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Abstract

In this work we formulate an efficient method for the description of fully many-body localized systems
in weak contact with thermal environments at temperature T. The key idea is to exploit the
representation of the system in terms of quasi-local integrals of motion (I-bits) to efficiently derive the
generator for the quantum master equation in Born—-Markov approximation. We, moreover, show
how to compute the steady state of this equation efficiently by using quantum-jump Monte-Carlo
techniques as well as by deriving approximate kinetic equations of motion. As an example, we consider
aone-dimensional disordered extended Hubbard model for spinless fermions, for which we derive
the [-bit representation approximately by employing a recently proposed method valid in the limit of
strong disorder and weak interactions. Coupling the system to a global thermal bath, we study the
transport between two leads with different chemical potentials at both of its ends. We find that the
temperature-dependent current is captured by an interaction-dependent version of Mott’s law for
variable range hopping, where transport is enhanced /lowered depending on whether the interactions
are attractive or repulsive, respectively. We interpret these results in terms of spatio-energetic
correlations between the I-bits.

1. Introduction

Many-body localization (MBL) has emerged as a new paradigm for phase structures in interacting quantum
matter protected by the underlying robust nonergodicity imposed by strong disorder [ 1-6]. This has led to the
discovery of novel topological or symmetry-broken phases [4, 7—11], which cannot exist in thermalizing
systems, with the particularly prominent example of time crystals breaking not only spatial but also temporal
symmetries [12—16]. Although many signatures of MBL have been accessed experimentally [17-24], dissipation
induced by a remaining coupling to an environment, even if weak, has turned out to have a crucial impact onto
the long-time dynamics [24—33]. Specifically, external baths with large bandwidths and delocalized excitations
are expected to force MBL systems towards thermalization, which destabilizes the nonergodic properties central
for the anticipated new phase structures. However, it is a challenge to theoretically describe interacting many-
body systems coupled to thermal environments for concrete microscopic models.

A standard approach to describe the dynamics of an open system is to use a quantum Lindblad master
equation under Born—Markov approximation [34], where the dissipation processes due to the weak coupling to
the environment are included in terms of a set of quantum jump operators. For thermal environments, the
dissipation is captured by quantum jumps between different eigenstates of the system. Thus, in order to
compute the generator of the master equation, it is necessary to fully diagonalize the system. This is challenging
for most interacting quantum systems, with the computational effort generally growing exponentially with
system size. This difficulty is also reflected in the fact that previous studies are either limited to small system sizes
[32, 35-40] or make rather specific assumptions regarding the properties of the environment, e.g. describing it
by classical noise [33, 41] or by dephasing processes corresponding to an infinite-temperature thermal
environment [27-31,42].
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Figure 1. Schematic illustration of the model under consideration. An open tight-binding chain of interacting spinless fermions
(green dots) in a random potential (brown curve) is coupled to a global heat bath at temperature T (blue box). This global bath induces
phonon (blue dot)-assisted heat exchange with the system and two local baths (yellow boxes) at the ends with different chemical
potentials (1 and pr), which induce particle transport through the chain.

Here we propose to exploit the I-bit representation [43—48] of MBL systems to address the diagonalization
problem. The existence of an extensive number of quasi-local integrals of motion in MBL systems makes them
special in the sense that they are interacting quantum systems whose full many-body spectrum can be accessed
efficiently. While deriving explicitly the I-bit representation is in general a demanding task, the difficulty grows
only polynomially with system size [49—52]. Utilizing the [-bit representation, we derive a Lindblad master
equation which describes MBL systems weakly coupled to thermal environments. In order to perform concrete
calculations, we consider the limit of strong disorder and weak interactions and make use of a recently proposed
efficient approximate method [53], where the I-bits are in leading order obtained by a single-particle
transformation. Note that a better approximation for the /-bits can be obtained systematically, e.g. by treating
the omitted matrix elements perturbatively [28, 50, 51].

Although it is still computationally demanding to solve the full dynamics of the master equation, the steady
state of the system in the weak coupling limit can be calculated efficiently. In this case, the steady state is diagonal
in the eigenbasis given by the Fock states of the single-particle Hamiltonian under our approximation. Thus it
can be obtained through classical Monte-Carlo simulations by mapping the Fock-space occupation probabilities
to a classical random walk.

We benchmark our method by studing a spinless fermionic Hubbard chain with strong onsite disorder and
weak interactions. The system is coupled to a phonon bath at temperature T. Further, we couple the chain at
both ends to fermionic reservoirs with a chemical potential difference. This gives rise to a nonequilibrium
current-carrying steady state, which reduces to the conventional linear response regime in the limit of vanishing
chemical potential difference. We show how to solve the Lindblad master equation which describes the
dynamics of the system by means of classical quantum-jump Monte-Carlo simulations [54]. In order to push
our description to even larger systems we use a further simplification of the master equation in terms of a kinetic
theory, which shows excellent agreement with the Monte-Carlo simulations for small system sizes, but with the
advantage that it allows us to reach system sizes of the order of 100 lattice sites.

Using this formalism, we investigate the transport properties of the nonequilibrium steady state (NESS). We
first map out the full temperature dependence of the induced current for the noninteracting problem. At
asymptotically low temperatures we observe that the current becomes temperature-independent due to the
coherent evolution of particles across the full chain, occurring with an amplitude which is exponentially
suppressed as a function of system size. Upon increasing temperature beyond this system-size dependent
asymptotic regime, we recover a conductivity following Mott’s law for variable-range hopping (VRH),

o x exp[—+/To/T], which is well-studied for Anderson localized systems of noninteracting particles [55]. We
take this as a first indication that our approach captures the relevant physics. At even higher temperature,
transport crosses over to a simple activated regime where o o< exp[— T, /T]. There, particles can overcome
typical energy barriers imposed by the strong disorder potential on short distances as opposed to VRH, which is
characterized by longer-ranged tunneling processes involving smaller energy changes. We then apply our
approach to the weakly interacting case at strong disorder. In the temperature regime where the Anderson
system shows VRH, we again find that transport follows Mott’s law, in agreement with the analytical prediction
of [56]. However, the Mott temperature T, is modified by interactions. Depending on whether interactions are
repulsive or attractive, T, increases or decreases with respect to the noninteracting Anderson insulating case. We
interpret the modifications of Ty in terms of interaction-induced changes in the spatio-energetic correlations
among the local integrals of motion in the MBL system.

The paper is organized as follows. In section 2, we present a general scheme to address MBL systems in the
presence of thermal baths. We first write out a Lindblad master equation for the I-bits. In the next step, we
simplify it further by neglecting the particle-hole dressing which is reasonable in the regime of strong disorder
and weak interactions. In section 3, we describe the model (figure 1) which we will study in order to benchmark
our approach. This is followed by the introduction of the quantum-jump Monte-Carlo method and the kinetic
theory that we utilize to solve the Lindblad master equation in section 4. A good match of the results between
these two methods is shown. In section 5, we study the transport properties of the steady state for the
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noninteracting system. The discussion for the interacting system is presented in section 6. Finally, a summary of
the main results is given in section 7 to conclude.

2. Master equation for many-body localized systems in the presence of thermal baths

When a quantum system is brought into weak contact with a thermal environment, the impact of the
environment can be captured by quantum jumps between different eigenstates of the system. The rate at which
such a process occurs depends on the energy difference of the corresponding states. For most interacting
quantum systems, however, the full spectrum is hard to obtain, so already deriving the equations of motion of
the system in the presence of a thermal environment is challenging. We approach this problem by exploiting the
fact that MBL systems posses an extensive number of integrals of motion [43—46]. This makes them very special
in the sense that they are interacting quantum systems whose full many-body spectrum can be accessed. We
make use of this fact to find equations of motion for MBL systems in thermal environments.

2.1. Born-Markov master equation
We are interested in the typical setup of open quantum systems described by the total Hamiltonian

Ao = H + Hsp + Hg. (D

Here, H denotes the Hamiltonian of the system under investigation, Hy = oo fg, l;a l;a describes the bath with
bosonic or fermionic annihilation operator Ba for the mode with energy hw,, and Hgp isthe system-bath
coupling operator, whose overall strength v we assume to be small. The bath is assumed to be in thermal
equilibrium with temperature T'and chemical potential .

In the weak-coupling limit (¢ — 0) and assuming large thermal baths, the dynamics of the reduced density
matrix p = Tr{p,,,} of the system after tracing out the bath, can be described using the Born—-Markov and the
rotating wave approximation. This gives rise to a Lindblad master equation [34]

. I A . PP T B 1.~ . .
Op = ——I[H, p] + Z(LapLa - —{L,La p}) = ——[H, p] + D(p), @)
7 o 2 /)
where { - ,- } denotes the anti-commutator. The first term describes the unitary evolution, and the second term

describes the coupling of the system to the environment. Here the operators L,, describe quantum jumps
between the eigenstates of the system.
Let us assume a system with spectrum E and eigenstates | k) coupled to a phonon bath with bosonic

operators by via the system operator ¥
Ag =79 © 32 Aalby + B). ®
Then, the master equation takes the form
b= —18, p1 + z(ikqﬁiiq — N i, ,a}). )
A koq 2
The bath induces quantum jumps from level g to k, mediated by the action of the jump operators

Ly = JRiglk) (g1, ©)

with the jump rates

272 R
Ry = %Mkwm g (Ex — E,). ©)

Here we have defined the bath correlation function

J(E)ng(E, T) for E> 0
g(E) = ()
J(—B)[1 + ny(—E, T)] forE<0
with the Bose distribution ng(E, T) = (ef/%#T — 1)~!and the spectral density of the bath
J(E) = 3, \o6(E — /iw,). Note that the Born-Markov and rotating-wave approximations rely on the
assumption of a separation of timescales [34]. For them to be valid, the time scales of the system dynamics,
|Ex — E;|"" need to be fast when compared to the bath relaxation time and to the associated time-scales of the

system-bath coupling Rk’ql (weseth = kg = 1hereafter), respectively’.

3 . . .. . . s rem e
The situation, where these conditions are not fulfilled, was discussed, for instance in [57, 58].
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Under the dynamics of equation (4), the coherences, (k|p|q) with k = g, decay such that the steady state
reached asymptotically in the long-time limit is diagonal in the energy basis, p — p,, = >, p,|k) (k| [59-61].
This can be seen most easily by noting that in the limit -y — 0, the first term in equation (2) has to vanish for the
steady state with 0, p,, = 0. After a diagonal state is reached, the asymptotic dynamics is governed by dissipative
processes only and described by the Pauli rate equation

opy = Z(qupq — Rgkpy)- ®)
q

When the system is coupled to a single bath of temperature T, the rates obey the equilibrium condition

Riq /Ry = e E=ED/T In this case the system approaches thermal equilibrium in the long-time limit,

P < exp(—E/T), and the system obeys detailed balance: the terms of the sum in equation (8), which
correspond to the net probability currents from states q to k, vanish individually. If the equilibrium condition is
broken, e.g. when the system is coupled to baths of different temperature or chemical potential, the system
approaches a non-equilibrium steady state, for which the right-hand side of equation (8) vanishes only as a
whole, so that probability currents break detailed balance.

2.2.Many-body localized systems

Note that in order to find the equations of motion for the system in the presence of a thermal bath, it is essential
to diagonalize the full Hamiltonian to find its eigenstates and eigenenergies. For a quantum many-body system,
this is generally difficult. Non-interacting systems however can be treated readily [62, 63], since the many-body
eigenstates are given by the Fock states of the single-particle Hamiltonian. As we discuss in the following, MBL
systems provide another exception, due to an emergent form of integrability [43—46].

We consider a system of spinless lattice fermions. A typical example for such a fermionic system with an
MBL phase is the one-dimensional Anderson model of spinless fermions with nearest-neighbor interactions V,
which we introduce in section 3. The generalization to spinful fermions or spin Hamiltonians is straightforward.
We assume that the system Hamiltonian can be brought into the diagonal form

I:I:ZEkﬁk—i— lz quﬁkﬁq + l Z qupﬁkﬁqﬁp—‘r-“, 9)
k kg k.q,p

where the fermionic number operators 7 describe quasi-local integrals of motion (I-bits) coupled by diagonal

matrix elements Uy, , that decay exponentially with the localization length & [64]. We can directly read off the

full many-particle eigenstates, which are the Fock states with respect to the I-bits [n) = [{rn}), n, = 0,1, and the

corresponding many-particle spectrum E, = E({n}).

We focus on the limit of weak interactions, where it is assumed that there exists a quasi-local transformation
(adiabatic connection) between the I-bits and the local annihilation operators d; for fermions on lattice sites i
[4,45]

&= Z u;d; + Z uijkflifl;flk + . (10)
i ik
such that the [-bit operators read 7y = E,j Ck- In the MBL regime with strong disorder, the coefficients u;, u;j
essentially have a local support with some exponential tails decaying on length scale £. It can be shown [53] that
the terms that lead to particle-hole dressing u;; and all higher order terms contribute at least in first order in the
interaction strength V, so for weak interactions Vand strong disorder the quasi-particles are in leading order
given by a single-particle transformation.

2.3. MBL system in the presence of a phonon bath
Let us now discuss the coupling of an MBL system to a phonon bath with a coupling operator 7 thatis some
single-particle operator ¥ = i Vi al a;

N o . .
Heg =) vid d; @ Y Aa(ba + by). (11)
ij a
The form of Hsp, induces quantum jumps between eigenstates of H and the corresponding dissipator is given by
. e TS
Dheat(p) = Z(Ln’ann’n - E {Ln’nLn’n) P} )a (12)
n,n’

with Lym = /Rarn I0’) (n| describing the jump from Fock state n) to the state |n’). The associated jump rate is
then given by

Rym = 27T72|<n/|0|n>|2g(En’ - En)) (13)
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with g(E) the bath correlation function (equation (7)). Note that generally, in the full spectrum of a quantum
many-body system one expects that a large number of close degeneracies occur, which violates the validity
condition of the rotating-wave approximation [34]. However, for MBL systems in the limit of weak interactions
and strong disorder that we are aiming at, we will find significant rates only for processes, where one or at most a
few excitations are transferred. Moreover, typically the bath will transfer excitations only between nearby I-bits,
since v;; decays on the correlation lengths of the bath. Both together leads to a much milder condition.

For weak interactions and strong disorder, particle-hole dressing is suppressed, such that the transformation
to the I-bits effectively becomes a single-particle transformation

& = de(i)a). (14)
In this case, the dissipator simplifies to
R A apt | PSP N
Dheat(p) = Z [qu(n)quk(n) - E{qu(n)qu(n)) p}:l: (15)

n,k,q

with qu (n) = /Ry, n[ng) (n] describing the jump from Fock state [n) = [11,...s11gs. . 515,11 tO the state
|nqk> = |mye.ome — 1,..5mg + L. ,my) by transferring a particle from the single-particle mode k to the mode g.
The fact that we neglect particle-hole dressing leads to

(gl m) P = [viglmi (1 — ng)* = |vigPre(1 — ng), (16)

with the single-particle matrix element of the coupling operator

ST v (7) (17)

1,j

|qu|2 =

For convenience, we introduce an effective single-particle rate
qu(n) = 2W“Y2|qu|2g (Enqk — En), (18)

which in the noninteracting case, with Eny — En=2¢;— &b reduces to the single-particle rate ﬁqk (n) = Ry
This allows for the extraction of quantum statistical factors from the many-particle rate

ank,n = Eqk(n)(l - qu)l’lk. (19)

This expression resembles the expression found for the ideal gas [62], where the many-particle rate is the single-
particle rate R multiplied by the occupation of the departure state 11 and the Pauli blocking factor (1 — n,) of
the target state. The difference is that due to interactions, the transition rate depends on the whole configuration,
rather than only on the two single-particle states involved in the transition.

2.4.MBL system in the presence of a particle reservoir

Let us now turn to the case where the system may also exchange particles with an external fermionic reservoir
with temperature T'and chemical potential 4. For simplicity, we again consider the regime where we can neglect
particle-hole dressing. Here the system-bath Hamiltonian is given by

Hsy = Y Aatbod’ + b, d), (20)
whered = 3° ; (i) d; is an arbitrary single-particle mode in the system. The resulting dissipator reads

Dor(®) = 3 Z[EG,un)ﬁi;‘;k(n) - L), ﬁ}], 1)

a=%+ nk

where L, x(n) = T ,|n) (ng||and L_pm)= T, [ng|) (n|, with [ng) = |n,... e — 1,...) being the Fock
state obtained by removing one particle from mode k. The jump rates I'; ,, are given by

Ln = vk()g (En — En,), (22)

with the coupling matrix element
2

vi(n) = |(ng|dn) > = ‘ Z @) | me = nk)ng, (23)

and the bath-correlation function for the particle exchange with the fermionic bath
& (E) = J(E)f (E, u, T), (24)
& B) =J(=B)[1 = f(=E, p, T)], (25)
where f (E, 1, T) = (e®=M/T 4 1)~!is the Fermi distribution of the bath.
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3. Interacting Anderson insulator as quantum wire

We benchmark the explained method by studying a disordered extended Hubbard chain of spinless fermions
(figure 1). The system Hamiltonian [65—67] reads

M-1
H=Hy+ V> aa;al i, (26)
i=1
with the single-particle term given by

M-1 M
Ho=~] 3 @ dir + af @) + 3 widf a 27)
i=1 i=1

where 4; ((i;) is the fermionic annihilation (creation) operator at site 7 in a chain of length M. Moreover, w; are
random fields uniformly distributed in the interval [— W, W], Jand V are respectively the hopping and the
interaction strength. H describes the noninteracting Anderson-model [68] (see appendix A.3) and all its single-
particle eigenstates are exponentially localized for any amount of disorder W[69]. For V' = 0 the model has an
MBL transition [3—6]. Atlarge disorder W > V, the system is in the MBL phase and it is a perfect insulator,
while for weak disorder W < V the system is ergodic, describing a thermal phase. We couple the system to two
leads at the ends of the chain. The leads, which exchange particles with the system, have the same temperature T
but different chemical potentials (z; and pig), inducing thus particle transport through the chain. Moreover, the
system is also coupled to a global thermal bath also at temperature T (unless stated otherwise), with which it
exchanges energy, as sketched in figure 1.

We are interested in the limit of weak interactions at strong disorder, where in leading order I-bits can be
approximated by the noninteracting Anderson operators [53], so that we arrive at the approximate Hamiltonian

~ R 1 A

Happ = Z Exng + — Z qunknq. (28)
k 2 k.q

Here 7, = EkT & with é,j = > (@) éf, and &, ¢y are the single-particle eigenenergies and eigenmodes,

respectively. The interaction coefficients Uy, are given by

U = —ZVZ[wk(i)wq(i)¢k(i + Dyl + D) — [Py (i + DI (29)

Since the orbitals are exponentially localized, 1 (i) o< e~ l"=#!/%:(®) with localization center i, and the
single-particle localization length &, [70], after a relabeling of the indexes (k, q) according to their spatial
positions, we have Uy, ~ Ve~ Ik=41/%« (here §, is the localization length in the middle of the single-particle
spectrum). This approximation (equation (28)) is equivalent to discarding the off-diagonal elements of the
full Hamiltonian (equation (26)) in the non-interacting basis. Its reliability for weak interactions has been
shown in [53]. Its validity is strongly supported also by the spatio-energetic anti-correlations between the
single-particle Anderson orbitals. If two single-particle eigenstates are close to each other in space, their
energy difference is more likely to be large, suppressing scattering events between these states. Figure 2 gives
evidence of the existence of this anti-correlation, showing the distribution of the spatial distance between
pairs of eigenstates AR = |3, i(|[¢x (i) |* — |4, (1)|*)| as a function of their energetic distance AE = |g; — &,.
The distribution is mainly concentrated at the left bottom corner of figures (a)—(c), which are zoomed in
(d)—(f). Itis important to point out that a better approximation for the I-bits can be obtained systematically
by treating the omitted matrix elements perturbatively, giving rise to higher order corrections in interaction
strength [28]. Such a procedure is beyond the scope of this paper but it would not render our approach
inefficient.

We couple this system to a heat reservoir via the system-bath Hamiltonian

A ~ NON A~ (1)
Hp=7> i ®Y Culb, +b,) (30)

which couples each site to an independent bath of bath-correlation length zero. C, and -y are the coupling strengths.
Furthermore, we assume an Ohmic bath, with spectral density J (E) proportional to E, J(E) o E. The total rate that
enters in equation (15) is therefore the sum of the rates for individual heat baths that couple to a single site i only.

We investigate the transport properties of the steady state, when the system is coupled to the two leads and
the thermal bath. The lead coupling is described by

A AL INCOREN
Hspp = V& > Du(b, 4 + b, &), (31)
@
A AR) . AR)T
HSB,R = \/EZDQ( oy LIX/I -+ b{y aM)- (32)
@
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Figure 2. Distribution of the spatial distance of two eigenstates AR as a function of their energy difference AE. 1000 disorder
realizations are added up. (d)—(f) are respectively the zoom-in views of (a)—(c).

The resulting coupling rates 7, (k) = [¢x (1), ng(k) = |¢x(M)? that enter in equation (23) are proportional to
the value of the wavefunctions at the ends of the chain. For the leads we assume a constant density of states.
The effective single-particle energies are shifted due to interactions. Within the scope of the approximate
Hamiltonian in equation (28), it is convenient to define an interaction-shifted energy operator for each [-bit
E=c+ Y Ughy (33)
q

The energy difference occurring in the rate for the heat bath, equation (18), can then be expressed as

En, — En = (nZgn) — (n[&n) — U, (34)

For the particle reservoir, the energy difference in equation (22) is given by
En — En,, = (n|3n). (35)

Note that writing energy differences in terms of & does not constitute an additional approximation.

4. Solving the master equation

We employ two methods to compute the non-equilibrium steady state of the master equation. The first method
is a quantum-jump Monte Carlo technique, which makes use of the fact that the equations of motion for the
Fock-space occupation probabilities p,, can be mapped to a classical random walk. This method gives accurate
results after sufficient statistical sampling. The second method consists in deriving kinetic equations of motion
by employing a mean-field decomposition of density-density correlations. Importantly, both approaches are
found to agree very well.

4.1. Method I: quantum-jump Monte Carlo simulation

As we discuss in section 2.1, the dynamics of the many-body occupation probabilities p, = (n|p|n) decouples
from the off-diagonal elements, which decay over time. For our model, the equation of motion for the
probabilities is given by

6tpn = Z(l — Ny )k [qu (nqk)ank - ﬁqk (l'l)pn]

kyq
+ 30 > e O, EOlmp,, — (1 = no)p,]
a=L,R k
+ (1 = f,ENIA = m)p,, — mpyl}s (36)

where &, = (nlé‘kln), and we use the short notation f,(E) = f(E, fi> To) witha = L, R. The first line in
equation (36) describes the heat exchange processes, with the first term denoting the increase of the probability

7



10P Publishing

NewJ. Phys. 21 (2019) 063026 L-NWuetal

Pn by jumping from |[ng) to the state [n), and the second term denoting the inverse process. The second line and
third line in equation (36) describe particle exchange with the leads, with the first term denoting particle gain,
and the second term the particle loss.

We generalize the quantum-jump Monte-Carlo method described in [54] to the case of number-
dependent single-particle rates ﬁqk (n). The dynamics of the occupation probability p,, is simulated by
taking random walks in the classical space composed by the Fock states |n) = |ny,...,n,...,my) (not their
superpositions) [62] corresponding to the given jump rates. In our case, we have two types of jumps, the first
one due to the global thermal bath and the second one due to the leads. For the heat exchange processes, a
jump transfers one particle from one single-particle eigenstate to another, which conserves the total particle
number. For the particle exchange processes, ajump adds (or removes) a particle to (or from) one eigenstate.
We perform these simulations by using a Gillespie-type algorithm (see appendix A.1). We can then compute
steady state expectation values (e.g. (i), (7)), by averaging over the long-time dynamics of many
trajectories.

4.2. Method II: kinetic theory

In order to treat larger systems and to gain some intuitive understanding of the NESS, we will now derive kinetic
equations of motion for the mean occupation numbers (#;). The time evolution of (#;), again for the special case
of our model system, is given by

i — o (L) s (Lo
aw»—umam—(&@mlw+(momlm, 37)
with (see appendix A.2)
(i<ﬁl>) = Z[<ﬁzkﬁk(1 — fy)) — <ﬁklﬁl(1 — )1, (38)
dt heat k
and

= 3 0. OULEQA = ap) — (1 = £, G

a=L,R

= > n.D(f,E) — ). (39)

a=L,R

—
SR
—
Ry
=
N—
=)
s
2

In equation (38), we have defined an effective rate operator
Ry = Ry(n)|n) (n|. (40)
n

Using equation (34), we find
Ry = 2792 |vulPg G — & — Up). (41)

The effect of interactions is to modify the energy difference between the states G — & — Up, implying that the
transition rate depends on the whole configuration, rather than only on the two single-particle states involved in
the transition (g; — ).

In order to obtain a closed set of equations in terms of mean occupation values, we employ the mean-field
approximation

(H i) ~ H (A1), Vs, for iy =iy Yk =g, (42)
k=1 k=1

giving (£, G0) ~ £, (B0, (g & — & — 3L — i) = g((& — & — ) () (1 — ). In this way, we get
aset of nonlinear kinetic equations of motion

i) = LR (01— () — R () — G+ X n,OULCED — (@) @
k a=L,R
We obtain the equations for the NESS, by setting equation (43) to zero
% (Airyness = 0. (44)

In the following, we will always consider the steady state and, therefore, drop the subscript NESS. Using the
single-particle wavefunctions 1, we can find the mean occupation number (density profile) in real space
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Figure 3. Density profile (#;) as a function of site i. The solid lines are the results from the kinetic theory and the dashed lines are the
results in the absence of the global thermal bath (obtained by substituting equation (46) into (45)). The markers denote the averaged
results over 1000 trajectories of quantum-jump Monte-Carlo (MC) simulations. The open circles in (c), (d) are the results with V = 0,
asshown in (a), (b). The parameters are M = 50,7 = 0.01],x = 0.17°,T = Jand p; = it + p1/2, g = i — S/2, with
ép = 5J,and [ is set to make N = M/2 = 25.

M
Ay = Y [P (). (45)

I=1

The nonlinear term in equation (43) prevents us from finding an analytic solution. However, in the absence
of the global thermal bath (y = 0), the solution of equation (44) is given by

. nL(l)fL(<§l>) + nR(l)fR(<§l>)
o= . 46
(=0 ) + 1(D) 4

Let us compare the methods described in sections 4.1 and 4.2 by computing the density profile (i;), which
also determines the current to be discussed later. Figure 3 shows the density profile (#;) obtained by numerically
solving the kinetic equations (equation (44), solid lines) and the one calculated using the quantum-jump
Monte-Carlo technique (equation (36), markers). The two results are almost indistinguishable both for the
noninteracting and the interacting case. The chemical potentials in the leads are taken equal to yi; , = i &
6p1/2 with relatively large chemical potential difference . = 5], and [ is fixed so that the system is at half-filling
((N) = M/2,where N counts the total number of particles). Later on, we will use only small chemical potential
offsets 6y, in order to compute conductivities. The large difference between the chemical potentials produces a
density gradient in the absence of the global thermal bath (y = 0), as shown in figure 3 (black dashed lines). The
presence of the global thermal bath, which induces phonon-assisted tunneling, erases this gradient for weak
disorder, as shown in (a) and (c). Furthermore, by increasing the disorder strength W, which prompts the
localization of the wavefunctions and thus the suppression of particle tunneling, the density gradient is restored,
as shown in figures 3(b) and (d).
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Figure 4. Current [ as a function of the disorder strength W. The results are averaged over 1000 disorder realizations. The solid lines
are obtained from the kinetic equations and the dashed lines are the results without coupling the system to the global bath
(equation (48)). The parameters are system size M = 100, dissipation rate & = 0.1?, interaction strength V = 0, and
=1+ 6p/2, pp = B — 6pu/2, with chemical potential imbalance 6yt = 0.1], and fi is set to make N = M/2 = 50. Except when
otherwise stated, we will take the same parameters for the rest of the work.

5. Results I: observation of VRH for noninteracting Fermions in a microscopic model

We investigate the particle current in the NESS, which is defined as the net particle flow at the ends of the chain

M M
I=>"nMIfWE) — (ANl = = eI f(EY) — (A1, (47)

1=1 1=1

Having shown that the kinetic equations, equation (43), are reliable, we now use this approach to study the
dependence of the current I, equation (47), on disorder strength W, on temperature T of the bath, and on
interaction strength V. As shown in appendix A.4, for the current, the results of the kinetic equations also agree
very well with those from Monte-Carlo simulations. In the following, we will only show disorder-averaged
results of the kinetic theory.

5.1. Transport as a function of disorder strength W
In the absence of the thermal bath (v = 0), the current in the NESS is given by

ny (Dng 0

N 48
(D) + nrx(D “9

M
Lo =Y [f, () — f(B)N]
=1

which is obtained by substituting the solution of the occupation numbers, equation (46), into (47). The terms of
I, are proportional to the product 7, () n (1) o ¢ (1) *[yi(M)]* ~ exp(—4M /), where for strong
disorder . ~ 1/log(W). This implies that without coupling to a thermal environment the current will
dramatically decay with disorder strength. This is confirmed in figure 4 (dashed lines), where the behavior of the
current is shown as a function of W for the non-interacting chain of M = 100 lattice sites. Here and in the
following, we consider a weak chemical potential difference 614 = 0.1]. Figure 4 also reports the case in which
the thermal bath is present (v = 0), showing that the presence of a global thermal bath enhances transport for
sufficiently large T.

5.2. Transport as a function of temperature T
In this section we study the dependence of the current I on temperature T'and disorder strength W for the
noninteracting case. Figure 5(a) shows the current I as a function of T for a fixed system size (M = 100) for
several values of W, while figure 5(b) shows I for a fixed disorder strength W for several system sizes M. We can
distinguish three distinct regimes according to the value of the temperature. At ‘low’ temperatures T, the current
approaches the result obtained in the absence of the global bath (v = 0, dotted lines). In the intermediate
temperature regime, the behavior of the current is well predicted by Mott’s law for VRH [55],
I < exp(—+/To/T). Finally, at ‘high’ temperatures (T >> J), I decreases as a function of T.

Note that the locations of the three regions depend on various parameters, such as the disorder strength W
(as shown in figure 5(a)), the coupling to the leads «, and so on. The independence of the current on temperature
in the ‘low’ temperature regime is due to the suppression of heat exchange, which can be inferred from the good
agreement of the results with that without coupling to the global thermal bath (equation (48), dotted lines).
Nevertheless, the remaining current (T — 0) is a finite system size effect [71]. Indeed, as T — 0, I,_, decays
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Figure 6. (a) Current ] atlow temperature T = 0.02] as a function of system size M. (b) Mott temperature Ty (obtained from fitting) as
a function of the localization length £, times the density of states vatk = M/2.

exponentially with system size M, as shown in figure 6(a). For a given system size, I,_, depends on the disorder
strength, and as expected it is smaller for stronger disorder (figure 5(a)).

The intermediate-temperature VRH regime can be understood using the following argument due to Mott
[55]. Let us consider the hop between states with localization centers separated by the distance AR and with
energy difference AE. On the one hand, the probability to hop is proportional to the envelop overlap between
the two states, thus it decays exponentially with the distance AR [~exp(—2AR/§, ). On the other hand, the
probability to produce excitations of order AE due to the presence of the heat bath is given by the Boltzmann
factor exp(—AE/T). This leads us to assume that the current (conductivity) to leading order is given by

I~ e—ZAR/floc—AE/T' (49)

As already mentioned, the spatial distance AR and the energy separation AE, are not independent, but show
clear anticorrelations (figure 2), which shall be captured by AR ~ (AEv) ™', where vis the density of states.
Thus, the current is determined by the competition between the overlap term exp(—2AR/§,.) which favors
short hops and the energy activation exp(—AE/T), which favors long hops. Maximizing this probability over
AE, one finds in one spatial dimension

I o 672AR0/§IOC — ef,[To/T — efAEO/T’ (50)

with Mott’s hopping length ARy = ,/§,./(2Tv) and Mott’s temperature Ty = 2/(&,V). Moreover, Mott’s
hopping energy AE, = /Ty T is the energy scale that defines the width of the energy interval of the activated
eigenenergies. Note that the VRH mechanism relies on the continuous density of states for the phonon bath,
which ensures the ability of the particles to draw energy from phonons for hopping [72]. By fitting the current in
the intermediate temperature regime to Mott’slaw I = I exp(—+/ Tp/ T), we can extract Ty. Figure 6(b) shows
Ty as a function of &,.v, where . is the single-particle localization length in the middle of the energy-band
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(ex ~ 0). We find that at strong disorder, Ty o< (&)~ 1#%02, agreeing rather well with the Mott’s
prediction (&, ).

Finally, in the ‘high’ temperature regime, we attribute the decrease of the current with respect to temperature
to the fact that the difference between the Fermi distributions of the leads (f; (&) — fr ((&)))is washed out. To
support this idea, we fix the temperature of the leads at T; = Tr = 0.01]. In this case, the current [ increases
with the temperature of the global thermal bath T'as exp(—T; /T) in the ‘high’ temperature regime, as shown in
figure 7(a). The reason is that the thermal energy T'is so high that, despite of their large energy separation, already
activated hopping between nearest neighboring localized orbitals dominates over the VRH behavior.

From the current, we can deduce the conductance G = /6y, as well as the conductivity

J:GM:% (51)

o’
Figure 7(b) shows the conductivity o at temperature T = 0.5] as a function of the system size M for W = 5]. We
can observe that o converges to a finite value in the limit M — oo.

6. Results II: VRH for weakly interacting Fermions

Let us now discuss transport in the presence of weak interactions, for which the system is in the MBL phase.
Here, we exploit the advantages of our method, allowing for the treatment of interacting systems in the presence
of athermal environment. All of our results are obtained in the limit of weak interactions and strong disorder in
which the approximation (equation (28)) is justified.

6.1. Transport as a function of temperature T

Figure 8(a) shows the temperature dependence of the current for several interaction strengths V. Interestingly,
also for the interacting case (V = 0), we find a regime of temperatures, where the current is explained by Mott’s
law (I ~ exp(—+/To/T)), in agreement with the analytical prediction of [56]. We find that in this VRH regime,
attractive interactions (blue dashed line) enhance transport, while for repulsive interactions (orange dashed—
dotted line) the current decreases. This means that the interaction changes Mott’s temperature T,. Figure 8(b)
shows the dependence of Mott’s temperature T, on the interaction strength V. We can see how attractive
interactions decrease T, while repulsive interactions increase Tj,.

Can we understand this behavior? From our previous discussion we know that T, depends on the
localization length &, and on the density of states v. However, within our approximation, the localization
length is not affected by the interactions. We should, therefore, be able to explain the interaction-induced shift of
Mott’s temperature in terms of interaction-induced shifts of the density of states.

6.2. Interaction-shifted density of states

In figure 9(a), we show the energies (£;) in the steady state for V.= — 0.4, V = 0and V = 0.4Jallat T = 0.5].
As expected from equation (33), repulsive interactions (V > 0, orange dashed—dotted line) shift the single-
particle energies €, up (black solid line) and attractive interactions (V < 0, blue dashed line) decrease them.
However, this does not imply a change in the average level splitting (£, — &_,). What is crucial is rather that the
interaction-dependent energy shift depends on k. The absolute value of the energy shift E, = (&) — & is
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shown in figure 9(b). For the eigenstates in the middle of the spectrum, which are the ones that contribute
predominantly to the transport, the energy shift increases with energy.

This behavior can be understood from considering equation (33): The energy shift 6E;, = > a2 Ukg (1ig)
depends via Uy, ~ Ve~ !k=41/%« on the overlap of the involved single-particle wave functions. Therefore, the
main contribution to the shift originates from eigenstates that are close by in space. Now, due to the anti-
correlation property between single-particle energy and spatial distance, these eigenstates g will have a large

energy difference with respect to k. Thus a state k slightly above the Fermi energy will have more likely
neighboring states below the Fermi energy with a large occupation probability, while a state slightly below the
Fermi energy will more likely have neighboring states above the Fermi energy, with a small occupation
probability. In this way, the positive/negative energy shift of repulsive/attractive interactions, will be larger for
states above the Fermi level than for states below it. This implies that the level spacing between neighboring
energy levels ((ék — & 1)) is increased for repulsive interactions and is decreased for attractive interactions. In
other words, repulsive interactions reduce the density of states vy = 1/ ((ék —&_ 1)) and attractive interactions
enhanceit.

6.3. Explanation of the change of Mott’s temperature

The suspected behavior is confirmed in figure 10(a), where we show the averaged density of states (over states
with k between 40 and 60), 7, as a function of interaction strength at temperature T = 0.5]. We can now check

whether the dependence of Mott’s temperature T, on interactions can be explained with their effect on the
density of states. When we plot T versus #, as shown in figure 10(b), we observe a behavior Ty o< 7~
which agrees well with the predicted ' dependency in Mott’s temperature.

We would like to emphasize that the origin of Mott’s law that we find for our system is different from the case of
Coulomb interactions, which has been shown to lead to a VRH conductivity o oc exp [—(Ty/T)'/?] independent
of dimensionality due to a nonanalytic modification of the density of states near the Fermi energy [73]. In our case
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Figure 10. (a) Averaged density of states (over states with k between 40 and 60) © as a function of the interaction strength at
temperature T = 0.5]. (b) Fitted values of Mott’s temperature T as a function of the averaged density of states 7.

oflocal interactions of nearest-neighbor type the density of states becomes modified only smoothly which
continuously connects the interacting with the noninteracting result.

7. Conclusion

In this work we have introduced a method which allows for an efficient description of MBL systems at strong
disorder and weak interactions, when weakly coupled to thermal environments. The key idea is to exploit the
[-bit representation of the MBL system to derive a Born—Markov quantum master equation also for large
systems. What this representation provides is the full diagonalization of the interacting many-body system
essential for the description of a system in thermal environments. By making use of a recently proposed
efficient approximate method controlled in the limit of strong disorder and weak interactions [53], we
obtained the /-bits in leading order by a single-particle transformation. The steady state, which is diagonal in
the noninteracting eigenbasis in our approximation, was then computed efficiently through classical Monte-
Carlo simulation and kinetic theory.

We benchmarked our method for noninteracting systems, where we showed that our method recovers
Mott’s law for VRH starting from a microscopic model. Upon adding weak interactions we found that Mott’s
law persists while leading to perturbative corrections. We explained our observations by an interaction-induced
modification of the density of states due to spatio-energetic correlations.

Concluding, our work provides a framework to study open system dynamics at mesoscopic scales for various
scenarios involving MBL systems at strong disorder and weak interactions (where its I-bits can be constructed
perturbatively). This includes a wide range of phenomena such as MBL-spin glasses, algebraic MBL, MBL
topological phases, or time crystals.
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Appendix

A.1. Quantum-jump Monte Carlo simulation

We use the Gillespie algorithm [62] to perform the time evolution. For each trajectory, the system is initially
prepared in a random state. Then the algorithm alternates between the following two steps. (i) Stay in a Fock
state for some time. (ii) Jump to another occupation basis state. The time interval 7 for staying in the current
state is determined by 7 = min(7, 7,, 77), the minimum of three values randomly drawn from exponential
distribution P (7)) o< exp[— 7y /] with mean dwell time for heat exchange (%), gaining (#,) and losing (%) a
particle given by
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fl_l = Z Z o (k)(l - fa(gk))- (52)
k a=L,R

According to the choice made, the corresponding jump operation is performed. Specifically, if - = 7, which
means heat exchange process is chosen, then a particle is transferred from a randomly drawn departure mode
k to the randomly drawn target mode g. This single-particle jump has the probability P(k — ¢, n) = %Ry n-
If pumping is chosen, with 7 = 7, a particle is added to a mode randomly drawn with probability P (k) =
te> " a—1.8Ma (K)f, (E). Likewise, the particle loss process is performed when 7 = 7;. These two steps are repeated
until the desired evolution time is reached.

An ensemble of trajectories is calculated individually, from which the wavefunctions [n"(¢)) obtained are
then used to compute the expectation value of an observable O as

(0) =

=

L
S (V@) [0InM(p)). (53)
A=1

A.2. Derivation of equations (38) and (39) in the main text
The time evolution of the mean occupation due to heat exchange is governed by

d . 1 At n S A N .
(a@z)) =3 > Rugntr{[2L(m) A Lyg(m) — gLy (n) Ly (n) — L;k(n)qu(n) il p}, (54)
heat n,k,q

with

2L L) — AL L) — L)L)y

(55)
= 2In)(ng|Ang)(n| — Ajn)(n| — |[n)(n|,.
Let us assume that Fock state |n) has n; particle in /mode, i.e.
filn) = my|n). (56)

Then it is easy to verify that for state [n), which is obtained from state |n) by transferring a particle from k mode
to gmode, there is the following property

ilnge) = (n1 + Oq1 — Ox1) Inge). (57)
By using equations (56) and (57), we can reduce equation (55) to

2Ly )i Lo(m) — AL () L) — L)L)y = 2(8,0 — &,)| n)(al. (58)

Substituting it into equation (54), we obtain

d, .
(—<Tll>) = Z ank,n(éq,l - 6k,l)pn = Z(annlk,n - annkz,n)- (59)
dt heat n,k,q nk

It then reduces to equation (38) by using equations (19) and (40) in the main text.
Likewise, by making use of

S S R R
2Lk1’l1Lk — n;LkLk — LkLk ny = 2(5k,l|nkl) <nkl|,

IS PSP IS A
2Lk I/llLk — nlLk Lk — Lk Lk”l = —2(5k’1|n> <11|, (60)

we can obtain equation (39) in the main text.

15



I0OP Publishing NewJ. Phys. 21 (2019) 063026 L-NWuetal
0.8 10?2
0.20 — k= 07 — k=0 K=
k=20 0.6 k=20 k = 49
N_0.15 —— k=140 ~ 05 — k=140
S — k=60 S04 — k=60 8101
5010 —— k=80 So3 k=80 |
0.05 0.2
0.1
0.0 10°
0 20 40 60 80 100 1 2 3 4 5 6 7
i i Wi
(a) W =1J (b) W =10J (c)
25 6
— W=1.0)
20 W =1.5) 4 25
— W =2.0 2 20
313 — w=30 | I o S
V3 w =Y 15
10 —— W =5.0) -
\ 10
S| —— > -4
-6 5
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
k k k
(d) (e) ()

Figure Al. (a), (b) Show some selected eigenstates for the Hamiltonian (27) at different disorder strengths. (c) and (d) show the
dependence of localization length &, . = 1/3" |1k (i) |* of the eigenstates (i) on the disorder strength W and the eigenstate label k.
(e) Shows the eigenenergies £ for some values of W. (f) Shows the density of state vy = 1/(ex — & — ). System sizeis M = 100.

A.3. Anderson localization V = 0
In this section we show some further data concerning the non-interacting system. A straightforward basis
transformation recasts Hy into the diagonalized form Hy = 37, i with A, = & & and & = Y2, ¢ (4],
which creates a particle in the single-particle eigenstate |k) = Y-, ¢ (i)|i) with energy ¢ that are distributed
between —2] — Wand 2] + W, asshownin figure Al(e).

Figures A1(a), (b) show some selected eigenstates for two different disorder strengths. It is clear that as
disorder becomes stronger, the wavefunctions become more localized. To characterize the localization of the
wavefunction, we define the localization length using the inverse participation ratio § . = 1/>_,|0x()[*. As
shown in figure A1(c), &, decays rapidly as disorder increases. Moreover, it also depends on the eigenenergy,
as shown in figure A1(d), and &, has its maximum in the center of the energy-band (figure A1(e)). The

density of states v, =

1/(ex — & _ 1) (inverse of the energy gap between neighboring eigenstates) also

depends on the disorder strength W. From figure A1(f), it is clear that larger values of Wlead to a smaller

density of states.

A.4. Comparison of the current from kinetic theory and quantum Monte-Carlo simulation

Figure A2(a) shows the currentas a function of disorder strength W. The kinetic theory results (solid lines)
agree well with the results obtained from quantum-jump Monte-Carlo simulation (markers). The agreement
is better for lower temperature and weaker disorder. The reason is that the error of the Monte-Carlo
simulation scalesas AI/ \/W , with Nj;c being the number of trajectories for the Monte-Carlo simulation
and Al the fluctuation of the current. From (b) we can see that, the fluctuation of the current Alincreases
with disorder strength Wand temperature T. In addition, as shown in (a), the mean value of the current
decreases with increasing W. These imply that to maintain a small relative error, much more trajectories are
needed for stronger disorder and higher temperature. In other words, for a given number of trajectories,

which is 1000 in our numerical calculation, the error of Monte-Carlo simulation will be larger for stronger
disorder and higher temperature.
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Figure A2. The current (a) and its fluctuation (b) as a function of the disorder strength W. The solid lines are the results of kinetic
theory. The makers denote the results of quantum Monte-Carlo simulation. The results are averaged over 20 disorder realizations. For
agiven disorder configuration, the fluctuation of the current is given by (AI); = \/(I*); — (I )? , where the average () is taken over
1000 trajectories of Monte-Carlo simulations. The parameters are: system size M = 50, dissipation rate & = 7, interaction strength
V = 0, chemical potential imbalance 6;t = J.
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