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We present a systematic inelastic neutron scattering and neutron diffraction study on the magnetic structure
of the quasi-one-dimensional spin- 1

2 magnet SrCo2V2O8, where the interchain coupling in the Néel-type
antiferromagnetic ground state breaks the static spin lattice into two independent domains. At zero magnetic
field, we have observed two new spin excitations with small spectral weights inside the gapped region defined
by the spinon bound states. In an external magnetic field along the chain axis, the Néel order gets partially
destabilized at μ0H � = 2.0 T and completely suppressed at μ0Hp = 3.9 T, above which a quantum disordered
Tomonaga–Luttinger liquid (TLL) prevails. The low-energy spin excitations between μ0H � and μ0Hp are not
homogeneous, containing the dispersionless (or weakly dispersive) spinon bound states excited in the Néel phase
and the highly dispersive psinon-antipsinon mode characteristic of a TLL. We propose that the two new modes
at zero field are spinon excitations inside the domain walls. Since they have a smaller gap than those excited in
the Néel domains, the underlying spin chains enter the TLL state via a local quantum phase transition at μ0H �,
making the Néel/TLL coexistence a stable configuration until the excitation gap in the Néel domains closes
at μ0Hp.

DOI: 10.1103/PhysRevResearch.4.013111

I. INTRODUCTION

At the absolute zero of temperature, a continuous quantum
phase transition (QPT) can occur on variation of a non-
thermal control parameter—pressure, chemical substitution,
magnetic field and so on—because of the fluctuations inherent
in Heisenberg’s uncertainty principle, exposing a singularity
called a quantum critical point (QCP) that separates the two
phases involved [1]. A T > 0 K nonthermal phase transition
can also be approximated as a QPT as long as the quantum
fluctuations overwhelm the thermal fluctuations. This ren-
ders experimental assessment of quantum criticality possible
[2,3]. There are, however, exceptional cases where a QCP
is avoided, suppressing the otherwise prominent quantum
critical dynamics near the QCP. Notably, masked quantum
criticality arises in some of the most studied correlated
electron systems, including the heavy-fermion metals [4,5],
itinerant-electron magnets [6–8], and arguably also the high-

*lingjia.shen@sljus.lu.se.
†elizabeth.blackburn@sljus.lu.se.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

temperature superconductors [9,10]. As a result, classification
of the phase formation in the vicinity of a QCP is at the heart
of understanding the rich complexity in these materials.

A novel magnetic-field-induced QPT has been predicted to
occur in the one-dimensional (1D) spin- 1

2 Heisenberg–Ising
XXZ model [11–13],

HXXZ = J�i
(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)
− gzμ0μBH�iS

z
i , (1)

where J is the nearest-neighbor antiferromagnetic (AFM)
intrachain exchange constant, � is the anisotropy parame-
ter, and gz is the component of the Landé g tensor along
the chain direction (z axis). In the Heisenberg–Ising regime
(� > 1), this model has a gapped AFM ground state of
Néel type with the spins lying along the z axis [Fig. 1(a)].
An external magnetic field (H // z axis) tunes the density
of the elementary excitations (spinons [14]), acting like a
chemical potential to close the gap in the excitation spec-
trum at a QCP that separates the Néel state from a quantum
disordered Tomonaga–Luttinger liquid (TLL). A similar con-
cept has been extensively explored in the dimerized AFMs,
where the QPT is the Bose–Einstein condensation (BEC) of
triplons [15,16].

Recently, the quasi-1D quantum magnet family
MCo2V2O8 (M = Sr, Ba), where the intrachain spin–spin
interactions can be approximated by the Heisenberg–Ising
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FIG. 1. Magnetic structure and spinon excitations. (a) Néel-type
AFM order predicted by Eq. (1). (b–d) Spinon pairs created by spin
flips (red arrows) with Ssp = −1, 0, +1, respectively. (e) In-plane
magnetic structure of SrCo2V2O8 at zero-field. There are two inde-
pendent Co spin screw chains denoted by the green and red circles
[25]. The filling colors (black or white) denote spin direction (up
or down). Gray boxes enclose inequivalent magnetic unit cells in
the two domains present, which are separated by the domain wall
enclosed by the dashed purple box. The solid lines between Co
sites denote the different interchain exchange paths that contribute
to the local molecular field hs at each site (blue = ±h1, black =
±h2). The glowing circles highlight spins that have been flipped by
domain-wall formation. Sixteen spin sites are labeled for the |hs|
analysis in Table I.

XXZ model (Eq. 1), has attracted tremendous attention
[17–26]. While a magnetic-field-induced Néel to TLL
phase transition has been observed at low temperatures,
the magnetic structure in the QPT region has never been
evaluated. This issue is important for understanding the
quantum criticality in this material because Eq. (1) is not a
comprehensive description for the interactions in materials
of this class. In particular, it does not account for the
effect of dimensional crossover that becomes energetically
relevant while approaching T = 0 K. In this study, we used
neutron diffraction and inelastic neutron scattering (INS)
to measure the magnetic structure of SrCo2V2O8 in the
zero-field Néel state and across the field-induced Néel to TLL
QPT. The spinon excitations in both regions are found to be
inhomogeneous. Earlier neutron diffraction work has shown
that in the Néel phase, there are two magnetic domains with
approximately equal populations [25]. We present a model
that takes this into account to interpret our observations.

II. METHODS

Two INS experiments were performed on the cold-
neutron triple-axis spectrometer, ThALES, at the Institut
Laue-Langevin (ILL). A cylindrical SrCo2V2O8 single crystal

(height: 22 mm, diameter 6 mm, mass: 2.699 g) grown in
Oxford (UK) by the floating zone method [27] was used.
In the first experiment [28], it was mounted in a dilution
refrigerator inside a 6 T horizontal cryomagnet. The initial
and final neutron wave vectors were selected using a Si (111)
monochromator and analyzer, respectively. The INS spectra
at momentum transfers with a finite out-of-plane component
were collected in this setup with a fixed final wave vector of
1.5 Å−1. In the second experiment [29], it was mounted in a
dilution refrigerator inside a 10 T vertical cryomagnet. The
initial and final neutron wave vectors were selected using a
PG (002) monochromator and analyzer, respectively. The INS
spectra in the reciprocal (H, K, 0) plane were collected in this
setup with a fixed final wave vector of 1.3 Å−1. All of the
INS data presented here were measured with the c axis aligned
along the magnetic field.

The single-crystal neutron diffraction measurements for
the magnetic structure refinement at 3.0 T and 50 mK were
performed on the thermal neutron diffractometer ZEBRA
at the Swiss Spallation Neutron Source (SINQ) at the Paul
Scherrer Institute. A SrCo2V2O8 single crystal (∼ 3 × 3 × 6
mm3) grown in Fujian (China) by the spontaneous nucleation
method [30] was measured with a lifted detector (normal
beam geometry). It was mounted in a dilution refrigerator
inside a 6 T vertical cryomagnet with the c axis aligned along
the magnetic field. For the magnetic structure determination,
a set of magnetic and nuclear reflections were collected at
neutron wavelength λ = 1.178 Å using a Ge (311) monochro-
mator. We have also performed additional measurements on
the same crystal on the D10 diffractometer (ILL) [31] in order
to search for the possible emergent spin modulation between
2.0 and 3.9 T (see Section V and Supplemental Material [32]).
The sample was mounted in a dilution refrigerator inside a
6 T horizontal cryomagnet. A vertically focusing graphite
monochromator was used, fixing the wavelength of the incom-
ing neutrons to λ = 2.36 Å.

The quality of the two single crystals was checked by
neutron Laue diffraction; no impurity could be resolved. In
addition, they share identical magnetic field versus tempera-
ture phase diagram within the detection limit {see Fig. S1(a)
in the Supplemental Material [32]}. Unless otherwise stated,
the data presented in the main text below are based on the
measurements on the sample grown by floating zone [27].

III. MAGNETIC DIMENSIONAL CROSSOVER IN
SrCo2V2O8

In this section, we discuss the impact of dimensional
crossover on the spin excitations based on a minimal model
that approximates the interchain exchange interactions in
SrCo2V2O8. This model will be used to understand the ex-
perimental observations presented in the following sections.

The elementary excitations in a spin- 1
2 AFM chain are

spin- 1
2 spinons [14], which can be thought of as quasiparticles

that are always created or annihilated in pairs by spin flips.
Consequently, each spinon pair has a bosonic quantum spin
number of Ssp = +1, -1 or 0, depending on the number and
direction of spin flips [Figs. 1(b)–1(d)]. Fundamentally, the
zero-field excitation gap in the Néel state is determined by the
doubly degenerate Ssp = ±1 spinon pairs; the condensation of
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the Ssp = +1 branch at the QCP drives the Néel to TLL QPT
in Eq. 1. As a result, the spinon dynamics are pivotal to the
location of a QCP.

The dimensional crossover brought about by lowering the
temperature in a quasi-1D magnet introduces additional in-
terchain couplings. Unlike the intrachain counterparts, these
terms are perturbative and can be treated in a mean-field
approximation [33–35]. Specifically, their contributions can
be modeled by adding an effective staggered magnetic-field
hs(−1)i to the ith spin in a single XXZ chain [Eq. (1)]. In the
absence of interchain couplings, it costs the same energy to
flip an arbitrary number of spins, meaning that spinon pairs
propagate freely along the chain, giving a continuous excita-
tion spectrum. When hs is nonzero, flipping n spins in one
chain leads to an additional energy gain that is proportional
to nhs. This is equivalent to putting the spinon pairs in an at-
tractive potential, confining them spatially [36]. Confinement
replaces the free spinon continuum with a series of discrete
modes, i.e., spinon bound states [33]. In the MCo2V2O8

(M = Sr, Ba) family, this confinement is well described by
a 1D Schrödinger equation with linear potential [19–21], the
solutions of which are:

Ej = 2E0 + ζ jh
2
3
s

(
h̄2

μ

) 1
3

, ( j = 1, 2, 3...), (2)

where E0 is the free spinon excitation gap, Ej is the energy
of the jth bound state, ζ j is the jth negative zero of the Airy
function, and μ is the reduced spinon mass [37,38]. Based on
this equation, the zero-field Ssp = ±1 spinon excitation gap
E1 is proportional to hs.

SrCo2V2O8 possesses screw chains of Co2+ ions with
effective spin 1

2 running along the crystallographic c axis.
The validity of the XXZ model [Eq. (1)] in describing the
intrachain interactions in this system has been confirmed
by multiple experimental studies [21,22,26]. On cooling, the
Co2+ spins develop a 3D ordered AFM structure at TN =
5.0 K [25]. In the ground state, the spin configuration within
each chain agrees well with the easy-axis Néel order de-
picted in Fig. 1(a). The relative spin alignment between two
neighboring chains is not trivial. This is due to the symmetry
reduction associated with the bulk AFM phase transition at
TN, which decouples half of the spin chains from the rest. The
resulting spin arrangements in a given ab plane are shown in
Fig. 1(e). Each in-plane magnetic unit cell hosts two diagonal
AFM spin pairs that are independent of each other. This gen-
erates two types of domains, distinguished by their magnetic
unit cell configurations, which are almost equally populated
in space [25]. We note that this two-domain configuration in
SrCo2V2O8 is exclusively caused by the symmetry reduction
in the Néel state, not by the minimization of magnetostatic
energy. The latter is responsible for the formation of conven-
tional domains.

The inhomogeneous spin lattice discussed above is not
thermally activated and therefore can persist down to zero
temperature. We now analyze its influence on the spinon ex-
citations. Based on a structural analysis [39], the interchain
exchange network in SrCo2V2O8 contains four independent
paths: Two in the skewing direction and the other two in the
ab plane. For simplicity, we only consider the two in-plane

TABLE I. Spatial distribution of the effective staggered magnetic
field hs in the bulk Néel state. Only the in-plane interchain couplings
marked in Fig. 1(e) are considered.

|hs| |h1| |h1 − 2h2| |h1 + 2h2|
Site label 1-4, 5, 7, 10, 12, 13–16 6, 8 9, 11

interchain couplings, the effective molecular fields of which
are denoted as ±h1 and ±h2. Their signs depend on whether
the relevant spin pairs are antiferromagnetically (minus) or
ferromagnetically (plus) aligned. For a given Co site, five
neighboring spins are involved [Fig. 1(e)]. The total effective
staggered magnetic-field hs is obtained by summing up these
individual molecular fields [34,35].

We have calculated the |hs| values for the 16 spin sites
labeled in Fig. 1(e); their spatial distribution is summarized
in Table I. For any given spin inside the domains, e.g. spin #
1-4, |hs| is always equal to h1. However, inside the domain
walls, which are formed by planes of spin chains in three
dimensions, hs is nonuniform. For example, for spin # 5 it is
h1, for spin # 6 it is |h1 − 2h2|, and for spin # 9 it is |h1 + 2h2|.
Moreover, even after the two skewing paths are included for a
comprehensive analysis on the interchain exchange network
[39], we find that the nonuniformity of hs is still discrete.
In other words, there exists well-defined spinon bound states
corresponding to a finite set of |hs| values [34]. Accordingly,
our simplified model captures the essential information: The
spinon excitations in the domain walls have distinct gap values
[Eq. (2)] from those in the domains because of variations in
the confining potential.

IV. RESULTS

A. Domain-wall spinon excitations in SrCo2V2O8

In Fig. 2, INS spectra as a function of momentum transfer
Q and neutron energy loss E are presented. As expected
[33], a series of discrete modes—the spinon bound states—are
seen. Figures 2(a)–2(c) show the behavior at the in-plane
nuclear zone center Q1 = (2, 2, 0), the AFM zone center
(H + K + L = odd integer) Q2 = (2, 3, 0), and a disper-
sion map of the magnetic excitations in the reciprocal (2, K,
0) plane. A series of peaks are observed. To quantitatively
analyze our data, we fit them numerically. The instrumental
resolution function, which has a full width at half maximum
(FWHM) of 88(3) μeV, has been deconvolved. We have also
evaluated the detection noise by conducting measurements at
several momentum transfer points where there are negligible
sample contributions; these calibrations show that the back-
ground may be modeled as a constant term. In the literature,
a Gaussian model, where all peaks share a common width,
has been used to describe the lineshape of the spinon bound
states [19,21,26]. For our high-energy resolution data, we find
that modeling the peaks with a damped harmonic oscillator
(DHO), the width of which depends on whether the corre-
sponding spinon bound state has Ssp = ±1 or 0, provides
considerably better fitting quality [Figs. 2(a) and 2(b)]. This
high-energy resolution is necessary to resolve these subtle
features because once we relax the resolution FWHM to
160(8) μeV, the DHO / 2-width and Gaussian / 1-width
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FIG. 2. Spinon confinement in SrCo2V2O8. (a–c) Spinon bound states at 50 mK measured by INS at the momentum transfers Q1 = (2,
2, 0) and Q2 = (2, 3, 0) and their dispersion in the reciprocal (2, K, 0) plane. In the T+/−

DW / T+/−
1−4 (blue solid line) and L0

DW / L0
1−4 (orange

dash-dotted line) plots, the instrumental resolution profile has been deconvolved to show the intrinsic damping of these modes. The T+/−
DW

(red circles), L0
DW (purple circles), T+/−

1 (black circles), and L0
1 (blue circles) mode energies are plotted in (c), where the right” areas around

0.75 meV and at K = 0.75, 1.75, and 2.75 r.l.u. are spurious leaks through the analyzer; they were excluded in our data analysis. (d) Spinon
bound states at 60 mK (800 mK) and Q3 = (1, 0, 2), displayed on a logarithmic scale to highlight the T+/−

DW mode. (e, f) Comparing the central
energies of the domain spinon bound states with the linear confinement theory described by Eq. (2). (g) Magnetic-field dependence of the L0

DW

mode energy at Q1 and Q2. The numerical fits are described in the main text.

models produce similar fitting quality; a typical example is
demonstrated in Fig. 2(d) for the spectrum collected at another
AFM zone center Q3 = (1, 0, 2).

In Figs. 2(a) and 2(b), the four pairs of spinon bound
states above 1.40 meV with strong spectral weights, which
are excited inside the Néel domains, have been reported in
the literature [21,22,26]. The Ssp = 0 and ±1 modes account
for the magnetic moment fluctuations along the c axis (lon-
gitudinal, or L, mode) and in the ab plane (transverse, or
T , modes), respectively [40,41]. Since neutron scattering is
only sensitive to the spin configuration perpendicular to Q
and the Néel order is dominated by the Ising-like easy axis
anisotropy along the c axis [25], the four strong peaks (or-
ange dash-dotted line) detected in this in-plane geometry are
the Ssp = 0 spinon bound states, while the four weaker ones
(blue solid line) are the Ssp = ±1 spinon bound states. These
modes are either weakly dispersive with a bandwidth of about
0.05 meV or dispersionless, supporting the hypothesis of in-
significant interchain spinon correlations.

We also observe a previously unreported pair of peaks
with small spectral weights at about 0.88 and 1.15 meV
[Figs. 2(a)–2(c)]. Their central energies lie in the gapped
region of the aforementioned bulk spinon spectrum. Their
evolution in the Q-E space is reminiscent of the other spinon
modes at higher energies: (1) They are nondispersive in the

transverse direction, and (2) the peak at 0.88 meV is less
intense than that at 1.15 meV. We interpret these peaks as
another Ssp = ±1 (∼0.88 meV) and 0 (∼1.15 meV) pair. In
Fig. 2(g) we track the ∼ 1.15 meV mode as a function of
magnetic field and see no shift, indicating that it behaves like
a Ssp = 0 longitudinal mode. Due to the small spectral weight
we were not able to track the ∼0.88 meV mode in a magnetic
field; if it is an Ssp = ±1 mode, it should show a Zeeman
splitting. As an alternate way of testing this assignment, we
also measured the same energy range at Q3 = (1, 0, 2). In
this out-of-plane geometry, we should be more sensitive to
the Ssp = ±1 modes than to the Ssp = 0 mode [19,21]. As
Fig. 2(d) shows, this is exactly what is seen both for the new
peaks at 0.88 and 1.15 meV (below the detection limit in this
geometry) and for the well-studied modes between 1.40 and
1.95 meV. This measurement strongly supports the Ssp = ±1
nature of the peak at 0.88 meV.

Trivial explanations for the two weak peaks below
1.40 meV include crystalline mosaicity and impurity. The first
can be easily ruled out because the zone centers probed (Q1,
Q2 and Q3) correspond to the energy minima of the spinon
spectrum [21,26]. In the absence of strong in-plane disper-
sion [Fig. 2(c)] [21], any secondary misaligned crystal of
SrCo2V2O8 can only add spectral weights to higher energies.
On the other hand, given that only a few compounds have been
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experimentally confirmed to host a well-defined Ssp = 0 mode
[19,21], it is very difficult to reconcile with the presence of
such mode in a random impurity phase.

In theory, the lowest-lying spinon bound state should
mostly consist of one-spin flips [Fig. 1(b)] and should al-
ways have the largest spectral weight [21,33]. Accordingly,
the peaks at 0.88 and 1.15 meV do not come from the bulk
Néel domains, which give rise to the stronger peaks at higher
energies [21]. Following the discussion in Section III and
given that INS is a powerful technique for detecting soli-
tonlike excitations with a small volume fraction [42,43], we
therefore propose that they are in fact the lowest-lying spinon
bound states in the domain walls. This naturally explains their
much smaller spectral weights compared with those excited in
the domains, as the domain walls occupy only a small portion
of the sample. One necessary condition for any spinon bound
state to rise in the sample is that it must be above the confine-
ment threshold 2E0 (Eq. 2). We have calculated this parameter
for different Ssp values in SrCo2V2O8 using the spinon bound
state energies in the domains. As shown in Figs. 2(e) and 2(f),
the linear confinement theory fits the data well. We obtain
2E0 � 0.68 meV for Ssp = ±1 and 2E0 � 1.02 meV for
Ssp = 0. Based on this calculation, the necessary condition for
spinon confinement in the domain walls is fulfilled. According
to Eq. (2) and Table I, there exist multiple sets of domain-wall
spinon bound states above 2E0 due to the nonuniformity of hs.
However, experimental detection of any of these modes above
1.4 meV is challenging due to the small spectral weights and
dominant contributions from domain spinons.

We will now use the labels T+/−
i or L0

i (i = 1-4) to denote
the ith Ssp = ±1 or 0 spinon bound state in the domains, and
T+/−

DW or L0
DW to denote the observed Ssp = ±1 or 0 spinon

bound state in the domain walls. The high-energy resolution
INS spectroscopy data allow us to conclude that the zero-field
spinon confinement in SrCo2V2O8 is not perfect [Figs. 2(a)
and 2(b)]. The inverse lifetimes of the Ssp = ±1 and Ssp = 0
modes extracted from the numerical fits are Q independent
within the errors with FWHMs of 0.06(2) and 0.25(2) meV,
respectively.

B. Coexistence of Néel AFM and a TLL

We study the magnetic structure as a function of longi-
tudinal magnetic field. The onset of the TLL state can be
understood as the condensation of the spin flips responsible
for the Ssp = +1 spinon pairs [see Fig. 3(a)]. This is induced
by the Zeeman splitting of the transverse spinon mode in a
longitudinal magnetic field and should lead to the develop-
ment of a staggered ferromagnetic moment, Mc, along the
c axis. We have studied this by measuring the elastic scattering
signal using the energy analysis available on the ThALES
three-axis cold-neutron spectrometer. Figure 3(e) shows the
intensity of the Bragg reflection Q4 = (0, 2, 0) as a function
of magnetic field. Q4 is a nuclear zone center, as well as a
ferromagnetic zone center. In Fig. 3(e) the zero-field nuclear
contribution has been subtracted to give a clean probe of
Mc [18,25] as a function of magnetic field. In the low-field
region, the intensity scales almost linearly with magnetic field,
deviating upward from μ0H � = 1.8 T.

FIG. 3. Spin configurations and static magnetic properties in a
field-induced TLL. (a–d) Schematic illustrations of the ground state,
Bethe 2-string (2-s), psinon-antipsinon (PAP), and psinon-psinon
(PP) excitations of a TLL [22,26,44]. Gray arrows represent the
condensed Ssp = +1 spinon pairs in a longitudinal magnetic field.
Purple arrows are spin flips responsible for the excitations. Magnetic-
field dependences of the neutron diffraction intensity at (e) Q4 =
(0, 2, 0) and (f) Q2 = (2, 3, 0), which probe the staggered ferro-
magnetic moment (Mc) along the chain and Néel order, respectively
[25]. The nuclear structure contribution in (e) has been subtracted.
The inset of (f) is an enlarged view of the shaded area in the main
panel. The hatched columns mark the positions of μ0H � and μ0Hp.
The dash-dotted line in (e) is the first derivative of the data (red dots).
The solid lines in (e, f) are linear fits to the data points below μ0H �.

Figure 3(f) shows similar measurements taken at an AFM
zone center, in this case Q2 = (2, 3, 0). At 2.0 K and below
μ0H �, there is a tiny linear decrease in the diffraction intensity
at Q2; this effect is almost absent at 60 mK. These initial
changes are most likely driven by thermal fluctuations. We
also observe that the Néel order does not vanish until μ0Hp

(∼ 3.75 T at 2.0 K); this is the field above which SrCo2V2O8

becomes disordered at 1.5 K < T < TN. Below 1.5 K, μ0Hp

becomes temperature independent and sits at 3.9 T. In this
temperature range, a spin-density wave develops above μ0Hp,
splitting the magnetic reflection at the AFM zone centers, e.g.,
Q2, into a pair of peaks along the reciprocal c� axis. The
tails of these incommensurate reflections are responsible for
the remnant intensities at 60 mK and above μ0Hp [Fig. 3(f)
and Fig. S1(b) in the Supplemental Material [32]). These
observations are in agreement with our previous study [25].

In the intermediate field region, our measurements detect
a response of the Q2 reflection to μ0H �, above which the
intensity loss accelerates [inset of Fig. 3(f)]. The μ0H � value
also slightly increases to 2.0 T as the temperature is lowered
to 60 mK. Since the Néel order in SrCo2V2O8 involves two
unequally populated magnetic domains [25], the suppression
of the Q2 reflection could be caused by a change in the domain
volume fractions. A misalignment between the magnetic field
and c axis [18] or equilibration difficulty at very low tempera-
tures could also be responsible for such changes. We dismiss
this possibility based on magnetic structure refinements
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FIG. 4. Magnetic excitations in a longitudinal magnetic field. (a) Dispersion of the TLL spin dynamics in the reciprocal (2, K, 0) plane
at 5.5 T. The red diamonds and yellow squares mark the positions of the Bethe 2-strings (χ2−s

π ) and psinon-antipsinons (RPAP
π ), respectively.

(b) Magnetic excitation spectrum at Q1 = (2, 2, 0) as a function of magnetic field. The black solid, gray dashed, and violet solid lines are the
numerical fits to the RPAP

π , continuum (see the main text) and χ 2−s
π modes, respectively. (c) Dispersion of the magnetic excitations at 3.5 T,

which shows the coexistence of spinon bound states [T+
1 (black circles), L0

DW (purple solids), and L0
1 (blue solids)] and RPAP

π (yellow squares).
(d) Magnetic excitation spectrum at Q2 = (2, 3, 0) and 3.5 T. The white solid lines in (a) and (c) are sinusoidal fits. The numerical fits in
(b) and (d) are described in the main text. The spectral weights at low energies in (b) and (d) contain the contributions from elastic scattering;
its lineshape has been omitted for clarity. All measurements were carried out at 50 mK.

carried out on the sample grown by spontaneous nucleation
[30] at 3.0 T used in Ref. [25], using 41 magnetic re-
flections belonging to the Néel phase (see Fig. S2 in the
Supplemental Material [32]). These refinements reveal that,
besides a reduction in the ordered magnetic moment at each
Co site, both the magnetic structure and the volume fractions
of the two domains remain unchanged relative to those mea-
sured in zero field. This rules out the domain scenario in
this sample and confirms that the bulk averaged Néel order
is partially suppressed between μ0H � and μ0Hp.

The kink at μ0H � revealed in Fig. 3(e) supports the emer-
gence of spin chains with a finite Mc before the Néel order
is completely suppressed at μ0Hp. While a finite Mc fits the
description for having a TLL above μ0H �, it is not direct
evidence. Indeed, since the slope of the diffraction intensity
at Q4 peaks at μ0Hp [Fig. 3(e)], which probes the suppression
of the bulk Néel order [Fig. 3(f)], μ0H � could simply mark

the starting point of a second-order phase transition or some
sort of crossover behavior. However, if we assume that a TLL
emerges at μ0H �, the persistence of a partially suppressed
Néel order up to a higher field μ0Hp does not agree with
the expectation for a continuous QPT in a single XXZ spin- 1

2
chain [11–13].

To confirm the nature of the magnetic state between μ0H �

and μ0Hp, we now consider the changes seen in the INS
spectra as a function of magnetic field at 50 mK. A full
description of the TLL spin dynamics is now available in
both theory and experiment: They consist of multiparticle
excitations ranging from psinon-antipsinon and psinon-psinon
pairs at low energies to Bethe strings at medium and high
energies [22,24,26,44], as illustrated in Figs. 3(a)–3(d). While
these modes can still be effectively described by spin flips, i.e.,
having a quantum spin number +1, −1, or 0 [see Figs. 3(b)–
3d)], they differ from the spinons in the Néel state in that
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FIG. 5. Evolution of the quasiparticle excitation energies in a
longitudinal magnetic field. Q1 and Q5 are nuclear zone centers; Q2

is an AFM zone center. For comparison, the data reported in Ref. [26]
are also included.

they correspond to the excitations in a disordered spin- 1
2 chain

with Mc �= 0. Figure 4(a) shows the INS spectrum in the
(2, K, 0) direction at 5.5 T, i.e., above μ0Hp. All INS spec-
tra in this region can be modeled by combining two DHOs
and a product of a Lorentzian and Heaviside step function
[Fig. 4(b)]. By comparing our data with the canonical ob-
servations of the TLL spin dynamics, the dominant features
in the spectrum can be identified. The fourfold screw chain
structure in SrCo2V2O8 folds the Brillouin zone by a factor
of four, meaning that the excitations at L = 0, 1

4 , 1
2 and 3

4
of a single chain can be observed simultaneously at L = 0
[26]. Most of the magnetic excitations in a TLL contribute to
a continuum, accounting for the broad Lorentzian-Heaviside
profile [45]. There are only two relatively well-defined modes
that are accessible at L = 0 and below 2.5 meV: The psinon-
antipsinon pairs at L = 1

2 (RPAP
π ) with a quantum number

SPAP = 0 and Bethe 2-strings at L = 1
2 (χ2−s

π ) with a quantum
number S2−s = −1. By comparing the field dependences of
the two DHO centers with those reported in Ref. [26], we
confirm that the profile below 1.5 meV is the RPAP

π mode,
while the one around 2.1 meV is the χ2−s

π mode (Fig. 5).
Our in-plane geometry is optimal for detecting modes with
a quantum number of 0, which is consistent with the ob-
served intense spectral weight for the SPAP = 0 RPAP

π mode.
A remarkable feature revealed in Fig. 4(a) is the dispersion
of this mode; it is strongly softened at the AFM zone centers
with a bandwidth of 0.36(1) meV, contrasting sharply with
the dispersionless χ2−s

π mode at higher energies. This strongly
suggests that the interchain couplings must be taken into ac-
count to understand the low-energy TLL spin dynamics. With
the features of the relevant TLL modes established, we now
discuss the region between μ0H � and μ0Hp. In Figure 4(c),
we present the magnetic excitations and their dispersion at
3.5 T, where the elastic intensity at Q2 that characterizes the
Néel order is at about 83% of its zero-field value [Fig. 3(f)]. A
visual inspection already reveals two strong modes: A weakly
dispersive one around 1.85 meV and a strongly dispersive
one with a bandwidth of 0.31(3) meV below 0.6 meV. The
former is identical with the L0

1 spinon bound state within

the errors [Fig. 2(c)], revealing the persistence of the spinon
confinement in the bulk Néel domains. The latter, however,
cannot be explained by any Ssp = +1 mode in the system,
which is dispersionless [Fig. 2(c)] and approaches the elastic
line as the magnetic field increases by gaining Zeeman energy.
In fact, these spectra can be numerically reproduced by a
minimal model with four modes: L0

1, L0
DW, T+

1 , and, critically,
a dispersive RPAP

π . In these analyses, the contributions from
the elastic line, which are not negligible at low energies, have
been subtracted by fitting the zero-field spectrum. A typical
example is demonstrated in Fig. 4(d) for the spectrum at Q2,
while we have also validated this model at Q1 and another
nuclear zone center Q5 = (4, 0, 2) (Fig. 5). The existence of
a strongly dispersive mode can be resolved down to 3.0 T in
our measurements. By evaluating its evolution as a function
of magnetic field, the mode energy seamlessly connects to the
SPAP = 0 RPAP

π one above μ0Hp (Fig. 5). The field dependence
and strong dispersion of the new mode below μ0Hp do not
fit the characteristics of spinons, but are in strong agreement
with the features of a RPAP

π . Consequently, the most likely ex-
planation for our observations at these intermediate magnetic
fields is Néel / TLL coexistence with the TLL component
accounting for the partial suppression of the bulk Néel order
revealed by neutron diffraction.

C. Inhomogeneous Néel to TLL QPT

In Section III, we have argued that the chains in and close
to the domain walls may have different excitation gaps from
those in the domains based on a minimal model. This pos-
sibility is supported by the zero-field INS data presented in
Section IV A, which show the presence of a second set of
spinon excitations with a smaller gap. We have interpreted
these results as the fingerprints of excitations localized in-
side the domain walls. Now, we use this interpretation to
address the Néel / TLL coexistence phenomenon shown in
Section IV B.

As noted above, the transition to the TLL state can be
related to the condensation of the relevant T+

1 mode brought
about by Zeeman splitting. Figure 5 illustrates that we do
not see a clear closure of the gap associated with the T+

1
mode in the bulk of the domains. As noted earlier, the spinon
confinement is not perfect in this material, and the intrinsic
damping of the spinon bound states can be extracted from
the FWHMs after deconvolving the instrumental resolution.
The resulting spinon damping is shown in Fig. 6(a) and is
enhanced in both transverse and longitudinal modes by the
applied magnetic field. This finite bandwidth will lead to a
smaller gap for at least part of the excitations. We have cal-
culated the excitation gap in the domains using three different
criteria: ED

1 , ED
1 − (0.5 × FWHM) and ED

1 − (1.0 × FWHM),
where ED

1 is the central energy of the T+
1 mode at a given

magnetic field. Their magnetic-field dependences are plotted
in Fig. 6(b). As in the case of the charge-density wave in in
NbSe3 [46] we speculate that once sufficient spectral weight
accumulates at zero energy transfer, condensation occurs. It is
only by including this magnetic-field-induced spinon damping
that this can be achieved at μ0Hp for the T+

1 mode originating
from the domains.
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FIG. 6. Spinon damping and spatially inhomogeneous gap closure. (a) Intrinsic FWHMs of the Ssp = ±1 (main panel) and Ssp = 0 (inset)
modes as a function of magnetic field. The instrumental resolution contribution has been deconvolved. Q1 = (2, 2, 0) and Q5 = (4, 0, 2) are
nuclear zone centers; Q2 = (2, 3, 0) is an AFM zone center. (b) Estimated spinon excitation gaps in the domains (filled points) and domain
walls (open points) at Q2 as a function of magnetic field. μ0H � and μ0Hp are marked by black arrows. The shaded areas are guides to the eye.
(c) Magnetic-field dependences of the normalized integrated intensity of the RPAP

π and L0
DW modes. The hatched column marks the position of

μ0Hp. All measurements were performed at 50 mK.

The same methodology can be applied to the transverse
spinon bound state in the domain walls, the central energy
of which is denoted as EDW

1 in Fig. 6(b). While EDW
1 can be

unambiguously determined at zero field (Fig. 2), we were not
able to directly measure its value once the magnetic field is
switched on due to its marginal spectral weight. However, we
can infer its behavior by invoking the general Zeeman splitting
principle: EDW

1 (μ0H) = EDW
1 (0 T) − gcμBμ0H . As shown in

Fig. 5, this principle is well obeyed by the other measurable
spinon bound states at higher energies. A linear fit to the T+

1
mode energies at different Qs gives gc = 5.6(2). By further
including the spinon damping effect, we find that the excita-
tion gap of the T+

DW band at Q2 closes near μ0H � [Figs. 6(b)],
above which Mc becomes nonzero [Fig. 3(e)]. Combining the
elastic and INS results, we believe that the RPAP

π mode, which
can be resolved down to 3.0 T within our detection limit,
originates from the local gap closure in the domain walls
near μ0H �.

The spatially inhomogeneous QPT scenario is further
backed up by the behavior of the spectral weight of the RPAP

π

mode [Fig. 6(c)]. At and below 3.5 T, it evolves smoothly and
remains small. This is because the TLL at these intermediate
fields is only located inside and close to the domain walls.
When the excitation gap in the Néel domain begins to close,
or the magnetic field approaches μ0Hp [Fig. 5(b)], the spectral
weight shows a steplike increase, suggesting the emergence
of a Néel to TLL QPT in the domains. The Néel order is
completely suppressed at high fields where the spectral weight
is flattened again.

V. DISCUSSION AND CONCLUSIONS

The results above support an exotic region between μ0H �

and μ0Hp where a partially suppressed Néel state coexists
with the TLL. One possible mechanism for this is masked
quantum criticality. This means that the Néel to TLL QPT
in SrCo2V2O8 is no longer well defined. In correlated elec-

tron systems, masked quantum criticality can occur due
to the development of a competing state near the QCP
[4,5]. However, after an extensive search in the reciprocal
space, no emergent static spin modulation can be resolved
in this region in addition to the Néel order (see Fig. S3
in the Supplemental Material [32]). As shown in Figs. 4(c)
and 4(d), the dynamical spin properties in the Q-E space
can also be well described by the Néel/TLL composite
model. Our data therefore do not support the competing state
scenario.

The persistence of the L0
DW mode up to μ0Hp [Figs. 1(g)

and 6(c)] would seem to disagree with the domain-wall
QPT scenario at μ0H �. This is due to the lack of significant
interactions between the different spinon bound states in the
low-field region where these states are relatively stable. At
high fields, spinon damping becomes profound [Fig. 6(a)]
promoting these interactions, such as the decay of a Ssp

= 0 mode into a pair of Ssp = ±1 modes [47]. In fact,
this echoes our argument in Section IV C that sufficient
spinon damping is necessary for the Néel to TLL QPT to
percolate.

In summary, we have presented neutron-scattering evi-
dence for inhomogeneous spin excitations in the the quasi-1D
quantum magnet SrCo2V2O8, both in the zero-field Néel
ground state and during the field-induced Néel to TLL QPT
process. What is particularly interesting is the coexistence
of partially suppressed Néel antiferromagnetism and a TLL
between μ0H � = 2.0 T and μ0Hp = 3.9 T, which sup-
ports the hypothesis of masked quantum criticality in this
system. Masked quantum criticality is an important concept
in correlated electron systems, contributing to some of the
most intricate states of matter observed therein [4–10]. Spa-
tial confinement, i.e., dimensionality control, of particles is a
well-established tool for tuning the quantum phases; paradig-
matic examples can be found in systems like ultracold atoms
[48,49] and superfluid 4He in porous media [50]. Unlike these
studies where the confining potential is extrinsic, our work
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highlights an intrinsic mechanism for confinement, i.e., di-
mensional crossover, that can be used to explore the quantum
magnetism in relevant materials.
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