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Popular Science Summary

How simple is too simple? When scientists attempt to model reality it often leads
to making assumptions and approximations. If we for example wish to predict
how many will be infected by a virus we could simplify our model by neglecting
reinfections, by approximating the population distribution to be homogeneous,
by assuming that individuals interact randomly and so forth. How well a model
describes the real world depends crucially on these assumptions: if they are good
they should lead to nothing more than small quantitative deviations; if they are
not the results could be qualitatively different. In the world of cold atomic gases
where this thesis takes place it is often possible to obtain an accurate theoretical
description by means of so­called mean­field theory. Mean­field theory, while in­
corporating many approximations, can in many cases be motivated on the basis of
an excellent agreement with experiments. This is not always the case however, and
there are situations where mean­field theory fails to capture the essential physics.
In these instances one has to go beyond the mean­field description, and it was
recently realized that a whole world of exciting physics awaits there to be investig­
ated.

The systems investigated theoretically in this thesis are cold. In fact, the temper­
atures achieved in the corresponding experiments can be very close to zero kelvin,
or ­273.15 degrees Celsius. When a collection of atoms of a type known as bosons
are cooled down to these low temperatures they can change phase into a Bose­
Einstein condensate, a curious state of matter that exhibits quantum behavior even
on a macroscopic scale. These condensates have strong ties to two other types of
physical phenomena relevant to this thesis, namely superfluidity and supersolid­
ity. Superfluids have zero viscosity (a measure of a fluid’s thickness) and can flow
without losing energy. When put in a rotating container, these thin fluids can
form vortices that continue to rotate for a long time even after the container is
brought to rest, thus holding a current that flows persistently. Supersolidity is the
conceptual marriage between superfluidity and solidity, and combines the notion
of a rigid structure with that of frictionless flow, an idea that quickly conspires to
wage war with our intuition!

In this thesis we study superfluidity and supersolidity in the context of ultracold
gases where mean­field theory breaks down, aiming to contribute to the general
body of knowledge for these concepts in the spirit of basic research. In particular,
we find in Paper I that lattices of vortices may exist in two­dimensional self­bound

vi



droplets, and suggest how vortical droplets could be created experimentally. In
Paper II we investigate the rotational properties of a three­dimensional dipolar
supersolid trapped in a ring and identify the conditions for the existence of meta­
stable persistent currents. Paper III examines the validity of using a particular
mathematical method to describe two­dimensional droplet systems, finding that
this method in many cases provides an excellent description. Finally, in Paper Iv
we study the interplay of superfluidity and localization in a one­dimensional ring,
and shed some light on the consequences of the connection between localized and
non­localized components.
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Populärvetenskaplig Sammanfattning

Hur enkel får en vetenskaplig beskrivning lov att vara? När forskare modellerar
världen behöver de ofta göra många antaganden och approximationer. Om vi till
exempel vill förutspå hur många som kommer att bli infekterade av ett virus så
kan vi simplifiera vår modell genom att inte ta hänsyn till återinfektioner, anta
att folk interagerar helt slumpmässigt, approximera befolkningstätheten som kon­
stant och så vidare. Hur dessa simplifieringar väljs är helt avgörande för hur bra
modellen kommer att beskriva verkligheten: om de är väl valda så borde de inte
leda till mer än små kvantitativa fel; om de inte är det så kan resultaten bli kvalita­
tivt olika jämfört vad som faktiskt händer. I det forskningsfält som studerar iskalla
atomgaser där denna avhandling tar plats så är det ofta möjligt att få en bra teore­
tisk beskrivning med så kallad medelfältsteori. Trots att medelfältsteori använder
sig av många approximationer så kan denna i många fall motiveras genom god
överenstämmelse med experiment. Detta är dock inte alltid fallet, och det finns
situationer där medelfältsteori misslyckas helt att beskriva fysiken korrekt. I dessa
fall måste man gå bortom medelfältsbeskrivningen, och det insågs nyligen att det
finns massvis av spännande fysik som inte har kartlagts där.

De system som studerats teoretiskt i denna avhandling är kalla, så kalla att de tem­
peraturer som uppnås i motsvarande experiment är mycket nära noll kelvin, eller
­273.15 grader Celsius. När en samling partiklar av en typ som kallas bosoner kyls
ner till dessa låga temperaturer så kan de bli ett Bose­Einstein kondensat, ett märk­
ligt aggregationstillstånd som uppvisar kvantmekaniska effekter även på en makro­
skopisk nivå. Dessa kondensat har starka anknytningar till två fysikaliska fenomen
som är relevanta för denna avhandling, nämligen suprafluiditet och suprasoliditet.
Suprafluider har noll viskositet (vilket är ett mått på en vätskas tjocklek) och kan
flöda utan att förlora energi. När denna typ av fluid placeras i en roterande bägare
kan det bildas virvlar som fortsätter snurra en lång tid efter att bägaren slutat ro­
tera, det vill säga det finns alltså kvar ett bestående flöde. Suprasoliden är en typ
av materia som har både en stel strukur associerad med det fasta tillståndet samt
suprafluidens flödesegenskaper, en idé som kan kännas ytterst paradoxal!

I denna avhandling undersöker vi suprafluiditet och suprasoliditet hos kalla atom­
gaser i den regim där medelfältsteori inte är en bra beskrivning av verkligheten,
med målet att utöka förståelsen för dessa fascinerande koncept i grundforskning­
ens anda. Mer specifikt så finner vi i Artikel I att ett gitter av virvlar kan existera i
tvådimensionella självbundna droppar, och föreslår hur kvantdroppar med virvlar

viii



skulle kunna skapas experimentellt. I Artikel II undersöker vi rotationsegenskaper­
na hos en tredimensionell suprasolid i en badringsformad bägare och identifierar
vad som ska krävas för att det ska existera bestående flöden. Artikel III undersö­
ker hur väl en speciell matematisk metod beskriver tvådimensionella system av
självbundna droppar, och det visar sig att denna metod fungerar mycket väl. Slut­
ligen i Artikel Iv studerar vi kopplingen mellan suprafluiditet och lokalisering i
ett endimensionellt system, och visar på några konsekvenser av samspelet mellan
lokaliserade och icke lockaliserade delar.
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Part I

Background and Theory
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Chapter 1

Introduction

The states of matter most commonly encountered throughout everyday life num­
ber three: solids, characterized by the ability to retain their shape and volume
against external forces; liquids, which change shape according to the surround­
ings at an approximately constant volume; and gases, which will adapt both shape
and volume according to an external confinement. These are not the only ways in
which nature may present itself to us, and it turns out that there is an abundance
of matter configurations that do not fit into the three aforementioned categor­
ies. One of these and the main topic of this thesis is Bose­Einstein condensation,
where at least one quantum state becomes macroscopically populated. Theorized
in 1924 [1, 2], a transition to this state of matter can occur when a collection of
bosons are cooled down to temperatures close to absolute zero. Following the
first experimental realizations in cold atomic gases in 1995 [3–5], these systems
have provided an excellent space to conduct basic research, both experimentally
due to a high degree of control and tunability, and theoretically due to the di­
lute and weakly­interacting nature of these atomic systems which often allows for
simple and accurate descriptions. Although curious on their own, Bose­Einstein
condensates may exhibit further exotic behavior, such as superfluidity and super­
solidity. First observed in helium [6, 7], a superfluid can flow without friction at
zero viscosity. A supersolid on the other hand has both superfluid and solid prop­
erties at the same time [8–12], a notion that may seem counterintuitive. Despite
their strange nature, evidence for the existence of these supersolids has been found
experimentally with several kinds of bosonic quantum gases [13–17].
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In the context of dilute atomic gases, Bose­Einstein condensates can often be suc­
cessfully modelled by using mean­field methods. While it is possible to include
perturbative corrections to these mean­field descriptions [18–22], this often does
not affect the physics in a significant manner since the mean­field contribution
usually dominates for dilute and weakly­interacting gases. A different scenario
may arise in Bose­Bose mixtures with short­range interactions, where it was pre­
dicted for a three­dimensional system in certain parameter regimes that attract­
ive mean­field and repulsive beyond mean­field contributions to the energy may
compete in a way that results in self­bound droplet states [23], thus predicting
qualitatively different physics compared to the mean­field picture where a col­
lapse of the condensate is expected for the same parameters [24, 25]. Following
this theoretical prediction droplets of a conceptually similar kind were observed
in the laboratory [26–29], although in a different type of configuration with only
a single component consisting of strongly dipolar atoms. Shortly thereafter it was
shown that these dipolar droplets could be described theoretically by including
beyond mean­field corrections [30–34], in analogy with the situation for binary
mixtures. The droplets corresponding to the original prediction in binary systems
were eventually also found experimentally [35, 36], but this would not be the end
of this story. In the same beyond mean­field formalism as for the droplets, it
was suggested that trapped dipolar condensates could display supersolid behavior
[37, 38], which was also found experimentally [15–17]. Another example of phys­
ics not captured by mean­field theory has been proposed for repulsive Bose­Bose
mixtures, where higher­order corrections can break the miscibility­immiscibility
dichotomy and lead to a new mixed­bubble phase, where a mixed phase coexists
with a pure phase of one of the components [39]. Given the abovementioned ex­
amples, one can only speculate what new types of physics await to be uncovered,
and it remains to be seen what the future holds for the field of ultracold atomic
physics.

This thesis is centered around the topics introduced in the above two paragraphs,
investigating superfluid and supersolid properties of Bose­Einstein condensates
beyond mean field. The following chapters do not aim to be a complete review
the field, but rather attempt to provide some relevant background to the articles
of this thesis. Chapter 2 focuses on the beyond mean­field formalism for Bose
systems, chapter 3 and 4 discuss the concepts of superfluidity and supersolidity,
respectively, and chapter 5 concludes the thesis. Finally, the papers that constitute
the novel research of this dissertation are presented in their entirety at the end.
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Chapter 2

Mean­Field Theory and Beyond

It all has to start somewhere, and that somewhere is in our case a non­linear dif­
ferential equation. Where does this equation come from? The short answer is the
Schrödinger equation; a longer answer, amalgamating the author’s understanding
with the literature, can be found in this chapter.

Note that in this and the following chapters we will always work in dimensionless
units such that ℏ = kB = m = 1, where ℏ is Planck’s reduced constant, kB the
Boltzmann constant, and m the mass of a single particle (in the case where there
are two different types of particles we set m1 = m2 = 1).

2.1 Bose­Einstein Condensation

The Penrose­Onsager definition¹ of a Bose­Einstein condensate starts by consid­
ering the eigenvalue equation [40]

∫
dr′n(1)(r, r′, t)ψi(r′, t) = γi(t)ψi(r, t), (2.1)

where n(1)(r, r′, t) = ⟨Ψ̂†(r, t)Ψ̂(r′, t)⟩ is the one­body density matrix and Ψ̂ the

¹There are several ways to define Bose­Einstein condensation; this definition is particularly useful
since it applies to a large class of systems.
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bosonic field operator. The orthonormal functions ψi constitute a natural basis
that diagonalizes n(1), which may be written

n(1)(r, r′, t) =
∑
i

γi(t)ψ∗
i (r, t)ψi(r′, t). (2.2)

Bose­Einstein condensation is defined to occur when at least one of the eigenvalues
γi is of the same order as the total particle number N. When precisely one of these
eigenvalues is of order N the condensate is called simple, otherwise fragmented
[41]. We now consider a simple condensate and write

n(1)(r, r′, t) = γ0(t)ψ∗
0(r, t)ψ0(r′, t) +

∑
i ̸=0

γi(t)ψ∗
i (r, t)ψi(r′, t), (2.3)

where the zero index corresponds to the largest eigenvalue i.e. the condensed
state. In the case where |r′ − r| is large one might expect the terms with i ̸= 0
to interfere destructively such that the second term in Eq. (2.3) goes to zero and
n(1) → γ0ψ

∗
0ψ0 ̸= 0. This property is referred to as off­diagonal long­range order,

and its existence is sometimes taken as the definition for Bose­Einstein condens­
ation. To be a bit more explicit, consider the example of a time­independent
non­interacting uniform system in a volume V. The eigenfunctions are then plane
waves ψk(r) = eik·r/

√
V with eigenvalues

γk =
1

eβ(ϵk−µ) − 1
, (2.4)

where µ < 0 is the chemical potential, β = 1/T the inverse temperature, and
ϵk = k2/2. By approximating γk ≈ T/(ϵk−µ) and taking the sum to an integral
the second term in Eq. (2.3) becomes

T
∫

dk
(2π)3

eik·(r′−r)

k2/2 − µ
, (2.5)

which can be evaluated to [42]

6



n(1)(r, r′) =
γ0

V
+ T

e−
√
−2µ|r′−r|

2π|r′ − r|
, (2.6)

showing that the second term goes to zero for |r′ − r| → ∞ while n(1) is non­
vanishing in the same limit. It should be noted that off­diagonal long­range order
as a definition for Bose­Einstein condensation becomes problematic when one for
example considers a trapped condensate, where the limit |r′− r| → ∞ can not be
applied in a meaningful way.

The order of magnitude differences between the eigenvalues and the form of the
one­body density matrix in Eq. (2.3) motivates a similar separation for the field
operator:

Ψ̂(r, t) = Φ(r, t) + η̂(r, t), (2.7)

where Φ = ⟨Ψ̂⟩ is a classical field describing the condensed state and η̂ a fluctu­
ation operator accounting for the rest of the states [24, 43, 44]. Some discussion is
warranted regarding the expectation valueΦ = ⟨Ψ̂⟩, which at T = 0 is taken with
respect to an eigenstate of some Hamiltonian. This expectation value can not be
non­zero if the Hamiltonian commutes with the number operator, i.e. for a def­
inite particle number. A way out of this is to work with Bogoliubov quasi­averages
[45], where one adds to the Hamiltonian the small term

lim
λ→0+

λ

∫
dr
[
Ψ̂(r, t)e−iθ + Ψ̂†(r, t)eiθ

]
, (2.8)

where λ and θ are real numbers. The reasoning for this idea can be motivated for
example in the case of a Heisenberg ferromagnet, where the Hamiltonian possesses
a rotational O(3) symmetry [45]. Below the Curie temperature a fraction of the
system’s spins all point in the same direction, however because of the symmetry
the expectation value of the magnetization vector is necessarily zero. The addition
of a small external magnetic field breaks this symmetry and causes the spins to
point along this field such that the expectation value of the magnetization vector
can be non­zero. In the same line of thought the term in Eq. (2.8) takes the role of
the external magnetic field and breaks the commutation of the Hamiltonian with
the number operator, allowing for ⟨Ψ̂⟩ to be different from zero. The addition
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of this term corresponds to breaking the global U(1) symmetry inherent to the
original Hamiltonian, and the quantity Φ is referred to as the order parameter
since it is non­zero only in the condensed phase where global gauge symmetry is
spontaneously broken [44].

2.2 One­Component Bose Systems

We consider firstN identical bosons at zero temperature described by the Hamilto­
nian

Ĥ =

∫
drΨ̂†(r, t)h0(r, t)Ψ̂(r, t)

+
1
2

∫∫
dr′drΨ̂†(r′, t)Ψ̂†(r, t)Vint(r′ − r)Ψ̂(r′, t)Ψ̂(r, t),

(2.9)

where Vint(r) is the two­body interaction potential and h0(r, t) = −∇2/2 +
Vext(r, t) with the external potential Vext(r, t). The central approximation in our
description of the condensate is the separation of the field operator into two parts
according to Eq. (2.7). This approximation results in a Hamiltonian that does not
commute with the number operator N̂ =

∫
drΨ̂†(r, t)Ψ̂(r, t), and it is convenient

to work with the grand­canonical Hamiltonian K̂ = Ĥ− µN̂ [46, 47], where µ is
the chemical potential and N = ⟨N̂ ⟩ is the total average number of particles. The
Heisenberg equation of motion for the field operator with respect to the grand­
canonical Hamiltonian is

i
∂Ψ̂(r, t)
∂t

= h(r, t)Ψ̂(r, t) +
∫

dr′Ψ̂†(r′, t)Vint(r′ − r)Ψ̂(r′, t)Ψ̂(r, t), (2.10)

where h(r, t) ≡ h0(r, t) − µ(t). An equation of motion for the order parameter
can be obtained by taking the expectation value of both sides of Eq. (2.10) and
using Eq. (2.7), resulting in
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i
∂Φ(r, t)
∂t

= h(r, t)Φ(r, t) +
∫

dr′Vint(r′ − r)|Φ(r′, t)|2Φ(r, t)

+

∫
dr′Vint(r′ − r)

[
Φ∗(r′, t)⟨η̂(r′, t)η̂(r, t)⟩+Φ(r′, t)⟨η̂†(r′, t)η̂(r, t)⟩

+Φ(r, t)⟨η̂†(r′, t)η̂(r′, t)⟩+ ⟨η̂†(r′, t)η̂(r′, t)η̂(r, t)⟩
]
.

(2.11)

So far the only approximation that has been made is the separation of the field
operator into a classical field and a fluctuation operator. If all the terms including
η̂ are neglected we immediately obtain a mean­field equation in Φ known as the
Gross­Pitaevskii equation [48–50]. To go one step further we keep in Eq. (2.11)
terms with precisely two fluctuation operators, treating ξ ∼ ⟨η̂†η̂⟩/⟨Ψ̂†Ψ̂⟩ ∼
⟨η̂η̂⟩/⟨Ψ̂†Ψ̂⟩ as a small number. An equation of motion for η̂ at this level of
approximation can be found by subtracting Eq. (2.11) from Eq. (2.10), leading to

i
∂η̂(r, t)
∂t

= h(r, t)η̂(r, t) +
∫

dr′Vint(r′ − r)
[
|Φ(r′, t)|2η̂(r, t)

+ Φ∗(r′, t)Φ(r, t)η̂(r′, t) + Φ(r′, t)Φ(r, t)η̂†(r′, t)
]
,

(2.12)

where in acquiring Eq. (2.12) it has been assumed that the fluctuations around the
expectation values of the operators η̂†η̂ and η̂η̂ are small such that terms of the
form η̂†η̂ − ⟨η̂†η̂⟩ and η̂η̂ − ⟨η̂η̂⟩ may be neglected. To proceed, the fluctuation
operator is written as [51, 52]

η̂(r, t) =
∑
i

[
ui(r, t)e−itϵi(t)α̂i + v∗i (r, t)e

itϵ∗i (t)α̂†
i

]
, (2.13)

where the functions ui(r, t), vi(r, t) and ϵi(t) are assumed to vary slowly in time,
treating the inclusion of quantum fluctuations in a quasi­static manner. The oper­
ators α̂i (α̂

†
i ) are bosonic annihilation (creation) operators such that α̂i annihilate

the ground state of the system, corresponding to non­interacting bosonic quasi­
particles with the energies ϵi. The commutation relations for the field operator
[Ψ̂(r, t), Ψ̂†(r′, t)] = δ(r′ − r) and [Ψ̂(r, t), Ψ̂(r′, t)] = 0 together with the com­
mutation relations for the quasi­particle operators [α̂i, α̂

†
j ] = δij and [α̂i, α̂j] = 0

impose the following relations on the amplitudes ui and vi [47]
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∑
i

[
ui(r′, t)u∗i (r, t)− v∗i (r

′, t)vi(r, t)
]
= δ(r′ − r)∑

i

[
ui(r′, t)v∗i (r, t)− v∗i (r

′, t)ui(r, t)
]
= 0.

(2.14)

By substituting the form of the fluctuation operator in Eq. (2.13) into Eq (2.12)
and comparing coefficients for the operators α̂i and α̂†

i one obtains a system of
integro­differential equations known as the Bogoliubov­de Gennes equations [51],
which read

[ϵi − h(r)] ui(r) =
∫

dr′Vint(r′ − r)
[
|Φ(r′)|2ui(r)

+ Φ∗(r′)Φ(r)ui(r′) + Φ(r′)Φ(r)vi(r′)
]

[−ϵi − h(r)] vi(r) =
∫

dr′Vint(r′ − r)
[
|Φ(r′)|2vi(r)

+ Φ(r′)Φ∗(r)vi(r′) + Φ∗(r′)Φ∗(r)ui(r′)
]
,

(2.15)

where all time arguments have been omitted for notational clarity. In order to
solve Eqs. (2.15) we make a series of approximations, starting with the semi­classical
approximation [21, 22, 53] where the following replacements are made:

ϵi → ϵ(r, k)

qi(r) → q(r, k)eik·r∑
i

→
∫

dk
(2π)3

.

(2.16)

Here q, which stands for either u or v, is assumed to vary slowly with r such that
the behavior of q(r, k)eik·r is approximately that of a plane wave. Following this
approximation the Bogoliubov­de Gennes equations no longer contain differential
terms but still integral ones, which take the form

I(r, k) =
∫

dr′Vint(r′)eik·r′X(r+ r′)q(r+ r′, k), (2.17)
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where X stands for either Φ or Φ∗. Motivated by the assumed slow variation of
the involved functions, X(r+ r′, k)q(r+ r′, k) is expanded around r such that the
above integral can be written

I(r, k) = Ṽint(k)X(r)q(r, k)− i∇kṼint(k) · ∇r [X(r)q(r, k)] + · · · , (2.18)

where the Fourier transform of the interaction potential Ṽint(k) =
∫

drVint(r)e−ik·r

has been assumed to be symmetric in k. In the local density approximation only
the first term in Eq. (2.18) is kept, which is justified as long as [22]

∇kṼint(k) · ∇r [X(r)q(r, k)]
Ṽint(k)X(r)q(r, k)

≪ 1. (2.19)

Finally, by using Eq. (2.11) the chemical potential potential in Eq. (2.15) is approx­
imated according to

µ ≈ Vext(r) +
∫

dr′Vint(r′ − r)|Φ(r′)|2, (2.20)

where small terms including the fluctuation operator η̂ have been neglected as well
as any space and time derivatives of Φ, consistent with the above assumption that
u and v are slowly­varying functions in space and time. The combination of all
these approximations transforms Eqs. (2.15) into the linear form

(
T(r, k) V(r, k)

−V ∗(r, k) −T(r, k)

)(
u(r, k)
v(r, k)

)
= ϵ(r, k)

(
u(r, k)
v(r, k)

)
, (2.21)

where T(r, k) ≡ k2/2 + |Φ(r)|2Ṽint(k) and V ≡ [Φ(r)]2 Ṽint(k). The energy
solution is

ϵ(r, k) =

√
k2

2

[
k2

2
+ 2|Φ(r)|2Ṽint(k)

]
, (2.22)

and the amplitudes can be found by combining Eqs. (2.21) with the relations in
Eq. (2.14), yielding
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|u(r, k)|2 =
k2/2 + |Φ(r)|2Ṽint(k) + ϵ(r, k)

2ϵ(r, k)

|v(r, k)|2 =
k2/2 + |Φ(r)|2Ṽint(k)− ϵ(r, k)

2ϵ(r, k)

u(r, k)v∗(r, k) = − [Φ(r)]2 Ṽint(k)
2ϵ(r, k)

.

(2.23)

At this point not much has been said about the two­body interaction potentialVint,
and here we are interested in two types of interactions: short­range and dipolar.
‘Short­range’ refers to interactions where in the zero­energy limit only the s­wave
contribution to the scattering amplitude is non­neglible such that the interaction
can be characterized by a single number: the s­wave scattering length as. In three
dimensions this is the case for potentials that go to zero faster than r−3 [24], and
it is then possible to replace the true interaction potential with a pseudopotential
of the form

Vpseudo(r) = λδ(r), (2.24)

where λ characterizes the strength of the short­range interaction. The second type
of interaction that will be considered here is the dipole­dipole interaction, where
the two­body potential for particles with dipole moments in the same direction is
[54]

Vdd(r) =
Cdd

4π|r|3
(
1 − 3 cos2 θ

)
, (2.25)

where θ is the angle between the polarization direction and r. The strength of
the interaction Cdd is equal to µ0µ

2
dd for magnetic dipoles and d 2

dd/ϵ0 for electric
dipoles, where µ0 is the vacuum permeability, µdd the magnetic dipole moment,
ϵ0 the vacuum permittivity, and ddd the electric dipole moment. Since Vdd goes
to zero as r−3, partial waves other than the s­wave contribute to the scattering
amplitude even at low energies, and the interaction can consequently not be clas­
sified as short­range. Here, we will consider systems that have both these types of
interactions, and the total two­body potential reads
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Vint(r) = λδ(r) +
Cdd

4π|r|3
(
1 − 3 cos2 θ

)
, (2.26)

which has the Fourier transform [55]

Ṽint(k) = λ+
Cdd

3
(
3 cos2 α− 1

)
, (2.27)

where α is the angle between k and the polarization direction. In a second­order
Born approximation² the scattering amplitude in the low­energy limit for this
potential reads [56]

f (k → 0) = − 1
4π

Ṽint(k → 0) +
1

4π

∫
dq

(2π)3
[Ṽint(q)]2

q2 . (2.28)

The total scattering length, defined as a ≡ −f (k → 0), is dependent on the
direction of the limit k → 0 due to the anisotropy of the dipole­dipole interaction.
By separating the scattering length into a sum of the isotropic s­wave part as and an
anisotropic part corresponding to the rest of the partial waves, the s­wave scattering
length can be identified as [22]

as =
λ

4π
− 1

4π

∫
dk

(2π)3
[Ṽint(k)]2

k2 . (2.29)

It is at this point useful to define the coupling constants g ≡ 4πas and gdd ≡
Cdd/3, as well as the relative interaction strength εdd ≡ gdd/g. By using the
solutions to the Bogoliubov­de Gennes equations in Eq. (2.22) and Eq. (2.23) the
equation of motion for the order parameter can now be written

i
∂Φ(r, t)
∂t

=

[
h(r, t) + gn(r, t) +

∫
dr′Vdd(r

′ − r)n(r′, t)

+
4g5/2

3π2 Q5(εdd)n(r, t)3/2
]
Φ(r, t),

(2.30)

²It is here necessary to use a second­order approximation in order to avoid a divergence at high
momenta when calculating an integral needed to obtain the equation of motion in Eq. (2.30).
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where n(r, t) ≡ ⟨Ψ̂†(r, t)Ψ̂(r, t)⟩ is the total density, subject to the normalization
condition N =

∫
drn which reads

N =

∫
dr

[
|Φ(r, t)|2 + g3/2

3π2Q3(εdd)|Φ(r, t)|3
]
. (2.31)

The functions Q3(εdd) and Q5(εdd) come from the polar­angle part of the mo­
mentum integration and are defined as

Ql (εdd) =

∫ 1

0
du
[
1 + εdd(3u2 − 1)

]l/2
. (2.32)

The quantum depletion density, which by assumption is small, is equal to [21, 22]

⟨η̂†(r, t)η̂(r, t)⟩
n(r, t)

=

√
n(r, t)g3

3π2 Q3(εdd), (2.33)

revealing
√

ng3 as the relevant small parameter of the system. The functionQl(εdd)
has a non­zero imaginary part for εdd > 1, which is a consequence of the modes
in Eq. (2.22) becoming imaginary at low energies for large values of the relative
interaction strength. As long as εdd is not too large this imaginary part is small
compared to the real part, see Fig. 2.1 for an example with Q5(εdd), and in calcu­
lations involving Eq. (2.30) it is typically ignored, see for example Refs. [30–34].
An alternative way to treat the last term in Eq. (2.30) is by expanding Q5(εdd) for
small εdd according to [31, 57]

Q5(εdd) = 1 +
3
2
ε2
dd +

1
7
ε3
dd −

3
56
ε4
dd +O(ε5

dd), (2.34)

and then keep terms up to some order in εdd. Although using a small­value ex­
pansion for Q5(εdd) when εdd > 1 may not seem like a sound idea, it can be
seen from Fig. 2.1 that the relative difference compared to Re{Q5(εdd)} is not too
large for small enough εdd. It should be noted that it is customary when working
with Eq. (2.30) to make the replacement n → |Φ|2. This may at first glance seem
strange since equating the total density and the condensate density is equivalent
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Figure 2.1: The function Q5(εdd) as a function of εdd, where the main figure shows the real part of Q5(εdd) as
well as some approximations to different orders in εdd according to Eq. (2.34), and the inset shows the
imaginary part of Q5(εdd).

to setting ⟨η̂†η̂⟩ = 0, leading to the mean­field formalism where quantum fluctu­
ations are not taken into account. However, because we are usually not interested
in the (small) difference between n and |Φ|2 per se, but rather in the effects of
incorporating higher order terms, such a replacement can be motivated as long
as the quantum depletion is small. In order to obtain the energy of the system
one can diagonalize the grand­canonical Hamiltonian using the techniques and
approximations outlined in this section [21, 22]. Alternatively, following the re­
placement n → |Φ|2 in Eq. (2.30), the energy can be obtained simply by finding
the action for which this equation of motion is the corresponding Euler­Lagrange
equation. Equation (2.30) is often referred to as an “extended” Gross­Pitaevskii
equation, and serves as the basis for our studies in Paper II.

The last term in Eq. (2.30) is positive, and implies a more strongly repulsive interac­
tion compared to the mean­field picture. This additional repulsion can counteract
the attractive part of the dipole­dipole interaction and extend the stability region
of the system such that Eq. (2.30) may lead to droplet solutions [30–34]. These
droplets can exist as a stable configurations without external trapping, and have
been confirmed both experimentally [26–29] and by using for example Monte­
Carlo methods [58, 59].
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Finally, due to the intimate connection between Bose­Einstein condensation and
superfluidity, we are interested in systems with rotating confinements, which are
most easily studied in the frame that rotates with the external potential. If |Ψ⟩
is a solution to the Schrödinger equation with the Hamiltonian Ĥ, then the state
ket eitΩL̂z |Ψ⟩ rotated by an angle −tΩ around the z­axis obeys the Schrödinger
equation with the Hamiltonian Ĥ − ΩL̂z, where L̂z is the z­component of the
angular momentum operator. Now, assuming that the interaction terms in the
extended Gross­Pitaevskii equation Eq. (2.30) are unchanged under rotation, the
corresponding equations in the rotating frame are obtained by adding −ΩLz to
the right­hand side of these equations, where Lz = i(y∂x − x∂y). Bosonic config­
urations in rotating trapping potentials are investigated in Papers I, II, and Iv.

2.3 Bose­Bose Mixtures with Short­Range Interactions

We now consider binary Bose mixtures in the specific case where the particle
masses of both components are equal and the interactions are exclusively short­
range. For a mixture with Nσ particles in component σ and interactions between
components σ and σ′ characterized by the constants λσσ′ the Hamiltonian is

Ĥ =
∑
σ

∫
drΨ̂†

σ(r, t)h0(r, t)Ψ̂σ(r, t)

+
1
2

∑
σσ′

∫
drλσσ′Ψ̂†

σ′(r, t)Ψ̂†
σ(r, t)Ψ̂σ′(r, t)Ψ̂σ(r, t),

(2.35)

where it has been assumed that the different components are affected by the same
external potential. We will for these mixtures also be interested in dimensionally
reduced systems, and the position and momentum vectors are to be understood
as D­dimensional, where D = 1, 2, 3. The Heisenberg equations of motion with
respect to the grand­canonical Hamiltonian K̂ = Ĥ−

∑
σ µσN̂σ is

i
∂Ψ̂σ(r, t)

∂t
= hσ(r, t)Ψ̂σ(r, t) +

∑
σ′

λσσ′Ψ̂†
σ′(r, t)Ψ̂σ′(r, t)Ψ̂σ(r, t), (2.36)
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where N̂σ is the number operator for component σ, µσ the chemical potential for
component σ, and hσ(r, t) ≡ h0(r, t) − µσ(t). The relevant small number ξ is
like in the previous section the quantum depletion density ξ ∼ ⟨η̂†ση̂σ⟩/⟨Ψ̂†

σΨ̂σ⟩.
The equations of motion for the order parameters Φσ can be found following the
procedure described for the single­component Bose system. The field operators
are separated according to

Ψ̂σ(r, t) = Φσ(r, t) + η̂σ(r, t), (2.37)

where the fluctuation operators are now written as

η̂1(r, t) =
∑
i

[
a1,i(r, t)e−itϵα,i(t)α̂i + a∗2,i(r, t)e

itϵ∗α,i(t)α̂†
i

+b1,i(r, t)e−itϵβ,i(t)β̂i + b∗2,i(r, t)e
itϵ∗β,i(t)β̂†i

]
η̂2(r, t) =

∑
i

[
a3,i(r, t)e−itϵα,i(t)α̂i + a∗4,i(r, t)e

itϵ∗α,i(t)α̂†
i

+b3,i(r, t)e−itϵβ,i(t)β̂i + b∗4,i(r, t)e
itϵ∗β,i(t)β̂†i

]
.

(2.38)

Unlike the single­component case there are now two types of bosonic quasi­particle
operators α̂i and β̂i with the respective energies ϵα,i and ϵβ,i. Under the same
approximations as for the one­component case we are lead to linear systems of
equations Ma = ϵαa and Mb = ϵβb, with a =

(
a1 a2 a3 a4

)T, b =(
b1 b2 b3 b4

)T, and

M =


T1(r, k, t) V1(r, t) W12(r, t) V12(r, t)
−V ∗

1 (r, t) −T1(r, k, t) −V ∗
12(r, t) −W ∗

12(r, t)
W ∗

12(r, t) V12(r, t) T2(r, k, t) V2(r, t)
−V ∗

12(r, t) −W12(r, t) −V ∗
2 (r, t) −T2(r, k, t)

 , (2.39)

where Ti(r, k, t) ≡ k2/2 + λii|Φi(r, t)|2, Vi(r, t) ≡ λii[Φi(r, t)]2, V12(r, t) ≡
λ12Φ1(r, t)Φ2(r, t), and W12(r, t) ≡ λ12Φ1(r, t)Φ∗

2(r, t). The energy solutions are
[20, 23]
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ϵ±(r, k, t) =

√
k2

2

[
k2

2
+ 2c2±(r, t)

]
, (2.40)

where

2c2±(r, t) = λ11|Φ1(r, t)|2 + λ22|Φ2(r, t)|2

±
√(

λ11|Φ1(r, t)|2 − λ22|Φ2(r, t)|2
)2

+ 4λ2
12|Φ1(r, t)|2|Φ2(r, t)|2.

(2.41)

Note that the energies ϵα and ϵβ can not be equal to the same energy branch ϵ±
if the bosonic commutation relations for Ψ̂σ, α̂i and β̂i are to be satisfied. Here
we focus on the parameter regime where the intraspecies coupling constants λσσ
are positive and

λ2
12

λ11λ22
∼ 1 +O(ξ). (2.42)

In this regime the equations of motion for the order parameters are

i
∂Φσ(r, t)

∂t
=

{
hσ(r, t) + λσσnσ(r, t) + λσσ′nσ′(r, t)

+
λσσ
2

∫
dk

(2π)D

[
k2/2 − ϵ+(r, k, t)

ϵ+(r, k, t)

]}
Φσ(r, t),

(2.43)

where it is implied that σ ̸= σ′ and nσ(r, t) ≡ ⟨Ψ̂†
σ(r, t)Ψ̂σ(r, t)⟩ is subject to the

normalization condition Nσ =
∫

drnσ. We see that Eqs. (2.43) are independent
of ϵ− to lowest non­vanishing order in ξ under the condition in Eq. (2.42). These
modes become imaginary for small k when λ2

12 > λ11λ22, and the neglect of these
modes is analogous to the dipolar case where the imaginary part of Q5(εdd) was
ignored.
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2.3.1 Binary Bose Mixtures in Three Dimensions

In three dimensions the coupling constants are expressed in terms of the s­wave
scattering length through a second­order Born approximation [56]

λσσ′ = gσσ′

[
1 +
∫

dk
(2π)3

gσσ′

k2

]
, (2.44)

where gσσ′ ≡ 4πaσσ′ and aσσ′ is the s­wave scattering length for the interaction
between components σ and σ′. The momentum integration in Eqs. (2.43) then
results in

i
∂Φσ(r, t)

∂t
=

{
hσ(r, t) + gσσnσ(r, t) + gσσ′nσ′(r, t)

+
4gσσ
3π2

[
g11n1(r, t) + g22n2(r, t)

]3/2
}
Φσ(r, t),

(2.45)

and the quantum depletion density is in this case

⟨η̂†σ(r, t)η̂σ(r, t)⟩
nσ(r, t)

=
gσσ
√

g11n1(r, t) + g22n2(r, t)
3π2 . (2.46)

Consider now for simplicity a uniform symmetric system without external trap­
ping where gσσ = g and nσ = n in the regime where δg ≡ g12 + g ∼ O(ξ) and
δg < 0. The energy density is then δgn2 + 32

√
2(gn)5/2/(15π2), where the two

terms are of the same order of magnitude, have opposite signs, and depend dif­
ferently on the density, leading to an energy that is minimized at a finite density.
This type of finite­density minimization can, much like in the dipolar case, lead to
self­bound droplet states [23]. Interestingly, as an alternative mechanism leading
to quantum droplets, it has also been suggested that the inclusion of three­body
interactions can result in such self­bound configurations in systems with short­
range interactions [60]. If we instead flip the sign of the interparticle interaction
coupling constant g12 and consider the regime where g12 ∼ √g11g22 + O(ξ), i.e.
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close to the miscibility­immiscibility transition, it is found that the beyond mean­
field contribution can lead to a new phase where mixed and pure phases coexist
[39].

2.3.2 Binary Bose Mixtures in Two Dimensions

In two dimensions the integral in Eq. (2.43) diverges for large momenta and it is
necessary to introduce a cutoff κ, corresponding to letting the short­range inter­
action constants be zero for momenta above this value. The coupling constants
are then related to the two­dimensional scattering lengths a2d

σσ′ according to [61]

λσσ′ =
4π

ln (ϵσσ′/κ2)
≡ gσσ′ , (2.47)

where ϵσσ′ = 4e−2γ/(a2d
σσ′)2 and γ is Euler’s constant. If the transversal trap is

harmonic with a confinement length l these two­dimensional scattering lengths
can be expressed in terms of the three­dimensional ones aσσ′ through the relation

a2d
σσ′ = l

√
π

B
exp

(
−
√
π

2
l

aσσ′

)
, (2.48)

where B ≈ 0.915 [62]. The asymptotic form of the equations of motion for the
two­dimensional system in the limit κ≫ √

g11n1 + g22n2 can now be written

i
∂Φσ(r, t)

∂t
=

{
hσ(r, t) + gσσnσ(r, t) + gσσ′nσ′(r, t)

+
gσσ
4π

[g11n1(r, t) + g22n2(r, t)] ln
(

e [g11n1(r, t) + g22n2(r, t)]
κ2

)}
Φσ(r, t),

(2.49)

and the quantum depletion density is

⟨η̂†σ(r, t)η̂σ(r, t)⟩
nσ(r, t)

=
gσσ
4π

, (2.50)
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which is independent of any particle densities. By introducing new coupling con­
stants g̃σσ′ = 4π/ ln(ϵσσ′/∆) such that g̃11g̃22 = g̃2

12, it is found that the energy
∆ must be [61]

∆ =
√
ϵ12

√
ϵ11ϵ22 exp

[
− ln2 (ϵ11/ϵ22)

4 ln
(
ϵ11ϵ22/ϵ212

)] . (2.51)

The coupling constants gσσ′ and g̃σσ′ are related according to

gσσ′ = g̃σσ′ +
g̃2
σσ′

4π
ln

(
κ2

∆

)
+O(g̃3

σσ′), (2.52)

and by substituting this expression for gσσ′ into Eq. (2.49) up to second order in
g̃σσ′ we obtain the equations

i
∂Φσ(r, t)

∂t
=

{
hσ(r, t) + g̃σσnσ(r, t) + sgn(g̃12)

√
g̃11g̃22nσ′(r, t)

+
g̃σσ
4π
[
g̃11n1(r, t) + g̃22n2(r, t)

]
ln

(
e
[
g̃11n1(r, t) + g̃22n2(r, t)

]
∆

)}
Φσ(r, t),

(2.53)

independent of the cutoff momentum κ. Now, as long as κ2/∆ is not exponen­
tially large gσσ′ ≈ g̃σσ′ and the two sets of coupling constants can be used inter­
changeably. The two­dimensional extended Gross­Pitaevskii equations for binary
Bose mixtures with short­range interactions Eqs. (2.53) are used in both Paper I
and Paper III.

2.3.3 Binary Bose Mixtures in One Dimensions

In one dimension, under the assumption that the transversal trapping is harmonic
with a confinement length l that is much larger than the three­dimensional scat­
tering lengths aσσ′ , the coupling constants are related to the one­dimensional scat­
tering lengths a1d

σσ′ according to [63]
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λσσ′ = − 2
a1d
σσ′

≡ gσσ′ , (2.54)

where a1d
σσ′ = −l 2/(2aσσ′). The equations of motion in one dimension are then

i
∂Φσ(x, t)

∂t
=

{
hσ(x, t) + gσσnσ(x, t) + gσσ′nσ′(x, t)

− gσσ
π

[
g11n1(x, t) + g22n2(x, t)

]1/2
}
Φσ(x, t).

(2.55)

Interestingly, the last term in Eqs. (2.55) is in one dimension negative, leading to
droplet formation in the regime where g12 > −√g11g22 [61, 64], in contrast to the
situation in three dimensions where droplets can exist for g12 < −√g11g22 [23].
The quantum depletion density is

⟨η̂†σ(x, t)η̂σ(x, t)⟩
nσ(x, t)

=
gσσ

2π
√
g11n1(x, t) + g22n2(x, t)

∫ ∞

0
dχ

[
χ2 + 2

χ
√
χ2 + 4

− 1

]
,

(2.56)

where the integral in χ ≡ k/
√
g11n1 + g22n2 is divergent, i.e. strictly speaking

there is no condensate. This does not necessarily mean that all is lost, and it has
been shown that this type of analysis that uses an order parameter to describe
the system can be applied also in one dimension [65]. If we introduce a lower­
momentum cutoff κ ∼ 1/L to the integral in Eq. (2.56), where L is the spatial
extent of the system, we find that

⟨η̂†σ(x, t)η̂σ(x, t)⟩
nσ(x, t)

≈ gσσ
2π
√
g11n1(x, t) + g22n2(x, t)

[ln 4 − 2 − lnχc(x, t)] ,

(2.57)

where it has been assumed that χc ≡ κ/
√
g11n1 + g22n2 ≪ 1. For similar orders

of magnitude n1 ∼ n2 ∼ n and g11 ∼ g22 ∼ g the small number in one dimension
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thus scales as
√

g/n, meaning that this type of formalism requires a sufficiently
high density to be valid. Equations (2.55) for one­dimensional Bose­Bose mixtures
with short­range interactions are taken as the model equations of motion in Paper
Iv.
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Chapter 3

Superfluidity

What’s in a name? That which we call a superfluid by any other name would flow
as frictionlessly. The term ‘superfluidity’ holds promises of exotic physics, but what
does it really imply? This chapter does not attempt to answer this question in full
generality, but instead introduces a few basic concepts of superfluidity relevant to
this thesis in the context of cold atomic gases.

3.1 Putting the Super in Superfluidity

Superfluidity can refer to a whole class of physical effects such as frictionless flow
[6, 7], non­classical rotational inertia [66], or metastable persistent flow [67, 68].
We first consider a uniform Bose fluid consisting of N particles flowing through a
tube with velocity −v. If, in the frame where the fluid is at rest, the ground state
energy is E0 and the total momentum is zero, then the energy in the frame where
the tube is stationary can be obtained through a Galilean transformation and is

E1 = E0 +
N v · v

2
. (3.1)

Consider now the addition of a single quasi­particle excitation with momentum
k and energy ϵ(k). The energy in the fluid frame is then E0 + ϵ(k), which leads
to an energy in the tube frame equal to
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E2 = E0 + ϵ(k)− v · k+ N v · v
2

. (3.2)

The system with a single elementary excitation is energetically favorable when
E2 < E1, i.e. when ϵ(k)− v · k < 0. For isotropic ϵ(k) this energy is minimized
whenever v and k are parallel, leading to the Landau critical velocity [69]

vc = min
k

ϵ(k)
k
, (3.3)

below which there can be no degradation of the fluid by means of quasi­particle
excitations. As an example, we take the excitation spectrum in Eq. (2.22) of the
one­component system studied in the previous chapter. For purely short­range
interactions we have ϵ(k) =

√
k4/4 + k2gn0, where n0 is the condensate density,

and the critical velocity is consequently vc =
√gn0. A condensate of this type

can thus can flow through a tube without losing energy through the creation of
quasi­particles as long as the velocity is sufficiently low¹.

It is possible to take the above thought experiment further by imagining the fluid
to consist of a normal part and a superfluid part [69, 70]. The normal component
is assumed to flow as regular fluid and is thus dragged along the tube whereas the
superfluid component is unaffected. We write the total density as n = ns + nn,
which defines the superfluid density ns in terms of the normal­component density
nn and the total density n. If the superfluid again flows with the velocity −v
relative to the tube then the momentum density in the frame where the superfluid
is stationary is equal to

nnv =
∫

dk
(2π)3

Nv(k)k, (3.4)

where

Nv(k) =
1

eβ[ϵ(k)−v·k] − 1
(3.5)

¹Note that there can, however, be other types of excitations such as vortices.
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is the distribution of normal­component particles in the frame where the tube is
stationary and ϵ(k) the energy of these particles in the frame where superfluid is
stationary. If the velocity is small in the sense βv · k ≪ 1, we find for isotropic
ϵ(k) that the normal density is

nn = − 1
6π2

∫ ∞

0
dkk4 dN0

dϵ
. (3.6)

For the one­component system with repulsive short­range interactions at low tem­
peratures such that only energies ϵ(k) ≈ k√gn0 contribute significantly, we obtain
the normal density

nn =
2π2T 4

45(gn0)5/2 , (3.7)

revealing that the entire system becomes superfluid as the temperature goes to zero
in this case. Crucially, the superfluid density is not the same as the condensate
density (see for example Ref. [71]), and at low temperatures superfluid helium has
as an example a superfluid fraction equal to one while the condensate fraction is
around 0.1 [24].

3.2 Quantization of Circulation and Vortices

A fundamental property of superfluids is that they flow irrotationally [72], and to
investigate this property in the context of Bose­Einstein condensation we start by
taking the time derivative of |Φ(r, t)|2 and use Eq. (2.55), resulting in

∂|Φ(r, t)|2

∂t
+

i
2
∇ ·
[
Φ(r, t)∇Φ∗(r, t)− Φ∗(r, t)∇Φ(r, t)

]
= 0. (3.8)

This has the form of a continuity equation

∂n0(r, t)
∂t

+∇ · [n0(r, t)v0(r, t)] = 0, (3.9)
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where n0(r, t) ≡ |Φ(r, t)|2 is the condensate density and

v0(r, t) ≡
i

2|Φ(r, t)|2
[
Φ(r, t)∇Φ∗(r, t)− Φ∗(r, t)∇Φ(r, t)

]
(3.10)

the condensate velocity. By writing the order parameter in terms of an amplitude
and a phase Φ(r, t) = |Φ(r, t)|eiϕ(r,t) this velocity takes the form

v0(r, t) = ∇ϕ(r, t), (3.11)

showing that the condensate flow as defined in Eq. (3.10) is indeed irrotational. A
consequence of this, together with the requirement that the order parameter has
to be single valued, is that the circulation κ is quantized,

κ =

∮
v0 · dl = 2πs, (3.12)

where the integer s is the winding number. For cylindrically symmetric flow only
in the eφ direction this implies the velocity field

v0 =
s
ρ
eφ, (3.13)

which for s ̸= 0 diverges at ρ = 0, and the density thus has to go to zero at these
points such that the flow takes the form of a vortex line. From Stokes’ theorem
it can be seen that the rotation of this velocity field is ∇ × v0 = κδ(2)(ρ)ez,
where δ(2) is a two­dimensional delta function and ρ a vector in the xy­plane [25].
The rotation of a vortical system is thus not identically zero, but rather vanishes at
every point where the condensate density is non­zero. It is interesting to compare
the velocity in Eq. (3.13) with that of rigid rotation with angular velocity Ω, which
has the velocity field v = Ω × r with the rotation ∇ × v = 2Ω [24]. Since the
rotation is necessarily non­zero everywhere it is thus impossible for a superfluid to
flow rigidly.

If the dominant energy contribution of the vortex line comes from the flow energy
then we can estimate the energy per unit length E1 for a single vortex line in a
uniform condensate according to [72]
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E1 =
n0

2

∫
dσv0 · v0 ≈ πn0s2

∫ R

rc

dρ
ρ

= πn0s2 ln
(
R
rc

)
. (3.14)

Here R is the radius of the condensate and rc the radius of the vortex core, in­
troduced in order to avoid the divergence in the lower limit of the integral². For
two parallel vortex lines there is an additional contribution to the energy dens­
ity associated with their interaction, which can be estimated for the velocity field
v = v1 + v2 with v1 = s1eφ/ρ and

v2 = s2
ez × (r− r0)
|ez × (r− r0)|2

, (3.15)

where r0 = (d, 0, 0) points to the center of the second vortex line. The energy
density associated with the interaction is then [72]

Eint = n0s1s2
∫

dσ
ρ− d cosφ

ρ(ρ2 − 2ρd cosφ+ d2)
≈ 2πn0s1s2 ln

(
R
d

)
, (3.16)

where it has been assumed that rc ≪ d ≪ R. The total energy density for two
vortex lines is thus

E2 = πn0(s1 + s2)2 ln
(
R
rc

)
− 2πn0s1s2 ln

(
d
rc

)
, (3.17)

showing that for a given amount of circulation in a uniform system it is energetic­
ally favorable to have multiple singly­quantized vortices over multiply­quantized
ones. Although similar results are found for weakly­interacting condensates in
harmonic confinements [73, 74], this is not necessarily the case in general, and
multiply­quantized vortices have been shown to be stable in for example anhar­
monic trapping potentials [75, 76]. An example of vortex ground states of a one­
component condensate with short­range interactions in an azimuthally symmetric
harmonic trap

²This divergence comes from the assumption of an everywhere uniform condensate, and as long
as the density around the vortex core goes to zero as n0 ∼ ρ or faster when ρ → 0 there is no
divergence.
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Figure 3.1: Ground-state density isosurfaces for a one-component condensate with short-range interactions in a
rotating harmonic trap with rotation frequencies as indicated by the figure. The data has been obtained
numerically by propagating Eq. (2.30) in imaginary time in the frame rotating with the trap for the
dimensionless parameters N = 10000, g = 0.05, εdd = 0, ω = 1, and λ = 2 for the trap in Eq. (3.18).
The density isosurfaces are taken at |Φ|2 = 70.

Vext(r) =
ω2

2
(ρ2 + λ2z2) (3.18)

which is set to rotate is shown in Fig. 3.1. The figure shows how the number
of vortices grows one by one as the rotation frequency is increased. When this
number becomes large enough the vortices eventually form an ordered triangular
lattice structure [77, 78], see Fig. 3.2 for an example. In Paper I we investigate
the existence of self­bound droplets containing multiple singly­quantized vortices
in two­dimensional binary Bose mixtures and in Paper III we study the breathing
mode of vortical droplets—also in two­dimensional mixtures.
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Figure 3.2: Ground-state density (left) and phase (right) in the xy-plane at z = 0 for a one-component condensate
with short-range interactions in a rotating harmonic trap. The data has been obtained numerically
by propagating Eq. (2.30) in imaginary time in the frame rotating with the trap for the dimensionless
parameters N = 100000, g = 0.1, εdd = 0, ω = 1, λ = 2, and Ω = 0.58 for the trap in Eq. (3.18).

3.3 Metastable Superflow

Another interesting effect that has been observed in superfluids is the ability to
remain in a state with nonzero angular momentum for a long time³ even when
the external trapping potential does not rotate [67, 68]. Such a spinning state
can not be the ground state, but instead corresponds to some metastable config­
uration. To understand this phenomenon we consider a fluid in a cylindrically
symmetric trap rotating around the symmetry axis with angular frequency Ω. The
energy in the frame rotating with the trap is E(L) = E0(L)−ΩL, where E0 is the
energy in the laboratory frame and L the angular momentum. For a fluid rotat­
ing rigidly the rotational energy is L2/(2Irig) and the total energy is consequently
minimized for L = ΩIrig. For a superfluid the situation is different since the cir­
culation is quantized and the velocity field can not take the rigid form ρΩeφ. To
illustrate how metastable flow in a superfluid can come about we again consider
the one­component condensate with short­range interactions in a rotating trap.
Figure 3.3 shows the ground­state energy E0(L) as a function of the angular mo­
mentum L, computed numerically from Eq. (2.30) under the constraint that the
angular momentum is fixed [81]. When the trap is purely harmonic the energy is a

³For example, a long time is about 10 s for the experiment in Ref. [79] and 40 s for the experiment
in Ref. [80].
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Figure 3.3: Ground-state energy in the laboratory frame as a function of angular momentum for a one-component
condensate with short-range interactions in (a) the purely harmonic trap in Eq. (3.18) (solid black line)
and (b) the harmonic trap with a repulsive Gaussian in Eq. (3.19) (dashed pink line). The data has been
obtained numerically by propagating Eq. (2.30) in imaginary time for the dimensionless parameters
N = 10000, g = 0.05, εdd = 0, ω = 1, λ = 2, V0 = 5 and w = 2 under the constraint that the angular
momentum is fixed.

monotonically increasing function with a kink at L/N = 1. In the rotating frame
where the energy is lowered by −ΩL this kink can become the global energy min­
imum above some critical Ω such that the number of vortices in the ground state
changes from zero to one. If the rotation is stopped the L = 0 state becomes the
lowest in energy once more and the system reverts back to the non­rotating con­
figuration⁴, and there can consequently be no metastable flow for the harmonic
case. This situation can change by adding an external repulsive potential to the
center of the trap, and it can be seen in Fig. 3.3 that for a trap of the form

Vext(r) =
ω2

2
(ρ2 + λ2z2) + V0e−2ρ2/w2

, (3.19)

the energy exhibits a local minimum at L/N = 1, corresponding to a metastable
one­vortex state which is protected against decay by an energy barrier consisting

⁴Strictly speaking for cylindrically symmetric traps such as the ones in Eq. (3.18) or Eq. (3.19)
angular momentum is conserved and there should consequently be no changes between states. If
such conservation laws are relaxed just slightly, however, the reasoning holds.
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Figure 3.4: Ground-state densities (top row) and the corresponding phases (bottom row) in the xy-plane at z = 0 for
a one-component condensate with short-range interactions in a harmonic trap with a repulsive Gaussian
for different values of the angular momentum as indicated by the figure. The data has been obtained
numerically by propagating Eq. (2.30) in imaginary time for the dimensionless parameters N = 10000,
g = 0.05, εdd = 0, ω = 1, λ = 2, V0 = 5, and w = 2 for the trap in Eq. (3.19) under the constraint
that the angular momentum is fixed.

of off­center vortex states, see Fig. 3.4. In Paper I we use the idea of metastable
superflow as a potential way to generate droplets containing vorticity, and in Pa­
per II and Paper Iv we study the existence of such metastable flow in dipolar su­
persolids and in droplet­superfluid compounds made out of binary Bose mixtures
with short­range interactions, respectively.
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Chapter 4

Supersolidity

The supersolid state of matter has to date been experimentally realized in three
different types of atomic gases: by coupling a condensate to the modes of optical
cavities [13]; by using spin­orbit coupling [14]; or by using atoms with a strong
dipole moment [15–17]. This chapter introduces the idea of what it means to be a
supersolid, with a focus on the dipolar variety.

4.1 Defining Supersolidity

The ‘super’ in supersolidity comes, of course, from superfluidity¹, and refers to a
state of matter which in some sense is both superfluid and solid [8–12]. A solid can
be defined by considering the deviation of the density from the average δn(r) ≡
n̄− n(r), where n(r) is the density and

n̄ =
1
V

∫
drn(r) (4.1)

is the averaged density in some volume V. We define a crystalline solid² as having

¹The ‘super’ in superfluidity, on the other hand, was introduced in analogy with superconduct­
ivity.

²There can also be other types of solids such as glasses which possess structure but in a disordered
manner.
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a non­vanishing deviation satisfying

δn(r) = δn(r+ Ti) (4.2)

for some discrete set of lattice vectors {Ti} [82]. This property is referred to as (di­
agonal) long­range order and warrants some discussion. First of all it is assumed to
be an intrinsic property such that the translational symmetry is broken spontan­
eously, as opposed to being induced by an external structure such as, for example,
an optical lattice. Conversely, one can imagine modifying the density externally
such that the condition in Eq. (4.2) does not hold for an actual solid. The defin­
ition of a solid from the existence of long­range order as expressed by Eq. (4.2) is
thus not immediately applicable to a general system and has to be considered in
some limit where the external influence goes to zero. Even so, this definition can
nevertheless help us gain some intuition as to what we mean by a solid. Having
established what a constitutes a solid, a supersolid can then be defined as a solid
that also exhibits signatures of superfluidity.

4.2 Non­Classical Rotational Inertia

In the search for a useful quantity to characterize the degree of superfluidity of a
supersolid we are guided by the experimental result that the angular momentum
of superfluids in cylindrically symmetric traps remains at zero when the external
potential is set to rotate slowly around the symmetry axis [66]. This motivates the
definition of the fraction of non­classical rotational inertia f as [83]

f ≡ 1 − I
Irig
, (4.3)

where I ≡ limΩ→0 L/Ω is the total rotational inertia, Ω the rotation frequency, L
the expectation value of the z­component angular momentum operator, and Irig =∫

drn(r)ρ2 the rotational inertia for rigid rotation. In Ref. [83], which studies a
collection of particles in an annulus with a radius much larger than its thickness,
the quantity in Eq. (4.3) is used to define the superfluid density according to ns ≡
nf. An upper bound for f is subsequently derived which is equal to [83]
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f + = (2π)2
[∫ 2π

0
dφnxs(φ)

∫ 2π

0

dφ
nxs(φ)

]−1

, (4.4)

where φ is the azimuthal angle and nxs the density averaged over the cross section
of the annulus. From the Cauchy­Schwarz inequality it follows that f + ≤ 1, with
equality occurring when nxs is constant. The introduction of a density modula­
tion consequently decreases this upper bound from unity such that the superfluid
density can not make up the whole system, even at zero temperature. If there exist
regions where nxs is small such that

∫ 2π
0 dφ/nxs(φ) ≫ 1 then f + → 0, corres­

ponding to a separation of localized parts whose motion according to Eq. (4.3)
must be rigid.

4.3 The Dipolar Supersolid

4.3.1 The Roton Mode

The transition to a spontaneously density­modulated state in dipolar condensates
can be understood by analyzing the excitation spectrum which, depending on the
parameters of the system, may develop a rotonic character [84–86]. The hallmark
of the rotonic spectrum is that the excitation energy has a minimum at some finite
momentum, the existence of which we can understand by imagining a condensate
in a tubular trap along a direction orthogonal to the polarization direction of the
dipoles. Let the confinement length in the polarization direction be l and consider
excitations along the tube with momentum k, corresponding to density modula­
tions with wavelength 2π/k. For long wavelength excitations such that kl ≪ 1 the
side­by­side repulsion of the dipole­dipole interaction dominates, resulting in an
increase in the excitation energy with increasing k. Increasing the momentum to
values kl ∼ 1 leads to excitations where the attractive head­to­tail configurations
participate, which can decrease the energy. For even higher momenta eventually
the kinetic energy starts to dominate and the energy increases again, resulting in
a minimum in the dispersion relation. If the parameters of the dipolar system
are tuned such that the energy gap of the roton minimum disappears we find
that the ground state develops a periodically modulated structure with spontan­
eously broken translational symmetry [38, 87, 88]. Much like self­bound dipolar
droplets without external trapping these configurations are expected to be unstable
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at a mean­field level [89], but emerge in a beyond mean­field formalism where
the increased repulsion from quantum fluctuations serves to stabilize the system
[21, 22, 30, 37, 38].

4.3.2 All Things Rings

The alleged superfluidness of the supersolid invites a study of its rotational proper­
ties, and we consider to this end a dipolar condensate at zero temperature goverened
by Eq. (2.30) in a ring­shaped trap

Vext(r) =
ω2

2
[
(ρ− ρ0)

2 + λ2z2
]
, (4.5)

where ρ0 is the radius of the ring. The discussions and results in this section
are similar to much of what is presented in Paper II and Paper Iv. In order to
characterize the phases of the system we investigate the fraction of non­classical
rotational inertia f as defined in Eq. (4.3). For a pure superfluid f = 1 and for
rigid­body motion f = 0, and a supersolid is therefore expected to have values
somewhere in between.
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Figure 4.1: The fraction of non-classical rotational inertia f as a function of the relative interaction strength εdd
for a dipolar one-component condensate in a ring trap. The data has been obtained numerically by
propagating Eq. (2.30) in imaginary time in the frame rotating with the trap for the dimensionless
parameters N = 18000, gdd = 0.15, ω = 2.5, λ = 1.5, ρ0 = 3, and Ω = 0.0001 for the trap in
Eq. (4.5).
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Figure 4.2: Ground-state density isosurfaces for a dipolar one-component condensate in a ring trap for different
values of the relative interaction strength εdd as indicated by the figure. The data has been obtained
numerically by propagating Eq. (2.30) in imaginary time for the dimensionless parameters N = 18000,
gdd = 0.15, ω = 2.5, λ = 1.5, and ρ0 = 3 for the trap in Eq. (4.5). The isosurfaces are taken at
|Φ|2 = 100 for the solid surface and at |Φ|2 = 20 for the transparent one.

Figure 4.1 shows the numerically computed f as a function of the relative interac­
tion strength εdd, where it is displayed how the fraction of non­classical rotational
inertia takes on values 0 < f < 1 above some critical εdd ≈ 1.7. The decrease
of f from unity marks the onset of a modulation of the condensate density along
the ring, see Fig. 4.2. For this particular system there are eight lattice sites, and
associated with each site is a macroscopic amount of particles taking the form of
a droplet. These droplets are connected to each other by a low­density part of the
condensate, a link that becomes weaker and weaker as f is decreased until left is
but a collection of droplets with negligible density overlap.

The question regarding the existence of metastable superflow in the ring­shaped
supersolid can be addressed by calculating the energy in the laboratory frame E0(L)
as a function of the angular momentum L, see the numerical results in Fig. 4.3.
In the superfluid phase for εdd = 1.65 the energy has for the most part a negative
curvature with minima at integer values of L/N, representing the entry of vortices
into the condensate from the outside as discussed in the previous chapter. Around
integer values of L/N for εdd close to the supersolid phase we find that E0(L) is
roughly linear, where the corresponding condensate density has acquired a density
modulation along the ring, even though the condensate at L = 0 is superfluid.
Such supersolid “shortcuts” are investigated in Paper II, where it is found that
the different rotational behavior of the supersolid can be energetically favorable
compared to the vortex entry in the superfluid close to the phase transition. The
energy in the supersolid phase has a positive curvature with a functional behavior
that appears to be intersecting parabolae. This can be explained by imagining the
system to be able to take angular momentum in two ways: through quantized
vorticity and through rigid rotation. For simplicity we consider in the following
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Figure 4.3: Ground-state energy as a function of angular momentum in the laboratory frame for a dipolar one-
component condensate in a ring trap at different values of εdd as indicated by the legend. The data has
been obtained numerically by propagating Eq. (2.30) in imaginary time for the dimensionless parameters
N = 18000, gdd = 0.15, ω = 2.5, λ = 1.5, and ρ0 = 3 for the trap in Eq. (4.5) under the constraint
that the angular momentum is fixed.

a “thin” ring ρ0 ≫ 1/
√
ω such that the condensate can be approximated to be

non­negligible only for values ρ ≈ ρ0. We first estimate the energy cost of adding
an s­times multiply quantized vortex to an azimuthally symmetric ring­shaped
superfluid under this assumption. If the dominant energy contribution is the flow
energy, then for the azimuthal flow in Eq. (3.13) the energy cost per particle for the
thin ring is simply s2/(2ρ2

0). Now, assuming that a fraction fv of the total particles
of the supersolid host an s­times quantized vortex and the rest of the particles rotate
rigidly, this leads to the rotational energy

Es(L)/N =
1

2ρ2
0

[
(L/N− fv s)2

(1 − fv)
+ fv s2

]
. (4.6)

These parabolic energy branches satisfy Es+1 = Es for L/N = s + 1/2, i.e. the
ground state should according to this model have no vortex for L/N < 1/2, a
single vortex for 1/2 < L/N < 3/2 and so on. This is in good agreement with the
numerical data shown in Fig. 4.3 where the parabolae intersect at approximately
half­integer values of L/N, and it can be confirmed that these intersections cor­
respond to the proper change in s by studying the phase of the order parameter,
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Figure 4.4: Ground-state phases in the xy-plane at z = 0 for a dipolar one-component condensate in a ring trap
at different values of the angular momentum as indicated by the figure. The data has been obtained
numerically by propagating Eq. (2.30) in imaginary time for the dimensionless parameters N = 18000,
gdd = 0.15, εdd = 1.75, ω = 2.5, λ = 1.5, and ρ0 = 3 for the trap in Eq. (4.5) under the constraint
that the angular momentum is fixed.

see Fig. 4.4 for an example when εdd = 1.75. With this interpretation it is im­
mediate to see when there can exist local minima in the energy E0(L), since the
minimum of Es(L) occurs at L/N = fv s. This minimum exists in the total energy
only if Es(L) is the lowest energy branch for this minimizing value of L/N, which
is true for s− 1/2 < L/N < s+ 1/2, and the existence condition for a minimum
corresponding to an s­times quantized vortex thus reads fv > (s − 1/2)/s. The
decay of such a vortex state is in this case protected by an energy barrier where
there is rigid rotation in the direction opposite to that of the vortex, allowing for
the existence of metastable superflow in the supersolid. Although the fraction of
non­classical rotational inertia f and the vortex fraction fv are defined differently,
they might be surmised to be equal since they are both tied to the degree of su­
perfluidity of the system. The aforementioned model provides a simple way to
test this hypothesis, since the local minimum in E0(L) corresponding to an s = 1
vortex should occur exactly at L/N = fv whenever fv > 1/2. From Figs. 4.1 and
4.3 it can be seen that the location of this minimum occurs for values a bit lower
than the corresponding f, for example for εdd = 1.72 the non­classical rotational
inertia fraction is f ≈ 0.85 and the first minimum occurs at L/N ≈ 0.78, while
for εdd = 1.75 we have f ≈ 0.63 with a minimum at L/N ≈ 0.55. Despite this
discrepancy, the qualitative behavior of the two quantities are in agreement, i.e.
the first local minimum moves to smaller values of L/N as f decreases. It should
be noted that the difference in f and fv could be explained by the fact that in the
model we assumed a thin ring ρ0 ≫ 1/

√
ω, whereas for the numerical data ρ0 = 3

and 1/
√
ω ≈ 0.63. Furthermore, the density and rotational inertia of the system

may change as angular momentum is added to it, and would then not be the same
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as in the definition of f which is taken in the limit Ω → 0.

Some insights regarding the flow patterns in the supersolid can be obtained by
considering a condensate in a rotating quasi one­dimensional ring where the azi­
muthal angle φ is the only relevant coordinate. It should be emphasized that the
dipolar supersolid discussed here is a three­dimensional entity, however studying
the dimensionally reduced system may nevertheless shed some light on the flow
behavior. By substituting Φ(φ) =

√
n0(φ)eiϕ(φ) into Eq. (2.30) for the rotating

frame and identifying real and imaginary parts we obtain two equations, where
the equation for the imaginary part is

√
n0
∂vφ
∂φ

+ 2
∂
√
n0

∂φ
vφ = 2ρ0Ω

∂
√
n0

∂φ
, (4.7)

which has the velocity solution vφ(φ) = ρ0Ω + C/n0(φ), where C is an in­
tegration constant. This constant can be expressed in terms of the circulation in
Eq. (3.12), giving the velocity

vφ(φ) = ρ0Ω+
κ− κrig

ρ0Λn0(φ)
, (4.8)

whereκrig ≡ 2πρ2
0Ω is the circulation for rigid rotation andΛ ≡

∫ 2π
0 dφ/n0(φ) >

0. Consider now the case where κ = 0, which is expected for sufficiently low ro­
tation frequencies since the circulation is quantized. The second term in Eq. (4.8)
is then negative, and vanishes in regions where the density is large n0 ≫ 2π/Λ
such that the motion is approximately rigid vφ ≈ ρ0Ω. As the density decreases
so does the velocity, and when n0 < 2π/Λ the velocity switches sign vφ < 0,
i.e. regions with sufficiently low density flow in the opposite direction to that
of the high­density regions. This behavior is exemplified in the leftmost panel
in Fig. 4.4, where the periodic behavior of the phase around the ring indicates
a repeated change in the velocity direction. Interestingly, if we assume that the
droplet crystals of the supersolid move approximately rigidly, then because of the
counterflow of the low­density regions the fraction 1− f is lower than the fraction
of particles associated with the crystals. If we further assume that f = fv, then the
vortex fraction must be higher than that of the low­density residual condensate,
i.e. also the crystalline structure has to be involved in the formation of vortices.
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Figure 4.5: Time evolution of the ground-state density for a dipolar one-component condensate in a ring trap as
the radial trap is turned off at t = 0, shown for the xy-plane at z = 0. The data has been obtained
numerically by first propagating Eq. (2.30) in imaginary time in order to obtain the ground state, which
is then propagated in real time using the same equation. The dimensionless parameters are N = 18000,
gdd = 0.15, εdd = 1.75, ω = 2.5, λ = 1.5 and ρ0 = 3 for the trap in Eq. (4.5).

We now consider what happens to the toroidal supersolid when the radial trap is
turned off and the system is allowed to expand. Figure 4.5 shows the expansion of
a configuration which initially has no angular momentum, and it can be seen how
the droplets expand from the center due to the long­range side­by­side repulsion of
the dipole­dipole interaction while decreasing in density, which has been observed
also for a release from a harmonic trap [90]. Interestingly, a high­density region
forms at the center as a result of the interference of the dispersing condensate.
If we instead imagine rotating the same system until it acquires one vortex, then
stop rotating it such that it ends up in an energy minimum corresponding to a
persistent current, and then finally turn off the radial trap, we find a situation as
shown in Fig. 4.6. The addition of angular momentum to the initial configuration
results in a swirling of the low­density regions, and the formation of a high­density
region at the center is now prohibited by the existence of a vortex core there.

The ring­shaped supersolids that have been investigated in this section are par­
ticularly simple systems for studying rotational behavior since the density at the
position where a vortex core appears is low in the abscence of vorticity. When this
is not the case, as in for example a harmonic trap, vortex formation is energet­
ically favorable in the low­density regions of the supersolid, which may compete
against the vortices’ inclination to arrange themselves in a triangular lattice struc­
ture [90]. Interestingly, for dipolar supersolids in harmonic traps [37, 90], with
perodic boundary conditions in the plane [91, 92], or in box potentials [93], the
optimal ordering of the high­density droplets is also that of a triangular lattice.
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Figure 4.6: Time evolution of the ground-state density for a dipolar one-component condensate in a ring trap with
L/N = 0.55 as the radial trap is turned off at t = 0, shown for the xy-plane at z = 0. The data has
been obtained numerically by first propagating Eq. (2.30) in imaginary time under the constraint that
the angular momentum is fixed in order to obtain the ground state, which is then propagated in real
time using the same equation. The dimensionless parameters are N = 18000, gdd = 0.15, εdd = 1.75,
ω = 2.5, λ = 1.5 and ρ0 = 3 for the trap in Eq. (4.5).

4.4 A One­Droplet “Supersolid”

Let us end this chapter by briefly discussing an interesting situation that can occur
in Bose­Bose mixtures with short­range interactions. If the binary system is in a
self­bound droplet state and we try to add more particles to one of the components
these will not be able to bind to the droplet and instead disperse [23]. By capturing
this surplus of particles with an external trapping potential it is possible to obtain
a structure where a droplet coexists with a residual superfluid, see Fig. 4.7 for an
example in a ring trap. If we define the non­classical rotational inertia fraction of
each component according to

fσ ≡ 1 − Iσ
Irig
, (4.9)

where Iσ is the rotational inertia of component σ, then the component with the
surplus of particles can exhibit non­classical rotational inertia where the fraction
is smaller than unity (for the numerical data in Fig. 4.7 the fraction of the second
component is f2 ≈ 0.85). Figure 4.7 shows the existence of a single droplet crys­
tal which is connected to itself through a link of superfluid. Such a configuration
can obviously not be called a supersolid according to the definition of crystalline
long­range order in Eq. (4.2) since there is only one “lattice site”, and splitting
this droplet into multiple ones would come at a cost in kinetic energy without any
gain. Regardless, this type of system exhibits spontaneous localization as a result
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Figure 4.7: Ground-state densities in the xy-plane at z = 0 for a two-component condensate with short-range in-
teractions in a ring trap. The data has been obtained numerically by propagating Eq. (2.45) in imaginary
time in the frame rotating with the trap for the dimensionless parameters N1 = 10000, N2 = 40000,
g11 = g22 = 0.05, g12 = −0.055, ω = 0.5, λ = 1, and ρ0 = 7 for the trap in Eq. (4.5).

of the interactions between the particles, as well as simultaneous rigid and super­
fluid behavior under rotation. The latter property is exemplified in Fig. 4.8, which
shows the angular momentum per particle of each component and the total angu­
lar momentum per particle as a function of the rotation frequency. It can be seen
how the component with extra particles (σ = 2 in this example) displays both the
linear slopes associated with rigid motion, as well as a discontinuous jump in angu­
lar momentum connected to quantized vorticity. The critical rotation frequency
Ωcrit, above which an s­times quantized vortex becomes energetically favorable,
can be estimated in the model of the previous section by using the energies in
Eq. (4.6), yielding

Ωcrit =
2s− 1
2ρ2

0
. (4.10)

This in fairly good agreement with the numerical results presented in Fig. 4.8,
whereΩcrit ≈ 0.010 for the analytical model versusΩcrit ≈ 0.011 for the numerical
results. In Paper Iv we study a compound system similar to the one presented in
this section, but instead in one dimension with periodic boundary conditions.
We find there that the energy as a function of angular momentum for the droplet­
superfluid compound is similar to that of a dipolar supersolid, and that there exists
an extra gapless mode in this phase compared to the uniform one.
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Figure 4.8: The total angular momentum per particle and the angular momentum per particle in each component as
a function of the rotation frequency of the ground state for a two-component condensate with short-
range interactions in a ring trap. The data has been obtained numerically by propagating Eq. (2.45)
in imaginary time in the frame rotating with the trap for the dimensionless parameters N1 = 10000,
N2 = 40000, g11 = g22 = 0.05, g12 = −0.055, ω = 0.5, λ = 1, and ρ0 = 7 for the trap in Eq. (4.5).
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Chapter 5

Outlook

In this thesis we have investigated superfluid and supersolid properties of cold
atomic gases beyond mean field. Although the extended Gross­Pitaevskii formal­
ism employed throughout this thesis often succeeds in achieving qualitative cor­
rectness, it has been shown to fail in its accuracy in some places. For example, it
has been demonstrated that the predicted critical number of particles required to
form self­bound droplets in three dimensions differs from experiments for both
dipolar condensates [94] and mixtures [35]. Additionally, it has been found that
theoretical results including beyond mean­field effects for the roton mode agree
worse with experiments than a pure mean­field description [95].

With these demonstrated disagreements between theory and experiments in mind,
it is interesting to address some of the limitations of the extended mean­field form­
alism. First of all, as outlined in chapter 2, quantum fluctuations are incorporated
in a quasi­homogeneous and quasi­static way, and any considerable spatial or tem­
poral variations should therefore diminish the accuracy of the description. Fur­
thermore, the perturbative nature of the formalism restricts the parameter regime:
to low densities and weak interactions in three dimensions [21–23]; to weak in­
teractions in two dimensions [61]; and to weak interactions and high densities in
one dimension [61]. Another question concerns the Bogoliubov modes of the sys­
tem, which in the droplet parameter regime can turn imaginary [21–23, 61]. This
imaginary part is neglected in the extended Gross­Pitaevskii equation, and one
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might question the legitimacy of such an omission¹. Alternative proposals that do
not rely on ignoring these imaginary modes have been suggested, for example by
incorporating higher­order terms [96] or by introducing bosonic pairing [97, 98].

Finally, we conclude this thesis with some interesting open questions. Can a su­
persolid flow through a thin capillary frictionlessly? How does the interplay of
quantum and thermal fluctuations affect the supersolid and the associated break­
ing of symmetries? How do the Bogoliubov and exact spectra of excitations com­
pare for droplets or supersolids? To what extent are droplet­superfluid mixtures in
binary systems with short­range interactions similar to dipolar supersolids? Will
these exotic states of matter ever have any practical use? All of these questions
and more hint towards an exciting future for the field of ultracold atomic gases,
bounded perhaps only by curiosity.

¹Although the neglect of such an imaginary part is not necessary for the existence of one­
dimensional droplets in mixtures.
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