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Abstract—Cloud computing has become a prominent

technology for the computing paradigm in various indus-

trial sectors nowadays. For most industrial applications to

perform in real-time, the support of periodic computing

is required. However, it remains a challenge when the

computing is executed in a cloud, since both the network

connection and the cloud environment are uncertain. In

this paper, we propose a new architecture to deploy real-

time applications in the cloud. We call it punctual cloud. We

detail the implementation and demonstrate how punctual

cloud is deployed in a cloud-native manner on Kubernetes.

We evaluate the system’s performance with a real-time

resource allocation problem and show that, compared to

a system without punctual cloud, which has maximum

40% punctual deliveries, our proposed architecture can

attain over 90% responses to be delivered punctually for

the application, while also being capable of remedying the

performance degradation caused by long and uncertain

response delays in the system.

Index Terms—Cloud computing, micorservice, real-time

cloud application, cloud-induced Delays

I. INTRODUCTION

The digital transformation driven by Industry 4.0

anticipates the integration of cloud computing into man-

ufacturing systems. Cloud computing has ubiquitous

and “infinte” computing resources and storage capacity,

giving it advantages over bare-metal web servers. The

integration of cloud computing allows industrial real-

time applications, such as controllers and schedulers,

to offload their computing tasks to the clouds. The

manufacturing industry may benefit tremendously from

the economic model and flexibility of cloud computing

[1].

Real-time applications require timely responses from

their computing tasks. Long delays in the responses can

contribute to stale actuation signals to the consumer,

and eventually cause system failure. These types of

applications are conventionally placed near the consumer

of a process, such as on an on-board and on-premises

computer. However, when hosted in the cloud, longer and

inevitable delays will be incurred. The network separa-

tion from the consumer, unpredictable virtualization en-

vironment, and the layered software management system

can all cause extra disturbances [2]–[6]. Additionally, to-

day’s cloud services are evolving towards a microservice

architecture [7], which introduces inter-communications

among light weight services in an application. All these

disturbances from clouds yield time-variant delays that

could be greater than the desired response time of a

consumer [8], [9]. Therefore, it is nontrivial to develop
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a viable approach for deploying real-time applications

in clouds without being disrupted by the delay-inhibited

environment.

Edge and fog computing were developed as dedicated

cloud computing paradigms for time-sensitive processes.

Fog/edge computing can reduce the response time by

placing services in smaller scale cloud infrastructures

that are in vicinity to the consumers. A number of studies

have suggested optimization approaches to dynamically

distribute computing tasks in the fog [10]–[13]. The

authors of [14] proposed a dynamic switching solution

between local computers and edge nodes to meet the

latency requirements for a cyber-physical system. In

[15], an industrial cyber-physical system for machine

learning applications was deployed as a fog architecture

to execute time-sensitive machine learning models.

Several studies on using clouds for real-time systems

have been performed in recent years. The critical design

issues for real-time services using cloud computing were

summarized in [16]. The authors of [17] examined

a set of cloud platforms and presented a strategy to

enable cloud computing in critical control systems. The

concept of control as a service was presented in [18] for

autonomous vehicles, in which a controller was designed

to tackle network imperfections in the system and was

evaluated by a simulation study.

Even though it has been shown that the cloud can

host some real-time applications, especially when having

them deployed in an edge or fog architecture, there is

no guarantee that the response time of a time-sensitive

service is close to the one obtained by on-board comput-

ers. The time-varying delays in cloud computing systems

remain a challenge. Additionally, performance evaluation

on previously proposed solutions was a laborious task for

academic researchers, due to the lack of well-established

public edge infrastructure. Most previous studies on

latency minimization in cloud computing were restricted

to simulation platforms [9]–[13], [18], or to improvised

edge/fog nodes, such as a single bare-metal server or on-

premises controller [14], [15]. However, the disturbances

from the actual execution environment, whether in the

edge or a centralized cloud, have been mostly neglected.

Therefore, rather than upgrading the infrastructure to

meet the stringent requirements on response time, in a

previous work we have argued that real-time applications

should adapt themselves to the nature of clouds [19].

To mitigate the impacts from the cloud environment, we

proposed a new deployment architecture named punctual

cloud to enable punctual response deliveries for a radio

resource allocation problem over Cloud RAN [19]. This

solution was evaluated and proved under a simulation

environment, which however could not fully capture the

characteristics of an actual cloud environment and the

network.

In this paper, we adapt our punctual cloud architecture

based on microservices for demanding real-time cloud

applications that run at high frequency and present the

implementation in a real cloud execution environment.

We show in this paper that punctual cloud is infrastruc-

ture agnostic, thus it can be deployed in both edge and

centralized clouds. A performance evaluation shows that,

compared to a system under general deployment, which

has maximum 40% punctual deliveries, our proposed

architecture can attain over 90% punctually delivered

responses, and it has less impact from the disturbances

of the clouds and network protocols compared to the

general deployment without punctual cloud.

The remainder of the paper is organized as follows. In

Section II we first outline the addressed system and its

properties. Based on the problem we are concerned with

the system, we present in Section III briefly our proposed

solution, which was investigated in [19]. In Section IV,

we use an example to show in detail how this proposed

architecture is adapted to the implementation of resource
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Fig. 1: System components of a general deployment.

allocation application in the cloud. In Section V and VI,

we evaluate the system performance and compare our

proposed architecture with a general deployment without

punctual cloud.

II. SYSTEM DESCRIPTION

In this section, we first describe the system under

consideration, then present the system model and show

the problems when the system is deployed in a general

way.

A. Targeted system

We target a real-time cloud application consisting of

a client and a service that communicate with a Request-

Response pattern over a shared network. The essential

components of the system are depicted in Fig. 1.

Most real-time applications such as industrial control

systems, resource allocation functions and task sched-

ulers, require computing tasks to be performed period-

ically at high frequency [20]. The computing tasks of

such systems output actuation commands to the system

actuator to keep the process running properly. The com-

mands are usually based on the real-time state of the

client. In this paper, real-time cloud application running

at a deterministic frequency is under consideration. For

a cloud application, the computing tasks are executed

by the service which resides in the cloud, however the

output signals of the tasks are delivered to the actuator

co-located with the client. The requests are sent by the

SC
yi

ui

C: Client

S: Service

Fig. 2: System model of a cloud application under

consideration.

client to ask for actuation commands, and the responses

are sent back by the service to serve the client.

The response delay of each request is highly depen-

dent on the network connection and protocols that are

utilized in the system. The choice of network connec-

tions between the client and an edge cloud depends

on their relative locations, and various networks such

as WiFi, mobile networks, Ethernet and even dedicated

optical networks can be utilized. For the connection to a

centralized cloud, the workloads of an application nor-

mally need to traverse the Wide Area Network (WAN),

which induces more uncertainties on the data path be-

tween a client and its service. The unpredictable network

behaviors would introduce complicated stochastic prop-

erties on the response delays of a cloud application.

As of now, the majority of cloud computing system are

built on REST HTTP, since it is a comparably mature and

stable solution [21]. In our targeted system, a standard

deployment based on HTTP/TCP will also be utilized.

We will show in Section VI that, although the response

time of an application is prolonged due to the operations

of TCP sessions compared to UDP, it does not contribute

to a major impact on the system performance with our

deployment model.

B. System model

The system can be described as a simplified model

as illustrated in Fig. 2, where C represents the client

and S is the service. This is a system model of a web

application with general deployment. The service in the
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cloud is deployed in monolithic way, which is also used

by the majority of cloud services.

Thus we define that the client sends outs the requests

at frequency f and the interval of successive requests

is h = 1
f . A request sent at time i contains the state

of client yi, and it expects an actuation command ui in

response from the service. i represents the index of each

time slot in the model, thus i = {0, 1, 2, ...}, and the

length of a slot is h. The aim of the computing task is

thus to generate the command to serve the client state at

time i as:

ui = F(yi) (1)

The robustness of a real-time application relies on the

promptness of each response, that is whether a response

can arrive at the client before the expiration of the state

updated by its request. As the client state is updated

at frequency f , the maximum tolerable waiting time of

each state is h = 1
f .

The duration from the time when yi is sent out until

when the response ui is delivered back to the client is

defined as the response delay Di. A client state is expired

if its own response cannot be delivered within h. Thus, a

response that contains command ui is called punctually

delivered if its response delay Di is shorter than h.

C. Problem definition

Fig. 3 illustrates an example of the potential conse-

quences of stochastic response delays in a real-time ap-

plication, which is caused by the uncertain network con-

ditions and the cloud execution environment. In an ideal

case, where the client and the service are co-located, the

response delays should be near to 0, and the response is

sent back immediately after a request departs. However,

when the client and the service are separated via the

network, together with additional execution time in the

cloud, such as admission time of a proxy and workload

Service
time

0 1 2 3 4 5 6
Client

timey0 y1 y2

u0 u1u2

y0 expires
y1 expires

h

Fig. 3: Consequences of stochastic response delays on

subsequent requests yi and responses ui.

scheduling of an ingress controller, the response delay of

an application increases and becomes uncertain. When

the application is running at a high frequency, even if

the average response delay is shorter than the request

interval h, significant numbers of the responses may not

be delivered punctually due to the stochastic network

properties. Relatively longer and unpredictable response

delays could later result in performance degradation in

the application.

Another important property of cloud computing is

scalability, which means there can be multiple replica-

tions or threads for a service to serve many incoming

requests simultaneously. The advantage of having repli-

cations is that, when having two successive requests

yi and yi+1, the computing task of the latter one can

be performed before the previous task is finished, and

the queuing time of the requests at the server side

is significantly mitigated. However, a problem raised

by this property is that the responses of the requests

may arrive out of order. Under such circumstances, the

actuation command given by a response might not be

executed at the proper time it is intended to be.

Therefore, it is important for real-time applications

to be unbound from the delays incurred by the clouds,

which means no matter how long or how variable the
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Fig. 4: System model with punctual cloud architecture.

response delays are, the system needs to guarantee that

most responses are delivered in a timely fashion and the

underlying actuation commands can serve the states at

the time they are intended to.

III. PROPOSED PUNCTUAL CLOUD ARCHITECTURE

In this section, we present a new system architec-

ture that addresses the requirement for real-time cloud

applications, which is named as punctual cloud. This

architecture requires no upgrading on the raw cloud

infrastructure, which means the network connection and

properties remain the same as the general deployment of

a cloud application. But the application can adapt itself

to the network and environment dynamics and enable

punctual response deliveries. We also show in the next

section how the application is implemented in the cloud

using the example of the resource allocation problem

investigated in [19].

The purpose of punctual cloud is to remedy the impact

of stochastic response delays caused by the network and

unpredictable cloud environment. Whether a response is

punctually delivered is decided by its actuation command

ui. If ui can serve client state at time i, the response

can be considered as punctually delivered. Therefore, in

a case when the response delay Di is inevitably longer

than the longest tolerable waiting time h of a request

that contains state yi, one solution is to return with an

actuation command uj in the response, which pertains

to a future state yj and j − i ≥ h.

The system model of the application with punctual

cloud architecture is illustrated in Fig. 4, in which uj =

F(ŷj) and ŷj is an estimated state for a future time slot

j. In this new system model, both the estimator Ĉ and

the service is deployed in the cloud. To generate uj , Ĉ

needs to estimate:

1) The time j when the actuation command serves

the client state.

2) The client state ŷj at time j.

The proposed method is agnostic to applications, but

it requires the future client state to be estimated. In this

manner, a real-time application that can be deployed

needs to have sufficiently accurate estimation on its client

states, which are the inputs to the computing tasks of

the service in the cloud. Example applications can be

channel estimation based on user mobility prediction in

mobile networks, or a control system that has the con-

troller deployed remotely in the cloud, provided that the

system models are well developed to make estimations.

IV. IMPLEMENTATION

In this section, we will give an example based on

the resource allocation problem investigated in [19],

which addresses a radio resource allocation problem for

massive MIMO. The client is the Remote Radio Head

(RRH) of a Cloud RAN system that assigns uplink pilots

to the end-users of a wireless system [22]. This real-

time application requires punctual responses at a high

frequency from the cloud service. We will provide the

details of how the application with the proposed model

is implemented in a cloud-native way on Kubernetes1,

which is an open-source platform for deploying and

orchestrating containerized applications in the cloud.

1https://kubernetes.io
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A. Example resource allocation problem

In the example resource allocation problem, the client

can be seen as a resource scheduler that assigns resources

to a set of users who ask for them. Assuming a user de-

mands resource at frequency g, each demand requires the

user to consume one resource. If not enough resources

are assigned to be consumed by the user and a demand

has been pending for 1
g , we call it the failure of this

demand. If a resource is assigned to a user but there is

no pending demand from this user at this moment, we

call this a resource waste.

In the example problem, we assume there are N users,

each is running at frequency gn to demand one resource

each time, where n ∈ {1, 2, ...N}. The client C is a

resource scheduler and releases P resources each time

at frequency f , where gn < f for all users. Therefore,

the client state yi that is sent as a request to the service

is the number of pending demands at time i from each

user. Denoting that the number of pending requests from

the nth user at time i is qni, the client state at time i

can be denoted as:

yi = [q1i, q2i...qNi]
T (2)

The service in the cloud of the application makes a

response containing a command ui to the resource sched-

uler, deciding which user can be assigned a resource at

time i, thus we define:

ui = [p1i, p2i...pNi]
T (3)

where:

pni =

1 assign a resource to user n

0 no resource is assigned to user n

N∑
n=1

pni ≤ P

(4)

Under the general system model shown in Fig. 2,

the service computes ui based on each delivered state

yi. However, due to the response delay, the actuation

command may not be applicable to the new state at the

client when it is delivered. Therefore, it requires that the

actuation command is capable of serving a future state

yj , so that it can be delivered before its intended state

comes.

B. Example problem under punctual cloud architecture

In our proposed architecture, the actuation command

is computed as uj = F(ŷj), and ŷj = [q̂1j , q̂2j ...q̂Nj ]
T

is an estimated state of the client at time j. The goals of

uj computed by each task in the proposed system model

become:

1) Guarantee that uj is delivered on time, implying

Dj ≤ j − i.

2) The failures of user demands and resource waste

should be mitigated compared to the general sys-

tem deployment.

Function F in Eq. (1) is a scheduling strategy that

maps the number of pending demands to an allocation

decision. Since optimizing the scheduler is not the main

goal in this paper, we simply choose a fair allocation

strategy, in which P users who have the most pending

demands can get assigned a resource for each.

As we mentioned in Section III, the computing task

is triggered by the client state yi in the request but

computes the allocation command uj . Both time j when

uj can be executed and the client state ŷj need to be

estimated. In order that the estimations can be made, the

following information about the client at time i is also

sent to the service:

1) The response delay Di−1 of the last delivered

response.

2) The ratio of punctually delivered responses before

i, denoted by ri.

3) The interval of the most recent successive demands

from each user 1
gni

for n ∈ {1, 2, ...N}.
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4) The time when the most recent pending demand

was released by each user, noted as {tni} for n ∈

{1, 2, ...N}.

To predict the time j when the allocation command uj

can be actuated, we first estimate the average response

delay D̂ of the application, which is made based on

the delay of the latest delivered response Di−1 with

Exponential Moving Average (EMA) and its weight ω:

D̂ = ωD̂ + (1− ω)Di−1 (5)

The actuation time j is then calculated based on the aver-

age delay plus an offset σ, which is used to compensate

the jitter of the response delay distribution:

j = i+ dD̂
h
e+ σ (6)

The offset σ is initialised to 0 and is decided by a step

controller that retains the ratio of punctually delivered

responses ri above a bounding value R:

σ =

σ + 1 if ri < R

σ otherwise

(7)

The frequencies of making resource demands by each

user can also be estimated with EMA and weight ω:

ĝn = ωĝn + (1− ω)gni (8)

Once frequency ĝn is estimated, along with the predicted

actuation time j and the most recent demand time tni,

one can estimate whether user n will release a new

resource demand at time j by checking if an integer

k exists and gives:

(j − 1)h < tni +
k

ĝn
≤ jh (9)

If such an integer k exits, it is most likely that user n will

release a new resource demand at time j, thus the client

state ŷj can be estimated as 1. Otherwise, it is estimated

as 0. An overview of estimating ŷj and generating uj

based on the inputs is given in Algorithm 1.

Algorithm 1 Estimation on ŷj and generating uj in the

cloud
Init: ω,R, D̂, {ĝn}, {t̂n}, σ = 0

Input: yi,Di, ri, {tni}, 1
gni

1: D̂ ⇐ ωD̂ + (1− ω)Di

2: if ri ≤ R then

3: σ ⇐ σ + 1

4: end if

5: j ⇐ i+ d D̂h e+ σ

6: for all n ∈ {1, . . . , N} do

7: ĝn ⇐ ωĝn + (1− ω)gni

8: for all k ∈ {0, 1, 2, ...} do

9: if (j − 1)h < tni + k/ĝn ≤ jh then

10: q̂nj = 1

11: break

12: end if

13: end for

14: end for

15: ŷj ⇐ {q̂1j , q̂2j ...q̂nj}

16: uj ⇐ F(ŷj) . Fair allocation

Output: uj

C. Implementation on Kubernetes

The implementation of the punctual cloud system

architecture is illustrated as Fig. 5. The application

can be implemented in a microservice architecture with

two different services being deployed. The “Allocation

Service” runs the same task as the general deployment

shown in Fig. 1, which is responsible for making al-

location decisions using the function on Line 16 of

Algorithm 1. The “Estimation Service” is an additional

service compared to the general deployment, and it runs

the computation of Lines 1-21 in Algorithm 1. Both

services are containerized and deployed in a Kubernetes

cluster, and each service can run in several Pods, which

are the endpoints of the workloads that perform the
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Client

(Ubuntu 20.04)

yi, {tni}... uj

Kubernetes Cluster
Nginx Ingress

yi, {tni}... uj

Allocation Service

yi, {tni}... ŷj

Estimation Service · · ·

· · ·

↓ : HTTP Request ↑ : HTTP Response

Fig. 5: Implementation of the new system model on

Kubernetes

computation of each service. Traffic from the client is

load balanced by a Nginx ingress controller2 of the

cluster and directed to the Allocation Service, which

however, passes on the state information to the Estima-

tion Service via a new HTTP request. The Estimation

Service estimates the average response delay and the

client state; it then returns a response with the estimated

state ŷj , so that the Allocation Service can generate the

allocation command uj and respond to the client.

A simulation of the users demanding resources is

running on the client along with the allocation actuation

process. The client also establishes a HTTP session at a

frequency of f to the service in the cloud and sends out

a request with current state information about the users’

pending demands.

In the example implementation, a Nginx ingress con-

troller is utilized as a load balancer of the application.

But the Allocation Service can also be deployed in other

ways such as NodePort, in which no ingress controller is

required. Also, the choice of ingress relies on the actual

2https://www.nginx.com/products/nginx-ingress-controller/

cloud environment; other type of load balancers can be

used if supported by the cloud provider.

Moreover, the Estimation and Allocation services in

Fig. 5 communicate via HTTP sessions, but it is easy

to add a service mesh layer such as Istio3 and allow

Envoy proxies to intercept and direct the traffic between

services. Other protocols such as gRPC can also be de-

ployed instead of HTTP. Both implementation examples

of the same application with and without the service

mesh are provided on GitHub [23].

In this implementation, the Allocation Service and

Estimation Service are deployed separately. The Allo-

cation Service is unchanged from the general system

deployment except for its communication with the Esti-

mation Service. In this manner, one can easily adapt the

architecture to any type of real-time applications without

changing the original deployment, but only needs to

add suitable estimation or optimization solutions in the

Estimation Service.

V. EVALUATION

In this section, we describe our experiment setup

based on the implementation presented in Section IV.

The objective of the experiments was to evaluate our

proposed punctual cloud architecture and its implemen-

tation. We compare the punctual cloud to the general

system deployment shown in Fig. 2, which has no

estimation and runs only an allocation service that is

deployed in monolithic architecture in the cloud. The

allocation service computes ui based on incoming state

information yi in each request from the client.

To evaluate the system performances under a more

controllable environment than a public cloud, we de-

ployed the services on a bare-metal Kubernetes cluster

that has 7 nodes of Ubuntu 20.04. The client machine

3https://istio.io
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runs the simulation of the resource allocation problem,

and simulates the traffic generation of N users, where

each demands resources at frequency gn. Meanwhile the

demands are served by allocation commands from the

service in the cluster also at frequency f . The client

and the cluster are connected via 1Gbps Ethernet. The

round-trip time between the client and the master node

of the cluster measured by ICMP is 0.215ms, which is

negligible compared to the frequency that the application

runs at.

In order to have network properties close to WANs, we

used Netem4 on the client machine to emulate various

network properties by regulating delay mean and jitter

values under a Pareto distribution. While having the

application running at frequency f , and the interval of

two successive client requests as h = 1
f , we set the

Netem delay with mean value µ varying from 0ms to

0.8h, and jitter value σ varying from 0 to µ under each

delay configuration.

We note that, although the added delay and jitter in

the Netem configuration is smaller that the interval h, the

actual response delays also depend on the TCP operation,

admission time to the cluster and internal traffic routing

within the cluster. These operations ultimately give re-

sponse delays two to three times longer than the added

delay from the Netem. Moreover, the average response

delay returned the punctual cloud architecture is about

11ms longer than the general deployment. This is caused

by additional communications between the two services

within the cluster, while the general deployment only has

one service.

In Table I, we show the experiment parameters used

in the simulation. All of the parameters could be ad-

justed according to the deployed applications. For the

evaluation, we ran the experiments under each parameter

4https://wiki.linuxfoundation.org/networking/netem

TABLE I: Experiment parameters used in the evaluation

Symbol Parameter Definition Value

f Frequency of sending request by the client -

h Interval of client requests h = 1
f

50ms

µ Netem delay configuration value -

σ Netem jitter configuration value -

N Number of user having resource demands 10

gn
Frequency of consuming resources by user n

1
70msMax tolerable waiting time user n demands

P
Number of resources released by the client

every h
12

configuration for 10 repetitions, and each experiment was

run for 12.5 minutes.

We evaluated the performance of the resource alloca-

tion application from two perspectives:

1) Punctual deliveries: This is the property required

by all kinds of real-time applications. It is defined

as the ratio of punctually delivered responses to

the total number of requests sent by the client.

2) Failures and Waste: They are two properties repre-

senting the performance of the allocation problem,

which is impacted by Punctual deliveries. The

term Failures is short for user demand failures,

which is the ratio of failed demands to all the

demands from all users. Waste is short for resource

waste, which is the ratio of wasted resources to the

total number of resources allocated by the applied

actuation commands.

VI. RESULTS

In this section, we present and discuss the results

of our experiments. We show with Fig. 6 and 7 that

our proposed punctual cloud architecture significantly

improves the application performance regarding the three

properties we addressed in the resource allocation prob-

lem, as it guarantees that the responses of a cloud

application are punctually delivered even under long and
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Fig. 6: Punctual deliveries among all the responses for

experiments under given Netem configurations.

uncertain delays. All figures in this section illustrate the

performance under the same Netem configuration. The

results from the delay evaluation were made with Netem

delay value µ varying from 0 to 40ms and jitter σ was

set to 0.6µ, implying than the coefficient of variance of

the delay in the Netem configuration is 0.6. The show

results of the evaluation with varying jitter were made

when the Netem delay value was fixed to µ = 25ms,

and the jitter σ varied from 0 to µ. The actual mean

response delay also increased as the jitter configuration

increased under the same Netem delay value. The values

of other experiment parameters of the shown figures are

presented in the third column of Table I. The standard

deviation of all results is small enough so that they are

not displayed in the figures.

A. Punctual deliveries

In the general system deployment, when the response

delay is longer than the request interval h, the re-

sponse is not delivered punctually, and the client state

expires before being served by the actuation command.

In contrast, in the system deployed in punctual cloud

architecture, the actuation command in each response

may be intended to serve a future state, which will be

carried by a request that has not yet been made. Thus

when a response is delivered before the expiration of the

state it is intended to serve, it is punctually delivered.

Fig. 6 shows that when jitter in the delay increased,

the general deployment got more punctually delivered

responses. This is related to the empirical cumulative

function of the response delay measurements and the cu-

mulative probability of value h. For example, in the case

when the jitter value σ = 0.4µ and µ = 0.5h = 25ms in

the Netem configuration, the cumulative probability of h

is 24.7% from the experiment. However, when σ = 0.8µ,

the cumulative probability becomes 40.5%. This explains

why the number of punctual deliveries is greater when

the jitter of the response delays is larger. In all cases, the

performance of punctual deliveries is more robust in our

proposed architecture as the delay mean µ or the jitter

σ increases.

B. Failures and Waste

As for the resource allocation problem, a stale actua-

tion command will be executed if the expected response

is not punctually delivered. In such a case, the stale

command is however computed based on an expired

client state and may not meet what the current state

demands. It may further cause failures and resource

waste due to false allocation. Thus, when an application

has fewer punctual delivered responses, it is more likely

that the other performance properties will be impacted.
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Fig. 7 depicts the performance for allocation failures

and resource waste with the two different methods.

As we can see from the figures, when the response

delays are shorter than the request interval h, there is

no significant difference in the allocation failures and

resource waste. The general deployment even had better

performances when the response delay was small enough

that most responses can be punctually delivered. This

implies that the allocation performance also depends on

the accuracy of the client states estimation. However,

when delay was much longer, and the ratio of punctually

delivered responses decreased, the estimation in the

punctual cloud can significantly compensate the impact

brought by long delays.

When the jitter in the delay increased, we can see

from the sub-figures in the left column of Fig. 7 that

the performance of resource allocation in the general

deployment was better, since the punctual deliveries

were higher (shown in Fig. 6). The performance in the

punctual cloud architecture had less impact from larger

jitters, since the punctual deliveries do not completely

rely on the distribution of the response delays in this

case.

Furthermore, even though stale commands were

mostly adopted in the general deployment in some cases,

the allocation performance was not degraded completely.

This is because a stale response does not mean absolute

false allocation. If frequency gn is larger, there will be

more frequent demands on resources from the users, and

it will also lead to less resource waste.

VII. CONCLUSIONS

Real-time cloud applications rely heavily on low la-

tency in the response time. However, the requirements

of some demanding applications are not pledged by

the stochastic properties of the network and unpre-

dictable cloud environment. In this paper, we proposed

the punctual cloud architecture to implement real-time

applications in the cloud. With our proposed model, the

cloud service computes and makes responses based on

the estimation of response delays and client states. In
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the evaluation, we showed that the application in our

proposed model can provide punctual responses to the

client. With more responses punctually delivered, it can

also improve the performance of the application, such as

a resource allocation process.

Our proposed architecture promises to compensate

the performance degradation caused by long response

delays of a real-time application. If the network and

cloud infrastructure can guarantee low latency without

any disturbances, and the response delay always meets

the client requirements, there is no pressing need to

introduce additional services and a longer data path to

remedy the other performance properties of the applica-

tion with the proposed architecture. In such a case, the

performance should be close to the ideal case, wherein

the client and computing tasks are co-located.

In the case of edge computing, the response time of

cloud applications can mostly meet the stringent latency

requirements even in a general deployment. However,

the uncertainties in the network would cause the re-

sponses delay to experience an abrupt rise at certain

times. Our future work is to develop an adaptive model

that switches between the deployment with and without

punctual cloud, based on the network condition in real-

time.
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