
i

,
1

2
,

i
, , 2t

 
år r r r r r¶ = - + - º - +

a
a a a a⎜ ⎟⎛

⎝
⎞
⎠ˆ [ ˆ ˆ ] ˆ ˆ ˆ { ˆ ˆ ˆ} [ ˆ ˆ] ( ˆ ) ( )† †

where {·, · } denotes the anti-commutator. Thefirst termdescribes the unitary evolution, and the second term
describes the coupling of the system to the environment. Here the operators Laˆ describe quantum jumps
between the eigenstates of the system.

Let us assume a systemwith spectrumEk and eigenstates kñ∣ coupled to a phonon bathwith bosonic

operators bâ via the systemoperator v̂

H v b b . 3SB åg l= Ä +
a

a a a
ˆ ˆ ( ˆ ˆ ) ( )

†

Then, themaster equation takes the form

H L L L L
i

,
1

2
, . 4t

k q
kq kq kq kq

,
år r r r¶ = - + -⎜ ⎟⎛

⎝
⎞
⎠ˆ [ ˆ ˆ ] ˆ ˆ ˆ { ˆ ˆ ˆ} ( )† †

The bath induces quantum jumps from level q to k, mediated by the action of the jump operators

L R k q , 5kq kq= ñáˆ ∣ ∣ ( )

with the jump rates

R k v q g E E
2

. 6kq k q

2
2



pg
= á ñ -∣ ∣ ˆ∣ ∣ ( ) ( )

Herewe have defined the bath correlation function

g E
J E n E T E

J E n E T E

, for 0

1 , for 0
7B

B


=

- + - <

⎧⎨⎩( ) ( ) ( )
( )[ ( )]

( )

with the Bose distribution n E T e, 1E k T
B

1B= - -( ) ( )/ and the spectral density of the bath
J E E2 l d w= å -a a a( ) ( ). Note that the Born–Markov and rotating-wave approximations rely on the
assumption of a separation of timescales [34]. For them to be valid, the time scales of the systemdynamics,
E Ek q

1- -∣ ∣ need to be fast when compared to the bath relaxation time and to the associated time-scales of the
system-bath coupling Rkq

1- (we set ÿ=kB=1 hereafter), respectively3.

3
The situation, where these conditions are not fulfilled, was discussed, for instance in [57, 58].
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Under the dynamics of equation (4), the coherences, k qrá ñ∣ ˆ∣ with k q¹ , decay such that the steady state
reached asymptotically in the long-time limit is diagonal in the energy basis, p k kk kr r = å ñá¥ˆ ˆ ∣ ∣ [59–61].
This can be seenmost easily by noting that in the limit γ→ 0, thefirst term in equation (2) has to vanish for the
steady state with 0tr¶ =¥ˆ . After a diagonal state is reached, the asymptotic dynamics is governed by dissipative
processes only and described by the Pauli rate equation

p R p R p . 8t k
q

kq q qk kå¶ = -( ) ( )

When the system is coupled to a single bath of temperatureT, the rates obey the equilibrium condition
R R ekq qk

E E Tk q= - -( ) . In this case the system approaches thermal equilibrium in the long-time limit,
p E Texpk kµ -( ), and the systemobeys detailed balance: the terms of the sum in equation (8), which
correspond to the net probability currents from states q to k, vanish individually. If the equilibrium condition is
broken, e.g. when the system is coupled to baths of different temperature or chemical potential, the system
approaches a non-equilibrium steady state, for which the right-hand side of equation (8) vanishes only as a
whole, so that probability currents break detailed balance.

2.2.Many-body localized systems
Note that in order tofind the equations ofmotion for the system in the presence of a thermal bath, it is essential
to diagonalize the fullHamiltonian tofind its eigenstates and eigenenergies. For a quantummany-body system,
this is generally difficult. Non-interacting systems however can be treated readily [62, 63], since themany-body
eigenstates are given by the Fock states of the single-particleHamiltonian. Aswe discuss in the following,MBL
systems provide another exception, due to an emergent formof integrability [43–46].

We consider a systemof spinless lattice fermions. A typical example for such a fermionic systemwith an
MBLphase is the one-dimensional Andersonmodel of spinless fermionswith nearest-neighbor interactionsV,
whichwe introduce in section 3. The generalization to spinful fermions or spinHamiltonians is straightforward.
We assume that the systemHamiltonian can be brought into the diagonal form

H n U n n U n n n
1

2

1

6
, 9

k
k k

k q
kq k q

k q p
kqp k q p

, , ,
å å åe= + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )

where the fermionic number operators nkˆ describe quasi-local integrals ofmotion (l-bits) coupled by diagonal
matrix elementsUk k k... n1 2

that decay exponentially with the localization length ξ [64].We can directly read off the
fullmany-particle eigenstates, which are the Fock states with respect to the l-bits nn kñ = ñ∣ ∣{ } , nk=0, 1, and the
correspondingmany-particle spectrumEn=E({nk}).

We focus on the limit of weak interactions, where it is assumed that there exists a quasi-local transformation
(adiabatic connection) between the l-bits and the local annihilation operators aiˆ for fermions on lattice sites i
[4, 45]

c u a u a a a ..., 10k
i

i i
i j k

ijk i j k
, ,

å å= + +ˆ ˆ ˆ ˆ ˆ ( )†

such that the l-bit operators read n c ck k k=ˆ ˆ ˆ† . In theMBL regimewith strong disorder, the coefficients ui, uijk
essentially have a local support with some exponential tails decaying on length scale ξ. It can be shown [53] that
the terms that lead to particle-hole dressing uijk and all higher order terms contribute at least in first order in the
interaction strengthV, so forweak interactionsV and strong disorder the quasi-particles are in leading order
given by a single-particle transformation.

2.3.MBL system in the presence of a phonon bath
Let us nowdiscuss the coupling of anMBL system to a phonon bathwith a coupling operator v̂ that is some
single-particle operator v v a aij ij i j= åˆ ˆ ˆ†

H v a a b b . 11
i j

ij i jSB
,
å åg l= Ä +

a
a a a

ˆ ˆ ˆ ( ˆ ˆ ) ( )† †

The formof HSB
ˆ induces quantum jumps between eigenstates of Ĥ and the corresponding dissipator is given by

L L L L
1

2
, , 12

n n
n n n n n n n nheat

,

 år r r= -
¢

¢ ¢ ¢ ¢⎜ ⎟⎛
⎝

⎞
⎠( ˆ ) ˆ ˆ ˆ { ˆ ˆ ˆ} ( )† †

with L R n nn n n n= ¢ñá¢ ¢ˆ ∣ ∣describing the jump fromFock state nñ∣ to the state n¢ñ∣ . The associated jump rate is
then given by

R v g E En n2 , 13n n n n
2 2pg= á ¢ ñ -¢ ¢∣ ∣ ˆ∣ ∣ ( ) ( )
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with g(E) the bath correlation function (equation (7)). Note that generally, in the full spectrumof a quantum
many-body systemone expects that a large number of close degeneracies occur, which violates the validity
condition of the rotating-wave approximation [34]. However, forMBL systems in the limit of weak interactions
and strong disorder that we are aiming at, wewill find significant rates only for processes, where one or atmost a
few excitations are transferred.Moreover, typically the bathwill transfer excitations only between nearby l-bits,
since vij decays on the correlation lengths of the bath. Both together leads to amuchmilder condition.

Forweak interactions and strong disorder, particle-hole dressing is suppressed, such that the transformation
to the l-bits effectively becomes a single-particle transformation

c i a . 14k
i

k iå y»ˆ ( ) ˆ ( )† †

In this case, the dissipator simplifies to

L L L Ln n n n
1

2
, , 15

k q
qk qk qk qk

n
heat

, ,

 år r r= -
⎡
⎣⎢

⎤
⎦⎥( ˆ ) ˆ ( ) ˆ ˆ ( ) { ˆ ( ) ˆ ( ) ˆ} ( )† †

with L Rn n nqk qkn n,qk
= ñáˆ ( ) ∣ ∣describing the jump fromFock state n n n nn , , , , , ,k q M1ñ = ¼ ¼ ¼ ñ∣ ∣ to the state

n n n nn , , 1, , 1, ,qk k q M1ñ = ¼ - ¼ + ¼ ñ∣ ∣ by transferring a particle from the single-particlemode k to themode q.
The fact that we neglect particle-hole dressing leads to

v n n n nn n 1 1 , 16qk kq k q kq k q
2 2 2 2 2n ná ñ = - = -∣ ∣ ˆ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( ) ( )

with the single-particlematrix element of the coupling operator

i v j . 17kq
i j

k ij q
2

,

2

*ån y y=∣ ∣ ( ) ( ) ( )

For convenience, we introduce an effective single-particle rate

R g E En 2 , 18qk kq n n
2 2

qkpg n= -˜ ( ) ∣ ∣ ( ) ( )

which in the noninteracting case, with E E q kn nqk
e e- = - , reduces to the single-particle rate R Rnqk qk=˜ ( ) .

This allows for the extraction of quantum statistical factors from themany-particle rate

R R n nn 1 . 19qk q kn n,qk = -˜ ( )( ) ( )

This expression resembles the expression found for the ideal gas [62], where themany-particle rate is the single-
particle rateRqkmultiplied by the occupation of the departure state nk and the Pauli blocking factor (1−nq) of
the target state. The difference is that due to interactions, the transition rate depends on thewhole configuration,
rather than only on the two single-particle states involved in the transition.

2.4.MBL system in the presence of a particle reservoir
Let us now turn to the case where the systemmay also exchange particles with an external fermionic reservoir
with temperatureT and chemical potentialμ. For simplicity, we again consider the regimewherewe can neglect
particle-hole dressing.Here the system-bathHamiltonian is given by

H b d b d , 20SB å l= +
a

a a a
ˆ ( ˆ ˆ ˆ ˆ) ( )† †

where d i ai ij= åˆ ( ) ˆ is an arbitrary single-particlemode in the system. The resulting dissipator reads

L L L Ln n n n
1

2
, , 21

k
k k k k

n
part

,
, , , , å år r r= -

a
a a a a

=

⎡
⎣⎢

⎤
⎦⎥( ˆ ) ˆ ( ) ˆ ˆ ( ) { ˆ ( ) ˆ ( ) ˆ} ( )† †

where L n n nk kn, ,= G ñá+ + ˆ ( ) ∣ ∣ and L n n nk kn, ,= G ñá- - ˆ ( ) ∣ ∣, with n nn ,... 1 ,...k k1ñ = - ñ∣ ∣ being the Fock
state obtained by removing one particle frommode k. The jump rates n,G are given by

g E En , 22kn n n, F knG = -


( ) ( ) ( )

with the couplingmatrix element

d i i n k nn n n , 23k k
i

k k k
2

2

*ån j y h= á ñ = º( ) ∣ ∣ ˆ∣ ∣ ( ) ( ) ( ) ( )

and the bath-correlation function for the particle exchangewith the fermionic bath

g E J E f E T, , , 24
F

m=+( ) ( ) ( ) ( )

g E J E f E T1 , , , 25
F

m= - - --( ) ( )[ ( )] ( )

where f E T, , e 1E T 1m = +m- -( ) ( )( ) is the Fermi distribution of the bath.
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3. Interacting Anderson insulator as quantumwire

Webenchmark the explainedmethod by studying a disordered extendedHubbard chain of spinless fermions
(figure 1). The systemHamiltonian [65–67] reads

H H V a a a a , 26
i

M

i i i i0
1

1

1 1å= +
=

-

+ +ˆ ˆ ˆ ˆ ˆ ˆ ( )† †

with the single-particle term given by

H J a a a a w a a , 27
i

M

i i i i
i

M

i i i0
1

1

1 1
1

å å= - + +
=

-

+ +
=

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( )† † †

where aiˆ (aiˆ )† is the fermionic annihilation (creation) operator at site i in a chain of lengthM.Moreover,wi are
randomfields uniformly distributed in the interval [−W,W], J andV are respectively the hopping and the
interaction strength. H0

ˆ describes the noninteracting Anderson-model [68] (see appendix A.3) and all its single-
particle eigenstates are exponentially localized for any amount of disorderW [69]. ForV 0¹ themodel has an
MBL transition [3–6]. At large disorderW V , the system is in theMBLphase and it is a perfect insulator,
while for weak disorderW V the system is ergodic, describing a thermal phase.We couple the system to two
leads at the ends of the chain. The leads, which exchange particles with the system, have the same temperatureT
but different chemical potentials (μL andμR), inducing thus particle transport through the chain.Moreover, the
system is also coupled to a global thermal bath also at temperatureT (unless stated otherwise), withwhich it
exchanges energy, as sketched infigure 1.

We are interested in the limit of weak interactions at strong disorder, where in leading order l-bits can be
approximated by the noninteracting Anderson operators [53], so that we arrive at the approximateHamiltonian

H n U n n
1

2
. 28

k
k k

k q
kq k qapp

,
å åe= +ˆ ˆ ˆ ˆ ( )

Here n c ck k k=ˆ ˆ ˆ† with c i ak i k iy= åˆ ( ) ˆ† †, and ke ,ψk are the single-particle eigenenergies and eigenmodes,
respectively. The interaction coefficientsUkq are given by

U V i i i i i i2 1 1 1 . 29kq
i

k q k q k q
2 2å y y y y y y= - + + - +[ ( ) ( ) ( ) ( ) ∣ ( )∣ ∣ ( )∣ ] ( )

Since the orbitals are exponentially localized, i ek
i i kk locy µ x- -( ) ∣ ∣ ( ), with localization center ik and the

single-particle localization length ξloc [70], after a relabeling of the indexes (k, q) according to their spatial
positions, we haveU Vekq

k q loc~ x- -∣ ∣ (here ξloc is the localization length in themiddle of the single-particle
spectrum). This approximation (equation (28)) is equivalent to discarding the off-diagonal elements of the
full Hamiltonian (equation (26)) in the non-interacting basis. Its reliability for weak interactions has been
shown in [53]. Its validity is strongly supported also by the spatio-energetic anti-correlations between the
single-particle Anderson orbitals. If two single-particle eigenstates are close to each other in space, their
energy difference ismore likely to be large, suppressing scattering events between these states. Figure 2 gives
evidence of the existence of this anti-correlation, showing the distribution of the spatial distance between
pairs of eigenstates R i i ii k q

2 2y yD = å -∣ (∣ ( )∣ ∣ ( )∣ )∣as a function of their energetic distance E k qe eD = -∣ ∣.
The distribution ismainly concentrated at the left bottom corner of figures (a)–(c), which are zoomed in
(d)–(f). It is important to point out that a better approximation for the l-bits can be obtained systematically
by treating the omittedmatrix elements perturbatively, giving rise to higher order corrections in interaction
strength [28]. Such a procedure is beyond the scope of this paper but it would not render our approach
inefficient.

We couple this system to a heat reservoir via the system-bathHamiltonian

H n C b b , 30
i

i
i i

SB å åg= Ä +
a

a a a
ˆ ˆ ( ˆ ˆ ) ( )

( ) † ( )

which couples each site to an independent bath of bath-correlation length zero.Cα andγ are the coupling strengths.
Furthermore,we assume anOhmic bath,with spectral density J E( ) proportional toE, J(E)∝E. The total rate that
enters in equation (15) is therefore the sumof the rates for individual heat baths that couple to a single site ionly.

We investigate the transport properties of the steady state, when the system is coupled to the two leads and
the thermal bath. The lead coupling is described by

H D b a b a , 31L
L L

SB, 1 1åk= +
a

a a a
ˆ ( ˆ ˆ ˆ ˆ ) ( )

( ) † ( ) †

H D b a b a . 32R
R

M

R
MSB, åk= +

a
a a a

ˆ ( ˆ ˆ ˆ ˆ ) ( )
( ) † ( ) †

6

New J. Phys. 21 (2019) 063026 L-NWu et al



The resulting coupling rates k 1L k
2h y=( ) ∣ ( )∣ , k MR k

2h y=( ) ∣ ( )∣ that enter in equation (23) are proportional to
the value of thewavefunctions at the ends of the chain. For the leadswe assume a constant density of states.

The effective single-particle energies are shifted due to interactions.Within the scope of the approximate
Hamiltonian in equation (28), it is convenient to define an interaction-shifted energy operator for each l-bit

U n . 33k k
q

kq qåe e= +˜̂ ˆ ( )

The energy difference occurring in the rate for the heat bath, equation (18), can then be expressed as

E E Un n n n . 34q k kqn nqk e e- = á ñ - á ñ -∣˜̂ ∣ ∣˜̂ ∣ ( )

For the particle reservoir, the energy difference in equation (22) is given by

E E n n . 35kn nk e- = á ñ ∣˜̂ ∣ ( )

Note that writing energy differences in terms of kễ does not constitute an additional approximation.

4. Solving themaster equation

Weemploy twomethods to compute the non-equilibrium steady state of themaster equation. The firstmethod
is a quantum-jumpMonte Carlo technique, whichmakes use of the fact that the equations ofmotion for the
Fock-space occupation probabilities pn can bemapped to a classical randomwalk. Thismethod gives accurate
results after sufficient statistical sampling. The secondmethod consists in deriving kinetic equations ofmotion
by employing amean-field decomposition of density-density correlations. Importantly, both approaches are
found to agree verywell.

4.1.Method I: quantum-jumpMonteCarlo simulation
Aswe discuss in section 2.1, the dynamics of themany-body occupation probabilities p n nn r= á ñ∣ ˆ∣ decouples
from the off-diagonal elements, which decay over time. For ourmodel, the equation ofmotion for the
probabilities is given by

p n n R p R p

k f n p n p

f n p n p

n n1

1

1 1 , 36

t
k q

q k kq qk qk

L R k
k k k

k k k

n n n

n n

n n

,

,

qk

k

k

å

å å kh e

e

¶ = - -

+ - -

+ - - -
a

a a

a

=




( ) [ ˜ ( ) ˜ ( ) ]

( ){ (˜ )[ ( ) ]

( (˜ ))[( ) ]} ( )

where n nk ke e= á ñ˜ ∣˜̂ ∣ , andwe use the short notation fα(E)=f (E,μα,Tα)withα=L,R. Thefirst line in
equation (36) describes the heat exchange processes, with the first termdenoting the increase of the probability

Figure 2.Distribution of the spatial distance of two eigenstatesΔR as a function of their energy differenceΔE. 1000 disorder
realizations are added up. (d)–(f) are respectively the zoom-in views of (a)–(c).
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pn by jumping from nqkñ∣ to the state nñ∣ , and the second termdenoting the inverse process. The second line and
third line in equation (36) describe particle exchangewith the leads, with the first termdenoting particle gain,
and the second term the particle loss.

We generalize the quantum-jumpMonte-Carlomethod described in [54] to the case of number-
dependent single-particle rates R nqk˜ ( ). The dynamics of the occupation probability pn is simulated by
taking randomwalks in the classical space composed by the Fock states n n nn , , , ,k M1ñ = ¼ ¼ ñ∣ ∣ (not their
superpositions) [62] corresponding to the given jump rates. In our case, we have two types of jumps, the first
one due to the global thermal bath and the second one due to the leads. For the heat exchange processes, a
jump transfers one particle from one single-particle eigenstate to another, which conserves the total particle
number. For the particle exchange processes, a jump adds (or removes) a particle to (or from) one eigenstate.
We perform these simulations by using a Gillespie-type algorithm (see appendix A.1).We can then compute
steady state expectation values (e.g. n n n,k k qá ñ á ñˆ ˆ ˆ ), by averaging over the long-time dynamics of many
trajectories.

4.2.Method II: kinetic theory
In order to treat larger systems and to gain some intuitive understanding of theNESS, wewill nowderive kinetic
equations ofmotion for themean occupation numbers nlá ñˆ . The time evolution of nlá ñˆ , again for the special case
of ourmodel system, is given by

t
n n

t
n

t
n

d

d
tr

d

d

d

d
, 37l l t l l

heat part

rá ñ = ¶ = á ñ + á ñ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ˆ [ ˆ ˆ ] ˆ ˆ ( )

with (see appendix A.2)

t
n R n n R n n

d

d
1 1 , 38l

k
lk k l kl l k

heat
åá ñ = á - ñ - á - ñ⎜ ⎟⎛

⎝
⎞
⎠ˆ [ ˜̂ ˆ ( ˆ ) ˜̂ ˆ ( ˆ ) ] ( )

and

t
n l f n f n

l f n

d

d
1 1

. 39

l
L R

l l l l

L R
l l

part ,

,

å

å

h e e

h e

á ñ = á - ñ - á - ñ

= á - ñ
a

a a a

a
a a

=

=

⎜ ⎟⎛
⎝

⎞
⎠ˆ ( )[ (˜̂ )( ˆ ) ( (˜̂ )) ˆ ]

( ) (˜̂ ) ˆ ( )

In equation (38), we have defined an effective rate operator

R R n n n . 40lk lk
n
å= ñá˜̂ ˜ ( )∣ ∣ ( )

Using equation (34), we find

R g U2 . 41lk kl l k lk
2 2pg n e e= - -˜̂ ∣ ∣ (˜̂ ˜̂ ) ( )

The effect of interactions is tomodify the energy difference between the states ( Ul k lke e- -˜̂ ˜̂ ), implying that the
transition rate depends on thewhole configuration, rather than only on the two single-particle states involved in
the transition (εl−εk).

In order to obtain a closed set of equations in terms ofmean occupation values, we employ themean-field
approximation

n n s i i k q, , for , , 42
k

s

i
k

s

i k q
1 1

k k á ñ » á ñ " ¹ " ¹
= =

ˆ ˆ ( )

giving f fl le eá ñ » á ña a(˜̂ ) ( ˜̂ ), g n n g n n1 1l k lk k l l k lk k le e g e e gá - - - ñ á - - ñ á ñá - ñ(˜̂ ˜̂ ) ˆ ( ˆ ) ( ˜̂ ˜̂ ) ˆ ˆ . In this way, we get
a set of nonlinear kinetic equations ofmotion

t
n R n n R n n l f n

d

d
1 1 . 43l

k
lk k l kl l k

L R
l l

,
å å h eá ñ = á ñá ñ - á ñ - á ñá ñ - á ñ + á ñ - á ñ

a
a a

=

ˆ [ ˜̂ ˆ ( ˆ ) ˜̂ ˆ ( ˆ )] ( )[ ( ˜̂ ) ˆ ] ( )

Weobtain the equations for theNESS, by setting equation (43) to zero

t
n

d

d
0. 44l NESSá ñ =ˆ ( )

In the following, wewill always consider the steady state and, therefore, drop the subscriptNESS. Using the
single-particle wavefunctions ly we canfind themean occupation number (density profile) in real space
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n i n . 45i
l

M

l l
1

2å yá ñ = á ñ
=

ˆ ∣ ( )∣ ˆ ( )

The nonlinear term in equation (43) prevents us from finding an analytic solution.However, in the absence
of the global thermal bath (γ=0), the solution of equation (44) is given by

n
l f l f

l l
. 46l

L L l R R l

L R
0

h e h e
h h

á ñ =
á ñ + á ñ

+
g=ˆ

( ) ( ˜̂ ) ( ) ( ˜̂ )
( ) ( )

( )

Let us compare themethods described in sections 4.1 and 4.2 by computing the density profile niá ñˆ , which
also determines the current to be discussed later. Figure 3 shows the density profile niá ñˆ obtained by numerically
solving the kinetic equations (equation (44), solid lines) and the one calculated using the quantum-jump
Monte-Carlo technique (equation (36), markers). The two results are almost indistinguishable both for the
noninteracting and the interacting case. The chemical potentials in the leads are taken equal to L R,m m= ¯

2dm with relatively large chemical potential difference δμ=5J, and m̄ isfixed so that the system is at half-filling

( N M 2á ñ =ˆ , where N̂ counts the total number of particles). Later on, wewill use only small chemical potential
offsets δμ, in order to compute conductivities. The large difference between the chemical potentials produces a
density gradient in the absence of the global thermal bath (γ=0), as shown infigure 3 (black dashed lines). The
presence of the global thermal bath, which induces phonon-assisted tunneling, erases this gradient for weak
disorder, as shown in (a) and (c). Furthermore, by increasing the disorder strengthW, which prompts the
localization of thewavefunctions and thus the suppression of particle tunneling, the density gradient is restored,
as shown infigures 3(b) and (d).

Figure 3.Density profile niá ñˆ as a function of site i. The solid lines are the results from the kinetic theory and the dashed lines are the
results in the absence of the global thermal bath (obtained by substituting equation (46) into (45)). Themarkers denote the averaged
results over 1000 trajectories of quantum-jumpMonte-Carlo (MC) simulations. The open circles in (c), (d) are the results withV=0,
as shown in (a), (b). The parameters areM=50, γ2=0.01J,κ=0.1γ2 ,T=J and 2Lm m dm= +¯ , 2Rm m dm= -¯ , with
δμ=5J, and m̄ is set tomakeN=M/2=25.
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5. Results I: observation ofVRH for noninteracting Fermions in amicroscopicmodel

We investigate the particle current in theNESS, which is defined as the net particleflow at the ends of the chain

I l f n l f n . 47
l

M

L L l l
l

M

R R l l
1 1

å åh e h e= á ñ - á ñ = - á ñ - á ñ
= =

( )[ ( ˜̂ ) ˆ ] ( )[ ( ˜̂ ) ˆ ] ( )

Having shown that the kinetic equations, equation (43), are reliable, we nowuse this approach to study the
dependence of the current I, equation (47), on disorder strengthW, on temperatureT of the bath, and on
interaction strengthV. As shown in appendix A.4, for the current, the results of the kinetic equations also agree
verywell with those fromMonte-Carlo simulations. In the following, wewill only showdisorder-averaged
results of the kinetic theory.

5.1. Transport as a function of disorder strengthW
In the absence of the thermal bath (γ=0), the current in theNESS is given by

I f f
l l

l l
, 48

l

M

L l R l
L R

L R
0

1
å e e

h h
h h

= á ñ - á ñ
+

g=
=

[ ( ˜̂ ) ( ˜̂ ))]
( ) ( )

( ) ( )
( )

which is obtained by substituting the solution of the occupation numbers, equation (46), into (47). The terms of
Iγ=0 are proportional to the product l l M M1 exp 4L R l l

2 2
loch h y y xµ ~ -( ) ( ) ∣ ( )∣ ∣ ( )∣ ( ), where for strong

disorder W1 loglocx ~ ( ). This implies that without coupling to a thermal environment the current will
dramatically decaywith disorder strength. This is confirmed infigure 4 (dashed lines), where the behavior of the
current is shown as a function ofW for the non-interacting chain ofM=100 lattice sites. Here and in the
following, we consider a weak chemical potential difference δμ=0.1J. Figure 4 also reports the case inwhich
the thermal bath is present 0g ¹( ), showing that the presence of a global thermal bath enhances transport for
sufficiently largeT.

5.2. Transport as a function of temperature T
In this sectionwe study the dependence of the current I on temperatureT and disorder strengthW for the
noninteracting case. Figure 5(a) shows the current I as a function ofT for a fixed system size (M=100) for
several values ofW, while figure 5(b) shows I for a fixed disorder strengthW for several system sizesM.We can
distinguish three distinct regimes according to the value of the temperature. At ‘low’ temperaturesT, the current
approaches the result obtained in the absence of the global bath (γ=0, dotted lines). In the intermediate
temperature regime, the behavior of the current is well predicted byMott’s law forVRH [55],
I T Texp 0µ -( ). Finally, at ‘high’ temperatures (T J ), I decreases as a function ofT.

Note that the locations of the three regions depend on various parameters, such as the disorder strengthW
(as shown in figure 5(a)), the coupling to the leadsκ, and so on. The independence of the current on temperature
in the ‘low’ temperature regime is due to the suppression of heat exchange, which can be inferred from the good
agreement of the results with thatwithout coupling to the global thermal bath (equation (48), dotted lines).
Nevertheless, the remaining current T 0( ) is afinite system size effect [71]. Indeed, asT 0 , Iγ=0 decays

Figure 4.Current I as a function of the disorder strengthW. The results are averaged over 1000 disorder realizations. The solid lines
are obtained from the kinetic equations and the dashed lines are the results without coupling the system to the global bath
(equation (48)). The parameters are system sizeM=100, dissipation rateκ=0.1γ2, interaction strengthV=0, and

2Lm m dm= +¯ , 2Rm m dm= -¯ , with chemical potential imbalance δμ=0.1J, and m̄ is set tomakeN=M/2=50. Except when
otherwise stated, wewill take the same parameters for the rest of thework.
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exponentially with system sizeM, as shown infigure 6(a). For a given system size, Iγ=0 depends on the disorder
strength, and as expected it is smaller for stronger disorder (figure 5(a)).

The intermediate-temperature VRH regime can be understood using the following argument due toMott
[55]. Let us consider the hop between states with localization centers separated by the distanceΔR andwith
energy differenceΔE. On the one hand, the probability to hop is proportional to the envelop overlap between
the two states, thus it decays exponentially with the distanceΔR Rexp 2 locx~ - D[ ( )]. On the other hand, the
probability to produce excitations of orderΔE due to the presence of the heat bath is given by the Boltzmann
factor exp(−ΔE/T). This leads us to assume that the current (conductivity) to leading order is given by

I e . 49R E T2 loc~ x- D -D ( )

As alreadymentioned, the spatial distanceΔR and the energy separationΔE, are not independent, but show
clear anticorrelations (figure 2), which shall be captured byΔR∼(ΔEν)−1, where ν is the density of states.
Thus, the current is determined by the competition between the overlap term exp(−2ΔR/ξloc)which favors
short hops and the energy activation E Texp -D( ), which favors long hops.Maximizing this probability over
ΔE, onefinds in one spatial dimension

I e e e , 50R T T E T2 0 loc 0 0µ = =x- D - -D ( )

withMott’s hopping length R T20 locx nD = ( ) andMott’s temperatureT0=2/(ξlocν).Moreover,Mott’s

hopping energy E T T0 0D = is the energy scale that defines thewidth of the energy interval of the activated
eigenenergies. Note that theVRHmechanism relies on the continuous density of states for the phonon bath,
which ensures the ability of the particles to draw energy fromphonons for hopping [72]. By fitting the current in
the intermediate temperature regime toMott’s law I I T Texps 0= -( ), we can extractT0. Figure 6(b) shows
T0 as a function of ξlocν, where ξloc is the single-particle localization length in themiddle of the energy-band

Figure 5.Current I as a function of the temperatureT of the bath for various disorder strengths with M 100= (a) and for various
system sizes with W J3= (b). The dashed lines arefitting curves according to I I es

T T0= - using the data withT ranging from0.1J to
J. The dotted lines are the results in the absence of the global heat-exchange bath (equation (48)).

Figure 6. (a)Current I at low temperatureT=0.02J as a function of system sizeM. (b)Mott temperatureT0 (obtained fromfitting) as
a function of the localization length ξloc times the density of states ν at k=M/2.
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(εk∼0).Wefind that at strong disorder, T0 loc
1.29 0.25x nµ - ( ) , agreeing rather well with theMott’s

prediction loc
1x nµ -( ) .

Finally, in the ‘high’ temperature regime, we attribute the decrease of the current with respect to temperature
to the fact that the difference between the Fermi distributions of the leads ( f fL l R le eá ñ - á ñ( ˜̂ ) ( ˜̂ )) is washed out. To
support this idea, wefix the temperature of the leads atTL=TR=0.01J. In this case, the current I increases
with the temperature of the global thermal bathT as T Texp 1-( ) in the ‘high’ temperature regime, as shown in
figure 7(a). The reason is that the thermal energyT is so high that, despite of their large energy separation, already
activated hopping between nearest neighboring localized orbitals dominates over theVRHbehavior.

From the current, we can deduce the conductanceG=I/δμ, as well as the conductivity

GM
IM

. 51s
dm

= = ( )

Figure 7(b) shows the conductivityσ at temperatureT=0.5J as a function of the system sizeM forW=5J.We
can observe thatσ converges to afinite value in the limit M  ¥.

6. Results II: VRH forweakly interacting Fermions

Let us nowdiscuss transport in the presence of weak interactions, for which the system is in theMBLphase.
Here, we exploit the advantages of ourmethod, allowing for the treatment of interacting systems in the presence
of a thermal environment. All of our results are obtained in the limit of weak interactions and strong disorder in
which the approximation (equation (28)) is justified.

6.1. Transport as a function of temperatureT
Figure 8(a) shows the temperature dependence of the current for several interaction strengthsV. Interestingly,
also for the interacting case V 0¹( ), wefind a regime of temperatures, where the current is explained byMott’s
law (I T Texp 0~ -( )), in agreementwith the analytical prediction of [56].Wefind that in this VRH regime,
attractive interactions (blue dashed line) enhance transport, while for repulsive interactions (orange dashed–
dotted line) the current decreases. Thismeans that the interaction changesMott’s temperatureT0. Figure 8(b)
shows the dependence ofMott’s temperatureT0 on the interaction strengthV.We can see how attractive
interactions decreaseT0, while repulsive interactions increaseT0.

Canwe understand this behavior? Fromour previous discussionwe know thatT0 depends on the
localization length ξloc and on the density of states ν. However, within our approximation, the localization
length is not affected by the interactions.We should, therefore, be able to explain the interaction-induced shift of
Mott’s temperature in terms of interaction-induced shifts of the density of states.

6.2. Interaction-shifted density of states
Infigure 9(a), we show the energies keá ñ˜̂ in the steady state forV=−0.4J,V=0 andV=0.4J all atT=0.5J.
As expected from equation (33), repulsive interactions (V>0, orange dashed–dotted line) shift the single-
particle energies εk up (black solid line) and attractive interactions (V<0, blue dashed line) decrease them.
However, this does not imply a change in the average level splitting k k 1e eá - ñ-˜̂ ˜̂ .What is crucial is rather that the
interaction-dependent energy shift depends on k. The absolute value of the energy shift Ek k kd e eº á ñ -˜̂ is

Figure 7. (a)Current I as a function of the temperatureT for the global bath.Here, the temperatures for the local baths are fixed at
0.01J. The dotted line is the result in the absence of the global thermal bath, i.e. equation (48). The disorder strength isW=2J.
(b)Conductivityσ as a function of system sizeM. Other parameters areT=0.5J, disorder strengthW=5J.
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shown infigure 9(b). For the eigenstates in themiddle of the spectrum, which are the ones that contribute
predominantly to the transport, the energy shift increases with energy.

This behavior can be understood from considering equation (33): The energy shift E U nk q kq qd = å á ñˆ
depends viaU Vekq

k q loc~ x- -∣ ∣/ on the overlap of the involved single-particle wave functions. Therefore, the
main contribution to the shift originates from eigenstates that are close by in space.Now, due to the anti-
correlation property between single-particle energy and spatial distance, these eigenstates qwill have a large
energy difference with respect to k. Thus a state k slightly above the Fermi energywill havemore likely
neighboring states below the Fermi energy with a large occupation probability, while a state slightly below the
Fermi energy willmore likely have neighboring states above the Fermi energy, with a small occupation
probability. In this way, the positive/negative energy shift of repulsive/attractive interactions, will be larger for
states above the Fermi level than for states below it. This implies that the level spacing between neighboring
energy levels k k 1e eá - ñ-( ˜̂ ˜̂ ) is increased for repulsive interactions and is decreased for attractive interactions. In
otherwords, repulsive interactions reduce the density of states 1k k k 1n e e= á - ñ-( ˜̂ ˜̂ ) and attractive interactions
enhance it.

6.3. Explanation of the change ofMott’s temperature
The suspected behavior is confirmed infigure 10(a), wherewe show the averaged density of states (over states
with k between 40 and 60), n̄ , as a function of interaction strength at temperatureT=0.5J.We can now check
whether the dependence ofMott’s temperatureT0 on interactions can be explainedwith their effect on the
density of states.Whenwe plotT0 versus n̄ , as shown infigure 10(b), we observe a behaviorT0

1.18 0.15nµ - ¯ ,
which agrees well with the predicted ν−1 dependency inMott’s temperature.

Wewould like to emphasize that the origin ofMott’s law thatwefind for our system is different from the case of
Coulomb interactions, which has been shown to lead to aVRHconductivity T Texp 0

1 2s µ -[ ( ) ] independent
of dimensionality due to a nonanalyticmodificationof thedensity of states near theFermi energy [73]. In our case

Figure 8. (a)Temperature dependence of the current for various interaction strengthsV. (b) Fitted values ofMott’s temperatureT0 as
a function of the interaction strengthV. The disorder strength isW=3J.

Figure 9. (a) Interaction-shifted single-particle energies keá ñ˜̂ at temperatureT=0.5J. (b)Magnitude of the energy shift
Ek k kd e eº á ñ -˜̂ .
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of local interactions of nearest-neighbor type the density of states becomesmodifiedonly smoothlywhich
continuously connects the interactingwith the noninteracting result.

7. Conclusion

In this workwe have introduced amethodwhich allows for an efficient description ofMBL systems at strong
disorder andweak interactions, whenweakly coupled to thermal environments. The key idea is to exploit the
l-bit representation of theMBL system to derive a Born–Markov quantummaster equation also for large
systems.What this representation provides is the full diagonalization of the interactingmany-body system
essential for the description of a system in thermal environments. Bymaking use of a recently proposed
efficient approximatemethod controlled in the limit of strong disorder andweak interactions [53], we
obtained the l-bits in leading order by a single-particle transformation. The steady state, which is diagonal in
the noninteracting eigenbasis in our approximation, was then computed efficiently through classicalMonte-
Carlo simulation and kinetic theory.

We benchmarked ourmethod for noninteracting systems, wherewe showed that ourmethod recovers
Mott’s law forVRH starting from amicroscopicmodel. Upon addingweak interactions we found thatMott’s
law persists while leading to perturbative corrections.We explained our observations by an interaction-induced
modification of the density of states due to spatio-energetic correlations.

Concluding, our work provides a framework to study open systemdynamics atmesoscopic scales for various
scenarios involvingMBL systems at strong disorder andweak interactions (where its l-bits can be constructed
perturbatively). This includes awide range of phenomena such asMBL-spin glasses, algebraicMBL,MBL
topological phases, or time crystals.
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Appendix

A.1.Quantum-jumpMonteCarlo simulation
Weuse theGillespie algorithm [62] to perform the time evolution. For each trajectory, the system is initially
prepared in a random state. Then the algorithm alternates between the following two steps. (i) Stay in a Fock
state for some time. (ii) Jump to another occupation basis state. The time interval τ for staying in the current
state is determined by min , ,h g lt t t t= ( ), theminimumof three values randomly drawn from exponential
distribution P texpt tµ -l l l( ) [ ¯ ]withmean dwell time for heat exchange (th̄), gaining (tḡ) and losing (tl̄) a
particle given by

Figure 10. (a)Averaged density of states (over states with k between 40 and 60) n̄ as a function of the interaction strength at
temperatureT=0.5J. (b) Fitted values ofMott’s temperatureT0 as a function of the averaged density of states n̄ .
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According to the choicemade, the corresponding jumpoperation is performed. Specifically, if τ=τh, which
means heat exchange process is chosen, then a particle is transferred from a randomly drawn departuremode
k to the randomly drawn targetmode q. This single-particle jumphas the probability P k q t Rn, h n n,qk

 =( ) ¯ .
If pumping is chosen, with τ=τg, a particle is added to amode randomly drawnwith probability P k =( )
t k fg L R k, h eåa a a= ( ) ( ). Likewise, the particle loss process is performedwhen τ=τl. These two steps are repeated
until the desired evolution time is reached.

An ensemble of trajectories is calculated individually, fromwhich thewavefunctions tn ñl∣ ( )( ) obtained are
then used to compute the expectation value of an observableO as

O t
L

t O tn n
1

. 53
L

1
åá ñ = á ñ
l

l l

=

( ) ( )∣ ∣ ( ) ( )( ) ( )

A.2.Derivation of equations (38) and (39) in themain text
The time evolution of themean occupation due to heat exchange is governed by

t
n R L n L n L L L L nn n n n n n

d

d

1

2
tr 2 , 54l

k q
qk l qk l qk qk qk qk l

n
n n

heat , ,
,qkå rá ñ = - -⎜ ⎟⎛

⎝
⎞
⎠ˆ {[ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ] } ( )† † †

with

L n L n L L L L n

n n n

n n n n n n

n n n n n n n n

2

2 .
55qk l qk l qk qk qk qk l

qk l qk l l

^ ^ ^ ^ ^ ^ ^ ^ ^

^ ^ ^

- -

= - -

( ) ( ) ( ) ( ) ( ) ( )
∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣

( )
† † †

Let us assume that Fock state nñ∣ has nl particle in lmode, i.e.

n nn n . 56l lñ = ñˆ ∣ ∣ ( )

Then it is easy to verify that for state nqkñ∣ , which is obtained from state nñ∣ by transferring a particle from kmode
to qmode, there is the following property

n nn n . 57l qk l q l k l qk, ,d dñ = + - ñˆ ∣ ( )∣ ( )

By using equations (56) and (57), we can reduce equation (55) to

L n L n L L L L nn n n n n n n n2 2 . 58qk l qk l qk qk qk qk l q l k l, ,
^ ^ ^ ^ ^ ^ ^ ^ ^ d d- - = -( ) ( ) ( ) ( ) ( ) ( ) ( )∣ ⟩⟨ ∣ ( )† † †

Substituting it into equation (54), we obtain

t
n R p p R p R

d

d
. 59l

k q
q l k l

kn
n n n

n
n n n n n n

heat , ,
, , ,

,
, ,qk lk klå åd dá ñ = - = -⎜ ⎟⎛

⎝
⎞
⎠ˆ ( ) ( ) ( )

It then reduces to equation (38) by using equations (19) and (40) in themain text.
Likewise, bymaking use of

L n L n L L L L n

L n L n L L L L n

n n

n n

2 2 ,

2 2 , 60

k l k l k k k k l k l k k

k l k l k k k k l k l

,

,

d

d

- - = ñá

- - = - ñá

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ∣ ∣
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ∣ ∣ ( )

† † †

† † †

we can obtain equation (39) in themain text.

15

New J. Phys. 21 (2019) 063026 L-NWu et al



A.3. Anderson localizationV 0=
In this sectionwe show some further data concerning the non-interacting system. A straightforward basis

transformation recasts H0
ˆ into the diagonalized form H nk k k0 e= åˆ ˆ with n c ck k k=ˆ ˆ ˆ† and c i ak i k iy= åˆ ( ) ˆ† †,

which creates a particle in the single-particle eigenstate k i ii kyñ = å ñ∣ ( )∣ with energy εk that are distributed
between−2J−Wand 2J+W, as shown infigure A1(e).

Figures A1(a), (b) show some selected eigenstates for two different disorder strengths. It is clear that as
disorder becomes stronger, the wavefunctions becomemore localized. To characterize the localization of the
wavefunction, we define the localization length using the inverse participation ratio i1 i kloc

4x yº å ∣ ( )∣ . As
shown in figure A1(c), ξloc decays rapidly as disorder increases.Moreover, it also depends on the eigenenergy,
as shown in figure A1(d), and ξloc has its maximum in the center of the energy-band (figure A1(e)). The
density of states νk≡ 1/(εk−εk − 1) (inverse of the energy gap between neighboring eigenstates) also
depends on the disorder strengthW. From figure A1(f), it is clear that larger values ofW lead to a smaller
density of states.

A.4. Comparison of the current fromkinetic theory and quantumMonte-Carlo simulation
Figure A2(a) shows the current as a function of disorder strengthW. The kinetic theory results (solid lines)
agree well with the results obtained from quantum-jumpMonte-Carlo simulation (markers). The agreement
is better for lower temperature andweaker disorder. The reason is that the error of theMonte-Carlo
simulation scales as I NMCD , withNMC being the number of trajectories for theMonte-Carlo simulation
and ID the fluctuation of the current. From (b)we can see that, the fluctuation of the currentΔI increases
with disorder strengthW and temperature T. In addition, as shown in (a), themean value of the current
decreases with increasingW. These imply that tomaintain a small relative error, muchmore trajectories are
needed for stronger disorder and higher temperature. In other words, for a given number of trajectories,
which is 1000 in our numerical calculation, the error ofMonte-Carlo simulation will be larger for stronger
disorder and higher temperature.

Figure A1. (a), (b) Show some selected eigenstates for theHamiltonian (27) at different disorder strengths. (c) and (d) show the
dependence of localization length i1 i kloc

4x yº å ∣ ( )∣ of the eigenstatesψk(i) on the disorder strengthW and the eigenstate label k.
(e) Shows the eigenenergies εk for some values ofW. (f) Shows the density of state νk≡ 1/(εk−εk−1). System size isM=100.
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