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On the Universality of Spatially Coupled LDPC
Codes Over Intersymbol Interference Channels
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∗Department of Electrical and Information Technology, Lund University, Lund, Sweden

†Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

Abstract—In this paper, we derive the exact input/output
transfer functions of the optimal a-posteriori probability channel
detector for a general ISI channel with erasures. Considering
three channel impulse responses of different memory as an
example, we compute the BP and MAP thresholds for regular
spatially coupled LDPC codes with joint iterative detection and
decoding. When we compare the results with the thresholds
of ISI channels with Gaussian noise we observe an apparent
inconsistency, i.e., a channel which performs better with erasures
performs worse with AWGN. We show that this anomaly can be
resolved by looking at the thresholds from an entropy perspective.
We finally show that with spatial coupling we can achieve the
symmetric information rates of different ISI channels using the
same code.

I. INTRODUCTION

Spatial coupling is a powerful concept that improves the
belief propagation (BP) decoding threshold of the coupled
system to the maximum a-posteriori (MAP) decoding thresh-
old of the underlying uncoupled system. Spatial coupling was
initially introduced in the context of low-density parity-check
(LDPC) codes [1], [2] and subsequently applied to other
classes of codes [3], [4] and scenarios beyond the realm of
coding [5].

Threshold saturation was first proven for spatially-coupled
LDPC (SC-LDPC) codes for transmission over the binary
erasure channel [6] and later for the general class of binary
memoryless symmetric channels [7]. Threshold saturation of
SC-LDPC codes for transmission over channels with memory
was addressed in [8] for intersymbol-interference (ISI) chan-
nels with general noise model. Particularly, the authors derived
the BP generalized extrinsic information transfer (GEXIT)
curves of the corresponding uncoupled systems, from which
the MAP threshold can be estimated. The computation of the
exact GEXIT curves requires knowledge of the input/output
transfer functions of the a-posteriori probability channel detec-
tor, which are in general not available in closed form. Thus,
one needs to resort to Monte Carlo methods to provide an
estimate. For the particular case of the dicode channel with
erasures —known also as the dicode erasure channel (DEC)—,
in [9] Pfister derived the corresponding transfer function. This
was used in [8] to obtain the exact density evolution equations
for SC-LDPC codes over the DEC, which are needed for the
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Fig. 1. Block diagram showing the transmitter and the ISI channel.

computation of the GEXIT curves. The authors then showed
numerically that threshold saturation occurs for the DEC.

In this paper, we consider SC-LDPC codes for general
ISI channels. Our main contribution is the derivation of the
transfer functions for general ISI channels with erasures, which
allows us to derive the exact density evolution equations for
these channels. We then use these equations to compute BP
and MAP thresholds for SC-LDPC codes over these channels.
The numerical results show that, for large enough coupling
memory, threshold saturation occurs for all considered chan-
nels. Furthermore, by increasing the Tanner graph density, we
show that the BP thresholds approach the symmetric informa-
tion rates (SIRs) of the corresponding channels, supporting
the conjecture in [8] that SC-LDPC codes can universally
approach the SIR of ISI channels. We further consider SC-
LDPC codes over ISI channels with additive white Gaussian
noise (AWGN), which reveal the same behavior.

II. SYSTEM MODEL

The system model under consideration is shown in Fig. 1.
A binary information sequence u is first encoded by an SC-
LDPC code onto codeword v. We consider binary transmis-
sion, with mapping 0 7→ +1 and 1 7→ −1, over an ISI
channel with either erasures or AWGN. In both cases, the
modulated sequence x is first transmitted over an ISI channel.
The sequence at the output of the ISI filter is denoted by z,
whose elements take values on a finite alphabet Z . For the ISI-
erasure channel, each element of z is erased with probability
ε. In this case, the elements of the received sequence, y, take
values on the finite alphabet {Z ∪ ?}, with symbol ? denoting
an erasure. For the ISI-AWGN channel, z is corrupted by
AWGN, and the elements of y take on real values.

At the receiver, we consider joint iterative decoding and
channel detection, usually referred to as turbo equalization. In
particular, we consider BP decoding of the SC-LDPC code
and optimal channel detection, performed using the BCJR
algorithm over the corresponding trellis. Graphically, decoding
is performed over the factor graph depicted in Fig. 2, which
combines the Tanner graph of the SC-LDPC code (upper part)
and the trellis of the ISI channel (lower part). Specifically, the



Fig. 2. Compact graph representation for equalization with a (3,6) SC-LDPC
code with coupling memory m = 1.

factor graph is constructed by placing L copies of a (dv, dc)
regular LDPC code of variable node (VN) degree dv and
check node (CN) degree dc in L spatial positions in the range
L ∈ {1, . . . , L}. Fig. 2 shows the factor graph for three spatial
positions, t−1, t, and t+1. Each spatial position consists of N
VNs, represented by empty circles, and M CNs, represented
by squares with a cross. The L copies are coupled as follows:
each VN at position t ∈ L is connected to CNs in the range
[t, . . . , t+m], where m is referred to as the coupling memory.
Hence, each CN at position t is connected to VNs in the range
[t−m, . . . , t]. The trellises of the ISI channel at each spatial
position are represented by a square labeled with the letter
H, referred to as factor node. The VNs represented by the
black circles at the bottom of the figure correspond to the
symbol sequences at the output of the ISI channel (prior to the
addition of the erasures or AWGN), denoted by {zt}. Note that
z = (z1, . . . ,zL) (see Fig. 1). The rectangles at each spatial
position between the Tanner graph of the SC-LDPC code and
the channel factor nodes represent multiplexers that multiplex
the N code bits (VNs) at each spatial position into a single
binary sequence (xt, with x = (x1, . . . ,xL)) at the input of
the channel. Decoding is then performed by iteratively passing
messages along the edges of the graph in Fig. 2.

III. INPUT/OUTPUT TRANSFER FUNCTION OF THE BCJR
DETECTOR FOR AN ISI CHANNEL WITH ERASURES

In this section, we derive the transfer functions of the BCJR
channel detector for arbitrary ISI channels with erasures. These
transfer functions characterize the output extrinsic erasure
probabilities—from the channel detector to the SC-LDPC
decoder—as a function of the a-priori erasure probabilities
and the channel erasure probability. Particularly, we follow a
similar approach to that in [4], [10] for binary convolutional
codes over the binary erasure channel, which scales well with
the channel memory. Compared to the case of binary convo-
lutional codes, however, the nonbinary alphabet of general ISI
channels and the lack of symmetry, which precludes assuming
that the all-zero codeword is transmitted, makes the derivation
for a bit more complex.

We consider an ISI channel with memory ν and trellis states
s1, s2, . . . , s2ν . Let y and v be the received vector (affected
by erasures) and the output of the ISI filter, respectively. Note

TABLE I
DISCRETE IMPULSE RESPONSES OF THE CONSIDERED ISI CHANNELS

CH-I h = [ 0.7071 −0.7071 ] ν = 1

CH-II h = [ 0.408 0.816 0.408 ] ν = 2

CH-III h = [ 0.227 0.46 0.688 0.46 0.227 ] ν = 4

that for ISI channels with erasures the messages exchanged
between the decoder and the channel detector take values on
the ternary alphabet {+1,−1, ?}. We denote by x̂ the message
vector from the decoder to the channel detector.

We define the forward and backward state metric vectors
at time τ , τ = 1, . . . , n, where n is the length of the ISI
channel trellis, as ατ = (ατ (s1), . . . , ατ (s2ν )) and βτ =
(βτ (s1), . . . , βτ (s2ν )), respectively. Note that ατ and βτ are
probability vectors. In the case of erasures, the vectors ατ
and βτ take values on a finite set. The sets of values that
vectors ατ and βτ can take on are denoted by Mα =

{m(1)
α , . . . ,m

(|Mα|)
α } and Mβ = {m(1)

β , . . . ,m
(|Mβ |)
β }, re-

spectively, of cardinality |Mα| and |Mβ |. For the particular
case of the DEC, which has memory one and the impulse
response given in Table I (CH-I), there are two possible
states, s1 = +1 and s2 = −1, and Mα = Mβ =
{(1, 0), (0, 1), (0.5, 0.5)}. Note that, in general, Mα and Mβ

may differ.
The sequences . . . ,ατ−1,ατ ,ατ+1, . . . and . . . ,βτ+1,βτ ,

βτ−1, . . . form each a Markov chain, which can be properly
described by a probability transition matrix, denoted by Mα

and Mβ , respectively, where the element (i, j) of Ma, i ∈
{1, . . . , |Ma|}, is the probability of transition from state m(i)

a

to state m(j)
a , with a ∈ {α, β}.

Our aim is to derive Mα and Mβ for an arbitrary ISI
channel with erasures. We provide some details for the forward
recursion. Let X ∈ {+1,−1}, Z ∈ Z , and Y ∈ {Z ∪ ?} be
the random variable corresponding to the symbol at the input
of the ISI filter, the output of the ISI filter, and the received
symbol for a given trellis section. Further, let X̂ ∈ {+1,−1, ?}
be the random variable corresponding to the incoming message
from the decoder. The corresponding realizations are x, z, y,
and x̂. We denote by ε the channel erasure probability, i.e.,
the probability that Y is an erasure, and by δ the average
probability of erasure of a message from the decoder to the
channel detector, i.e., the probability that X̂ is an erasure.

Define P (m
(j)
α |m(i)

α ) as the probability of transition from
state m(j)

α to state m(i)
α in the forward recursion. This prob-

ability can be written as

P (m(j)
α |m(i)

α ) =
∑
x̂,y

P (x̂, y,m(j)
α |m(i)

α )

=
∑
x̂,y

P (x̂|m(i)
α )P (y,m(j)

α |x̂,m(i)
α ) , (1)

where we used the shorthand notation P (x̂, y) = P (X̂ =
x̂, Y = y).

Now let Zij be the set of all possible values that Z can take
in the transition between state m(i)

α and state m(j)
α . Then we
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TABLE II
POSSIBLE OBSERVATIONS FOR DEC CHANNEL CH-I WITH αt=m1

α

X̂, Y 0,0 0, ? ?, 0 1, −2 1, ? ?, −2 ?, ?

αt+1 m1
α m1

α m1
α m2

α m2
α m2

α m3
α

Prob 1
2
δ̄ε̄ 1

2
δ̄ε 1

2
δε̄ 1

2
δ̄ε̄ 1

2
δ̄ε̄ 1

2
δ̄ε δε

have

P (y,m(j)
α |x̂,m(i)

α ) =
∑
z∈Zij

P (y,m(j)
α , z|x̂,m(i)

α )

=
∑
z∈Zij

P (z,m(j)
α |x̂,m(i)

α )P (y|z) . (2)

This follows from the fact that Y is independent of
{X̂, αt, αt+1} given Z. Clearly, P (Y =?|z) = ε and P (Y =
z|z) = 1− ε.

To compute P (z,m
(j)
α |x,m(i)

α ), we need to consider two
cases. If X̂ is an erasure, we have P (z,m

(j)
α |x̂,m(i)

α ) =

P (z,m
(j)
α |m(i)

α ) for all z ∈ Zij , since Z is no longer
constrained by X̂ . On the other hand, if X̂ is not an era-
sure, we get P (z,m

(j)
α |x̂,m(i)

α ) = P (z,m
(j)
α |x,m(i)

α ), where
P (z,m

(j)
α |x,m(i)

α ) can be zero for some combinations of
{z, x,m(i)

α }. In summary, we obtain

P (x̂, y,m(j)
α |m(i)

α ) =


1
2 δ̄ε̄P (z,m

(j)
α |x,m(i)

α ) x, z
1
2 δ̄ε x, ?

δε̄P (z,m
(j)
α |m(i)

α ) ?, z

δε ?, ?

,

(3)

where we used the shorthand notation δ̄ , 1−δ and ε̄ , 1−ε.

In Table II, we give the probabilities P (x̂, y,m
(j)
α |m(1)

α )
in (3) for the DEC. For this channel, whose impulse response
is given in Table I (CH-I), Z = {−2,−1, 0,+1,+2} (when
no normalization by 1/

√
2 is applied to the channel taps). The

complete probability transition matrix Mα is given by

Mα =


1
2 (1− δε) 1

2 (1− δε) δε
1
2 (1− δε) 1

2 (1− δε) δε
1
2 −

δ
4 (1 + ε) 1

2 −
δ
4 (1 + ε) δ

2 (1 + ε)

 .
Similarly, we obtain the backward recursion probability

transition matrix as

Mβ =


1
2 ε̄

1
2 ε̄ ε

1
2 ε̄

1
2 ε̄ ε

1
4 ε̄δ̄

1
4 ε̄δ̄ ε+ 1

2δ −
1
2δε

 .
Now, denote the steady state distribution vector of the forward

and backward Markov chain by πa, which can be computed
as the solution to

πa = Ma · πa , (4)

TABLE III
TRANSFER FUNCTIONS OF ISI CHANNELS

CH-I g(δ, ε) = 4ε2

(δε−δ+2)2

CH-II g(δ, ε) =
4ε3(4δε−4δ−δ2ε+δ2+4)

(δ2ε3−δ2ε2+2δε2−2δ+4)2

CH-III g(δ, ε) see top of the page

where a ∈ {α, β}. Also, define the |Mα| × |Mβ | matrix T
with entries

Tij = p(X̃ = ?|αt = m(i)
α , βt+1 = m

(j)
β ) ,

where X̃ is the message passed from the channel detector to
the decoder. In words, Tij is the average (extrinsic) probability
that the symbol passed by the channel detector to the decoder
is an erasure given αt and βt+1. Then, the extrinsic erasure
probability of a message from the channel detector to the
decoder is given by

g(δ, ε) = πα · T · πβ ,

which we refer to as the input/output transfer function of the
channel detector.

In Table III, we give the transfer function of three ISI
channels with impulse response given in Table I, of memory
ν = 1 (CH-I), 2 (CH-II), and 4 (CH-III), respectively, with
erasures. The transfer functions are depicted in Fig. 3 for
δ = 1.

IV. BP AND MAP THRESHOLDS FOR SC-LDPC CODES
OVER ISI CHANNELS

The receiver applies joint iterative message passing detec-
tion and decoding between the channel and the decoder, in
terms of log-likelihood ratios (L-values) as illustrated in Fig. 2.
At iteration ` and spatial position t, first the messages L(`)

H→v,t
from the channel detector to the variable nodes are updated
with the BCJR algorithm, using the received sequence y and
the incoming messages L(`−1)

v→H,t from the previous iteration
of the channel decoder, where L(0)

v→H,t = 0. Then Ic decoding
iterations are performed between the variable nodes and check
nodes of the SC-LDPC code. At the variable node updates in
decoding iteration i, the messages L(`)

H→v,t from the channel
are combined with the incoming messages from the check
nodes L(i−1)

c→v,t to produce the outgoing messages L(i)
v→c,t. These

are then used at the check node updates to produce the
messages L(i)

c→v,t. Using Ic > 1 decoding iterations between
the channel detector updates reduces the overall complexity of
the receiver.

A. Density Evolution for ISI Channels with Erasures

In case of ISI channels with erasures, all L-values ex-
changed in the message passing receiver can take the values
L = −∞ or L = +∞ if the corresponding variable is a
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Fig. 3. Transfer functions for the three channels for δ = 1.

known −1 or +1, respectively, or L = 0 if the variable is
an erasure. For this reason, the messages −1, +1 and ’?’ can
be exchanged instead of L-values, and density evolution is
equivalent to tracking the evolution of the erasure probabilities
of the variables.

The probability q
(`)
H,t that an outgoing message L(`)

H→v,t of
the channel detector is an erasure is given by the transfer
function derived in Section III, i.e.,

q
(`)
H,t = g

(
δ
(`−1)
t , ε

)
,

where δ(`−1)t denotes the erasure probability of the incoming
messages L(`−1)

H→v,t from the previous code-channel iteration.
For the decoding of the SC-LDPC code, the density evolu-

tion equations can be derived follwing the approach in [11]. At
a variable node update, the average probability that a message
L
(i)
v→c,t is an erasure is given by

p
(i)
t = q

(`)
H,t ·

1

m+ 1

m∑
j=0

(
q
(i−1)
c,t+j

)dv−1
, (5)

where

q
(i)
c,t =

1

m+ 1

m∑
j=0

(
1−

(
1− p(i)t−j

)dc−1)
(6)

denotes the average erasure probability of the messages L(i)
c→v,t

computed at a check node update. Equations (5) and (6) are
valid for a (dv, dc)-regular LDPC code that is spatially coupled
in such a way that edges are spread uniformly over m + 1
spatial positions.

A message L(`)
v→H,t passed to the channel detector after Ic

decoding iterations is erased if all dv messages L(Ic)
c→v,t are

erased. The corresponding erasure probability is hence equal
to

δ
(`)
t =

1

m+ 1

m∑
j=0

(
q
(i−1)
c,t+j

)dv
.

The average GEXIT function can be expressed as [12]

1

n

dH(X|Y, S0)

dε
=

1

n

n∑
i=1

H(Zi|Y∼i, S0) ,

where the channel parameter is taken to be hi = ε.

TABLE IV
THRESHOLDS FOR THE (3, 6) CODE FOR DIFFERENT ISI CHANNELS

CH-I CH-II CH-III
Erasures AWGN Erasures AWGN Erasures AWGN

εBP, γBP 0.5689 1.703 0.7055 2.598 0.8254 5.474

εMAP, γMAP 0.6387 1.1600 0.7519 1.5090 0.8482 2.9750

hBP 0.8530 0.8510 1.5870 1.5147 3.3010 2.9177

hmax 1.5000 1.5000 2.2500 2.2500 4.0000 4.0000

hBP/hmax 0.5689 0.5673 0.7055 0.6732 0.8254 0.7294

hMAP 0.9580 0.9195 1.6918 1.6200 3.3926 3.2146

εISR, γISR 0.6404 0.8230 0.7530 1.4370 0.8506 2.9600

From the GEXIT function we can thus define the general-
ized BP EXIT (GB-EXIT) function, hBP

i , as the joint iterative
decoding of Zi from Y∼i and S0. The exact GB-EXIT function
is computed in the same fashion as in [12]. That is,

hBP =
∑
i,j

P (m(i)
α )H(Zi|αt = m(i)

α , βt+1 = m
(j)
β )P (m

(j)
β ) .

The GB-EXIT function is used as described in [12] to compute
an upper bound εMAP on the MAP threshold. The SIR also
can be computed using the state distribution of the Markov
chain from Section III. Using the notation X for the se-
quence X1X2 . . . Xt the SIR is computed using the expression
I(X ;Y) = H(Y) −H(Y|X ), with H(Y|X ) = hb(ε), where
hb(·) denotes the binary entropy function. The entropy rate
H(Y) can be computed by using the definition [9]

H(Y) = lim
t→∞

H(Yt|Y t−1) =

|Mα|∑
i=1

Pαt(m
(i)
α )H(Y |αt = m(i)

α ).

Pαt(m
(i)
α ) is the i-th entry in the steady state distribution πα1

computed without using a-priori inputs from the code. This
can be obtained from the steady state distribution πα(ε, δ)
by setting the erasure probability from the code to 1, i.e.,
πα1(ε) = πα(ε, 1).

B. Density Evolution for ISI Channels with AWGN

For channels with AWGN, no explicit transfer functions are
available for computing the probability densities p(L(`)

H→v,t)
of the outgoing messages at the channel detector. For this
reason we use Monte Carlo simulations for the BCJR detector
to determine these densities from the incoming densities
p(L

(`)
v→H,t) and the noise distribution.

For the message passing decoding of the SC-LDPC code
we use discretized density evolution [13], which is exact up
to the numerical accuracy and the resolution of the underlying
quantization. During the i-th iteration within the code, at the
variable nodes the message densities p(L(i)

v→c,t) along an edge
can be obtained as the convolution of the density p(L(`)

H→v,t)

from the channel with the dv−1 densities p(L(i)
c→v,t) of incom-

ing messages from the other edges. This can be implemented
efficiently using the FFT. At the check nodes, the densities
p(L

(i)
c→v,t) are computed from the dc − 1 incoming densities

p(L
(i)
v→c,t) in a nested fashion from a two-dimensional lookup

table [13]. After the Ic iterations between check and variable



TABLE V
THRESHOLDS OF REGULAR CODES WITH SPATIAL COUPLING FOR ISI CHANNELS WITH ERASURES AND AWGN

Erasures AWGN
Code Channel εBP ε1 ε3 ε6 εMAP εSIR γBP γ1 γ3 γ10 γMAP γSIR

(3, 6)

CH-I 0.5689 0.6386 0.6386 0.6386 0.6387 0.6404 1.703 1.330 1.240 1.178 1.160 0.823

CH-II 0.7055 0.7519 0.7519 0.7519 0.7519 0.7530 2.598 1.598 1.587 1.535 1.509 1.437

CH-III 0.8254 0.8482 0.8482 0.8482 0.8482 0.8506 5.474 3.019 3.010 2.998 2.975 2.960

(4, 8)

CH-I 0.5100 0.6399 0.6401 0.6401 0.6404 0.6404 2.441 0.896 0.877 0.866 0.853 0.823

CH-II 0.6618 0.7528 0.7528 0.7528 0.7530 0.7530 3.596 1.494 1.478 1.458 1.448 1.437

CH-III 0.7997 0.8501 0.8501 0.8501 0.8501 0.8506 6.745 3.100 3.061 2.993 2.963 2.960

(5, 10)

CH-I 0.4647 0.6400 0.6403 0.6403 0.6404 0.6404 3.029 0.877 0.852 0.844 0.834 0.823

CH-II 0.6275 0.7526 0.7529 0.7529 0.7530 0.7530 4.348 1.483 1.461 1.450 1.437 1.437

CH-III 0.7775 0.8503 0.8503 0.8503 0.8503 0.8506 7.550 3.036 3.000 2.987 2.960 2.960

(6, 12)

CH-I 0.4647 0.6378 0.6403 0.6403 0.6404 0.6404 3.517 0.853 0.844 0.829 0.823 0.823

CH-II 0.6000 0.7504 0.7529 0.7530 0.7530 0.7530 4.938 1.483 1.461 1.450 1.437 1.437

CH-III 0.7588 0.8504 0.8504 0.8504 0.8504 0.8506 8.123 3.036 2.990 2.980 2.960 2.960

nodes are completed, the density p(L
(`)
v→H,t) of messages

passed to the channel is obtained as the convolution of all
dv message densities p(L(Ic)

c→v,t).
The GEXIT function for the BIAWGNC with ISI can be

defined as [8]

G(h) =
1

n

dH(X|Y, S0)

dh
where

h = H(Zi|Yi) = H(Zi)− I(Yi;Zi), (7)

The entropy h is a function of the channel parameter ε which
is chosen for convenience to be ε = − 1

2σ2 [8]. The signal-
to-noise ratio parameter used in this paper, γ is the ratio of
information bit energy, Eb, to the noise spectrum density, No,
in decibels. Using the GBP-EXIT function, an upper bound
γMAP on the MAP threshold is computed as described in [8].
The SIR is computed numerically using the method described
in [14].

V. NUMERICAL RESULTS

If we compare the BP thresholds of the channels by looking
at the channel erasure probability ε in Table IV for the regular
(3,6) code we observe that CH-III has the best performance
(the threshold occurs at the highest erasure probability) fol-
lowed by CH-II while CH-I has the worst performance. On the
other hand, if we look at the Gaussian channel we notice that
the ordering is reversed with CH-I having the best threshold
(at lowest SNR) and CH-III has the worst performance. Thus
we see an apparent inconsistency in the performance of the
channels when erasures are changed to AWGN. This is also
true for the MAP threshold and the SIR.

In Table V we see the same phenomenon when different
codes are used. That is, the channel ranking for the BP and
MAP thresholds as well as the SIR is reversed for all codes
when changing from erasures to AWGN.

But we can also characterize the thresholds in terms of the
entropy h = H(Zi|Yi). This is defined in (7) for the Gaussian
channel, while for the erasure channel we observe that

H(Zi|Yi) = ε̄H(Zi|Yi 6= ?) + εH(Zi|Yi = ?) = εH(Zi),

since Zi is known with certainty when Yi is not erased and it
is independent of it when it is erased.

Representing the thresholds in terms of entropy, we now ob-
serve in Table IV that the ranking of the channels is unchanged
when changing between erasures and AWGN. I.e., CH-III has
the best performance with both AWGN and erasures by having
thresholds which are at the highest entropy, while CH-I has
the worst performance. This could be attributed to the fact the
CH-III has the highest H(Zi) (labelled hmax in the table). But
if we normalize the threshold by dividing by hmax the ranking
is unchanged. It is interesting to note that the BP entropies
hBP for erasures and AWGN are relatively close to each other
for a given ISI channel. On the other hand, their gap is still
too large for making an accurate prediction from the erasure
to the Gaussian case.

In Table V we can also see that with uncoupled regular
codes the MAP threshold improves with increasing variable
node degree, while the BP threshold becomes worse. With
spatially-coupled codes, we observe that the BP thresholds
approach the MAP thresholds of the uncoupled codes for all
three channels. It is also interesting to see that for the (5,10)
and (6,12) code the MAP threshold is equal or very close to the
SIR for all three channels. This demonstrates that with spatial
coupling we can universally approach the SIR of different ISI
channels using a single code. This makes spatially coupled
codes superior to uncoupled irregular codes that need to be
optimized for a particular ISI channel, which cannot guarantee
robust performance if the channel is changed.

VI. CONCLUSIONS

We have derived exact transfer function for three different
channels using a method which can be applied to any arbitrary
ISI channel. We have further shown that to compare the be-
haviour of ISI channels with erasures and AWGN, the proper
parameter is the entropy H(Zi|Yi), by which we can observe a
consistent behaviour. Finally we have shown numerically that
with spatially coupled LDPC codes we can universally achieve
the SIR of different ISI channels.
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