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Abstract

Semantic segmentation is a fundamental problem in visual perception with a wide range of
applications ranging from robotics to autonomous vehicles, and recent approaches based on
deep learning have achieved excellent performance. However, to train such systems there is
in general a need for very large datasets of annotated images. In this thesis we investigate and
propose methods and setups for which it is possible to use unlabelled data to increase the
performance or to use limited application speci�c data to reduce the need for large datasets
when learning semantic segmentation.

In the �rst paper we study semantic video segmentation. We present a deep end-to-end train-
able model that uses propagated labelling information in unlabelled frames in addition to
sparsely labelled frames to predict semantic segmentation. Extensive experiments on the
CityScapes and CamVid datasets show that the model can improve accuracy and temporal
consistency by using extra unlabelled video frames in training and testing.

In the second, third and fourth paper we study active learning for semantic segmentation
in an embodied context where navigation is part of the problem. A navigable agent should
explore a building and query for the labelling of informative views that increase the visual
perception of the agent. In the second paper we introduce the embodied visual active learn-
ing problem, and propose and evaluate a range of methods from heuristic baselines to a fully
trainable agent using reinforcement learning (RL) on the Matterport3D dataset. We show
that the learned agent outperforms several comparable pre-speci�ed baselines. In the third
paper we study the embodied visual active learning problem in a lifelong setup, where the
visual learning spans the exploration of multiple buildings, and the learning in one scene
should in�uence the active learning in the next e.g. by not annotating already accurately
segmented object classes. We introduce new methodology to encourage global exploration
of scenes, via an RL-formulation that combines local navigation with global exploration by
frontier exploration. We show that the RL-agent can learn adaptable behaviour such as an-
notating less frequently when it already has explored a number of buildings. Finally we study
the embodied visual active learning problem with region-based active learning in the fourth
paper. Instead of querying for annotations for a whole image, an agent can query for anno-
tations of just parts of images, and we show that it is signi�cantly more labelling e�cient to
just annotate regions in the image instead of the full images.
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David Nilsson, Erik Gärtner, Aleksis Pirinen, Cristian Sminchisescu
Manuscript in preparation.

Author contributions: The high level ideas came up during discussions among
the authors of paper 2 and 3. DN wrote all of the code speci�c for this paper and ran
all experiments. DN wrote most of the paper with feedback and edits from AP and
EG.

All papers are reproduced with permission of their respective publishers.

ix





Acknowledgements

My �rst thanks goes to my supervisor Cristian Sminchisescu. He has guided me through
this process and I am thankful for all the valuable advice, feedback and encouragement I
have gotten over the years. I am also grateful for having been given the opportunity to do an
internship with his group at Google Research in Zürich.
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Popular Summary

Computer vision is about understanding and interpreting images. While it is often obvious
to a human observing an image whether there is a human or car present, mathematically it is
very complicated to replicate. An image is often represented as a grid of pixels with intensities
ranging from 0 (black) to 255 (white), and to go from such a representation to understand-
ing which objects are present is highly non-trivial. In recent years there have been drastic
improvements in computer vision, in large part due to deep learning, which is a term for
methods that use a neural network to learn to recognize objects in images. To train such a
model, we need algorithms to adapt the model to the data, but the main ingredient is to have
a lot of data. If such a model is to be trained to detect cars in an image, the typical require-
ment is that there are lots of images available where the cars are marked in every image, so
that the model can learn from all the data. Annotating such images requires a lot of time and
manual labor, and it can for some problems take up to 1.5 hours to annotate a single image.
It is thus interesting and important to develop methods to reduce the dependency on large
datasets, which can yield large savings in terms of both time and labor.

To train systems for image recognition,
there is a need for a lot of manually an-
notated data, as shown on the right. This
thesis concerns how to use data efficiently,
so that less data needs to be annotated.

An example of where there is ample data, but annotating
everything is highly redundant, is video data. Consecu-
tive frames in a video often overlap signi�cantly, so to ask
a person to annotate every single frame of a video is prob-
ably not a good investment. It should be possible to an-
notate frames sparsely and still be able to train deep learn-
ing models on video data. Such an approach, to use all
available data from sparsely labeled videos, is a part of this
thesis. By carefully adapting the model to consider multi-
ple adjacent frames, it is possible to learn recognition for
video without annotating all frames, by using the rich temporal information present.

Another problem studied in this thesis is that of selecting which data to annotate in order to
reduce the overall annotation e�ort. Since annotating images is costly and time-consuming,
it is important that each annotated image adds some value. When training a model for image
recognition it is important that the data is diverse and that not all examples are similar. It is
studied how a room should be explored to see and collect the data to annotate, in order to
learn accurate perception of the objects present in the scene. The problem here is not only to
utilize the collected data, but to explore and navigate to gather the data itself. Several methods
that automatically solve this problem are presented and compared, of which some are fully
trainable via reinforcement learning. These methods have to explore and navigate, and for
speci�c views query for annotations for all the objects.
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Populärvetenskaplig sammanfattning

Datorseende handlar om att tolka och förstå bilder. Det är oftast uppenbart för en människa
som ser en bild om den exempelvis innehåller en människa eller en bil, men matematiskt är
det mycket komplicerat. I en dator representeras en bild oftast som ett rutnät av pixlar med
ljusintensiteter representerade mellan 0 (svart) och 255 (vit), och att gå från en sådan repre-
sentation till att förstå vilka objekt som �nns i bilden är icke-trivialt. Metoder för datorseende
har de senaste åren förbättrats drastiskt. Detta har skett med hjälp av djupinlärning (deep le-
arning), som är ett samlingsnamn för metoder som använder så kallade neurala nätverk som
lär sig att känna igen objekt i bilder. För att få en sådan modell att lära sig krävs dels algorit-
mer för att anpassa modellen till data, men huvudingrediensen är ofta mycket data. Om en
sådan modell ska tränas för att detektera bilar i bilder så krävs det väldigt många bilder där
just bilen är markerad i varje bild för att få modellen att fungera bra. Detta kräver mycker
tidskrävande manuellt arbete för att markera och ringa in det korrekta svaret i alla bilder, vil-
ket för vissa problem kan ta så mycket som 1,5 timmar per bild. Det är alltså intressant och
viktigt att utveckla metoder för att minska beroendet av mycket annoterad data, vilket kan
ge stora tid- och kostnadsbesparingar.

För att träna system för bildigenkänning krävs
stora mängder manuellt annoterad data s̊a som
till höger. Denna avhandling handlar om att
använda data effektivt, s̊a att en mindre mängd
data behöver annoteras.

Ett exempel där det �nns mycket data men där det är
över�ödigt att annotera allt är video. Efterföljande
bilder i en video har ofta stort överlapp så att be en
person att annotera varje bild är troligen inte en bra
investering. Det borde alltså gå att bara annotera ett
fåtal bilder i en video och ändå kunna träna model-
ler för bildigenkänning. Just en sådan metod för att
använda och utnyttja all data som �nns i video, där
det mesta inte är annoterat, är ett bidrag i denna av-
handling. Genom att anpassa modellen så att den tar
hänsyn till �era bilder i rad går det att e�ektivt lära sig bildigenkänning för video trots att alla
bilder inte är annoterade.

Ett annat problem som studeras i denna avhandling är vilken data som ska annoteras i syfte att
minska den totala annoteringsbördan. Eftersom annotering är kostsamt och tidskrävande är
det viktigt att det som annoteras tillför något. Ska man träna en modell för bildigenkänning
vill man att datan ska vara varierande och inte att alla exempel är likadana. Det studeras hur
ett rum ska utforskas och vilka delar och vyer i rummet som ska annoteras för att en modell
ska lära sig känna igen alla objekt som �nns i rummet. Problemet är inte bara att e�ektivt
behandla den insamlade datan, utan även att utforska och navigera för att se och samla in
själva datan. Det presenteras automatiska metoder för att navigera och för vissa särskilt rele-
vanta vyer be en annoterare om att markera alla objekt i bilden, varav vissa lär sig via så kallad
förstärkningsinlärning.
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Chapter 1

Introduction

1 Overview

This thesis covers the learning of semantic segmentation, which is the problem of assigning
every pixel in an image to a semantic label such as e.g. wall, road, chair or car, as shown in �g.
1.1. It is a di�cult fundamental problem in visual perception since it is not only required to
recognize all objects in a scene and to label them, but also to accurately predict all boundaries.
Furthermore, the viewing directions from which the objects are seen, as well as the object
sizes in the images, can vary greatly for di�erent instances of an object class. Methods for
semantic segmentation are highly useful for scene understanding in applications and setups
such as driver assistance, home assistant robots or drones.

In recent years, deep learning has proven very successful for a range of computer vision tasks
including image classi�cation [44, 32], semantic segmentation [16], and object detection [65].
Deep learning is a term used for neural networks that contain many layers stacked after one
another, and for image data convolutional layers are commonly used in what are called con-
volutional neural networks (CNNs). For deep learning to work well, there is in general a
need for very large annotated datasets, and the data collection and labelling requires exten-
sive e�orts. As an example, the ImageNet dataset [22] contains more than a million labelled
images with one label per image. CityScapes [21] is a dataset consisting of street-view images
containing 5000 fully pixel-wise labelled images for semantic segmentation, where a single
image is of size 1024× 2048 and on average takes 1.5 hours to annotate.

Since labelling is very expensive and time-consuming, a relevant research direction is to ex-
amine situations and methods for which it is possible to achieve high performance using less
annotated data. One such approach is by using additional inputs, e.g. in the form of video.
Since consecutive frames are highly overlapping, it is possible to only sparsely label such data

1



Figure 1.1: Three images and their corresponding semantic segmentations. Each pixel is classified as one specific class. The
images are from three popular datasets showcasing the wide range of applications of semantic segmentation.
From top to bottom: CityScapes [21], Pascal VOC [25] and ADE20K [91]. Each dataset has its own specific
set of labels, and the colors correspond to semantic classes such as e.g. road, pedestrian and building in the
first image. All pixels in an image do not necessarily belong to the given set of labels, as shown by the black
pixels which are not assigned to any label.

and still obtain accurate performance. Learning with limited supervision is often referred to
as weakly supervised learning. In weakly supervised learning, the annotations are noisy or
of a lower granularity than the task at hand or just a subset of the data is labelled. Examples
are bounding box supervision for segmentation problems [60], single-image supervision for
video problems [10, 55, 28], or image-level supervision for object detection [59].

Another setup where limited task-speci�c data might su�ce is if the perception task has a
limited scope, e.g. as in the case where a robot explores and performs tasks in a single building.
In such a case it is not necessary to obtain labels for all kinds of buildings, and instead it might
be su�cient to just obtain a few, carefully selected, labels from the building in question. The
question then is exactly how these images and labels should be selected to obtain as accurate
perception as possible. How to select which data to annotate out of a large collection of
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unlabelled data is the active learning problem [71].

In paper 1 [55] we study semantic video segmentation, and show how a semantic segmenta-
tion network trained to segment single images can be transformed to handle video streams.
We show how to incorporate the temporal context in a principled manner and experimen-
tally show increased segmentation accuracy and more temporally consistent and less �icker-
ing segmentation results. We develop an end-to-end trainable methodology which aligns the
segmentation masks via optical �ow, learns how to combine segmentations from di�erent
frames, and only uses sparsely annotated frames in a weakly supervised manner.

In paper 2 [56] we study active learning for semantic segmentation in an embodied context
where navigation is part of the problem. The views to consider for annotations are not given,
and an agent must actively explore to obtain them. We further task the agent to select which
views that should be annotated. The agent should navigate and annotate in a manner which
gives the best data to use for learning semantic segmentation of the scene, in a cost-e�cient
way requesting few annotations. We compare multiple methods ranging from pre-speci�ed
baselines to a fully trainable agent using reinforcement learning (RL) on the simulated photo-
realistic Matterport3D [12] environment. This paper studies a problem setup that in many
ways is a relaxation of the assumptions in paper 1. We do not assume a given video where a
�xed frame is annotated, but instead an agent has to actively navigate to collect the video, and
the agent must also select which frames that should be annotated in the video.

In paper 3 [57] we study lifelong learning for semantic segmentation in an embodied con-
text. Here we extend paper 2 in two main directions. We enforce systematic exploration of a
whole scene instead of just exploring locally for short episodes, by explicitly modelling explo-
ration and incorporating frontier exploration into our RL task formulation. Furthermore
we study the task in a lifelong manner where the agent can retain knowledge in one explo-
ration episode to another. We show how the earlier learned perception a�ects an agent both
in terms of exploration and active learning. Speci�cally, the agents do not request annota-
tions as frequently when multiple scenes have already been explored.

In paper 4 we consider region-based embodied visual active learning. We consider how to use
more �ne-grained and hence more labelling e�cient annotations than full images. Speci�-
cally, we task an agent exploring an environment to not just select which image to annotate,
but also which region in the current image. We show that using region-based active learning
is signi�cantly more labelling e�cient than using active learning with full images.

In conclusion, the common theme is that we consider setups and methods for which to re-
duce the labelling cost or using the annotated data more e�ciently in order to learn semantic
segmentation. In the paper on semantic video segmentation this was done by e�ciently using
unlabelled frames of a video. For the papers on embodied visual active learning, it was done
by carefully considering what to annotate. These works all contribute towards data-e�cient
learning of semantic segmentation.
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This introduction is organized as follows. We �rst give an introduction to semantic segmen-
tation and describe modern approaches to the problem using convolutional neural networks.
This is relevant for all papers. We then give an overview of tools for video analysis such as op-
tical �ow and RNNs. This is highly relevant for paper 1, and there is also relevance for paper
2, 3 och 4. Finally, we give an overview of embodied learning and reinforcement learning,
which is relevant for paper 2, 3 and 4.

2 Semantic Segmentation

Semantic segmentation is the problem of assigning every pixel of an image to a speci�c la-
bel. Several example images are shown in �g. 1.1, where the set of classes include e.g. road,
person or tree. All pixels belonging to a speci�c object need to be correctly detected, and the
boundaries need to be sharp to delineate the object from the background and other objects.
In contrast to image classi�cation where one label per image should be predicted, this task is
more complex since there can be multiple objects per image at varying scales, and the exact
boundaries should also be predicted.

In �g. 1.1 we show several examples of semantic segmentation using images from three di�er-
ent datasets with diverse applications in mind. The �rst is from CityScapes [21] and is taken
from a camera mounted on a car. Applications of this are driver assistance, and as a compo-
nent for self-driving cars. The image from Pascal VOC shows an indoor scene with detections
of chair and table, which would be useful for e.g. an indoor assistant robot. The bottom row
is an image from ADE20K showing an aerial view of a scene. This could be useful for e.g. a
drone delivering a package.

In recent years, there has been much work on semantic segmentation, and approaches based
on convolutional neural networks (CNNs) have proven very successful [16, 89]. We will now
turn to a brief description of CNNs and then describe how to use them for semantic seg-
mentation and brie�y review the state-of-the-art.

2.1 Introduction to Convolutional Neural Networks

In modern computer vision, convolutional neural networks (CNNs) are ubiquitous, and
they are extensively used in all the papers of this thesis. CNNs are widely used when pro-
cessing images. The basic idea is that multiple convolutional layers are stacked as in �g. 1.4.
An image is used as input, and we transform the features in multiple steps using convolu-
tional layers, where each convolution typically is followed by batch normalization and non-
linearities, e.g. relu. When training a CNN all the parameters, including the �lter weights of
all convolutional layers, are learned using e.g. gradient descent. The use of CNNs for com-
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Figure 1.2: Illustration of computations in a convolutional layer. One the left we compute the scalar product between
patches in the input X and the kernel K. In this example the input patch marked red corresponds to
the output 1 · 1 + 2 · 2 + (−1) · (−1) + (−1) · (−2) = 8 and similarly for the one marked blue it is
1 · 1 + 1 · 2 + 7 · (−1) + (−3) · (−2) = 2. On the right we show an image and the image convolved with
the two filters shown, and we see that in the first case horizontal edges are detected and in the second that
vertical edges are detected.

puter vision problems was popularized starting in 2012 when Krizhevsky et al. [44] showed
that CNNs far outperformed earlier approaches for image classi�cation on the large-scale
dataset ImageNet [22]. It remains popular to use pre-trained networks on the ImageNet
dataset so that parameters are initialized for image classi�cation rather than randomly, and
two examples are the widely used VGG [74] and ResNet [32] architectures. To go from im-
age classi�cation to other tasks such as semantic segmentation, it is needed to adapt the CNN
architecture, and we will describe that in §2.2.

We will now describe the convolutional layer. The convolutional operator or layer, de�ned
here on an image or feature map X(i, j, c), where i and j are height and width indices and
c the channel, convoluted with a kernelK(i, j, c) is de�ned as

Y (i, j) =
∑
m,n,c

K(m,n, c)X(i+m, j + n, c) (1.1)

Note that we use di�erent signs than traditionally for convolutions (notX(i−m, j−n, ·))
and the feature channel indexed by c follows a di�erent convention, following standard prac-
tice for CNNs [31]. We showed the formula for a convolution with a single kernel K . In
practice multiple kernels are used, producing an output map of size (H,W,C) where C is
the number of kernels, and (H,W ) is the spatial output size. We show the computations and
the convolution of an image in �g. 1.2. All parameters of the kernelK need to be trained.

In �g. 1.3 we show the receptive �elds of every output of the convolutional layer as well as
variations to the standard convolution, illustrated here in just one dimension. The extension
to 2d image data is straight-forward by applying similar modi�cations as in the 1d case to the
height and width dimensions independently. When padding the input, we simply append
extra elements at the start and end of the input. This is commonly used to keep the shape
of the output the same as the input. If we have a 3× 3 convolution with padding 1 in both
dimensions the output will have size (H,W ) if the input has size (H,W ). Strides are com-
monly used to reduce the spatial size. If we have stride 2, the convolution window will not
shift one position at a time as a standard convolution, but instead two positions at a time
which has the e�ect of spatially downsampling the output. With dilations the kernels are
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Standard Padding Strides Dilations

Figure 1.3: Illustration of which input elements are used for each output for a 1d convolution with a filter of size 3, and how
padding, strides and dilations alter a standard convolution. For the standard convolution an input of length 5
gets an output of length 3. Padding means that we append extra elements at the start and end of the input
(often with zeros). This is useful to keep the length of the output the same as the length of the input. With
strides, here stride 2, the first output uses the inputs 1, 2 and 3, while the second output uses the inputs 3,
4 and 5, so the receptive field shifts 2 positions instead of 1 here, effectively downsampling the output. With
dilated convolutions, here dilation 2, the first output uses the inputs 1, 3 and 5 instead of 1, 2 and 3 as in a
standard convolution.

expanded to use spaced input patches rather than consecutive, which can be used to increase
the receptive �eld, so that inputs further away from the input a�ect the output. In general,
for a spatial input of size (H,W ), a convolutional layer with padding p, kernel size k × k,
stride s and dilation dwill result in the output size(⌊

H + 2p− d(k − 1)− 1

s

⌋
+ 1,

⌊
W + 2p− d(k − 1)− 1

s

⌋
+ 1

)
(1.2)

The convolutional operator has several properties that makes it suitable for image data which
are listed below. In the calculations we assume that the inputX has size (M,N,C) and the
output Y has size (M,N,C ′), and that the convolutional kernel has spatial size k × k. We
assume suitable input padding to keep the spatial dimensions, and do not assume that there
are any bias parameters.

• Spatial invariance. The kernels are spatially invariant, meaning that the convolutions
are computed with the same �lters in the whole image. The assumption is that a given
kernel is useful for the whole image, and not just particular regions. This is illustrated
in �g. 1.2 where �lters detecting edges are useful for the whole image.

• Sparse computations. When computing Y (i, j) we only consider parts of the input
around X(i, j) where the kernel is non-zero, and ignore the rest of the input. This
requires MNk2CC ′ element-wise multiplications instead of M2N2CC ′ for a fully
connected layer, and k2 is typically much smaller thanMN .

• Few trainable weights. A convolutional kernel has far fewer weights than a fully con-
nected layer fromX to Y would have. The number of parameters are k2CC ′ instead
ofM2N2CC ′, which is signi�cantly less since k2 is much less thanM2N2.

In the top part of �g. 1.4 we show a simple example of what a CNN for image classi�cation
can look like. It begins with the input image of size (H,W, 3) and this is transformed by
multiple convolutional layers, until �nally arriving at the score over image categories, which
is a vector with the length being the number of categories. The predicted label is obtained
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Figure 1.4: Schematic illustration of how multiple convolutions are stacked for image classification (top) and semantic
segmentation (bottom). The input in both cases is an RGB-image of size (H,W, 3). The output for image
classification is a single number corresponding to the predicted class, while for semantic segmentation, there
is one prediction per pixel. The second last layer is a distribution over all N classes, for image classification
for the whole image, while for semantic segmentation it is per pixel. Selecting the class with the highest
probability (arg max) will give the predictions. The intermediate layers are often of higher resolution for dense
prediction tasks such as semantic segmentation, as illustrated here where the lowest resolution is 1/8 for
semantic segmentation and 1/32 for image classification.

by selecting the category with the highest score. All parameters of all layers of the CNN are
trained, and the learned features of layers close to the input are typically composed of low
level structures such as edges while successive layers learn increasingly abstract concepts, see
Zeiler and Fergus [88].

2.2 From Image Classi�cation to Dense Predictions

The standard way to learn semantic segmentation is to start with a CNN trained for im-
age classi�cation [32, 37, 74] and transform the architecture to not just predict one label
per image, but one label per pixel, and then re�ne the whole network end-to-end with a
semantic segmentation loss. We will now describe the modi�cations required to get dense
predictions, starting with the representation of the output, the modi�cations applied to not
spatially downsample too much and lose �ne details, and how to modify the loss function.
These modi�cations are widely used in successful approaches [16, 89]. We show a schematic
overview of the modi�cations in �g. 1.4 of how to keep all parameters of the pre-trained net-
works for image classi�cation, but adapt the architecture for dense predictions. There are
mainly two modi�cations, namely how to increase the resolution of the intermediate layers,
and how to represent the output.

In general, to get a dense prediction for semantic segmentation, we require that the last layer
has shape (H,W,N), where N is the number of classes and H and W are the height and
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(H,W,C) (HWC)  (C’)

Flatten Dense

(H,W,C) (1,1,C’)

HxW Convolution

Figure 1.5: How to transform a fully connected (dense) layer to a convolutional layer. The approach if using dense layers
(left) is to first remove the spatial dimensions by flattening the tensor to just one dimension and then apply a
fully connected layer. To make it fully convolutional (right) the weights of the fully connected layer are simply
encoded in the weights of the convolutional layer instead, and the output gets a spatial dimension of size (1, 1).

width of the input image, respectively. If we apply softmax1 per spatial location we get a prob-
ability distribution over the labels per pixel. In practice, if we have any layer in a neural net-
work of size (H ′,W ′, C) we can always add one or more convolutional or deconvolutional
layer to get a map of size (H,W,N), and transforming with softmax will give class proba-
bilities. It is common to use deconvolutional layers at the very end of the CNN to go from
e.g. (H/8,W/8, N) or (H/16,W/16, N) to (H,W,N), and initialize the parameters as
bilinear upsampling. Such an upsampling is schematically shown in �g. 1.4.

It is common to have fully connected layers in networks for image classi�cation, just before
the predictions. Such layers can easily be transformed to convolutional layers, while still keep-
ing the computations the same. In �g. 1.5 we show such a transformation. In the original net-
work, some spatial map (H,W,C) is �attened to a one-dimensional vector of lengthHWC ,
and it is followed by a fully connected (dense) layer withC ′ output channels. The parameters
of the dense layer can be encoded in aH ×W -convolution by simply reshaping (and maybe
permuting the channels) the weights of the dense layer (matrix of e.g. size HWC × C ′) to
weights of a convolutional layer (shape e.g. H×W×C×C ′ depending on convention). Af-
ter this transformation, the input can be any spatial size, whereas for the dense layer it must be
exactly (H,W,C). The result is a fully convolutional network [49], and in practice for any
pre-trained network for image classi�cation with dense layers, those layers are transformed
to convolutional layers in this manner when we want dense predictions. If the pre-trained
network for image classi�cation does not use fully connected layers, but instead use global
average pooling prior to the classi�cation, we simply remove the pooling layer.

If we have a pre-trained network with downsampling at �xed points, we can easily control and
change the output resolution via dilated convolutions. We simply skip the downsampling
(commonly implemented either by max-pooling or strides in the convolutional layers) and
change convolutions that follow to be dilated. With this transformation, the dilated convo-
lutions have the same receptive �eld in the higher resolution input as the original convolution
had in the lower resolution input. Speci�cally, if the original convolution was computed with
input size (H,W ), then if we want to apply the same convolution to an upsampled input of
size (sH, sW ) we can use the same convolutional weights, but with the dilation s. We show

1The softmax function of a vector (x1, . . . , xn) is de�ned by yi = exp(xi)∑
j exp(xj)

for i = 1, . . . , n and de�ne
a probability distribution since yi ≥ 0 and

∑
i yi = 1.
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Figure 1.6: Dilated convolutions. On the left we show the receptive fields for the top-left output element of a 3 × 3
convolution with dilation rate 1 (a standard convolution), 2 and 3. On the right we show a 2× 2 convolution
and an input at three different resolutions, and we assume that the top-left pixels correspond. We see that if
we double the resolution and double the dilation rate, the convolution is computed using equally spaced input
elements in all three resolutions.

the basic idea behind dilated convolutions in �g. 1.6, where we show a normal 3 × 3 con-
volution and the same convolution with dilation rates 2 and 3, and how dilations and input
resolutions are related. We show how to change convolutional layers with strides 2 to convo-
lutional layers with stride 1, but adding dilations in �g. 1.7. Note that all the convolutional
weights are initialized from the pre-training, and for the second convolutional layer initially
de�ned on input of size (H/2,W/2), it needs to have dilation 2 if the input is of size (H,W ).
An example is given in �g. 1.4 where the network for image classi�cation has a lowest reso-
lution of (H/32,W/32) but the corresponding layer has size (H/8,W/8) when changed
to predict semantic segmentation, to not loose �ne spatial details. Although not central for
this presentation, we can mention that the spatial size does not necessarily go from (H,W )
to (H/2,W/2) in all architectures, and it depends on the implementation and which con-
vention is used. As an example, if we use 3× 3 convolutions with stride 2 and padding 1 and
H andW are odd, the output size is ((H + 1)/2, (W + 1)/2).

The standard loss function for image classi�cation is the cross entropy of the ground truth
and estimated class probabilities given by the CNN. If we let y = (y1, y2, . . . yn) be the
output of the CNN, and let y′ = (y′1, y

′
2, . . . , y

′
n) be the ground truth, one-hot encoded,

so that y′c = 1 for the correct label c and y′i = 0 for i 6= c, then the cross-entropy is

L(y′, y) = −
∑
k

y′k log yk = − log yc (1.3)

The last equality follows from the one-hot encoding and the last expression is the negative
log likelihood. If we consider semantic segmentation as one classi�cation problem per pixel
we can easily extend the cross entropy loss for image classi�cation to semantic segmentation.
Let y′ij = (y′ij1, y

′
ij2, . . . , y

′
ijn) be the ground truth of pixel (i, j), where the ground truth

is one-hot encoded and let yij = (yij1, yij2, . . . , yijn) be the estimated class probabilities
by the CNN. We de�ne the segmentation loss as

L(y′, y) = −
∑
ijk

y′ijk log yijk (1.4)

where the only di�erence to (1.3) is that we sum over all pixels.
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Figure 1.7: We show the basic principle for transforming a pre-trained network with fixed subsampling (using strides or
pooling) for dense predictions by increasing the resolution of intermediate layers, and still keeping all weights
for all layers. We remove the strides and add dilations to increase the resolution of the intermediate feature
maps. The kernel weights of all convolutional filters are the same as in the pre-trained version.

2.3 Evaluating Semantic Segmentation

To evaluate semantic segmentation, it is common to use class balanced metrics such as mIoU
instead of global accuracy. It is very common that the semantic classes are unbalanced, with
one example being indoor scenes where the classes wall, ceiling and �oor might make up a very
large fraction of the pixels, while co�ee mug might be a label occupying very few images and
pixels. Another example is street view scenes where much of the images might consist of roads
or sidewalks, with pedestrians occupying signi�cantly fewer pixels. In the latter example, a
classi�er correctly segmenting road and sidewalk while misclassifying all pedestrians will get
a high accuracy since most pixels will be correctly labelled, but it will probably not be useful
in practice. Instead of global accuracy a metric that takes all classes explicitly into account
will be more relevant for semantic segmentation. The most commonly used metric is mIoU,
which is de�ned as follows. If we let Si denote the set of pixels predicted as class i and Ti the
set of pixels where the ground truth is class i, then the IoU (intersection over union) of class
i is de�ned as IoUi = |Si ∩ Ti|/|Si ∪ Ti|. To get the aggregate segmentation metric, the
mean IoU is de�ned as

mIoU =
1

N

∑
i

IoUi =
1

N

∑
i

|Si ∩ Ti|
|Si ∪ Ti|

(1.5)

where N is the number of classes. This metric gives equal weights for the IoUs of all indi-
vidual classes, and a high value requires accurate segmentations of also relatively uncommon
classes, in contrast to e.g. global accuracy. We show an example in �g. 1.8.

The mIoU is sometimes de�ned in an equivalent way using the confusion matrix. If we let
cij be the number of pixels predicted as class i where the ground truth is j, it is easy to see
that

IoUi =
cii∑

k cik +
∑

k cki − cii
(1.6)

and
mIoU =

1

N

∑
i

cii∑
k cik +

∑
k cki − cii

(1.7)
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Ground truth y1 y2

Figure 1.8: Illustration of the difference between using global accuracy and mIoU. There are five semantic classes, including
the background. Looking qualitatively, we expect a metric judging segmentation quality to rank y2 higher
than y1 since all classes are detected in y2 while all pixels are labelled as background in y1. However, the
accuracy is 18/25 for both y1 and y2 while the mIoUs are 1

5 ( 18
25 + 0

1 + 0
2 + 0

2 + 0
2 ) ≈ 0.14 for y1 and

1
5 ( 11

18 + 1
1 + 2

2 + 2
2 + 2

9 ) ≈ 0.77 for y2. We see that y1 has the same accuracy as y2 despite not detecting
four classes at all, but the mIoU is significantly higher for y2 where all objects were detected. This example
illustrates that global accuracy is not necessarily indicative of segmentation quality, and other metrics such as
mIoU are often more suitable.

2.4 Review of the State-of-the-Art

Adapting CNNs pre-trained on ImageNet for semantic segmentation was pioneered by Long
et al. [49], in which a pre-trained CNN for image classi�cation was made fully convolutional.
The sub-sampling of the pre-trained networks were kept, but multiple skip connections from
multiple parts of the network with varying resolutions were added to the output layer to re-
cover �ne spatial details. In Farabet et al. [26] a deep convolutional network is applied with
multiple resolutions of the input image, and then the predictions are merged.

Another line of work use a so called encoder-decoder structure where the features of the low-
est resolution gradually are upsampled in a decoding module typically consisting of multiple
layers per resolution, as schematically illustrated in �g. 1.9. For instance, the encoder can
be a pre-trained CNN with output resolution 1/32, and the decoder starts by upsampling
the output of the encoder to 1/16 and then apply a few convolutional layers, and then up-
sample to 1/8 and apply a few more convolutional layers, and so on. For these methods it is
often not necessary to increase the resolution of the intermediate features of the pre-trained
CNN. Noh et al. [58] use unpooling layers to during upsampling recover the boundaries by
keeping track of which indices that were used in the corresponding max-pooling layers. A
similar upsampling method is proposed in SegNet [3]. Another approach is to in addition
to upsampling have skip connections between layers in the encoder and decoder of similar
spatial sizes, as proposed in U-Net [67], thus not losing track of �ne spatial details. In Re-
�neNet [48] the decoder module is further re�ned using residual connections [32]. In Ghiasi
and Fowlkes [30] the features of the skip connections are masked to only propagate features
close to object boundaries to recover �ne spatial details by predicting the boundaries using
the features of the decoder.

Methods to incorporate and aggregate features of varying scales are often implemented by
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Figure 1.9: Schematic illustration of encoder-decoder networks. The input is gradually transformed to lower resolutions in
the encoder and then transformed back in the decoder, typically increasing or decreasing the resolution by a
factor 2 at each step. The connections on the top are skip connections which are often used for dense prediction
tasks to recover fine spatial details which may have been lost during the downsampling in the encoder. The
encoder is often a network pre-trained on ImageNet while all layers of the decoder are initialized randomly.

cascading special network architectures following the feature extraction (schematically, just
before or after the deconv layer in �g. 1.4). In DeepLab [18, 17] an ASPP-module is intro-
duced to handle multiple scales. Prior to the output layer, a layer concatenating multiple
parallel convolutions with varying dilations, e.g. four �lters with dilation rates 6, 12, 18 and
24, is used to handle multiple scales. A similar methodology was proposed by Yu and Koltun
[87]. In earlier versions of DeepLab [16] the output was re�ned using CRF post-processing.
Speci�cally, in the fully connected CRF of Krähenbühl and Koltun [43] all pixels are con-
nected pairwise via Gaussian kernels, and it allows for e�cient approximate inference. Such
CRF inference was also done end-to-end by Zheng et al. [90] by implementing all inference
operations as neural network layers and training the system jointly. In PSPNet [89] a method
of pooling at varying scales is employed in contrast to ASPP by not using dilations but instead
global pooling operations. For instance, when using a 4 level pyramid, an input of is average
pooled into e.g. the sizes 1 × 1 (global average pooling), 2 × 2, 3 × 3 and 6 × 6. Follow-
ing these representations is a convolutional �lter to reduce the dimensionality, and then all
representations are upsampled and concatenated with the input tensor, thus adding global
context.

3 Video Analysis

In this section we give a brief introduction to tools for video analysis, and especially methods
relevant to semantic video segmentation. This is especially relevant for paper 1, but is also used
in paper 2, 3 and 4 to allow the propagation of labels from annotated frames to unlabelled
frames. We will cover optical �ow which is the displacements between frames, followed by
recurrent neural networks which can handle sequential data, and �nally we will discuss the
semantic video segmentation problem and state-of-the-art approaches to it.
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I ′1 = φ(I2, f12) I ′2 = φ(I1, f21) Colormap Displacements

‖I ′1 − I1‖ ‖I ′2 − I2‖ ‖f12 + φ(f21, f12)‖ ‖f21 + φ(f12, f21)‖

Figure 1.10: Illustration of optical flow. We show two images, where a car has moved between the frames and the camera
pose has changed slightly. The pixel displacements f12 and f21 are color-coded according to the colormap
shown. Each color in f12 and f21 represents a displacement vector, and we also show the displacements f12
overlayed on I1, but magnified for illustrative purposes. If we warp the images we see two types of occlusions.
The first is that the front of the car is visible in I1 but not in I2 and the second is that the object visible
behind the car in I2 are not visible in I1. We also show two different confidence estimates of the optical flow,
where white pixels have a high confidence value and black a low confidence. We can see that the occluded
regions have low confidence as expected.

3.1 Optical Flow

Optical �ow is a measurement of the pixel-wise displacements between frames. It is widely
used for video analysis in e.g. action recognition [73], video object segmentation [19, 82] and
semantic video segmentation [55, 28]. If we have two consecutive frames in a video, I1 and I2,
the optical �ow of the pixel (i, j) in I1 is de�ned as the displacement to the corresponding
pixel (i′, j′) in I2. We de�ne the optical �ow f by fij = (fyij , f

x
ij) = (i′ − i, j′ − j). So if

we want to track (i, j) in I1 the corresponding pixel is (i + fyij , j + fxij) in I2. The optical
�ow is very �ne-grained, since displacements are computed for every single pixel.

In �g. 1.10 we show an image pair (I1, I2). The optical �ow f12 is computed from I1 to I2
while f21 is computed from I2 to I1. The optical �ow is commonly encoded by a colormap,
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(i,j)(i+fij
y,j+fij

x)(i+ fyij , j + fxij) (i, j)

Figure 1.11: We describe the receptive fields and how to propagate values for the warping operation defined in (1.8). The
output yij is computed by copying the features in the corresponding position in x, but shifted by the optical
flow. We want the features of x at the position (i + fy

ij , j + fx
ij). Since these typically are not integer

coordinates, we interpolate the closest points by means of a kernel, illustrated by the four closest points in
the figure. Note that the optical flow is computed in the reverse direction (from y to x) that we propagate.

and the coloring of displacements is shown in the �gure. We furthermore show the warpings,
I ′1 and I ′2 where the images I1 and I2 are propagated via the computed optical �ows to align
with the other image. We can see that while most of the warpings are aligned with the target
images, there are a few places where it is incorrect. In I ′1 we note that the left and bottom
parts of the image are not correct, since these parts of I1 are not visible in I2 and hence these
parts can not be propagated from I2. We also note that the back of the car is incorrect in
I ′2, and there is a doubling of the back of the car. This is since the objects right of the car in
I2 are not visible in I1 and while the pole is correct, the parts left of the pole in I1 is the car
which then appears double in I ′2. On the last row we show two di�erent ways of measuring
the con�dences of the optical �ow, which are later described in more detail, but for now we
just note that the regions we mentioned are marked with low con�dences by both estimates.

In �g. 1.10 we showed the images warped to align with the other images by means of the
computed optical �ow. We will now describe this mapping mathematically and describe how
it can be used as a neural network layer. Any spatial map can be propagated, e.g. RGB values,
semantic segmentations or any general feature map. We de�ne the warping from a grid xij
to yij given by an optical �ow f as

yij =
∑
m,n

xmnk(i+ fyij −m, j + fxij − n) (1.8)

where k(x, y) is a kernel and fij is the optical �ow from y to xwhich is the reverse direction
in which we propagate. The optical �ow encodes how to fetch values from x to y rather
than how to propagate values from x to y, i.e. yij should fetch from (i+ fyij , j + fxij) in x.
These coordinates are typically not integer valued, so we need to interpolate. We will use the
bilinear kernel k(x, y) = max(0, 1− |x|) max(0, 1− |y|). We describe the receptive �eld
and give more intuition for why the optical �ow is computed in the reverse direction in �g.
1.11. We denote the mapping from x to y using the �ow f as y = φ(x, f). In practice, x can
have multiple channels, and we simply warp the channels independently of each other.

Note that (1.8) is di�erentiable. If we have dL/dy we can easily compute dL/dx and dL/df
using the chain rule, allowing backpropagation to both the input x and the optical �ow f .
Any kernel k will make backpropagation to x possible, while backpropagating to f requires
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that k is di�erentiable. The sum over all pixels {m,n} will only have at most 4 non-zero
terms if we use the bilinear kernel and all parts of the warping are di�erentiable2, so we can
include it as a layer in a neural network and run backpropagation through the layer.

In many applications of optical �ow, there is a necessity to assess the con�dence of the dis-
placements. There are two straight-forward ways which we will describe here, the photo-
consistency and forward-backward consistency, and they are also illustrated in �g. 1.10. If we
let I1 and I2 denote the images, and I ′2 = φ(I1, f21) be the warping of the �rst image to
the second, the photo-consistency measure of con�dence is then ‖I2 − I ′2‖, with the norm
applied per spatial location, when aligned with I2. In a similar way it is ‖I1 − I ′1‖, where
I ′1 = φ(I2, f12) if it is aligned with I1. In the example �gure the occluded regions are cor-
rectly of low con�dence, but we also note that the estimate is fairly noisy.

The other commonly used measure is to compare the forward f12 and backward �ow f21. If
the optical �ow is accurate in both directions, then if we track a pixel (i, j) in I1 to (i′, j′)
in I2, we can expect the optical �ow in the reverse direction to go from (i′, j′) in I2 to (i, j)
in I1. We can formalize the pixel-wise con�dence as ‖f12 + φ(f21, f12)‖, where the �rst
term is the forward �ow and the second term is the backward �ow warped to aligned with
I1. Note the plus sign since we expect the backward displacement to be the negative forward
displacement. The forward-backward consistency requires that we compute optical �ow in
two directions, while the photo-consistency measure ‖I2− I ′2‖ only requires optical �ow in
one direction, so the run-time will be higher if we compute forward-backward consistency.
We show an example in �g. 1.10, where we note that the occluded regions are of low con�-
dence, but there are also large regions (e.g. the road) that are marked with low con�dence.
The estimate is less noisy than when comparing intensity di�erences, which is expected since
the optical �ow maps contain signi�cantly less edges than the RGB images.

In recent years approaches based on CNNs to compute optical �ow have proven very suc-
cessful, with examples being Flownet [23], Flownet2 [38] and PWC-Net [76], all of which
are used in the papers of this thesis. Prior to deep learning based methods, a common ap-
proach was to use variational optimization and possibly to combine it with combinatorial
matching [85, 8, 66].

3.2 Recurrent Neural Networks

When processing videos, we are given a sequence of consecutive images instead of just a single
image. To process such time series we need special neural network structures, and what we
will describe here are recurrent neural networks (RNNs). In paper 1 we use recurrent net-

2Technically the bilinear kernel k(x, y) = max(0, 1 − |x|)max(0, 1 − |y|) is not di�erentiable if x ∈
{−1, 0, 1} and−1 ≤ y ≤ 1 or if y ∈ {−1, 0, 1} and−1 ≤ x ≤ 1, but this is not an issue. It is similar to
relu activation function de�ned by x 7→ max(x, 0) which is not di�erentiable at x = 0 but used nevertheless.
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works to process videos for semantic segmentation, and in paper 2, 3 and 4 we use recurrent
neural networks in the policy networks trained with reinforcement learning.

The setup of RNNs is that there is a sequence of inputs {xt} that are transformed into a
hidden state {ht} and for each time step there is also an output {yt}. The hidden state ht is
computed one time step at a time via a neural network asht = fθ(xt, ht−1), and can encode
information that is relevant for the task over multiple time-steps. The choice of f depends
on the problem, and two commonly used versions are the gated recurrent unit (GRU) [20]
and long short-term memory (LSTM) [34]. The parameters θ do not depend on the time
t, since the RNNs should be able to operate on variable length sequences, and also that it
is often assumed that the RNN performs the same task at all times, but only with di�erent
inputs and hidden states.

We here show the equations for a GRU. Note that this describes a mapping of the form
ht = fθ(xt, ht−1). We assume that xt and ht are vectors for all t.

zt = σ(Wxzxt +Whzht−1 + bz)

rt = σ(Wxrxt +Whrht−1 + br)

ĥt = tanh(Wxhxt +Whh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � ĥt

(1.9)

where� is element-wise multiplication, andW and b are parameters, so the set of parameters
is θ = {Wxz,Whz, bz,Wxr,Whr, br,Wxh,Whh, bh}. The sigmoid function is de�ned as
σ(x) = 1/(1 + exp(−x)). The output yt depends on the problem and a simple choice
is e.g. yt = softmax(Whyht + by) for a classi�cation problem. To handle spatial data we
just change all fully connected layers to convolutional layers. The problem with video data
though, is that due to motion, the spatial coordinates (i, j) in frame t do not correspond to
the same coordinates (i, j) in frame t+ 1. This can however be mitigated by computing the
optical �ow and warping at appropriate places, which will be done in paper 1.

The concept of gating is central for both an LSTM and a GRU. If we have a vectorx a gating
in this context is a transformation x� g where all elements of g are between 0 and 1, and we
multiply x and g element-wise. In LSTMs and GRUs the gating functions are learned, and
they are typically implemented by sigmoid functions. In the equations for the GRU (1.9), zt
and rt are used as gating functions when computing ĥt and ht, and they are implemented
by the sigmoid function and depend on the inputs xt and ht−1.

3.3 Semantic Video Segmentation

We described semantic segmentation in section §2, and we will now describe semantic video
segmentation, where the task is to semantically segment a video. Instead of just segmenting a
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Figure 1.12: Illustration of flickering in the context of semantic segmentation. On the left we show three consecutive
frames and two tracks, computed e.g. by optical flow, and the semantic segmentation, here shown as blue
or red. The top track is not consistent since the labelling changes along the track while the bottom track is
consistent since the labelling is the same throughout the whole track. On the right we show three consecutive
frames of a video along with semantic segmentations and mark with red boxes several regions that are not
temporally consistent with the preceding frame.

single image, the input is a whole video with multiple frames, and a label should be predicted
for every pixel of every frame. A naive method for semantic video segmentation is to simply
use a model for image semantic segmentation and process each frame independently. In pa-
per 1 we show how to incorporate temporal data in a principled manner to improve over this
per-frame baseline, both in terms of segmentation accuracy and temporal consistency.

When using the simple per-frame baseline, the temporal continuity of the input is entirely
ignored. An object that is hard to perceive in one frame can in principle be detected in a
preceding or succeeding frame where it is easier to detect, and then be propagated tempo-
rally to the uncertain frame. Thus it should be possible to improve the accuracy of a video
segmentation system by using the temporal consistencies inherently available in the video
data. Another issue with predicting semantic segmentation for a video independently per
frame is that it often introduces �ickering. If we track the same pixel for multiple frames,
the labelling can vary for di�erent frames. We show an example in �g. 1.12. To evaluate the
�ickering quantitatively, we can use methods of pixel tracking and count consistency along
the tracks [45, 77]. Speci�cally, if we have a track of pixels {xk}Tk=t from frame t to T , we
look at the labelling of the pixels along the track. If all pixels are of the same label we say that
the track is consistent, and if there are two points along a track with di�erent labels the track
is not consistent. The temporal consistency metric is then the fraction of tracks which are
consistent, computed from a large set of tracks covering as much of the video as possible. In
paper 1 we use a method that tracks pixels using optical �ow and ends the tracks if the optical
�ow is uncertain [77], as measured by the forward-backward criteria (see §3.1). Note that it
is trivial to get 100% temporal consistency by always predicting the same label for the whole
image. Temporal consistency computed in this way should thus not be measured in isolation
but be complemented by e.g. mIoU.
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There is a large body of work on semantic video segmentation, targeting di�erent aspects of
the problem. Common for most methods is that they are based on pre-trained image seman-
tic segmentation systems (see §2.4), and extend or alter these to use temporal data. The main
trade-o� is between speed and accuracy. By exploiting the temporal consistency inherent in
video data it is possible to on one hand increase the accuracy at the expense of run-time and
on the other hand to increase the speed at the expense of accuracy. The �rst line of work
concerns how to make the semantic segmentation more accurate and temporally consistent
than per-frame processing. This is often approached using highly accurate optical �ow and
warping features or segmentations between time-frames, e.g. in an end-to-end trainable ar-
chitecture [55, 28] or by post-processing using 3d point clouds [27, 7] or CRFs [45, 46, 81, 75].
The CRFs are usually constructed so that the unary terms are computed by a CNN for im-
age semantic segmentation. The pairwise terms can be connected temporally e.g. along the
optical �ow, by comparing deep features or by using 3d geometry. While these approaches
typically improve the segmentation accuracy, the run-time is often higher than per-frame
processing. There are also some recent approaches that use attention mechanisms instead of
optical �ow or CRFs [61, 36].

Another line of work is to signi�cantly speed up the video processing [47, 72, 39, 50, 35]. Since
consecutive frames are highly redundant, it is common to process di�erent frames with dif-
ferent levels of granularity. Speci�cally, it is common to use a deep CNN for image semantic
segmentation only for sparse frames, and for the frames in between use a light-weight mod-
ule possibly combined with motion via optical �ow. These approaches are typically faster
but less accurate than per-frame baselines.

4 Embodied Learning

In embodied learning we study how to learn by interacting with an environment. The hy-
pothesis is that by acting, and observing the results of the actions, an agent can learn intel-
ligent behavior. This is in contrast to the learning in the previous sections where data was
supplied as is, and the learning was done with static data that was labelled. The term embod-
ied here means that the agent operating has a body, which can mean that it loosely resembles
that of a human body in the sense that it moves around and that its perception is mainly
based on visual, egocentric observations of its environment.

The scope of embodied learning as de�ned above is very large, with signi�cant parts of the
�eld of robotics �tting the description. We will here greatly limit the scope of the review to
only cover visual navigation problems, with an emphasis towards trainable methods, since
that is relevant for paper 2, 3 and 4 in this thesis.

Visual navigation broadly concerns how to move around in an environment to solve a given
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Figure 1.13: Example from the Matterport3D dataset. It is possible to use simulated environments created from real-world
scans in an interactive manner to study navigation problems. There are multiple modalities available, and
here we show a map, image, semantic segmentation and depth.

task given only visual observations. One aspect of the problem which greatly varies depend-
ing on the approach and the application is how to map the environment. To navigate ef-
�ciently it is useful to infer the 2d �oor plan using the available sensors such as e.g. RGB,
RGBD or LIDAR data, and use that for planning [80]. The exhaustive approach when only
visual sensors are available is to create a full 3d reconstruction of an environment using SLAM
[54, 9], where a euclidean reconstruction is used. It is also possible to use less granular repre-
sentations such as sparsely computed landmarks, in a topological map [68, 6, 29]. There are
also learning-based methods that do not use a map at all and directly learn the mapping from
observations to actions using e.g. reinforcement learning [86]. There are multiple works
comparing learned methods to mapping based methods for point goal navigation [52, 42, 64],
however the variations in problem setup and range of methods to consider makes it di�cult
to draw general conclusions. It can vary whether it is evaluated in simulation or in the real
world, and the availability and noise levels of input modalities such as depth and pose can
vary in di�erent setups. Some works argue that learning based methods outperform mapping
based ones given enough training [51], while others reach the opposite conclusion [52, 42].

In paper 2, 3 and 4 we use the Habitat simulator [51] and the dataset Matterport3D [12]. The
Matterport3D dataset contains several scans of indoor environments of di�erent buildings,
and the Habitat simulator facilitates simulation and interaction in the environments. It is
possible to extract RGB images, semantic segmentations and depth maps, and it is possible
to interact and navigate in the 3d scans. We show an example in �g. 1.13. Since the scans are
based on real images captured from the real world, and not arti�cially created, they can be
considered photo-realistic. The use of simulated environments has several advantages over
using real-world robots when running experiments, such as free access to the ground truth
of various modalities, fast and parallel simulation, comparison of di�erent methods under
identical environments and setups, and it does not require physical space or real robots. Note
however that good performance in a simulated environment is not a guarantee for real-world
performance [40], and transferability of a policy learned in simulation to the real world is a
highly non-trivial problem studied by itself [15, 62, 2], and outside the scope of the papers in
this thesis. One important further detail is that when visual navigation problems are studied
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Environment
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State, Reward

Figure 1.14: The basic setup in reinforcement learning. An agent should act in an environment so that it maximizes the
reward it obtains. At a given time step the agent selects an action, based on the state, which contains
information about the environment. Once the agent acts it obtains a reward, which is a measure of how good
the action was for the specific task the agent should perform. This process is repeated for several steps until
the episode ends.

in such simulated environments, then the environments are often �xed in the sense that it is
not possible to e.g. move objects around or open and close doors. The 3d environments are
assumed to be static and to solve the tasks it su�ces to navigate and gather visual observations,
and not change the state of the 3d environment. Although out of scope, there is some recent
work targeting navigation problems in large-scale simulated environments where objects are
not static [4, 84].

Some examples of common tasks studied in embodied learning, here narrowed down to visual
navigation problems often studied in simulated environments, are listed below. See Zhu et al.
[92] and Duan et al. [24] for thorough and recent surveys.

• Point goal navigation [12, 86, 14]: In point goal navigation the agent is given target
coordinates relative to its current position it should navigate to. There can be obstacles
in the way, so the agent should recognize those and plan to navigate around them.

• Object goal navigation [13, 11]: In object goal navigation the agent should navigate to an
instance of a speci�c class, e.g. fridge or bed in an unknown environment. The objects
are often not visible from the agent’s starting position, so solving the task requires
exploration of a building as well as visual recognition.

• Visual language navigation [63, 1, 83]: In visual language navigation an agent is tasked
with following and executing language instructions such as “�nd the kitchen and walk
up to the fridge” or “walk up the stairs and enter the second door to the left”. This
requires navigation, but also visual perception and language processing.

These problems are often successfully approached with reinforcement learning, which we
will describe in more detail in the next section.

4.1 Reinforcement Learning

In this section we will give a brief introduction to reinforcement learning which is needed for
paper 2, 3 and 4. For a more thorough text, see Sutton and Barto [78]. In �g. 1.14 we show
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the basic setup for reinforcement learning (RL). An agent in this setup should act in a way
that maximizes the reward it obtains. The learning is thus that of a policy of which action
to take at each time step, so that the cumulative rewards are maximized. The agent acts in
an environment, and at each time step the agent observes the state st of the environment.
The state encodes information about the current state of the environment in the form of e.g.
images or feature vectors. The agent selects an action at based on its policy π(at|st), which
maps the state to a distribution over all possible actions. After an action in the environment,
the agent receives a reward rt, which is a numerical value indicating how good the action was.
The reward function is often handcrafted to model the speci�c behaviour that is wanted. The
agent then selects a new action at+1 based on the updated state st+1 following the action at
in the environment, and continues to select new actions until the episode ends.

Each action will lead to a reward, but rewards should be aggregated over multiple time-steps,
since the choice of at will a�ect all rewards rt′ with t′ ≥ t. If we assume that an agent has
received the rewards r0, r1, . . .we de�ne the discounted future reward gt at time t as

gt =
∑
t′=t

γt
′−trt′ (1.10)

where γ is a discount factor. The return gt is a weighted sum of all future rewards starting
from t, where rewards far in the future are discounted by γ. The value of γ determines how
far ahead an agent should plan, and an agent trained with γ = 0 will greedily select the action
yielding the immediately highest reward, while an agent trained with γ = 1 will be forced to
plan further ahead. A common choice is γ = 0.99.

Mathematically, the dynamics of the environment is modelled by a Markov Decision Process
(MDP) [5] which consist of a state spaceS , action spaceA, transition probabilities p(s′|s, a)
from one state s ∈ S to another s′ ∈ S by the action a ∈ A, a corresponding reward
functionR(s, a, s′) for the transition, and a distributionp(s0) of the initial state. We further
assume that we have a policy π(a|s) which maps states to actions. A trajectory of the MDP
is then generated by the following model

s0 ∼ p(s0) (1.11)
at ∼ π(·|st) (1.12)

st+1 ∼ p(·|st, at) (1.13)

where we note that st+1 is only conditioned on st and at, and not any st′ or at′ with t′ < t,
which is the Markov property, and similarly at is only conditioned on st. For a given trajec-
tory3 τ = (s0, a0, s1, a1, . . . , sT ) we have that

p(τ) = p(s0)
T−1∏
t=0

π(at|st)p(st+1|st, at) (1.14)

3It is no requirement that every episode has the same length T , but we assume that to simplify the presenta-
tion.
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It should be noted that for all but the simplest environments, it is very di�cult to com-
pute or approximate the state transitions p(s′|s, a) and the corresponding reward function
R(s, a, s′). If we do not need to, we say that we use model-free RL, in contrast to model-
based RL where the MDP dynamics are estimated and then used for planning.

Two very useful functions are the Q-value Q(s, a) and the value function V (s) which are
de�ned as

Q(st, at) = Est+1,at+1,...,sT

[
T−1∑
t′=t

γt
′−tR(st′ , at′ , st′+1)

]
(1.15)

V (st) = Eat,st+1,at+1,...,sT

[
T−1∑
t′=t

γt
′−tR(st′ , at′ , st′+1)

]
(1.16)

which denotes the expected discounted future returns as given by the policy π. The Q-value
is one action ahead of the value function. We note that the Q-value and the value function
are related by

Q(st, at) = Est+1 [R(st, at, st+1) + γV (st+1)] (1.17)
V (st) = Eat [Q(st, at)] (1.18)

and they also ful�ll the following recursive equations known as the Bellman equations

Q(st, at) = Est+1,at+1 [R(st, at, st+1) + γQ(st+1, at+1)] (1.19)
V (st) = Eat,st+1 [R(st, at, st+1) + γV (st+1)] (1.20)

Another related term is the advantage, de�ned asA(s, a) = Q(s, a)−V (s) which is inter-
preted as how much better it is to choose a speci�c action a than selecting an action accord-
ing to π(·|s). The Q-value, value function and advantage function all depend on the policy.
Sometimes this dependency is marked explicitly by using notation such as V π(st) instead of
V (st).

Several examples of full RL setups including the environment, state space, action space and
reward function are:

• Point goal navigation (see §4). The agent can navigate via the actions move forward,
rotate left and rotate right, and it is also equipped with a done action to be selected
when the target is reached. The state space is the RGB image, depth map and the
coordinates (r, θ) of the target (sometimes referred to as GPS+compass), speci�ed by
polar coordinates relative to the agent’s pose. The reward is the decrease in geodesic
distance to the goal and furthermore a positive reward when the done action is selected
if the agent was su�ciently close to the target.
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• An agent plays an ATARI game such as pong [53]. The action space is to move the
paddle up, down or keep it still. The reward can be +1 if the agent scores and−1 if
the opponent scores, and all other actions get a reward of 0. The state space can e.g. be
an RGB image of the screen or a vector with the positions and velocities of the paddles
and the ball.

• A humanoid robot should walk forward [33]. The state space is the locations and ve-
locities of the joints in 3d and the action space is the torque to apply per joint. The
reward is proportional to the velocity forward of the robot.

4.2 Policy Gradient Methods

While there are many di�erent approaches to RL [78], we will only focus on policy optimiza-
tion methods. In this approach, we are optimizing only the policyπθ(a|s), which we assume
is parameterized by a set of parameters θ. We will derive the reinforce algorithm, which is a
method that approximates the gradient of the expected returns, and use that to optimize θ.
This approach is model-free and relies on sampling of the MDP. The only requirement is
that we can compute the gradient∇θπθ(a|s) which is possible e.g. if πθ is implemented as a
neural network, via backpropagation.

To derive reinforce [79], we start by a simpli�ed example utilizing a simple trick to compute
gradients of the expected value of a function g(x) over a parameterized distribution fθ(x).
We can see that the gradient of the expected value w.r.t. the parameters θ can be computed as

∇θEx∼fθ(x) [g(x)] = ∇θ
∫
g(x)fθ(x)dx (1.21)

=

∫
g(x)∇θfθ(x)dx (1.22)

=

∫
g(x)∇θ log fθ(x)fθ(x)dx (1.23)

= Ex∼fθ(x) [g(x)∇θ log fθ(x)] (1.24)

≈ 1

N

N∑
k=1

g(xk)∇θ log fθ(xk) (1.25)

where {xk}Nk=1 are sampled from the probability distribution fθ. The latter form allows
for sampling over fθ(x) to compute the gradient of the expected value. We can thus use
any gradient based method to optimize the expected values w.r.t. the parameters θ. We will
now derive reinforce, which extends the simple result above to a full trajectory of an MDP.
The result above can be seen as the special case of an MDP with just one action, where g(x)
corresponds to the reward and fθ(x) the policy.
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The reinforce algorithm optimizes the sum of rewards4 R(τ) =
∑T−1

t=0 rt and we want to
optimize the function

J(θ) = Eτ∼πθ [R(τ)] (1.26)

where
τ = (s0, a0, r0, . . . , sT ) (1.27)

is a rollout, according to the policy πθ. We use the convention that rt = R(st, at, st+1) is
the reward after taking the action at in the state st. To evaluate the gradient of J(θ) we will
need to explicitly compute p(τ). This can be expressed using the transition probabilities of
the MDP and the policy πθ as

p(τ) = p(s0)
T−1∏
t=0

πθ(at|st)p(st+1|st, at) (1.28)

The gradient of log p(τ) will be used later and is computed as

∇θ log p(τ) = ∇θ

[
log p(s0) +

T−1∑
t=0

(log πθ(at|st) + log p(st+1|st, at))

]
(1.29)

=
T−1∑
t=0

∇θ log πθ(at|st) (1.30)

where all the transition probabilities p(st+1|st, at) vanish since they do not depend on the
parameters θ of the policy. Now we are ready to compute the gradient of the objective func-
tion J(θ) as follows

∇θJ(θ) = ∇θEτ∼πθ [R(τ)] (1.31)

= ∇θ
∫
τ
p(τ)R(τ)dτ (1.32)

=

∫
τ
∇θp(τ)R(τ)dτ (1.33)

=

∫
τ
p(τ)R(τ)∇θ log p(τ)dτ (1.34)

=

∫
τ
p(τ)R(τ)

T−1∑
t=0

∇θ log πθ(at|st)dτ (1.35)

= Eτ∼πθ

[
R(τ)

T−1∑
t=0

∇θ log πθ(at|st)

]
(1.36)

4To simplify the presentation we assume that γ = 1.
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We have now obtained an expression similar to that of the simpli�ed setup in (1.24), and we
can thus obtain approximations of∇θJ(θ) by sampling trajectories τ ∼ πθ according to the
current policyπθ. Note that in (1.36) we multiply∇θ log πθ(at|st) withR(τ) =

∑T−1
t=0 rt,

but for given t, the action at only a�ects the rewards rt′ with t′ ≥ t. In fact, it can be shown5

[78] that we can discard rewards with t′ < t and also subtract a baseline from the rewards as
follows

∇θEτ∼πθ [R(τ)] = Eτ∼πθ

[
R(τ)

T−1∑
t=0

∇θ log πθ(at|st)

]
(1.37)

= Eτ∼πθ

[
T−1∑
t=0

(
T−1∑
t′=t

rt′

)
∇θ log πθ(at|st)

]
(1.38)

= Eτ∼πθ

[
T−1∑
t=0

(
T−1∑
t′=t

rt′ − b(st)

)
∇θ log πθ(at|st)

]
(1.39)

where b can be any function that only depends on st. In practice, b is usually an estimate
of the value function V (st) and it can greatly reduce the variance of the gradient estimation
[78]. If both the policy and value function are estimated, it is typically called an actor-critic
method in the RL literature where actor refers to the policy and critic to the value function.

The formulation in (1.39) allows for easy sampling. We let the agent act according to πθ(a|s)
and we use a sampled trajectory τ = (s0, a0, r0, . . . , sT ) to optimize the policy using the
estimated gradient

∇θJ(θ) ≈ 1

T

T−1∑
t=0

(
T−1∑
t′=t

rt′ − V̂φ(st)

)
∇θ log πθ(at|st) (1.40)

where V̂φ approximates the value function V and is parameterized by φ. This function can
in turn be optimized e.g. by a least squares objective JV (φ) de�ned as

JV (φ) =
1

2T

T−1∑
t=0

∥∥∥∥∥
T−1∑
t′=t

rt′ − V̂φ(st)

∥∥∥∥∥
2

(1.41)

If we denote At =
∑T−1

t′=t rt′ − V̂φ(st), and look at the signs in (1.40) for one index t in
isolation, we note that ifAt > 0, then the e�ect of a gradient ascent step will be to increase
J(θ) by increasing πθ(at|st). Whatever actions at lead to positive advantages At > 0 are

5Sketches of the main steps of the proofs are given here. RewriteEτ [R(τ)] =
∑T−1
t=0 Eτ [rt] and di�eren-

tiateEτ [rt] as in the main text and use that rt only depends on the trajectory up until t, notT −1. For the base-
line subtraction, note that πθ(at|st)∇θ log πθ(at|st) = ∇θπθ(at|st), so Eat [b(st)∇θ log πθ(at|st)] =∑
at
b(st)∇θπ(at|st) = b(st)∇θ1 = 0.

25



reinforced in the sense that πθ(at|st) increases, and similarly πθ(at|st) decreases for actions
with negative advantagesAt < 0.

Algorithm 1 shows the pseudo-code for a basic version of policy gradient using the equations
derived above. We assume that we update θ and φ by a single gradient ascent or descent step
using learning rateαp andαv respectively. Since the value function V depends on the policy
πθ, the parameters φ of the estimate V̂φ need to be updated any time θ is updated. There are
many variations of the basic algorithm presented here. We can use any gradient based opti-
mization method, and e.g. ADAM [41] is also a common choice. We can also collect multiple
trajectories per parameter update and average the gradients in (1.40) over multiple trajectories
to reduce the variance, and for a set of collected trajectories we can perform multiple param-
eter updates. However, we can in general not reuse a collected trajectory after the parameters
θ are updated. It is required that the trajectories are sampled from the policy πθ with the cur-
rent parameters θ for the gradient estimation to be correct, so after updating the policy the
trajectories are in general immediately discarded and new ones are sampled. It is also possible
to estimate the advantage functionAt =

∑T−1
t′=t rt′ − V̂φ(st) di�erently, e.g. as in General-

ized Advantage Estimation (GAE) [69], and sometimes all advantages are re-scaled prior to
the gradient estimation to have mean 0 and standard deviation 1 for numerical reasons.

Algorithm 1 Procedural code for a basic actor-critic version of policy gradient.

1: Initialize the parameters of the policy πθ and the value function V̂φ.
2: for Episode = 1, . . . , Neps do

3: Reset the environment to obtain s0
4: for t = 0, . . . , T − 1 do
5: Sample an action at ∼ πθ(·|st) and store (st, at, rt).
6: end for

7: θ ← θ + αp
1
T

∑T−1
t=0

(∑T−1
t′=t rt′ − V̂φ(st)

)
∇θ log πθ(at|st)

8: φ← φ− αv∇φ
(

1
2T

∑T−1
t=0

∥∥∥∑T−1
t′=t rt′ − V̂φ(st)

∥∥∥2)
9: end for

10: return πθ (optimized policy)

We will now show the equations for Proximal Policy Optimization (PPO) [70], which further
alters (1.39) to at every step not change the policy too much. We assume that we have collected
a trajectory τ = (s0, a0, r0, . . . , sT ) as before, but we also keep track of the old policy
parameters θold used to collect τ and compare πθ with πθold to make sure it does not deviate
too much. Instead of a single gradient step as in (1.40) we update the parameters with the
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gradient

∇θ
1

T

T−1∑
t=0

min

(
πθ(at|st)
πθold(at|st)

At, clip
(
πθ(at|st)
πθold(at|st)

, 1− ε, 1 + ε

)
At

)
(1.42)

where

clip(x, L,H) = max(min(x,H), L) =


L, x < L

x, L ≤ x ≤ H
H, x > H

(1.43)

constraints x to the interval [L,H],At is the advantage function, estimated by
∑T−1

t′=t rt′ −
V̂φ(st) as in actor-critic, and ε is a hyperparameter. While (1.40) looks quite di�erent to
(1.42), if we rewrite ∇θ log πθ(at|st) = ∇θπθ(at|st)/πθ(at|st) we see the similarity. It
can be shown that the di�erence between (1.40) and (1.42) is that in PPO the terms where
πθ(at|st) deviates too much from πθold(at|st) have gradient zero. Speci�cally, the terms of
the sum in (1.42) can be rewritten as

min

(
πθ(at|st)
πθold(at|st)

At, clip
(
πθ(at|st)
πθold(at|st)

, 1− ε, 1 + ε

)
At

)
(1.44)

=

At min
(

πθ(at|st)
πθold (at|st)

, 1 + ε
)
, At ≥ 0

At max
(

πθ(at|st)
πθold (at|st)

, 1− ε
)
, At < 0

(1.45)

where we see that ifAt > 0, the gradient is non-zero only ifπθ(at|st) < (1+ε)πθold(at|st),
and ifAt < 0 it is non-zero only ifπθ(at|st) > (1−ε)πθold(at|st), which clari�es the e�ect
of the hyperparameter ε. Note that an action with At > 0 should be reinforced (πθ(at|st)
should increase) while an action with At < 0 should be suppressed (πθ(at|st) should de-
crease).
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[56] D. Nilsson, A. Pirinen, E. Gärtner, and C. Sminchisescu. Embodied visual active learning for
semantic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 2373–2383, 2021.
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Abstract

Semantic video segmentation is challenging due to the sheer amount of data that needs to
be processed and labeled in order to construct accurate models. In this paper we present a
deep, end-to-end trainable methodology for video segmentation that is capable of leverag-
ing the information present in unlabeled data, besides sparsely labeled frames, in order to
improve semantic estimates. Our model combines a convolutional architecture and a spatio-
temporal transformer recurrent layer that is able to temporally propagate labeling informa-
tion by means of optical �ow, adaptively gated based on its locally estimated uncertainty. The
�ow, the recognition and the gated temporal propagation modules can be trained jointly,
end-to-end. The temporal, gated recurrent �ow propagation component of our model can
be plugged into any static semantic segmentation architecture and turn it into a weakly su-
pervised video processing one. Our experiments in the challenging CityScapes and Camvid
datasets, and for multiple deep architectures, indicate that the resulting model can leverage
unlabeled temporal frames, next to a labeled one, in order to improve both the video segmen-
tation accuracy and the consistency of its temporal labeling, at no additional annotation cost
and with little extra computation.
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1 Introduction

Systems capable of computing accurate and temporally consistent semantic segmentations in
video are central to scene understanding, being useful in applications in robotics, for instance
grasping, or for autonomous vehicles where one naturally works with videos rather than sin-
gle images, and high levels of precision are needed. Since the emergence of deep learning
methods for image classi�cation, the problem of semantic image segmentation has received
increasing attention, with some of the most successful methods based on fully trainable con-
volutional architectures (CNN). Data for training and re�ning single frame, static models is
now quite diverse [7, 29]. In contrast, fully trainable approaches to semantic video segmen-
tation face the di�culty of obtaining detailed annotations for individual video frames, al-
though datasets are emerging for the (unsupervised) video segmentation problem [11, 36, 27].
Therefore some of the existing approaches to semantic video segmentation [42, 43, 25] rely on
single frame models with corresponding variables connected in time using random �elds with
higher-order potentials, and mostly pre-speci�ed parameters. Fully trainable approaches to
video are rare. The computational complexity of video processing further complicated mat-
ters.

One possible approach to designing semantic video segmentation models in the long run
can be to only label frames, sparsely, in video, as it was done for static datasets[7, 29]. Then
one should be able to leverage temporal dependencies in order to propagate and aggregate
information in order to decrease uncertainty during both learning and inference. This would
require a model that can integrate spatio-temporal dependencies across video frames.

While approaches based on CNNs appear right, they are non-trivial to adapt to video seg-
mentation due to the amount of data that needs to be processed for dense predictions. If
video processing and temporal matching were to be learned without explicit components
such as optical �ow warping, one possibility would be to design a model based on 3D convo-
lutions, as used e.g. for action recognition[20, 3]. To our knowledge no such approach has
been pursued for semantic video segmentation. Instead, we will take an explicit modeling
approach relying on existing single-frame CNNs augmented with spatial transformer struc-
tures that implement warping along optical �ow �elds. These will be combined with adaptive
recurrent units in order to learn to fuse the estimates from single (unlabeled) frames with the
labeling information temporally propagated from nearby ones, properly gated based on their
uncertainty. The proposed model is di�erentiable and end-to-end trainable.

2 Related Work

Our semantic video segmentation work relates to the di�erent �elds of semantic image seg-
mentation, as well as, more remotely, to unsupervised video segmentation. We will here only
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Figure 2.1: Overview of our Spatio-Temporal Transformer Gated Recurrent Unit (STGRU), combining a Spatial Trans-
former Network (§3.1) mapping φ for optical flow warping with a Gated Recurrent Unit (§3.2) to adaptively
propagate and fuse semantic segmentation information over time. E.g. the pole is not accurately segmented
by the static network (xt), but combining xt with the segmentation at the previous timestep (ht−1) gives a
more accurate estimate ht.

brie�y review the vast literature with some attention towards formulations based on deep
architectures which represent the foundation of our approach.

Many approaches start with the network in [24, 39] and re�ne it for semantic segmentation.
In [15] residual connections are used making it possible to increase depth substantially. [32]
obtained semantic segmentations by turning a network for classi�cation [39] into a dense
predictor by computing segmentations at di�erent scales and combining all predictions. The
network was made fully convolutional. Another successful approach is to apply a dense con-
ditional random �eld (CRF) [23] as a post-processing step on top of individual pixel or frame
predictions. [4] use a fully convolutional network to predict a segmentation and then apply
the dense CRF in post processing. [46] realized that inference in dense CRFs can be formu-
lated as a �xed point iteration implementable as a recurrent neural network. Another suc-
cessful approach is the deep architecture of [44] where max pooling layers are replaced with
dilated convolutions. The network was extended by introducing a context module where
convolutions with increasingly large dilation sizes are used.

Video segmentation has received signi�cant attention starting from early methodologies based
on temporal extensions to normalized cuts [38], random �eld models and tracking [42, 26],
motion segmentation [34] or e�cient hierarchical graph-based formulations [14, 43]. More
recently, proposal methods where multiple �gure-ground estimates or multipart superpixel
segmentations are generated at each time-step, then linked through time using optical �ow
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[27, 1, 35], have become popular.

The dense CRF of [23] has been used for semantic video segmentation [25, 41], most no-
tably by [25] using pairwise potentials based on aligning the frames using optical �ow. Along
similar lines as our earlier version of this work[33], [10] independently present an end-to-end
trainable system for semantic video segmentation that warps two-frame intermediate repre-
sentations in a CNN. We di�er in that we warp the segmentation outputs and we can use
multiple frames forward and backward in time. In a similar fashion, [30] combines semantic
segmentations by means of optical �ow warping for body part segmentation in videos. In
[19], video propagation is performed by �ltering in a bilateral space instead of using optical
�ow to connect frames temporally. The temporal matching can also be performed using su-
perpixels and optical �ow, as in [16], where information in matched regions is pooled using
Spatio-Temporal Data-Driven Pooling (STD2P). [21] use GANs [13] to �rst predict future
video frames in an unsupervised manner and then use the learned features for semantic video
segmentation. In [37] observe that intermediate representations in a CNN change slowly in
video, and present a method to only recompute features when there is enough change, lead-
ing to signi�cant speed-ups.

3 Methodology

A visual illustration of how our semantic video segmentation model aggregates information
in adjacent video frames is presented in �g. 2.1. We start with a semantic segmentation at the
previous time step, ht−1 and warp it along the optical �ow to align it with the segmentation
at time t, by computingwt = φt−1,t(ht−1) where φ is a mapping of labels along the optical
�ow. This is fed as the hidden state to a gated recurrent unit (GRU) where the other input
is the estimate xt computed by a single frame CNN for semantic segmentation. The infor-
mation contained inwt and xt has signi�cant redundancy, as one expects from nearby video
frames, but in regions where it is hard to �nd the correct segmentation, or where signi�cant
motion occurs between frames, they might contain complementary roles. The �nal segmen-
tation ht combines the two segmentations wt and xt by means of learnt GRU parameters
and should include segments where either of the two are very con�dent. Our model is end-
to-end trainable and we can simultaneously re�ne the GRU parameters θg , the parameters
of the static semantic segmentation network θs and the parameters of the FlowNet θf .

Our overall video architecture can operate over multiple timesteps both forward and back-
ward with respect to the timestep t, say, where semantic estimates are obtained. The illustra-
tion of this mechanism is shown in �g. 2.2. In training, the model has the desirable property
that it can rely only on sparsely labeled video frames, but can take advantage of the temporal
coherency in the unlabeled video neighborhoods centered at the ground truth. Speci�cally,
given an estimate of our static (per-image) semantic segmentation model at timestep t, as well
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Figure 2.2: Illustration of our temporal architecture entitled Gated Recurrent Flow Propagation (GRFP) based on Spatio-
Temporal Transformer Gated Recurrent Units (STGRU), illustrated in fig.2.1. The model can integrate both
forward only and forward-backward calculations, under separate recurrent units with different parameters θgf
(forward) and θgb (backward). Each of the forward and backward recurrent units have tied parameters across
timesteps. The parameters of the semantic segmentation architecture (θs) and FlowNet (θf ) are shared
over time. The predictions from the forward model aggregated over frames t− T, . . . , t− 1, t (in the above
illustration T = 1) and (when available and desirable) backward model aggregated over frames t+T, . . . t+1, t
are fused at the central location t in order to make a prediction that is compared against the ground truth
available only at frame t by means of a semantic segmentation loss function.

as estimates prior and posterior to it, we can warp these using the con�dence gated optical
�ow forward and backward in time (using the Spatio-Temporal Transformer Gated Recur-
rent Unit, STGRU, illustrated in �g. 2.1) towards timestep t where ground truth informa-
tion is available, then fuse estimates in order to obtain a prediction. The resulting model is
conveniently di�erentiable. The loss signal will then be used to backpropagate information
for training both the parameters of the gated recurrent units (θgf , θgb), the parameters of the
(per-frame) semantic segmentation network (θs) and the parameters of the FlowNet (θf ). In
testing the network can operate either statically, per frame, or take advantage of video frames
prior and (if available) posterior to the current processing timestep.

Given these intuitions we will now describe the main components of our model: the spatio-
temporal transformer warping and the gated recurrent unit, and then describe implementa-
tion and training details.
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3.1 Spatio-Temporal Transformer Warping

We will use optical �ow as input to warp the semantic segmentation estimates across succes-
sive frames. We extend the spatial transformer network [18] to operate in the spatio-temporal
video domain. Elements on a two-dimensional grid xij will map to yij according to

yij =
∑
m,n

xmnk(i+ fyij −m, j + fxij − n), (2.1)

where (fxij , f
y
ij) is the optical �ow vector for the pixel at location (i, j). We will use a bilinear

interpolation kernel k(x, y) = max(0, 1 − |x|) max(0, 1 − |y|). The mapping is di�er-
entiable and we can backpropagate gradients from y to both x and f . The sum contains
only 4 non-zero terms when using the bilinear kernel, so it can be computed e�ciently. The
methodology has been introduced earlier by us [33] and also independently in [17, 30, 10].

3.2 GRUs for Semantic Video Segmentation

To connect the probability maps for semantic segmentation at di�erent timesteps, ht−1 and
ht, we will use a modi�ed convolutional version of the Gated Recurrent Unit [5]. In par-
ticular, we will design a gating function based on the �ow, so we only trust the semantic
segmentation values warped from ht−1 at locations where the �ow is certain. We also use
gating to predict the new segmentation probabilities, taking into account if eitherht−1 orxt
have high con�dence for a certain class in some region of the image.

To adapt a generic GRU for semantic video segmentation, we �rst change all fully connected
layers to convolutions. The hidden state ht and the input variable xt are no longer vectors
but tensors of sizeH ×W × C whereH is the image height,W is the image width andC
is the number of channels, corresponding to the di�erent semantic classes. The input xt is
normalized using softmax andxt(i, j, c) models the probability that label is c for pixel (i, j).
We let φt−1,t(x) denote the warping of a feature map x from time t − 1 to t, using optical
�ow given as additional input, as described in section 3.1. The proposed adaptation of the
GRU for semantic video segmentation is

wt = φt−1,t(ht−1) (2.2)
rt = 1− tanh(|Wir ∗ (It − φt−1,t(It−1)) + br|) (2.3)

h̃t = Wxh ∗ xt +Whh ∗ (rt � wt) (2.4)
zt = σ(Wxz ∗ xt +Whz ∗ (rt � wt) + bz) (2.5)

ht = softmax(λ(1− zt)� rt � wt + zt � h̃t), (2.6)

where W and b denote trainable convolution weights, and biases, respectively. Instead of
relying on a generic parametrization for the reset gate rt, we use a con�dence measure for
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the �ow by comparing the image It with the warped image of It−1. We also discard tanh
when computing h̃t and instead use softmax in order to normalize ht. We multiply with a
trainable parameter λ in order to compensate for a possibly di�erent scaling of h̃t relative to
the warped ht−1 due to the convolutions with Whh and Wxh. Note that ht−1 only enters
when we compute the warpingwt so we only use the warped ht−1, i.e. wt.

3.3 Implementation

For the static (per-frame) component of our model, we rely on a deep neural network pre-
trained on the CityScapes dataset and fed as input to the gated recurrent units. We conducted
experiments using the Dilation architecture [44], LRR [12] and PSP [45]. The convolutions
in the STGRU were all of size 7 × 7. We use the standard log-likelihood loss for semantic
segmentation

L(θ) = −
∑
i,j

log p(yij = cij |I, θ) (2.7)

where p(yij = cij |I, θ) is the softmax normalized output of the STGRU, estimating the
probability of the correct class cij for the pixel at (i, j). The recurrent network was optimized
using Adam [22] with β1 = 0.95, β2 = 0.99 and learning rate 2 · 10−5. Due to GPU
memory constraints, the per-frame semantic segmentation CNN computations had to be
performed one frame at a time with only the �nal output saved in memory. When training
the system end-to-end the intermediate activations for each frame had to be recomputed.
We used standard gradient descent with momentum for the experiments where the static
networks or �ow networks were re�ned, with learning rate 2 · 10−12 and momentum 0.95.
Note that the loss was not normalized, hence the small learning rate. We used FlowNet2 [17]
for all experiments unless otherwise stated.

Default setupThe GRFP model we use is, unless otherwise stated, a forward model trained
using 5 frames (T = 4 in �g. 2.2) where the parameters of the STGRU θgf and the parame-
ters of the static segmentation CNN θs are re�ned, while the parameters of the FlowNet θf
are frozen.

4 Experiments

We perform an extensive evaluation on the challenging CityScapes and CamVid datasets,
where video experiments nevertheless remain di�cult to perform due to the large volume
of computation. We evaluate under two di�erent perspectives, re�ecting the relevant, key
aspects of our method. First we evaluate semantic video segmentation. We will compare our
method with other methods for semantic segmentation and show that by using temporal
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information we can improve segmentation accuracy over a network where the predictions
are computed per frame and unlabeled video data is not used. In the second evaluation we
use our method to compute semantic segmentations for all frames in a longer video. We will
then compare its temporal consistency against the baseline method where the predictions are
performed per frame. We will show quantitatively that our method gives a temporally more
consistent segmentation compared to the baseline.

4.1 Semantic Video Segmentation

CityScapes [6] consists of sparsely annotated frames. Each labeled frame is the 20th frame in
a 30 frame video snippet. There is a total of 2,975 labelled frames in the training set, 500 in
the validation set and 1,525 in the test set. We use a forward model with 5 frames and apply the
loss to the �nal frame. Notice however that due to computational considerations, while the
STGRU unit parameters θgf were trained based on propagating information from 5 frames,
the unary network parameters θs were re�ned based on back-propagating gradient from the
3 STGRU units closest to the loss. The images had size 512 × 512 in training, whereas
in testing their size was increased to the full resolution 1024 × 2048 as more memory was
available compared to the training setup.

We used Dilation10 [44], LRR [12] or PSP [45] as backend to our model. We obtain im-
proved performance by using the proposed video methodology compared to the static per-
frame baseline for all deep architectures used for static processing. We show the results on
the validation set in table 2.1. In this experiment, we only re�ned the parameters of the GRU
and not the parameters of the PSP network.

In table 2.2 we show semantic segmentation results of our model on the CityScapes test set,
along with the performance of a number of state of the art static semantic segmentation
models.

We used our GRFP methodology trained using Dilation10, LRR-4x and PSP as baseline
models and in all cases we show improved labelling accuracy. Notice that our methodol-
ogy can be used with any semantic segmentation method that processes each frame indepen-
dently. Since we showed improvements using all baselines, we can predict that other single-
frame methods can bene�t from our proposed video methodology as well.

In table 2.3 we show the mean IoU over classes versus the number of frames used for infer-
ence for our model based on Dilation10. One can see that under the current representation,
in inference, not much gain is achieved by the forward model beyond propagating informa-
tion from 4 frames. The results are presented in more detail in table 2.4 where we show the
estimates produced by the pre-trained Dilation10 network and the per-frame Dilation net-
work with parameters re�ned by our model, GRFP(1), as well as the results of our GRFP
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Table 2.1: Average class (cls) and category (cat) IoU on the CityScapes validation set for various single frame baselines we
tried our model GRFP on. By using our video methodology we can see labelling improvements for all baselines
we tried, showing that our method is applicable to many different single frame semantic segmentation CNNs.
With SSc and MSc we mean single scale and multi scale testing, see [45] for details.

Method IoU cls IoU cat
GRFP(PSP-MSc, FlowNet2) 81.3 90.7

PSP-MSc [45] 80.9 90.5
GRFP(PSP-SSc, FlowNet2) 80.2 90.2

PSP-SSc [45] 79.7 89.9
GRFP(LRR-4x, FlowNet2) 73.6 88.3

LRR-4x [12] 72.5 87.8
GRFP(Dilation10, FlowNet2) 69.5 86.4

Dilation10 [44] 68.7 86.3

Table 2.2: Average class (cls) and category (cat) IoU on the CityScapes test set. We use Dilation10, LRR-4x and PSP as
baselines, and we are able to improve the average class IoU with 1.0, 1.1 and 0.4 percentage points, respectively.
Notice that our GRFP methodology proposed for video is applicable to most of the other semantic segmentation
methods that predict each frame independently – they can all benefit from potential performance improvements
at no additional labeling cost.

Method IoU cls IoU cat
GRFP(PSP-Msc, FlowNet2) 80.6 90.8

NetWarp [10] 80.5 91.0
PSP-Msc [45] 80.2 90.6
PEARL [21] 75.4 89.2

GRFP(LRR-4x, FlowNet2) 72.9 88.6
LRR-4x [12] 71.8 88.4

Adelaide context [28] 71.6 87.3
DeepLabv2-CRF [4] 70.4 86.4

GRFP(Dilation10, FlowNet2) 68.1 86.6
Dilation10 [44] 67.1 86.5

DPN [31] 66.8 86.0
FCN 8s [32] 65.3 85.7

model operating over 5 frames GRFP(5). Notice that while the average of our GRFP(1) is
almost identical to the one of the pre-trained Dilation10, the individual class accuracies are
di�erent. It is apparent that most of our gains come from contributions due to temporal
propagation and consistency reasoning in our STGRU models.

Figure 2.4 shows several illustrative situations where our proposed GRFP methodology out-
performs the single frame Dilation10 baseline. In particular, our method is capable to more
accurately segment the car, the right wall, and the left pole. In all cases it is apparent that
inference for the current frame becomes easier when information is integrated over a longer
temporal window, as in GRFP. in �g. 2.3 we show several illustrative examples of the �ow gat-
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Table 2.3: Average class (cls) and category (cat) IoU on the validation set of CityScapes when using a different number of
frames for inference. The model was trained using 5 frames. Notice that using more than one frame improves
performance which for this dataset, however, saturates beyond 4 frames.

Frames IoU cls IoU cat
1 68.8 86.3
2 69.2 86.4
3 69.4 86.4
4 69.5 86.4
5 69.5 86.4

Figure 2.3: Illustration of the flow gating as estimated by our Spatio-Temporal Transformer Gated Recurrent Unit. We
show three examples each containing a video frame, the optical flow and its confidence as estimated by our
STGRU model. White regions indicate a confident flow estimate (rt = 1) whereas black regions are uncertain
(rt = 0). Occluded regions are black, as expected.

ing learned by our STGRU units. Notice that the areas our model learns to discard (rt = 0)
correspond to occluded regions.

Combining forward and backward models. In table 2.5 we show the accuracy on the
CityScapes validation set for various settings where we used the forward and backward mod-
els and averaged the predictions using Dilation10. This joint model was described in �g. 2.2.
The best results were obtained when a forward-backward model was trained by averaging the
predictions using 5 frames going forward (using It−4, It−3, . . . , It) with the predictions us-
ing 5 frames going backward (using It+4, It+3, . . . , It). Better results were obtained when
the forward and backward models were trained jointly, and not independently.
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Table 2.4: Average class IoUs on the CityScapes validation set for the Dilation10 baseline, the GRFP model using 5 frames,
GRFP(5), and the refined Dilation10 net that the GRFP learns, which is equivalent to GRFP(1).

Class Dilation10 GRFP(5) GRFP(1)
Road 97.2 97.3 97.1
Sidewalk 79.5 80.1 79.2
Building 90.4 90.5 90.4
Wall 44.9 50.6 46.8
Fence 52.4 53.3 53.0
Pole 55.1 55.3 55.2
Tra�c light 56.7 57.5 56.7
Tra�c sign 69.0 68.7 68.9
Vegetation 91.0 91.1 91.0
Terrain 58.7 59.6 58.7
Sky 92.6 92.7 92.5
Person 75.7 76.2 75.7
Rider 50.0 50.3 50.1
Car 92.2 92.4 92.2
Truck 56.2 57.4 55.8
Bus 72.6 73.9 72.8
Train 53.2 53.4 54.5
Motorcycle 46.2 48.8 46.3
Bicycle 70.1 71.0 70.4
Average 68.7 69.5 68.8

Table 2.5: Average class IoU on the CityScapes validation set for various forward-backward models and for models refining
FlowNet2 and training end-to-end. See Fig. 2.2 for how the parameters are defined. The first three models
are described in more detail in table 2.4. (a) A forward-backward model evaluated with T = 2 using the same
parameters for the backward STGRU as the best forward model GRFP(5) both in the forward direction and
backward direction. We used θs and θgf as for GRFP(5) and set θgb = θgf . (b) as (a) but with T = 4.
(c) We used θgf and θs from GRFP(5) but refined θgb independently. We used T = 4. (d) We refined all
parameters θgf , θgb and θs jointly and used T = 4. (e) We used the setting in GRFP(5) and trained the
Dilation10 network, the flow network and the recurrent network jointly. It was evaluated in forward mode with
T = 4.

Method Dilation10 GRFP(5) GRFP(1) fwbw(a) fwbw(b) fwbw(c) fwbw(d) FlowNet2(e)
IoU 68.7 69.5 68.8 69.5 69.6 69.6 69.8 69.5

Joint training including optical �ow. To make our model entirely end-to-end trainable
we also re�ne its optical �ow component. In training, we jointly estimate all the component
STGRU, Dillation10 and Flownet2 parameters. The model produced competitive results,
see (e) in table 2.5, although the performance was not improved compared to models where
we only re�ned the parameters of the static network and those of the STGRU. We note that
the error signal passed to the FlowNet comes from a loss based on semantic segmentation.
This is a very weak form of supervision for re�ning optical �ow.
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Table 2.6: Average IoU on the test set of CamVid for different video segmentation methods all based on the per-frame
Dilation8 CNN. Note that out method GRFP obtains a higher score than the static Dilation8 model it is based
on.

Method IoU
Dilation8 [44] 65.3

FSO [25] 66.1
GRFP(Dilation8, FlowNet2) 66.1

VPN [19] 66.7
NetWarp [10] 67.1

Table 2.7: Temporal consistency (%) for demo videos Stuttgart 00, Stuttgart 01 and Stuttgart 02 in the CityScapes
dataset. Notice that our GRFP semantic video segmentation method achieves a more consistent solution
than single frame baselines.

Method Vid0 Vid1 Vid2 Avg
GRFP(PSP-SSc, FlowNet2) 88.15 90.99 85.64 88.26

PSP-Ssc 85.82 88.93 82.92 85.89
GRFP(LRR-4x, FlowNet2) 84.78 88.73 81.72 85.08

LRR-4x 80.74 86.22 77.88 81.61
FSO [25] 91.31 93.32 89.01 91.21

GRFP(Dilation10, FlowNet2) 84.29 88.87 81.96 85.04
Dilation10 79.18 86.13 76.77 80.69

CamVid To show that our method is not limited to CityScapes we also provide additional
experiments on the CamVid dataset [2]. This dataset consists of 4 videos that are annotated
at 1 Hz. We follow the setup in [44, 25] where all images are downsampled to 480 × 640,
and we use the same split with 367 training images, 100 validation images and 233 test images.
We use our GRFP methodology with Dilation8 [44] as static network and FlowNet2 [17] as
�ow network. The results are shown in table 2.6. We can see that the segmentation accuracy
is improved by using additional video frames as input, and our labeling results are on par with
the state-of-the-art[25]. Qualitative examples are shown in �g. 2.5.

Temporal Consistency We evaluate the temporal consistency of our semantic video seg-
mentation method by computing trajectories in video using [40] and calculating for how
many of the trajectories the labelling is the same in all frames, following the evaluation method-
ology in [25]. We use the demo videos provided in the CityScapes dataset, that are 600, 1100
and 1200 frames long, respectively. Due to computational considerations, we only used the
middle 512 × 512 crop of the larger CityScapes images. The results are given in table 2.7
where improvements are achieved for all videos and for all methods compared to per-frame
baselines. This can also be seen qualitatively in the videos provided in the supplementary
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Table 2.8: Timing of the different components of out GRFP methodology for a Titan X GPU. We show improved seg-
mentation accuracy and temporal consistency by incurring an additional runtime of 75 ms per frame if we use
FlowNet1 or 335 ms per frame if we use FlowNet2.

Dilation10 LRR-4x
Segmentation module 350 ms 200 ms
FlowNet2/FlowNet1 300/40 ms 300/40 ms

STGRU 35 ms 35 ms

Table 2.9: Assessing the robustness of our methodology w.r.t. optical flow quality. We report the average class IoU on
the validation set of CityScapes. The optical flows computed using FlowNet1[9] or the method of Farnebäck[8]
have lower accuracy than FlowNet2, yet our GRFP methodology can still improve the labelling accuracy over
per-frame processing baselines.

Method IoU cls
GRFP(LRR-4x, FlowNet2) 73.6
GRFP(LRR-4x, FlowNet1) 73.4
GRFP(LRR-4x, Farnebäck) 73.0

LRR-4x 72.5

material1. There is signi�cantly less �ickering and noise when using the proposed GRFP
semantic video segmentation methodology compared to models that rely on single-frame es-
timates. Note that while the temporal consistency is lower for our method compared to FSO,
the run-time is signi�cantly faster. Our method takes about 0.7 s per frame while FSO takes
more than 10s per frame.

Timing. We report timings for the di�erent components of our method when using a Titan
X GPU. We report results for both FlowNet1 [9] and FlowNet2 [17]. Table 2.8 show timings
per frame for the three main components of our framework: the static prediction, the �ow,
and the STGRU computations. We report the time to process (testing, not training) one
frame in a video with resolution 512 × 512. With the proposed methodology we achieve
both improved temporal consistency and labelling accuracy at an additional runtime cost of
335 ms per frame with FlowNet2 and 75 ms with FlowNet1.

E�ect of Low Optical Flow Quality. To assess the robustness of our methodology to
inaccurate optical �ow modules we perform experiments where Flownet1[9] or the opti-
cal �ow method of Farnebäck [8] were used at test time instead of (the most competitive)
FlowNet2 for a GRFP model trained with LRR-4x and FlowNet2. The average end-point-
error (EPE) on KITTI 2012 is 25.3 pixels for Farnebäck, 9.1 pixels for FlowNet1, whereas the
best FlowNet2 model has an EPE of 1.8 pixels. Based on results in table 2.9 we conclude
that our method can compensate and still improve over per-frame processing baselines, even
when the optical �ow has signi�cantly lower quality then FlowNet2.

1Available at https://openaccess.thecvf.com/content_cvpr_2018/Supplemental/

2131-supp.zip
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5 Conclusions

We have presented a deep, end-to-end trainable methodology for semantic video segmenta-
tion – including the capability to jointly re�ne the static recognition, optical �ow and tem-
poral propagation modules –, that is capable of taking advantage of the information present
in unlabeled frames in order to improve estimates. Our model combines a convolutional ar-
chitecture and a spatio-temporal transformer recurrent layer that learns to temporally prop-
agate semantic segmentation information by means of optical �ow, adaptively gated based
on its locally estimated uncertainty. Our experiments on the challenging CityScapes and
CamVid datasets, and for di�erent deep semantic components, indicate that our resulting
model can successfully propagate information from labeled video frames towards nearby un-
labeled ones, in order to improve both the accuracy of the semantic video segmentation and
the consistency of its temporal labeling, at no additional annotation cost, and with little sup-
plementary computation.

Acknowledgments: This work was supported by the European Research Council Consolidator
grant SEED, CNCS-UEFISCDI PN-III-P4-ID-PCE-2016-0535, the EU Horizon 2020 Grant DE-
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Figure 2.4: From top to bottom: the image, video segmentation by GRFP, static segmentation by Dilation10, and the
ground truth. Notice the more accurate semantic segmentation of the car in the left example, the right wall in
the middle example, and the left pole in the right example. For the first two examples the static method fails
where the some object has a uniform surface over some spatial extent. The pole in the right image may be
hard to estimate based on the current frame alone, but the inference problem becomes easier if earlier frames
are considered, a property our GRFP model has.
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Figure 2.5: Qualitative examples from the CamVid test set. From top to bottom: the image, static segmentation by
Dilation8, video segmentation by GRFP, and the ground truth. In the two examples to the left, notice that
poles are better segmented by our video method. In the two right images, the sidewalks are better segmented
using video.
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Abstract

We study the task of embodied visual active learning, where an agent is set to explore a 3d
environment with the goal to acquire visual scene understanding by actively selecting views
for which to request annotation. While accurate on some benchmarks, today’s deep visual
recognition pipelines tend to not generalize well in certain real-world scenarios, or for un-
usual viewpoints. Robotic perception, in turn, requires the capability to re�ne the recog-
nition capabilities for the conditions where the mobile system operates, including cluttered
indoor environments or poor illumination. This motivates the proposed task, where an agent
is placed in a novel environment with the objective of improving its visual recognition capa-
bility. To study embodied visual active learning, we develop a battery of agents – both learnt
and pre-speci�ed – and with di�erent levels of knowledge of the environment. The agents
are equipped with a semantic segmentation network and seek to acquire informative views,
move and explore in order to propagate annotations in the neighbourhood of those views,
then re�ne the underlying segmentation network by online retraining. The trainable method
uses deep reinforcement learning with a reward function that balances two competing objec-
tives: task performance, represented as visual recognition accuracy, which requires exploring
the environment, and the necessary amount of annotated data requested during active explo-
ration. We extensively evaluate the proposed models using the photorealistic Matterport3D
simulator and show that a fully learnt method outperforms comparable pre-speci�ed coun-
terparts, even when requesting fewer annotations.
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1 Introduction

Imagine a household robot in a home it has never been before and equipped with a visual
sensing module to perceive its environment and localize objects. If the robot fails to recog-
nize some objects, or to adapt to changes in the environment, over time, it may not be able to
properly perform its tasks. Much of the recent success of visual perception has been achieved
by deep CNNs, e.g. in image classi�cation [23, 41, 15], semantic segmentation [25, 6] and ob-
ject detection [35, 34]. Such systems may however be challenged by unusual viewpoints or
domains, as noted e.g. by Ammirato et al. [2] and Yang et al. [53]. Moreover, a mobile house-
hold robot should ideally operate with lightweight, re-trainable and task-speci�c perception
models, rather than large and comprehensive ones, which could be demanding computation-
ally and not tailored to the needs of a speci�c house.

In practice, even in closed but large environments, developing robust scene understanding by
exhaustive approaches may be di�cult, as looking everywhere requires an excessive amount of
annotation labor. All views are however not equally informative, as a view containing many
diverse objects is likely more useful than one covering a single semantic class, e.g. a wall. This
suggests that in learning visual perception one does not have to label exhaustively. As new,
potentially di�cult arrangements appear in an evolving environment, it would be useful to
identify those automatically, based on the task and demand, rather than programmatically, by
periodically re-training a complete model. Moreover, the agent could make the most out of
its embodiment by propagating a given ground truth annotation using motion – as measured
by the perceived optical �ow – in that neighborhood. The agent can then self-train, online,
for increased performance. The key questions are how should one explore the environment,
how to select the most informative views to annotate, and how to make the most out of them.
We analyze these questions in an embodied visual active learning framework, illustrated in
�g. 3.1.

To ground the embodied visual active learning task, in this work we measure visual percep-
tion ability as semantic segmentation accuracy. The agent is equipped with a semantic seg-
mentation system and must move around and request annotations in order to re�ne it. After
exploring the scene the agent should be able to accurately segment all views in the explored
area. This requires an exploration policy covering di�erent objects from diverse viewpoints
and selecting su�ciently many annotations to train the perception model. The agent can
also propagate annotations to di�erent nearby viewpoints using optical �ow and then self-
train. We develop a battery of methods, ranging from pre-speci�ed ones to a fully trainable
deep reinforcement learning-based agent, which we evaluate extensively in the photorealistic
Matterport3D environment [4].

In summary, our main contributions are:

• We study the task of embodied visual active learning, where an agent should explore
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Figure 3.1: Embodied visual active learning. An agent in a 3d environment must explore and occasionally request annota-
tion in order to efficiently refine its visual perception. The navigation component makes this task significantly
more complex than traditional active learning, where the data pool over which the agent queries annotations,
either in the form of image collections or pre-recorded video streams, is static and given.

a 3d environment to acquire visual scene understanding by actively selecting views for
which to request annotation. The agent then propagates information by moving in
the neighborhood of those views and self-trains;

• In our setup, visual learning and exploration can inform and guide one another since
the recognition system is selectively and gradually re�ned during exploration, instead
of being trained at the end of a trajectory on a full set of densely annotated views;

• We develop a variety of methods, both learnt and pre-speci�ed, to tackle our task in
the context of semantic segmentation;

• We perform extensive evaluation in a photorealistic 3d environment and show that a
fully learnt method outperforms comparable pre-speci�ed ones.

2 Related Work

The embodied visual active learning setup leverages several computer vision and machine
learning concepts, such as embodied navigation, active learning and active vision. There is
substantial recent literature on embodied agents navigating in real or simulated 3d environ-
ments, especially given the recent emergence of large-scale simulators [37, 22, 49, 9, 36].

We here brie�y review variants of embodied learning. In Embodied Question Answering
[8, 47, 54], an agent is given a question, e.g. ”What color is the car?”. The agent must typ-
ically explore the environment quite extensively in order to be able to answer. Zhu et al.
[57], Mousavian et al. [28] task the agent with reaching a target view using as few steps as
possible. The agent receives the current view and the target as inputs in each step. In point-
goal navigation [27, 38, 37, 14] the agent is given coordinates of a target to reach using visual
information and ego-motion. In visual exploration [33, 10, 7, 32, 55, 5] the task is to explore
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Figure 3.2: Embodied visual active learning for semantic segmentation. A first-person agent is placed in a room and a deep
network predicts the semantic segmentation of the agent’s view. Based on the view and its segmentation, the
agent can either select a movement action to change position and viewpoint, or select a perception action
(Annotate or Collect). Annotate adds the current view and its ground truth segmentation to the pool of
training data for the segmentation network, while Collect is a cheaper version (no additional supervision
required) where the current view and the last annotated view – propagated to the agent’s current position
using optical flow – is added to the training set. The propagated annotation is also a policy input for the
learnt agent in §3.3. After a perception action, the segmentation network is refined on the current training
set. The embodied visual active learning process is considered successful if, after selecting a limited number
of Annotate actions or an exploration budget is exhausted, the segmentation network can accurately segment
any other view in the environment where the agent operates. Note that the map (left) is not provided as input
to the learnt agent in §3.3.

an unknown environment as quickly as possible, by covering the whole scene area. In Am-
mirato et al. [2], Yang et al. [53] an agent is tasked to navigate an environment to increase the
accuracy of a pre-trained recognition model, e.g. by moving around occluded objects. This
is in contrast to our work where the goal is to collect views for training a perception model.
Whereas in Ammirato et al. [2], Yang et al. [53] the agent is spawned close to the target ob-
ject, we cannot make such assumptions, as our task is not only to accurately recognize a single
object or view, but to do so for all views in the potentially large area explored by the agent.

There are relations to curiosity-driven learning [30, 52], in that we also seek an agent which
visits novel views (states). In Pathak et al. [30], exploration is aided by giving rewards based on
the prediction error of a self-supervised inverse-dynamics model. This is a task-independent
exploration strategy useful to search 2d or 3d environments during training. In our setup,
exploration is task-speci�c in that it is aimed speci�cally at re�ning a visual recognition system
in a novel environment. Moreover, we use semi-dense rewards for both visual learning and
for exploration. Hence we are not operating using sparse rewards where curiosity approaches
often outperform other methods.

Our work is also related to Song et al. [42], Pot et al. [31], Zhong et al. [56], Wang et al. [46].
Di�erently from us, Song et al. [42] uses hand-crafted annotation and exploration strategies,
aiming to label all voxels in a 3d reconstruction by selecting a subset of frames covering all
voxels. This is a form of exhaustive annotation and a visual perception system is not trained.
Hence the system can only analyze objects in annotated voxels. In our setup the agent is
instead tasked with both exploration and the selection of views to annotate, and we learn a
perception module aiming to generalize to unseen views. In contrast to us, Pot et al. [31],
Zhong et al. [56], Wang et al. [46] do not consider an agent choosing where to move in the
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environment, nor which parts to label. Instead, they use all views seen when following a pre-
speci�ed path for training a visual recognition system. Pot et al. [31] use an object detector
obtained by self-supervised learning and clustering. Zhong et al. [56], Wang et al. [46] use
constraints from SLAM to improve a given segmentation model. This approach could in
principle complement our label propagation, and is orthogonal to our main proposals.

Next-best-view (NBV) prediction [18, 50, 20, 17, 43, 13] is super�cially similar to our task. In
Jayaraman and Grauman [18] an agent is trained to reveal parts of a panorama and a model is
built to complete all views of the panorama. Our setup allows free movement in an environ-
ment, hence it features a navigation component which makes our task more comprehensive.
While NBV typically integrates information from all predicted views, our task requires the
adaptive selection of only a subset of the views encountered during the agent’s navigation
trajectory.

Active learning [40, 11, 26, 48, 29, 12] can be seen as the static version of our setup, as it con-
siders approaches for learning what parts of a larger pre-existing and static training set should
be fed into the training procedure, and in what order. We instead consider the active learning
problem in an embodied setup, where an agent can move and actively select views for which
to request annotation. Embodiment makes it possible to use motion to propagate annota-
tions, hence e�ectively generate new ones at no additional annotation cost. In essence, our
work lays groundwork towards marrying the active vision and the active learning paradigms.

3 Embodied Visual Active Learning

Embodied visual active learning is an interplay between a �rst-person agent, a 3d environ-
ment and a trainable perception module. See �g. 3.1 for a high-level abstraction and �g. 3.2
for details of the particular task considered in this paper. The perception module processes
images (views) observed by the agent in the environment. The agent can request annota-
tions for views in order to re�ne the perception module. It should ideally request very few
annotations as these are costly. The agent can also generate more annotations for free by
neighborhood exploration using label propagation, such that when trained on that data the
perception module becomes increasingly more accurate in the explored environment. To as-
sess how successful an agent is on the task, we test how accurate the perception module is on
multiple random viewpoints selected uniformly in the area explored by the agent.

Task overview. The agent begins each episode randomly positioned and rotated in a 3d en-
vironment, with a randomly initialized semantic segmentation network. The ground truth
segmentation mask for the �rst view is given for the initial training of the segmentation net-
work. The agent can choose movement actions (MoveForward, MoveLeft, MoveRight,
RotateLeft, RotateRight with 25 cm movements and 15 degree rotations), or perception
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actions (Annotate, Collect). If the agent moves or rotates, the ground truth mask is prop-
agated using optical �ow. At any time, the agent may choose to insert the propagated anno-
tation into its training set with the Collect action, or to ask for a new ground truth mask
with the Annotate action. After an Annotate action the propagated annotation mask is
re-initialized to the ground truth annotation. After each perception action, the segmentation
network S is re�ned on the training set, which is expanded with the new data point.

The agent’s performance is evaluated at the end of the episode. The goal is to maximize the
mIoU and mean accuracy of the segmentation network on the views in the area explored
by the agent. Speci�cally, a set of reference views are randomly sampled within a disc of ra-
dius r centered at the starting location, and the segmentation network is evaluated on these.
Hence to perform well the agent is required to explore its surroundings, and it should re�ne
its perception module in regions of high uncertainty.

3.1 Methods for the Proposed Task

We develop several methods to evaluate and study the embodied visual active learning task.
All methods except the RL-agent issue the Collect action when 30% of the propagated
labels are unknown and Annotate when 85% are unknown. The intuition is that the pre-
speci�ed methods should request annotation when most pixels are unlabeled. The speci�c
hyperparameters of all models were set based on a validation set.

Random. Uniformly selects random movement actions. This baseline is thus a lower bound
in terms of embodied exploration for this task.

Rotate. Continually rotates left. This method is useful in comparing with trainable agents
that move and explore, i.e. to monitor what improvements can be expected from embodi-
ment.

Bounce. Explores by walking straight forward until it hits a wall, then samples a new random
direction and moves forward until it collides with a new wall, and so on. This agent quickly
explores the environment.

Frontier exploration. This method builds a map, online, by using using depth and motion
from the simulator [51]. All pixels with depth within a 4m threshold are back-projected in
3d and then classi�ed as either obstacles or navigable, based on height relative to the ground
plane. This agent is con�ned to move within the reference view radius r, which is a choice
to its advantage2 as annotated views will more likely be similar to reference views that reside
within that same radius.

Space �ller. Follows a shortest space �lling curve within the reference view radius r, and
2This ensures it is evaluated under ideal conditions in contrast to the RL-agent in §3.3.
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Figure 3.3: An example of a space filling curve in a Matterport3D floor plan. Methods based on the space filler assume
complete spatial knowledge of the environment.

as r increases the entire environment is explored. This baseline makes strong and somewhat
less general (or depending on the application, altogether unrealistic) assumptions in order
to create a path: knowing the �oor plan in advance, as well as which locations are reachable
from the start. It also only moves within the reference view radius, and knows the shortest
geodesic paths to take on the curve. Hence, this method can be considered an upper bound
for other methods. The space �lling curve is computed by placing a grid of nodes onto the
�oor plan (1m resolution, using a sampling and reachability heuristic), and then �nding the
shortest path around it with an approximate traveling salesman solver. Fig. 3.3 shows a space
�lling curve in a Matterport3D �oor plan.

RL-agent. This fully trainable method we develop jointly learns exploration and perception
actions in a reinforcement learning framework. See the full description in §3.3.

3.2 Semantic Segmentation Network

Each method uses the same FCN-inspired deep network [25] for semantic segmentation. The
network consists of 3 blocks of convolutional layers, each containing 3 convolutional layers
with kernels of size 3×3. The �rst convolutional layer in each block uses a stride of 2, which
halves the resolution. For each block the number of channels doubles, using 64, 128 and
256 channels respectively. Multiple predictions are made using the �nal convolutional layers
of each block. The multi-scale predictions are resized to the original image resolution using
bilinear interpolation and are �nally summed up, resulting in the �nal segmentation estimate.
Note that we have deliberately chosen to make the network small so that it can be e�ciently
re�ned on new data.

At the beginning of each episode, the parameters are initialized randomly, and we train the
network on the very �rst view, for which we always supply the ground truth segmentation.
Each time Annotate or Collect is selected, we re�ne the network. Mini-batches of size
8, which always include the latest added labeled image, are used in training. We use ran-
dom cropping and scaling for data augmentation. The network is re�ned either until it has
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trained for 1000 iterations or until the accuracy of a mini-batch exceeds 95%. We use a stan-
dard cross-entropy loss averaged over all pixels. The segmentation network is trained using
stochastic gradient descent with learning rate 0.01, weight decay 10−5 and momentum 0.9.
To propagate semantic labels, we compute optical �ow between consecutive viewpoints us-
ing PWC-Net [44]. The optical �ow is computed bidirectionally and only pixels where the
di�erence between the forward and backward displacements is less than 2 pixels are propa-
gated [45]. We found that labels were reliably tracked over several frames when using 2 pixels
as a threshold.

3.3 Reinforcement Learning Agent

To present the reinforcement-learning agent for our task, we begin with an explanation of the
state-action representation and policy network, followed by the reward structure and �nally
policy training.

Actions, states and policy. The agent is represented as a deep stochastic policy πθ(at|st)
that samples an action at in state st at time t. The actions are MoveForward, MoveLeft,
MoveRight,RotateLeft,RotateRight,Annotate andCollect. The full state is st =
{It,St,P t,F t}where It ∈ R127×127×3 is the image,St = St(It) ∈ R127×127×3 is the
semantic segmentation mask predicted by the deep network St (this network is re�ned over
an episode; t indexes the network parameters at time t),P t ∈ R127×127×3 is the propagated
annotation, and F t ∈ R7×7×2048 is a deep representation of It (a ResNet-50 backbone
feature map).

The policy consists of a base processor, a recurrent module and a policy head. The base pro-
cessor consists of two learnable components: φimg and φres. The 4-layer convolutional
network φimg takes as input the depth-wise concatenated triplet {It,St,P t}, producing
φimg(It,St,P t) ∈ R512. Similarly, the 2-layer convolutional network φres yields an em-
bedding φres(F t) ∈ R512 of the ResNet features F t. An LSTM [16] with 256 cells con-
stitutes the recurrent module, which takes as input φimg(It,St,P t) and φres(F t). The
input has length 1024. The hidden LSTM state is fed to the policy head, consisting of a
fully-connected layer followed by a 7-way softmax which produces action probabilities.

Rewards. In training, the main reward is related to the mIoU improvement of the �nal
segmentation networkST over the initialS0 on a reference setR. The setR is constructed at
the beginning of each episode by randomly selecting views within a geodesic distance r from
the agent’s starting location, and contains views with corresponding ground truth semantic
segmentation masks. At the end of an episode of lengthT , the underlying perception module
is evaluated on R. Speci�cally, after an episode (with T steps), the agent receives as �nal
reward:

RT = mIoU(ST ,R)−mIoU(S0,R) (3.1)
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To obtain a denser signal, tightly coupled with the �nal objective, we also give a reward pro-
portional to the improvement of S on the reference setR after each Annotate (ann) and
Collect (col) action:

Rannt = mIoU(St,R)−mIoU(St−1,R)− εann (3.2)

Rcolt = mIoU(St,R)−mIoU(St−1,R) (3.3)

To ensure the agent does not request costly annotations too frequently, each Annotate ac-
tion is penalized with a negative reward−εann (we set εann = 0.01), as seen in (3.2). Such a
penalty is not given for the free Collect action. Moreover, the dataset we use has 40 di�er-
ent semantic classes, but some are very rare and apply only to small objects, and some might
not even be present in certain houses. We address this imbalance by computing the mIoU
using only the 10 largest classes, ranked by the number of pixels in the set of reference views
for the current episode.

While the rewards (3.1) - (3.3) should implicitly encourage the agent to explore the environ-
ment in order to request annotations for distinct, informative views, we empirically found
useful to include an additional explicit exploration reward. Denote the positions the agent
has visited up to time t − 1 in its current episode by {xi}t−1i=1 = {(xi, yi)}t−1i=1, and let
xt = (xt, yt) denote its current position. We de�ne the exploration (exp) reward based on a
kernel density estimate of the agent’s visited locations:

Rexpt = a− bpt(xt) := a− b

t− 1

t−1∑
i=1

k(xt,xi) (3.4)

where a and b are hyperparameters (both set to 0.003). Here pt(xt) is a Gaussian kernel
estimate of the density with bandwidth 0.3m. It is large for previously visited positions and
small for unvisited positions, thereby encouraging the agent’s expansion towards new places
in the environment. The exploration reward is only given for movement actions. Note that
the posexi is only used to compute the rewardRexpt and is not available to the policy via the
state space.

Policy training. The policy network is trained using PPO [39] based on the RLlib reinforce-
ment learning package [24], as well as OpenAI Gym [3]. For optimization we use Adam [21]
with batch size 512, learning rate 10−4 and discount rate 0.99. During training, each episode
consists of 256 actions. The agent is trained for 4k episodes, which totals 1024k steps.

Our system is implemented in TensorFlow [1], and it takes about 3 days to train an agent us-
ing 4 Nvidia Titan X GPUs. An episode of length 256 took on average about 3 minutes using
a single GPU, and during training we used 4 workers with one GPU each, collecting rollouts
independently. The runtime per episode varies depending on how frequently the agent de-
cides to annotate, as training the segmentation network is the bottleneck and accounts for
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approximately 90% of the run-time. We used optical �ow from the simulator to speed up pol-
icy training. For evaluation, the RL-agent and all other methods use PWC-Net to compute
optical �ow. The ResNet-50 feature extractor is pre-trained on ImageNet [19] with weights
frozen during policy training.

4 Experiments

In this section we provide empirical evaluations of various methods. The primary metrics
are mIoU and segmentation accuracy but we emphasize that we test the exploration and an-
notation selection capability of policies – the mIoU and accuracy measure how well agents
explore in order to re�ne their perception. Di�erently from accuracy, the mIoU does not
become overly high by simply segmenting large background regions (such as walls), hence it
is more representative of overall semantic segmentation quality.

Experimental setup. We evaluate the methods on the Matterport3D dataset [4] using the
embodied agent framework Habitat [37]. This setup allows the agent to freely explore pho-
torealistic 3d models of large houses, that have ground truth annotations for 40 diverse se-
mantic classes. Hence it is a suitable environment for evaluation. To assess the generalization
capability of the RL-agent we train and test it in di�erent houses. We use the same 61, 11 and
18 houses for training, validation and testing as Chang et al. [4]. The RL-agent and all pre-
speci�ed methods except the space �ller are comparable in terms of assumptions, cf. §3.1. The
space �ller assumes full spatial knowledge of the environment (ground truth map) and hence
has inherent advantages over the other methods.

During RL-agent training we randomly sample starting positions and rotations from the
training houses at the start of each episode. An episode ends after 256 actions. Hyperpa-
rameters of the learnt and pre-speci�ed agents are tuned on the validation set. For validation
and testing we use 3 and 4 starting positions per scene, respectively, so each agent is tested
for a total of 33 episodes in validation and 72 episodes in testing. The reported metrics are
the mean over all these runs. All methods are evaluated on the same starting positions in the
same houses. The reference views used to evaluate the semantic segmentation performance
are obtained by sampling 32 random views within a 5 m geodesic distance of the agent’s start-
ing position at the beginning of each episode. In training the reference views are sampled
randomly. During validation and testing, for fairness, we sample the same views for a given
starting position when we test di�erent agents. Note that there is no overlap between ref-
erence views during policy training and testing, since training, validation and testing houses
are non-overlapping.

Recall that the RL-agent’s policy parameters are denoted by θ. Let θseg denote the param-
eters of the underlying semantic segmentation network, in order to clarify when we reset,
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freeze and re�ne θ and θseg , respectively. For RL-training, we re�ne θ during policy estima-
tion in the training houses. When we evaluate the policy on the validation or test houses we
freeze θ and only use the policy for inference. The parameters of the segmentation network
θseg are always reset at the beginning of an episode, regardless of which house we deploy the
agent in, and regardless of whether the policy network is training or not. During an episode,
we re�neθseg exactly when the agent selects the Annotate or Collect actions (this applies
also to all the other methods described in §3.1). Thus annotated views in an episode are used
to re�ne θseg in that episode only, and are not used in any other episodes.

4.1 Main Results

We measure the performances of the agents in two settings: (a) with unlimited annotations
but limited total actions (max 256, as during RL-training), or (b) for a limited annotation
budget (max 100) but unlimited total actions. All methods were tuned on the validation set
in a setup similar to (a) with 256 step episodes. Note however that the number of annotations
can di�er for di�erent methods in a 256 step episode. The setup (b) is used to assess how the
di�erent methods compare for a �x number of annotations.

Fixed episode length. Table 3.1 and �g. 3.4 show results on the test scenes for episodes of
length 256. The RL-agent outperforms the comparable pre-speci�ed methods in mIoU and
accuracy, although frontier exploration – which uses perfect pose and depth information,
and is idealized to always move within the reference view radius – yields similar accuracy af-
ter about 170 steps. The RL-agent uses much fewer annotations than other methods, hence
those annotated views are more informative. The space �ller, which assumes perfect knowl-
edge of the map, outperforms the RL-agent but uses signi�cantly more annotations. Note
that theRotate baseline saturates, supporting the intuition that an agent has to move around
in order to increase performance in complex environments.

Fixed annotation budget. In table 3.2 and �g. 3.5 we show test results when the annotation
budget is limited to 100 images per episode. As expected, the space �ller yields the best results,
although the RL-agent gets comparable performance when using up to 15 annotations. The
RL-agent outperforms comparable pre-speci�ed methods in mIoU and accuracy. Frontier
exploration obtains similar accuracy. We also see that the episodes of the RL-agent are longer.

Qualitative examples. Fig. 3.6 shows examples of views that the RL-agent choose to anno-
tate. The agent explores large parts of the space and the annotated views are diverse, both
in their spatial locations and in the types of semantic classes they contain. Fig. 3.7 shows
how the segmentation network’s performance on two reference views improves during an
episode. The two views are initially poorly segmented, but as the agent explores and acquires
annotations for novel views, the accuracy on the reference views increases.
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Table 3.1: Comparison of different agents for a fixed episode length of 256 actions on the Matterport3D test scenes. The
RL-agent gets higher mIoU using far fewer annotations than comparable pre-specified methods, implying that
the RL-agent’s policy selects more informative views to annotate.

Method mIoU Acc # Ann # Coll
Space �ller 0.439 0.769 24.7 23.9
RL-agent 0.394 0.727 16.7 15.2

Frontier exploration 0.385 0.735 24.2 21.6
Bounce 0.357 0.708 29.6 26.0
Rotate 0.295 0.661 34.3 32.7

Random 0.204 0.566 29.1 19.5
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Figure 3.4: Mean segmentation accuracy and mIoU versus number of actions (steps), evaluated on the Matterport3D
test scenes. The RL-agent was trained on 256-step episodes. This agent fairly quickly outperforms all other
comparable pre-specified agents. Rotate is strong initially since it quickly gathers many annotations in a 360
degree arc, but is eventually outperformed by most other methods that move around in the houses. Frontier
exploration yields similar accuracy as the RL-agent after about 170 steps, but uses significantly more annotations
(cf. table 3.1) and assumes perfect pose and depth information. The space filler, which assumes full knowledge
of the environment, yields the best results after about 100 steps.

4.2 Ablation Studies of the RL-agent

Ablation results of the RL-agent on the validation set are in table 3.3. We compare to the
following versions: i) Policy without visual features φimg ; ii) Policy without ResNet features
φres; iii) No additional exploration reward (3.4), i.e. Rexpt = 0; iv) No Collect action and
P t is not an input to φimg ; and v) Only exploration trained, using the heuristic strategy for
annotations. We trained the ablated models for 4,000 episodes as for the full model.

Both the validation accuracy and mIoU are higher for the full RL-model compared to all
ablated variants, justifying design choices. The model not relying on propagating annota-
tions and using the Collect action performs somewhat worse than the full model despite
a comparable amount of annotations. The learnt annotation strategy yields higher mIoU
and accuracy compared to the heuristic one, at comparable number of annotations. The
exploration reward is important in encouraging the agent to navigate to unvisited positions
– without it performance is worse, despite a comparable number of annotations. The agent
trained without the exploration reward uses an excessive number of Collect actions, so this
agent often stands still instead of moving. Finally, omitting either visual or ResNet features
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Table 3.2: Comparison of different agents for a fixed budget of 100 annotations on Matterport3D test scenes. The RL-agent
gets a higher mIoU than comparable pre-specified agents, despite not being trained in this setting.

Method mIoU Acc # Steps # Coll
Space �ller 0.600 0.863 1048 91
RL-agent 0.507 0.796 1541 94

Frontier exploration 0.485 0.796 998 84
Bounce 0.464 0.776 861 87
Rotate 0.303 0.668 752 96

Random 0.242 0.595 910 64
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Figure 3.5: Mean segmentation accuracy and mIoU for a varying number of requested annotations evaluated on the
Matterport3D test scenes. The RL-agent outperforms all comparable pre-specified methods (although frontier
exploration matches it in accuracy after about 40 annotations), indicating that it has learnt an exploration
policy which generalizes to novel scenes. The space filler, as expected, outperforms the RL-agent, except for
less than 15 annotations. Thus the RL-agent is best before and around its training regime, where on average
annotates 16.7 times per episode, cf. table 3.1.

from the policy signi�cantly harms accuracy for the resulting recognition system.

4.3 Analysis of Annotation Strategies

In this section we examine how di�erent annotation strategies a�ect the task performance
on the validation set for the space �ller and bounce methods. Speci�cally, the annotation
strategies are:

• Threshold perception. This is the variant evaluated in §4.1, i.e. it issues theCollect
action when 30% of the propagated labels are unknown and Annotate when 85% are
unknown.

• Learnt perception. We train a simpli�ed RL-agent where the movement actions are
restricted to follow the exploration trajectory of the baseline method (space �ller and
bounce, respectively). This model has 3 actions: move along the baseline exploration
path, Annotate and Collect. All other training settings are identical to the full
RL-agent.
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Table 3.3: Ablation study of different RL-based model variants for 256-step episodes on the validation set. The full
RL-agent outperforms all ablated models at a comparable or lower number of requested annotations.

Variant mIoU Acc # Ann # Coll
Full model 0.427 0.732 16.4 16.4

No collect norP t 0.415 0.727 17.9 0.0
Only exploration 0.411 0.727 16.1 14.4

Rexpt = 0 0.401 0.719 17.7 47.4
No φimg 0.378 0.696 14.3 3.8

No ResNet 0.375 0.705 23.3 0.3
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Figure 3.6: The first six requested annotations by the RL-agent in a room from the test set. Left: Map showing the
agent’s trajectory and the six first requested annotations (green arrows). The initially given annotation is not
indicated with a number. Blue arrows indicate Collect actions. Right: For each annotation (numbered 1
- 6) the figures show the image seen by the agent and the ground truth received when the agent requested
annotations. As can be seen, the agent quickly explores the room and requests annotations containing diverse
semantic classes.

• Random perception. In each step, this variant follows the baseline exploration tra-
jectory with 80% probability, while annotating views and collecting propagated labels
with 10% probability each.

As can be seen in table 3.4, the best results for the space �ller are obtained by using the thresh-
old strategy, which also annotates slightly less frequently than other variants. Using learnt
perception actions yields better results compared to random perception actions, and takes
slightly fewer annotations per episode. Similar results carry over to the bounce method in
table 3.5, i.e. the best results are again obtained by the threshold variant. The model with
a learnt annotation strategy fails to converge to anything better than heuristic perception
strategies. In fact, it converges to selecting Collect almost 40% of the time, which indicates
a lack of movement for this variant.

In table 3.3 we saw that a learnt exploration method with a heuristic annotation strategy yields
worse results than a fully learnt model. Conversely, the results from table 3.4 and table 3.5
show that a heuristic exploration method using a learnt annotation strategy yields worse re-
sults than an entirely heuristic model. Together these results indicate that it is necessary to
learn how to annotate and explore jointly to provide the best results, given comparable envi-
ronment knowledge.

76



Table 3.4: Results for different model variants of the space filler method. We report the mean on the validation scenes.
The threshold perception strategy – which is the one used in the main evaluations in §4.1 – yields the best
results.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.472 0.770 20.8 19.9

Learnt perception 0.454 0.755 22.8 37.4
Random perception 0.446 0.747 24.2 24.4
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Figure 3.7: Example of the RL-agent’s viewpoint selection and how its perception improves over time. We show results of
two reference views after the first three annotations of the RL-agent. Left: Agent’s movement path is drawn
in black on the map. The annotations (green arrows) are numbered 1 - 3, and the associated views are shown
immediately right of the map (the initially given annotation is not shown). Red arrows labeled a - b indicate the
reference views. Right: Reference views and ground truth masks, followed by predicted segmentation after one,
two and three annotations. Notice clear segmentation improvements as the agent requests more annotations.
Specifically, note how reference view a improves drastically with annotation 2 as the bed is visible in that view,
and with annotation 3 where the drawer is seen. Also note how segmentation improves for reference view b
after the door is seen in annotation 3.

4.4 Pre-training the Segmentation Network

Recall that our semantic segmentation network is randomly initialized at the beginning of
each episode. In this section we evaluate the e�ect of instead pre-training the segmentation
network3 on the 61 training houses using about 20,000 random views. In table 3.6 we com-
pare using this pre-trained segmentation network as initialization for the RL-agent with the
case of random initialization. We also show results when not further �ne-tuning the pre-
trained segmentation network, i.e. when not performing any embodied visual active learn-
ing.

The weak result obtained when not �ne-tuning (�rst row) indicates signi�cant appearance
di�erences between the houses. This is further suggested by the fact that the RL-agent gets a
surprisingly modest boost from pre-training the segmentation network (third row vs second
row). Note the di�erent number of annotated views used here – the agent without pre-
training uses only 16.4 views on average, while the other uses about 20, 000+14.4 annotated
views, if we count all the images used for pre-training. Due to relatively marginal gains for a
large number of annotated images, we decided to evaluate all agents without pre-training the
segmentation network.

3In this pre-training experiment, we use the same architecture and hyperparameters for the segmentation
network as when it is trained and deployed in the embodied visual active learning task.
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Table 3.5: Results for different model variants of the bounce method. We report the mean on the validation scenes. The
threshold perception strategy – which is the one used in the main evaluations in §4.1 – yields the best results,
but also uses the largest amount of annotations on average.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.388 0.706 27.4 24.5

Learnt perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

Table 3.6: Results for different training regimes for the semantic segmentation network. A pre-trained segmentation
network generalizes poorly to unseen environments (first row), and there is relatively little gain for the RL-
agent by having a pre-trained segmentation network (third row). Note that pre-training uses over 1000x more
annotations compared to performing embodied active visual learning from scratch.

Variant mIoU Acc # Ann # Coll
Pre-train, no RL 0.208 0.549 20k 0.0
No pre-train, RL 0.427 0.732 16.4 16.4

Pre-train, RL 0.461 0.780 20k + 14.4 13.3

5 Conclusions

In this paper we have explored the embodied visual active learning task for semantic segmen-
tation and developed a diverse set of methods, both pre-designed and learning-based, in order
to address it. The agents can explore a 3d environment and improve the accuracy of their se-
mantic segmentation networks by requesting annotations for informative viewpoints, prop-
agating annotations via optical �ow at no additional cost by moving in the neighborhood
of those views, and self-training. We have introduced multiple baselines as well as a more
sophisticated fully learnt model, each exposing di�erent assumptions and knowledge of the
environment. Through extensive experiments in the photorealistic Matterport3D environ-
ment we have thoroughly investigated the various methods and shown that the fully learning-
based method outperforms comparable non-learnt approaches, both in terms of accuracy
and mIoU, while relying on fewer annotations.
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A Introduction

In this supplementary material we provide additional insights into our proposed models for
the embodied active visual learning task. Details of the semantic segmentation network are
given in §B, and of the RL-agent’s policy network in §C. In §D we provide an algorithmic
description of how the RL-agent operates within our task. In §E we compare with additional
variants / hyperparameter con�gurations of the bounce method and conclude that the vari-
ants used in the main paper provide the best results in terms of mIoU.

B Semantic Segmentation Network

Fig. 3.8 contains a schematic overview of the semantic segmentation network. We deliberately
made it small so that it would be very quick to re�ne it with new data. It consists of 3 blocks
of convolutional layers, each containing 3 convolutional layers with kernels of size 3 × 3.
The �rst convolutional layer in each block uses a stride of 2, which halves the resolution. For
each block the number of channels doubles. Multiple predictions are made using the �nal
convolutional layers of each block. The multi-scale predictions are resized to the original
image resolution using bilinear interpolation and are �nally summed up, resulting in the �nal
segmentation. The network resembles FCN [25] by predicting the semantic segmentation at
multiple scales. In training we use a standard cross-entropy loss averaged over all pixels. The
segmentation network is trained using stochastic gradient descent with learning rate 0.01,
weight decay 10−5 and momentum 0.9.

C Policy Network of the RL-Agent

See Fig. 3.9 for an overview of the policy network. The policy consists of two branches, where
the �rst processes the image and segmentation inputs, and the second processes the extracted
deep features.

D Pseudo Code

The full procedure of our RL-model for embodied visual active learning for semantic seg-
mentation is described in Algorithm 1. It describes among other things how the states and
segmentation network are updated during an episode.
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Table 3.7: Results of different model variants of the bounce method. We report the mean on the validation scenes.
Threshold perception is used in the main paper.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.388 0.706 27.4 24.5

Learned perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

Version 1 0.353 0.677 11.4 0.0
Version 2 0.372 0.695 9.8 9.6
Version 3 0.381 0.701 20.0 10.4

E Variants of Bounce

We tried multiple perception strategies of the bounce baseline on the validation set and present
in Table 3.7 the results of 3 di�erent versions (in addition to those perception strategies de-
scribed in §4.3):

• Version 1. Recall that the bounce method samples a random rotation after bouncing
in a wall, and then begins moving in that direction. This version annotates prior to
walking in a new direction (it issues no Collect actions).

• Version 2. IssuesAnnotate after rotating towards a new direction, and issuesCollect
four steps (1 m) after that.

• Version 3. IssuesAnnotate after rotating towards a new direction, and issuesAnnotate
and Collect with 10% probability each when walking forward.

We see that the third version – with more frequent annotations and collects compared to ver-
sions 1 and 2 – obtains the best performance in terms of accuracy and mIoU on the validation
set for 256-step episodes. However, it does not outperform the threshold strategy.
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Algorithm 1 Procedural code for the RL-agent in the embodied visual active learning for
semantic segmentation task.

1: Initialize parameters of the segmentation network S
2: Initialize location (x1, y1) and rotation φ1 randomly and let x1 = (x1, y1, φ1)
3: Extract image I1 and receive associated annotation maskA1 atx1; initialize training set
D = {(I1,A1)}

4: Perform initial training of S onD
5: Initialize propagated annotationP 1 = A1

6: Compute segmentationS1 = S(I1) and deep featuresF 1

7: Initialize agent state s1 = (I1,S1,P 1,F 1)
8: for t = 1, . . . , T do

9: Sample action at ∼ πθ(·|st)
10: if at ∈ {MoveForward, MoveLeft, MoveRight, RotateLeft, RotateRight}

then

11: Set xt+1 according to movement
12: Propagate annotationP t+1 = �ow(P t)
13: else

14: Set xt+1 = xt
15: SetP t+1 = P t

16: end if

17: Obtain view It+1 associated to xt+1

18: if at = Annotate then

19: Obtain annotation maskAt+1 at xt+1

20: Update training setD = D ∪ {(It+1,At+1)}
21: Re�ne S onD
22: Reset propagated annotationP t+1 = At+1

23: else if at = Collect then

24: Update training setD = D ∪ {(It+1,P t+1)}
25: Re�ne S onD
26: end if

27: Compute segmentationSt+1 = S(It+1) and deep featuresF t+1

28: Update agent state st+1 = (It+1,St+1,P t+1,F t+1)
29: end for

30: return S? (trained segmentation network)
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Figure 3.8: Architecture of the deep network we use for semantic segmentation. The input image is processed sequentially
through 3 blocks, each containing 3 convolutional layers. The first convolutional layer in each block uses
a stride of 2, which halves the resolution for each block, and at the same time we double the number of
channels. The semantic segmentation is predicted for multiple resolutions and are summed together to predict
the semantic segmentation.

CNN CNN CNN

ResNet50

FC

FC

LSTM 𝜋(𝑎|𝑠)

CNN

Figure 3.9: The policy network architecture for the RL-agent. The network has three inputs: the current RGB image I ∈
R127×127×3 (bottom), the current segmentation prediction S ∈ R127×127×3 (top), and the current optical

flow propagated ground truth segmentation P ∈ R127×127×3 (middle). All three inputs are stacked depthwise
and then processed by three convolutional layers and a fully connected layer (this processing subnetwork is called
φimg in §3.3 of the main paper). The first layer has 32 filters, kernel size 8 × 8, and stride 4. The second
layer has 64 filters, kernel size 4 × 4, and stride 2. The third layer has 64 filters, kernel size 3 × 3, and
stride 1. Finally, the fully connected layer has 512 outputs. In addition, the RGB image is passed through an
image feature extractor (ResNet-50), called φres with output F t in the main paper. The deep features F t

are subsequently passed through a convolutional layer with 128 filters, kernel size 2× 2 and stride 2. Finally,
these features are processed by a fully connected layer with 512 outputs. These two input branches are then
concatenated and fed to an LSTM with 256 cells. The hidden state of the LSTM is finally passed to a softmax
layer to produce the action distribution.
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Abstract

We study lifelong visual perception in an embodied setup, where we develop new models
and compare various agents that navigate in buildings and occasionally request annotations
which, in turn, are used to re�ne their visual perception capabilities. The purpose of the
agents is to recognize objects and other semantic classes in the whole building at the end of
a process that combines exploration and active visual learning. As we study this task in a
lifelong learning context, the agents should use knowledge gained in earlier visited environ-
ments in order to guide their exploration and active learning strategy in successively visited
buildings. We use the semantic segmentation performance as a proxy for general visual per-
ception and study this novel task for several exploration and annotation methods, ranging
from frontier exploration baselines which use heuristic active learning, to a fully learnable
approach. For the latter, we introduce a deep reinforcement learning (RL) based agent which
jointly learns both navigation and active learning. A point goal navigation formulation, cou-
pled with a global planner which supplies goals, is integrated into the RL model in order to
provide further incentives for systematic exploration of novel scenes. By performing exten-
sive experiments on the Matterport3D dataset, we show how the proposed agents can utilize
knowledge from previously explored scenes when exploring new ones, e.g. through less gran-
ular exploration and less frequent requests for annotations. The results also suggest that a
learning-based agent is able to use its prior visual knowledge more e�ectively than heuristic
alternatives.
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1 Introduction

Over the last decade we have witnessed rapid progress in deep learning-based visual percep-
tion [22, 39, 14, 32, 24]. Impressive as these developments have been on their own, many con-
temporary state-of-the-art perception models may nevertheless deteriorate in performance
(or altogether fail) if attached e.g. to embodied systems which operate in unusual or entirely
new circumstances [1, 29, 10]. Even when a given perception system does not break down
entirely, it may still produce poorer predictions compared to the training and evaluation set-
tings for which it was originally developed. One possible direction to limit model over�tting
– and which is often pursued – is to work with ever larger datasets, but such a procedure is
typically associated with a high cost due to the need to gather and annotate massive amounts
of data. Moreover, the expressive capacity of even the deepest perception model is inherently
limited, so it may be better to focus the model training on data which is most relevant for the
conditions where the model is to be used.

The above motivates the need for principled and adaptive methods that can e�ectively re�ne
visual perception systems in case forms of supervision become available (e.g. from a human-
in-the-loop) in the present use-cases of those systems. In this work we develop and study
methods for lifelong perception re�nement in an embodied context, where a visual percep-
tion model trained in previously explored environments is to be re�ned such that it becomes
as accurate as possible in a new context. A naive approach for this would be one where an
embodied agent looks around and queries for annotations for all viewpoints observed in the
new environment it explores. This would however require an impractically large amount of
annotation and is thus clearly not feasible in practice. Moreover, this type of approach is
particularly wasteful since we assume that the agent has already obtained a coarse perception
model a priori. Depending on the agent’s prior experience, the di�erent viewpoints it ob-
serves in its new environment may be of highly varying importance. For example, viewpoints
which contain large portions of the same semantic classes and/or appearances as the agent
has seen in the past may not have to be annotated, and thus the agent may focus on those
novel parts of the scene which it is most uncertain about.

In this paper we thoroughly study this proposed embodied lifelong learning task. We present,
evaluate and compare agents of various degrees of sophistication – providing both heuristic
alternatives and a fully learnable one – and with varying amounts of prior visual experience.
An overview of the task is shown in Fig. 4.1. We let visual perception be measured as seman-
tic segmentation accuracy, given that semantic segmentation is a core perception task that
requires �ne (pixel-wise) predictions of each view, but note that our framework is applicable
in the context of any perception task. To this end, we equip an agent with a semantic seg-
mentation network and the agent is then tasked to move around and query for annotations
in order to re�ne it. After exploring a novel building the agent should be able to accurately
segment views in the whole building using a limited number of annotations. Note that which
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Figure 4.1: Overview of the embodied lifelong learning setup. A first-person agent selectively determines viewpoints for
which to query annotations as it actively explores a new building. Its visual perception system – here a semantic
segmentation network – is continually refined as the agent queries for more data. As the agent operates in a
lifelong framework, its exploration and active learning may differ in later buildings compared to earlier ones.
For example, the number of annotations (indicated in the respective maps with question marks), as well as the
exploration trajectories, may vary. In this example, in the first building (left), the perception of the agent’s
current view is poor, and the agent decides to query for the ground truth to refine its perception before
continuing to explore. Comparing with a later building (right), the agent’s corresponding viewpoint is much
more accurate – potentially because it already learnt to recognize e.g. the ’painting’ category (red in the ground
truth masks) in the first building – and in this case the agent decides to ignore querying for that annotation.

and how many viewpoints should be annotated may be a�ected by the agent’s prior visual
perception performance obtained from earlier explored buildings. To empirically investigate
this new task, we compare and evaluate all the proposed methods in the Matterport3D sim-
ulator [4] which provides photorealistic renderings of a large set of indoor scenes.

In summary, our main contributions are:

• We introduce and study the embodied active learning task in a lifelong learning setup
where experience and annotations in one scene can guide and inform the exploration
and active learning in successive ones.

• We introduce several heuristic as well as a fully learnable RL formulation for the task,
and study how they are respectively a�ected by the level of prior visual knowledge.

• We provide extensive experimental evaluation of our proposed methods and show that
a fully learnable RL agent can use prior visual perception to guide its exploration and
active learning more e�ectively compared to heuristic alternatives, both in terms of
exploration granularity and frequency of annotations.

2 Related Work

Our work is broadly related to embodied learning, active learning, as well as lifelong learning,
and we here mention some related work for each subproblem.
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Embodied learning. With the emergence of large scale simulators [33, 45] of indoor scans
[4] there has been much recent work on applying RL to visual navigation problems. In point
goal navigation [44] an agent is given a navigation target in polar coordinates (r, θ) and the
task is to reach the goal, which often requires navigating around obstacles. There is a large
body of work for this problem, and in general approaches based on RL [44, 34] perform well.
A related problem is visual exploration where an agent is given egocentric observations and
should navigate to explore as much of a scene as possible [5, 31]. Another setup related to our
paper is studied by Ammirato et al. [1], Yang et al. [47] and concerns how to locally explore
to get a better view of a partially occluded object.

How to explore a scene to obtain relevant views for learning visual perception is studied by
Chaplot et al. [6]. In their setup the re�nement of the visual model is not interactive, but
rather a post-processing step – the visual perception is updated after exploring several scenes,
while we re�ne the visual perception online whenever the agent queries for annotations. Fur-
thermore, in Chaplot et al. [6] all views of the explored trajectories are labelled, while we also
task the agent to select only a small subset of frames to label. Di�erent but related problem
setups include learning along �xed navigation trajectories by self-supervision and querying
for labels of a subset of the data [41, 30], as well as formulations which consider joint im-
provement of SLAM and visual perception [48, 43]. Another work related to ours is Nilsson
et al. [27], to which we however di�er in several key respects. In our formulation the explo-
ration is global, which is enforced by integrating a global planner with our proposed agents
(thus we do not restrict the problem to recognizing only a local neighborhood of where an
agent is spawned, as Nilsson et al. [27]). Furthermore, we study the task in a lifelong setup
instead of considering independent scenes, and a key contribution of our work is showing
how the behavior of agents can improve as they explore multiple scenes consecutively instead
of independently and in separation.

Active learning. In active learning [37] the problem is to select which data among a large
pool of unlabelled data to label to maximally improve a model. Common approaches include
RL [11, 21], coverage of a feature space [36], uncertainty estimation [12, 20], or generative
modelling [40, 9]. Our paper di�ers from the standard active learning formulation in that
we do not assume access to a pool of unlabelled data. Instead we consider embodied agents
that need to explore an environment to gather the data considered for annotations.

We next brie�y review methods for active learning (AL) for semantic segmentation. Siddiqui
et al. [38] propose an AL strategy that exploits viewpoint consistency in multi-view datasets.
Their method queries labels for those views and superpixels which are not consistently seg-
mented across views from di�erent directions. Golestaneh and Kitani [13] show that self-
consistency can greatly improve the performance of a model. They suggest an AL framework
where small image patches that need to be labeled are iteratively extracted by selecting image
patches which have high uncertainty (high entropy) under equivariant transformations. The
approach by Kasarla et al. [17] uses entropy- and region-based AL, with annotation at the su-
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perpixel level in images, along with the use of fully connected CRFs for label propagation.
Mackowiak et al. [25] study region-based AL by estimating labelling cost and uncertainty
of unlabelled regions, and Casanova et al. [2] present a deep reinforcement learning-based
approach, where an agent learns a policy to select a subset of image patches to label.

Lifelong learning. In typical lifelong learning [28, 42], or continual learning, the task is to
sequentially train a model for several di�erent tasks in a speci�c order, while not forgetting the
previously learned tasks [19, 18]. Approaches to continual learning for semantic segmentation
include storing prototype features of old classes [26], pooling schemes to preserve spatial
relations [8] and strategies to cope with the ambiguity and semantic shift of the background
class which in di�erent learning stages can overlap with foreground objects at other stages
[3].

3 Embodied Lifelong Learning

We here describe the proposed embodied lifelong learning task in more detail – see Fig. 4.1
for an overview. An agent equipped with a visual perception model (here a semantic seg-
mentation network; see §3.2) is spawned in a random location in a building, and its task is
to actively move around and explore the environment, while restrictively querying annota-
tions for viewpoints in order to re�ne its visual perception. To this end, the agent is equipped
with four actions MoveForward, RotateLeft, RotateRight and Annotate. In §3.1 we
describe how we approach global navigation to ensure systematic exploration of the scenes;
we use the same core navigation module within all methods that we evaluate (see §4). These
agents range from heuristic to a fully learnable one. The latter approachs is based on deep
RL and is explained in §3.3.

3.1 Global Navigation

For an embodied agent to learn a visual perception model that performs well in a given envi-
ronment, the agent should systematically explore the scene so that it gets an opportunity to
observe a diverse set of viewpoints containing various objects. To this end we explicitly map
the scene as the agent navigates and provide goal locations for the agent to navigate to. We
thus decouple the global navigation from the local exploration and visual learning. A high
level overview is given in Fig. 4.2.

The pose and depth at every time step is sent to the mapper which uses the new information
to update its map. Using the map, a navigation target is selected to expand the boundary of
the map. We use depth and pose to compute a map of the environment. Speci�cally, given a
point x in the image plane with depth d we can compute the 3d pointX using the camera
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Figure 4.2: To ensure systematic exploration of a scene we combine a mapper with a local point goal navigation policy.
The mapper constructs a 2d top down map of the environment using the agent’s pose and depth, marking each
point either as navigable, obstacle or unknown. Each agent (be it heuristic or learnable) uses a hierarchical

approach to navigation, where a frontier point gfrontier is first selected; then the agent obtains a local goal
glocal on the shortest path to gfrontier. For the learnable RL-agent (see §3.3), following prior work on point

goal navigation, we give the target location glocal as policy input via polar coordinates (r, ϕ), where r and

ϕ denote distance and rotation, respectively, to glocal relative to the agent’s pose. After each movement the
agent is rewarded in proportion to the decrease in geodesic distance to glocal, as well as by a constant reward
once it reaches glocal, see (4.2). At this point the mapper provides the agent with a new local navigation
target. Note that we also provide rewards related to visual perception refinement, see (4.1).

pose. Once we have the 3d points corresponding to the pixels, we threshold based on the
height relative to the ground plane to classify as being navigable or an obstacle. For each
point on the 2d grid map we keep a counter of the classi�cations and use majority voting to
determine if it is navigable or an obstacle.

We use classical frontier exploration [46] for the global policy. A frontier point is de�ned as a
navigable point on the map that has a neighbouring point for which it is unknown whether
it is navigable or an obstacle. The closest frontier point is always selected, and once reached
a new frontier point is selected until no more frontier points remain. To ease the navigation
problem, as frontier points might be far away from the current location, we use a local planner
as well. Using the map, we compute the shortest path to the selected frontier point gfrontier
using Dijkstra’s algorithm. To select a local navigation target glocal, we split the shortest path
based on curvature, whenever the direction changes, and use this sequence as navigational
targets. This was found on the validation set to be more robust than using a �xed distance
between local targets.

3.2 Semantic Segmentation

For semantic segmentation we use ResNet-50 [14] pre-trained on ImageNet [16]. We make
the network fully convolutional [24] and change the output resolution from 1/32 to 1/8
of the input image resolution by removing strides and adding dilations in the ResNet blocks
originally having a lower resolution than 1/8 in the same way as e.g. Chen et al. [7]. We
replace the �nal classi�cation layer with a new one with the correct number of classes, i.e.
40 in Matterport3D, followed by upsampling by bilinear interpolation to the original input
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image size.

At the beginning of each episode we either keep the semantic segmentation parameters from
the previous episode if we evaluate in the lifelong setup or we initialize all parameters from
ImageNet pre-training except for the last classi�cation layer which is initialized randomly.
During episodes, we re�ne the segmentation network whenever the agent selects theAnnotate
action. The image and ground truth that the agent queried for are added to the training set
of segmentation network. As in Nilsson et al. [27] we re�ne the segmentation network either
until the accuracy of a minibach is 95% or for at most 1000 iterations. The minibatches al-
ways include the last image the agent queried for annotation, and we use random left-right
�ipping and scaling for data augmentation. We train the semantic segmentation network
with minibatches of size 4, and we use SGD with learning rate 3 · 10−3, weight decay 10−4

and momentum 0.9.

3.3 Reinforcement Learning for Embodied Lifelong Learning

In this section we describe our proposed reinforcement learning (RL) agent for the embodied
lifelong learning task. The global navigation procedure in §3.1 is set as a prior for the RL-
agent’s exploration. We next describe in detail the policy of the RL-agent and then explain
the reward functions used during training.

Policy overview. To integrate local navigation with RL we follow prior work on point goal
navigation [33]. To this end, we specify the current local navigation target glocalt by (rt, ϕt)
which is the position in polar coordinates of glocalt relative to the agent’s pose. We add
(rt, ϕt) to the state space and use it as input to the deep stochastic policy πθ(at|st), where
we recall that the actions are MoveForward, RotateLeft, RotateRight and Annotate.
The state space st further contains images and segmentations. Speci�cally, we let st =
{It,St,P t,Dt, rt, ϕt}whereIt ∈ R127×127×3 is the agent’s current view,St = St(It) ∈
R127×127×3 is the semantic segmentation ofIt computed using the current versionSt of the
segmentation network, P t ∈ R127×127×3 is the last annotation propagated to the agent’s
current pose, andDt ∈ R127×127 is the depth. Note that we use depth as input to the pol-
icy since it is common practice in point goal navigation and often signi�cantly improves the
performance [33, 44]. The propagated mask P t is the latest annotation, but propagated to
the agent’s current view using optical �ow. We compute optical �ow between consecutive
viewpoints using depth and pose. We thus make the same assumptions on available input
modalities as the mapper in §3.1. The policy consists of two branches processing the visual
information and navigation targets separately, and these are followed by a recurrent network
whose hidden state is used to compute the policy. We give further details in the appendix.

Rewards. We here describe the reward function. It consists of two components – a percep-
tion reward to encourage sparse annotations of informative viewpoints which improve the
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overall perception, and an exploration reward to encourage the agent to explore the whole
building.

Perception reward: The reward Rseg
t for semantic segmentation is only non-zero when the

agent requests annotation (at = Annotate), and we de�ne it in that case as

Rseg
t = mIoU(St+1,R)−mIoU(St,R)− εann + λacc1(acc(St, It) < τacc) (4.1)

where St+1 and St are respectively the segmentation networks (i.e. parameter con�gura-
tions) at time t + 1 and t (i.e. after and before re�nement),R is the set of reference views
in the building, εann = 0.01 is a penalty (hyperparameter) paid for each Annotate action,
λacc = 0.01 is a hyperparameter, 1(·) evaluates to one if the condition is true and zero
otherwise, and τacc = 0.7 is a threshold hyperparameter.

Overall, the perception reward (4.1) is similar to that proposed in Nilsson et al. [27], but we
found it useful for the lifelong setup to include an additional term rewarding asking for anno-
tations when the accuracy acc(St, It) of the segmentation networkSt (prior to re�nement)
of agent’s current view It was below a threshold. The reference viewsR are 32 randomly
sampled views from the entire �oor of the scene the agent explores. We compute the mIoU
by only selecting the 10 most common classes in the reference views, to exclude very small ob-
jects and unusual classes, since the label distribution is very unbalanced in the Matterport3D
scenes.

Exploration reward: This reward encourages the agent to move closer to its current local goal
glocalt and is given by

Rexp
t = d(xt, g

local
t )− d(xt+1, g

local
t ) + λg1(d(xt+1, g

local
t ) < ε) (4.2)

where xt is the agent’s position at step t and d(x,y) is the geodesic distance between the
points x and y on the map. We use λg = 1 and ε = 1. Note that in contrast to point goal
navigation we do not end an episode when a goal is reached, and instead a new goal is given,
as described in §3.1.

Full reward: The full reward is given by a convex combination of (4.1) and (4.2), i.e. Rt =
λRexp

t + (1 − λ)Rseg
t with λ = 0.01. This reward thus balances between visual learning

(i.e. improving the agent’s perception) and environment exploration.

Policy training. We train the policy using PPO [35]. To train the policy in the lifelong
setup, we reset the segmentation network every 10th episode, and run 4 episodes of length
500 per scene. We pre-train the policy for 106 steps for standard point goal navigation, which
does not require re�nement of the segmentation model, and we then train the policy in the
full segmentation environment for an additional 106 steps which takes about 4 days using 2
Nvidia Titan X GPUs. See the appendix for more details and ablations.

96



4 Experiments

In this section we empirically evaluate various methods for our proposed task. Our main fo-
cus is to investigate di�erences in agent behavior (in terms of exploration and annotations
strategies) between the episodic and the lifelong setups, as well as compare how the proposed
RL-agent performs compared to several baseline methods for the task. We also provide addi-
tional experiments including ablation studies of the RL-agent in the appendix.

Experimental setup. All methods are evaluated on the Matterport3D dataset [4] and we use
the simulator framework Habitat [33] in which an agent can navigate in the photorealistic
scenes. We use the o�cial split [4] which contains 61 training scenes, 11 validation scenes
and 18 test scenes.

When we evaluate on the test set of Matterport3D, we run one episode per scene, for a total
of 18 episodes. In a given scene, all methods we evaluate start at the same position. We end
the episodes either when the agent has explored all of the scene or after 2000 steps. In each
scene we train and evaluate the semantic segmentation network using train and test sets in
that scene. The training data is obtained by the queries of the agent we evaluate and the test
set is obtained by randomly sampling 32 views uniformly in the whole scene (we always use
the same random views for a given scene when we evaluate di�erent methods). Hence we
obtain one mIoU score per scene, and we only use the 10 most common labels per scene
when computing the mIoU due to very unbalanced data. When we report mIoU we always
refer to the average over all 18 test scenes. Similarly, when we report metrics as a function of
the exploration, we refer to the area marked as navigable by the mapper (cf. §3.1) normalized
by the total area (separately within each scene) and then average metrics over all scenes.

Episodic and lifelong setups. We di�erentiate between episodes where the segmentation
network is reset at the start of episodes or not by the terms episodic and lifelong. In the
episodic case we reset the segmentation network at the beginning of the episode. Thus no
prior segmentation network learning or annotations are kept and the agents begin each episode
tabula rasa. In the lifelong setup we keep the parameters of the segmentation network from
the previous episode (e.g. at the beginning of the 10th episode the perception system has been
trained in nine di�erent previous buildings). Thus the agent will typically be able to recog-
nize some objects and/or semantic classes already at the beginning of the episode, and we
expect the agent’s exploration to be less granular and that it annotates less frequently since
similar scenes or objects might have been seen before. Note that when evaluating the RL-
agent (cf. §3.3) in the respective settings, the exact same policy is used to be able to assess the
agent’s adaptability with respect to its current perception. We use the same ordering of the 18
test scenes for all methods we evaluate, and found that the ordering had a negligible impact
(see appendix).
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Table 4.1: Comparison between episodic and lifelong setups for the accuracy oracle, RL-agent and baselines (uniform,
random). We see that the average area explored since the last annotation (∆A/ annot, m2) when requesting a
new annotation is higher on average in the lifelong compared to the episodic setup for both the accuracy oracle
and the RL-agent, indicating adaptive behavior depending on the current segmentation accuracy. This is not
the case for the two simpler heuristics. The average navigable area added to the mapper per step (∆A/ step,
m2) is identical for episodic and lifelong for the accuracy oracle and the two baselines, as is expected since they
explore identically, but for the RL-agent we see that in the lifelong setup it on average explores faster. Finally,
we see that the improvements of the average mIoU after annotations 1 - 50 and 51 - 100 in the lifelong setup
compared to the episodic are larger for the accuracy oracle and RL-agent than for the baselines, and especially
for the early part of episodes (annotations 1 - 50). This indicates that both the RL-agent and the accuracy
oracle adapt their annotation strategies when evaluated in the lifelong setup.

Model Setup ∆A / annot ∆A / step mIoU (1-50) mIoU (51-100)

Accuracy oracle Episodic 1.162 0.056 0.306 0.429
Lifelong 1.256 (+0.094) 0.056 0.340 (+0.034) 0.448 (+0.019)

RL-agent Episodic 0.876 0.057 0.286 0.397
Lifelong 1.070 (+0.194) 0.059 0.324 (+0.038) 0.407 (+0.010)

Uniform Episodic 1.086 0.057 0.297 0.402
Lifelong 1.086 (±0) 0.057 0.311 (+0.014) 0.409 (+0.007)

Random Episodic 1.114 0.057 0.296 0.395
Lifelong 1.063 (-0.051) 0.057 0.303 (+0.007) 0.393 (-0.002)

Evaluated methods. We evaluate the RL-agent (cf. §3.3) and several baselines that make
use of the global exploration methodology described in §3.1. Since we use a global mapper
and planner, we let the baseline agents consist of variants which follow shortest paths to the
generated navigation goals. We evaluate such agents with di�erent annotation strategies. The
baselines are:

• Accuracy oracle. Annotates if the semantic segmentation accuracy of its current view
is below a threshold (set to 0.7 based on a validation set). Since this baseline requires
access to ground truth segmentations we call it an oracle, and it should be considered
an upper bound.

• Uniform annotations. Annotates with a �xed frequency, which we set to every 20th
step to match the average frequency of the accuracy oracle (making them comparable).
This is used to show how much can be gained by choice of annotations (as the accuracy
oracle) compared to heuristics.

• Randomannotations. Requests annotations randomly with probability 5% and thus
it moves according to the global mapper with 95% probability. This baseline also an-
notates with the same average frequency as the accuracy oracle.

We further compare to a pre-trained segmentation model using 10,000 random views from
the training scenes of Matterport3D. We use 50 of the 61 training scenes for training data and
11 for validation and use the same ResNet model (cf. §3.2) as for all other evaluations.
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Figure 4.3: Comparison between episodic (ep) and lifelong (ll) setups for the RL-agent and the accuracy oracle, and
comparison of the RL-agent to the accuracy oracle and heuristic baselines for both the episodic and lifelong
setup. In the four top plots we see that for a given number of annotations or area explored, both methods
get a higher mIoU in the lifelong setup compared to the episodic. We can also see adaptive behavior in the
annotation frequencies. For a given number of annotations, both methods take more steps on average in the
lifelong setup than the episodic, indicating less frequent annotations when evaluated in the lifelong setting. We
can see the same behavior if we look at the number of annotations for a given explored area – both methods
annotate less frequently in the lifelong setup than in the episodic one. In the two bottom plots we compare
all baselines. As expected, the accuracy oracle obtains the highest mIoU. The RL-agent obtains the second
highest mIoU at the end of exploration. Moreover, we see a larger improvement of the RL-agent compared to
uniform and random in the lifelong setup than in the episodic one.

4.1 Comparing Lifelong and Episodic Setups

In this section we provide comparisons between the episodic and lifelong setups for the RL-
agent and the accuracy oracle, see Table 4.1 and Fig. 4.3. We see that the mIoU is higher
at the beginning of episodes, either for the �rst annotations or for limited observed area,
for lifelong compared to episodic. This is expected since in the lifelong setup the semantic
segmentation network has already been trained in previously explored scenes, and thus there
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Episodic

Lifelong

Figure 4.4: The first five requested annotations when evaluating the RL-agent in the episodic versus lifelong setup. The
agent requests annotations at a sparser rate when evaluated lifelong in this scene. For more qualitative
examples, please see the appendix.

is some transfer to the current one. Similarly, for both methods we observe di�erences in
annotation frequency between the two settings, e.g. the average area explored per requested
annotation is higher in the lifelong setup for both of these methods. We see that while both
methods annotate more sparsely in the lifelong setup compared to the episodic, the mIoU is
still higher for a comparable number of annotations or level of exploration.

In Fig. 4.4 we show example trajectories of the RL-agent on a scene, and we compare the
requested annotations in the episodic and lifelong setups. We see that the RL-agent annotates
more sparsely in the lifelong setup than in the episodic one, and thus explores more of the
scene per annotation. This can also be seen more generally in Table 4.1 – the average explored
area per annotation is higher in the lifelong setup than the episodic for the RL-agent. Thus
the agent is able to adapt its behavior based on its current visual perception performance.

4.2 Comparisons with the Heuristic Baselines

In Fig. 4.3 and Table 4.1 we provide comparisons of the RL-agent to the baselines which
explore with frontier exploration and request annotations using di�erent heuristic strategies.
By comparing the accuracy oracle, uniform and random, we see that for a given area explored,
the accuracy oracle gets a higher mIoU. As seen in Table 4.1, all methods annotate at a similar
frequency with respect to the area, but only for the accuracy oracle do we observe a di�erence
between the area explored per annotation between episodic and lifelong. We also see that the

100



gap in mIoU between the episodic and lifelong setups is greater for the accuracy oracle than
uniform and random. These results suggest that uniform and random are unable to adapt
with respect to the performance of their perception models.

If we compare the RL-agent to uniform and random, we see that the mIoU is similar in the
beginning of episodes, but at the end of exploration the RL-agent gets a higher mIoU. We
also see that there is a larger di�erence in the lifelong setup. The increase in mIoU in the
lifelong setup compared to the episodic one is greater for the RL-agent than the heuristic
baselines. This indicates that the RL-agent is able to adapt its active learning strategy based
on its current perception performance.

4.3 Pre-training the Segmentation Model

If we pre-train the segmentation model on the training scenes of Matterport3D we obtain an
mIoU of 0.330 when we evaluate on the test scenes. We note in Fig. 4.3 that this performance
is comparable to about 20 annotations in a given scene for the accuracy oracle or RL-agent.
The conclusion is that a few (∼ 20) scene-speci�c annotations are as useful as signi�cantly
more (10,000) annotations from di�erent buildings. Although surprising, we attribute this
to signi�cant appearance di�erences of the scenes in Matterport3D. This further shows that
our proposed task is of importance since a few carefully selected scene-speci�c annotations
are more useful than pre-training with signi�cantly more annotations.

5 Conclusions

We have introduced and studied the novel embodied lifelong learning task in the context of
semantic segmentation, where agents are tasked to explore large buildings and request lim-
ited annotations to re�ne their visual perception. The re�nement occurs both within the
currently explored building, and improves over the lifetimes of the agents as they tune their
perception in an increasing number of buildings. We further introduced a reinforcement
learning methodology to jointly learn exploration and visual learning. Our experiments on
Matterport3D, covering both the learned method as well as several heuristic ones, show that
a trainable method using RL annotates less frequently in the lifelong setup while also achiev-
ing more accurate visual perception than when trained from scratch. Overall, di�erent from
the compared heuristic alternatives, the learning-based agent exhibits behavior which adapts
to the current performance of its visual perception model.
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Appendix

A Overview

In this appendix material we provide additional insights into our proposed embodied lifelong
learning task as well as the RL-based approach for modeling the task. Qualitative examples
are shown in §B, studies of the scene ordering are shown in §C, ablations of the RL-based
agent are performed in §D, further details of the RL training are given in §E and details of
the hyperparameter tuning of the accuracy oracle in §F.

B Qualitative Examples

We show predicted segmentations before and after re�nements in Fig. 4.5. As expected, since
in the episodic case the classi�cation layer is initialized randomly, the segmentation is inaccu-
rate at the start of episodes, but it is improved after the �rst annotation. We emphasize that
we re�ne the segmentation model with one annotated image at a time, so in the �nal rows,
the segmentation model is trained with just 4 annotated images. The lifelong agent has prior
knowledge, and we can see that some classes e.g. wall, ceiling and �oor are fairly accurate in
the beginning of episodes, while several smaller objects are not correctly segmented at the
beginning but are re�ned later on, as the segmentation model is retrained with scene-speci�c
annotations that the agent requested.

In Fig. 4.6 we show a qualitative example of how the accuracy oracle and RL-agent annotates
in the episodic and lifelong setups. We can see that both methods annotates less frequently
in the lifelong setup than the episodic in this scene.

C Impact of Scene Orderings

When we evaluate the agents in the lifelong setup we use a �xed ordering of the 18 test scenes
which was selected without any special considerations. We use same ordering for all evalu-
ations of di�erent methods in the main paper. To see how robust the performance is if we
change the ordering, we try multiple random orderings. In Table 4.2 we show results for the
accuracy oracle, for episodic and lifelong as in the main paper and additionally for lifelong
with 3 di�erent random orderings of the 18 scenes. We see that the metrics are very close to
the results for lifelong as reported in the main paper, and conclude that the speci�c ordering
has a negligible e�ect on performance.
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Table 4.2: We evaluate the accuracy oracle baseline on three different random scene orderings of the 18 test scenes. The
first two rows are identical to that of the results table in the main paper. We see that the metrics are very
close in all evaluations in the lifelong setup meaning that the specific ordering used in the main paper has little
influence on the results.

Model Setup ∆A / annot ∆A / step mIoU (1-50) mIoU (51-100)

Accuracy oracle

Episodic 1.162 0.056 0.306 0.429
Lifelong 1.256 0.056 0.340 0.448

Lifelong, ordering 1 1.264 0.057 0.340 0.451
Lifelong, ordering 2 1.275 0.057 0.339 0.444
Lifelong, ordering 3 1.258 0.057 0.338 0.442

D Ablation Studies for the RL-Agent

Various ablations of the RL-agent4 proposed in the main paper are given in Table 4.3. We
compare to the following versions:

• Episodic training. When training the full RL-agent we reset the segmentation net-
work every 10th episode, while for this version we reset it every episode. The agent thus
trains in the same way as it is evaluated in the episodic setup.

• No accuracy reward. We discard the term giving a reward if the accuracy of the
agent’s current view is below a threshold. Hence we let λacc = 0 in the segmenta-
tion rewardRseg

t .

• No navigation pre-training. We train the policy directly in the full segmentation
environment without the navigation pre-training (whereas the full RL-agent was pre-
trained for 106 steps for point goal navigation).

• No global exploration. We use a spatial coverage reward similar to that in Nilsson
et al. [27] instead of the global exploration with point goal navigation to local naviga-
tion targets.

For consistency with the test results in the main paper we report the average mIoU after 1-
50 and 51-100 annotations. However, mIoU(51-100) is slightly inconclusive since the agents
sometimes stop before 100 annotations and the annotation frequencies di�er signi�cantly,
and much more than the methods we compare on the test set in the main paper. Due to
this we also report the average number of annotations per episode (rightmost column in Ta-
ble 4.3). Since more frequent annotations lead to a larger coverage of the objects in the scene
we can expect a higher mIoU if the frequency is signi�cantly higher, but this comes at a cost
of requiring more annotations.

4We refer to the RL-agent in the main paper as the full RL-agent (or sometimes simply the RL-agent).
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Table 4.3: Ablation study of the RL-agent proposed in the main paper. These models are evaluated on the 11 validation
scenes of Matterport3D. We also include the accuracy oracle for reference. The evaluated metrics are the same
as in the main paper for consistency, and we have added a final column (right) which shows the average number
of annotations per episode. Note that the full RL-agent (2nd row) queries for significantly fewer annotations
per episode in the lifelong compared to the episodic setup, which we can also see for episodic training (3rd row)
but not the other ablated versions. Moreover, despite fewer annotations (11.7% less in lifelong than episodic),
the increase in mIoU is simultaneously by far the highest for the RL-agent, when looking at lifelong vs episodic.

Model Setup ∆A / annot ∆A / step mIoU (1-50) mIoU (51-100) Annots
Accuracy

oracle
Episodic 1.452 0.077 0.368 0.471 65.8
Lifelong 1.530 (+0.078) 0.077 0.395 (+0.027) 0.490 (+0.019) 62.4 (-3.4)

RL-agent Episodic 0.998 0.066 0.301 0.395 95.9
Lifelong 1.076 (+0.078) 0.065 0.362 (+0.061) 0.446 (+0.051) 84.7 (-11.2)

Episodic
training

Episodic 0.765 0.092 0.312 0.399 131.6
Lifelong 0.856 (+0.091) 0.071 0.336 (+0.024) 0.424 (+0.025) 106.2 (-25.4)

No acc
reward

Episodic 0.529 0.058 0.308 0.417 143.2
Lifelong 0.551 (+0.022) 0.071 0.335 (+0.027) 0.455 (+0.038) 147.0 (+3.8)

No nav
pre-training

Episodic 0.558 0.059 0.309 0.424 137.3
Lifelong 0.557 (-0.001) 0.068 0.322 (+0.013) 0.407 (-0.017) 134.9 (-2.4)

No global
exploration

Episodic 0.924 0.033 0.305 0.354 55.8
Lifelong 0.665 (-0.259) 0.033 0.342 (+0.037) 0.395 (+0.041) 79.8 (+24.0)

We can see that the full RL-agent gets a signi�cantly larger di�erence in mIoU between the
episodic and lifelong setup than the ablated versions. The mIoU is higher in the lifelong
setup despite using fewer average number of annotations per episode. Compared to episodic
training (resetting the segmentation network every episode) we see that the full RL-agent
gets a signi�cantly higher mIoU in the lifelong setup. If we do not use an explicit accuracy
reward we see that the annotation frequency is the same in the episodic and lifelong setups,
and the di�erence in mIoU is smaller. If we do not pre-train for navigation the mIoU does
not signi�cantly improve in the lifelong setup compared to the episodic. Finally we see that if
we use a spatial coverage reward instead of the global navigation with local navigation targets,
the exploration is signi�cantly worse, since the average area explored per step (∆A / step) is
about half of the other methods.

E Further Details of the RL-Agent

For the policy training we use a simpli�ed network for semantic segmentation to signi�cantly
speed up training. With this modi�cation training is about 5 times faster than using Resnet-
50. We use a nine layer network with three blocks with three convolutional layers each, fol-
lowed by upsampling and classi�cation. The blocks have 64, 128 and 256 channels respec-
tively, and the �rst convolutional layer in each block uses stride 2, so the resolutions are 1/2,
1/4 and 1/8 per block. During training we use image size 127× 127 but for all evaluations
we use Resnet-50 with image size 256× 256.

The policy consists of two branches processing the visual information and navigation targets
separately, and these are followed by a recurrent network whose hidden state is used to com-
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pute the policy. The �rst branch is a four-layer CNN φimg(It,St,P t,Dt) ∈ R512 which
processes the image, segmentations and depth. The second branch is φnav(rt, ϕt) ∈ R128

which processes the navigation targets. It consists of two fully connected layers of size 64
and 128. We concatenate φimg and φnav to a vector of length 640 and use that as an input
to an LSTM [15] with 256 hidden states. Finally we compute the policy π(at|st) from the
hidden state using a fully-connected layer of size 4 followed by softmax to get a probability
distribution over the actions.

The policy network containsφimg which processes the image, segmentations and depth. This
network consists of 3 convolutional layers, with 32, 64 and 64 channels respectively, �lter
sizes 8, 4 and 3, and strides 4, 2 and 1. This is followed by global average pooling and a fully-
connected layer with 512 units.

We train the policy using PPO [35] and use the implementation in RLlib [23]. We use learning
rate 3 · 10−4. To train the policy in the lifelong setup, we reset the segmentation network
every 10th episode, and run 4 episodes of length 500 per scene. We pre-train the policy for
106 steps for standard point goal navigation, where we replace the predicted segmentation
St and the propagated segmentation P t with the ground truth segmentation in the state
space and removed the Annotate action. We then train the policy in the full segmentation
environment for an additional 106 steps. The pre-training is signi�cantly faster since the
segmentation network is not used and not re�ned. Training 106 steps in the full environment
takes about 4 days using 2 Nvidia Titan X GPUs, and the pre-training takes 10 hours on a
single GPU.

F Accuracy Oracle Thresholding

We empirically found the 0.7 threshold to give the largest mIoU. We show in Table 4.3 that
the accuracy oracle with the 0.7 threshold obtains mIoU(1-50)=0.395, mIoU(51-100)=0.490
using on average 62.4 annotations on the validation scenes. If we use 0.6 as threshold we
get mIoU(1-50)=0.357, mIoU(51-100)=0.426 using on average 47.7 annotations and for 0.8 as
threshold we get mIoU(1-50)=0.367, mIoU(51-100)=0.454 using on average 92.0 annotations.
With frequent annotations, once an agent reaches 50 annotations it will only have explored
a small area, while with infrequent annotations it will annotate sparsely and miss large parts
of the scene.
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Image Before After Annotation

Episodic Lifelong

Image Before After Annotation

Image Before After Annotation

Episodic Lifelong

Image Before After Annotation

Figure 4.5: The first four queried annotations, as well as the predicted segmentations before and after refinement, when
evaluating the RL-agent in the episodic and lifelong setups in two different buildings from the test set. We
can see in the lifelong setup there is some prior knowledge, however it is mostly contained to wall, ceiling and
floor. We also note that many of the objects are seen from unusual viewpoints, e.g. the couch in the first
images in the first scene. Note e.g. the painting on the left in the second image for the second scene for the
lifelong agent. It is correctly recognized despite not being seen in the first annotation.
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RL-agent (ep)

RL-agent (ll)

Accuracy oracle (ep)

Accuracy oracle (ll)

Figure 4.6: The first six queried annotations when evaluating the accuracy oracle and the RL-agent in the episodic (ep)
and lifelong (ll) setups in a building from the test set. We can see that both agents request annotations at a
sparser rate when evaluated lifelong in this scene.
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Abstract

We study the embodied visual active learning problem for semantic segmentation with �ne-
grained and hence cost-e�cient annotations. In the embodied visual active learning problem,
an agent is tasked to navigate in a scene and occasionally, for carefully selected views, request
annotations in order to improve its visual perception. Earlier works have studied this problem
using active learning for entire images, but this can be cost-ine�cient if the perception is
already accurate for most parts of an image queried for annotation. In this paper we instead
consider region-based active learning, where an agent only queries for the ground truth of
small regions in images. We propose a reinforcement learning (RL) based approach to this
problem, and develop a policy architecture which controls both the navigation and the active
learning. Speci�cally, for the active learning component the agent must predictwhere in each
image in addition to when along the navigation trajectory to query for segmentation labels.
We experimentally validate our proposed method on the Matterport3D dataset and show
that our RL-agent outperforms pre-speci�ed baselines. We also compare to earlier work [23]
which assumes full image annotations, and show that our proposed region-based approach
obtains a similar segmentation performance despite only using 26% of the annotations on
average.
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1 Introduction

In many application of computer vision, convolutional neural networks (CNNs) achieve ex-
cellent performance, but they can fail for unusual viewpoints, or on domains they are not
trained on [1, 34]. In robot vision, for example, objects are often observed from viewpoints
which di�er from those in carefully curated datasets. This motivates a principled methodol-
ogy for adapting a visual perception system to the speci�c domain a robot is deployed in.

In this paper we study embodied visual active learning, where an agent should develop visual
perception via embodied exploration of a scene. This is achieved by having the agent explore
and observe di�erent viewpoints in the scene, where it for certain views requests annotations
to re�ne its visual perception. Earlier works [22, 23, 6] have studied the embodied visual active
learning problem, but they only consider active learning where the full image is annotated
whereas we study the problem with more �ne-grained annotations for only parts of each
image. An overview of our setup is shown in Fig. 5.1. Our region-based approach is useful in
case the segmentation fails only at small parts of an image, so that only those regions should
be annotated rather than whole images, where multiple parts might already be accurate and
annotating those parts might not improve the perception.

We compare multiple methods for this problem on the photorealistic Matterport3D dataset
[5], and we propose to use an RL based approach to learn a policy for the problem. As in prior
work, an agent is tasked to both navigate and select views for active learning, but di�erent to
earlier, we additionally require the agent to selectwhere in an image to query for annotations.
The region prediction is also modelled via RL, where the action space is augmented to both
contain actions for movements and when to annotate, but di�erent to before also predictions
for where in the image to annotate.

In summary, our contributions are:

• We study the embodied visual active learning problem with more granular annotations
than earlier works. We use region-based active learning where just parts of images are
annotated whereas prior work for this problem use full image annotations.

• We provide a methodology based on RL to handle the �ne-grained annotations, and
experimentally show that it performs better than multiple baselines.

• We compare multiple methods on the Matterport3D dataset, including our RL ap-
proach as well as agents that navigate via frontier exploration and use heuristic active
learning. Speci�cally, we show that with our region-based annotations we can reach
the same visual recognition performance as in prior work which used full image anno-
tations, but with only a quarter of the annotation cost.
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Policy
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Move
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Figure 5.1: An overview of our setup. An agent is placed in an environment, with the goal of acquiring visual perception
in the form of accurate semantic segmentation. At each time, the agent can either select to move in the
environment or to query for the correct labelling of a part of its current view. If it queries for annotation,
the agent must select a specific region in the image to annotate. This is then used to refine the semantic
segmentation network. The goal of an agent is to explore a whole scene while getting as accurate perception
as possible with a limited number of annotations.

2 Related Work

We here present related work. We focus on the two areas most relevant for our work which
is embodied learning with an emphasis toward methods that use embodiment to improve
visual perception, and then we present related work on active learning for semantic segmen-
tation.

Embodied learning. We will here review work using embodied learning, especially navi-
gation, to improve a visual perception system. Active learning in an embodied context has
been studied before [22, 23], but unlike our work, they considered only the labelling of full
images. A similar setup is studied by Chaplot et al. [6] where an agent �nd navigation trajec-
tories giving useful views to re�ne segmentations. They use a curiosity reward based on 3d
consistency, encouraging the agent to observe objects from multiple views. In contrast to our
paper all views along the trajectories are labelled, and there is no online re-training during the
navigation. Chaplot et al. [7] considers self-supervised instance segmentation improvement
via exploration to gather pseudo-labels via 3d consistency, where the exploration is trained
via a reward function encouraging observing highly con�dent predictions. Using pseudo-
labels obtained via 3d was also explored in Fang et al. [9] where the labels are gathered via
embodied exploration. Kotar and Mottaghi [18] improve a pre-trained object detector at test
time via embodiment without requiring explicit supervision. There is also work on how to
move to improve the detection score or reducing the uncertainty of a visual model, e.g. mov-
ing to get an non-occluded view either via embodiment [37, 1] or by predicting the next best
view [24, 27, 15], however in these approaches the viewpoints change while the visual percep-
tion in general is not re�ned with additional data. There is also work on improving visual
perception using methods for self-supervised domain adaption, and using embodiment to
gather informative views for such systems to work well [40]. Related is also work on mutual
improvement of segmentation and SLAM [33, 39], but these works consider pre-collected
trajectories and not how to explore.
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Active learning for semantic segmentation. In active learning [29, 25], the task is to
among a large pool of unlabelled data select the ones to labels and use as training data for
a learning system. Successful approach for general computer vision tasks are via core-sets
[28] which selects diverse examples measured by distance between deep features, VAAL [32]
which learns a VAE [17] to discriminate between labelled and unlabelled data, uncertainty es-
timation of CNNs [10], learning the acquisition function [12] or by estimating the task loss
for unlabelled data [38].

We now present prior work on active learning for semantic segmentation. Unlike our online
setup, most of the work presented here is pool based active learning, which means that all un-
labelled data is available at all time, and none of the presented methods feature embodiment
like in our setup. The methods that are presented di�er in how �ne-grained the annotations
are, e.g. images, regions, superpixels or even single pixels, and the criteria used to select what
to annotate. Casanova et al. [4] present an RL approach to region-based active learning for
semantic segmentation, by learning the acquisition function via Q-learning. CEREALS [20]
is proposed for region-based active learning by estimating the labelling cost of regions com-
bined with uncertainty estimations based on the CNN outputs. Another line of work [35, 8]
design acquisition functions by predicting which regions in the image that are di�cult to
segment. Golestaneh and Kitani [11] rank unlabelled imaged by seeing how robust they are
to equivariant transformations such as left-right �ipping, and select regions to annotate that
are not robust to such changes. It is also possible use multi-view datasets and consider ro-
bustness of the predictions to viewpoint changes for the active learning [31]. Belharbi et al.
[2] propose to in addition to the oracle labelling also use pseudo-labels by weakly supervised
learning. There are also works considering very �ne-grained annotations such as annotating
single pixels at a time [30] or using superpixels [3, 16].

3 Methodology

In this section we present our methodology, of which we show an overview in Fig. 5.2. We
start by describing our setup, speci�cally how the regions are selected and which actions an
agent can take. We then describe our approach to the problem which uses RL. Finally we
describe our semantic segmentation network and its training details.

3.1 Setup

As in earlier works [22, 23], an agent is tasked with exploring and occasionally requesting an-
notations for informative views in the exploration trajectory. However, these works consider
the annotation to be the whole image. In this paper we further task an agent with selecting
parts of images to annotate instead of the whole image. For simplicity we partition the image
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Figure 5.2: Overview of our policy architecture. The first part of the policy, πact is to select either a movement action
(move forward, rotate left or rotate right) or to request an annotation. If the agent selects an annotation,
then the region selected by πx,y is annotated and used to refine the segmentation network. The inputs to the
CNN encoder are the image It, the depth Dt, the predicted segmentation St and the propagated annotations
Pt. A navigation target is given on the shortest path to the current frontier point, which is used to ensure
systematic and exhaustive exploration. The navigation targets (r, ϕ) are given in polar coordinates.

into Nr × Nr equally sized patches. We use Nr = 4 in all experiments unless otherwise
stated.

We assume that the action space is a vector a = (aact, ax, ay) where aact is the agent’s
action in the environment and (ax, ay) is the region selection, since an agent predicts both
movements and positions of the bounding box. Speci�cally, we assume that the policyπ(a|s)
is factorized as

π(a|s) = π(aact, ax, ay|s) = πact(aact|s)πx(ax|s)πy(ay|s) (5.1)

whereaact ∈ {MoveForward, RotateLeft, RotateRight, Annotate} is the action of the agent
and ax, ay ∈ 1, . . . , Nr

5 is the bounding box selection.

3.2 Reinforcement Learning

In this section we describe our approach to the problem using RL. Speci�cally we describe
the state space, policy network, reward function and training details.

The state space st = {It, St, Pt, Dt, rt, ϕt} consists of the images {It, St, Pt, Dt} of size
127 × 127 where It is the image, St the predicted segmentation, Pt the annotations prop-
agated to the current view via optical �ow, andDt which is the depth. We also provide nav-
igational targets {rt, ϕt} in polar coordinates relative the agent’s pose as given by frontier
exploration [36] as in earlier work [23] to ensure global and systematic exploration of the
scene. A frontier point is selected, and a local navigation target is selected along the shortest
path to the frontier point.

5We also tried to parameterize the bounding box selection in the action space via the joint distribution as
πx,y(ax, ay|s) for the RL training but found that it performed slightly worse.
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Our model is shown in Fig. 5.2. We predict π(ax, ay|s) by applying a convolution with one
output channel following the last layer of the encoder of the policy network and then resizing
to Nr × Nr. We go to the marginalized distributions using πx(ax|s) =

∑
ay
π(ax, ay|s)

and πy(ay|s) =
∑

ax
π(ax, ay|s). The LSTM [14] has 256 units. The CNN consists of 3

layers with �lter sizes 32, 64 and 64, kernel sizes 8, 4 and 3 and strides 4, 2 and 1 respectively,
and the last convolutional layer is followed by global average pooling and a dense layer with
512 outputs. The navigation targets (r, ϕ) are processed prior to the LSTM by 2 dense layers
with 64 and 128 outputs.

The reward function is similar to earlier work [23], but adapted for the region-based setup.
It is given by by combining exploration (exp) rewards with segmentation (seg) rewards as
Rt = λRexp

t + (1 − λ)Rseg
t with λ = 0.001. The segmentation reward is only non-zero

when the agent selects to annotate (aact =Annotate) and is in that case given by

Rseg
t = mIoU(St+1,R)−mIoU(St,R)− εann + λacc1(acc(St, It(ax, ay))) < τacc)

(5.2)

where St is the segmentation network at step t, andR is a set of 32 randomly sampled ref-
erence views for the current episode, It(ax, ay) is the region selected to be annotated and
acc(St, It(ax, ay)) is the accuracy of the selected region prior to the online re�nement of
the semantic segmentation network. We used εann = 0.001, λacc = 0.003 and τacc = 0.5.
The exploration reward is given by

Rexp
t = d(xt, g

local
t )− d(xt+1, g

local
t ) + λg1(d(xt+1, g

local
t ) < ε) (5.3)

where d(·, ·) is the geodesic distance, xt is the position of the agent and glocalt is the local
navigation target on the shortest path to the currently selected frontier point. We useλg = 1
and ε = 1.

The policy is trained with PPO [26] using RLlib [19] with learning rate 3 · 10−4 for 106

environment steps. We train the system using 2 GPUs, and it takes about 4 days to train a
model. We use a simpli�ed semantic segmentation network from [22] during policy training
to speed it up.

3.3 Semantic Segmentation

For the semantic segmentation, we largely follow the setup in [23], namely we use a ResNet-
50 [13] pretrained on ImageNet. At the start of each episode we initialize the last classi�cation
layer randomly. We use a standard cross-entropy loss, and mini-batches if size 4, which always
include the latest annotated region. The cross-entropy loss is only computed for pixels in the
regions that are annotated, but we always provide the full images as inputs to the segmen-
tation network since the annotated regions themselves not always provide adequate context
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for accurate predictions, see the images and regions in Fig. 5.5. Every time an agent annotates
the segmentation network is re�ned online until the accuracy of a mini-batch exceeds 95%
or for at most 1000 iterations.

4 Experiments

In this section we present experimental results. We start by the describing the experimental
setup, followed by the test results. We then show ablation studies of the RL-agent and �nally
experiments where the region sizes vary.

4.1 Experimental setup

All methods are evaluated on Matterport3D [5] using the Habitat simulator [21], and largely
follow the experimental setup in [23], which is described again in this section. We use the
o�cial split of Matterport3D with 61 training scenes, 11 validation scenes and 18 test scenes.
When we evaluate on the validation set or test set, we always start at the same position for
all methods considered, and the reference views used to assess the segmentation accuracy are
identical for a given scene. We evaluate one episode per scene and end an episode either when
the agent has taken 2000 actions or when the agent has �nished exploring, which we for
practical purposes de�ne as when 95% of the navigable area has been seen.

Our main metric is the mIoU on a set of reference view, sampled uniformly in each scene.
When comparing di�erent agents in a given scene, the segmentation performance is always
compared on identical reference view for fairness. Due to a very unbalanced distribution of
labels in the scenes, we only look at the mIoU of the 10 most common classes among the
reference views of the current scene. We speci�cally look at the mIoU as a function of the
number of annotations and as a function of explored area. We always average the mIoUs over
all scenes when we report, and when we report mIoU as a function of area, we normalize the
area per scene to a value between 0 and 1. When reporting mIoU(i-j) we look at the average
mIoU for annotations i to j, averaged over all scenes. Note that mIoU(i-j) is proportional to
the area under the curve between annotations i and jwhen plotting mIoU versus the number
of annotations.

We compare our RL method to several baselines listed below. The baselines di�ers in their an-
notation policies while the navigation policy follows shortest paths via frontier exploration.

• Region Oracle. The agent select the least accurate region to annotate whenever the
segmentation accuracy on the region is less than a threshold, which was selected to be
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Table 5.1: Results on the test set of Matterport3D. The region oracle consistently obtains the highest mIoU, but since it
uses the ground truth for the region selection it should be considered an upper bound which we compare other
methods to. The RL-agent outperforms the baseline selecting random regions to annotate. Compared to using
full images for supervision, we see that all region-based methods obtain a much higher mIoU for a given number
of annotations. Note that for [23], each annotation is for the full image which corresponds to 16 regions, so
100 region-based annotations are 100/16 full image annotations.

Method mIoU(1-100) mIoU(101-200) Final mIoU Average annotations
Region Oracle 0.219 0.324 0.443 456

RL - Region-Based 0.210 0.304 0.422 453
Random Regions 0.201 0.293 0.391 452

RL - Full images [23] 0.141 0.230 0.435 1737
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Figure 5.3: Results on the test scenes. We can see that the region oracle is the most efficient, but we emphasize that since
it uses the ground truth for the region selection, we can not directly compare to it; rather, we can see how
close other methods are to it. The RL-agent is better than random regions both when considering the mIoU as
a function of the number of annotations and area. Finally we see that compared to full image supervision [23],
the region-based RL-agent reaches comparable performance as a function of the explored area, but for a given
number of annotations, the region-based methods are all significantly better than the method annotating full
images.

50% based on experiments on the validation set. This baseline requires constant access
to ground truth data and should be considered an upper bound.

• Random Regions. This agent annotates with a �x probability, and selects a random
region uniformly in the image to annotate. The annotation probability was set to 25%
to match the frequency of the region oracle.

We also compare our method to the earlier work in [23]. In contrast to us, they use full image
supervision. We always take that into account when reporting annotations so that 1 full
image annotation corresponds to 16 region-based annotations since we usedNr = 4.

4.2 Main Results

In Fig. 5.3 and Table 5.1 we show the results on the test set. We can see that the region oracle
obtains the highest mIoU, both as a function of the number of annotations and as a function
of the area, and that the RL-agent using region-based annotations outperforms the baseline
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Table 5.2: Ablations of the RL-agent. We show results on the validation split of Matterport3D. As can be seen, the model
with the region prediction branch consistently obtains a higher mIoU than the model without.

Method mIoU(1-100) mIoU(101-200) Final mIoU Average annotations
Full model 0.235 0.339 0.406 412

No region branch 0.217 0.319 0.399 410

selecting random regions to annotate. We note that the di�erence between the region oracle
and the other methods is especially large in the beginning of episodes where little area has
been explored, and that the di�erence is not as large if we consider the mIoU per annotation.

We compare our proposed region-based active learning methodology to earlier work [23] us-
ing full image supervision. We make the assumption that annotation e�ort is proportional
to image area which is reasonable for cluttered scenes with multiple objects. We note that it
is signi�cantly more labelling e�cient to use region-based supervision than full image super-
vision. For a given level of annotations, the mIoU is signi�cantly higher for the region-based
agent. We also note that the �nal mIoU is similar for the RL-agents, but that the region-
based agent uses only about 26% of the annotations compared to the agent using full image
supervision.

We show qualitative examples in Fig. 5.5, with �ve consecutive regions the RL-agent selected
to be annotated from two di�erent scenes. Each annotated region should ideally contribute
towards general visual perception of the agent in the scene, and we can see in the re�ned
segmentations that the selected region is re�ned, as expected, but often also parts outside of
the selected region.

4.3 Ablation Studies of the RL-agent

To verify the e�ectiveness of our proposed region-based RL-agent we compare the following
models.

• Full model. The RL-agent as described in §3.2.

• No region prediction branch. We append branches for πx and πy directly following
the LSTM (cf. Fig. 5.2) instead of creating a separate branch for the bounding box
prediction. Note that this is a naive alteration of the policy architecture in [23].

We can see in Table 5.2 that the full model outperforms the ablated version on the validation
set of Matterport3D.
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Figure 5.4: We vary the number of regions Nr (an image has Nr ×Nr regions that can be queried for annotations) for
the region oracle with threshold 0.7, on the validation set. The exploration trajectories are identical for fair
comparison and only the annotations differ. We report normalized annotations which means annotated area
in terms of full images, so 1 normalized annotation is e.g. 16 annotations with Nr = 4 or 1 annotation with
Nr = 1. We see that for a given area, it is in general possible to obtain a higher mIoU using fewer normalized
annotations as Nr increases.

4.4 Di�erent Region Sizes

To investigate the e�ect of the number of regionsNr ×Nr we split our image into, we here
provide experiments for the region oracle baseline withNr ∈ {1, 2, 3, 4} in Fig. 5.4. We see
that for a given explored area, as we increase Nr, the mIoU is in general higher despite on
average asking for less annotations. This shows that the main assumption behind our work is
valid, namely that region-based annotations are more e�cient than annotating whole images.

5 Conclusions

We have presented a setup and methodology for the embodied visual active learning problem
where the annotations are based on image regions rather than full images. We have shown
that region-based annotations are more e�cient in terms of gained mIoU per annotation area
compared to using full images. We presented a methodology based on RL to handle both the
navigation and selection of which regions to annotate. Our proposed RL-agent outperforms
baselines, and is much more e�cient compared to prior work using full image supervision.
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Figure 5.5: Examples of the selected regions of the RL-agent. We show five consecutive annotations from two different
scenes. We show the image, the ground truth segmentation, and the predicted segmentations before and after
the online retraining. We can see that for most of the annotations, there is something incorrect in the regions
which is corrected after the refinement. We can also see that although only the selected regions are annotated,
sometimes also incorrect segmentations outside of the region are corrected after the refinement, e.g. the ceiling
in the top image to the left.
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