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Quantum link models (QLMs) are extensions of Wilson-type lattice gauge theories which realize exact
gauge invariance with finite-dimensional Hilbert spaces. QLMs not only reproduce standard features of

Wilson lattice gauge theories in equilibrium, but can also host new phenomena such as crystalline confined

phases. The local constraints due to gauge invariance also provide kinetic restrictions that can influence

substantially the real-time dynamics in these systems. We aim to characterize the nonequilibrium evolution

in lattice gauge theories through the lens of dynamical quantum phase transitions, which provide general
principles for real-time dynamics in quantum many-body systems. Specifically, we study quantum
quenches for two representative cases, U(1) QLMs in (1 + 1)D and (2 + 1)D, for initial conditions
exhibiting long-range order. Finally, we discuss the connection to the high-energy perspective and the

experimental feasibility to observe the discussed phenomena in recent quantum simulator settings such as

trapped ions, ultracold atoms, and Rydberg atoms.

DOI: 10.1103/PhysRevLett.122.250401

Introduction.—Gauge theories play an important role in
physics ranging from high-energy physics [1] to models for
quantum memories [2] and effective low-energy descrip-
tions for condensed matter systems [3,4]. Today, synthetic
quantum systems, such as those realized in ultracold atoms
in optical lattices and trapped ions, promise to provide a
controlled experimental access to the unitary quantum
evolution in lattice gauge theories (LGTs) [5-11], as
demonstrated recently on a digital quantum simulator
[12]. This perspective has stimulated significant interest
in the real-time dynamics of LGTs [13]. LGTs display
various important dynamical phenomena which are con-
cerned with the evolution of an initial vacuum subject to a
perturbation, such as the Schwinger mechanism or vacuum
decay [14-17]. Recently, it has been observed that the
decay of a vacuum in quantum many-body systems can
undergo a dynamical quantum phase transition (DQPT)
[18,19] appearing as a real-time nonanalytic behavior in the
Loschmidt echo or vacuum persistence probability [20,21].
Up to now, it has been, however, an open question as to
whether gauge invariance still allows the constrained
systems to undergo DQPTs, and what the consequences
are for the general physical properties of such systems.

In this Letter, we investigate the nonequilibrium dynam-
ics of U(1) lattice gauge theories exhibiting symmetry-
broken phases in equilibrium. Initializing the system in a
symmetry-broken vacuum, we study the real-time evolution
following a quantum quench through the lens of DQPTs.
Instead of monitoring the full details of the time-evolved
wave function in many-body Hilbert space, we investigate
the dynamics projected to the ground-state manifold
accordingly, which is equivalent to the vacuum persistence
probability for the case of a unique vacuum. We observe
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DQPTs for both (1 +1)D and (2 + 1)D in the quantum
quench dynamics—see Fig. |—upon switching on a strong
Hamiltonian perturbation counteracting the long-range
order present in the initial state. The temporal singular
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FIG. 1. (a) Schematic plot of the wave function dynamics in

Hilbert space of the considered lattice gauge theories. The two
symmetry-broken ground states |y ) represent extremal points,
with maximal values for the order parameters. Starting at |y_),
the state explores the Hilbert space. The projection onto the
ground-state manifold classifies the state according to whether
the state is closer to |y_) or |y, ) (blue or red). (b) The dynamics
of the dominant rate function A(z) of the full return probability.
Blue and red lines represent the dominant components A_(#) and
A, (), respectively. The vertical dashed lines mark the times when
A(1) has kinks and undergoes a DQPT, switching between the two
components. We compare A(z) to (c) the dynamics of the order
parameter £(¢) and (d) the fermionic matter particle density n(z).
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behavior associated with DQPTs reflects a switching
between different symmetry-broken sectors in the projected
ground-state manifold, as we illustrate in Fig. 1(a). On the
level of local observables, the singular switching between
symmetry-broken sectors in the vacuum dynamics becomes
a crossover, leading to collapse and revival oscillations in
the evolution of the order parameter. In the model we study
in (1 + 1)D, the collapse of the long-range order is caused
by the proliferating generation of particle-antiparticle pairs
out of the vacuum reminiscent of the Schwinger mecha-
nism; see Fig. 1(d). While we solve for the dynamics in the
(1 4 1)D model using the time-evolving block decimation
approach, the (2 + 1)D system, since genuinely interact-
ing, represents a particular challenge. Using exact diago-
nalization, we find evidence for a DQPT by simulating the
dynamics for systems with up to 72 spin-1/2 degrees of
freedom.

Quantum link models.—Gauge theories are theories with
hard local constraints enforced via Gauss’s law and can be
defined nonperturbatively on a lattice [17]. In the lattice
formulation, the matter fields reside on the sites, and the
gauge fields are defined on the bonds connecting the sites.
Quantum link models (QLMs) extend Wilson’s LGT
formulation using finite-dimensional Hilbert spaces for
gauge fields [5,22]. On the one hand, such finite-
dimensional Hilbert spaces are often easier to simulate
numerically, yielding a computational advantage. On the
other hand, such LGTs can also exhibit physical phenomena
qualitatively different from Wilson’s LGT, such as crystal-
line confined and deconfined phases [23-29], existence of
soft modes [30], deconfined Rokhsar-Kivelson points [31],
and the realization of massless chiral fermions [32]. In this
Letter, we go beyond the equilibrium context and consider
the quench dynamics of U(1) invariant QLMs with spin-1/2
quantum links both in (1 4+ 1)D and (2 + 1)D. The focus is
on the gauge-field dynamics, which in (1 + 1)D is achi-
eved by coupling the U(1) quantum links to matter fields,
while in (2 + 1)D, the gauge fields generate their own
dynamics from the local magnetic interactions (without
coupling to matter). The Hamiltonian for the (1 + 1)D
system of size L is

L2 L-1
Hip =k ) iUy, +He)+ Y mpay,. (1)
x=0 x=0

where l//I(l//x) denotes the matter fermion creation (annihi-
lation) operator on site x; m > 0 is the bare mass of the
fermions; U ; is the quantum link operator representmg the

gauge field on the link connecting sites x and x + 7, where i
is the unit vector for the 1D lattice; p, = (—1)*; and L is the
number of matter fields where the total number of degrees of
freedom is Ny, = 2L. We define the Hamiltonian using the
open boundary condition where the effect on the bulk
physics is negligible at the thermodynamic limit. The
Hamiltonian for the (2 + 1)D system is

Hyp =Y —J(Ug+UL) +V(Un+ UL, (2)
Od

where Ug = U, ;U,;;U. +}?U:},, and where 7, denote

the unit vectors for the square lattice. The quantum

links are canonically conjugate to the electric field,
Ei [EcpUypl=Usibevdyy and  [E, U, 1=
_U 5xx TN

spin- S operators:

Quantum links can be represented by
=S, U ,=50, E

x;t xp Yxp i Bap = S/ZUA'
We focus on spin-1/2 quantum links, for which Hy =
¢ > .4 Ex, is the electric field contribution and can be
dropped since it is a constant. Both Hamiltonians are
invariant under suitable local U(1) transformations.
For the (1+ 1)D system, the generator is Gp(x) =
yiy, +3[p,— 1] = (E,; — E,;;), while for the (2+
1)D system, it is GzD( ) =2 u(Ex;i — E« ;). One can
check that [H]D, G]D} = O, and that [HZD’GZD] =0. In
the following, we will study the real-time quench dynam-
ics of Hip and H,p.

Before discussing the static and dynamic aspects of Hp
and H,p, we first motivate our study of the vacuum
dynamics and its connection to equilibrium and dynamical
quantum phase transitions in general.

Vacuum dynamics and dynamical quantum phase
transitions.—We aim to study the dynamics in U(1)
QLMs from initial symmetry-broken ground states
W), [wp), where a, =1, ..., M label the set of M states
in the ground-state manifold. Motivated by a recent experi-
ment [12], we choose the initial system parameters such
that |y,) are product states. After the quantum quench, the
state |y, (1)) = U(t)|w,), with U = e~ " and H = H,p, or
H = H,p, explores the Hilbert space of the quantum many-
body system. Instead of tracking the full details of this
evolution, we characterize the state’s main properties by the
projection onto the ground-state manifold of the initial
Hamiltonian via the probabilities Py(t) = |(wslw. (1)),
which, as we will show, provides basic insights to char-
acterize the gauge-field dynamics.

The return probabilities P4(7) also play a central role in
the theory of DQPTs [19]. While equilibrium phase
transitions are driven by external control parameters, at
DQPTs, a system exhibits nonanalytic behavior as a
function of time and therefore caused solely by internal
dynamics [18]. DQPTs have been initially defined for the
case of a unique initial ground state |yg). It has been a
key observation that the return amplitudes G(r) =
{wole™™|y,) formally resemble equilibrium partition
functions at complex parameters, which have been studied
already in the equilibrium case using the concepts of
complex partition function zeros [33-35]. As a conse-
quence, there exists a dynamical counterpart g¢(z) =
N;'log[G(7)] to a free energy density, which can become
nonanalytic at critical times. While it is important to
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emphasize that this identification is of a formal nature and
g(2) is not a thermodynamic potential, it has in the mean-
time been shown that central properties of equilibrium
phase transitions can also be shared by DQPTs. This
includes the robustness against perturbations [36-39],
the existence of order parameters [39—47], or scaling and
universality [38]. For the case of degenerate ground-state
manifolds as we study here, it has turned out to be very
useful to generalize G(7) to the full return probability
P(t) = 3L, Py(t), where Py(r) denotes the probability
that the system is found in the ground state # [20,43-50].
Since Py = e™N+%() for N, — oo with 4,(¢) intensive [48],
there is always a dominant contribution for P(z) in the
sense that, for A(r) = —N;'log[P(t)], we have (1) =
ming({44(1)}) when N, — oo [48]. Whenever during the
dynamics the dominant branch switches from one to the
other vacuum, one obtains a kink in A(), and therefore a
DQPT. This insight has also been used to identify DQPTs
in a recent trapped-ion experiment [20] and will be utilized
here to determine DQPTs in U(1) QLMs by comput-
ing A(t) = ming({44(1)}).

In the following, we study the vacuum dynamics for U(1)
QLMs using numerical methods. For the (1 + 1)D case, we
map the model to a spin model through the Jordan-Wigner
transformation and study the problem by means of the time-
evolving block decimation algorithm [51-53], and for the
(2 4+ 1)D case, we use a Lanczos-based exact diagonaliza-
tion (ED) [54].

(1+1)D U(1) QLM and quench protocol.—In equilib-
rium, the model in Eq. (1) exhibits a quantum phase
transition at k. = (0.655)~'m = 1.526m in 2D Ising criti-
cal universality class separating a symmetry-broken phase
(k < k) from a paramagnetic one (x > k.) with the order
parameter & = L' 37 (5%.) [8,55].

We prepare the system initially at « = 0 in one of the two
ground states |y.) = |[+)s ® [0101...),,, with [0101...),,
being the bare vacuum for the matter degrees of freedom
without any particle [see also Fig. 3(a)], and
[+)s =|1.-.1), |[=)s = |}...]) denoting the fully polar-
ized states for the gauge fields on the links. Without loss of
generality, we start from |w_). When 7 > 0, we suddenly
turn on k > 0 and monitor A(¢), £(¢), and the matter particle
density n(z) = L™ S Lb(=1)wly, +0.5. In (1+1)D,
the latter can also be identified with the chiral condensate,
which, however, is specific to our model. We calculate A(¢)
via A(t) = min (A,.(2),1_(1)), where A:(1) =
—L~'log[P..(1)] and P (1) = [{p_lw_(1) [, with |$_) =
lw_) and |¢p,) = wiw U} | .lw.). Using the states )
instead of |y.) is necessary because we use for our
numerics open boundary conditions, where |y) are
dynamically decoupled. However, they can be almost
transformed into each other up to one particle-hole exci-
tation at the two edges of the chain, which is accounted for

by defining |¢.). For details, see the Supplemental
Material [56].

Figure 1 shows the data for a quench across the under-
lying quantum phase transition to x =3m > k.. We
observe DQPTs in A(7) at a series of critical times in the
form of kinks caused by a crossing of the two rate functions
A (1) and A_(t). Thus, the DQPTs mark those points in time
where the time-evolved state |y_(7)) switches between
being closer to |y ) to being closer to [y_), and vice versa.
With this, one can classify |y_(¢)) with either positive or
negative order parameter values, respectively, following the
perspective in Fig. 1(a). This implies that £(¢) has to change
sign across a DQPT. Accordingly, £(7) develops an
oscillatory behavior for a sequence of such DQPTs, as
we find indeed for our numerical data; see Fig. 1(c). Thus,
from the projected vacuum dynamics, we obtain useful
information of the time evolution of the full quantum many-
body state. The quantities n(¢) and A(r) are also correlated,
similar to the Schwinger mechanism of particle-antiparticle
production, where the vacuum persistence probability is
directly linked to n(z) [14]. Even though Gauss’s law
connects the dynamics of matter and gauge fields, it does
not give a direct relation between &(¢) and n(z), but rather
imposes the constraint n(r) = 2L~" Y L2/(=1)*E +(1) up
to constant terms, resulting in qualitative agreement of the
oscillatory behavior of the two observables. In order to
make the connection quantitative, we compare the time-
scales 7, 7¢, and 7, defined in Fig. 1 as a function of « for
K > K., which we show in Fig. 2. For k not too close to «,.,
we find that 7; ~ 7o, whereas the oscillation period for
T, < 7,,7T¢ is only slightly off, by 7%. Upon approaching
K., the finite-size effects become important, and z; and z¢
start to deviate from each other. We attribute this difference
to the numerical method of computing the timescales.
Ideally, these periods should be obtained by studying the
oscillations for many cycles by performing a Fourier
analysis. Close to the equilibrium critical point, however,
the involved timescales become very large, which allows us
to reliably reach only the first two DQPTs. Thus, we
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FIG. 2. The timescales 7;, 7¢, and 7,, as defined in
Figs. 1(b)-1(d), as a function of the coupling x in the final
Hamiltonian for two system sizes L = 24, 48. For k not too close
to k.. of the underlying quantum phase transition, the timescales
7, and 7¢ (in contrast to 7,) are close to each other.
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FIG. 3. (a) lllustration of the initial product state for the (1 +
1)D QLM at x = 0. The filled (hollow) circle is the particle
(antiparticle) sites, the crosses are the gauge-field sites, separated
by color blocks. The rows with horizontal arrows are the
fermionic representation of the state. The two symmetry-breaking
ground states |y ) are shown. The lower three rows are the wave
function representation using spin states. (b) Particle-antiparticle
pairs can propagate upon flipping the intermediate gauge spins.
(c) The matter-gauge link interaction couples two shaded blocks.
(d) The dynamics of A(z), £(¢), and n(r) upon changing «.

estimate the oscillation frequency consistently over the full
set of k by the time difference between the second and first
DQPTs. Analogously, we define 7o and 7, as the time
between the first two zeros of £(¢) and the first two maxima
of n(t), respectively.

When we lower k < k., the rate function does not
develop a singularity anymore, and no DQPT is observed
within the time window of the simulation; see Fig. 3(d).
Following the picture in Fig. 1(a), we conclude that the
system never switches to the other symmetry-broken sector
and therefore does not reach the other basin of states related
by the Z, symmetry. Hence, there is no sign change during
the dynamics.

(24 1)D U(1) QLM.—After analyzing the (1+ 1)D
QLM, we now go one step further to the (2 4+ 1)D case,
where the gauge fields can generate nontrivial dynamics
without coupling to matter fields; see Eq. (2). The first term
in Eq. (2) describes quantum tunneling between configu-
rations, flipping all spins on the given plaquette. The
second term is the potential term which prefers to maximize
the number of flippable plaquettes. Recent studies of this
model show new types of crystalline confined phases in
equilibrium [26,28]. For V < V.= —0.38, the ground
states, |w. ), spontaneously break the lattice translation,
T, as well as charge conjugation, C, symmetries. For
V = —o0, the ground states are product states of maximum
number of flippable plaquettes with different chirality of £
fields [56]. At V =V, the system undergoes a weak first-
order transition into a phase which breaks the 7 symmetry
by only one lattice spacing.

We study a quench process similar to (1 + 1)D case. For
t <0, we choose V = —oo such that our system is prepared

0.0 -

051 —
(b)

My(t) 0.0 Z@=====
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FIG. 4. DQPT in the (2 4+ 1)D U(1) QLM. The dimensionless
time, ¢, in units of J. The quench dynamics using Lanczos-based
ED for system size 4 x 4 (32 spins), 4 x 6 (48 spins), and 6 x 6
(72 spins). (a) The dynamics of the rate function after quench.
(b) The dynamics of the two-component order parameter
(M4, Mpg), denoting the plaquette orientation in the two sub-
lattices, A and B, of the square lattice. (c) The dynamics of the
order parameter after quench in the (M4, M) plane. The two red
points represent the order related by charge conjugation sym-
metry, C, which transform Mz — —Mp [28]. Under a lattice
translation, the order parameter gets reflected about the red
dashed line.

as a product state, [y/_). When t > 0, we switch Vto V =0
and evolve the state using U (1) = e~ In Fig. 4(a), we
monitor A(¢) and the order parameter, which now exhibits
two components M, (¢) with n = A, B [56]. The order
parameters capture the orientations of the plaquette in
sublattices A, B. They are convenient to describe the Néel
order and the plaquette order in the characterization of
ground states [26,28], and they can be efficiently computed
using the height representation explained in the
Supplemental Material [56]. We observe a decisive sig-
nature of a DQPT in A(r) with only a weak drift for
increasing system size. This DQPT again marks the sharp
transition between the two branches illustrated in Fig. 1(a).
Accordingly, we expect a crossover of the order parameter
M (1) associated with the classification, vanishing at the
critical time. While finite-size effects are still substantial for
the individual M, (), one can observe in Fig. 4(c) that the
crossing to the other branch in the two-component order
parameter plane remains stable upon increasing system
size. From Fig. 4(c), we see that the two-component order
parameter can move through the path joining C partners, but
not the 7 partners. On the studied timescales, M ()
therefore does not melt, suggesting that the system remains
a confined crystal.

Conclusion.—The study of dynamics of the lattice gauge
theories holds the potential to shed light on many of the
dynamical properties encountered in the phenomenology of
high-energy physics and of the early Universe. The
quenched dynamics of the chiral condensate of the
Schwinger model can perhaps be used to qualitatively
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model the analogous behavior of the condensate of the
QCD vacuum in strong external magnetic fields [58,59],
which might occur in heavy-ion collisions or might have
influenced structure formation in the early Universe. The
Hamiltonian evolution of the symmetry-broken ground
state in (2 + 1)D guided by the unbroken symmetries is
another aspect which might be argued to hold beyond the
systems considered here and help us to understand the
dynamics of confining theories in nature.

Hamiltonians with local gauge invariance have been
proposed to be realized in quantum simulators [5,60] via
quantum circuits [61], trapped ions [7], ultracold atoms
[62], and Rydberg atoms [63]. Initial product state wave
function can be prepared with high fidelity [20,64,65]. To
observe the dynamics of the order parameters and particle
density, the experiments need to have local addressability,
which is accessible in trapped-ion and Rydberg atom
experiments. The observation of kinks of Loschmidt echo
is challenging, which, however, were mastered in a recent
trapped-ion experiment [20], photonic quantum walks
[43,45], and superconducting qubits [44].

We acknowledge Pochung Chen, Chia-Min Chung, C.-J.
David Lin, Ying-Jer Kao, Marcello Dalmonte, and Uwe-
Jens Wiese for the fruitful discussions. M. H. acknowledges
support by the Deutsche Forschungsgemeinschaft via the
Gottfried Wilhelm Leibniz Prize program.

Note added.—For a related work on dynamical quantum
phase transitions in gauge theories, see the Letter by Zache
et al. [66].
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