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Popular Science

Location awareness has become an integral part of almost all mobile devices
and applications that are used in our daily life. We rely on navigation apps
to know the surrounding traffic status and find the less congested route to
work or grocery stores. We can easily identify locations of missing items via
Internet-of-Things (IoT) positioning tags. In retail, knowing consumers’ move-
ment patterns enables the stores to optimize product placement and perform
proximity marketing and advertisements. Location information also helps to
realize health and behavioral monitoring improving nursing and medical ser-
vices for elder adults and people with disabilities. Moreover, high precision
location information is critical for many emerging applications such as intel-
ligent transportation systems, augmented/virtual reality, etc, and it can also
enhance the communication service itself in fifth generation (5G)-and-beyond
networks.

At this moment, you probably already think of “global positioning system”
(GPS), the most well-known positioning system. In open areas it provides ac-
curacy at meter-level for most civilian applications. However, when you are
indoor or in dense urban environments where the direct “sight” between satel-
lites and your mobile device is blocked by buildings, the accuracy and robust-
ness of GPS services are severely degraded and not sufficient for many existing
applications, not mentioning emerging applications requiring centermeter level
position information. This thesis focuses on the research topic “how to use
wireless signals that are exchanged between terrestrial radio infrastructures for
positioning as a complement or substitute of existing localization systems.” The
signals may refer to the signals exchanged between your mobile phone and base
stations, your tablet computer and WiFi router, or between IoT devices.

Radio signals reach receiving devices via direct paths or reflections from
surrounding objects, for instance walls, trees or even vehicles passing by. By
using proper mathematic tools, we can analyze the distance, directional and
other environment-related characteristics of radio waves and use them for po-
sitioning. In practice, useful radio signals are always corrupted by noise and
the achievable accuracy of a positioning solution mainly depends on “how fine
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vi Popular Science

you can distinguish individual radio waves and sense the changes of their char-
acteristics from noisy received signals.”

The 5G-and-beyond radio systems continue to develop towards higher fre-
quency ranges, wider signal bandwidths, and massive antenna arrays which
can contain a few hundreds of co-operating antennas. With these nice devices,
it’s like having a “high-resolution microscope” for observing the characteristics
of radio waves—sensing abilities are greatly boosted, which makes centimeter-
level accuracy positioning possible. Note that “massive” does not only describe
the number of antennas, but also implies the complexity level of the signal pro-
cessing process where we analyze useful information of radio waves from noise-
corrupted signals. A major part of this thesis is about “How to take advantage
of massive antenna systems for positioning in practice?”. More specifically, we
proposed mathematical algorithms that can be generally applied for efficient
and accurate estimation of radio wave information using measurements from
radio systems with massive antennas. Furthermore, we demonstrated the posi-
tioning performance with estimated path information using real measurements
from our testbed at Lund University.

Besides the radio networks that serve human-to-human/device communic-
ations, position information can also benefit the applications for IoT networks
dedicated for machine-type communications. “Things” may refer to the tem-
perature meters in the wild collecting data for meteorologist, the tire pressure
monitors on your vehicles, or the sensors in your apartment alerting you in
case of break-in, etc. Low-power consumption is a common feature of many
IoT devices since they need to survive on a battery for a long time, even up
to a number of years. Therefore, these devices don’t “wake up” and transmit
signals as frequent as devices of other radio networks, for example your smart
phone. Moreover, IoT devices are normally limited in size and manufacturing
cost, therefore they don’t have nice features like large bandwidths or massive
antennas. The second part of the thesis is about “How to make the best of the
limited resources from IoT networks for positioning?”

Radio-based positioning is a broad research topic and there is no single solu-
tion. With all the works in this thesis, ranging from algorithm design to radio
signal measurements, we would like to exploit the potential of existing/future
radio networks for positioning, and demonstrate the possibilities both theoret-
ically and practically.



Abstract

Robust and accurate localization using radio signals for scenarios such as indoor
and dense urban areas is of great importance, but challenging due to multipath
propagation and dynamic channel conditions. This thesis explores a few inter-
esting topics in this research field both theoretically and experimentally, which
are summarized in the following.

The first topic focuses on the estimation of local geometry related informa-
tion conveyed in specular multipath components (MPCs) from channel obser-
vations for multipath-assisted localization and mapping. In dynamic scenarios,
the number of existing specular MPCs (model-order) as well as their paramet-
ers, e.g., distances, angles and amplitudes, are both unknown and time-varying.
The estimation quality of above unknown information largely influences the
achievable accuracy and robustness of a localization solution.

The 5G-and-beyond radio systems exploit large-scale antenna arrays with
up to a few hundred elements enabling superior resolvability of MPCs in angu-
lar subspace. We present an extended Kalman filter-based sequential paramet-
ric channel estimator exploiting phase information of MPCs and demonstrate
the potential of using massive multiple-input multiple-output (MIMO) systems
with standard cellular bandwidth for high-accuracy localization and mapping.
Furthermore, it is noted that most of the existing parametric channel estimators
essentially consider the model-order detection, data association, and sequential
estimation of MPC parameters, but solve them in separate blocks. We proposes
a belief propagation (BP)-based algorithm which formulates all the problems
in a joint Bayesian framework, and obtains the marginal posterior probability
density functions (PDFs) in an approximate but computationally efficient man-
ner by running sum-product algorithm on the factor graph representation of
the joint problem formulation. Moreover, the use of amplitude information
further enables the reliable detection of “weak” MPCs with very low signal-to-
noise ratios. Results using real radio measurements demonstrate the excellent
performance of the proposed algorithms in realistic and challenging scenarios.

The second topic concerns about received signal strength (RSS)-based loc-
alization solutions for long-range outdoor IoT networks. Such networks mostly
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viii Abstract

serve applications with low-power, low-rate and low-cost features, therefore
dedicated localization solutions should have low complexity and minimum in-
frastructural needs. To make the best use of the limited resources, we present
a localization solution which fuses both range and angle information extracted
from non-coherent RSS measurements, and it is designed to be adaptive to
dynamic propagation conditions by sequentially estimating the time-varying
path-loss exponents for different anchors together with the target position.
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Magnus Oskarsson and Kenneth Batstone from the Centre for Mathematical
Sciences, and Alexander Venus from the Graz University of Technology, Aus-
tria, for all the interesting collaborations and fruitful discussions.

My deepest gratefulness goes to my family—my parents, my lovely little
sister, and my dear grandparents, for their endless love, support, and trust in
everything I do.

Most importantly, I would like to thank my beloved husband Xiaodong.
It is your love and support that give me the courage to never give up during
this adventure, and we together achieve all of this. In those stressful days,
thank you for being my cheer up leader, my superman who just takes care of
everything.

Xuhong Li

Lund, May 2022



List of Acronyms and
Abbreviations

2D Two-Dimensional

3D Three-Dimensional

5G Fifth Generation

AoA Angle-of-Arrival

AoD Angle-of-Departure

AWGN Additive White Gaussian Noise

BP Belief Propagation

CRLB Cramér–Rao Lower Bound

CIR Channel Impulse Response

CT Coordinated Turn

DA Data Association

DMC Dense Multipath Component

EADF Effective Aperture Distribution Function

EKF Extended Kalman Filter

EM Expectation-Maximization

FIM Fisher Information Matrix

GPS Global Positioning System

GSSM Geometry-Based Stochastic Signal Model

iid Independent and Identically Distributed

IoT Internet-of-Things

IMM Interacting Multiple Model

xiii



xiv List of Acronyms and Abbreviations

KF Kalman Filter

LoS Line-of-Sight

LPWAN Low-Power Wide Area Network

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum-Likelihood

MPC Multipath Component

MAP Maximum A-Posteriori

MDL Minimum Description Length

MNFA Mean Number of False Alarms

NCV Nearly-Constant Velocity

NLoS Non LoS

OSPA Optimal Subpattern Assignment

PA Physical Anchor

PDF Probability Density Function

PDP Power Delay Profile

PF Particle Filter

PLE Path-Loss Exponent

PLM Path-Loss Model

RRC Root-Raised-Cosine

RSS Received Signal Strength

RSSD RSS Difference

SAGE Space-Alternating Generalized Expectation-Maximization

SLAM Simultaneous Localization and Mapping

SNR Signal-to-Noise Ratio

SPA Sum-Product Algorithm

SIMO Single-Input Multiple-Output

UWB Ultra-Wideband

WLAN Wireless Local-Area Network

VA Virtual Anchor



xv



Contents

Popular Science v

Abstract vii

Preface ix

Acknowledgements xi

List of Acronyms and Abbreviations xiii

I Overview of the Research Field 1

1 Introduction 3
1.1 Wireless Localization Technologies . . . . . . . . . . . . . . . . 3
1.2 Radio-based Localization . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Questions of the Thesis . . . . . . . . . . . . . . . . . 8
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Multipath Channel Information for Localization 11
2.1 Geometry-based Environment Model . . . . . . . . . . . . . . . 11
2.2 Multipath-assisted Localization . . . . . . . . . . . . . . . . . . 13
2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . . 20
2.4 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . 21

3 Estimation of Multipath Channel Parameters 23
3.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Snapshot-based Parametric Channel Estimation . . . . . . . . . 28
3.3 Sequential Parametric Channel Estimation . . . . . . . . . . . . 31
3.4 Performance Evaluation Metrics . . . . . . . . . . . . . . . . . 37
3.5 Multidimensional Channel Sounding . . . . . . . . . . . . . . . 38

4 RSS-based Localization for IoT Networks 41
4.1 Localization Methods for IoT Networks . . . . . . . . . . . . . 41
4.2 RSS Model and RSSD Model . . . . . . . . . . . . . . . . . . . 42
4.3 RSS-based Target Tracking . . . . . . . . . . . . . . . . . . . . 44

xvi



Contents xvii

5 Conclusions and Outlook 47
5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . 47
5.2 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References 53

II Included Papers 61

Robust Phase-Based Positioning Using Massive MIMO with
Limited Bandwidth 65
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Dynamic Propagation Channel Modeling . . . . . . . . . . . . . 68
3 Propagation Path Parameters Estimation . . . . . . . . . . . . 70
4 Measurement Campaign . . . . . . . . . . . . . . . . . . . . . . 73
5 MPC Tracking Results and Analysis . . . . . . . . . . . . . . . 73
6 Positioning Algorithm and Results . . . . . . . . . . . . . . . . 75
7 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . 79
8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 80

Massive MIMO-based Localization and Mapping Exploiting Phase
Information of Multipath Components 85
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 90
3 EKF-based Channel Estimation Algorithm . . . . . . . . . . . 95
4 Localization and Mapping . . . . . . . . . . . . . . . . . . . . . 102
5 Evaluations and Results . . . . . . . . . . . . . . . . . . . . . . 104
6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 114
7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 115

Target Tracking using Signal Strength Differences for Long-
Range IoT Networks 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . 126
3 RSSD-based Tracking Algorithms . . . . . . . . . . . . . . . . . 130
4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 133
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 138

RSS-Based Localization of Low-Power IoT Devices Exploiting
AoA and Range Information 143
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 146
3 System Model and Statistical Formulation . . . . . . . . . . . . 147
4 The Message Passing Localization Algorithm . . . . . . . . . . 149



xviii Contents

5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 152
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Detection and Tracking of Multipath Channel Parameters Us-
ing Belief Propagation 163
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 166
3 System model and Statistical Formulation . . . . . . . . . . . . 168
4 The BP-based MPC Tracking algorithm . . . . . . . . . . . . . 173
5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 175
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Sequential Detection and Estimation of Multipath Channel Para-
meters Using Belief Propagation 185
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2 Radio Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . 190
3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4 Joint Posterior PDF and Problem Formulation . . . . . . . . . . . 196
5 The Proposed Sum-Product Algorithm . . . . . . . . . . . . . . 199
6 Particle-based Implementation . . . . . . . . . . . . . . . . . . 203
7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 204
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214



Part I

Overview of the Research
Field





Chapter 1

Introduction

Location-based services encompass a wide range of applications used in our
daily lives, such as navigation assistance, product or service discovery, and
critical services like emergency response. In open outdoor scenarios, location
awareness is mostly enabled by global navigation satellite systems (GNSS) [1],
where the global positioning system (GPS) is the most well-known example.
Nevertheless, GNSS reception is impaired by strong signal attenuation from
buildings and by the multipath effect in challenging environments such as urban
canyons or indoor. Dedicated substitute or supplement localization1 solutions
that are able to seamlessly provide high-accuracy and robust services under
various and challenging conditions are required by existing and emerging ap-
plication scenarios, for examples intelligent transportation systems [3], aerial
vehicles, assisted living [4], smart factory [5].

1.1 Wireless Localization Technologies

Existing wireless localization technologies can be roughly grouped into the fol-
lowing categories based on their physical sensing mechanisms:

• Optical systems, such as camera-based systems and laser scanners built
upon angle information and/or range information.

• Acoustic systems [6] use sound to determine the distance and direction
of its source or reflectors. The systems can be active or passive and work
in different mediums, e.g., gases, liquids or even solids.

1According to [2], positioning describes the determination of the coordinates of an object
in a defined coordinate system, while localization refers to the position of an object relative
to topological relations. These terms are used interchangeably in this thesis.

3



4 Overview of the Research Field

• Radio-based systems [3], [5], [7], [8], which rely on the transmission and
reception of radio signals for position estimation.

• Inertial sensors, which capture the dynamical state of a system, e.g.,
acceleration, angular rate, etc. Examples include inertial measurement
unit (IMU) using a combination of gyroscopes and magnetometers. IMU
data enables motion tracking of mobile nodes and is usually combined
with other measurements by means of sensor fusion.

For challenging environments or complex application cases, it is usually difficult
for a single technology to deliver adequate accuracy and robustness, therefore
a diversity of technologies are often combined in a data fusion framework. A
comprehensive overview of existing localization technologies are given in [9].
This thesis focuses on radio-based technologies.

Radio-based localization systems typically consist of a number of anchor
nodes at known locations, and one or more mobile target nodes whose posi-
tions need to be estimated. These nodes act as transmitters or receivers based
on the technologies used. Localization is performed either by directly using the
received signals or by following a two-stage process, i.e., measurement collec-
tion and measurement processing with localization algorithms. For two-stage
methods, measurements refer to position-dependent information extracted from
radio signals exchanged between nodes. The following is a brief overview on
the inter-node measurements and corresponding localization methods.

• Radio visibility, which is used in proximity (range-free) methods to detect
the presence of a target around an anchor instead of calculating the exact
position coordinates of the target.

• Time-of-arrival (ToA), time-of-flight (ToF) or time-difference-of-arrival
(TDoA), can be exploited in range-based positioning methods. The time
synchronization between nodes is critical to obtain accurate ToAs, ToFs,
however the requirement can be relaxed for methods using TDoAs.

• Angle-of-arrivals (AoAs) are typically obtained by using phased antenna
arrays at nodes, and the accuracy of AoA measurements mainly depends
on the array aperture and signal-to-noise ratio (SNR).

• RSS measurements can be used in fingerprinting methods [10], [11], or in
range-based [12], [13] methods where ranging is performed by exploiting
a path-loss model (PLM) [13].

The basic principles of the range- and angle-based positioning schemes are
illustrated in Fig. 2.1 using three anchors in a two-dimensional (2D) scenario.
Under the simplified assumption of no measurement errors, the user position
is the intersection of corresponding circles around the anchors with ranges as



Chapter 1. Introduction 5

p
target node

a1

anchor node

d1

a2

a3

(a)

a1

a2

a3

(b)

p

a1

ϕ1

a2

a3

(c)

a1

a2

a3

(d)

Figure 1.1: The basic principles of the range-based positioning methods (a), (b),
and angle-based positioning methods (c), (d). (a) intersection point of circles which
are centered at the anchors with perfect range measurements as the radii (e.g., d1);
(b) intersection area of noisy range measurements; (c) intersection point of direc-
tional lines from the anchors based on the perfect AoA measurements, e.g., ϕ1; (d)
intersection area of noisy angle measurements.

the radii in Fig. 1.1a, or the intersection of directional lines in Fig. 1.1c. Since
measurements are always noisy in practice, the intersection point spreads out to
the intersection area of noisy measurements as shown in Fig. 1.1b and Fig. 1.1d,
thus estimation methods are needed. The achievable accuracy of range-based
algorithms depends primarily on the employed signal bandwidth and the SNR.
Angle-based systems normally have higher hardware complexity since phased
antenna arrays are typically required. Comparably, range-based methods are
more commonly used. In the afore mentioned scenario, the associations from
measurements to anchors are assumed as known prior. In practice, localiza-
tion and simultaneous localization and mapping (SLAM) problems are often
complicated by the association uncertainty (see for Section 3.3.2).

1.2 Radio-based Localization

Nowadays, many research works focus on using signals from terrestrial wireless
networks to develop localization and navigation systems that work where satel-
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lite system fails. In general, such signals are designed for data communication,
not for localization purposes.

A few typical examples of the radio networks available for localization
are cellular networks, wireless local-area networks (WLANs), ultra-wideband
(UWB)-based systems [14], [15], radio frequency identification (RFID) techno-
logy, and wireless sensor networks (WSNs). Cellular networks provide limited
temporal and spatial resolution due to limited bandwidth (typically 20 MHz in
LTE) and small scale antenna arrays (e.g., 2 × 2, 4 × 4) applied. Hence, for
positioning purpose they can serve as supplement to GNSS to improve star-
tup performance and robustness when satellite signals are weak or unavailable,
but cannot deliver satisfactory accuracies as standalone systems in a straight
forward manner.

1.2.1 Localization for 5G and IoT Networks

The 5G-and-beyond mobile communication systems [8], [16]–[18] deliver en-
hanced and new features for localization, which can significantly improve ex-
isting location-based services and enable new use cases with strict requirements
in terms of accuracy, latency, availability, reliability, etc. Specifically, 5G-and-
beyond systems exploit new radio spectra, in particular the millimeter (mm)-
wave spectrum above 24 GHz, to meet the increased demands for data rates.
Large bandwidths available within these spectra tremendously improve the
resolvability in delay/distance subspace. Furthermore, higher carrier frequen-
cies lead to smaller antenna elements which makes it possible to accommodate
more elements within an antenna array of same or even reduced physical size.
The use of large antenna arrays with up to a few hundred elements (massive
MIMO) is one of the key features of 5G systems, enabling superior resolvab-
ility in the angular domain. The number of antenna elements is expected to
be scaled up by a further order-of-magnitude in the future systems. The im-
proved delay and angular resolvability make it possible to resolve the MPC
associated with environment geometric features, and observe the dynamic be-
havior of MPC parameters in non-static environments. Signals in the mm-wave
frequency bands experience high free-space pathloss. Thus, a large number of
small cells have to be densely placed (i.e., network densification) to guarantee
the coverage. For localization purposes, this means anchors, i.e., base stations,
are more likely to be accessible from the mobile user side with line-of-sight (LoS)
connection and shorter distances.

IoT networks [7] are aimed at providing communications to a massive num-
ber of devices and smart sensors with range from a few meters (RFID, UWB,
BLE) up to a few kilo-meters (LoRa, Sigfox, NB-IoT), and location-awareness
is crucial for various IoT related applications. The low-cost, low-power and
low-data rate features of IoT devices have strong impact on the dedicated loc-
alization solutions, which should have low complexities to achieve low power
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consumption without asking for extra infrastructures. The included publica-
tions [T3] and [T4] focus on IoT localization solutions based on RSS measure-
ments.

1.2.2 Technical Challenges for Radio-based Localization

This section discusses a number of technical challenges that have been identified
for radio-based localization:

• LoS path availability: LoS path information provides the most location-
relevant information of all MPCs, but it is often blocked in indoor and
dense urban scenarios.

• Multipath propagation, which has long been considered as the main
source of estimation errors for many range-based localization approaches.
However, the position-related information that is conveyed in MPCs can
be exploited for localization if they can be well resolved [2], [15].

• Time synchronization: timing-reference synchronization between nodes is
crucial for time delay estimation, therefore it is an important prerequisite
for range-based localization systems.

• Additional information and infrastructure are often needed, for instance,
floor plan of the environment and phased arrays for extracting angular
information from radio signals.

• Complexity considerations: some devices have limited computational cap-
abilities and lower-power characteristic, therefore dedicated localization
solutions should be developed with a good balance between complexity
and accuracy.

1.2.3 Multipath-Assisted Localization

Radio signals arrive at receivers via a number of propagation paths, i.e., MPCs,
including the LoS path, and paths due to reflections, scattering, and diffraction
from surrounding objects, e.g., buildings surfaces, trees, vehicles, etc. Most of
the standard localization methods either detect the existence of LoS path and
avoid non-LoS (NLoS) measurements, or try to mitigate the influence on the es-
timation of the LoS path induced by multipath propagation. In contrast, many
recent works [19]–[21] exploit the position-related information that is conveyed
in the specular reflection MPCs for localization. More specifically, signals are
considered from additional virtual sources which are time-synchronized to the
physical transmitter, thus positioning become possible in cases of LoS blockage
or insufficient number of transmitters. More information will be introduced in
Chapter 2 and Chapter 3. Some works also consider distinct scatters [21] or



8 Overview of the Research Field

dense multipath component (DMC) [22] for positioning, where DMC incorpor-
ates MPCs that cannot be resolved due to finite observation aperture therefore
cannot be modeled deterministically.

1.3 Research Questions of the Thesis

The research work of this thesis focuses on two aspects: (i) sequential detection
of MPCs and estimation of their parameters, and the use of estimated MPC
parameters for localization and mapping; (ii) target tracking for long-range
IoT networks by exploiting both angular and range information. The detailed
research questions considered in each aspect are given as follows.

For multipath-assisted localization and mapping, the achievable levels of
accuracy and robustness highly depend on the quality of extracted position-
related information of MPCs from radio measurements. Specular reflected
MPCs can be modeled with the physical anchors (PAs) and virtual anchors
(VAs) representing the mirrored positions of the PAs w.r.t. planar surfaces in
the propagation environment, which are collectively referred to as environment
features. In dynamic scenarios, these features are sometimes invisible at the
target node’s position due to a blockage by surrounding objects, leading to
birth and death process of MPCs. Furthermore, the number of specular MPCs
as well as their parameters, i.e., distances, angles, phases, and amplitudes are
unknown and time-varying. The included publications [T1], [T2], [T5] and
[T6] focus on the topic of MPC detection and the sequential estimation of
MPC parameters from radio signals. The potential of using massive MIMO
for multipath-assisted localization and mapping with standard cellular signal
bandwidth is further demonstrated in [T1] and [T2].

For IoT networks, positioning is typically accomplished by using classical
methods, such as fingerprinting or range-based methods. The achievable ac-
curacy of fingerprinting is related to the density of fingerprints and degrades in
dynamic scenarios. Extracting the range of LoS path from exchanged signals
between nodes can be very inaccurate due to imperfect time synchronization,
NLoS propagation, or the use of narrowband signals. Moreover, RSS-based
ranging can be unreliable under the conditions of imperfect knowledge of path-
loss exponent (PLE) and environmental influence. The publication [T3] and
[T4] exploit AoA information from non-coherent RSS measurements, which is
then fused with range information for target tracking for mid- to long-range
outdoor scenarios.
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1.4 Thesis Outline

This thesis consists of two main parts, an overview of research field in Part I
and the main research contributions in the form of a collection of publications
in Part II.

The structure of Part I of this thesis is as follows. Chapter 1 briefly intro-
duces the existing radio-based technologies and main research questions of this
thesis. Chapter 2 presents the geometry-based stochastic environment model
and the general probabilistic formulations of the position estimation, tracking,
and SLAM problems. Chapter 3 first introduces the geometry-based stochastic
signal model, and then summarizes the existing and proposed parametric chan-
nel estimation methods as presented in [T1], [T2], [T5] and [T6]. Chapter 4
focuses on target tracking solutions for IoT networks, as presented in [T3], and
[T4]. Finally, in Chapter 5 summarizes the main research contributions and
my personal contributions in each of the included publications, and suggests a
few interesting extensions of the presented work for future research.





Chapter 2

Multipath Channel
Information for
Localization

This chapter first introduces the geometry-based environment model which
represents position-related information conveyed in specular MPCs with en-
vironment features, i.e., VAs. Based on this model, probabilistic geometric
formulations of multipath-assisted positioning, tracking and SLAM problems
are provided in the following sections.

2.1 Geometry-based Environment Model

For the sake of brevity, horizontal-only signal propagation in a two-dimensional
(2D) scenario is assumed in this chapter, but it is straightforward to extend this
to three-dimensional (3D) scenarios. At a discrete observation time n, radio

signals exchange between J physical anchors (PAs) located at a
(j)
1,n ∈ R2 with

j ∈ {1, · · · , J} and a mobile target at pn ∈ R2. The signals propagate via differ-
ent mechanisms, i.e., LoS propagation, specular reflection on smooth surfaces of
interacting objects (IOs), diffuse scattering on rough surfaces of IOs, diffraction
at the IO edges, and penetration [23]. The key concept for multipath-assisted
localization is using VAs to model position-related information conveyed in the
specular reflected paths or in the paths from distinct scatterers. As illustrated

in Fig. 2.1a, VAs coordinates a
(j)
l,n of the jth PA with l ∈ {2, · · · , L(j)

n } are
computed with exact room geometry knowledge, i.e., 1st-order VAs are ob-
tained by mirroring the PAs w.r.t. planar surfaces, and higher-order VAs are
constructed by further mirroring lower-order VAs w.r.t. planar surfaces. It

11
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Figure 2.1: (a) Example of a PA and the according VAs computed with known
room geometry. (b) Time-varying distances and MPC AoAs that are associated with
the four anchors.

may happen that the visibilities of VAs from the target position pn are blocked
by IOs at some time steps, i.e., the corresponding reflections are geometrically
impossible. The time-varying visibility conditions in dynamic scenarios lead to

death and birth process of MPCs. The number of visible VAs Ln =
∑J
j=1 L

(j)
n

equals the number of existing MPCs (i.e., model-order), and model-order is
typically unknown and time-varying in dynamic scenarios. More details about
the VA calculations and visibility region of VAs can be found in [2], [24].

Each specular MPC is characterized by its angle-of-departure (AoD) ϕTx
l,n

(j)
,

angle-of-arrival (AoA) ϕRx
l,n

(j)
, time delay τ

(j)
l,n ∈ R and complex amplitude

α
(j)
l,n ∈ C. The MPC parameters are time-varying under dynamic channel

conditions with mobile target, as shown in Fig. 2.1b. At each time n, the
time delay and AoA can be computed via non-linear transformation using the

mobile agent position pn and its respective VA position a
(j)
l,n as follows

τ
(j)
l,n =

‖a(j)
l,n − pn‖
c

, ϕRx
l,n

(j)
= ∠(a

(j)
l,n − pn)− ψ (2.1)

where ‖·‖ denotes the Euclidean norm and ψ denotes the agent orientation and
c is the speed of light.
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2.2 Multipath-assisted Localization

2.2.1 Technical Challenges

Multipath-assisted localization problems are often complicated by the following
issues:

• Estimation of MPC parameters: MPC parameters are usually estimated
from multidimensional measurements using antenna arrays and multiple
frequencies (wideband or UWB) using super-resolution algorithms. Se-
quential estimation of time-varying MPC parameters in dynamic scen-
arios is one of the focus areas of the thesis work. This is discussed in
detail in Chapter 3.

• Model-order estimation is a crucial issue, and it becomes more challenging
given a limited resolution capability of measurement systems and under
low SNR conditions. Related discussions are provided in Section 3.2.4.

• Data association (DA): To find the association between estimated MPCs
and PAs/VAs is another critical issue, and it becomes more challenging
in case of MPC overlapping or in the presence of clutter components.

• Knowledge of environment geometry: For simplicity, the environment
geometry (floor plan) and VA positions are usually assumed as known
prior. However, in practice it is either not available or noisy, thus the
VAs positions an have to be estimated jointly with the location of mobile
agent pn, leading to the SLAM problem which will be briefly introduced
in Section 2.2.5.

For two-stage solutions, where the MPC estimates from a parametric chan-
nel estimator are used as measurements in a localization algorithm, the DA can
be performed in two ways: (i) If a snapshot-based parametric channel estim-
ator is used, the association between VAs and MPC estimates is evaluated at
each time in the localization stage [20]; (ii) If a sequential parametric channel
estimator is used (see for Section 3.3), the estimated MPCs originating from
the same VA are already associated over time and then used jointly in the loc-
alization or mapping stage [19], [T1], [T2]. This thesis focuses on the second
approach and DA methods are introduced in Section 3.3.2. It would be rather
complex to consider all the above issues jointly in a single solution. Instead,
simplifying assumptions are usually made to reduce the complexity in practice.
For the general probabilistic formulations presented in this chapter, known
model-order and known associations are assumed unless otherwise specified.
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2.2.2 Probabilistic Geometric Model

At each time n, the target state refers to its position pn, the states of all VAs
representing their positions are denoted with a stacked vector an, ωn accounts
for the MPC states and zn represents the measurement vector.

Joint Posterior PDF

The Bayesian estimation of the target state pn relies on the posterior PDF
f(pn|z1:n), which is the marginal PDF of the joint posterior PDF f(pn,an|z1:n).
Assuming that pn and an are random variables, the joint posterior PDF of the
target state pn and VA states an conditioned on the measurements for all times
up to n z1:n = [zT

1 · · · zT
n ]T is given as

f(pn,an|z1:n) =
f(z1:n|pn,an)f(pn,an)

f(z1:n)
(2.2)

using Bayes’ theorem, where f(pn,an) represents the joint prior PDF of the
target state and VA states and f(z1:n|pn,an) is the likelihood function for the
measurements. The denominator f(z1:n) is a constant after the measurements
z1:n are observed. According to (2.2), the marginal posterior PDF f(pn|z1:n)
can then be obtained as

f(pn|z1:n) =

∫
f(pn,an|z1:n)dan (2.3)

∝
∫
f(z1:n|pn,an)f(pn,an)dan.

Since the measurements zn are directly related to MPC states ωn via the
measurement model and not to the states of the target and VAs, the posterior
PDF (2.3) can be expressed as

f(pn|z1:n) ∝
∫
f(z1:n|pn,an;ωn)f(pn,an)dan (2.4)

=

∫
f(z1:n|ωn)f(ωn|pn,an)f(pn,an)dan.

If the knowledge of the floor plan and VA positions are known, the joint pos-
terior PDF (2.4) reduces to

f(pn|z1:n) ∝ f(z1:n|pn;an;ωn)f(pn) (2.5)

= f(z1:n|ωn)f(ωn|pn;an)f(pn).

By following the common assumption that the measurements z
(j)
1:n, the MPC
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states ω
(j)
n and the VA states a

(j)
n are statistically independent over different

anchors, the likelihood functions in (2.4) and (2.5) further factorize as

f(z1:n|pn,an;ωn) =

J∏

j=1

f(z
(j)
1:n|pn,a(j)

n ;ω(j)
n ) (2.6)

f(z1:n|ωn) =

J∏

j=1

f(z
(j)
1:n|ω(j)

n ), (2.7)

and the conditional PDF factorizes as

f(ωn|pn;an) =

J∏

j=1

f(ω(j)
n |pn;a(j)

n ). (2.8)

The individual conditional PDF f(ω
(j)
n |pn;a

(j)
n ) of the MPC parameters ω

(j)
n

given the agent state pn and VA states a
(j)
n is described by the non-linear

transformation given in (2.1).

Measurement Model

The likelihood function f(zn|ωn) in (2.4) and (2.5) is a probabilistic repres-
entation of the measurement models introduced below. Note that zn and ωn
are general notations representing measurements and MPC states, the content
of the two vectors may vary in different problem formulations with different
system setups.

For direct localization algorithms where zn represents the received channel
impulse responses or transfer functions, the linearized measurement model is
given by

zn = s(ωn) + εn (2.9)

as further detailed later in (3.3), where εn denotes the measurement noise and
s(ωn) represents the non-linear mapping from the MPC parameters to the
specular observation vector described in Section 3.1.1.

For two-stage algorithms [19], [20], the measurements are the MPC para-
meter estimates zn = ω̂n obtained from a parametric channel estimator, and
the measurement model is given as

zn = ωn + nn (2.10)

where nn denotes the Gaussian noise process, which is independent and identic-
ally distributed (iid) across anchors, MPCs and time n. The approximation
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of iid Gaussian measurement noise is of course a simplification. A detailed
characterization of estimation errors of different linear or non-linear multivari-
ate estimators is a research area in it self and here we resort to a Gaussian
approximation to get a tractable solution.

The vector zn may also refer to RSS measurements for RSS-based local-
ization algorithms [25], [26] [T3], [T4], where only the LoS propagation path
is considered. The measurement model representing the non-linear mapping
from the LoS path parameters, like range and angle, to the RSS observations
is derived from the RSS and RSS difference (RSSD) models, as introduced in
Section 4.2.

Bayesian Estimation

Given the marginal posterior PDF f(pn|z1:n), the estimation of the target state
pn can be performed either by means of the maximum a-posteriori (MAP)
estimator

p̂MAP
n = arg max

pn
f(pn|z1:n) (2.11)

or by means of the minimum mean-square error (MMSE) estimator

p̂MMSE
n =

∫
pnf(pn|z1:n)dpn. (2.12)

2.2.3 Positioning of Static Targets

If the target is static, i.e., pn = p, the MAP estimation of the target state can
be formulated with the posterior PDF (2.5) as

p̂MAP = arg max
p

f(p|z) (2.13)

= arg max
p

J∏

j=1

f(z(j)|p;a(j);ω(j))f(p)

given deterministic known VA positions. Assuming uniform prior PDF f(p) in
the considered area, the MAP estimator reduces to a maximum-likelihood (ML)
estimator, which is given by

p̂ML = arg max
p

J∏

j=1

f(z(j)|p;a(j);ω(j)). (2.14)
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Figure 2.2: Illustration of the sequential Bayesian estimation process for time steps
n − 1 and n, assuming first-order Markov process. fn denotes the state-transition
PDF f(pn|pn−1) and hn denotes the likelihood function f(zn|pn).

2.2.4 Tracking of Mobile Targets

If the target is non-static, the state is further defined as xn = [pT
n ,∆p

T
n ]T with

∆pn denoting the velocity. The tracking of the time-varying target state xn
relies on sequential estimation methods as illustrated in Fig. 2.2, where the pos-
terior PDF f(pn|z1:n) is obtained by following a recursive version of (2.5) with
two steps: prediction and update. Given the posterior PDF f(xn−1|z1:n−1) at
time n−1, the prior PDF f(xn|z1:n−1) is obtained at the prediction step using
the Chapman–Kolmogorov equation [27] as

f(xn|z1:n−1) =

∫
f(xn|xn−1)f(xn−1|z1:n−1)dxn−1 (2.15)

where f(xn|xn−1) is the state-transition PDF describing the statistical evol-
ution of the target state over time [28], [29]. At time n = 1 the initial PDF
is assumed to be f(x1|x0) , f(x1). At the update step, the prior PDF is
updated via Bayes’ rule and the posterior PDF at time n is calculated as

f(xn|z1:n) =
f(zn|xn)f(xn|z1:n−1)

f(zn|z1:n−1)
. (2.16)

State-Space Model

The state-transition PDF f(xn|xn−1) describes the statistical evolution of the
target state over time, and it is typically defined by the motion models [28], [29]
introduced as follows. To account for smooth uniform motions of the target, the
nearly-constant velocity (NCV) model defined in Cartesian coordinate system
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is typically used, given as

xn = FNCVxn−1 + Γνn (2.17)

where the state-transition matrix FNCV and the matrix Γ are given by

FNCV =




1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1


 , Γ =




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


 . (2.18)

The driving process νn is iid across n, zero-mean and Gaussian with covariance
matrix σ2

νI2. For the NCV model, σν represents the average speed increment
along the x or y axis during the sampling period ∆T .

If the agent is moving with a constant velocity and performing a turn with
a constant angular rate Ω, the motion can be modeled with the coordinated
turn (CT) model

xn = FCTxn−1 + Γνn (2.19)

with the state-transition matrix given by

FCT =




1 0
sin(Ω∆T )

Ω
−1− cos(Ω∆T )

Ω

0 1
1− cos(Ω∆T )

Ω

sin(Ω∆T )

Ω
0 0 cos(Ω∆T ) − sin(Ω∆T )
0 0 sin(Ω∆T ) cos(Ω∆T )



. (2.20)

For the CT model, σν represents the average angular speed increment over a
sampling period ∆T .

Knowing the correct noise variances σ2
ν for motion models is crucial for op-

timal sequential Bayesian estimation. However, determining the variances in
advance is not straightforward, especially when the target is highly maneuver-
able. Using a constant predefined value of variance that deviates largely from
the true one can potentially lead to a poor convergence behavior. Moreover, it
is usually hard to describe the complex movement pattern with a single motion
model. To resolve motion uncertainty of the target, localization algorithms
[30], [T4] often incorporate the interacting multiple model (IMM) method [31]
which fuses multiple motion models and switches between them according to
their updated weights. Therefore, the requirement on presetting and tuning
noise variances for the state-transition PDFs can be relaxed.
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2.2.5 SLAM

Until now, we have assumed that the floor plan and VA positions are perfectly
known. However, they are either unknown or only partially available in prac-
tice, leading to the simultaneous localization and mapping (SLAM) problem
[32] where the VA states an are jointly estimated with the target state us-
ing measurements from the present and past z1:n. The joint posterior PDF
f(xn,an|z1:n) can be obtained by following a recursive version of (2.4). Spe-
cifically, given the posterior PDF f(xn−1,an−1|z1:n−1) at time n−1, the prior
PDF f(xn,an|z1:n−1) is obtained at the prediction step as

f(xn,an|z1:n−1) (2.21)

∝
∫∫

f(xn|xn−1)f(an|an−1)f(xn−1,an−1|z1:n−1)dxn−1dan−1.

In the update step, the posterior PDF at time n is obtained as

f(xn,an|z1:n) =
f(zn|xn,an)f(xn,an|z1:n−1)

f(zn|z1:n−1)
(2.22)

where the likelihood function factorizes as f(zn|xn,an) =
∏J
j=1 f(z

(j)
n |pn,a(j)

n ;

ω
(j)
n ). For VAs representing specular reflected MPCs as illustrated in Fig. 2.1a,

if the VAs are static their state-transition PDFs f(an|an−1) can be represen-
ted by the identity function, i.e., f(an|an−1) = δ(an − an−1), where δ(·) is
the Dirac delta function. If a physical anchor (PA) and its associated VAs
are non-static, the state-space models introduced in Section 2.2.4 can be used.
For VAs representing scattered MPCs or DMC, the according state-transition
PDFs are derived in [21] and [22].

RANSAC Method

The above probabilistic formulations introduce the states of the target and
VAs as random variables. As an alternative, the states of the target and VAs
can also be assumed as deterministic unknown, and the SLAM problem is for-
mulated as follows: Using the estimates of MPC parameters as measurements

ω̂
(j)
m,n∀ (j,m, n) ∈ I, find the inlier set Iinl ⊂ I, the estimated target position

p̂n ∀ n ∈ {1, . . . , N} and the estimated VA states â
(j)
m,n∀ (j,m, n) ∈ Iinl that

solves the joint optimization problem

min
Iinl,pn,a

(j)
m,n

∀j,∀n,∀m

∑

(j,m,n)∈Iinl

(
ω̂(j)
m,n − h(pn,a

(j)
m,n)

)2

+
∑

(j,m,n)∈Ioutl
C (2.23)
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where ω
(j)
m,n = h(pn,a

(j)
m,n) denotes the non-linear transformation from the

target state pn and VA states a
(j)
m,n to the MPC states ω

(j)
m,n as shown in (2.1),

Ioutl = I \ Iinl denotes the outlier set, and C is the constant penalty for each
outlier. The optimization problem (2.23) is highly non-linear and non-convex.

Its character changes if both p̂n and a
(j)
m,n span 3D, or at least one of them are

restricted to a 2D plane or a line as shown in [6]. Furthermore, the problem
is ill-defined if there are too few measurements [33], [34]. The problem can
be solved using minimal solvers and the random sample consensus (RANSAC)
[6], [35] method, which provides an initial estimates of the target position, the
VA positions, as well as an estimate of the inlier set. The estimates are then
refined by other methods, e.g., the Newton method.

In the included publications [T1] and [T2], a RANSAC-based SLAM frame-
work using MPCs parameter estimates of a massive MIMO system as measure-
ments is discussed.

2.3 Algorithm Implementation

For the above probabilistic formulations, if the system models are non-linear
or the posterior PDF is non-Gaussian and multimodal, the straightforward ML
estimation or the sequential Bayesian estimation cannot be solved analytically.
In this case, approximate sub-optimal Bayesian methods such as the extended
Kalman filter (EKF) [36] or particle filters (PFs) [37] are needed.

2.3.1 Particle Filter

For the sake of simplicity, we introduce the filtering process with PF for a single
anchor, therefore the index j is omitted. Sampling importance resampling
(SIR) PF is a sub-optimal sequential Monte Carlo (MC) method which can be
used to realize the recursive Bayesian filtering process, where the prediction
and update steps are formulated in an approximate manner [37]. The key idea
of the PF is to approximate the PDFs involved in (2.15) and (2.16) with a finite
set of random samples (particles) and corresponding weights, i.e., {xkn, wkn}Kk=1,
where K is the number of particles and the weights are normalized such that∑K
k=1 w

k
n = 1. Specifically, at time n, the particles are sampled from an im-

portance density q(xn|xn−1, zn), and the weights are updated according to

wkn ∝ wkn−1

f(zn|xkn)f(xkn|xkn−1)

q(xn|xn−1, zn)
. (2.24)

The most common choice of the importance density is the state-transition PDF,
i.e., q(xn|xn−1, zn) = f(xkn|xkn−1), since it is intuitive and simple to implement.
This means that each particle xkn at time n can be obtained by simply passing
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the particle xkn−1 at time n − 1 through the system dynamics as shown in
Section 2.2.4. With this choice, the weights update (2.24) can be simplified as

wkn ∝ wkn−1f(zn|xkn), (2.25)

and the posterior PDF f(xn|z1:n) is approximated as

f(xn|z1:n) ≈
K∑

k=1

wknδ(xn − xkn). (2.26)

In practice, filtering with PF may experience the following issues. It may
happen that after a few iterations/time steps, all but one particle have neg-
ligible weights, i.e., particle degeneracy. The effects of degeneracy can be re-
duced by using resampling, which replaces the particles with negligible weights
by new particles in the proximity of the particles with large weights. The
particle weights after the resampling step are set to wkn = 1/K. Systematic
resampling [37] is one of the popular schemes given its simple implementation.
The resampling process may introduce another problem—particle collapse, i.e.,
particles with high weights are statistically selected many times during res-
ampling leading to a loss of diversity among the particles in state space, there-
fore all particles will collapse to a single point within a few iterations. Particle
collapse becomes more severe if small process noises are used for state-transition
PDFs. One commonly used method to counteract this effect is performing
Markov Chain Monte Carlo sampling [38], which is conceptually similar to the
resampling step dealing with particle degeneracy. Regularization using Kernels
with broader distribution is another common remedy. Specifically, the posterior
PDF is smoothed by approximating it as f(xn|z1:n) ≈ ∑K

k=1 w
k
nR(xn − xkn)

where R(·) denotes the regularization Kernel, e.g., Gaussian Kernel.
Finally, using the approximated posterior PDF, an approximation of the

MMSE estimate (2.12) can be obtained according to

xMMSE
n ≈

K∑

m=1

wknx
k
n. (2.27)

It is straightforward to extend the above particle-based implementations to
solve the recursive steps (2.21) and (2.22) of the SLAM problem, as discussed
in [20].

2.4 Performance Evaluation Metrics

For time-invariant statistical models, the Cramér–Rao lower bound (CRLB)
[36] is commonly used as a theoretical lower bound on the variance of an un-
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biased estimator. The CRLB for the agent position p is defined as

var(p̂) = E
{

(p̂− p)(p̂− p)H
}
≥ J−1

p (2.28)

where E{·} denotes the expectation, and Jp is the Fisher information matrix
(FIM) of the vector p, which can be obtained by applying the chain rule [36],

Jp = TJωT
H. (2.29)

The Jacobian matrix T = ∂ω
∂p contains the first-order partial derivatives of

the MPC parameter vector ω w.r.t. the target state p. The FIM Jω of the
MPC state vector ω is introduced in Section 3.4. The influence of multipath
propagation on the position estimate in terms of the CRLBs has been illustrated
in many works, e.g., [15], [39]–[42]. In particular, [15, Section 3.3] and [41]
present the CRLBs considering overlapping MPCs and non-overlapping MPCs,
respectively, in a dense multipath channel, [40] considers the uncertainty of the
geometric information of individual anchors, and [42] illustrate the CRLBs for
position estimation using massive MIMO.

The posterior-CRLB [43] denoting a theoretical performance bound for
discrete-time filtering problem is introduced in [43] and in Section 3.4.



Chapter 3

Estimation of Multipath
Channel Parameters

In this chapter, a geometry-based stochastic signal model (GSSM) is intro-
duced, which provides the basis for the subsequent sections presenting para-
metric channel estimation methods for both static and time-varying scen-
arios. After that, performance evaluation metrics and multidimensional chan-
nel sounding are briefly introduced.

3.1 Signal Model

In general, the radio propagation channels are observed with finite apertures,
which are mainly related to the frequency bandwidth of the measurement sys-
tem, temporal observation window and the antenna array geometry. Narrow-
band systems are considered flat over frequency spectrum and the inverse of
the bandwidth (i.e., delay resolution) is typically larger than the maximum
excess delay [23]. In this case, many MPCs may fall into the same delay bin
therefore cannot be resolved. Wideband and UWB systems [44], on the other
hand, deliver high delay resolution, but the profile of their frequency spectra
varies significantly i.e., frequency-selective. Fig. 3.1 illustrates the resolvab-
ility of MPCs in the delay domain given different system bandwidths, using
synthetic radio signals generated with the four MPCs shown in Fig. 2.1. It
shows that at time n = 1, the MPCs especially the two closely-located MPCs
around 10 m become separable as the bandwidth increases. Furthermore, their
time-varying distances can only be resolved in the delay-power spectrum given
wideband or UWB signals. As shown in Fig. 3.2, the resolvability of MPCs in
the angular domain improves when the number of Rx array elements increases.
Considering that the resolvability of MPCs is crucial for multipath-assisted loc-

23
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Figure 3.1: Synthetic radio signals generated using the MPC parameters shown in
Fig. 2.1 and three different bandwidths, 50 MHz, 200 MHz and 500 MHz. A root-
raised-cosine (RRC) signal pulse with normalized energy and roll-off factor 0.6 was
used. (a)-(c) At time n = 1, the individual MPC contributions b(θl,1)αl,1 are denoted
with black dash-dotted line, and the blue solid line represents the sum

∑L1
l=1 b(θl,1)αl,1

(see for Eq. 3.3). The vertical dashed lines denote the true MPC propagation dis-
tances. (d)-(f) Delay-power spectra versus time given 50 dB output SNR. The dashed
lines denote the true time-varying MPC propagation distances.

alization, wideband or UWB systems and large antenna arrays are preferred in
that sense.

Suitable signal models are needed for the estimation of multipath channel
information conveyed in radio measurements and for the derivation of analytical
performance bound, i.e., CRLB [15], [39], [41] and posterior-CRLB [43]. In
this thesis, a geometry-based stochastic signal model (GSSM) is used which
comprises geometry dependent specular MPCs, stochastically modeled dense
multipath and measurement noise. It is straightforward to account for the
temporal behavior of MPCs using the GSSM, thus it is well suited for non-static
environments. Note that the signal model is presented in the frequency domain
considering that radio systems are all band-limited and the channel properties
become frequency dependent as the signal bandwidth increases. Furthermore,
the signal model is introduced for a single anchor for simplicity, therefore the
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Figure 3.2: Angular-power spectra versus time of synthetic radio measurements,
which are generated using the four deterministic MPC shown in Fig. 2.1 given 50 dB
SNR and 50 MHz signal bandwidth. The number of Rx array elements is set: (a) 3×3-
array (b) 8×8-array (c) 25×25-array. The dashed lines denote the true time-varying
MPC AoAs.

index j is omitted in this chapter.

3.1.1 Geometry-Based Stochastic Signal Model

Let us consider a MIMO system in a two-dimensional scenario with horizontal-
only propagation as depicted in Fig. 2.1a. The signals are exchanged between
a mobile agent at position pn ∈ R2×1 and the physical anchor at position
a1,n ∈ R2×1, which act as transmitter (Tx) or receiver (Rx) based on the
technology used. The Tx and the Rx are assumed to be time-synchronized
and equipped with an NTx-element array and an NRx-element array, respect-
ively. The reflected paths are modeled with VAs at positions al,n ∈ R2×1 with
l ∈ {2, . . . , Ln}. For simplicity, we assume (i) single-polarized antennas at both
sides.1; (ii) the Tx is moving with a sufficiently low speed, therefore Doppler fre-
quency shifts are neglected. Under a far-field plane-wave assumption, the gen-
eral baseband representation of the sampled received signal rn ∈ CNTxNRxNf×1

at a discrete observation time n is given by [45], [47]

rn =

Ln∑

l=1

αl,nbTx(ϕTx
l,n)⊗ bRx(ϕRx

l,n)⊗ bf(τl,n)

︸ ︷︷ ︸
Deterministic MPCs

+ wn

︸︷︷︸
DMC+AWGN

(3.1)

where Nf denotes the number of frequency samples, and ⊗ denotes the Kro-
necker product. The first summand on the right side comprises the contri-
butions of Ln deterministic MPCs, each being characterized by its complex

1For signal models considering dual-polarized transceivers, the readers are referred to [45],
[46] and the included publications [T1] and [T2].
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amplitude αl,n ∈ C, AoD ϕTx
l,n, AoA ϕRx

l,n with respect to the orientation of
the Rx array ψ, and the time delay τl,n to the array’s center of gravity. The
propagation distance dl,n = cτl,n is related to the time delay via the speed of
light c. The array orientations are assumed to be known. bTx(ϕTx

l,n) ∈ CNf×1

and bRx(ϕRx
l,n) ∈ CNf×1 represent the far-field complex array responses of the

Tx and Rx at center frequency fc w.r.t. the AoD and AoA. Note that we drop
the frequency dependency of array responses, i.e., bTx(ϕTx

l,n) = bTx(ϕTx
l,n, f) and

bRx(ϕRx
l,n) = bRx(ϕRx

l,n, f), by assuming that the signal bandwidth is equal to or

smaller than the antenna bandwidth2. The vector bf(τl,n) ∈ CNf×1 accounts
for the system response and baseband signal spectrum [23], [45], yields

bf(τl,n) = gTx ◦ gRx ◦ a(τl,n) ◦ sf (3.2)

where ◦ denotes the Hadamard product. The frequency responses gTx and
gRx of the Tx and Rx are usually measured by a back-to-back calibration
procedure (see for Section 3.5). The third term a(τ) represents the complex

shifting vector defined as a(τ) = [e−j2π(−Nf−1

2 )fsτ · · · e−j2π(+
Nf−1

2 )fsτ ]T with
fs denoting the sampling interval in the frequency domain. The last term
sf = ssig ◦ s∗sig represents the spectrum of the transmitted complex baseband
signal, and ssig denotes the transfer function of the signal pulse. The sinc pulse
and the root-raised-cosine (RRC) pulse are commonly used in radio systems.

For brevity, we define b(θl,n) = bTx(ϕTx
l,n) ⊗ bRx(ϕRx

l,n) ⊗ bf(τl,n), and the

dispersion parameters of each MPC is given by θl,n = [τl,n, ϕ
Tx
l,n, ϕ

Rx
l,n]T. Ac-

cordingly, the signal model (3.1) is simplified as

rn =

Ln∑

l=1

b(θl,n)αl,n +wn

= B(θn)αn +wn (3.3)

where B(θn) = [b(θ1,n) · · · b(θLn,n)] ∈ CNTxNRxNf×Ln , θn = [θT
1,n · · ·θT

Ln,n
]T

and αn = [α1,n · · ·αLn,n]T. To have a more compact notation, we can further
define s(ωn) = Bn(θn)αn, yields

rn = s(ωn) +wn (3.4)

where ωn = [ωT
1,n · · ·ωT

Ln,n
]T with ωl,n = [θT

l,n, αl,n]T denoting the state of
each MPC.

2Here, the antenna bandwidth denotes the frequency range over which (i) the antenna
can properly send and receive signals; (ii) the antenna response is considered to be invariant.
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Noise Process

The second term wn in (3.1) represents the aggregate noise process which ac-
counts for the dense multipath component (DMC) incorporating MPCs that
cannot be resolved due to finite observation aperture and the measurement
noise. The measurement noise process is independent additive white Gaussian
noise (AWGN) with double-sided power spectral density N0/2. For DMC, we
assume uncorrelated scattering along the delay and angular dispersion domains,
and represent it by a circularly symmetric complex Gaussian process with
angular-delay power spectrum p(θ) = p(ϕTx, ϕRx, τ), where ϕTx ∈ [−π, π),
ϕRx ∈ [−π, π) and the time delay τ is bounded by the maximum delay spread
of the physical channel τmax [47], [48]. Assume that the DMC and measure-
ment noise are independent and wn is circularly symmetric complex Gaussian
with the auto-covariance matrix Cn given as

Cn = Cdmc,n +Cawgn

=

∫

θ

b(θ)bH(θ)p(θ)dθ + σ2INTxNRxNf
(3.5)

where σ2 = N0/Ts is the noise variance and I[·] represents identity matrix
with dimension given in the subscript [·]. Direct calculation of the first term in
(3.5) is computationally demanding. With narrowband assumption, a compu-
tationally attractive solution can be applied which factorizes the full covariance
matrix of DMC into Kronecker products [23], [49],3 yields,

Cdmc,n = CRx,n ⊗CTx,n ⊗Cf,n (3.6)

where CTx,n and CRx,n describe the angular distribution of the DMC at the
transmitter and receiver sides, respectively. For simplicity, it is commonly
assumed that the angular-power spectrum of DMC is uniform over ϕTx and
ϕRx and the DMC is spatially uncorrelated across antenna elements, therefore
the covariance matrices in the angular domain become identity matrix, i.e.,
CTx,n = INTx andCRx,n = INRx . The third termCf,n = Cf(ωdmc,n) represents
the covariance matrix of DMC in frequency domain, which is characterized
by using a parametrized power delay profile (PDP). In [45], [50], an single-
exponentially decaying PDP is used. Other candidates that have been proposed
are the double-exponential decaying model [50] and gamma function [47]. The
noise parameters at time n are collectively given by ωn,n = [ωT

dmc,n, σ]T.

3The Kronecker model is based on the assumption of uncorrelated scattering between
angle, time-delay domains of the DMC. Moreover, the spatial correlation at the Tx is inde-
pendent of correlation at the Rx.
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Component SNR

The output component signal-to-noise ratio (SNR) of the l th MPC including
array gain and frequency sample gain is defined as

SNRl,n = 10 log10

(‖αl,nbn(θl,n)‖2Ts

N0 + Pdmc,n

)
. (3.7)

where Pdmc,n denotes the DMC power. The SNRs is directly related to the
detectability of each estimated MPC [51]–[53], and the variances of estimated
MPC parameters [41].

3.1.2 Likelihood Function

The likelihood function of the received signal vector rn according to the base-
band representation of the sampled signal (3.3), reads

f(rn|ωn,ωn,n) =
e−(rn−s(ωn))HC−1

n (rn−s(ωn))

πNTxNRxNf det(Cn)
(3.8)

where det(·) represents the determinant of a matrix. The discrete-time signal
model (3.3) and its likelihood function (3.8) serve as the basis for the parametric
channel estimation methods introduced in the subsequent sections.

3.2 Snapshot-based Parametric Channel Estim-
ation

For static radio propagation channels, subspace methods e.g., multiple signal
classification (MUSIC) [54] and estimation of signal parameter via rotational in-
variance techniques (ESPRIT) [55], [56] or ML methods as for example [57] are
standard super-resolution methods for estimating time-invariant MPC para-
meters. Note that we drop the time index n for the introduction of following
snapshot-based parametric channel estimators for brevity.

3.2.1 ML Estimation

If the noise process in the signal model (3.1) only accounts for the measure-
ments noise, i.e., C = σ2INTxNRxNf

, and the noise variance σ2 is known, the
estimation of MPC state ω can be performed by means of the the ML estimator

ω̂ML = arg max
ω

log f(z|ω) (3.9)
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and the prior PDF of MPC state is assumed to be non-informative (uniform).
The log-likelihood function log f(z|ω) is obtained according to the joint likeli-
hood (3.8), reads

log f(z|ω) ∝ −(r − s(ω))HC−1(r − s(ω)). (3.10)

The maximization problem (3.9) can be solved for MPC complex amplitudes α

given the estimates of MPC dispersion parameters θ̂ by using the least square
estimator

α̂ =
(
B(θ̂)HB(θ̂)

)−1

B(θ̂)Hz. (3.11)

3.2.2 EM Estimation

The ML estimation (3.9) is a multi-dimensional nonlinear optimization pro-
cedure. The calculation of ω̂ML is typically computationally prohibitive due to
the large dimension of the signal vector and the highly non-linear signal model,
and no closed form exists as the global maxima of (3.9). The expectation-
maximization (EM)-based methods have been proven viable approximations of
the ML methods, which decompose a joint maximization problems into a num-
ber of independent maximization processes. Specifically, the likelihood func-
tion (3.10) is maximized w.r.t. the state of each MPC while keeping the states
of other MPCs as known constant, and the maximization process is repeated
until convergence is reached. The space-alternating generalised expectation-
maximization (SAGE) [58], [59] algorithm is a widely used EM-based method.

3.2.3 Joint ML Estimation

In recent years, parametric channel estimation methods have been introduced
that also consider the estimation of DMC state ωdmc, for instance the RIMAX
algorithm [45] and the super-resolution sparse Bayesian parametric channel es-
timation algorithm [60]. The estimation of DMC helps to improve the detection
and estimation accuracy of the deterministic MPCs. Assuming uniform prior
PDFs for the MPC state ω and the noise state ωn, the joint ML estimation
problem is formulated as

{ω̂ML, ω̂ML
n } = arg max

ω,ωn

log f(z|ω,ωn). (3.12)

In general, the maximization cannot be solved analytically. Instead, it is usually
solved by maximizing the log-likelihood function (3.8) alternately w.r.t. ω and
ωn. To be more specific, given the noise state estimate ω̂n, an estimate of the
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MPC state is obtained by maximizing the likelihood (3.8) w.r.t. ω as

ω̂ = arg max
ω
−(r − s(ω))HC(ω̂n)−1(r − s(ω)) (3.13)

where the maximization for MPC complex amplitudes α is solved using a
weighted least square form as

α̂ =
(
B(θ̂)HC(ω̂n)−1B(θ̂)

)−1

B(θ̂)HC(ω̂n)−1z. (3.14)

With ω̂, the likelihood (3.8) is further maximized w.r.t. ωn

ω̂n = arg max
ωn

(
− log

(
det(C)

)
− (r − s(ω̂))HC(ωn)−1(r − s(ω̂))

)
, (3.15)

leading to an estimate of the noise state ω̂n. The number of iterations between
(3.13) and (3.15) needed for achieving convergence mainly depends on the num-
ber of estimated MPCs, their separability and individual component SNRs.

3.2.4 Model-Order Estimation

If the number of MPCs L (model-order) is known, the above conventional
methods generally deliver accurate estimation results. However, it is typically
unknown in practice, and these methods have in common that they do not
incorporate the model-order estimation into the estimation problem. Instead,
it is either set to a constant number which is large enough to capture all the
dominant multipath components, or estimated within an extended outer stage
using for example eigenvalue-based methods, or the generic information theor-
etic criteria, e.g., the Akaike/Bayesian criterion and the minimum description
length (MDL) principle [61]. The outer stage schemes mostly tend to overes-
timate the model-order, especially when the DMC is ignored in the estimation
process. Inspired by the ideas of sparse estimation and compressed sensing,
some super-resolution sparse Bayesian parametric channel estimation methods
[60], [62]–[64] have recently appeared which aim to reconstruct sparse signals
from a reduced set of measurements specified by a sparse weight vector. By
introducing a sparsity-promoting prior model for the weights, the estimation
of model-order and MPC parameters can be jointly formulated in a Bayesian
framework. In Section 3.3.3, a probabilistic method [20], [65], [T5], [T6] is
discussed which models the model-order estimation problem by introducing a
random variable representing the existence of each potential MPC and estim-
ates its associated existence probability.
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3.2.5 EADF

The far-field complex array responses bTx(ϕTx
l,n) and bRx(ϕRx

l,n) in (3.1) are tradi-
tionally obtained by measuring and storing the radiation pattern of the antenna
arrays on sampling grids in a spherical coordinate system in an anechoic cham-
ber. However. the stored complex data file is typically significant in size, and
cannot be used to calculate the derivatives w.r.t. the angular parameters that
are needed for the parametric estimators and CRLB calculations. To address
this problem, the effective aperture distribution function (EADF) [66] has been
proposed, which performs efficient interpolation on any off-grid angles, and it
achieves a high data compression and reduces the number of samples needed
to fully describe the array beam pattern.

3.3 Sequential Parametric Channel Estimation

In dynamic scenarios, the true number of MPCs Ln as well as their parameters
ωn are unknown and time-varying. To capture the temporal behavior of MPC
parameters, many sequential estimation methods have been proposed, which
can be grouped into two broad categories. Methods of the first-category se-
quentially estimate the MPC parameters directly based on the radio channel
measurements [46], [67], [68], [T1], [T2]. Methods of the second-category adopt
a two-stage structure, where the MPC estimates from a snapshot-based para-
metric channel estimator are used as noisy measurements in a tracking filter,
for instance the Kalman filter (KF)-based method [69] and the message-passing
algorithm in [T5] and [T6].

The second-category methods are often complicated by the data associ-
ation (DA) uncertainty, i.e., it is unknown which measurement should be used
for the state update of which MPC. Methods for solving DA problems are
introduced in Section 3.3.2. Selecting proper state-transition models for MPC
states and model-order estimation are essentially considered in all sequential
parametric channel estimators. Radio channels are normally densely sampled
over space and time in measurement campaigns leading to smoothly varying
MPC dispersion parameters θn over time steps, but their detailed motion pat-
terns in each subspace cannot be known in advance. In this case, the nearly-
constant velocity model introduced in Section 2.2.4 can be used to capture the
smooth and uniform motions of θn and it has proved viable using real radio
measurements in many works, for instance [46], [69], [T2] and [T6]. The MPC
amplitudes |αn| typically experience rapid fluctuations when moving within
a small distance comparable to a wavelength due to small scale fading. In
general, the amplitudes of deterministic MPCs are modeled statistically using
Rician PDFs, and the amplitudes of weak MPCs are modeled with Rayleigh
PDFs. For simplicity, these PDFs can be approximated as Gaussian, leading to
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Gaussian state-transition PDFs for amplitudes [46], [T2] and [T6]. In terms of
the model-order estimation, most of the existing sequential estimation methods
consider it in an outer stage using the methods discussed in Section 3.2.4.

3.3.1 EKF-based Algorithm

The EKF [36] is widely used in the first-category sequential estimation methods,
despite the fact that it is a suboptimal filter due to the inherent linearization
of the nonlinear system models using first-order Taylor series. If the models
are highly nonlinear, the first-order approximation may introduce large errors
into the mean and covariance. More specifically, the covariances are tend to
be underestimated and the bias of the estimated mean may be accumulated
over time leading to divergence from the true values. Furthermore, an accurate
initialization and sufficiently high spatial sampling rate of the radio channel are
crucial for the EKF to achieve optimal performance. The EKF-based meth-
ods sequentially estimate the mean and covariances of MPC parameters by
alternating between the following prediction and update steps [36].

Prediction Step

The MPC state vector at time n is defined as xn = [ωT
n ,∆ω

T
n ]T, with ∆ωn

comprising the velocities of MPCs parameters. Given the posterior state vector
xn−1 and posterior error covariance matrix Pn−1 at time n− 1, the prior state
vector x−n and the prior covariance matrix P−n are obtained at the prediction
step as

x−n = Fxn−1, (3.16)

P−n = FPn−1F
T +Q (3.17)

where F is the state-transition matrix (see for Section. 2.2.4) and Q is the
covariance matrix.

Measurement Update Step

The measurement at time n is used to update the predicted state vector x−n
and the error covariance matrix P−n , yielding the posterior covariance matrix
Pn and posterior state vector xn as

Pn = (I +KnDn)P−n , (3.18)

∆xn = Pnqn, (3.19)

xn = x−n + ∆xn (3.20)
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where the Kalman gain matrix Kn is formulated as

Kn = P−n D
H
n (DnP

−
n D

H
n +Rn)−1. (3.21)

The score function qn and the Fisher information matrix Dn comprising the
first-order and the second-order partial derivatives of the log-likelihood function
(3.10) w.r.t. the predicted state x−n respectively are given by [36], [46], [T2]

qn = 2<
{
JH
nR

−1
n (rn − s(ω−n ))

}
, (3.22)

Dn = 2<
{
JH
nR

−1
n Jn

}
. (3.23)

The Jacobian matrix Jn represents the the first-order partial derivatives of
the signal vector s(ω−n ) (3.3) w.r.t. the predicted state x−n , which essentially
linearizes the nonlinear models around the current estimates, i.e.,

Jn =
∂s(ω−n )

∂(x−n )T
. (3.24)

At time n = 1, the MPC estimates from a ML or EM-based snapshot-based
channel estimator (e.g., SAGE and RIMAX) mentioned in Section 3.2 can be
used as the initial prior state x−1 for the EKF.

3.3.2 Belief Propagation-based Algorithm

It is noted that most of the existing methods solve the data association (DA),
model-order estimation and sequential estimation of MPC parameters in sep-
arate blocks. In this section, a second-category method based on the work in
[T5] and [T6] is introduced, which uses belief propagation (BP) (also known as
message-passing or sum–product algorithm) [70], [71] and formulates the above
problems in a joint Bayesian framework. In the following, some discussions on
DA and false alarm measurements that are generally concerned for sequential
Bayesian detection and estimation are given first, followed by a brief overview
on the BP-based sequential channel estimation method.

Data Association

When the MPC estimates of a snapshot-based parametric channel estimator
are used as measurements, it may happen that a measurement does not ori-
ginate from a true MPC (false alarm), or a measurement originating from a
true MPC is not detected (missed detection). In such cases, to decide which
measurement should be used for the state update of which potential MPC is
not straightforward. Furthermore, due to finite apertures of measurement sys-
tems and limited resolution capabilities of snapshot-based parametric channel
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estimators, some measurements might not be well resolved and incorporate
contributions from more than one MPCs, which makes the DA problem even
more complicated. Existing sequential channel estimation methods mostly ad-
opt “hard” association by assuming that measurements are fine resolved and
each of them originates from single MPC that is specified by metrics such as the
global nearest neighbor [29, Chapter 2.4], and the optimal subpattern assign-
ment (OSPA) metric (see for Section 3.4). Probabilistic DA [29], [71], on the
other hand, solves the origin uncertainty problem in a “soft” manner, in which
the association probabilities for all current measurements are computed and
used to form a mixture PDF for the update of each MPC state. Following [71],
the associations between measurements and legacy MPCs (the MPCs that are
already detected in the previous time) can be described by the MPC-oriented
association random vector an indicating if each of the legacy MPCs generates
any measurement, or equivalently described by the measurement-oriented as-
sociation random vector bn indicating if each of the measurements is generated
by a legacy MPCs. To make the DA scalable to varying numbers of MPCs
and measurements, the BP-based method [T5] and [T6] uses both association
vectors an and bn, by following [20], [71], [72].

False Alarm Measurements

False alarms measurements originate mainly from the snapshot-based para-
metric channel estimator, and system model mismatch as for example DMC
or the violation of the plane-wave assumption. The former part depends on
the model-order estimation scheme used in the snapshot-based estimator and
the measurement setup for instance the number of antennas, radio-frequency
bandwidth, and the latter is related to the propagation environment. Knowing
the correct mean number of false alarms (MNFA) µfa,n is crucial for optimal
performance of Bayesian detection and estimation algorithms. However, de-
termining the MNFA in advance is not straightforward, especially when the
MNFA is time-varying. Using a fixed predefined value of MNFA that deviates
largely from the true one, can potentially lead to decreased detection perform-
ance of MPCs and an increased number of detected false alarms.

3.3.3 MPC Detection and State Estimation

To incorporate model-order estimation into the joint estimation framework,
a probabilistic model for MPC existence can be used, where each potential
MPC state is augmented by a binary random existence variable rk,n with k ∈
{1, . . . ,Kn} and associated with an existence probability. Accordingly, the
MPC state vector at time n is further given by yk,n = [xT

k,n, rk,n]T. The
existence probabilities are jointly estimated with other unknown variables and
used for the detection of potential MPCs modeling the birth and death process
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of these components in dynamic scenarios [20], [65], [T5], [T6]. The number of

detected potential MPC represents an estimate of the model-order L̂n at time n.
Furthermore, as shown in Section 3.1.1, the complex amplitudes of MPCs are an
integral part of the multipath channel model and must be estimated alongside
with the dispersion parameters. The amplitude information can be exploited
to improve detection and estimation accuracy of MPCs. To be more specific,
the statistics of MPC amplitudes can be used to determine the variances of
MPCs dispersion parameters [41] and the unknown and time-varying detection
probabilities [51]–[53], which improves the detectability and maintenance of low
SNR MPCs and enables a better discrimination against false alarms.

The above mentioned problems, i.e., model-order estimation, probabilistic
DA and sequential estimation of MPC parameters and MNFA, can be jointly
formulated in a Bayesian framework, where the joint posterior PDF is given
by f(y1:n,a1:n, b1:n,µfa,1:n,m1:n|z1:n). The detection of individual potential
MPC relies on the marginal posterior existence probabilities p(rk,n = 1|z1:n),
obtained as

p(rk,n = 1|z1:n) =

∫
f(xk,n, rk,n = 1|z1:n)dxk,n, (3.25)

and a potential MPC is detected as an actual specular MPC which generates
measurement if p(rk,n = 1|z1:n) exceeds a predefined existence probability
threshold [73].

The sequential estimation of the MPC states xk,n and the MNFA µfan

relies on the posterior PDFs f(xk,n|rk,n = 1, z1:n) and f(µfan|z1:n). More
specifically, the estimates can be obtained by means of the MMSE estimator
[36], i.e.,

xMMSE
k,n ,

∫
xk,nf(xk,n|rk,n = 1, z1:n)dxk,n (3.26)

µMMSE
fa,n ,

∫
µfa,nf(µfa,n|z1:n)dµfa,n (3.27)

The posterior PDFs involved in (3.25), (16) and (17) are the marginal PDFs
of f(y1:n,a1:n, b1:n,µfa,1:n,m1:n|z1:n). Due to nonlinear and non-Gaussian sys-
tem models, the joint posterior PDF is complex and direct marginalization is
infeasible. By following common assumptions as for example statistically inde-
pendent measurements and MPC states, the joint posterior PDF can be factor-
ized as a product of lower-dimensional local functions and represented with a
factor graph, and BP by means of sum-product algorithm can be performed on
the factor graph [70], [71] for efficient calculation of marginal posterior PDFs
with reduced complexity.
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Figure 3.3: (a) Factor graph representation of the factorization f(x) = f1(x1)f2(x2)
× f3(x1, x2, x3).(b) Messages propagate between the factor node fl and the adjacent
variable node xi [70], [71].

Sum-Product Algorithm

In the following, the basic principle of sum-product algorithm is introduced, and
the detailed information can be found in [70], [71]. To obtain the approximate
marginal PDFs from a global function f(xI) using sum-product algorithm, the
prerequisite is that f(xI) can be factorized as a product of lower-dimensional

local functions (factors), i.e., f(xI) =
∏F
l=1 fl(xIl), and the factorization can

be further represented with a factor graph. The vector xIl = {xi} with i ∈ Il
accounts for the variables related to the local function fl where the set Il con-
tains the related variable indexes. The set Fi contains the indexes of local
functions related to the variable xi. A factor graph is a bipartite graphical rep-
resentation consisting of variables nodes representing variables xi, factor nodes
representing local functions fl, and edges connecting the related nodes [70]. An
example of factor graph is given in Fig. 3.3a. The messages propagate between
a factor node fl(xIl) and an adjacent variable node xi shown in Fig. 3.3b are
given by

ηfl→xi(xi) =

∫
fl(xIl)

∏

i′∈Il\i
µxi′→fl(xi′)dx∼i (3.28)

µxi→fl(xi) =
∏

l′∈Fi\l
ηfl′→xi(xi). (3.29)

With the messages above, the belief for each variable xi is calculated according
to

q(xi) =
1

Ci

∏

l∈Fi
ηfl→xi(xi) (3.30)
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where Ci is the normalization constant ensuring
∫
q(xi)dxi = 1. The belief

q(xi) equals to the marginal PDF of xi for tree-structured factor graphs, such
as the one shown in Fig. 3.3a. For factor graph with loops, the beliefs have
been proved to be accurate approximations of the marginal PDFs in many
works such as [20], [72]. In general, the integrations involved in the calculations
of the messages and beliefs cannot be obtained analytically, a computationally
efficient sequential particle-based message passing implementation [65], [74] can
be used to provides approximate computations.

3.4 Performance Evaluation Metrics

OSPA Metric

The OSPA metric [75] provides a mathematical consistent measure of the miss-
distance between a reference multi-target state and its estimate. It has been
widely adopted for various applications like clustering, data association, and
performance evaluation of multi-target estimation or filtering algorithms [20],
[65], [76]. In [60], [68], [T5], [T6], the OSPA metric is applied to evaluate the
performance of parametric channel estimation methods, and it can efficiently
capture the model-order estimation error and MPC parameter estimation error.
Given the true MPC state vector xn (stacking Ln MPCs) and its estimate x̂n
(stacking L̂n estimated MPCs), if L̂n > Ln, the OSPA metric evaluated for
distance parameters at time n is defined as

dospa(x̂n,xn)

=

[
1

L̂n

(
min
π∈∏k

Ln∑

l=1

[
d(dc)

(
dl,n, d̂πl,n

)]po
+ dpoc

(
L̂n − Ln

))] 1
po

(3.31)

where
∏
k denotes the set of permutations on {1, · · · , k} with k ≤ L̂n, πl

denotes the lth integer number inside the permutation vector, and d(dc) (·, ·) =
min(dc, d(·, ·)) where d(·, ·) denotes a distance metric (e.g., Euclidean metric),
that is cut off at dc. The cutoff parameter dc denotes the weighting of how the
metric penalizes the model-order estimation errors as opposed to MPC state
estimation errors. The metric order is denoted as po.

To evaluate sequential estimation performance over time durations, modi-
fied OSPA metrics [77] are proposed to account for the dissimilarity between
continuously estimated variables and the associated true tracks.

CRLB and Posterior-CRLB

As mentioned in Section 2.4, the CRLB and posterior-CRLB [36] are com-
monly used as performance benchmarks denoting the theoretical lower bounds
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on the estimation variances of an unbiased estimator and an unbiased sequential
Bayesian estimator, respectively. For time-invariant MPC dispersion paramet-
ers ω in static scenarios, the CRLB is defined as

var(ω̂) = E
{

(ω̂ − ω)(ω̂ − ω)H
}
≥ J−1

ω (3.32)

where the FIM Jω of the MPC parameter vector ω is given by

Jω = E
{( ∂

∂ω
f(z|ω)

)( ∂

∂ω
f(z|ω)

)H}
. (3.33)

The likelihood function of the received signal vector f(z|ω) given the MPC
state is introduced in Section 3.1.1.

For discrete-time filtering problem, the posterior-CRLB for the MPC state
at each time xn = [ωT

n ,∆ω
T
n ]T is given by the inverse of the posterior FIM

Jxn, which is obtained by following the recursive process [43]

Jxn = Dx
22
n−1 −Dx

21
n−1(Jxn−1 +Dx

11
n−1)−1Dx

12
n−1. (3.34)

The recursive sub-matrices Dx
11
n−1, Dx

12
n−1, Dx

21
n−1 and Dx

22
n−1 are computed

with the partial derivatives of the state-transition PDFs f(xn|xn−1) and like-
lihood functions f(zn|xn) w.r.t. the state vector xn and xn−1 [43]. The
information matrix Jx1 can be initialized with the FIM Jω at time n = 1 as
given in (3.33).

Note that the posterior-CRLB is in general tighter than the CRLB. If the
coherence between the measurements of consecutive time steps reduces, i.e., the
state-space model becomes less informative, the posterior-CRLB will converge
to CRLB.

3.5 Multidimensional Channel Sounding

To validate the proposed algorithms, measurement campaigns using RUSK-
LUND channel sounder shown in Fig. 3.4a were performed during the thesis
work. The basic principles of wireless channel sounding are introduced as
follows. The Tx emits periodical sounding signals to excite the channel, the
output of the channel is then recorded by the Rx. To measure time-varying
channels, the repetition period of the sounding signals should be larger than
the pulse duration and the maximum excess delay of the channel, but smaller
than the channel coherence time, i.e., the time duration over which the channel
is considered static. According to the Nyquist sampling theorem, the temporal
sampling frequency should be at least twice the maximum Doppler frequency.

The RUSK-LUND channel sounder is designed for measuring the frequency
transfer functions, and it is capable to measure in the 300 MHz, 2 GHz, and
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Figure 3.4: Pictures of the RUSK-Lund channel Sounder (a), a conical monopole
omni-directional antenna used as the Tx and the optical CMM system which captures
its groundtruth positions (b), and the cylindrical array (c).

5 GHz bands with a bandwidth up to 240 MHz. The channel sounder does not
measure the channels between all Tx and Rx antenna pairs simultaneously,
instead, it uses the switched array principle to perform MIMO measurements,
which sequentially swipe through all the antenna pairs. For frequency domain
measurements, it uses a multi-tone, OFDM-like signal to ensure a constant
power spectral density over the whole bandwidth. Averaging over several trans-
fer functions (or impulse responses) that are consecutively recorded within the
channel coherent time is commonly used to enhance the signal SNR.

To remove the impact of the measurement equipment itself, i.e., the fre-
quency responses gTx and gRx in (3.2), a back-to-back calibration has to be
performed. More specifically, the frequency response of the measurement sys-
tem is measured and then used for compensation so that only the transfer
functions of the wireless channels are measured. Note that the Tx and Rx an-
tennas are not included in the calibration process since they are considered as
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a part of the channel during measurements and are often calibrated separately.
For wireless channel sounding, it is important to synchronize the Tx and Rx

in frequency and time. For our measurements campaigns, the synchronization
was performed by using common time reference signals for instance pulse-per-
second signals, or using Rubidium clocks or GPS clocks. If the measurements
are further used for evaluating radio-based localization algorithms, time syn-
chronization between the channel sounder and a system capturing ground truth
position information should be further established by using reference signals or
GPS/Rubidium clocks.



Chapter 4

RSS-based Localization for
IoT Networks

Internet-of-Things (IoT) networks dedicated for machine-type communications
are considered as an important complement or feature of current and 5G-and-
beyond radio systems. Location-awareness is a key enabler for various IoT
related applications. In this chapter, we focus on the localization solutions for
IoT networks, with particular interest in the received signal strength (RSS)-
based methods.

4.1 Localization Methods for IoT Networks

Conventional IoT networks are typically implemented by using technologies
like the radio frequency identification, Bluetooth Low Energy, Wi-Fi, with
coverage from a few meters up to around a hundred meters depending on
the surrounding environment. In recent years, IoT networks based on cellular
systems or low-power wide area networks (LPWANs), e.g., SIGFOX and LoRa,
further extend the coverage to urban size or even larger in rural areas. Most
of the IoT networks serve low-rate applications with low-power requirements,
which have a strong impact on the design of dedicated localization solutions.
To maintain sufficient accuracy and robustness without asking for frequently
updated measurements and keep low-complexity is the main concern in most
of the research works. Existing localization solutions typically use features like
ToA, TDoA, AoA, or RSS. Among these, RSS is especially appealing since
it is readily available in most of wireless systems. In this thesis, we focus on
RSS-based localization solutions for the mid- to long-range outdoor scenarios.

In general, RSS-based localization is performed using proximity, fingerprint-
ing [10], [11] or ranging-based [12], [13] methods. Fingerprinting exploits the

41
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RSS spatial distribution by matching RSS measurements with the pre-acquired
measurements (fingerprints) at the positions of interest. The achievable accur-
acy is related to the density of fingerprints and degrades in dynamic scenarios.
RSS-based ranging for localization is also commonly used, which exploits a
path-loss model (PLM) [13] to map RSS measurements to range estimates, and
then uses them to infer the target position w.r.t. the anchor coordinates. The
ranging accuracy is mainly limited by the precision of path-loss exponent (PLE)
information, and it is strongly influenced by multipath propagation phenomena.
Some recent works [78] also explore the potential of using angular information
extracted from non-coherent RSS measurements for localization. Angular in-
formation is mostly obtained by using phase coherent antennas, however this
is not ideal for IoT networks in order to maintain a low system cost.

In the following, the RSS model and RSSD model needed for extracting
range and angle information are introduced first, followed by the general for-
mulations of RSS-based target tracking problems.

4.2 RSS Model and RSSD Model

At time n, the RSS (in dBm) obtained at the ath antenna (a ∈ As , {1, · · · , Aj})
of jth anchor (j ∈ J , {1, · · · , J}) is given as

P aj,n , P0,j+GRx(ϕaj,n)−10ηj,n log10

(
daj,n
d0

)
+SaS,j,n+SaL,j,n+naj,n , (4.1)

according to the PLM [13], where the AoA ϕaj,n and propagation distance daj,n
can be computed as shown in (2.1). The first term on the right side, P0,j ,
accounts for the transmit power PTx (in dBm), the transmit antenna gain GTx

and the path loss

Lref,j(d0) = 20 log10(
λ

4π
)− 10ηn,j log10(d0) (4.2)

at the reference distance d0, i.e.,

P0,j = PTx +GTx + Lref,j(d0) (4.3)

and λ is the wavelength. Furthermore, GRx(ϕaj,n) denotes the receive antenna

gain at angle ϕaj,n, ηj,n is the PLE, SaL,j,n ∼ N (0, σ2
S) models the log-normal

shadow fading which is position-dependent and slow-varying over time, SaS,j,n
represents the small scale fading modeling the random and fast variations of
RSS in time or space. The last term naj,n accounts for the measurement noise

which is modeled using a zero-mean Gaussian distribution with variance σ2
n.

The impact of small scale fading is usually reduced by averaging over samples
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that are consecutively received within a certain time duration.
RSS-based ranging based on (4.1) can be problematic. PTx is typically un-

known to receivers and slow-varying with battery draining over time. Unknown
device orientation leads to the variation of GTx. The PLE ηj,n of each anchor
is also unknown, time-varying, and strongly depends on the surrounding en-
vironment. Joint estimation of these unknown parameters at each time n is
challenging especially for long-range IoT systems. These systems typically use
very high receive sensitivity to increase coverage, but at the expense of very
low signal bandwidth and data rate. This means that the estimates can be un-
reliable especially in dynamic scenarios given limited number of measurements.
For simplicity, those parameters are normally assumed to be known constant.
Under a far-field propagation condition, the parameters PTx, GTx and ηj,n are
approximately the same for all the antennas at each anchor. Moreover, the
shadow fading process SiL,k,j is highly correlated over adjacent antennas.

Inspired by the above arguments, the difference between RSS measurements
obtained from adjacent antennas with indexes {r1, r2} ∈ Aj at each anchor can
be described by the RSSD model [T3], [T4], i.e.,

P
(r1,r2)
∆,j,n , P r1j,n − P r2j,n = G

(r1,r2)
∆,j,n (ϕj,n) + ω

(r1,r2)
j,n , (4.4)

which excludes those unknown but common parameters in (4.1). The first term
representing the receive antenna gain difference is given by

G
(r1,r2)
∆,n,s (ϕj,n) = GRx(ϕr1n,s)−GRx(ϕr2j,n). (4.5)

The noise term ω
(r1,r2)
j,n is approximated as the difference between two iid noise

processes nr1n,s and nr2j,n, thus ω
(r1,r2)
j,n ∼ N (0, 2σ2

n).

The likelihood functions of the RSS measurements zkj,n with k ∈, {1, · · · ,Kj}
and the likelihood functions of the RSSD measurements zlD,j,n with l ∈,
{1, · · · , Dj} are derived from (4.1) and (4.4), given by

f(zkj,n|pn, ηj,n) =
1√

2π(σ2
S + σ2

n)
exp

{
−

(zkj,n − skj,n)2

2(σ2
S + σ2

n)

}
, (4.6)

f(zlD,j,n|pn) =
1√

4πσ2
n

exp
{
−

(zlD,j,n −G
(rl1,r

l
2)

∆,n,s (ϕj,n))2

4σ2
n

}
(4.7)

where skj,n = P0,j +GRx(ϕkj,n)− 10ηj,n log10(dkj,n/d0).

The RSS model (4.1), the RSSD model (4.4) and their likelihood functions
(4.6) and (4.7) are needed for the inference of range and angular information
from RSS observations, and for the related localization problems introduced in
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the following.

4.3 RSS-based Target Tracking

The RSS-based positioning problems solved for static agent have been well
studied in many works, e.g., [26], [79], where methods based on the least square
and ML estimators [36] are mostly utilized. In this thesis, we focus on the
tracking problem of target state xn = [pT

n ,∆p
T
n ]T where the anchor positions

are always assumed to be known.
The tracking of agent state xn can be solved with a sequential Bayesian

estimation process introduced in Section 2.2.4, by exploiting the range inform-
ation extracted from RSS measurements zn (given known PLEs), or the AoA
information extracted from RSSD measurements zD,n [T3]. Assuming that
the measurements are statistically independent to each other, the likelihood
function of zn at each time factorizes as

f(zn|xn) =

J∏

j=1

Kj∏

k=1

f(zkj,n|pn; ηj,n), (4.8)

and the individual likelihood f(zkj,n|pn; ηj,n) is calculated according to (4.6).
Similarly, the likelihood of RSSD measurements zD,n factorizes as

f(zD,n|xn) =

J∏

j=1

Dj∏

l=1

f(zlD,j,n|pn), (4.9)

and the individual likelihood f(zlD,j,n|pn) is given in (4.7).

4.3.1 Unknown PLEs

As mentioned above, the PLEs are typically unknown and time-varying in
practice. The joint sequential estimation of the target state xn and PLEs
ηn = [η1,n · · · ηJ,n]T can be formulated in the similar way as the SLAM problem
described in Section 2.2.5, where the joint posterior PDF f(xn,ηn|z1:n) is
obtained by following a recursive process, consisting of a prediction step

f(xn,ηn|z1:n−1) (4.10)

∝
∫∫

f(xn|xn−1)f(ηn|ηn−1)f(xn−1,ηn−1|z1:n−1)dxn−1dηn−1.
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and an update step

f(xn,ηn|z1:n) =
f(zn|xn,ηn)f(xn,ηn|z1:n−1)

f(zn|z1:n−1)
. (4.11)

Assuming that PLE states evolve independently across anchors and time, the
corresponding state-transition PDF of the joint states ηn can be factorized
as f(ηn|ηn−1) =

∏J
j=1 f(ηj,n|ηj,n−1). If the propagation conditions from the

target to anchors are static, the individual state-transition PDF can be repres-
ented by an identity function, i.e., f(ηj,n|ηj,n−1) = δ(ηj,n−ηj,n−1). Otherwise,
it can be modeled with the motion models introduced in Section 2.2.4 and [29].
The likelihood function factorizes as

f(zn|xn,ηn) =

J∏

j=1

Kj∏

k=1

f(zkj,n|xn, ηj,n) (4.12)

and the individual likelihood f(zkj,n|xn, ηj,n) is given in (4.6).

4.3.2 Information Fusion

Most of the existing RSS-based localization methods exploit a single geomet-
ric feature, i.e., either range or AoA, however, these information can be fused
efficiently to improve estimation accuracy and robustness [T5]. Moreover, the
methods should be adaptive to dynamic channel conditions (i.e., unknown and
time-varying PLEs) and target motion uncertainty, while the later one can be
solved by using interacting multiple model (IMM) method as mentioned in Sec-
tion 2.2.4. The above considerations lead to a joint sequential Bayesian estima-
tion framework which estimates the target state xn, the PLEs ηn and the vector
mn stacking the indexes of different motion models, using the past and present
measurement vectors z1:n , [zT

1 , . . . ,z
T
n ]T and zD,1:n , [zT

D,1, . . . ,z
T
D,n]T.

The estimation of unknown variables rely on the marginal posterior PDFs
f(xn|z1:n, zD,1:n), f(ηn,s|z1:n) and f(mn|z1:n, zD,1:n), which can be efficiently
obtained by running message-passing algorithm on the factor graph representa-
tion of the factorization of the joint posterior PDF f(x1:n,m1:n,η1:n|z1:n, zD,1:n).
The adaptive target tracking algorithm exploiting both range and angular in-
formation is the key contribution of [T3] and [T4].





Chapter 5

Conclusions and Outlook

This chapter briefly summarizes the work performed in each of the research
papers included in this thesis. For each paper, the research contributions and
my personal contributions as a co-author are highlighted.

5.1 Research Contributions

[T1] Robust Phase-based Positioning using Massive MIMO
with Limited Bandwidth

Research Contributions: This paper proposes an EKF-based algorithm
which performs detection of specular MPCs and sequential estimation of their
parameters. By tightly coupling the change of MPC distances to the phase
shifts over consecutive snapshots, the MPC distances can be estimated far
beyond the signal bandwidth dependent accuracy. This algorithm further in-
corporates the estimation of DMC comprising all the non-resolvable MPCs to
improve the detection and estimation accuracy of the specular MPCs. The es-
timated MPC distances are subsequently used as the input of a distance-based
localization and mapping algorithm. The performance is evaluated using real
radio measurements with an antenna array of 64 duel-polarized elements at
the base station side and standard cellular signal bandwidth of 40 MHz. The
results show that high accuracy radio-based localization in harsh multipath
environments is possible even with limited signal bandwidth by exploiting a
massive MIMO system.

Personal Contributions: This paper results from a collaboration project
between the Communications Engineering group and the Center for Mathem-
atical Sciences at Lund University. I am the main contributor of this paper.
I was responsible for the development and implementation of the parametric
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channel estimation algorithm. I designed the measurement campaign and per-
formed it together with colleagues, and also processed the measurement data
and analyzed the results. I took the lead in writing the paper except for the
localization section.

[T2] Massive MIMO-Based Localization and Mapping Exp-
loiting Phase Information of Multipath Components

Research Contributions: This paper is a follow up to [T1]. We provide
detailed formulations of the proposed EKF-based parametric channel estima-
tion algorithm. Besides, in-depth analysis on the estimation results, including
the dynamic behavior and statistical distributions of the estimated MPC para-
meters and their influence on the localization performance, are presented using
both synthetic and real measurements in a challenging scenario.

Personal Contributions: I performed simulations using the measurement
data and theoretical analysis on the results. I took the lead in writing the
paper except for the localization section.

[T3] Target Tracking using Signal Strength Differences for
Long-Range IoT Networks

Research Contributions: This paper provides an RSS-based solution for
target tracking or AoA estimation in outdoor IoT scenarios. Assuming that
the radiation patterns of antennas and array geometries are known, we pro-
pose an RSSD model based on the classic path-loss model, which provides
direct mapping between AoAs and non-coherent RSSD observations without
requiring information on the transmit power and path-loss exponent (PLE).
The RSSDs model is exploited in a recursive Bayesian filtering method for tar-
get tracking where a particle filter-based implementation is used. We evaluate
the performance using real outdoor measurements from a low-power wide area
network (LoRaWAN) based IoT system. The results show the capability of
the proposed framework for real-time target/AoA tracking. Furthermore, reas-
onable accuracy is achieved even with non-averaged measurements and under
NLoS conditions.

Personal Contributions: I am the main contributor of this paper. I was re-
sponsible for the development and implementation of the algorithm. I designed
the measurement campaign and performed it together with the second and the
third authors. Moreover, I processed the measurement data and performed the
result analysis. I took the lead in writing the paper.
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[T4] RSS-based localization of Low-Power IoT Devices
Exploiting AoA and Range Information

Research Contributions: We propose a message-passing algorithm exploit-
ing both the range and angle information from non-coherent RSS measure-
ments for target tracking. Considering that the PLEs are typically unknown
and time-varying in dynamic scenarios, we develop a Bayesian model for the
estimation of the target position and PLEs to different anchors, where the like-
lihood functions are derived from the path-loss model and the RSSD model
proposed in [T3]. This Bayesian model is further represented with a factor
graph which enables the use of message-passing algorithm for efficient compu-
tation of the marginal posterior PDFs of unknown variables. Moreover, this
algorithm incorporates the interacting multiple model (IMM) method to resolve
the motion uncertainty of the target. The performance is validated using real
outdoor measurements from an IoT network based on LoRa system. Results
show that the proposed algorithm well adapt to time-varying PLEs due to dy-
namic propagation conditions and delivers higher the localization accuracy and
robustness compared to the method exploiting a single geometric feature. Fur-
thermore, the algorithm scales well in different antenna array configurations,
and is compatible with various existing IoT standards.

Personal Contributions: I conceived and planned this work. I am the main
contributor of this paper, and responsible for the development and implement-
ation of the algorithm, as well as the analysis on the result using both synthetic
and measurement data. I took the lead in writing the paper.

[T5] Detection and Tracking of Multipath Channel
Parameters Using Belief Propagation

Research Contributions: We propose a belief propagation (BP)-based al-
gorithm for sequential detection and estimation of MPC parameters based
on radio signals. Under dynamic channel conditions with moving transmit-
ter/receiver, the number of MPCs, the MPC dispersion parameters, and the
number of false alarm contributions are unknown and time-varying. We de-
velop a Bayesian model for sequential detection and estimation of MPC dis-
persion parameters, and represent it by a factor graph enabling the use of BP
for efficient computation of the marginal posterior distributions. At each time
instance, a snapshot-based parametric channel estimator provides parameter
estimates of a set of MPCs which are used as noisy measurements by the pro-
posed BP-based algorithm. It performs joint probabilistic data association,
estimation of the time-varying MPC parameters, and the mean number of false
alarm measurements by means of the sum-product algorithm rules. The al-
gorithm also exploits amplitude measurements enabling the reliable detection
of “weak” MPCs with very low SNRs. Simulation results using synthetic radio
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measurements show that the proposed algorithm has excellent performance re-
garding the scalability to the time-varying model order, estimation accuracy,
and association property over time in a realistic and very challenging scenario.

Personal Contributions: This paper results from a collaboration project
between the Communications Engineering group at Lund University and the
Laboratory of Signal Processing and Speech Communication at Graz University
of Technology, Austria. Dr. Erik Leitinger and I are the main contributors.
We equally contributed to the algorithm development and implementation,
performance evaluation using synthetic data and paper writing.

[T6] Sequential Detection and Estimation of Multipath
Channel Parameters Using Belief Propagation

Research Contributions: This paper is a follow up to [T5]. In this pa-
per, we present detailed mathematical derivations and more insights into the
proposed algorithm. The results are demonstrated with both synthetic and
real measurements. Moreover, the performance of the proposed algorithm are
compared with the Kalman enhanced super-resolution tracking (KEST) [69] al-
gorithm (a state-of-the-art sequential channel parameter estimation method),
and posterior-CRLB. The results show that our algorithm compares well to
state-of-the-art algorithms for high SNR MPCs, but it significantly outperforms
them for medium or low SNR MPCs. Results using real radio measurements
demonstrate the excellent performance of the proposed algorithm in realistic
and challenging scenarios.

Personal Contributions: This paper is a follow up to [T5]. Dr. Erik Leitinger
and I equally contributed to the derivation and implementation of the proposed
algorithm and the reference state-of-the-art algorithm, measurement data pro-
cessing, result analysis as well as paper writing.

5.2 General Conclusions

As mentioned above, this thesis explores some interesting topics in the field of
radio-based localization both theoretically and experimentally. The following
are a few general conclusions and observations drawn from the research work.

• High accurate radio-based localization in harsh multipath environments
with limited signal bandwidth can be made possible by the following two
factors. First, utilizing large-scale antenna arrays enables superior resolv-
ability of MPCs in angular domain. Second, if the spatial sampling rate
of the radio channel is sufficiently high, i.e., recording a few snapshots
within one wavelength movement, it is possible to estimate the MPC dis-
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tances far beyond the signal bandwidth dependent accuracy by measuring
the phase shifts of MPCs over consecutive snapshots.

• The data association (DA), model-order detection and estimation of the
time-varying MPC parameters are essentially considered in all sequen-
tial channel estimation methods, but they are mostly solved in separate
blocks. With the proposed belief propagation (BP)-based algorithm, we
show that the above issues, together with the estimation of mean num-
ber of false alarm measurements, can be probabilistically formulated in
a joint Bayesian framework. Its factor graph representation enables the
use of BP for efficient computation of the marginal posterior distributions
needed for Bayesian detection and estimation. Furthermore, exploiting
the amplitude information of MPCs to determine the unknown and time
varying detection probabilities can significantly improves the detectabil-
ity of “weak” MPCs with very low component SNRs.

• The dominant trends of the successive generations of mobile communica-
tion systems have been the search for more signal bandwidth (and thereby
higher carrier frequencies as the lower bands are very congested) and the
exploitation of larger scale antenna arrays. Correspondingly, their sig-
nal data is also getting larger in size. We noted that the computational
complexity of many existing parametric channel estimation methods is
already very high when processing signals of existing radio systems, not to
mention the enormous amount of data associated with emerging systems.
Estimation methods that are with reasonable complexity and highly scal-
able to varying number of MPCs are of great importance.

• IoT devices are typically limited in cost and have low power consumption.
To improve the accuracy and robustness of RSS-based localization given
the limited resources, the angular information can be estimated from non-
coherent RSS measurements by exploiting the proposed RSSD model and
then fused with the range information estimated using the classic path-
loss model. Moreover, the path-loss exponents associated to different
anchors can be jointly estimated with the target position in a localization
solution to improve its adaptivity in dynamic scenarios.

5.3 Future Research

There are many aspects within or beyond the studied topics could be investig-
ated further. The following is a selection of the most interesting and promising
extensions of the work presented in the thesis for future research:
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• To reduce the computational complexity of parametric channel estimation
for large signal data, it can be possible that the estimation is performed
in a decentralized manner using a BP-based algorithm, if the measured
signals can be decomposed into individual parts.

• The estimation of DMC can improve the accuracy of the MPC parameter
estimation. In most of the existing works, the DMC is assumed to be
homogeneous over the angular domain. A promising direction is to extend
these algorithms with a more general inhomogeneous spatially distributed
DMC.

• The BP-based sequential detection and estimation algorithm can be ex-
tended to a more general inhomogeneous false alarm intensity coping with
false alarms resulting from model mismatches in the radio signal such as
DMC, or further incorporates correlations between measurements.

• As the number of accessible devices in IoT networks grows tremendously
nowadays, information selection schemes which can efficiently select use-
ful measurements from large amount of data are important for the design
of low-complexity and robust localization solutions.
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Robust Phase-Based Positioning Using

Massive MIMO with Limited

Bandwidth

This paper presents a robust phase-based positioning framework using

a massive MIMO system. The phase-based distance estimates of MPCs

together with other parameters are tracked with an EKF, the state di-

mension of which varies with the birth-death processes of paths. The

RIMAX and the modeling of dense multipath component in the frame-

work further enhance the quality of parameter tracking by providing an

accurate initial state and the underlying noise covariance. The tracked

MPCs are fed into a time-of-arrival self-calibration positioning algorithm

for simultaneous trajectory and environment estimation. Throughout the

positioning process, no prior knowledge of the surrounding environment

and base station position is needed. The performance is evaluated with

the measurement of a 2D complex movement, which was performed in a

sports hall with an antenna array with 128 ports as base station using a

standard cellular bandwidth of 40 MHz. The positioning result shows that

the mean deviation of the estimated user equipment trajectory from the

ground truth is 13 cm. In summary, the proposed framework is a prom-

ising high-resolution radio-based positioning solution for current and next

generation cellular systems.
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1 Introduction

High precision positioning information is a fundamental component of autonom-
ous systems and location-aware applications in mobile devices. To pursue bet-
ter user experience, these new services and systems keep bringing new chal-
lenges to the positioning systems regarding the accuracy, reliability, etc. The
Global Positioning System (GPS) works well outdoors, but the accuracy and
robustness degrade severely in scenarios like urban canyons and indoor envir-
onments due to poor propagation conditions between satellites and user equip-
ment (UE). In contrast, cellular and wireless networks generally have good
coverage in those GPS harsh environments. As a substitute or supplement to
GPS, much effort has been put into the research of radio-based positioning
techniques.

Accurate radio-based positioning commonly relies on geometrical inform-
ation (distance, delay and angle) of multipath components (MPCs) from the
radio channel. The estimation quality of these channel parameters in turn de-
termines the positioning performance. In recent years, positioning with ultra-
wideband (UWB) signal has drawn special interest because of the excellent
accuracy[1]. The fine delay resolution due to the large bandwidth used makes
it possible to resolve MPCs and track the distance changes in centimeter level.
However, UWB positioning can only be applied in limited scenarios consider-
ing it is a low-power and short-range technique. These shortcomings naturally
lead us to the question: is it possible to deliver comparable positioning ac-
curacy by utilizing limited bandwidth in both indoor and outdoor scenarios?
We try to solve the puzzle from a channel modelling perspective. The wire-
less propagation channel is commonly characterized as a sum of specular-like
paths and non-resolvable components. Considering that cellular systems are
typically operating with a carrier frequency at a few GHz with a bandwidth of
20-40 MHz, the delay resolution is in a scale of 7.5-15 m. However, we notice
that the corresponding wavelengths are in the order of centimeters and one
wavelength corresponds to a 2π phase shift. For each MPC, the delay and
phase are two parameters which vary simultaneously with the wave propagat-
ing. If the spatial sampling rate of the radio channel is sufficiently high, i.e.,
taking a few snapshots within one wavelength movement, it is possible to track
the distance change in centimeter level by measuring the phase shift between
two consecutive snapshots. With limited bandwidth, the coherence in the delay
domain is a challenge for successfully detecting and tracking many MPCs sim-
ultaneously. However, the large-scale antenna array could provide additional
distinction between MPCs in the spatial domain. The feasibility of the phase-
based positioning has been preliminarily proved in [2]. In that work, the phase
and delay are assumed to be independent parameters, which are estimated
separately and only the phase is used for the movement tracking. Because
phase and delay affect each other with wave propagating, and phase estimates
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are usually discontinuous in complex environments, there are risks of causing
errors or losing tracks.

Motivated by the above analysis, we present a robust phase-based position-
ing framework in this paper. As a proof-of-concept study, the focus of this work
is on demonstrating the possibility of high-resolution radio-based positioning
given limited bandwidth and with no prior environment knowledge, rather than
on reducing system complexity to implement real-time positioning. Based on
some well-established algorithms, e.g,. the Extended Kalman Filter (EKF) [3]
and the iterative maximum-likelihood estimation algorithm (RIMAX) [4], the
MPC parameters are extracted from the channel measurement data. A time-
of-arrival (TOA) self-calibration positioning algorithm, which is a structure-
of-motion approach and widely used in image processing, is finally applied for
simultaneous UE trajectory and environment estimation. The main contribu-
tions are

• The unique mapping between the phase shift and the distance change in
our dynamic model leads to a simpler kinematic model by involving less
parameters, and the robustness of the system is also improved.

• The performance is evaluated with real measurements of a complex move-
ment. The results prove that the proposed framework provides outstand-
ing MPC tracking and positioning performance even with limited band-
width.

The paper is structured as follows. In Section II, dynamic propagation
channel modeling is discussed. Section III introduces the estimation of path
parameters with the EKF. Section IV describes details of the measurement
campaign. The MPC tracking results are presented in Section V. Section VI
introduces the TOA positioning algorithm and positioning result is presented.
Finally, Section VII concludes the paper.

2 Dynamic Propagation Channel Modeling

An observation of the propagation channel, the impulse response hk could be
decomposed into three non-overlapping components: specular components hsp,
dense multipath component (DMC) hdmc and measurement noise hn, yielding

hk = hsp + hdmc + hn. (1)

Positioning relies on the geometrical information from hsp, which is charac-
terized as a superposition of MPCs. The other two components constitute
measurement impairments for our purpose.
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2.1 Channel Model

In the proposed framework, the double-directional radio channel model [5] is
employed to extract the spatial and temporal information of the MPCs from
the measured channel transfer function H ∈ CNs×Nf×NTx×NRx , given as

H(f) =

L∑

l=1

γle
−j2πf dlc GRx(ϕRx,l, θRx,l)GTx(ϕTx,l, θTx,l)

T (2)

where Ns, Nf , NTx and NRx refer to the number of channel snapshots, fre-
quency sample points, transmit and receive antenna elements. GTx ∈ CNTx×NaNe

and GRx ∈ CNRx×NaNe describe the far-field antenna response of all antenna
array ports at the transmit and receive sides, with respect to the azimuth and
elevation angles of departure (AODs) (ϕTx,l, θTx,l) and angles of arrival (AOAs)
(ϕRx,l, θRx,l) of the lth path. Na and Ne represent the number of azimuth and
elevation angular samples. L is the number of propagation paths. The com-
plex path weight is parametrized as γl = αle

jφl where αl and φl represent
the vectors of magnitude and phase, respectively. Instead of using delay, we
directly interpret the phase shift as a distance measure, i.e., phase-based dis-
tance dl. The time-variant structural vectors associated with the propagation
environment geometry and the path weights are defined as

µ = [dT ϕT
Tx θT

Tx ϕT
Rx θT

Rx], (3)

α = [αT
HH αT

HV αT
VH αT

VV], (4)

φ = [φT
HH φT

HV φT
VH φT

VV] (5)

where {HH,HV,VH,VV} represent four polarimetric transmissions, e.g., HV means
horizontal-to-vertical transmission.

2.2 Dynamic Model

A discrete white noise acceleration model is used to describe the changes of
propagation parameters [6], with the assumption that the motion and under-
lying noise process of different parameters are uncorrelated. The discrete-time
state transition equation is expressed as

xk = Fxk−1 + vk (6)
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where vk is state noise following zero mean normal distribution with the vari-
ance matrix Q. The state transition matrix F is formulated as

F =




I5 I5 0 0
0 I5 0 0
0 0 I4 0
0 0 0 I4


 . (7)

The state vector at snapshot k is

xk = [µT ∆µT αT φT] (8)

where the vector ∆µ contains the velocities of the structural parameters in µ.
Here, we intentionally decouple the phase evolution from the MPC tracking to
preserve the unique mapping between the phase shift and the distance dl. The
evolution of the state vector from one snapshot to the next is modelled as

µk = µk−1 + ∆µk−1 + vµk

∆µk = ∆µk−1 + v∆µk

αi,k = αi,k−1 + vαk

φi,k = φi,k−1 + vφk (9)

where v[ · ] denotes the state noise vector. The selection and tuning of process
noise variance are very important especially for the narrowband case, because
the orthogonality is not tightly held between close-by MPCs. Small variance
may lead to smooth but slow tracking, and some small movements might be
missed. Large variance enables quick response to non-smooth movements like
sharp turns, but with high risk of phase slip. Hence, a trade-off is needed. Here,
we follow the guideline that the value of v∆µk should be in the same order as
the maximum acceleration magnitude [6]. The complex path weight is assumed
to be slowly varying and to account for larger changes in the propagation
processes, e.g., reflection, scattering, etc. Reinitializations of γl are sometimes
needed in the tracking process [3].

3 Propagation Path Parameters Estimation

As shown in the proposed framework (Fig. 1), the MPC parameters are es-
timated with an EKF. We realize that an accurate initial state estimation is
a prerequisite for the fast convergence and accurate tracking in the EKF. In
this work, the RIMAX algorithm is applied to the first snapshot for the ini-
tial estimates of MPC parameters and noise covariance [4]. Besides, the state
dimension adjustment is performed alongside the EKF iteration.
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Figure 1: Proposed positioning framework.

3.1 Initialization with RIMAX

Firstly, MPC detection is performed with a successive path cancellation frame-
work, where the maximum-likelihood (ML)-based 3D-grid approach is used.
Each detected path is further optimized locally. This detection framework uses
oversampling to enhance delay and angle resolution, therefore closely located
MPCs could be detected.

After subtracting the specular-like components, the residual is considered
as the colored noise process with a covariance matrix R, which consists of the
measurement noise following a Gaussian distribution N (0, σ2I), and the DMC.
The DMC is modelled stochastically and the covariance matrix has a shifted
Kronecker structure, which is computationally efficient especially when a large
antenna array is used [7]. The full noise covariance matrix is given by

R = RR ⊗RT ⊗Rf + σ2I (10)

where Rf ∈ CNf×Nf is the covariance matrix in the frequency domain with
Toeplitz structure. We observed that the power delay profile of the residual
shows a spatially white characteristic at the base station (BS) side, therefore
the covariance matrices RT ∈ CNTx×NTx and RR ∈ CNRx×NRx , which describe
the angular distributions at the transmit and receive sides respectively, are
assumed as identity matrices in this implementation.

The structural vectors of MPCs and the parameter set of DMC are op-
timized alternatingly with the Levenberg-Marquardt algorithm and the ML-
Gauss-Newton algorithm, respectively. The details can be found in [4].

3.2 Extended Kalman Filter

The path parameters are tracked with an EKF [3]. Due to the non-linear
channel model used, we firstly linearize the data model hsp(x) by taking the
first-order partial derivatives over the state vector, which gives the Jacobian
matrix as

D(x) =
∂hsp(x)

∂xT
. (11)
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The first-order and the second-order partial derivative of the log-likelihood
function, i.e., the score function q and the Fisher information matrix J, are
also needed in the iteration. These are computed as

q(h|x,R) = 2 · <
{
DH(x)R−1(h− hsp(x))

}
, (12)

J(x,R) = 2 · <
{
DH(x)R−1D(x)

}
. (13)

The procedure of the EKF is summarized as

x̂(k|k−1) = Fx̂(k−1|k−1), (14)

P(k|k−1) = FP(k−1|k−1)F
T + Q, (15)

P(k|k) = (P−1
(k|k−1) + J)−1, (16)

∆x̂(k) = P(k|k)q, (17)

x̂(k|k) = x̂(k|k−1) + ∆x̂(k) (18)

where P(k|k−1) and P(k|k) are the filter error covariances denoting the predic-
tion and update uncertainties of the state vector, respectively.

3.3 State Dimension Adjustment

In channel sounding, the number of co-existing propagation paths varies over
time. The detection and elimination (death-birth) of paths are assumed to be
statistically independent and performed alongside the EKF iteration with two
separate steps. The first step is to remove unreliable paths by evaluating the
relative variance of each path [4], defined as

varr =

Np∑

p=1

varγp
| γp |2

< εr (19)

where γp is the magnitude of the estimated path weight of polarization p ∈
{HH,HV,VH,VV} and varγp is the estimation error variance extracted from
the filtering error covariance matrix. Intuitively, varr should be smaller than
0 dB, which indicates that the certainty of the magnitude estimation should be
larger than its uncertainty. A reliability check is performed every 30 snapshots
and only paths with varr smaller than the threshold εr are preserved in the
state for further tracking. Hence, the MPC lifetime is here defined as the time
duration that the relative variance of a MPC is below a given threshold, which
is geometry-independent in this sense. The next step is to detect new paths.
We limit the number of newly initialized MPCs in each snapshot to control the
model complexity and reduce the interference between coherent paths [4].
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Figure 2: Overview of the measurement area in the sports hall, Medicon Village,
Lund, Sweden. Room dimension is around 20 m × 36 m × 7.5 m.

4 Measurement Campaign

This framework is designed for the multiple-input multiple-output (MIMO)
case where angular information is available from both sides. However, UEs with
single or few antennas are more common in practice and the lack of AODs makes
the path estimation and tracking a harder problem. To test the performance of
the proposed framework in a real but controlled environment, a measurement
campaign was performed in a large sports hall with the RUSK LUND channel
sounder. Fig. 2 shows an overview of the measurement area. A cylindrical
antenna array with 128 ports (Fig. 3a) is used as BS at the Rx side, the center
of which is 1.42 m above the ground. A conical monopole omnidirectional
antenna (Fig. 3b) is used to represent a UE at the Tx side. The distance
between UE and BS is around 17 m and line-of-sight (LOS) conditions apply.
The transfer functions were recorded at a center frequency around 2.7 GHz
and with a signal bandwidth of 40 MHz. To avoid large variation of path
parameters, especially the phase slip between two consecutive snapshots, the
spatial sampling rate of the wireless channel was sufficiently high. In total,
6000 channel snapshots were collected in 19.7 s. The Tx was placed on a tripod
and manually moved to write the “Lund” letters in a 2 m3 space. Meanwhile,
an optical coordinate measuring machine (CMM) system (Fig. 3b) was used to
capture the UE motion with accuracy down to millimeter, which acts as the
ground truth for performance analysis.

5 MPC Tracking Results and Analysis

This section focuses on the performance of MPC tracking results. Fig. 4 shows
the tracked propagation distances of MPCs from the EKF implementation. It
could be observed that the LOS component with the distance around 17 m is
tracked steadily since the beginning. About 2 m apart from the LOS is the
ground reflection path which is tracked shortly in the end. Besides, many
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Tx

Optical CMM system

(a) (b)

Figure 3: (a) The cylindrical antenna array at the Rx side; (b) The conical monopole
omnidirectional antenna at the Tx side and the optical CMM system.

Figure 4: The tracked absolute propagation distances of MPCs. The color indicates
the power in dB scale.

other MPCs with long lifetimes could also be observed in the range of 20-70 m
propagation distance. For better evaluation of the tracking performance, we
zoom into the LOS component and compare the distance estimates with the
ground truth. The black dashed line denotes the distance estimates from EKF.
The red solid line in Fig. 5 is the true propagation distance of the LOS compon-
ent which is calculated based on the 3D coordinates from the optical system
and the coordinates of the BS. The two curves are manually time synchronized
for better comparison. As shown from the comparison, the EKF could catch
all the movements of the UE, even some fine ones and sharp turns. The estim-
ates have a good match with the ground truth most of the time, besides some
deviations observed after 16 s. The biggest deviation from the ground truth is
about 8 cm. The MPCs located in the same delay bin as the LOS component
are correlated and they show degraded quality of tracking.

We further analyzed the angular-power distribution of the tracked MPCs.
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Figure 5: Performance evaluation of the tracked LOS component.

The MPCs are plotted in a 3D coordinate system based on the estimates of
distances and azimuth/elevation AOAs without considering the interaction or-
der. The top view (Fig. 6a) shows that the tracked MPCs are distributed over
the entire azimuth domain and paths are intensively detected in the similar
direction as the LOS component. From the vertical distribution (Fig. 6b), a
few paths are observed from the ground or at similar height as the BS, but
most of the paths are from the complex ceiling structure of the room, e.g., the
metal beams of the ceiling in Fig. 2. Those complex room structures would
bring additional uncertainties to the distance estimates. Moreover, the similar
behaviour of the long-tracked MPCs in the angular domain may become a chal-
lenge for 3D positioning, for which the MPCs with sparse angles are preferred.
However, it is interesting to see the performance in the real but non-ideal case.

Ghost components around some high-power MPCs are observed during the
tracking. They usually have similar angles and propagation distances as the
dominant MPCs close by and experience very short lifetimes. These com-
ponents are mainly generated due to power compensation in the estimation
procedure and do not have actual physical meaning, therefore they are not
considered in the following positioning step.

6 Positioning Algorithm and Results

As seen in Fig. 4 and Fig. 5, most of the MPCs can only be observed during
fractions of the measurement duration and the estimation quality is not con-
sistent during the whole tracking process for an individual MPC, i.e., there are
outliers in the data for which the errors are substantial. Therefore, the question
here is how to optimize the positioning performance in the presence of missing
data and outliers, which is a highly non-convex problem.
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Figure 6: 3D plot of the tracked MPCs. Black dashed line denotes the room geo-
metry and the hexagram represents the location of BS. The top-view plot (a) shows
how tracked MPCs distributed in the azimuth plane. The side-view plot (b) shows
the vertical distribution.

6.1 Mathematical Formulation of Geometrical Problem

A few assumptions are firstly given for modeling the geometrical problem. The
tracked MPCs from EKF are numbered with i = 1, 2, . . . ,m, where i = 1
represents the LOS component. These paths are assumed to originate from
n UE positions Txj ∈ R3, j = 1, . . . , n. The BS is stationary at position
Rx1 ∈ R3. To formulate the measured distances, we assume that the tracked
MPCs are reflected from planar surfaces and mirror the BS, i.e., each MPC
can be considered as being received at a mirrored BS position Rxi. The dis-
tance estimates are only given for a set I of (i, j) combinations due to missing
data. As it will be shown, the errors of outliers in the distance estimates are
substantial. However, for a large amount of distance estimates the errors are
fairly small (in the order of a few centimeters). The measured distances are
then

dij = ‖Rxi −Txj‖2 + εij ,∀(i, j) ∈ I (20)

where εij ∈ N(0, σ2
inl) for (i, j) ∈ Iinl and εij are drawn from an unknown dis-

tribution for (i, j) ∈ Ioutl. This distribution has a significantly larger variance.
One useful approach is to minimize the negative log likelihood. To simplify
the problem, we assume that the negative log likelihood for the outliers is a
constant, i.e., each outlier gives the same penalty. In this way the problem
becomes an optimization problem.

Problem 1 (Time-of-Arrival Self-Calibration) Given absolute distance estim-
ates dij∀(i, j) ∈ I, find the inlier set Iinl ⊂ I, the UE positions Txj ∈ R3

and the mirrored BS positions Rxi ∈ R3 that solves the following optimization
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problem

min
Iinl,Rxi,Txj

∑

(i,j)∈Iinl
(dij − ‖Rxi −Txj‖2)2 +

∑

(i,j)∈Ioutl
C (21)

where Ioutl = I \ Iinl. This is a highly non-linear, non-convex optimization
problem. The problem changes character if both Txj and Rxj span 3D, or
either one of them or both are restricted to a plane or a line as shown in [8].
The problem is ill-defined if there is too little data. For planar problems we
require m ≥ 3, n ≥ 3, [9]. For 3D problems more data is needed, typically
m ≥ 4, n ≥ 6, [10]. Algorithms for solving Problem 1 using hypothesize and
test paradigm are presented in [11].

6.2 Estimation of the Distance Estimates Error Distribu-
tion and Mirrored BS Positions

The modified version of Problem 1 where say the transmitter positions Txj
are known, is a substantially better conditioned problem. In this case, we can
solve for

min
Iinl,Rxi

∑

i|(i,j)∈Iinl
(dij − ‖Rxi −Txj‖2)2 +

∑

i|(i,j)∈Ioutl
C (22)

independently for each mirrored BS position Rxi. This can be done by using
Random Sample Consensus (RANSAC) [12].

The resulting residuals dij−‖Rxi −Txj‖2 can be used to empirically assess
properties of the error distribution. We selected those paths that were longer
than 500 snapshots from the tracked m = 282 MPCs, which gave a set of
50 MPCs. For each of them, we estimated the mirrored BS position using
RANSAC (to obtain Iinl) followed by the non-linear optimization of (22) (to
obtain Rxi). In total these 50 tracked MPCs gave us 103 480 distance samples,
i.e., approximately 2000 each. Of these 77 490 were considered to be inliers.
This gives us an estimated inlier ratio of 75%. The standard deviation of the
inlier residuals is 4.6 cm.

Using the ground truth UE positions Txj , we robustly initialized the LOS
component receiver position, i.e., Rx1 as well as all the mirrored BS positions
of MPCs. This was followed by non-linear refinement. The reconstructed BS
position Rx1 along with some examples of the mirrored BS positions are shown
in Fig. 7. It could be observed that the estimated BS position is located close
to the true position, and the mirrored BS positions look plausible.
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MPC positions. This was followed by non-linear refinement of
the receiver positions. The corresponding estimated distance
measurements are also shown in Fig. 7. The reconstructed
receiverposition along with the MPC mirror positions are
shown in Fig. 8. One can see that the receiver position is
located quite near the true position of the receiver, and the
mirrorer receivers look plausible.

E. Estimation of Transmitter motion

Solving Eq. 22 is challenging, because of the highly non-
linear nature of the problem. In order to asses the feasability
of the problem, local optimization of Eq. 22 were performed
using the result of the trilateration as a starting point. The
resulting 3D path (in blue) is shown if Fig. 9 together
with the groundtruth 3D path as estimated by the motion
capture system (in red). Notice that the estimated 3D path
has the overall correct shape, but that there are deformations
in the z-direction. One explanation for this can be found by
studying the singular value decomposition of the jacobean to
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Fig. 9. The groundtruth 3D path measured by the optical system is shown
in red and the estimated 3D path of the transmitter is shown in blue. Notice
that the overall shape of the path is captured. However, there are uncertainty
in the scale in the z-direction.

the non-linear least squares optimization. The singular vectors
corresponding to the smallest singular value provides insight
into those deformations of the path that are hardest to estimate.

The positioning performance could be numerically inter-
preted as the average standard deviation, which is

� =

vuut 1

n

nX

i=1

|rtrue,i � rest,i|2 (24)

(analysis....scaling in the z-direction....).

VI. SUMMARY AND CONCLUSION

In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Path parameters, e.g.,
phase-based distance and angle, are estimated and tracked with
an EKF. An anchor-free TOA self-calibration positioning al-
gorithm is then used for trajectory estimation. The positioning
results of a complex 3D movement measurement shows that
the proposed positioning framework could achieve (... ...) with
standard cellular bandwidth. Besides, no prior knowledge of
the surroundings is needed, so the framework could be easily
applied in different environments. To sum up, phase-based
positioning using Massive MIMO is a promising candidate
of high-resolution positioning system in the next generation
cellular system.
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Figure 7: Robust estimation of BS position and mirrored BS positions using the
ground truth UE positions.

6.3 Estimation of UE Positions

We now target the full version of Problem 1, where the UE positions, the BS
position and all the mirrored BS positions are unknown. To make this highly
complex estimation problem tractable, two assumptions are made here. Firstly,
Txj are assumed to be constrained in a plane, because the UE was moved
approximately in a plane in the measurement. Secondly, we assume that we
know which distance estimates are inliers. This problem is then proceeded by
splitting the whole dataset in a number of smaller segments in time, which
results in 117 segments of length 100 snapshots with 50 snapshots overlap
between adjacent segments. For each segment, we robustly initialized both Rxj
and Txj using minimal solvers and RANSAC [8] based only on the distance
estimates from the EKF. This is followed by non-linear optimization. The
different solutions from the 117 segments were then registered into a common
coordinate system using the overlap between segments. The estimated UE
positions (in red) is shown in Fig. 8. Also shown (in dashed grey) is the ground
truth. The two trajectories have been rigidly registered to each other. It could
be observed that the estimated trajectory shows a clear “Lund”-word pattern,
with all the fine movements details caught. However, the overall shape is
stretched along the diagonal direction, which results in a larger deviation from
the ground truth especially in the beginning and the end. The largest deviation
of the estimated UE position from the ground truth happens at the sharp turn
of “L”, which is 26 cm, and the overall mean deviation is 13 cm. The main



PAPER I 79
0 1,000 2,000 3,000 4,000 5,000 6,000

0

10

20

30

40

50

60

D
is

ta
nc

e
(m

)

Multipath Measurement
Reconstructed Multipath Receiver

Direct Path Measurement
Reconstructed Receiver

Fig. 7. .

�60 �50 �40 �30 �20 �10 0 10 20
�40

�30

�20

�10

0

10

20

(m)

(m
)

Ground Truth Sender Positions
Ground Truth Receiver Position

Estimated Receiver Position
Estimated Multipath Receiver Positions

Room Walls

Fig. 8. .

MPC positions. This was followed by non-linear refinement of
the receiver positions. The corresponding estimated distance
measurements are also shown in Fig. 7. The reconstructed
receiverposition along with the MPC mirror positions are
shown in Fig. 8. One can see that the receiver position is
located quite near the true position of the receiver, and the
mirrorer receivers look plausible.

E. Estimation of Transmitter motion

Solving Eq. 22 is challenging, because of the highly non-
linear nature of the problem. In order to asses the feasability
of the problem, local optimization of Eq. 22 were performed
using the result of the trilateration as a starting point. The
resulting 3D path (in blue) is shown if Fig. 9 together
with the groundtruth 3D path as estimated by the motion
capture system (in red). Notice that the estimated 3D path
has the overall correct shape, but that there are deformations
in the z-direction. One explanation for this can be found by
studying the singular value decomposition of the jacobean to
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In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Path parameters, e.g.,
phase-based distance and angle, are estimated and tracked with
an EKF. An anchor-free TOA self-calibration positioning al-
gorithm is then used for trajectory estimation. The positioning
results of a complex 3D movement measurement shows that
the proposed positioning framework could achieve (... ...) with
standard cellular bandwidth. Besides, no prior knowledge of
the surroundings is needed, so the framework could be easily
applied in different environments. To sum up, phase-based
positioning using Massive MIMO is a promising candidate
of high-resolution positioning system in the next generation
cellular system.
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Fig. 7. Robust estimation of LOS receiver position and all MPC receiver
positions Rx using the ground truth sender positions.

receiver positions are unknown. We will make two assumption
that make this very difficult estimation problem tractable.
Firstly, in this experiment the sender was moved approximately
in a plane, a we will assume that all the sender positions Tx are
located in a plane. Secondly we will assume that we know
which tracked MPC that are inliers. We then proceeded by
splitting the whole dataset in a number of smaller segments
in time, (117 segments of length 100 measurements with
50 measurements overlap). For each one of these segments
we robustly initialized both Rx and Tx associated with the
measurements in that segment, using minimal solvers and
RANSAC [12] based only on the distance measurements.
This was followed by non-linear optimization. The different
solutions from the 117 segments were then registered into a
common coordinate system using the overlap of measurements
between the different segements. The resulting estimated Tx-
path (in blue) is shown in Fig. 8. Also shown (in red) is the
ground truth path as estimated by the motion capture system
(The two solutions have been rigidly registered to each-other).
The largest distance between the estimated sender position and
the ground truth position is 26 cm, with a mean deviation of
13 cm.

VI. SUMMARY AND CONCLUSION

In this paper, we introduced a robust phase-based position-
ing framework using Massive MIMO. Multipath component
parameters, e.g., phase-based distance and angle, are estimated
and tracked with an EKF. An anchor-free TOA self-calibration
positioning algorithm is then used for trajectory estimation.
The positioning results of a complex 3D movement measure-
ment shows that the proposed positioning framework could
achieve (... ...) with standard cellular bandwidths. Besides,
no prior knowledge of the surroundings is needed, so the
framework could be easily applied in different environments
given that there are many scatterers present. To sum up,
phase-based positioning using Massive MIMO is a promising
candidate of high-resolution positioning system in the next
generation cellular system.
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Figure 8: The ground truth (dashed-grey) and the estimated UE positions (red).
Note that this estimation is only based on the distance estimates and no ground truth
UE positions are used.

reason of the stretch problem is that many MPCs are tracked in a similar
direction as the LOS component, as shown in Fig. 6. The similar behaviour
of MPCs in the angular domain will cause the estimated UE positions to be
scaled or projected.

7 Summary and Conclusion

In this paper, we introduced and showed a proof-of-concept for a robust phase-
based positioning framework using massive MIMO. MPC parameters, e.g.,
phase-based distance and angle, are estimated and tracked with an EKF. A
TOA self-calibration positioning algorithm is then used for trajectory estima-
tion. The positioning results of a 2D complex movement measurement show
that the proposed positioning framework could achieve outstanding positioning
performance even with standard cellular bandwidths. Besides, no prior know-
ledge of the surroundings is needed, so the framework could be easily applied
in different environments given that there are enough many scatterers present.
To sum up, phase-based positioning using massive MIMO is a promising high-
resolution positioning solution for current and next generation cellular systems.
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Massive MIMO-based Localization and

Mapping Exploiting Phase Information

of Multipath Components

In this paper, we present a robust multipath-based localization and

mapping framework that exploits the phases of specular multipath com-

ponents (MPCs) using a massive multiple-input multiple-output (MIMO)

array at the base station. Utilizing the phase information related to the

propagation distances of the MPCs enables the possibility of localization

with extraordinary accuracy even with limited bandwidth. The specular

MPC parameters along with the parameters of the noise and the dense

multipath component (DMC) are tracked using an extended Kalman filter

(EKF), which enables to preserve the distance-related phase changes of the

MPC complex amplitudes. The DMC comprises all non-resolvable MPCs,

which occur due to finite measurement aperture. The estimation of the

DMC parameters enhances the estimation quality of the specular MPCs

and therefore also the quality of localization and mapping. The estimated

MPC propagation distances are subsequently used as input to a distance-

based localization and mapping algorithm. This algorithm does not need

prior knowledge about the surrounding environment and base station pos-

ition. The performance is demonstrated with real radio-channel measure-

ments using an antenna array with 128 ports at the base station side and

a standard cellular signal bandwidth of 40 MHz. The results show that

high accuracy localization is possible even with such a low bandwidth.
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1 Introduction

High precision localization is a key enabler for future location-aware applic-
ations expected in future 5G communication networks [1]. Therefore, local-
ization techniques that can offer the necessary accuracy in complex environ-
ments, e.g., dense urban environments or indoors, are strongly needed. Massive
multiple-input-multiple-output (MIMO) transmission schemes [2], [3] are one
possibility to counteract localization degradation due to harsh multipath propaga-
tion in dense urban environments and indoors, even though only small signal
bandwidth is used.

1.1 State of the Art

Achieving the required level of accuracy robustly is still elusive in environments
that are characterized by harsh multipath channel conditions. Therefore, most
existing localization approaches supporting multipath channels either use sens-
ing technologies that mitigate multipath effects [4]–[6] or fuse information from
multiple information sources [7]–[10]. Fingerprint-based approaches actually
exploit the diversity of multipath channels by matching position-labeled chan-
nel measurements with the acquired measurements at the positions of interest
[11], [12]. Similarly, this can be achieved by using machine learning meth-
ods with the additional capability of interpolation between the position-labeled
channel training measurements [13], [14]. However, site-specific training phases
require a lot of accurate position-labeled channel measurements and may lead
to performance degradation in dynamic environments.

Multipath-assisted localization algorithms [15]–[18] exploit position-related
information contained in the specular multipath propagation components (MPCs)
that can be associated to the local geometry, which actually turns the multipath
effect into an advantage. MPCs due to specular reflections at flat surfaces are
modeled by virtual anchors (VAs), which are mirror images of the physical
anchors (PAs), i.e., base station [19]. By associating the estimated MPC para-
meters to VAs, these VAs can be used as additional PAs for location estimation.
In recent years, many works that use wideband/ultra-wideband (UWB) signals
have shown the potential of multipath-based positioning [20], tracking [21], [22]
and simultaneous localization and mapping (SLAM) [23]–[26] with accuracy
on a centimeter level. The works [27]–[29] use cooperation amongst agents to
enhance multipath-assisted localization performance in infrastructure-limited
scenarios.

However, all these multipath-assisted algorithms have in common that they
require accurate extraction of location-related parameters of MPCs (i.e., dis-
tances/delays and angles). The estimation quality of MPC parameters in
turn determines the localization performance, while, good resolvability between
MPCs is a prerequisite for accurate estimation. However, using only limited
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bandwidth systems leads to low resolvability of MPCs in the delay domain, es-
pecially in dense multipath environments. Utilizing large-scale antenna arrays
extends signal processing alternatives from the time-frequency domain to also
include the spatial domain, and therefore helps to resolve closely spaced MPCs
by exploiting the spatially sparse structure of the multipath channel [30]. In
[17], [18], the theoretically achievable localization performance given as the
Cramér-Rao lower bound (CRLB) on the position and orientation estimation
error for millimeter-wave massive MIMO systems is presented. The results
in there show the large localization performance improvement when position-
related information of MPCs is estimated with a massive MIMO system. Con-
sidering that cellular systems are typically operating at a few GHz with a
bandwidth of 20-40 MHz, the corresponding resolution of one time sample is
only 7.5-15 m. However, since the phase of MPCs is connected to the carrier
frequency and this lies in the GHz region for typical radio systems, centimeter
accuracy can be achieved if the phase is properly exploited as for example
in global navigation satellite systems [31] or terrestrial radio systems [32]. If
the spatial sampling rate of the radio channel is sufficiently high, i.e., record-
ing a few snapshots within one wavelength movement, it is possible to track
the distance change on centimeter level by measuring the phase shift between
measurements at two consecutive time instances.

1.2 Contributions and Organization of the Paper

In this work, a multipath-assisted localization and mapping framework is presen-
ted that exploits the phase information of individual MPCs by using a massive
single-input multiple-output (SIMO)1 radio system. As shown in Fig. 2, the
framework is composed of two consecutive steps: (i) Using an extended Kalman
filter (EKF) [33], which is initialized with the iterative maximum-likelihood es-
timation algorithm (RIMAX) [34], the dispersion parameters, i.e., the delays/
distances and angle-of-arrivals (AoAs) of the specular MPCs, the noise and
dense multipath component (DMC) parameters are estimated from channel
measurements; (ii) The MPC distances estimates are subsequently used as
input in the localization step2. A distance-based algorithm is applied that sim-
ultaneously estimates the mobile agent positions and VA/PA positions3. Both
synthetic and real channel measurements are used when demonstrating the
performance of MPC parameter estimation, followed by an in-depth statistical

1We consider a simpler scenario here, where the mobile agent is equipped with a single
omnidirectional antenna. However, the framework can be easily extended to MIMO setup.

2In the SIMO setup, the angular information is available at PA side. The angular in-
formation is exploited by the channel estimator for better resolvability of individual MPCs,
however, in this work the AoAs are not used for localization.

3Since these estimates are only relative w.r.t. a global coordinate system, we register
them to the coordinate system of the measured geometric groundtruth of the mobile agents’
movement trajectory.
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analysis of MPC parameters in terms of lifetime, signal-to-interference-plus-
noise ratio (SINR)4, etc. The performance of the localization algorithm is
evaluated with the same real channel measurements.

The main contributions are summarized as:

• We present a novel MIMO channel estimation and tracking algorithm
that tightly couples the tracked MPC distances to the phase change of
the MPC complex amplitudes from one measurement snapshot to the
next. With this, it is possible to estimate the MPC distances far beyond
the signal bandwidth dependent accuracy.

• We analyze the dynamic behaviour and statistical distributions of the es-
timated MPC parameters and connect them to the localization potential.

• We use the estimated MPC distances from real channel measurements
to show that radio-based localization in harsh multipath environments is
possible even using only low signal bandwidth by exploiting a massive
MIMO system.

Parts of this paper were published in [35], where the feasibility of the phase-
based localization using standard cellular bandwidths was demonstrated. This
paper presents more insights into the framework as well as more in-depth ana-
lysis of the channel estimation results with both synthetic and real measure-
ments.

The rest of the paper is structured as follows: Section 2 introduces the
radio signal model and the multipath-based localization and mapping problem.
Section 3 and 4 present EKF-based channel estimation and tracking algorithm
and distance-based localization and mapping algorithm. The numerical results
and analysis are reported in Section 5. Finally, Section 6 concludes the paper.

Mathematical notations: Boldface upper case letters represent matrices.
Boldface lower case letters denote column vectors. Superscripts T, ∗ and H de-
note matrix transpose, complex conjugation and Hermitian transpose, respect-
ively. The Kronecker product and Khatri-Rao product operators are denoted
with ⊗ and ♦, respectively. ‖·‖ is the Euclidean norm. | · | represents the ab-

solute value. card(·) denotes the cardinality of a set. Â denotes an estimate of
A. I[ · ] represents identity matrix with dimension denoted in the subscript [ · ].
diag(a) denotes a diagonal matrix with the vector a being the diagonal entries.
The operation toep(a,aH) constructs a Hermitian Toeplitz matrix with vectors
a and aH being the first column and the first row.
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Figure 1: Floor plan of the sports hall in Medicon village, Lund, Sweden. The bold
grey line represents the surrounding walls. Besides, three examples of the 1st order
and 2nd order geometrically expected VAs, as well as the corresponding reflection
paths from the mobile agent to the physical anchor (PA) are given. The groundtruth
trajectory of the mobile agent is given by the letters “Lund” in a 2 m2 area, as shown
in the zoom-in sub-plot.

2 Problem Formulation

Multipath-based localization utilizes geometrical information contained in spec-
ular MPCs—delays/distances, angles of departure (AoDs) and angles of arrival
(AoAs)—estimated from received radio signals [15]. Each estimated specular
MPC, which originates from a reflection on planar surfaces, can be either associ-
ated with a PA or with one of the VAs, which represent the mirrored positions
of the PA w.r.t. the planar surfaces. These VAs can be used as additional
PAs for localization. From now on a PA or VAs are collectively referred to
as features. Fig. 1 shows the floor plan of the indoor environment in which
the measurement campaign was performed, together with the positions of the
PA and of three exemplary VAs with their corresponding reflection paths. We
consider the case that the mobile agent acts as a transmitter with unknown
time-varying positions pn ∈ R3×1, n = 2, . . . , N . The feature positions are
denoted with am ∈ R3×1, m ∈ M = {1, . . . ,M}, where the PA represents a
receiver at a static but unknown position a1, and the positions5 of the geomet-

4The SINR can be interpreted as a reliability measure of estimated MPC parameters and
is directly tied to the CRLB of multipath-based localization [15].

5The coordinate of the position is given in the 3D Cartesian coordinate system. For
a feature position, am = [xm ym zm]T, and for the mobile agent position pn =
[xn yn zn]T.
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Figure 2: Block diagram of the proposed multipath-based localization and mapping
framework.

rically expected VAs are denoted as am, m = 2, . . . ,M . The feature positions
are fixed over time since the PA is static. A specular MPC is consistently as-
sociated with a feature for the duration that this feature is visible at the agent
position. Those visible features at each agent position pn are called expected
features, with the positions given as al ∈ R3×1, l ∈ Ln, and Ln is a subset of
M, i.e., Ln ⊆M. The number of expected features Ln = card(Ln) is unknown
and time-varying, and it depends on the visibility at each agent position. Be-
sides, the floor plan of the surrounding environment is assumed as unknown,
which means feature positions al are unknown.

Fig. 2 shows the block diagram of the proposed multipath-based localization
and mapping framework. First, the MPC parameters are estimated using an
EKF-based channel estimator and tracking algorithm. Considering that an
accurate initial state estimate is a prerequisite for the fast convergence and
accurate tracking in the EKF, and the initialization step should avoid bringing
too many artifacts into the initial state vector, the RIMAX algorithm is applied
at time n = 1 for the initial estimates of MPC parameters and noise covariance
[34]. The estimated MPC distances are subsequently used in the localization
and mapping algorithm.

2.1 Radio Signal Model

The baseband signal yn in frequency domain received by the PA at time n is
modeled as

yn = sn +wdmc,n +wn ∈ CNfNTxNRx×1, (1)

where the first term comprises specular MPCs and the second and third terms
represent DMC and additive white Gaussian noise, respectively. We assume
time-synchronization between the mobile agent and the PA, and time synchron-
ization between VAs is automatically achieved as they arise due to reflections.
The values Nf, NTx and NRx refer to the number of frequency sample points,
transmit and receive antenna elements, respectively. Since NTx = 1 for a SIMO
setup, we ignore NTx in the dimension notations of matrices/vectors from now
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on.

Specular MPCs

sn = [sT
f1,n
· · · sT

fNf
,n]T is obtained by sampling the continuous response sn(f)

in the frequency domain at time n, where fi with i = 1, . . . , Nf is the frequency
samples in the domain {−Nf−1

2Nf
Bw, . . . ,

Nf−1
2Nf

Bw} and Bw is the signal band-

width. sn(f) =
∑
l∈Ln sl,n(f) comprises Ln specular MPCs. The contribution

of each MPC is given by sl,n(f) = ssig,n(f)hl,n(f), where ssig,n(f) is the trans-
mitted baseband signal response, and hl,n(f) ∈ CNRx×1 is a frequency domain
representation of the MPC’s channel impulse response, given as [36]

hl,n(f) = BRx(ϕl,n, θl,n)Γl,nB
T
Txe−j2π(f+fc)τl,n , (2)

where fc is the carrier frequency, τl,n represents the propagation delays of the
lth MPC. The matrices BTx ∈ C1×2 and BRx(·, ·) ∈ CNRx×2 describe the far-
field complex antenna responses of the omnidirectional antenna at the transmit
side, and of the antenna array at the receive side w.r.t. the AoAs in elevation
and azimuth domain, respectively. The delay of the specular MPC indexed
by l is proportional to the distance between the agent and the PA or between
the agent and the VAs. That is τl,n = ‖pn − al‖/c = dl,n/c, where dl,n is
the propagation distance and c is the speed of light. We note that similar
geometrical expressions can be extended to the azimuth and elevation AoAs
(ϕl,n, θl,n), respectively. The parameters of each specular MPC are comprised
in the vector µl,n = [dl,n ϕl,n θl,n] ∈ R3×1. The complex path weight
matrix Γl,n ∈ C2×2 accounts for the frequency independent attenuation and
phase change, given as

Γl,n =

[
γHH,l,n γVH,l,n

γHV,l,n γVV,l,n

]
. (3)

The individual polarimetric complex path weights of the matrix are given by
γp,l,n = αp,l,ne

jφp,l,n , where αp,l,n and φp,l,n represent the magnitude and
phase, respectively. The subscript p ∈ {HH,HV,VH,VV} indicates the four
polarimetric transmission coefficients (as for example HV indexes the horizontal-
to-vertical transmission coefficient).

Noise process

The second term in (1), wdmc,n denotes the multiplication of the signal spec-
trum with the DMC defined by the covariance matrix Rdmc,n ∈ CNfNRx×NfNRx ,
and the third term in (1), wn denotes the measurement noise which is as-
sumed circularly symmetric complex Gaussian noise with covariance matrix
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Rw,n = σ2
w,nINfNRx

∈ CNfNRx×NfNRx . The noise covariance matrix is given by
Rn = Rw,n +Rdmc,n.

The estimation of the noise parameters directly for the noise covariance
matrix Rn is computationally very expensive, especially for the massive MIMO
setup. Using the narrowband assumption, a Kronecker decomposition of the
noise covariance matrix Rn can be applied [34], [37]. The noise covariance
matrix then reduces to

Rn = RRx,n ⊗Rf,n(xdmc,n) + σ2
w,nINfNRx

, (4)

where Rf,n ∈ CNf×Nf denotes the covariance matrix of DMC in frequency
domain, which has Toeplitz structure and is given as

Rf,n(xdmc,n) = toep
(
κ(xdmc,n),κ(xdmc,n)H

)
. (5)

Here, κ(xdmc,n) is the sampled power delay spectrum (PDS) in frequency
domain characterized by xdmc,n = [αdmc,n βdmc,n τon,n]T. The DMC is
modeled with an exponentially decaying power profile in the delay domain,
where αdmc,n is the power at the onset delay τon,n, and βdmc,n is the normalized
coherence bandwidth of DMC (detailed parameters can be found in [34, Section
2.5]). Furthermore, it is assumed that the DMC is spatially uncorrelated at the
receiver side, therefore the covariance matrix in the angular domain RRx,n =
INRx

.

Signal Parameter Estimation

Given the radio signal observations y = [yT
1 · · ·yT

N ]T, the EKF-based paramet-

ric channel estimation algorithm, described in Section 3, provides K̃ continu-
ously estimated MPCs and noise parameters. Those MPCs are indexed by k̃
with k̃ ∈ K̃ = {1, . . . , K̃}, and each of them is consistently associated with
an estimated feature position ak̃ for the duration of its lifetime (described in
Section 3.2). The estimated MPCs have different lifetimes, which means they
are observed during different fractions of the measurement time. At time n, a
subset of MPCs indexed by k ∈ Kn, Kn ⊆ K̃ are estimated, and the estimated
parameters of each MPC and the noise parameters are given as

µ̂k,n = [d̂k,n ϕ̂k,n θ̂k,n]T ∈ R3×1 (6)

x̂noise,n = [x̂T
dmc,n σ̂w,n]T ∈ R4×1. (7)

Ideally, the number of estimated MPCs at time n, i.e., Kn = card(Kn), should
be equal to Ln. However, during the estimation process, miss detection of
specular MPCs and false alarm which leads to clutter components might hap-
pen. Hence, Kn is time-varying and it can be equal to, or larger/smaller than
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Ln. In the next section, the estimated parameters are provided as input to the
localization and mapping algorithm.

2.2 Localization and Mapping Problem

In this work, we only use the estimated distances d̂k,n of the MPCs within
the localization and mapping algorithm. The estimates are corrupted by noise
and possible biases, so the measurement model of the localization algorithm is
given as

d̂k,n = ‖pn − ak‖+ εk,n,∀(k, n) ∈ I, (8)

where I of all (k, n) indexing combinations represents the set of all the estimated
MPCs. Distance estimates which are considered to be inliers have a known
distribution εk,n ∼ N (0, σ2

inl) for (k, n) ∈ Iinl. Outliers (comprise false alarms

and specular MPCs with large errors) represent distance estimates d̂k,n that
follow an unknown distribution of εk,n for (k, n) ∈ Ioutl with typically much
larger variance. One useful approach is to minimize the negative log-likelihood.
To simplify the problem, we assume that the negative log-likelihood for the
outliers is a constant C, i.e., each outlier has the same penalty. In this way the
problem becomes an optimization problem.

Problem 2 (Localization and Mapping) Given absolute distance estimates

d̂k,n∀ (k, n) ∈ I, find the inlier set Iinl ⊂ I, the estimated mobile agent posi-
tions p̂n ∀ n ∈ {1, . . . , N} and the estimated feature positions âk∀ (k, n) ∈ Iinl
that solves the following optimization problem

min
Iinl,pn,ak
∀n,∀k

∑

(k,n)∈Iinl
(d̂k,n − ‖pn − ak‖)2 +

∑

(k,n)∈Ioutl
C, (9)

where Ioutl = I\Iinl. The estimated feature positions âk are also assumed to be
fixed over time since the PA is static. This is a highly non-linear, non-convex
optimization problem. The problem changes character if both p̂n and âk span
3D, or either one of them or both are restricted to a plane or a line as shown in
[38]. The problem is ill-defined if there is too little data. For planar problems
we require Kn ≥ 3, N ≥ 3, [39]. For 3D problems more data is needed,
typically Kn ≥ 4, N ≥ 6 or Kn ≥ 5, N ≥ 5, [40].

In the following two sections, we introduce the framework as shown in Fig. 2.
At first, the EKF channel estimation and tracking algorithm is presented, fol-
lowed by the MPC-distances-based localization and mapping algorithm.
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3 EKF-based Channel Estimation Algorithm

The MPC parameters are firstly initialized with the RIMAX algorithm, and
then an EKF is adopted for continuous channel parameters tracking. It should
be noted that instead of estimating the absolute phase of each MPC at each
time instance, we track the continuous phase changes between consecutive snap-
shots. Given a few snapshots being taken within one wavelength movement of
the mobile agent, a phase change from 0 to 2π is translated into a distance
change ∆dl,n from 0 to λ. The two parameters φp,l,n and dl,n in (2) are both

phase related, but the estimates φ̂p,l,n are usually non-continuous in complex
propagating environments, which leads to a high risk of phase slip, i.e., a jump
of an integer number of phase cycles. Therefore, φ̂p,l,n of each MPC is locked to

the initial estimate provided by the RIMAX algorithm, the evolution ∆φ̂p,l,n

however is not involved in the tracking process using the EKF. In detail, we
exclude ∆φp,l,n from the state space model and the corresponding derivative
∂s(x̂n)

∂(∆φ̂n)T
from the Jacobian matrix (Section 3.2). In this way, we ensure the

unique mapping between the phase shift and the distance change ∆dl,n.

3.1 State Space and Measurement Model

The state space vector of Ln MPC parameters at time n is given by

xn = [µT
n ∆µT

n αT
n φT

n ]T ∈ R14Ln×1 , (10)

where the geometry-related parameter are stacked into

µn = [dT
n ϕT

n θT
n ]T ∈ R3Ln×1, (11)

and the vector ∆µn ∈ R3Ln×1 contains the change rates of the MPC parameters
contained in µn. The magnitudes and phases of the according complex MPC
weights are stacked into

αn = [αT
HH,n αT

HV,n αT
VH,n αT

VV,n]T ∈ R4Ln×1, (12)

φn = [φT
HH,n φT

HV,n φT
VH,n φT

VV,n]T ∈ R4Ln×1. (13)

Each sub-vector on the right side of (11), (12) and (13) has the dimension of
(Ln×1), as for example, dn = [d1,n · · · dLn,n]T, αHH,n = [αHH,1,n · · · αHH,Ln,n]T

and φHH,n = [φHH,1,n · · · φHH,Ln,n]T.
The state transition model defined by a discrete white noise acceleration

model [41, Section 6.3.2] describes the time evolution of the state vector. With
the assumption that the motion and underlying noise process of different MPC
parameters are uncorrelated, the discrete-time state transition model is given
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as
xn = Fxn−1 + vn, (14)

where vn is state noise vector following zero mean normal distribution with the
variance matrix Q. The state transition matrix F 1 ∈ R14×14 of a single MPC
is formulated as

F 1 =




I3 I3∆T 0 0
0 I3 0 0
0 0 I4 0
0 0 0 I4


 , (15)

where ∆T is the channel sampling duration. The variance matrix Q1 ∈ R14×14

of a single MPC is defined as

Q1 =



Q1
µ 0 0

0 Q1
α 0

0 0 Q1
φ


 . (16)

The sub-matrix Q1
µ ∈ R6×6 related to the structural vector µ̂ is given as

Q1
µ = diag(q∆µ)⊗

[
1
4∆T 4 1

2∆T 3

1
2∆T 3 ∆T 2

]
, (17)

where q∆µ = [qd qϕ qθ]
T ∈ R3×1 and the square root of each entry in the

vector denotes the acceleration of corresponding structural parameter. The
sub-matrices related to α and φ are given as Q1

α = qαI4 and Q1
φ = qφI4. It

should be noted that the evolutions ∆α and ∆φ are not involved in the state
space model. However, we assign small values to the variances qα and qφ to
account for slow variations of α and φ during the propagation processes in the
free space. The same variances are assumed for different polarimetric trans-
mission coefficients. The selection and tuning process of the noise variance are
very important especially for the narrowband case, because the orthogonality
is not tightly held between close-by MPCs [42]. Small variance may lead to
smooth but slow tracking, and some small movements might be missed. Large
variance enables quick response to non-smooth movements like sharp turns,
but leads to high risk of phase slip. Hence, a trade-off is needed. Here, we
follow the guideline that the value of

√
q[ · ] should be in the same order as the

maximum acceleration magnitude [41]. The extension of the matrices (15) and
(16) to the multipath case is done with a Kronecker operation as F = F 1⊗ILn
and Q = Q1 ⊗ ILn [33].

The corresponding linearized measurement model, which describes the non-
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linear mapping from MPC parameters to channel measurement, is defined as

yn = s(xn) + rn, (18)

where rn contains the measurement noise with covariance matrix Rn defined
in Section 2.1 and s(xn) represents the non-linear mapping from the MPC
parameters to the specular observation vector described in (39). The first-
order Taylor series approximation can be used for linearizing the model s(xn),
and the linearized measurement matrix is represented with the Jacobian matrix
Jn described in (31).

3.2 MPC Parameters Tracking Using an EKF

The MPC parameters are tracked using an EKF similar to [33] starting from
time n = 2, where the state vector at time n = 1 and the estimated noise
covariance matrix R̂n are provided by the RIMAX algorithm (see Section 3.3).
The filtered posterior state vector x̂n is given by

x̂n = [µ̂T
n ∆µ̂T

n α̂T
n φ̂T

n ]T ∈ R14Kn×1, (19)

where the sub-vectors are given as

µ̂n = [d̂n ϕ̂n θ̂n]T ∈ R3Kn×1, (20)

α̂n = [α̂HH,n α̂HV,n α̂VH,n α̂VV,n]T ∈ R4Kn×1, (21)

φ̂n = [φ̂HH,n φ̂HV,n φ̂VH,n φ̂VV,n]T ∈ R4Kn×1. (22)

Prediction Step

The prior state vector x̂−n and the prior filter error covariances matrix P−n given
measurements up until time n− 1, are respectively given by

x̂−n = F x̂n−1, (23)

P−n = FPn−1F
T +Q. (24)

Measurement Update Step

The measurement at time n is used to update the predicted state vector x̂−n and
the corresponding matrix P−n , resulting into the posterior covariance matrix Pn
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and posterior state vector x̂n, obtained by

Pn = (I14Kn +KnDn)P−n , (25)

∆x̂n = Pnqn, (26)

x̂n = x̂−n + ∆x̂n , (27)

where the Kalman gain matrix Kn is formulated as

Kn = P−nDH
n (DnP−nDH

n + R̂n)−1, (28)

and qn ∈ R14Kn×1 is the score function and Dn ∈ R14Kn×14Kn represents
the Fisher information matrix, which are the first-order and the second-order
partial derivatives of the negative log-likelihood function, respectively. The
score function qn and the Fisher information matrix Dn are given by

qn = 2<
{
JH
n R̂

−1
n (yn − s(x̂−n ))

}
, (29)

Dn = 2<
{
JH
n R̂

−1
n Jn

}
, (30)

where the Jacobian matrix Jn ∈ CNfNRx×14Kn represents the the first-order
partial derivatives of the linearized signal vector s(x̂−n ), i.e.,

Jn =
∂s(x̂−n )

∂(x̂−n )T
. (31)

State Dimension Adjustment

During the channel measurements, the number of tracked MPCs may vary over
time. The birth and death processes of MPCs are assumed to be statistically
independent and therefore the state dimension adjustment is performed along-
side with the EKF.

Birth of MPC Potentially new MPCs are detected in the initialization pro-
cess using the SAGE algorithm as described in Section 3.3, and the estimated
covariance matrix R̂n at time n is used to estimate the complex weight with
(37) given below.

Death of MPC The posterior covariance matrix Pn comprises the uncer-
tainties of the state vector after update with measurement. Using the contained
variances of the complex MPC weights, a reliability measure of a MPC is cal-
culated and used to adjust the dimension of the state space vector x̂n, i.e., to
control the death of MPCs. At first, the SINR of each MPC [34] is calculated,
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i.e.,

SINRk,n =
∑

p

| γ̂p
k,n |2
vp
k,n

, (32)

where |γ̂p
k,n| is the magnitude of the estimated MPC weight for polarization

p ∈ {HH,HV,VH,VV} and vp
k,n is the estimated variance of MPC weight. A

MPC is considered as unreliable if the SINR is below a predefined detection
threshold εr, i.e., SINRk,n < εr, and therefore it is removed from the state
vector. Hence, the MPC lifetime is here defined as the time duration that
the SINR of a MPC is above a given threshold, which to some extended is
geometry-independent. An intuitive choice for the detection threshold εr is
0 dB.

Reinitalization of complex weights

Even though the complex weights of the MPCs are assumed to vary only slowly
in free space propagation, larger changes are expected due to small scale fading
in the propagation processes, e.g., reflection, scattering, etc. Since the evolu-
tion of complex amplitudes γk,n is not included into the prediction model, a
reinitialization of complex weights γk,n is performed to be able to follow these
abrupt changes. Using the posterior MPC parameters and the estimated co-
variance matrix R̂n at time n, the reinitialization is performed by using (37)
after the mobile agent being moved a distance of about one wavelength.

3.3 MPC Parameters and Noise Parameters Initialization
with RIMAX

Given the baseband signal ỹn at time n, depending on the time instance, the
parameters of new MPCs, i.e., µ̂k′,n with k′ ∈ K′n = {1, . . . ,K ′n}, are either
estimated for the first time using ỹn = y1 at time n = 1, or using the residual
ỹn = yn −

∑
k∈Kn−1

s(µ̂k,n, γ̂k,n), at time n = 2, . . . , N , where s(µ̂k,n, γ̂k,n)
represents the specular contribution of each MPC which is already inside the
state vector defined in (39). After the parameters of K ′n MPCs are estimated,
the state vector will contain finally the parameters of Kn = K ′n+Kn−1 MPCs,
and K−1 = 0. The estimation of each new MPC is discussed in the following
section.

Successive cancellation of MPCs

The estimation starts by using the space-alternating generalized expectation-
maximization (SAGE) algorithm that is based on successive cancellation of
MPCs [43]. At first, an initial estimate of the k′th new MPC’s parameters
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µ̂k′,n is found by searching for the maximum of the power spectrum of ỹ−n ,
with ỹ−n = ỹn when k′ = 1, i.e.,6

{n̂′a, n̂′e, î} = arg max
n′a,n

′
e,i
|bRx(ϕs,n′a , θs,n′e)ỹ

−
n a
∗
f,i|, (33)

where µ̂k′,n = [d′
î
, ϕs,n̂′aθs,n̂′e ]

T, and af,i is the ith column of Af in (35). ϕs,n′a
and θs,n′e are the azimuth and elevation angles after interpolation, with n′a =
1, · · · , N ′a and n′e = 1, · · · , N ′e. N ′a and N ′e denote the number of azimuth,
elevation angular samples after interpolation. The sub-vectors are given as

b(Rx)(ϕs,n′a , θs,n′e) = b
(Rx)
H (ϕs,n′a , θs,n′e) + b

(Rx)
V (ϕs,n′a , θs,n′e). (34)

The vector bRx
(H/V) ∈ CNRx×1 represents the projection from (ϕs,n′a , θs,n′e) to the

array response by using the effective aperture distribution function (EADF).
At the transmit side, the antenna response is denoted by a scalar bTx

(H/V) due

to a single antenna being used. The EADF performs efficient interpolation of
the measured beam pattern via a two-dimensional discrete Fourier transform
to obtain antenna responses of arbitrary azimuth and elevation angles that are
off the sampling grid. The reader is referred to [44] for more details regarding
the EADF formulation. For interpolation in the delay/distance domain, the
complex shifting matrix

Af =




e−j2π(−Nf−1

2 )f ′1 . . . e
−j2π(−Nf−1

2 )f ′
N′

f

...
...

e−j2π(+
Nf−1

2 )f ′1 . . . e
−j2π(+

Nf−1

2 )f ′
N′

f


 ∈ CNf×N ′f (35)

is applied for an increased number of frequency points f ′i = i
N ′f

with i =

1, . . . , N ′f , where N ′f denotes the number of frequency samples after interpol-
ation. The corresponding distance samples are given as d′i = cNf

Bw
f ′i . The

estimate of the corresponding complex weight γ̂k′,n is given in two forms. If

there is no estimate of noise covariance matrix, R̂n = INfNRx
is then assumed

and γ̂k′,n is given in a least square form, i.e.,

γ̂k′,n = (BH(µ̂k′,n)B(µ̂k′,n))−1BH(µ̂k′,n)ỹ−n . (36)

Otherwise, with the estimated R̂n, γ̂k′,n is given in a weighted least square
form, i.e.,

γ̂k′,n = (BH(µ̂k′,n)R̂−1
n B(µ̂k′,n))−1BH(µ̂k′,n)R̂−1

n ỹ
−
n (37)

6ỹn is reshaped to a matrix with dimension NRx ×Nf before used in (33).
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where the matrix valued function B(µ̂k′,n) ∈ CNfNRx×4 accounts for the struc-
ture of the radio channel of four polarimetric transmissions and is defined as

B(µ̂k′,n) = [bRx
H ♦b

Tx
H ♦bf bRx

V ♦b
Tx
H ♦bf bRx

H ♦b
Tx
V ♦bf bRx

V ♦b
Tx
V ♦bf]. (38)

The vector bf ∈ CNf×1 accounts for the system frequency response by using
the complex shifting matrix defined in (35). The detailed formulation of the
matrix valued function (38) can be found in [34]. The non-linear mapping from
the estimated parameters of k′th MPC to the specular observation vector7 is
given as

s(µ̂k′,n, γ̂k′,n) = B(µ̂k′,n)γ̂k′,n. (39)

The estimated specular component of the k′th MPC, together with the com-
ponents of k′ − 1 previously initialized new MPCs indexed with j are then
subtracted from the channel observation, i.e., the residual is updated to

ỹ−n = ỹn − s(µ̂k′,n, γ̂k′,n)−
k′−1∑

j=1

s(µ̂j,n, γ̂j,n). (40)

A new MPC is further initialized from the updated residual ỹ−n only if two
constraints are both met: (i) The maximum allowed number of MPCs that are
estimated/tracked simultaneously Kmax is limited, so Kn−1 + k′ < Kmax; (ii)
The ratio between the energy sum of the estimated MPCs, with each denoted as
psp,k/j,n, over the full signal energy pn at time n, i.e., βn =

∑
k∈Kn−1

psp,k,n
pn

+
∑k′

j=1
psp,j,n
pn

, should be smaller than the maximum allowed ratio denoted as
βmax, i.e., βn < βmax. This is to control the model complexity and reduce the
interference between coherent MPCs. The same procedure from (33) to (40)
is repeated until the parameters of K ′n MPCs are estimated and added to the
state vector and Kn = K ′n +Kn−1.

After subtracting the contribution of the Kn estimated MPCs, the residual
ỹ−n is used to estimate the noise standard deviation and DMC parameters
x̂noise,n = [x̂T

dmc,n σ̂w,n]T. The initial estimates of x̂dmc,n is computed from
the averaged power delay profile over NRx antenna elements. The reader is
referred to [34, Section 6.1.8]) for detailed processing. The estimated covariance

matrix R̂n is then calculated using x̂noise,n with (4) and (5).

Refinement with RIMAX

These initial estimated state vectors of MPC parameters, noise and DMC
parameters are optimized by alternating maximization of the log-likelihood

7Given an estimated state vector x̂n of Kn MPCs, the specular observation vector is given
as s(x̂n) =

∑
k∈Kn s(µ̂k,n, γ̂k,n)
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function by the RIMAX algorithm, which uses Levenberg-Marquardt and ML-
Gauss-Newton algorithms for optimization [34]. It is worth mentioning that
Kn influences how much one can actually benefit from the joint optimization
of all parameters in RIMAX initialization. If a nonsensical solution with a
very large Kn is given in (3.3), the estimated parameters of specular MPCs
tend to converge to local minima which are biased from the true values due
to noise over-fitting after optimization iterations. In practice, the maximum
Kn allowed in the RIMAX initialization should be chosen to capture all the
significant specular MPCs in the propagation environment. Considering the
alternating maximization to jointly estimate the MPC parameters x̂n and the
noise parameters x̂noise,n = [x̂T

dmc,n σ̂w,n]T is very computationally demand-
ing and therefore it’s only applied at time n = 1, but not during the subsequent
tracking of the channel parameters.

4 Localization and Mapping

Given the distance estimates d̂k,n from EKF, the localization problem is for-
mulated as the joint estimation and optimization process of the inlier set Iinl,
mobile agent positions pn and features (PA and VAs) positions ak in Problem
2 in (9), which is a highly non-convex problem. To make it a better conditioned
problem with reasonable complexity, we introduce two modified versions of (9)
with given assumptions and prior information.

4.1 Experiment I

In this experiment, we assume that all mobile agent positions pn are known,
then the optimization problem of Problem 2 in (9) is reduced to

min
Iinl,k,ak
∀n

∑

k|(k,n)∈Iinl

(d̂k,n − ‖pn − ak‖)2 +
∑

k|(k,n)∈Ioutl
C (41)

independently for each feature position ak with k ∈ Kn and n = 1, . . . N , by
using random sample consensus (RANSAC) [45]. Iinl,k is the inlier subset for
each k and it is possible to have no inliers at some estimated feature positions,
i.e., Iinl,k = ∅. We assume the association between an estimated MPC and a
feature is consistent during the tracking process, and the corresponding feature
position is fixed over time. Given a vector containing all the distance estimates
of one MPC, we randomly choose a minimal set, i.e., estimates at three time
instances and corresponding (known) mobile agent positions, to give an initial
estimate of the feature position. Then, we extend to the full vector and de-
termine how many of the remaining estimates agree with the estimated feature
position, i.e., number of inliers. Different minimal sets give different solutions,
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we choose the one with the largest number of inliers. The same procedure is
repeated for all the tracked MPCs. The RANSAC gives initial estimates of
feature positions and inlier set, which is then followed by non-linear optimiza-
tion of (41). Moreover, the resulting residuals d̂k,n −‖pn − âk‖ can be used to
empirically assess properties of the error distribution.

4.2 Experiment II

In this experiment, we assume that both the mobile agent positions and feature
positions are unknown. To make this estimation problem tractable, an estimate
of the inlier set Îinl is firstly obtained by using the groundtruth mobile agent
positions in (41), then the estimates d̂k,n∀ (k, n) ∈ Îinl are subsequently used
as inputs in (9) and Problem 2 is reduced to

min
pn,ak
∀n,∀k

∑

(k,n)∈Îinl

(d̂k,n − ‖pn − ak‖)2. (42)

Two assumptions are further made here. First, pn are assumed to be con-
strained to a plane (e.g., zn = 0). This is a natural assumption for many
problems where the mobile agent is moved approximately in a plane during the
measurement. Note that it does however introduce an ambiguity in the feature
positions, since we can never determine the sign of the z−component. Second,
we assume that the mobile agent has been moved in a continuous path. Al-
gorithms for solving Problem 2 using hypothetical and test paradigm are also
presented in [46]. In order to minimize drift and accumulation of initializa-
tion errors, we divide the whole dataset into a number of smaller segments
in time (typically containing 100 time instances each). Fig. 3 shows two con-
secutive segments and the overlap in-between, each segment is then initialized
independently.

For each segment, we initialize both âk with k ∈ Kn and p̂n using minimal
solvers and RANSAC [38] based only on the distance estimates from the EKF.
In detail, we start from a minimal set which is sampled from the distance
estimates to estimate the corresponding mobile agent and feature positions.
Since the LOS component is visible at all time instances, we always include the
PA position in the minimal sample. Using the initial positions we can minimally
trilaterate mobile agent and feature positions at other time instances, and count
how many inliers we get for this initial estimate. The steps above are repeated
and we choose the solution with the highest number of inliers. In minimal
trilateration, two possible solutions are provided for each estimated position
due to the ambiguity of the z-component. For the mobile agent position, with
the assumption of the trajectory in the plane zn = 0, we always choose the
solution with the smallest |ẑn|. For the feature positions, the two solutions
correspond to the two different signs of |ẑk|. Since this ambiguity can never
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Figure 3: Depiction of how the estimated dataset from EKF being segmented before
used in the localization and mapping algorithm. Each segment contains distance
estimates from 100 consecutive time instances, and the overlap in-between is 50 time
instances long.

be resolved, we consistently choose the solution with e.g., positive ẑk, without
any loss of generality. To sum up, the RANSAC procedure provides an initial
estimate of the mobile agent positions in the segment, as well as the feature
positions and an estimate of the inlier set. The solution of (9) is then refined
by using a Newton method.

The estimates for each segment are given in its own coordinate system.
However, we need the whole solution to be in the same coordinate system. If
we choose the segments so that the reconstructed mobile agent’s MPC has an
overlap in-between segments, we can use the overlapping mobile agent positions
to register the different reconstructions. This is simply done in a least squares
way by applying rotation and translation operations. After registration of
all segments into one coordinate system, the mean values over all individual
estimates are calculated for overlapping mobile agent positions and feature
positions. We can then also do a final non-linear optimization of all estimated
positions over all inlier data.

5 Evaluations and Results

To analyze the performance, the proposed framework is applied to both real and
synthetic channel measurements, and the mobile agent is equipped with one
single antenna in both cases. Besides, the results are presented in two aspects:
(i) the MPC parameter estimation and tracking results, and comprehensive
statistical analysis of the MPC dynamic behaviors, (ii) the evaluation of two
localization and mapping experiments presented in Section 4 with real channel
measurements.
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Figure 4: Overview of the measurement area in the sports hall, Medicon Village,
Lund, Sweden. Room dimension is around 20 m × 36 m × 7.5 m.

5.1 Experimental Setup

The real measurement campaign was performed in a large sports hall with
the RUSK LUND channel sounder. Fig. 4 shows an overview of the measure-
ment area. A cylindrical array with 64 dual-polarized antennas (Fig. 5a), i.e.,
128 ports in total, is used as a static PA. The center of the array is 1.42 m
above ground. A conical monopole omnidirectional antenna (Fig. 5b) is used
to represent a mobile agent. The distance between the PA and the mobile
agent is around 17 m and line-of-sight (LOS) conditions apply. The transfer
functions (snapshots) were recorded at a center frequency around 2.7 GHz and
with 129 frequency samples equispaced over a 40 MHz bandwidth. To avoid
large variation of path parameters, especially a possible 2π phase slip between
two consecutive snapshots, the spatial sampling rate of the wireless channel
was sufficiently high. In total, there were 6000 channel snapshots collected
in 19.7 s. The mobile agent was placed on a tripod and manually moved to
write the “Lund” letters in an approximately 2 m2 area. Meanwhile, an op-
tical CMM system (Fig. 5b), which uses the camera technology to triangulate
the positions with accuracy down to millimeter, was used to capture the mobile
agent movement. The movement positions are further used as the groundtruth
ptrue,n for performance analysis. The floor plan and the zoom-in plot of the
groundtruth are shown in Fig. 1

A synthetic measurement dataset was generated for validating the per-
formance of the MPC parameters’ initialization. The floor plan based on the
Medicon Village in Fig. 1 (excluding the ceiling) and a ray tracer (RT) are
used to generate dispersion parameters of MPCs. During the RT simulations,
the real calibration file of the cylindrical antenna array (Fig. 5a) was used at
the PA side and the mobile agent with a single omnidirectional antenna was
assumed. DMC was also included and independently generated for each real-
ization. The PA was kept static at the location which is the same as the real
measurement setting. Meanwhile, the groundtruth coordinates of mobile agent
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(a)

Tx
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system
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Figure 5: (a) Photo of the cylindrical antenna array. (b) The conical monopole
omnidirectional antenna and the optical CMM system.

at the first 100 time instances n from the optical system were used to syn-
thetically generate 100 independent channel realizations. The energy ratio βn
is around 50% for each realization. The number of MPCs was restricted to
Ln = 6 for each realization, including the LOS and the first order reflection
paths from surrounding walls and ground.

5.2 Evaluation of the Channel Estimation Algorithm

MPC Initialization Performance

The RIMAX was applied to each synthetic channel realization independently.
For consistent evaluation of the estimation errors between the reference state
vector xn from RT and the estimated state vectors x̂n, the optimal sub-pattern
assignment (OSPA) metric [47] was applied here. For the case Kn ≥ Ln, it is
defined as

dospa(x̂n,xn) =

[
1

Kn

(
min

π∈∏Kn

Ln∑

l=1

[
d(dc)

(
dl,n, d̂πl,n

)]po
+ dpoc (Kn − Ln)

)] 1
po

,

(43)

where
∏
k denotes the set of permutations on {1, · · · , k} and k ≤ Kn. d(·, ·)

represents the Euclidean metric and the function d(dc) (·, ·) = min(dc, d(·, ·)).
Besides, we have the cut-off parameter of distance dc = 1 m and order para-
meter po = 1.

With the maximum allowed power ratio βmax set to 55 %, overestimation
happened as expected after the SAGE step, around 20 MPCs are detected
at each time n. After RIMAX iterations and state dimension adjustment,
clutter components are enormously suppressed from the initial state vector,
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(a)

(b)

Figure 6: (a) The number of MPCs estimated using RIMAX Kn, compared with
true number of MPC Ln for each channel simulation. (b) The convergence of the
OSPA error versus the number of iterations of the joint optimization in RIMAX
algorithm for the the synthetic channel realization at time n = 1.

only one or two clutter components remain for some time instances, as shown
in Fig. 6a. For the synthetic realization at time n = 1 as shown in Fig. 6b, the
estimated state order Kn is reduced from 20 to 7 with the RIMAX iterations
and dimension adjustment, meanwhile the OSPA error decreases from around
0.73 m to 0.19 m. The RIMAX was applied independently to the 100 synthetic
channel realizations, and the mean OSPA error over 100 simulations is 0.172 m.

MPC Tracking Results

Table 1 summarizes the parameters initialized in the EKF estimation for the
“Lund” measurement, where the noise and DMC parameters are estimated at
every 5th time instances and reinitialization of the complex amplitude γk,n is
performed every 36th time instances. These values are adapted to movement
of the mobile agent. Fig. 7 shows the tracked propagation distances of MPCs
over measurement time from the EKF implementation. It is observed that the
LOS component with the distance around 17 m is tracked steadily since the
beginning. About 2 m apart from the LOS is the ground reflection path which
is tracked shortly in the end. Besides, many other MPCs with long lifetimes are
observed in the range of 20-50 m propagation distance. The spatial distribution
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Table 1: The parameters used in the EKF estimation for the “Lund” measurement.

qd qϕ qθ qα qφ ∆T

8.81 m2/s4 3× 10−3 rad2/s4 1.56× 10−4 rad2/s4 0 10−6 rad2/s4 3.3× 10−3 s

reinit. of γk,n estim. of noise/DMC Kmax βmax

36th time instance 5th time instance 30 40%

of the tracked MPCs are further given in Fig. 8. The MPCs are plotted in a
3D Cartesian coordinate system based on the estimates of distances d̂k,n and

azimuth/elevation AoAs (ϕ̂
(Rx)
k,n , θ̂

(Rx)
k,n ) without considering the path interaction

order. The top view (Fig. 8a) shows that the tracked MPCs are distributed
over the entire azimuth domain and paths are intensively detected in the similar
direction as the LOS component. From the vertical distribution (Fig. 8b), a few
paths are observed from the ground or at similar height as the PA, while the
most of the estimated paths are from the complex ceiling structure of the room,
e.g., the metal beams of the ceiling in Fig. 4. Those complex room structures
brought additional uncertainties to the distance estimates. Moreover, the sim-
ilar behaviour of the long-tracked MPCs in the angular domain may become
a challenge for 3D localization, for which the MPCs with sparse angles are
preferred. However, it is interesting to see the performance in the real but
non-ideal case.

Clutter components around some high-power MPCs are observed during the
tracking. They usually have similar angles and propagation distances as the
dominant MPCs close by and experience very short lifetime. These components
are mainly generated due to power compensation in the estimation procedure
and do not have actual physical meaning, therefore they are not considered in
the localization step.

For a better evaluation of the tracking performance, we zoom into the LOS
component and compare the distance estimates with the groundtruth. The red
solid line in Fig. 9a represents the true propagation distance of the LOS path,
which is calculated based on the 3D coordinates from the optical system and
the groundtruth coordinates of the PA. As shown from the comparison, the
EKF performed a smooth tracking of the movements, with all the non-linear
and quick motions being captured. The distance estimates have a good match
with the groundtruth most of the time, besides some deviations observed after
16 s. The maximum deviation from the groundtruth is about 8 cm, while the
predicted errors of the LOS distance estimates from the posterior covariance
matrix (Fig. 9b) are in the scale of sub-centimeters, which are clearly underes-
timated. Also, it is shown that the errors are accumulated during the tracking
and reach the maximum at the sharp turns of “L”.
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Figure 7: The tracked propagation distances of MPCs d̂k,n over measurement time,
with the color indicating the power in dB scale.

(a) (b)

Figure 8: 3D plot of the tracked MPCs based on the estimated distances d̂k,n and
azimuth/elevation AoAs (ϕ̂k,n, θ̂k,n). Black dashed line denotes the room geometry
and the hexagram represents the location of BS. The top-view plot (a) shows how
tracked MPCs are distributed in the azimuth plane. The side-view plot (b) shows the
vertical distribution.

MPC Lifetime Analysis

In this section, we focus on the statistical characterization of MPC lifetimes in
this path intense environment and the analysis is presented from two perspect-
ives: (i) empirical distribution of tracked MPC lifetime and the comparison
with statistical distributions, (ii) the relation between the lifetime and paramet-
ers like averaged SINR, averaged power of each MPC. The clutter components
which do not contain any geometrical meanings are excluded from the stat-
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(a)

(b)

Figure 9: Performance evaluation of the tracked LOS component. In (a), the
black dashed line denotes the distance estimates from EKF. The red solid line is the
propagation distance computed with the groundtruth. The two curves are manually
synchronized for better comparison. (b) shows the estimation errors of the propaga-
tion distances, which are subtracted from the posterior filter covariance matrix.

istical analysis. From the phase evolution perspective, we have the minimum
resolvability of one wavelength movement, therefore any MPCs with lifetime
(converted into distance) less than one wavelength are considered as clutters.

The empirical lifetime cumulative distribution function (CDF) of the tracked
MPCs (Fig. 10) shows that over 90 % of the tracked MPCs are with lifetime
smaller than 4 s, and insufficient samples leads to a non-smooth curve from
4 s to 19.7 s. The lack of long and robustly tracked MPCs clearly make Prob-
lem 2 in (9) a tougher problem. Further, we considered the lognormal, expo-
nential, and the Birnbaum-Saunders (B-S) [48] distributions as the potential
fitting statistical distributions for the empirical lifetime CDF, and conducted
the goodness-of-fit χ2-test. The lognormal distribution yields a better fit with
the empirical CDF especially in the small lifetime region, while the B-S and
exponential distributions deviate significantly from the empirical curve. The
χ2-tests yield a rejection rate of 100 % for all the three distributions. Besides,
the mean square error (MSE) of the B-S and exponential distribution com-
pared with the measurement are 0.0192 and 0.0378, respectively, lognormal
distribution has the MSE of 0.0038. The significance level is set to 5 %.

As shown in (Fig. 11a), the Pearson’s rank correlation between the averaged
MPC lifetimes and the averaged powers is 0.167, showing a weak dependency
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Figure 10: Empirical distribution of tracked MPC lifetime from the “Lund” meas-
urement and the comparison with statistical distributions.

between the two variables, which means high power of MPCs does not guaran-
tee continuously stable tracking. The Pearson’s rank correlation between the
averaged MPC lifetimes and the averaged SINRs is 0.731 (Fig. 11b), indicating
a high dependency between the two variables.

5.3 Multipath-Assisted Localization

As seen in Fig. 7 and Fig. 9a, most of the specular MPCs can only be ob-
served during fractions of the measurement time (i.e., missing data) and the
estimation quality of MPC dispersion parameters is not consistent during the
whole tracking process for an individual MPC, i.e., outliers exist in the data,
of which the errors are substantial. In this section, we present the perform-
ance evaluation of the two experiments described above, with the presence of
missing data and outliers.

5.4 Evaluation of Experiment I

We start by looking at experiment I (4.1), i.e., all the mobile agent positions are
assumed to be known, but the inlier set, the feature positions are all unknown.

Those tracked MPCs that were longer than 500 time instances are selected
from the tracked 282 MPCs, which gave a set of 50 MPCs. For each of them, we
estimated the feature (both PA and VA) positions using RANSAC (to obtain

Îinl) followed by the non-linear optimization of (41) (to obtain âk). In total
these 50 tracked MPCs gave us 103 480 distance samples, i.e., approximately
2000 each. Of these 77 490 were considered to be inliers. This gives us an estim-
ated inlier ratio of 75%. The standard deviation of the inlier residuals is 4.6 cm.
Some examples of the estimated VA positions which corresponds to some long
tracked MPCs are shown in Fig. 12, where the reconstructed PA position â1 is
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(a)

(b)

Figure 11: Relation between the averaged lifetimes [s] and (a) averaged powers [dB]
and (b) averaged SINRs [dB] of the tracked MPCs.

registered to the groundtruth PA position, meanwhile the same transformation
is applied to all the estimated VA positions. It could be observed that the
estimated and transformed VA positions reasonably reconstructed the geomet-
rical features, even for the 2nd and 3rd order VAs.

5.5 Evaluation of Experiment II

We now turn our attention to the experiment II (4.2), where only the distance

estimates d̂k,n are given as input and no prior knowledge about the mobile
agent positions and feature positions. In order to use the calibration procedure
described in the previous section, for the “Lund” dataset, we proceeded by
splitting the whole dataset in a number of smaller segments in time. This
resulted in 117 segments of length 100 time instances with 50 time-instances
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Figure 12: Evaluation of experiment I (4.1). Estimation of feature positions with
the prior knowledge of the groundtruth mobile agent positions, meanwhile the inlier
set was estimated. Some examples of the estimated and transformed VAs are denoted
with blue cross, and the gray squares indicate geometrically expected VAs.

Figure 13: Evaluation of experiment II (4.2). The groundtruth (deshed gray),
and the estimated mobile agent trajectory (solid blue) which is registered to the
groundtruth coordinate system.

overlap between adjacent segments. For each segment, we initialized both âk
and p̂n using the RANSAC in Section 4.2. The different solutions from the
117 segments were then registered into a common coordinate system using the
overlap between the segments. The estimated mobile agent trajectory and the
groundtruth are shown in Fig. 13.

Considering the estimated mobile agent trajectory and the groundtruth
are in different coordinate systems, the alignment between the two systems is
firstly needed for further performance evaluation. This is done by solving the
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following least-squares problem

min
R,r0

∑

i

||Rp̂i + r0 − ptrue,i||2, (44)

where R is the rotation matrix, and r0 is the translational offset vector [49],
[50]. It could be observed that the estimated trajectory shows a clear “Lund”
pattern, with all the fine movements details caught. However, the overall shape
is stretched along the diagonal direction, which results in a larger deviation from
the groundtruth especially in the beginning and the end. The largest deviation
of the estimated mobile agent position from the groundtruth happens at the
sharp turn of “L”, which is 26 cm. Furthermore, the root mean square error

(RMSE) is defined as dRMSE =
√

(
∑N
n=1 |p̂n − ptrue,n|2)/N , and the RMSE

of the estimated agent trajectory (after being registered) compared with the
groundtruth is 14 cm.

6 Conclusion and Outlook

In this paper, we introduced a high-resolution phase-based localization and
mapping framework using massive MIMO system. The proposed channel estim-
ation and tracking algorithm uses an EKF and tightly couples the phase-based
distance to the phase shift between consecutive channel measurements, which
makes it possible to resolve the MPC distances accurately even when using only
low signal bandwidth. A distance-based localization and mapping algorithm
is then used for the mobile agent trajectory estimation with the presence of
missing data and outliers. The performance evaluation with a real indoor
measurement shows that the proposed localization framework can achieve out-
standing accuracy even with standard cellular bandwidths. The largest agent
position error is 26 cm and the RMSE position error is 14 cm. Besides, no
prior knowledge of the surroundings and base station position is needed, hence
the framework can be applied in different environments given that there are
sufficiently many scatterers present. To sum up, the multipath-distance-based
localization method that exploits the phases of MPCs using massive MIMO is a
promising high-resolution localization solution for current and next generation
cellular systems.

Regarding the future research, the current localization algorithm can be
extended to further exploit MPC parameters like AoAs/AoDs, while the array
orientation information is needed to calibrate angular estimates into the global
coordinate system. Moreover, a soft-decision association between the estimated
MPCs and environment features using probabilistic approach can be used to
replace the hard-decision association now.
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Target Tracking using Signal Strength

Differences for Long-Range IoT

Networks

Radio based positioning or tracking solutions typically require wide-

band signals or phase coherent antennas. In this paper, we present a

target tracking method based on received non-coherent signal strength dif-

ferences (RSSDs) between antennas for outdoor Internet-of-things (IoT)

scenarios. We introduce an RSSD model based on classical path-loss mod-

els. With known antenna patterns and antenna array geometries, the

RSSD model enables direct mapping between RSSD and angle of arrival,

without involving parameters like transmit power, path-loss coefficient,

etc. The RSSD model is then exploited in a recursive Bayesian filtering

method for target tracking where a particle filter-based implementation

is used. The performance is evaluated using outdoor measurements in a

low-power wide area network (LoRaWAN) based IoT system. Besides,

we also investigate the potential of the RSSD model for AoA estimation.

The experimental results show the capability of the proposed framework

for real-time target/AoA tracking; reasonable accuracy is achieved even

when using non-averaged RSS measurements and under non line-of-sight

(NLoS) conditions. Furthermore, the non-coherent approach has low com-

putational complexity, scales well, and is flexible to allow for different

antenna array configurations.
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1 Introduction

Location-awareness is a key enabler for various emerging applications related
to the Internet-of-things (IoT). Numerous existing commercial systems and
research prototypes for localization in IoT scenarios build upon features like
time-of-arrival (ToA), angle-of-arrival (AoA), received signal strength (RSS),
etc. Among these, RSS-based localization is especially appealing due to its
simplicity and broad support for many low-cost technologies, for instance radio
frequency identification (RFID), Bluetooth Low Energy, and LoRa [1], with a
working range from a few meters up to several kilometers. In this work, we
focus on RSS-based localization methods, with particular interest in the middle
to long-range outdoor IoT scenarios.

To formulate the localization problem, connected IoT devices are classi-
fied as anchor nodes with known locations, and a target node of which the
location is to be determined. RSS-based localization and tracking solutions
are typically based on proximity, fingerprinting [2], [3] and ranging [4] meth-
ods. Fingerprinting-based localization exploits the unique structure of RSS
spatial distribution by matching position-labeled RSS measurements with the
pre-acquired measurements (fingerprints) at the positions of interest. The per-
formance is influenced by the density of fingerprints and degrades in dynamic
scenarios. RSS-based ranging for localization is another common approach. By
exploiting a path-loss model (PLM) [5], it is possible to map the RSS measure-
ment to a range estimate, which is further used to infer the target location w.r.t.
the anchor coordinates. RSS-based ranging can be unreliable under the condi-
tions of imperfect knowledge about source transmit power, path-loss coefficient,
environmental influence, etc. Moreover, it should be noted that long-range IoT
systems normally use very high receiver sensitivity for extending the coverage
range, but very low bandwidth and packet rate. This means that when tracking
a moving target, sufficient RSS samples are often not available to average out
small scale fading. Typically, RSS-based ranging for outdoor IoT localization
solutions provide accuracies from one to a few hundred meters [6], [7]. Instead
of directly using RSS, localization approaches are proposed to use differences
between RSS measurements (RSSDs) obtained at, e.g., consecutive sampling
steps [8], different anchors [9], [10], or adjacent antennas at each anchor[11].
However, most of them are dedicated to short-range and indoor scenarios.

In this work, each anchor node is assumed to be equipped with an an-
tenna array of known geometry and antenna pattern. On the basis of the
PLM, we introduce an RSSD model, which enables direct mapping between
the AoAs and the RSSD measurements obtained from non-coherent antennas,
without involving parameters like transmit power, path-loss coefficient, etc.
The RSSD model is then exploited in a recursive Bayesian filter for target
tracking or AoA estimation. Experimental results using outdoor LoRaWAN
based measurements show that real-time outdoor target tracking using RSSD
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measurements is possible even with non-averaged measurements under NLoS
conditions. Besides, the proposed framework has good generality, scales well
with different antenna array configurations, and is compatible with different
IoT technologies.

The rest of the paper is structured as follows: Section II introduces the
RSSD model and problem formulation. Section III presents the RSSD-based
tracking algorithms. Experimental results are given in Section IV. Section V
concludes the paper.

2 Problem Overview

We consider the case that a target node is equipped with a single antenna and
has unknown time-varying positions pk = [px,k, py,k]T ∈ R2×1, k = 1, · · · ,K.
In the area of interest, J anchor nodes are distributed with known positions
cj ∈ R2×1 and known array orientations φj , j ∈ J , {1, · · · , J}. Each anchor

node has Nj directional antennas indexed with i ∈ Nj , {1, · · · , Nj} and
the angular separation between adjacent antennas is β, as depicted in Fig. 1.
The anchor position cj refers to the center of the array, or more precisely the
intersection point of perpendicular lines to antennas’ surfaces. The target node
is assumed to be the transmitter, and anchor nodes to be the receivers, but
with some straightforward modifications, it can work in the opposite direction
as well. At time k, AoA ϕk,j and the propagation distance8 dk,j from the target
to the jth anchor are defined as ϕk,j = ∠(pk − cj) + φj and dk,j = ‖pk − cj‖,
‖·‖ is the Euclidean norm. With known distance Lc from antenna phase center
cij to cj , and the orientation αij of the ith antenna w.r.t. the local coordinate

system of jth anchor, the propagation distance dik,j and AoA ϕik,j w.r.t. ith

antenna are easily calculated as dik,j =
√
L2

c + (dk,j)2 − 2Lcdk,j cosβik,j and

ϕik,j = ϕk,j +
π

2
− αij , where the angle βik,j is given as βik,j = |ϕk,j − αij | and

| · | is the absolute value, Here, we define the domain ϕk,j ∈ [0◦ ∼ 180◦] as the
positive array direction, ϕk,j ∈ (180◦ ∼ 360◦) as the negative array direction.

8We assume that the propagation condition from the target to each anchor is either
line-of-sight (LoS) or obstructed LOS (OLoS), hence the propagation distance could be ap-
proximately given as the norm product.
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Figure 1: An exemplary antenna array structure equipped at an anchor node.

2.1 RSS model

At time k, the instantaneous received RSS (in dBm) at the ith antenna of jth
anchor can be generally expressed as

P ik,j = P0 +GRx(ϕik,j)− 10η log10

(
dik,j
d0

)
+ SiL,k,j + SiS,k,j , (1)

according to the PLM [5]. The first term on the right side P0 accounts for the
transmit power PTx (in dBm), the transmit antenna gain GTx and the path loss
Lref(d0) at the reference distance d0 = 1 m, i.e., P0 = PTx + GTx + Lref(d0).
Furthermore, η is the path-loss coefficient, GRx(ϕik,j) is the receive antenna

gain, SiL,k,j models the position-dependent shadowing term, which is slowly

varying over time. The last term SiS,k,j models the random and fast variations
of RSS in time or space, of which the impact is normally reduced by averaging
over multiple samples that are consecutively received within a certain time
duration.

RSS-based ranging for localization based on (1) can be problematic. PTx is
typically unknown to receivers, and may vary slowly with battery drain over
time. Unknown device orientation leads to the variation of GTx. η is closely
related to the specific characteristics of the environment. As common practice,
those parameters are either simultaneously estimated at each time instance, or
precomputed from measurements. Under far-field propagation conditions, the
parameters PTx, GTx and η can be assumed as the same for the antennas at
each anchor node. Besides, the position-dependent slow fading process SiL,k,j
are highly correlated over adjacent antennas. Inspired by the arguments above,
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the difference between RSSs measured at adjacent antennas can be described
by a much simpler model than (1), which excludes those unknown but common
parameters.

2.2 RSSD model

Based on (1), the RSSD measurement between two antennas of the jth anchor
node at time k is modeled as

P
(a,b)
∆,k,j = P ak,j − P bk,j

= G
(a,b)
∆,k,j(ϕk,j) +D

(a,b)
k,j + ω

(a,b)
k,j (2)

where {a, b} ∈ Nj , and a < b. The first term on the right side G
(a,b)
∆,k,j(ϕk,j)

represents the antenna gain difference, given as

G
(a,b)
∆,k,j(ϕk,j) = GRx(ϕak,j)−GRx(ϕbk,j). (3)

The second term D
(a,b)
k,j = 10η log10

dbk,j
dak,j

in (2) involves the propagation dis-

tances and path-loss coefficient. The last term ω
(a,b)
k,j accounts for the differ-

ence between two independent fast fading processes, the difference between two
highly correlated slow fading processes, as well as hardware-related impair-

ments. Fig. 2 shows simulated values of D
(a,b)
k,j by assuming η = 3.5 and

β = 45◦. It can be observed that given a constant AoA ϕk,j , the value of

D
(a,b)
k,j drops to under 1 dB after 5 m and continuously converges to 0 dB with

distance dk,j increasing. Since we focus on scenarios where the distance dk,j is

at least a few tens of meters, D
(a,b)
k,j has a negligible impact on P

(a,b)
∆,k,j compared

to the other two terms in (2). Hence, the model (2) can be further simplified
as

P
(a,b)
∆,k,j , G

(a,b)
∆,k,j(ϕk,j) + ω

(a,b)
k,j . (4)

An experimental measurement is performed to test how the simplified model
works. Two directional antennas shown in Fig. 5b are placed in the middle of
the open field (4.1) with the angular separation β = 45◦ and one wavelength
distance between phase centers. RSS samples are measured every 5◦ in the
angular domain ϕk,j ∈ [0◦ ∼ 360◦) while keeping dk,j = 20 m. As shown
in Fig. 3, the measured RSSDs with/without averaging match well with the

predicted RSSD values G
(a,b)
∆,k,j(ϕk,j) in the positive array direction. In the neg-

ative array direction, the measured RSSDs show a similar but noisier pattern as

G
(a,b)
∆,k,j(ϕk,j). We also noticed that one RSSD value is not uniquely mapped to

one AoA, meaning that the posterior distribution of the AoA given one RSSD
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measurement can be multimodal. However, fusing RSSD measurements from
more than one antenna pair and anchors would lead to a unimodal distribu-

tion. According to the empirical density of RSSD errors shown in Fig. 4, ω
(a,b)
k,j

approximately follows a Gaussian process, i.e., ω
(a,b)
k,j ∼ N (µk,j , σ

2
k,j), with the

mean µk,j close to zero.

2.3 Target Tracking and AoA Estimation Problems

In reality, it is possible that at some time instances only a subset of antennas
of each anchor, i.e., N ′k,j and N ′k,j ⊆ Nj , provide valid RSS measurements.
At time k, we assume that at least two antennas at each anchor provide
RSS measurements, i.e., card{N ′k,j} ≥ 2, card{·} represents the cardinality
of a set. The RSSD measurements at the jth anchor are given as zk,j =

[z1
k,j , . . . , z

lj,k
k,j , . . . , z

Lj,k
k,jk

]T, with lj,k ∈ Lj,k , {1, · · · , Lj,k}. Each RSSD meas-

urement z
lj,k
k,j is obtained by taking the differences between RSS measurements
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from antenna pairs with adjacent indexes, for instance {alj,k , blj,k} ∈ N ′k,j , and
alj,k < blj,k . Hence, the number of RSSD measurements Lj,k = card{N ′k,j}− 1
is time variant. By stacking the vectors zk,j from all anchors, we have the full
measurement vector at time k, zk = [zT

k,1, . . . ,z
T
k,j , . . . ,z

T
k,J ]T.

As a proof-of-concept work, we investigate the potential of the proposed
RSSD model in two aspects: i) tracking the target node pk by fusing all the
past and current measurements from all anchors z1:k = [zT

1 , . . . ,z
T
k ]T; ii) re-

cursively estimating the AoA ϕk,j using RSSD measurements from a single
anchor, z1:k,j = [zT

1,j , . . . ,z
T
k,j ]

T. The reason to bring up the second aspect
is that AoA estimates can potentially be fused with existing ranging features,
such as the TDoA in LoRaWAN, to enhance outdoor IoT localization.

3 RSSD-based Tracking Algorithms

3.1 Target Tracking

State Space and Measurement Model

The state space vector of the target at time k is given by xk = [pT
k , ∆pT

k ]T ∈
R4×1, where the vector ∆pk = [∆px,k, ∆py,k]T ∈ R2×1 contains the change
rates of the target position pk. The agent state evolves according to a first-
order Markov process. The evolution of the state xk is described by the state-
transition probability density function (pdf) f(xk|xk−1), which is defined by a
linear, near constant-velocity model [12, Section 6.3.2], i.e.,

xk = Fxk−1 + Γnk, (5)
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where the state transition matrix F ∈ R4×4 and Γ ∈ R4×2 are given as

F =




1 0 ∆T 0
0 1 0 ∆T
0 0 ∆T 0
0 0 0 ∆T


 , Γ =




∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


 . (6)

Here, ∆T is the update rate, nk ∈ R2×1 is the driving process that is in-
dependent and identically distributed (iid) across k, zero-mean and Gaussian
with covariance matrix σ2

nI2. I2 represents the 2× 2 identity matrix. The cor-
responding measurement model which describes the non-linear mapping from
state vector to an RSSD measurement is defined as

z
lj,k
k,j = G

(alj,k ,blj,k )

∆,k,j (xk) + ωlj,k , (7)

where G
(alj,k ,blj,k )

∆,k,j (xk) represents the nonlinear mapping from the hidden state
xk to an RSSD observation described in (3), and ωlj,k is iid across lj,k, j and
k, zero-mean and Gaussian with variance σ2

g .

Recursive Bayesian Filtering

The estimation of the target state xk is formulated as a Bayesian filtering
problem, where the posterior pdf f(xk|z1:k) is recursively obtained in two
stages: prediction and update. The prediction step is based on the Chapman-
Kolmogorov equation [13]

f(xk|z1:k−1) =

∫
f(xk|xk−1)f(xk−1|z1:k−1)dxk−1, (8)

and an update step is performed based on Bayes’ rule

f(xk|z1:k) =
f(zk|x)f(xk|z1:k−1)

f(zk|z1:k−1)
(9)

given the measurement at time k. Assuming that the measurement z
lj,k
k,j is con-

ditionally independent across lj,k and j given the target state xk, the likelihood
function f(zk|xk) is factorized as

f(zk|xk) =

J∏

j=1

Lj,k∏

lj,k=1

f(z
lj,k
k,j |xk) (10)
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where

f(z
lj,k
k,j |xk) =

1√
2πσ2

g

exp
{
−

(z
lj,k
k,j −G

(alj,k ,blj,k )

∆,k,j (xk))2

2σ2
g

}
. (11)

An estimate of the target state xk is then provided by the minimum mean-
square error (MMSE) estimator[14], given as

x̂MMSE
k ,

∫
xkf(xk|z1:k)dxk. (12)

Particle-Based Implementation

A sequential Monte Carlo (particle-based) implementation [15] is used to realize
the recursive Bayesian filtering process, where the prediction and update steps
are formulated in an approximate manner. The posterior pdf f(xk|z1:k) is rep-
resented by a finite set of particles and corresponding weights, {(x̄mk , w̄mk )}Mm=1.

Here, M is the number of particles and the weights sum to one, i.e.,
∑M
m=1 w̄

m
k =

1. At time k, the particles are predicted by simply passing the filtered particles
at time k − 1 through the system dynamics as shown in (6), yielding

x̄mk ∼ f(x̄mk |x̄mk−1). (13)

Then in the measurement update step, the weights w̄mk are computed accord-

ing to (10), i.e., w̄mk = f(zk|x̄mk ), and normalized as w̄mk = w̄mk /
∑M
m=1 w̄

m
k .

Two more steps are introduced after measurement update, i.e., resampling and
regularization, to counteract particle degeneracy and impoverishment effects.
The reader is referred to [13], [15] for more details. The posterior pdf can be

approximated as f(xk|z1:k) ≈∑M
m=1 w̄

m
k K(xk − x̄mk ) where K(·) denotes the

regularization Gaussian Kernel. An approximation of the MMSE state estimate
(12) is calculated according to

x̂MMSE
k ≈

M∑

m=1

w̄mk x̄
m
k . (14)

The four steps are iterated after setting k = k + 1.
At time k = 1, the particles are initialized by drawing samples x̄m1 from

the prior pdf f(x1|z1) ≡ f(x1). Two situations are considered here: i) no-
prior : if no informative prior pdf f(x1) is available, a 2-D uniform distribution
with zero center and radius σp is used to initialize p̄m1 , and for the position
change rate, we use {∆p̄mx,1, ∆p̄my,1} ∼ U(−σ∆p, σ∆p); ii) noisy-prior : if noisy
information of the ground truth start position p1 is given, x̄m1 follows a 2-D
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(a) (b) (c)

Figure 5: Experimental measurement setup: (a) target node: TTGO T-Beam
ESP32 module. (b) anchor node 1: four 9 dBi circular antennas are used, and each
antenna is connected to a TTGO-LORA32 gateway shown in (c).

uniform distribution with radius σ′p and center p1.

3.2 AoA Estimation

The AoA estimation problem is solved by following the same steps given in
3.1. A few minor differences in the formulation are presented here. The AoA
state vector is given as xk = [ϕk,j , ∆ϕk,j ]

T ∈ R2×1, where ∆ϕk,j is the change
rate of ϕk,j . Accordingly, the sizes of the matrices in (5) should be adjusted,
more details can be found in [12]. Only measurements from the jth anchor are
involved in the likelihood function calculation in (10). We assume no prior pdf
f(x1) is available, hence the particles are initialized from a uniform distribution
ϕ̄m1,j ∼ U(−π, π) and ∆ϕ̄m1,j ∼ U(−σϕ, σϕ).

4 Experimental Results

4.1 Measurement Setup

A LoRaWAN network [1] is used in our experimental setup, where a single-hop
link is established between the target node and the gateways. The gateways
are connected to a network server via standard IP protocols, and act as bid-
irectional relays to convert between RF packets and IP packets. The data like
GPS “ground truth” and RSS values are decoded in the network server. As
shown in Fig. 5, the target node is equipped with an omnidirectional antenna
and the transmit power is 14 dBm. Two anchor nodes are used, which are
equipped with four and three directional antennas respectively, i.e., N1 = 4
and N2 = 3. The positive array directions are pointing to the target moving
areas. The distance between the phase centers of two adjacent antennas is one
wavelength, and the angular separation is β = 45◦. One of the receive antenna
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Figure 6: Target tracking results for open field datasets: open field-ave + no-prior
( ); open field-one + no-prior ( ). Background map: c© 2019 Google.

beam patterns is measured and assumed to be the same for the rest of the
antennas. The maximum spreading factor 12 is used to achieve the longest
range, however at the cost of low data rate. The system is operating at the
carrier frequency 868 MHz, with a bandwidth of 125 kHz. The gateways are
listening to several different channels, every 6 seconds one packet is received at
each antenna.

The measurement campaign was performed in two different outdoor scen-
arios, which are described as follows:

LoRa open field

The first scenario is an open field surrounded by rich vegetation in Sankt Hans
backar, Lund, as shown in Fig. 6. The target node and two anchor nodes
are placed at the same height about 1.5 m above the ground. LoS condition
is satisfied and measurements are received at all antennas during the whole
measurement time. In total, RSS measurements are collected at K = 38 sample
positions, and the distance inbetween is 1 m. At each position, around five
RSS samples are measured at each antenna. Parameters used in the tracking
algorithms are: M = 2000, ∆T = 1 s, σp = 40 m and σ∆p = 1.5 m/s, σϕ =
3 degree/s, σg = 2.5 dB.



PAPER III 135

c1 Kemicentrum

c2 E-huset

start

−300 −200 −100 0 100 200

−200

−100

0

100

200

300

x in [m]

y
in

[m
]

anchor ground truth

Figure 7: Target tracking results for urban datasets: urban-ave + noisy-prior
( ); urban-ave + no-prior ( ); urban-one + noisy-prior ( ). Background
map: c© 2019 Google

LoRa urban

The second scenario is the campus of Lund University, Sweden, as shown in
Fig. 7. Two anchor nodes are placed on two building roofs, which are around
20 m above the ground. The target node is carried by a person walking along a
predefined trajectory at a speed around 1 m/s. Every 6 seconds, the movement
is paused and we collect around three samples at each antenna. At a few
positions, only a subset of antennas provide valid RSS measurements. In total,
we have K = 120 sample positions. The decoded GPS data from the network
server is used as ground truth. Parameters used in the tracking algorithms are:
M = 2000, ∆T = 1 s, σp = 400 m, σ∆p = 7 m/s, σ′p = 50 m, σϕ = 5 degree/s,
and σg = 3.6 dB.

Using the measured RSS samples, we generate two type of datasets for
performance evaluation: i) open field-ave and urban-ave: multiple RSS samples
collected from the same antenna at each position are averaged; ii) open field-one
and urban-one: only one RSS sample of each antenna is used.

4.2 Results

Target tracking

Fig. 8 and Fig. 9 present the target position estimation errors and correspond-
ing empirical cumulative distribution functions (CDFs). For the open field
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Figure 8: Target position estimation error: (a) open field datasets; (b) urban data-
sets: urban-ave + noisy-prior ( ), urban-ave + no-prior ( ), urban-one +
noisy-prior ( ). NLoS domains for anchors are denoted with gray dashed lines.

scenario, even without a prior information, the tracking algorithm gives a good
initial estimate at k = 1 with/without measurement averaging. as shown in
Fig. 6. The root mean square position error (RMSE) of the target is 1 m for
open field-ave and 2.9 m for open field-one. The urban scenario is quite chal-
lenging, because during the whole measurement time, it is NLoS propagation
from the target to one or both anchors. However, the anchors are placed on
the high buildings, if the signal is received via roof diffraction, the information
of target direction still remains. The target’s RMSE is 42 m for urban-ave +
noisy-prior, 47.5 m for urban-ave + no-prior. Given the most challenging scen-
ario, i.e., urban-one, 59.5 m RMSE is achieved with a noisy prior, meaning that
real-time outdoor target tracking is possible with RSSD measurements using
the proposed framework.

AoA estimation

Empirical CDFs of AoA estimation errors are shown in Fig. 10. It can be ob-
served that anchor 2 achieves similar performance as anchor 1 for all datasets,
even with fewer RSSD measurements. Using open field-ave dataset, 90% of
AoA estimation errors are smaller than 2◦, and it increases to 5◦ when there
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Figure 9: Empirical CDFs of the position estimation errors: (a) open field datasets;
(b) urban datasets.

is no sample averaging (open field-one). As shown in Fig. 10b, 90% of errors
are smaller than 11◦ when using urban-ave, and 19◦ when using urban-one. It
means that for long-range and NLoS propagation conditions, AoA estimates
with reasonable accuracy are feasible with the proposed framework. However,
averaging over RSS samples did not show significant improvements of the es-
timates in our case.

5 Conclusion

We proposed an RSSD-based target-tracking/AoA-estimation algorithm for
outdoor IoT scenarios. Given known antenna patterns and antenna array geo-
metries, the RSSD model provides direct mapping between AoAs and RSSD
measurements, without involving transmit power, path-loss coefficient, phase
coherent arrays, etc. Experimental results using LoRaWAN based outdoor
measurements show that the proposed framework is able to perform real-time
target tracking with reasonable accuracy even without RSS measurements av-
eraging and under NLoS propagation conditions. The AoA estimates can po-
tentially be fused with range estimates to enhance localization. In summary,
the proposed framework has very low computational complexity, and is com-
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Figure 10: Empirical CDFs of the AoA estimation errors. (a) open field datasets;
(b) urban datasets. Anchor 1 and 2 are abbreviated to A1 and A2.

patible with existing low cost IoT technologies and with different antenna array
configurations.
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RSS-Based Localization of Low-Power

IoT Devices Exploiting AoA and Range

Information

We present a localization algorithm for low-power long-range Internet-

of-things (IoT) networks, which exploits angle of arrival (AoA) and range

information from non-coherent received signal strength (RSS) measure-

ments. In this work, each anchor node is equipped with array antennas

of known geometry and radiation patterns. The position of the target

node and the path-loss exponent to each anchor are unknown and pos-

sibly time-varying. The joint estimation problem is formulated with a

Bayesian model, where the likelihood functions are derived from the clas-

sical path-loss model and an RSS difference model. A message passing

method is then exploited for efficient computation of the marginal pos-

terior distribution of each unknown variable. The proposed algorithm is

validated using real outdoor measurements from a low-power wide area

network based IoT system in a challenging scenario. Results show that the

proposed algorithm can adapt to dynamic propagation conditions, and im-

prove the localization accuracy compared to a method that exploits only

single geometric feature. Furthermore, the algorithm scales well in differ-

ent antenna array configurations, and is compatible with various existing

IoT standards.
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1 Introduction

Location-awareness is a key enabler for various emerging applications related to
the Internet-of-things (IoT). Existing localization methods applied in IoT scen-
arios typically build upon features like time-of-arrival (ToA), angle-of-arrival
(AoA), or received signal strength (RSS). Among these, RSS-based localization
is especially appealing due to its broad support from low-cost technologies, such
as the radio frequency identification, Bluetooth Low Energy, and low-power
wide area network (LPWAN) [1] technologies like SIGFOX and LoRa. In this
work, we focus on RSS-based localization methods, with particular interest in
mid- to long-range outdoor scenarios.

To formulate the localization problem, connected IoT devices are classi-
fied as a target node of which the location is to be determined and anchor
nodes with known locations. In general, target localization using RSS measure-
ments are based on proximity, fingerprinting [2], [3] or ranging [4], [5] methods.
Fingerprinting-based localization exploits the unique structure of the spatial
distribution of RSS measurements by matching an RSS measurement with pre-
acquired RSS measurements (fingerprints) at the positions of interest. The
achievable accuracy is related to the density of fingerprints and degrades in
dynamic scenarios. RSS-based ranging for localization is another common
method. By exploiting the path-loss model (PLM) [5], it is possible to map
an RSS measurement to a range estimate, which is further used to infer the
target location w.r.t. the anchor coordinates. However, RSS-based ranging
can be unreliable under the conditions of imperfect knowledge of path-loss ex-
ponent (PLE) and environmental influence. Typically, RSS-based ranging for
outdoor IoT localization provide accuracies from one to a few hundred meters
[6]. In recent years, the potential of AoA estimation using non-coherent RSS
measurements for target localization is explored in some works [7], [8]. Angle
information is mostly obtained by using phase coherent antennas, however this
is not feasible for IoT networks when maintaining a low system cost. Most of
the existing localization methods have in common that they exploit a single
geometric feature, as for example range or angle, and are dedicated to short-
range and indoor scenarios.

In this work, we propose a massage passing algorithm for target track-
ing, that exploits both range and angle information from RSS measurements
obtained from anchors equipped with non-coherent antenna arrays. To be ad-
aptive to dynamic propagation conditions, the PLE to each anchor is assumed
to be unknown and time-varying. The joint estimation of the target location
and PLEs is formulated in a Bayesian sense, where the likelihood functions are
derived from the classical path-loss model [5] and an RSS difference (RSSD)
model [8]. The statistical model is represented with a factor graph which
enables the use of message passing for efficient computation of the marginal
posterior distribution of each unknown variable. Furthermore, an interacting
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multiple model (IMM) method is used to resolve the motion uncertainty of the
target [9]. The results are validated using real outdoor measurements from an
IoT network based on LoRa system.

2 Problem Formulation

We consider the case that a target node is equipped with an omnidirectional
antenna and has unknown time-varying state xn , [pT

n , v
T
n ]T ∈ R4×1, n =

1, · · · , N , where pn ∈ R2×1 is the position and vn ∈ R2×1 is the velocity.
In the area of interest, anchor nodes indexed by s ∈ S , {1, · · · , S} are
distributed with known static positions cs ∈ R2×1 and array orientations
φs. Each anchor node is equipped with As directional antennas indexed by
a ∈ As , {1, · · · , As}, and the radiation patterns are assumed to be known.
At time n, the AoA ϕn,s (w.r.t. the sth anchor’s coordinate system) and the
propagation distance dn,s from the target to the center cs of the sth anchor
are defined as ϕn,s = ∠(pn − cs) + φs and dn,s = ‖pn − cs‖. The AoA ϕan,s
w.r.t. the ath antenna’s local coordinate system and the distance dan,s to the
ath antenna’s phase center can be easily calculated from dn,s and ϕn,s given
known array geometry as shown in [8].

2.1 RSS Model and RSSD model

At time n, the RSS (in dBm) obtained at the ath antenna of sth anchor is
given as

P an,s ,P0,s+GRx(ϕan,s)−10ηn,s log10

(
dan,s
d0

)
+San,s+nan,s , (1)

according to the path-loss model [5]. The first term on the right side P0,s

accounts for the transmit power PTx (in dBm), the transmit antenna gain GTx

and the path loss Lref,s(d0) at the reference distance d0 = 1 m, i.e., P0,s =
PTx + GTx + Lref,s(d0), Lref,s(d0) = 20 log10( λ4π ) − 10ηn,s log10(d0), and λ is
the wavelength. Furthermore, GRx(ϕan,s) is the receive antenna gain at angle

ϕan,s, ηn,s is the PLE, and San,s ∼ N (0, σ2
S) models the log-normal shadow

fading, which is independent and identically distributed (iid) across n and s.
The shadow fading processes at adjacent antennas of each anchor are highly
correlated and the correlation is denoted by CLSF. We assume that PTx and
GTx are known; ηn,s is time-varying, unknown and independent across n and
s. Here, the small scale fading and the measurement noise are jointly modeled
using a zero-mean and Gaussian distribution that is iid across n, s and a, i.e.,
nan,s ∼ N (0, σ2

n), with variance σ2
n.
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Based on (1), the RSSD measurement between two adjacent antennas of
the jth anchor node at time n is modeled as [8]

P
(r1,r2)
∆,n,s , G

(r1,r2)
∆,n,s (ϕn,s) + ω(r1,r2)

n,s (2)

where the first term G
(r1,r2)
∆,n,s (ϕn,s) represents the antenna gain difference, given

as G
(r1,r2)
∆,n,s (ϕn,s) = GRx(ϕr1n,s) − GRx(ϕr2n,s), with {r1, r2} ∈ As, and r1 < r2.

The noise term ω
(r1,r2)
n,s is approximated as the difference between two iid noise

processes nr1n,s and nr2n,s, thus ω
(r1,r2)
n,s ∼ N (0, 2σ2

n).
The models (1) and (2) provide nonlinear mappings from the hidden state

xn of the target to RSS and RSSD observations, which enables the proposed
algorithm to infer and fuse the distance and AoA information for target local-
ization.

2.2 Inference Problem

In reality, it happens that at some time instances only a subset of antennas
of each anchor, i.e., Kn,s ⊆ As, provide valid RSS measurements. Hence, the

number Kn,s = |Kn,s| of RSS measurements zkn,s, k ∈ Kn,s , {1, · · · ,Kn,s}
is time-varying. Accordingly, the RSSD measurement zlD,n,s with l ∈ Ln,s ,
{1, · · · , Ln,s} and Ln,s = Kn,s− 1 is obtained by taking the difference between
RSS measurements from antenna pairs with adjacent indices, i.e., {rl1, rl2} ∈
Kn,s, rl1 < rl2. At each time n, we assume that at least two antennas of
each anchor provide RSS measurements. By stacking the measurement vectors

zn,s , [z1
n,s, . . . , z

Kn,s
n,s ]T and zD,n,s , [zlD,n,s, . . . , z

Ln,s
D,n,s]

T from all anchors, the

full measurement vectors at time n are given as zn , [zT
n,1, . . . ,z

T
n,S ]T and

zD,n , [zT
D,n,1, . . . ,z

T
D,n,S ]T.

Our goal is to estimate of the target state xn, the path-loss exponents
ηn = [ηn,1, . . . , ηn,S ]T, using the past and present measurement vectors z1:n ,
[zT

1 , . . . ,z
T
n ]T and zD,1:n , [zT

D,1, . . . ,z
T
D,n]T.

3 System Model and Statistical Formulation

3.1 Target Dynamics

For tracking a maneuvering target node, the IMM method [9]–[11] is used,
which resolves the target motion uncertainty by using multiple dynamic models
(i.e., modes) indexed by mn ∈ H , {1, · · · , H} at time n. The state-transition
pdf of the target state fh(xn|xn−1), h ∈ H when considering the hth mode
is defined by the corresponding dynamic model. To account for the uniform
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motion as well as the maneuver of the target such as left/right turn, the nearly-
constant velocity (NCV) model and the coordinated turn (CT) model [9] are
used respectively. The NCV model is defined as xn = FNCVxn−1 + Γνn,h,
where the matri FNCV ∈ R4×4 and Γ ∈ R4×2 are chosen as in [9, Section 6.3.2]
with the sampling period ∆T . The driving process νn,h ∈ R2×1 is iid across
n and h, zero-mean and Gaussian with covariance matrix σ2

hI2, I2 denotes a
2 × 2 diagonal matrix, and σh represents the average speed increment along
x or y axis during the sampling period ∆T . Furthermore, the turn of a tar-
get is modeled with the CT model, characterized by a constant turn rate Ωh
and a (nearly) constant speed, i.e., xn = FCT(Ωh)xn−1 + Γνn,h, the matrices
FCT(Ωh) ∈ R4×4 are chosen as in [9, Section 11.7.1]. The dynamic mode
(DM) index mn is modeled as a random variable which evolve according to
the first-order Markov chain with a constant transition matrix P ∈ [0, 1]H×H

over time, where [0, 1]H×H denotes a H × H matrix with entries between 0
and 1. The DM transition probability mass function (pmf) of mn is given by

p(mn = j|mn−1 = i) = [P ]i,j for i, j ∈ H. Note that
∑H
j=1[P ]i,j = 1 ∀ i. The

target state xn and the DM index mn are assumed to jointly evolve according
to a Markovian dynamic model. Furthermore, we assume that the state xn is
conditionally independent of mn−1 given xn−1 and mn, and mn is condition-
ally independent of xn−1 given mn−1. Thus, the joint prior pdf f(x1:n,m1:n)
of x1:n , [xT

1 , . . . ,x
T
n ]T and m1:n , [m1, . . . ,mn]T can be factorized as

f(x1:n,m1:n)

= f(x0,m0)

n∏

n′=1

f(xn′ ,mn′ |xn′−1,mn′−1)

= f(x0)f(m0)

n∏

n′=1

fmn′ (xn′ |xn′−1)f(mn′ |mn′−1), (3)

where fmn(xn|xn−1) = f(xn|mn,xn−1), f(x0) and f(m0) are the initial prior
pdf and pmf, which are assumed to be uniform on their respective regions of
interest (RoIs).

3.2 Likelihood Functions

We assume that the individual measurements inside vectors zn,s and zD,n,s are
conditionally independent given the states xn and ηn,s, and ηn,s is independ-
ent of RSSD measurements zD,n,s. The conditional pdfs h(zkn,s|xn, ηn,s) and



PAPER IV 149

h(zlD,n,s|xk) (i.e., likelihood functions) derived from (1) and (2) are given as

h(zkn,s|xn, ηn,s) = C1 exp
{
− (zkn,s − skn,s)2

2(σ2
S + σ2

n)

}
, (4)

h(zlD,n,s|xn) = C2 exp
{
−

(zlD,n,s −G
(rl1,r

l
2)

∆,n,s (xn))2

4σ2
n

}
, (5)

where skn,s = P0,s + GRx(ϕkn,s) − 10ηn,s log10

(
dkn,s
d0

)
, and G

(rl1,r
l
2)

∆,n,s (xn) repres-

ents the nonlinear mapping from the hidden state xn to an RSSD observation

described in (2), with C1 =
(
2π(σ2

S + σ2
n)
)− 1

2 , C2 = (4πσ2
n)−

1
2 .

4 The Message Passing Localization Algorithm

4.1 State Estimation

The joint estimation of xn and ηn,s given the measurements z1:n and zD,1:n is
formulated with a Bayesian model, where the joint posterior pdf f(x1:n,m1:n,
η1:n|z1:n, zD,1:n) can be factorized as

f(x1:n,m1:n,η1:n|z1:n, zD,1:n)

∝ f(z1:n, zD,1:n|x1:n,m1:n,η1:n)f(x1:n,m1:n,η1:n)

= f(x0)f(m0)

(
S∏

s=1

f(η0,s)

)

×
n∏

n′=1

fmn′ (xn′ |xn′−1)f(mn′ |mn′−1)

S∏

s=1

f(ηn′,s|ηn′−1,s)

×
∏

k∈Kn′,s

h(zkn′,s|xn′ , ηn′,s)
∏

l∈Ln′,s

h(zlD,n′,s|xn′), (6)

according to the Bayes’ rule and independence assumptions over the prior pdfs,
state-transition pdfs, and the likelihood functions.

Based on the marginal posterior pdfs f(xn|z1:n, zD,1:n) and f(ηn,s|z1:n), the
Bayesian estimation of the target state xn, the PLEs ηn,s can be approximately
calculated by means of the minimum mean square error (MMSE) estimator [12],
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Figure 1: Factor graph representation of the factorized joint posterior pdf (6),
shown for time n. For simplicity, the joint vector of xn and mn are denoted as
yn = [xn,mn]T, the time indices are omitted and the following short notations
are used: the beliefs calculated at the previous time n − 1, q−η,s = q(ηn−1,s) and
q−y = q(yn−1); the state-transition pdfs fy = f(yn|yn−1) and fη = f(ηn,s|ηn−1,s);
the predicted messages αy = α(yn) and αη = α(ηn,s); the measurement-update mes-
sages uη = u(ηn,s) and γs = γs(yn); the likelihood functions related to RSS/RSSD
measurements hk = h(zkn,s|xn, ηn,s) and hl = h(zlD,n,s|xn); the beliefs that approx-
imately representing the marginal posterior pdfs qη,s = q(ηn,s) and qy = q(yn).

given as

x̂MMSE
n ,

∫
xnf(xn|z1:n, zD,1:n)dxn, (7)

η̂MMSE
n,s ,

∫
ηn,sf(ηn,s|z1:n)dηn,s. (8)

4.2 Message Passing Algorithm

The marginal posterior pdfs f(xn|z1:n, zD,1:n) and f(ηn,s|z1:n) are obtained by
running massage passing on the factor graph (Fig. 1) representing the factor-
ization of the joint posterior pdf f(x1:n,m1:n,η1:n|z1:n, zD,1:n) (6). Following
the generic rules for calculating messages and beliefs introduced in [13], the
following operations are performed at each time n:

1. Prediction: First, a prediction step is performed, and the messages α(ηn,s)
and α(xn,mn) are calculated as

α(ηn,s) =

∫
q(ηn−1,s)f(ηn,s|ηn−1,s)dηn−1,s, (9)
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α(xn,mn) =
∑

mn−1∈H

∫
q(xn−1,mn−1)fmn(xn|xn−1)

× f(mn|mn−1)dxn−1, (10)

where q(ηn−1,s) and q(xn−1,mn−1) are calculated at time n− 1.

2. Measurement update: In the measurement update step, the messages
u(ηn,s) are calculated as

u(ηn,s) =
∑

mn∈H

∫
α(xn,mn)

∏

k∈Kn,s
h(zkn,s|xn, ηn,s)dxn, (11)

and the message γs(xn,mn) from each anchor is given by

γs(xn,mn) = βs(xn,mn)βsD(xn,mn), (12)

where βs(xn,mn) is the message passed form the factor node h(zln,s|xn,
ηn,s) to the variable node xn, given by

βs(xn,mn) =

∫
α(ηn,s)

∏

k∈Kn,s
h(zkn,s|xn, ηn,s)dηn,s, (13)

and βsD(xn,mn) is the message passed form the factor node h(zlD,n,s|xn)
to the variable node xn, given by

βsD(xn,mn) =
∏

l∈Ln,s
h(zlD,n,s|xn). (14)

3. Belief calculation: Finally, the beliefs q(ηn,s) approximating the marginal
posterior pdfs f(ηn,s|z1:n) are calculated as

q(ηn,s) = α(ηn,s)u(ηn,s). (15)

Furthermore, the belief q(xn,mn) approximating the the marginal pos-
terior pdf f(xn,mn|z1:n, zD,1:n) is calculated as

q(xn,mn) = α(xn,mn)

S∏

s=1

γs(xn,mn). (16)

Finally, the belief q(xn) and q(mn) approximating p(xn|z1:n, zD,1:n) and
p(mn|z1:n, zD,1:n) are calculated as q(xn) =

∫
q(xn,mn)dmn and q(mn) =∫

q(xn,mn)dxn.
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4. Particle-based implementation: A sequential Monte Carlo (particle-based)
implementation [11], [14] is used to represent the messages and beliefs
presented above. Furthermore, a “stacked state” [15] which comprises
the target state and the PLE state is used in the implementation. Hence,
the resulting complexity scales linearly in the number of particles, in the
number of measurements per anchor, and quadratically in the number of
mode number H.

5 Performance Evaluation

We validate the proposed message passing based localization algorithm using
both synthetic and real measured RSS datasets. The work in [8] which ex-
ploits AoA information from RSSD measurements for target tracking is used
as a reference method. Note that in [8] a single dynamic model is used. To
remove the influence of difference target dynamic models on the results in two
methods and make a fair comparison, we extend the algorithm in [8] with the
IMM method introduced in Section (3.1) and keep the same setup on the DM
modes. For simplicity, the two methods above will be briefly referred to as
“MP-tracking” and “AoA-tracking” in what follows.

5.1 Measurement and Simulation Setup

The synthetic datasets are generated according to the setup of real outdoor
measurement, which is described as follows: A LoRa based network [1] is used
in our experimental setup. As shown in Fig. 2, the target node is equipped
with an omnidirectional antenna with known transmit power of 14 dBm. Two
anchor nodes are used, which are equipped with four and three directional
antennas respectively, i.e., A1 = 4 and A2 = 3, and each receive antenna is
connected with a gateway as shown in Fig. 2c. The gateways act as bidirectional
relays between the target node and a network server, in which the messages
like GPS “ground truth” and RSS values are decoded. The distance between
the phase centers and the orientation difference of two adjacent antennas are
one wavelength and 45 degrees, respectively. One of the receive antenna beam
patterns is measured and assumed to be the same for the rest of the antennas.
The system is operating at the carrier frequency 868 MHz, with a bandwidth
of 125 kHz. The maximum spreading factor 12 is used to achieve the longest
working range, however at the cost of low data and package rate. The gateways
are listening to several different channels, every 6 seconds one packet is received
at each antenna.

The following parameters and simulation setup are used for both synthetic
and real measurements. We assume that the initial target position is roughly
known, and the particles for the initial target state are drawn from a 4-D
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(a) (b) (c)

Figure 2: Experimental setup: (a) target node: TTGO T-Beam module, (b) anchor
node: four 9 dBi circular antennas are used, and each antenna is connected to a
TTGO gateway shown in (c).

uniform distribution with the center at [p1 0 0], where p1 denotes the ground
truth position of the target at time n = 1, and the supports for the position
and velocity are given as [−50, 50] m and [−1, 1] m/s, respectively. The state-
transition pdfs of the target state fh(xn|xn−1) under three DM modes are
defined by the following models respectively: 1) CT model for right turn with
Ω1 = −5 deg/s, σ1 = 0.001 m/s2; 2) NCV model with σ2 = 0.001 m/s2; 3) CT
model for left turn with Ω3 = 5 deg/s and σ3 = 0.001 m/s2. The sampling
period ∆T = 6 s. The DM transition probabilities are chosen as [P ]1,1 =
[P ]3,3 = 0.95, [P ]2,2 = 0.96, [P ]2,1 = [P ]2,3 = 0.02, [P ]1,2 = [P ]3,2 = 0.04,
and [P ]1,3 = [P ]3,1 = 0.01. Besides, the state-transition pdfs of the path-
loss exponents f(ηn,s|ηn−1,s) are given as Gaussian distributions with noise
standard deviations ση = 0.07. The particles for the initial PLE state η0,s are
drawn from a uniform distribution on [1, 5]. The pdf of each variable state is
represented by 5000 particles.

5.2 Synthetic Measurements

Using the GPS positions of the anchors and the target at each time n, we cal-
culate the ground truth distances and AoAs, and then apply them in model (1)
to generate the synthetic RSS measurements. Furthermore, the ground truth
PLEs are set according to the true propagation conditions and the estimates
from the real meausrments as shown in Fig. 8. For each simulation run, the
shadow fading and Gaussian noise processes are generated at each time n un-
der one of the two setups: 1) setup-1: σS = 2 dB, σn = 0.8 dB, cLSF = 0.9; 2)
setup-2 (based on the statistics from real measurements): σS = 4 dB, σn = 1 dB,
CLSF = 0.8. The noise standard deviations σS are σn are assumed to be known
in the simulations. In total, we performed 100 Monte-Carlo (MC) simulation
runs for each setup.

Fig. 3a depicts the target position RMSEs of MP-tracking and AoA-tracking
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Figure 3: Results for synthetic data. (a) Target position RMSEs. (b) Empirical
CDFs of the position RMSEs. setup-1: MP-tracking ( ), AoA-tracking ( ),
setup-2: MP-tracking ( ), AoA-tracking ( ). The vertical dashed lines highlight
the times around which the target node performs sharp turns as shown in Fig. 6.
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Figure 4: Results for synthetic data using MP-tracking. Averaged PLE estimates
for (a) anchor 1: ground truth ( ), setup-1 ( ), setup-2 ( ); (b) anchor 2:
ground truth ( ), setup-1 ( ), setup-2 ( ).

methods, and the corresponding empirical cumulative distribution function
(CDF) are given in Fig. 3b. By exploiting both range and angle information
from RSS measurements, it shows that the MP-tracking method achieves lower
RMSEs then the AoA-tracking method mostly. More specifically, the maximum
RMSEs for MP-tracking are below 40 m and 65 m for setup-1 and setup-2, while
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Figure 5: Results for synthetic data using MP-tracking. Averaged DM mode beliefs
for setup-2. (a) CT model for right turn ( ). (b) NCV ( ). (C) CT model for
left turn ( ).

the values are 95 m and 75 m for AoA-tracking. Fig. 4 shows the averaged PLE
estimates over 100 MC runs. It can be seen that the PLE estimates of MP-
tracking represent the ground truth well in both setups, which proves that
MP-tracking can adapt to dynamic propagation conditions. Moreover, the av-
eraged DM mode beliefs are given in Fig. 5. As can be observed, whenever
the target performs a sharp turn, the belief of the corresponding DM mode in-
creases and tends to be dominant, and the smooth movement in between those
turns is captured by the NCV model, as expected.

5.3 Real Measurements

The real RSS measurements are collected at the campus of Lund University,
Sweden, as shown in Fig. 6. Two anchor nodes are placed on two building
roofs, which are around 20 m above the ground. The target node is carried by
a person walking along a predefined trajectory at a speed around 1 m/s. Every
6 seconds, the movement is paused and we collect around three samples at
each antenna. Still, at a few positions only a subset of antennas provide valid
RSS measurements. In total, there are N = 120 sample time instances. In
Fig. 6, we mark the time instances where the target performs sharp turns with
brown circle. In the simulations, we assume the noise standard deviations for
the shadow fading and Gaussian noise processes to be σS = 4 dB, σn = 1 dB.
We evaluate the performance both for the averaged and non-averaged meas-
urements. For the first case, the RSS measurements collected at each antenna
are averaged. For the second case, we randomly pick one measurement from
each antenna at each time, and in total 50 MC simulation runs are performed.

As shown in Fig. 7, the MP-tracking algorithm outperforms the AoA-
tracking algorithm especially when non-averaged measurements are used. Fur-
thermore, the true propagation conditions from the target to each anchor
are denoted with line-of-sight (LoS), obstructed-LoS (OLoS) where the dir-
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Figure 6: Picture of the outdoor measurement environment, Lund University,
Sweden. Background map: c© 2019 Google

ect propagation is blocked by trees, and non-LoS (NLoS) where the direct
propagation is blocked by one or two buildings (abbreviated as bul.). As shown
in Fig. 8, the PLE estimates well capture the dynamics of the true propagation
conditions to each anchor.

6 Conclusion

We proposed a localization algorithm that exploits both range and angle in-
formation from non-coherent RSS measurements for IoT networks. Results
using real outdoor measurements show that the proposed algorithm can ad-
apt to dynamic propagation conditions, and improve the localization accuracy
compared to the method which exploits single geometric feature. Moreover, the
proposed algorithm is compatible with many existing low cost IoT technologies
and different antenna array configurations.
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Figure 7: Results for real data. (a) Target position RMSEs. (b) Empirical CDFs
of the position RMSEs. For averaged RSS measurements: MP-tracking ( ), AoA-
tracking ( ), For single RSS measurement: MP-tracking ( ), AoA-tracking
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lines ( ) and ( ) highlight the time instances around which the propagation
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Detection and Tracking of Multipath

Channel Parameters Using Belief

Propagation

We present a belief propagation (BP) algorithm with probabilistic data

association (DA) for detection and tracking of specular multipath com-

ponents (MPCs). In real dynamic measurement scenarios, the number

of MPCs reflected from visible geometric features, the MPC dispersion

parameters, and the number of false alarm contributions are unknown and

time-varying. We develop a Bayesian model for specular MPC detection

and joint estimation problem, and represent it by a factor graph which

enables the use of BP for efficient computation of the marginal posterior

distributions. A parametric channel estimator is exploited to estimate at

each time step a set of MPC parameters, which are further used as noisy

measurements by the BP-based algorithm. The algorithm performs prob-

abilistic DA, and joint estimation of the time-varying MPC parameters

and mean false alarm rate. Preliminary results using synthetic channel

measurements demonstrate the excellent performance of the proposed al-

gorithm in a realistic and very challenging scenario. Furthermore, it is

demonstrated that the algorithm is able to cope with a high number of

false alarms originating from the prior estimation stage.
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“Detection and Tracking of Multipath Channel Parameters Using Belief Propaga-

tion,”
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1 Introduction

The information of dispersive wireless radio channels in delay, angular, and
frequency domain, and its temporal behavior in dynamic scenarios are of great
importance for the design and development of radio-channel models [1], [2], 5G
wireless communication technologies [3]–[5], and multipath-based localization
and mapping [6]–[8]. The response of a wireless radio channel is typically repres-
ented by superimposed multipath components (MPCs) with parameters such as
delay, angle-of-arrival (AoA), and angle-of-departure (AoD). These MPC para-
meters are usually estimated from multidimensional radio measurements using
antenna arrays and multiple frequencies (wide-band or ultrawide-band signals)
using super-resolution parametric channel tracking algorithms that perform
sequential estimation of specular MPCs (SMCs).

1.1 State of the Art Methods

The existing MPC tracking algorithms can be grouped into two broad cat-
egories. Algorithms of the first category estimate and track the MPC para-
meters directly based on the radio signals using for example an extended Kal-
man filter (EKF) [9], [10]. Algorithms of the second category are based on
a two-stage approach, where a snapshot-based parametric channel estimator
such as [11]–[13] is incorporated into a tracking filter [14], or extended with
a state-transition model that enables sequential Bayesian estimation [15]. In
this work, we focus on the two-stage algorithms. In general, the correct model
order (number of SMCs) is unknown, time-varying and need to be estimated,
i.e., the model-order selection problem. One classical solution is to extend the
tracking algorithm with an outer stage for model order detection using for ex-
ample eigenvalue-based methods, or the generic information theoretic criteria,
e.g., the Akaike/Bayesian information criterion. Another choice is to adopt
sparsity-based algorithms, which aim to reconstruct sparse signals from a re-
duced set of measurements specified by a sparse weight vector. By introducing
a sparsity-promoting prior model for the weights, the estimation of model order
and MPC parameters can be jointly formulated inside a Bayesian framework.
Most of the sparsity-based algorithms [16]–[18] are proposed for time-invariant
measurement. Examples of sparsity-based sequential Bayesian algorithms are
given in [15], [19]. In addition to the model-order selection, data association
(DA) i.e., which measurement originates from which MPC, is potentially an-
other problem for two-stage methods. In general, existing methods adopt single
hypothesis, i.e., the state of each MPC is updated using a single measurement
specified by the metrics such as the global nearest neighbor [20]. In compar-
ison, probabilistic DA [20], [21] which evaluates all the current measurements
for the update of each predicated MPC state would be more preferable in the
presence of false alarm measurements.
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1.2 Contributions

In this work, we propose a belief propagation (BP) -based algorithm for MPC
detection and tracking (abbreviated as BP-MPCT) which uses the MPC estim-
ates from a parametric super-resolution sparse Bayesian variational (abbrevi-
ated as SBL) channel estimator as measurements. This BP-MPCT algorithm
jointly performs probabilistic DA and sequential estimation of potential specu-
lar MPC (PSMC) parameters and mean number of false alarms. Probabilistic
DA and state estimation are performed by running BP on a factor graph [8],
[21]. We use a probabilistic model for MPC existence where each PSMC state is
augmented by a binary existence variable and associated with a probability of
existence, which is also estimated and used for detection of the reliable MPCs
modeling the birth and death. Inspired by [22]–[24], the algorithm also exploits
the estimates of mean and variance of the complex amplitudes to calculate the
detection probabilities of path components. It is therefore also suitable for
unknown and time-varying detection probabilities [25].

2 Problem Formulation

2.1 Radio Signal Model

We consider a single-input–multiple-output (SIMO) channel model, where a
baseband radio signal s(t) is transmitted from a mobile user (UE) to a base
station (BS) equipped with an antenna array of J elements. For the sake of
simplicity we assume a two dimensional scenario with horizontal-only propaga-
tion.9 The received signal at each antenna element indexed by j ∈ {1, . . . , J}
is given as

r(j)(t) =

Lt∑

l=1

αl,ts
(
t− f(τl,t, ϕl,t,p

(j))
)

+ w(t) (1)

where the first term comprises Lt SMCs, with each being characterized by
the complex amplitude αl,t, the time delay τl,t to the array’s center of grav-
ity, and the AoA ϕl,t with respect to the array orientation. The function
f(τl,t, ϕl,t,p

(j)) maps the SMC parameters from the array’s center to the po-
sition p(j) of the jth array element [26]. We assume that the UE and BS are
time synchronized and the array orientation is known. The second term w(t)
in (1) represents the measurement noise which is described by additive white
Gaussian noise (AWGN) with double-sided power spectral density N0/2.

9An extension to three dimensional scenarios with horizontal and vertical propagation is
straightforward, but it would lead to a cumbersome notation and one would not gain any
new insights.
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The received signal r(j)(t) observed over a duration T is sampled with fre-

quency fs = 1/Ts, yielding a length Ns = T/Ts sample vector r
(j)
n ∈ CNs×1

from each array element, and n is the discrete time index. By stacking r
(j)
n from

J array elements, the discrete time signal vector rn , [(r
(1)
n )T, . . . , (r

(J)
n )T]T ∈

CNsJ×1 is given as

rn = S(θn)αn +wn (2)

where S(θn) , [s(θ1,n), . . . , s(θLn,n)] ∈ CNsJ×Ln with s(θl,n) ∈ CNsJ×1 ac-

counting for signal samples of the lth SMC from all array elements, and αn ,
[α1,n, . . . , αLn,n]T∈CLn×1. The SMC parameter vector is θn , [θT

1,n,. . . ,θ
T
Ln,n

]T,

with θl,n , [τl,n, ϕl,n]T. The vector wn contains the sampled AWGN from all
array elements. A SMC exists only during the time duration (i.e., lifetime) that
the BS/associated environment features are visible at the UE position. We as-
sume that the true model order Ln is unknown and time-varying in dynamic
measurement scenarios.

2.2 Parametric Channel Estimation

At each time n, a SBL channel estimator [12], [16]–[18] is used to estim-

ate the SMC parameters θ̂n , [θ̂T
1,n, . . . , θ̂

T
Mn,n

]T with θ̂m,n = [τ̂m,n, ϕ̂m,n]T,

the mean value vector µα,n , [µα,1,n, . . . , µα,Mn,n]T and covariance matrix
Σα,n ∈ CMn×Mn of corresponding complex amplitudes and the model order
Mn. During the estimation process, we assume that miss detection of SMCs
and estimation of MPCs which did not originate from any distinct environ-
ment features might occur. Hence, Mn is time-varying and it can be equal to,
or larger/smaller than the true model order Ln. We also introduce the nor-
malized amplitude ûm,n =

√
SNRm,n with SNRm,n = |µα,m,n|2/

[
Σα,n

]
m,m

as

the square root of the estimated posterior signal-to-noise ratio (SNR) of the
mth SMC [23], [24]. The normalized amplitudes ûm,n are directly related to
the detection probabilities of the estimated SMCs as introduced in Sections 3.3
and 3.4.

The estimates are stacked into the vector zn , [zT
1,n, . . . ,z

T
Mn,n

]T, where

zm,n , [d̂m,n, ϕ̂m,n, ûm,n]T with d̂m,n = cτ̂m,n and c denotes the speed of light.

We also define the vectors z , [zT
1 , . . . ,z

T
n ]T and m , [M1, . . . ,Mn]T. The

vector z is further used as noisy measurements in the BP-MPCT algorithm.

2.3 Inference Problem

Given all the past and current measurements z, our goal is to infer the time-
varying states of the SMCs, as well as the model order. Besides, the unknown
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and potentially time-varying false alarm measurement rate and detection prob-
abilities are automatically adapted online, which avoids manually tunning of
these measurement parameters for different datasets.

3 System model and Statistical Formulation

3.1 PSMC States and Dynamics

At each time n, the numbers of emerging SMCs and the SMCs that survived
from the previous time are unknown. To account for this fact, the concept of
potential SMC, i.e., PSMC, is introduced. At time n, a PSMC yk,n, k ∈ Kn ,
{1, . . . ,Kn} is either a legacy PSMC ỹk,n, which is already established in the
previous time, or a new PSMC y̆m,n which is established for the first time. The
existence/nonexistence of a PSMC as an actual SMC is modeled by a binary
variable rk,n ∈ {0, 1}, i.e., it exists (not exist) if rk,n = 1 (rk,n = 0). Thus, the
number of PSMCs Kn represents the maximum possible number of SMCs that
can be detected and estimated at time n.

The augmented state of a PSMC is defined as yk,n , [ψk,n, rk,n]T, where
ψk,n = [xT

k,n, uk,n]T and xk,n = [dk,n, ϕk,n, vd,k,n, vϕ,k,n]T with vd,k,n and
vϕ,k,n denoting the distance and angular velocities. The states of nonexist-
ing PSMCs are obviously irrelevant, but will be convenient if formally con-
sidered. Therefore, all probability density functions (pdfs) defined for PSMC
states f(yk,n) = f(ψk,n, rk,n) have the property that f(ψk,n, rk,n = 0) =
fk,nfD(ψk,n), where fk,n is a constant representing the probability of nonex-
istence of yk,n, and fD(ψk,n) is an arbitrary “dummy pdf” [21], [27]. Accord-
ingly, the augmented states of legacy PSMCs and new PSMCs are denoted by
ỹk,n , [ψ̃T

k,n, r̃k,n]T, k ∈ Kn−1 , {1, . . . ,Kn−1} and y̆m,n , [ψ̆T
m,n, r̆m,n]T,

m ∈Mn , {1, . . . ,Mn}, respectively. At each time n, one new PSMC y̆m,n is
introduced for each measurement zm,n, thus the number of new PSMCs equals
to the number of measurements Mn. Before the current measurements zn are
observed, the number Mn is random. The new PSMCs become legacy PSMCs
when the measurements at next time are observed, accordingly the set and num-
ber of legacy PSMCs are updated as Kn = Kn−1 ∪Mn and Kn = Kn−1 +Mn.
We further define the stacked state vectors as follows: for legacy PSMCs
ỹ , [ỹT

1 , . . . , ỹ
T
n ]T, ỹn , [ỹT

1,n, . . . , ỹ
T
Kn−1,n

]T, x̃n , [x̃T
1,n, . . . , x̃

T
Kn−1,n

]T,

ũn , [ũ1,n, . . . , ũKn−1,n]T, r̃n , [r̃1,n, . . . , r̃Kn−1,n]T; for new PSMCs y̆n ,
[y̆T

1,n, . . . , y̆
T
Mn,n

]T, x̆n , [x̆T
1,n, . . . , x̆

T
Mn,n

]T, ŭn , [ŭ1,n, . . . , ŭMn,n]T, r̆n ,

[r̆1,n, . . . , r̆Mn,n]T; for combination of the legacy and new PSMCs, yn , [ỹT
n , y̆

T
n ]T,

yn , [yT
1,n, . . . ,y

T
Kn,n

]T with k ∈ Kn , {1, . . . ,Kn}.
Assume that the states ỹk,n with k ∈ Kn of the legacy PSMCs are dis-

tributed independently across k and n, and evolve independently according to
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their respective Markovian state dynamics. The state-transition pdf for legacy
PSMC state ỹn factorizes as

f(ỹn|yn−1) =

Kn−1∏

k=1

f(ỹk,n|yk,n−1), (3)

where f(ỹk,n|yk,n−1) = f(ψ̃k,n, r̃k,n|ψk,n−1, rk,n−1) is the single PSMC state-
transition pdf. If the PSMC did not exist at time n − 1, i.e., rk,n−1 = 0, it
cannot exist at time n as a legacy PSMC. This means that

f(ψ̃k,n, r̃k,n|ψk,n−1, 0) =

{
fD(ψ̃k,n), r̃k,n = 0

0, r̃k,n = 1 .
(4)

If the PSMC existed at time n− 1, i.e., rk,n−1 = 1, it either dies i.e., r̃k,n = 0
or it still exist i.e., r̃k,n = 1 with the survival probability denoted as Ps. If it

does survive, the state ψ̃k,n is distributed according to the state-transition pdf

f(ψ̃k,n|ψk,n−1). Thus we have

f(ψ̃k,n, r̃k,n|ψk,n−1, 1) =

{
(1− Ps)fD(ψ̃k,n), r̃k,n = 0

Psf(ψ̃k,n|ψk,n−1), r̃k,n = 1 .
(5)

We further factorize the state-transition pdfs as f(ψ̃k,n|ψk,n−1) = f(x̃k,n|xk,n−1)
f(ũk,n|uk,n−1) given the independence assumptions between that the state vec-
tors x̃k,n and the normalized amplitudes ũk,n.

3.2 Associations of PSMCs with Measurements

The association of PSMCs and measurements is complicated by the DA un-
certainty: at time n it is unknown which measurement zm,n originates from
which PSMC, or if a measurement did not originate from a PSMC (false alarm
or clutter), or if a PSMC did not generate any measurement (missed detec-
tion). Any PSMC-to-measurement association is described by PSMC-oriented
variables

ak,n ,





m ∈Mn, if the legacy PSMC k generate
the measurement m

0 if the legacy PSMC k does not
generate any measurement,

stacked into the PSMC-oriented association vector an , [a1,n, . . . , aKn−1,n]T.
To reduce computational complexity, following [8], [21], [27], we use a re-
dundant description of PMSC-measurement associations, i.e., we introduce
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Figure 1: An example of probabilistic DA, where the association probability between
a measurement and a PSMC is denoted with the line thickness. At time n, three
measurements are generated from the SBL channel estimator. The probability that
the measurement z1,n is associated with the new PSMC y̆1,n is much higher than
the probability that z1,n is associated with a legacy PSMC. The measurement z3,n

is associated with the legacy PSMC ỹ2,n with high probability. Besides, it is highly
possible that the measurement z2,n is a false alarm and the legacy PSMC ỹ1,n did
not generate any measurement (missed detection).

measurement-oriented association variables

bm,n ,





k ∈ Kn−1, if the measurement m is generated
by the legacy PSMC k

0 if the measurement m is not
generated by any legacy PSMC,

and define the measurement-oriented association vector bn , [b1,n, . . . , bMn,n]T.
Note that the “redundant formulation” of using an together with bn is the
key to make the algorithm scalable to the varying numbers of PSMCs and
measurements.

The example presented in Fig. 1 explains how the probabilistic DA is per-
formed. The probabilities of all association hypotheses of PSMCs and meas-
urements are evaluated, and a high probability indicates that the PSMC state
explains a measurement well.

3.3 States of Unknown Parameters

The detection and estimation of PSMC states require the information of the
spatial density of false alarm measurements, and the detection probabilities,
i.e., the probability that a PSMC yk,n generates a measurement zm,n. We
assume that the false alarm measurements are independent and identically
distributed (iid) according to the pdf fc(zm,n), which is uniform on the region
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of interest (RoI), and the number of false alarm measurements at each time
n, i.e., false alarm rate (FAR), is Poisson distributed with mean µFA,n. The

detection probability Pd(ψk,n) , Pd(uk,n) is characterized by its normalized
amplitude [23], [24]. Both µFA,n and Pd(uk,n) are assumed to be unknown
and potentially time-varying, and the algorithm is designed to automatically
adapt these parameters online. More specifically, µFA,n is estimated continually
along with the PSMC states, and Pd(uk,n) is given at each time by using the
normalized amplitudes uk,n, as explained in [23], [24] and Section 3.4. The
mean FAR µFA,n is independent of the states of the legacy PSMCs, and evolve
according to the state-transition pdf f(µFA,n|µFA,n−1).

3.4 Likelihood Functions

If the measurement zm,n is originated from the PSMC k, i.e., ak,n = m,
then the conditional distribution given the state ψk,n is described by the pdf
f(zm,n|ψk,n). Assuming the individual measurements inside vector zm,n are
conditional independent given the state ψk,n, the pdfs f(zm,n|ψk,n) of PSMC-
originated measurements factorizes as

f(zm,n|ψk,n) = f(d̂m,n|dk,n)f(ϕ̂m,n|ϕk,n)f(ûm,n|uk,n) (6)

where the conditional pdfs f(d̂m,n|dk,n) and f(ϕ̂m,n|ϕk,n) are defined by Gaus-
sian measurement models, yields

f(d̂m,n|dk,n) =
1√

2πσ2
d,m,n

exp
(−(d̂m,n − dk,n)2

2σ2
d,m,n

)
, (7)

f(ϕ̂m,n|ϕk,n) =
1√

2πσ2
ϕ,m,n

exp
(−(ϕ̂m,n − ϕk,n)2

2σ2
ϕ,m,n

)
. (8)

The variances are computed using the norm amplitude measurements, i.e.,
σ2

d,m,n = c2/(8π2βbwû
2
m,n) and σ2

ϕ,m,n = c2/(8π2f2
c û

2
m,nD

2(ϕ̂m,n)), where βbw

is the mean square bandwidth of the transmit signal pulse s(t) and D2(ϕ̂m,n)
is the squared array aperture [24], [26]. The pdf f(ûm,n|uk,n) of the normalized
amplitude ûm,n conditioned on the state uk,n is given by a unit-variance Rician
distribution as in [23], [24].

If zm,n is a false alarm measurement, it is distributed according to the pdf
fFA(zm,n), which factorizes as

fFA(zm,n) = fFA(d̂m,n)fFA(ϕ̂m,n)fFA(ûm,n) (9)

where fFA(d̂m,n) and fFA(ϕ̂m,n) are assumed to be uniform in their respective
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RoIs, i.e., fFA(d̂m,n) = 1/dmax and fFA(ϕ̂m,n) = 1/2π. The false alarm pdf
fFA(ûm,n) of the normalized amplitude is given by a unit-variance Rayleigh
distribution [20, Ch. 1.6.7], i.e., fFA(ûm,n) = ûm,n exp(−û2

m,n/2)/PFA. The

false alarm probability is given as PFA = exp (−u2
th/2) with the normalized

amplitude threshold uth.

3.5 Joint Posterior pdf and Factor Graph

By using common assumptions [8], [21], and for fixed and thus observed meas-
urements z, it can be shown that the joint posterior pdf of ỹ, y̆, a, b, µFA and
m, conditioned on z is given by

f(ỹ, y̆,a, b,µFA,m|z)

∝ f(µFA,1)

M1∏

m′=1

h(ψ̆m′,1, r̆m′,1, bm′,1, µFA,1; z1)

×
n∏

n′=2

f(µFA,n′ |µFA,n′−1)



Kn′−1∏

k=1

f(ỹk,n′ |yk,n′−1)




×



Kn′−1∏

k=1

Mn′∏

m=1

g(ỹk,n′ , ak,n′ , µFA,n′ ; zn′)Ψ(ak,n′ , bm,n′)




×



Mn′∏

m=1

f(y̆m,n′)h(y̆m,n′ , bm,n′ , µFA,n′ ; zn′)


 (10)

where we introduced the functions g(ỹk,n, ak,n, µFA,n; zn), h(y̆m,n, bm,n, µFA,n; zn),
f(y̆m,n), and Ψ(ak,n, bm,n) that will be discussed next.

The pseudo likelihood functions are given as g(ỹk,n, ak,n, µFA,n; zn) = g(ψ̃k,n,

r̃k,n, ak,n, µFA,n; zn) and h(y̆m,n, bm,n, µFA,n; zn) = h(ψ̆m,n, r̆m,n, bm,n, µFA,n; zn)

g(ψ̃k,n, 1, ak,n, µFA,n; zn)

=





n(µFA,n)f(zm,n|ψ̃k,n)Pd(ũk,n)

µFA,nfFA(zm,n)
, ak,n = m ∈Mn

1− Pd(ũk,n), ak,n = 0,

(11)

and g(ψ̃k,n, 0, ak,n, µFA,n; zn) = 1(ak,n)n(µFA,n) with n(µFA,n) , (µMn

FA,ne
−µFA,n
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× 1
Mn! )

1/(Kn−1+Mn) as well as

h(ψ̆m,n, 1, bm,n, µFA,n; zn)

=





0, bm,n = k ∈ Kn−1

n(µFA,n)f(zm,n|ψ̆m,n)

µFA,nfFA(zm,n)
, bm,n = 0,

(12)

and h(ψ̆m,n, 0, bm,n, µFA,n; zn) = n(µFA,n). The prior distributions f(y̆m,n) =

f(ψ̆m,n, r̆m,n) for new PSMC states can be expressed as

f(ψ̆m,n, r̆m,n) =

{
µnfn(ψ̆m,n), r̆m,n = 1

fD(ψ̆m,n), r̆m,n = 0,
(13)

where µn and fn(ψ̆m,n) are the mean and pdf of a Poisson point process,
respectively. Finally, the binary indicator functions that check consistency for
any pair (ak,n,bm,n) of PSMC-oriented and measurement-oriented association
variable at time n, read [8], [21]

Ψ(ak,n, bm,n) =





0, ak,n = m, bm,n 6= k

or bm,n = k, ak,n 6= m

1, otherwise.

(14)

In case the joint PSMC-oriented association vector an and the measurement-
oriented association vector bn do not describe the same association event, at
least one indicator function in (10) is zero and thus f(ỹ, y̆,a, b,µFA,m|z) is
zero as well. The factor graph describing the factorization (10) of the joint
posterior pdf is shown in Fig. 2.

4 The BP-based MPC Tracking algorithm

In the Bayesian setting, the detection of PSMCs yk,n with k ∈ Kn relies on the
marginal posterior existence probabilities f(rk,n = 1|z), and the estimation
of the detected PSMC states xk,n, the amplitudes uk,n and the mean FAR
µFA,n rely on the marginal posterior pdfs f(ψk,n|rk,n = 1, z) and f(µFA,n|z).
More specifically, a PSMC is detected if p(rn,k = 1|z) > Pdet [28], where
p(rn,k = 1|z) is obtained from the marginal posterior pdfs of the augmented
PSMC state f(yk,n|z) = f(ψk,n, rk,n|z) as

p(rk,n = 1|z) =

∫
f(ψk,n, rk,n = 1|z)dψk,n. (15)
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Figure 2: Factor graph representation of the factorized joint posterior pdf (10),
shown for time n. For simplicity, the following short notations are used: K ,
Kn−1, M , Mn; variable nodes: ak , ak,n, bm , bm,n, µFA , µFA,n, ỹk ,
ỹk,n, y̆m , y̆m,n; factor nodes: fk , f(ỹk,n|yk,n−1), fµFA , f(µFA,n|µFA,n−1),
gk , g(ψ̃k,n, r̃k,n, ak,n, µFA,n;zn), hm , h(ψ̆m,n, r̆m,n, bm,n, µFA,n;zn), Ψk,m ,
Ψ(ak,n, bm,n); beliefs: q̃−k , q̃(ψ̃k,n−1, r̃k,n−1), q̃k , q̃(ψ̃k,n, r̃k,n), q̆m ,
q̆(ψ̆m,n, r̆m,n), q−µFA

, q(µFA,n−1), qµFA , q(µFA,n).

The estimates of µFA,n, and the states ψk,n and uk,n of detected PSMCs are
calculated by means of the minimum mean-square error (MMSE) estimator
[29]

µ̂MMSE
FA,n ,

∫
µFA,nf(µFA,n|z)dµFA,n, (16)

x̂MMSE
k,n ,

∫
xk,nf(ψk,n|rk,n = 1, z)dψk,n, (17)

ûMMSE
k,n ,

∫
uk,nf(ψk,n|rk,n = 1, z)dψk,n, (18)

where the marginal posterior pdf f(ψk,n|rk,n = 1, z) can be obtained from
f(ψk,n, rk,n|z) as

f(ψk,n|rk,n = 1, z) =
f(ψk,n, rk,n = 1|z)

f(rk,n = 1|z)
. (19)
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Note that the posterior existence probabilities f(rk,n = 1|z) are also used in
the pruning step removing PSMCs with f(rk,n = 1|z1:n) < Pprun. As explained
in Section 3.1, the number of legacy PSMCs are updated as Kn = Kn−1 +Mn

at each time n, the pruning step would prevent Kn from growing indefinitely.
To obtain the marginal posterior pdfs f(ψ̃k,n, r̃k,n|z), f(ψ̆m,n, r̆m,n|z) and

f(µFA,n|z) of the join posterior pdf f(ỹ, y̆,a, b,µFA,m|z), direct marginaliza-

tion is infeasible. However, their respective approximations q̃(ỹk,n) = q̃(ψ̃k,n,

r̃k,n), q̆(y̆m,n) = q̆(ψ̆m,n, r̆m,n) and q(µFA,n) can be obtained efficiently by run-
ning the iterative BP [30] on the factor graph in Fig. 2. Since this factor graph
is loopy, we now specify the following order in which the message are computed:
(i) messages are not sent backward in time; (ii) iterative message passing is only
performed for probabilistic DA at each time step. In addition, the generic BP
rules for calculating messages and beliefs introduced in [21, Ch. III] are also
followed. A sequential particle-based message passing implementation [8], [21],
[27] is used to approximate the messages and beliefs.

5 Experimental Results

The proposed BP-MPCT algorithm is validated using synthetic channel meas-
urement data. Given the floor plan of a seminar room at Graz University of
Technology [8], the true SMC parameters and model order are firstly obtained
by using a ray tracing (RT) method, and then applied in the radio signal
model (2) to synthetically generate the channel measurement data for each
simulation run. We assume that the amplitude of each SMC follows free-space
pathloss and is attenuated by 3 dB after each reflection. The transmit pulse
s(t) is a root-raised-cosine pulse with a symbol duration Tp = 2 ns and a roll-off
factor of 0.6 at a center frequency of fc = 6 GHz with bandwidth of 500 MHz.
The number of samples Ns = 94. A 3 × 3 uniform rectangular array with
an inter-element spacing of 1 cm is used at the BS. For each simulation run,
the AWGN is generated with the noise variance σ2

w = N0/Ts specified with a

given SNR1m = 10 log10( |αLoS|2
N0

), where the amplitude αLoS of the line-of-sight

(LoS) component is fixed and computed at 1 m distance. The synthetic channel
measurement data is used in the SBL channel estimator to obtain the noisy
measurements zm,n at each time n, and the true number of false alarm meas-
urements is obtained by checking the optimal sub-pattern assignment (OSPA)
matrix [31] between zm,n and the true SMC parameters from RT. Note that we
on purposely generated more false alarm measurements by setting the detection
threshold (on individual MPC’s SNR) to 8 dB in the SBL channel estimator,
which is smaller than the threshold according to [18], therefore the performance
of the BP-MPCT algorithm can be validated in more challenging situations. In
total, we performed 50 simulation runs for each given SNR1m ∈ {25 dB, 30 dB,
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35 dB}.
The parameters used in the BP-MPCT algorithm are as follows: the num-

ber of particles is 10000, the survival probability Ps = 0.999, the detection
probability threshold Pdet = 0.5, the pruning threshold Pprun = 10−4, the

mean number of newly detected SMCs µn = 0.01, the birth pdf fn(ψ̆m,n) is

uniform on the RoI, i.e., fn(ψ̆m,n) = 1/(2πdmax) with dmax = 30 m. The PFA is
calculated for a threshold of uth = 1. The detection probabilities Pd(ûMMSE

k,n )

are calculated using the MMSE estimates of the normalized amplitudes ûMMSE
k,n

[23]. The particles for the initial mean FAR are drawn from a uniform distribu-

tion on [0.001, 15]. The particles for the initial states ψ̆m,n of a new PSMC are

drawn from a 5-D uniform distribution with center at [d̂m,n, ϕ̂m,n, 0, 0, ûm,n]
and the support of each component is given by: [−0.3, 0.3] m, [−0.7, 0.7] rad,
[−0.01, 0.01] m/s, [−0.01, 0.01] rad/s, [−1, 1] . The state-transition pdf of xk,n
is defined by a nearly-constant velocity model [32, Section 6.3.2] with ∆T = 1 s
and noise standard deviations σd = 0.01 m/s2 and σϕ = 0.02 rad/s2 for distance
and AoA, respectively. Furthermore, the state-transition pdfs of the normal-
ized amplitude f(uk,n|uk,n−1) and the mean FAR f(µFA,n|µFA,n−1) are given as
Gaussian distributions with noise standard deviations σu = 1 and σFAR = 0.4,
respectively.

The results of the BP-MPCT algorithm after averaging over 50 simulation
runs are presented in Fig. 3, and the estimates zm,n from the SBL estimator
(after excluding the false alarm measurements) are used for comparison. It can
be seen that the mean OSPA (MOSPA) [31] errors on the distances, AoAs and
amplitudes obtained with BP-MPCT are mostly lower than the errors with
SBL, and the advantage gets more obvious at low SNR1m. This can be ex-
plained that: given low SNR1m, there exist more “weak” SMCs with low SNRs
that are sometimes miss detected in SBL, and some of the miss detections can
be reconstructed in BP-MPCT, which leads to the better estimation of the
model order and therefore lower MOSPA errors. Given the SNR1m = 35 dB,
the MOSPA errors obtained with BP-MPCT are mostly below 2 cm for dis-
tances, 2 degrees for AoAs and -40 dB for amplitudes. Furthermore, raises of
the MOSPA errors for BP-MPCT are observed at time instances where the true
number of SMCs changes, which happen mainly due to model order mismatch
instead of the increases on the root mean square errors of individual detected
PSMCs. More specifically, it takes one or two steps until the existence probab-
ilities of the legacy/new PSMCs reach the detection probability threshold Pdet,
so tracks are terminated or newly detected, and therefore the change on the
model order can be followed. As shown in Fig. 3d, the BP-MPCT algorithm
is able to follow the correct model order for the most of the time, even for
SNR1m = 25 dB. Moreover, the estimated mean FAR converges to the true
value regardless of the SNR1m condition as depicted in Fig. 3e.
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amplitudes. (d) Averaged number of detected PSMCs. (e) Averaged estimated mean
FAR.
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Figure 4: Estimation results of a single simulation run for SNR1m = 25 dB on (a)
distances, (b) AoAs, and (c) SNRs, i.e., the squares of the estimated normalized amp-
litudes. False alarm measurements are depicted by gray dots, true SMC parameters
by black solid lines, and estimates of detected PSMCs by different colors.

The results of an exemplary simulation run given SNR1m = 25 dB are shown
in Fig. 4. As can be seen, the BP-MPCT algorithm shows good ability to
distinguish between false alarm measurements and measurements originated
from SMCs. The birth-death processes of SMCs are accurately detected and
tracks are well reconstructed even for some “weak” SMCs, for example, the
estimated track denoted in cyan between time n = 1 and n = 200, of which
the true SNR is mostly below the 8 dB detection threshold. Furthermore, the
association of estimates over time in delay and angular subspaces are robust
even in the presence of intersections between SMCs.
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6 Conclusions

We presented a BP-MPCT algorithm which jointly performs probabilistic DA,
detection and tracking of MPC parameters. This algorithm is adaptive to time-
varying mean false alarm rate, as well as the detection probabilities by utilizing
the amplitude statistics of the MPC estimates. Simulation results showed that
the BP-MPCT algorithm has excellent performance regarding the scalability
to the time-varying model order, estimation accuracy, and association property
over time in a realistic and very challenging scenario.
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Sequential Detection and Estimation of

Multipath Channel Parameters Using

Belief Propagation

This paper proposes a BP-based algorithm for sequential detection

and estimation of MPC parameters based on radio signals. Under dy-

namic channel conditions with moving transmitter/receiver, the number

of MPCs, the MPC dispersion parameters, and the number of false alarm

contributions are unknown and time-varying. We develop a Bayesian

model for sequential detection and estimation of MPC dispersion para-

meters, and represent it by a factor graph enabling the use of BP for

efficient computation of the marginal posterior distributions. At each

time step, a snapshot-based parametric channel estimator provides para-

meter estimates of a set of MPCs which are used as noisy measurements

by the proposed BP-based algorithm. It performs joint probabilistic data

association, and estimation of the time-varying MPC parameters and the

mean number of false alarm measurements, by means of the sum-product

algorithm rules. The algorithm also exploits amplitude information en-

abling the reliable detection of “weak” MPCs with very low component

SNRs. The performance of the proposed algorithm compares well to state-

of-the-art algorithms for high SNR MPCs, but it significantly outperforms

them for medium or low SNR MPCs. Results using real radio measure-

ments demonstrate the excellent performance of the proposed algorithm

in realistic and challenging scenarios.

c©2022 IEEE. with permission, from

X. Li, E. Leitinger, A. Venus, F. Tufvesson,

“Sequential Detection and Estimation of Multipath Channel Parameters Using Belief

Propagation,”

IEEE Trans. Wireless Commun., 2022, doi:10.1109/TWC.2022.3165856.

(Xuhong Li and Erik Leitinger are co-first authors.)
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1 Introduction

The information of dispersive wireless radio channels and its temporal behavior
in dynamic scenarios are of great importance for the development of radio
channel models [1], [2], 5G wireless communication technologies [3]–[5], and
multipath-based localization and mapping [6]–[10]. The response of a non-
static wireless radio channel is typically represented by superimposed weighted
Dirac delta distributions with distinct and time-varying locations (or supports)
in the respective dispersion domains (delay, AoA, angle-of-departure, Doppler
frequency, and combinations thereof). Each component is meant to represent a
multipath component (MPC). In general, the channel response can be observed
only within a finite aperture leading to some limitations on the ability to resolve
MPCs closely spaced in the dispersion domains. The related time-varying
MPC parameters are usually estimated from multi-dimensional measurements
using antenna arrays and multiple frequencies (wideband or UWB) [11] using
super-resolution (SR) algorithms that perform sequential estimation of MPC
parameters.

1.1 State-of-the-Art Methods

If the number-of-MPCs (NoM) is known, subspace methods [12]–[14] or max-
imum likelihood (ML) methods as for example [15] are standard SR methods
to estimate time-invariant MPC parameters. Expectation maximization-based
methods [16], have been proven a viable approximation of the computation-
ally prohibitive ML methods [17]. In recent years, a channel model has been
introduced that also considers DMC [18]. The DMC incorporates MPCs that
cannot be resolved due to finite observation aperture. Including the estima-
tion of DMC can improve the accuracy of the parameter estimation of distinct
MPCs.

All afore mentioned methods have in common that they do not incorporate
the estimation of the NoM into the estimation problem. One classical solution is
to extend the methods with an outer stage for NoM detection using for example
eigenvalue-based methods, or the generic information theoretic criteria, e.g., the
Akaike/Bayesian information criterion, the minimum description length (MDL)
principle [19]. The outer stage schemes mostly tend to overestimate the NoM.
Inspired by the ideas of sparse estimation and compressed sensing, some SR
sparse Bayesian parametric channel estimation algorithms [11], [20]–[22] have
recently appeared which aim to reconstruct sparse signals from a reduced set of
measurements specified by a sparse weight vector. By introducing a sparsity-
promoting prior model for the weights, the estimation of the NoM and MPC
parameters can be jointly formulated in a Bayesian framework.

To capture the temporal behaviors of MPC parameters in time-varying scen-
arios, many sequential estimation methods have been proposed, which can be
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grouped into two broad categories. Methods of the first category sequentially
estimate the MPC parameters directly based on the radio signals using for
example an extended Kalman filter [23]–[26]. Methods of the second category
adopt a two-stage structure where the estimates of a snapshot-based channel es-
timator are used as measurements in a tracking filter [27]. In this work, we focus
on the two-stage methods. Due to the finite aperture of measurement systems
and the resolution capability of snapshot-based parametric channel estimators,
some measurements might not be well resolved hence incorporate contributions
from more than one MPCs and false alarms may exist. In this case, to decide
which measurement should be used for the update of which MPC (i.e., DA
problem) can be complicated. In general, existing sequential channel estima-
tion methods adopt “hard” association which assumes that measurements are
fine resolved and each of them originates from single MPC that is specified by
metrics such as the global nearest neighbor [28]. Probabilistic DA[28], [29], on
the other hand, solves the origin uncertainty problem in a “soft” manner, in
which the association probabilities for all current measurements are computed
and used to form a mixture PDF for the update of each MPC state.

1.2 Contributions

Here, we propose a belief propagation (BP)-based algorithm for sequential de-
tection of MPCs and estimation of their dispersion parameters that uses the
MPC estimates from a snapshot-based parametric SR-sparse-Bayesian learn-
ing (SBL) channel estimator (abbreviated as SR-SBL) as measurements [11],
[21], [22], [30].10 To reduce the computational demand and to improve the con-
vergence behavior of the snapshot-based estimator, statistical information of
the dispersion parameters of the BP-based algorithm is fed back to the SR-SBL
channel estimator. The proposed algorithm jointly performs probabilistic DA
and sequential estimation of potential MPC (PMPC) parameters by running
the BP-based algorithm, also known as the sum-product algorithm, on a factor
graph [8], [29], [33], [34]. Note that independence between MPCs is assumed
throughout the work. We use a probabilistic model for MPC existence where
each PMPC state is augmented by a binary existence variable and associated
with an existence probability, which is also estimated and used for the detection
of reliable MPCs modeling the birth and death of these components [8], [35].
The complex amplitudes of MPCs are an integral part of the multipath channel
model and must be estimated alongside with the dispersion parameters. There-
fore, they are incorporated into the proposed algorithm. More specifically, the

10This work is inspired by the BP-based SLAM algorithm presented in [8], [31], [32]. The
main novelties of the proposed algorithm over the previous work are threefold: (i) we present
more detailed derivations for the joint prior PDFs and joint likelihoods; (ii) we extend the
prior work with adaptive estimation of the false alarm rate (FAR); (iii) we apply the prior
work successfully to the field of parametric radio channel estimation.
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algorithm uses the statistics of MPC amplitudes to determine the unknown
and time-varying detection probabilities [31], [32], [36], [37], which improves
the detectability and maintenance of low signal-to-noise ratio (SNR) MPCs,
and enables a better discrimination against false alarms. Knowing the correct
false alarm rate (FAR) is crucial for optimal performance of Bayesian detection
and estimation algorithms. However, determining the FAR in advance is not
straightforward, especially, if the FAR is time-varying. Using a fixed predefined
value of FAR that deviates largely from the true one, can potentially lead to
decreased detection performance of MPCs and an increased number of detec-
ted false alarms. The proposed algorithm estimates the possibly time-varying
FAR to cope with false alarm measurements originating from the preprocessing
step and clutter measurements originating from strongly fluctuating scattered
MPCs (as for example DMC). The main contributions of this paper are sum-
marized as follows.

• We introduce a Bayesian model for sequential detection and estimation of
MPC parameters, which uses the estimates from a snapshot-based chan-
nel estimator as measurements. Within this model, the death and birth of
MPCs and DAs are formulated probabilistically, and adaptive detection
probabilities are incorporated by exploiting amplitude information.

• We further present a BP-based algorithm based on the factor graph rep-
resentation of the estimation problem, where the PMPC states and the
FAR are estimated jointly and sequentially.

• The performance of the proposed algorithm is demonstrated with both
synthetic and real measurements. Moreover, the results are compared
with the KEST [27] algorithm (a state-of-the-art sequential parametric
channel estimation method), and posterior-CRLB (posterior-CRLB).

This paper advances over our preliminary conference publication [38] by (i)
presenting a detailed derivations of the factor graph, (ii) including the detailed
derivations of the factors related to the FAR, (iii) establishing a particle-based
implementation of the proposed algorithm, (iv) validating the performance with
additional simulated and real scenarios, and (v) demonstrating a comparison
with a state-of-the-art method and the posterior-CRLB.

Notations: Column vectors and matrices are denoted by boldface lowercase
and uppercase letters. Random variables are displayed in san serif, upright
fonts as for example x and x and their realizations in serif, italic font as for
example x and x. f(x) denotes the PDF or probability mass function (PMF)
of continuous or discrete random vector. (·)T, (·)∗, and (·)H denote matrix
transpose, complex conjugation and Hermitian transpose, respectively. ‖·‖ is
the Euclidean norm. | · | represents the cardinality of a set. diag{x} denotes
a diagonal matrix with entries in x. tr{·} denotes the trace of a matrix. I[·]
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is an identity matrix of dimension given in the subscript. [X]n,n denotes the
nth diagonal entry of X. [X]1:n denotes a sub-matrix containing 1:n columns
and rows of X. Furthermore, 1̄(e) denotes the function of the event e = 0 (i.e.,
1̄(e) = 1 if e = 0 and 0 otherwise). 1A(x) denotes the indicator function that
is 1A(x) = 1 if x ∈ A and 0 otherwise. For any function g(x) we define the
integral 〈g(x)〉f(x) =

∫
g(x)f(x)dx. As for example 〈x〉f(x) =

∫
xf(x)dx and

〈f(x)〉1A(x) =
∫
A f(x)dx denote the expected value and the integral over f(x)

of the random vector x, respectively.

2 Radio Signal Model

We consider a single-input multiple-output (SIMO) UWB system, where the
Tx uses a single antenna, and the Rx is equipped with an antenna array made

of H elements located at p
(h)
n ∈ R2×1 with h ∈ {1, . . . ,H}.11 We define d

(h)
n =

‖p(h)
n − pn‖ and ϕ

(h)
n = ∠(p

(h)
n − pn) − ψ, as the distance of the hth element

to the reference location pn ∈ R2×1, i.e., the array’s center of gravity, and its
angle relative to the array orientation ψ, respectively. For the sake of brevity,
we assume a two-dimensional scenario with horizontal-only propagation.12

2.1 Received Signal

Signals are represented by their complex envelopes with respect to a center
frequency fc. The single antenna at the transmitter emits a periodic signal
s̃(t). The received signal at each antenna element h at the discrete observation
time n is given as [11], [18], [39]

s
(h)
RX,n(t) =

Ln∑

l=1

α̃l,ns
(
t; d̃l,n, ϕ̃l,n,p

(h)
n

)
+ ω(h)

n (t) (1)

where the first term comprises Ln MPCs, with each being characterized by its
complex amplitude α̃l,n ∈ C, distance d̃l,n = cτ̃l,n ∈ R to the array’s center of
gravity directly related to the time delay via the speed of light c, and AoA ϕ̃l,n ∈
[−π, π) w.r.t. the array orientation. Under the far-field plane-wave assumption,

the signal s
(
t; d̃, ϕ̃,p(h)

)
is given as s

(
t; d̃, ϕ̃,p(h)

)
= ej2πfcg(ϕ̃,p

(h))s̃
(
t − d̃/c +

g
(
ϕ̃,p(h)

))
. The function g

(
ϕ̃,p(h)

)
= d(h) cos (ϕ̃−ψ−ϕ(h))

c gives the delay shift
of a plane-wave incident with AoA ϕ̃ being measured relatively to the array

11Note that the extension of the algorithm to a multiple-input single-output (MISO) or a
MIMO system considering an antenna array at the Tx is straightforward.

12An extension to three-dimensional scenarios with horizontal and vertical propagation is
straightforward, but it would lead to a cumbersome notation and one would not gain any
further insights.
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orientation ψ, at the hth antenna position w.r.t. the array’s center of gravity.
We assume that the Tx and Rx are time synchronized and the array orientation

is known. The measurement noise process ω
(h)
n (t) in (1) is independent AWGN

with double-sided power spectral density N0/2.
The received signal in (1) observed over a duration T is sampled with fre-

quency fs = 1/Ts at each time n, yielding a length Ns = T/Ts sample vector

s
(h)
RX,n ∈ CNs×1 from each array element. By stacking s

(h)
RX,n from H array ele-

ments, the discrete time signal vector sRX,n , [s
(1)T
RX,n · · · s

(H)T
RX,n ]T ∈ CNsH×1 is

given by

sRX,n = S(θ̃n)α̃n + ωn. (2)

In the first summand α̃n , [α̃1,n · · · α̃Ln,n]T ∈ CLn×1, θ̃n , [θ̃T
1,n · · · θ̃T

Ln,n
]T ∈

R2Ln×1 with θ̃l,n , [d̃l,n ϕ̃l,n]T ∈ R2×1 denoting the vector comprising the

MPC parameters, and S(θ̃n) , [s(θ̃1,n) · · · s(θ̃Ln,n)] ∈ CNsH×Ln with columns

given by s(θ̃l,n) = [s1(θ̃l,n)T · · · sH(θ̃l,n)T]T ∈ CNsH×1. The hth entry

of s(θ̃l,n) reads sh(θ̃l,n) , [s
(
− [(N − 1)/2]Ts; d̃l,n, ϕ̃l,n,p

(h)
)
· · · s

(
[(N −

1)/2]Ts; d̃l,n, ϕ̃l,n,p
(h)
)
]T ∈ CNs×1. The measurement noise vector ωn∈CNsH×1

is a complex circularly symmetric Gaussian random vector with covariance
matrix C = σ2INsH , where σ2 = N0/Ts is the noise variance. The component

SNR of each MPC is S̃NRl,n =
|α̃l,n|2‖s(θ̃l,n)‖2

σ2 and the according normalized

amplitude equals ũl,n =

√
S̃NRl,n. An MPC exists only when its associated

geometric feature is visible at the Rx position. The true number Ln of MPCs
as well as their individual parameters ũl,n, d̃l,n, and ϕ̃l,n are unknown and
time-varying in dynamic scenarios. We propose an algorithm to sequentially
detect and estimate these parameters.

2.2 Parametric Channel Estimation

Based on the discrete time signal vector in (2), a snapshot-based SR-SBL es-
timator [11], [20]–[22], [30] provides estimated dispersion parameters of Mn

multipath components (MPCs) stacked into the vector zn , [zT
1,n · · · zT

Mn,n
]T ∈

R3Mn×1 at each time n. An entry zm,n , [zdm,n zϕm,n zum,n]T ∈ R3×1 com-
prises the distance estimate zdm,n, the AoA estimate zϕm,n, and the normalized
amplitude estimate zum,n of an MPC. The normalized amplitude estimate is

given by zum,n , |µαm,n|/σαm,n where µαm,n and σαm,n denote, respectively,
the estimated mean and standard deviation of the complex amplitudes. Note
that all estimated component SNRs given by z2

um,n are above a predefined
detection threshold ude. The estimated amplitudes zum,n are directly related
to the detection probabilities of the corresponding MPCs [31], [32] (see Sec-



192 PAPER VI

tion 3.3). At time n = 1, the initial prior PDF of the dispersion parameters
considered in the snapshot-based estimator is uniform over the validation re-
gion. For each time n ≥ 2, the snapshot-based estimator is initialized with
L̂n−1 detected MPCs returned from the BP-based algorithm at time n− 1 (see
Section 4.2). The vector zn is used as noisy measurement by the proposed
algorithm. Note that the snapshot-based estimator decomposes sRX,n into in-
dividual, decorrelated components with parameters stacked into zn, reducing
the number of dimensions (as Mn is usually much smaller than NsH).

3 System Model

3.1 PMPC States

Following [8], [29], we account for the time-varying and unknown NoM by
introducing PMPCs indexed by k ∈ {1, . . . ,Kn}. The number of PMPCs Kn

is the maximum number of actual MPCs that have produced measurements so
far [29]. The existence/non-existence of PMPC k as an actual MPC is modeled
by a binary random variable rk,n ∈ B = {0, 1} in the sense that a PMPC
exists if and only if rk,n = 1. Augmented states of PMPCs are denoted as

yk,n , [xT
k,n rk,n]T ∈ R5×1 × B, where xk,n = [θT

k,n uk,n vdk,n vϕk,n]T ∈R5×1,

θk,n = [dk,n k,n]T ∈ R2×1, and vdk,n and vϕk,n are the distance velocity and
angular velocity, respectively.

Formally, PMPC k is also considered even if it is non-existent, i.e., rk,n = 0.
The states xk,n of non-existent PMPCs are obviously irrelevant and have no
influence on the PMPC detection and state estimation. Therefore, all PDFs
defined for PMPC states, f(yk,n) = f(xk,n, rk,n), are of the form f(xk,n, rk,n =
0) = fk,nfD(xk,n), where fD(xk,n) is an arbitrary “dummy PDF” and fk,n ∈
[0, 1] is a constant representing the probability of non-existence [8], [29], [35].

3.2 State-Transition Model

For each PMPC with state yk,n−1 with k ∈ {1, . . . ,Kn−1} at time n−1, there is

one “legacy” PMPC with state y
k,n
, [xT

k,n rk,n]T with k∈{1, . . . ,Kn−1} at time

n. Assuming that PMPC states evolve independently across k and n, the corres-
ponding state-transition PDF of the joint states yn−1, [yT

1,n−1 · · · yT
Kn−1,n−1]T

and y
n
, [yT

1,n
· · · yT

Kn−1,n
]T factorizes as [29]

f(y
n
|yn−1) =

Kn−1∏

k=1

f(y
k,n
|yk,n−1) (3)
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where f(y
k,n
|yk,n−1) = f(xk,n, rk,n|xk,n−1, rk,n−1) is the single PMPC state-

transition PDF. If a PMPC did not exist at time n−1, i.e., rk,n−1 =0, it cannot
exist at time n as a legacy PMPC. This means that

f(xk,n, rk,n|xk,n−1, 0) =

{
fD(xk,n), rk,n = 0

0, rk,n = 1 .
(4)

If a PMPC existed at time n− 1, i.e., rk,n−1 = 1, at time n it either dies i.e.,
rk,n = 0 or it still exists i.e., rk,n = 1, with the survival probability denoted
as ps. If it does survive, the state xk,n is distributed according to the state-
transition PDF f(xk,n|xk,n−1). Thus,

f(xk,n, rk,n|xk,n−1, 1) =

{
(1− ps)fD(xk,n), rk,n = 0

psf(xk,n|xk,n−1), rk,n = 1.
(5)

We also define the state vector for all times up to n of legacy PMPCs as
y

1:n
, [yT

1
· · · yT

n
]T.

3.3 Measurement Model

Before the current measurements zn are observed, the number of measurements
Mn is a random variable. The vector collecting the number of measurements
is defined as m1:n , [M1 · · ·Mn]T. The conditional PDF f(zm,n|xk,n) of zn
assumes that the individual measurements zm,n are conditionally independ-
ent given the state xk,n. At each time n, a snapshot-based channel estimator
provides the current observed measurement vector zn = [zT

1,n · · · zT
Mn,n

]T (see
Section 2), which is not random anymore and with fixed Mn. If zm,n is a
PMPC-oriented measurement, we assume that the conditional PDF f(zm,n|xk,n)
is conditionally independent across zdm,n, zϕm,n, and zum,n given the states
dk,n, k,n, and uk,n, thus it factorizes as

f(zm,n|xk,n) = f(zdm,n|dk,n, uk,n)f(zϕm,n|ϕk,n, uk,n)f(zum,n|uk,n) (6)

where the individual likelihood functions of the distance measurement f(zdm,n|
dk,n, uk,n) and the AoA measurement f(zϕm,n|ϕk,n, uk,n) are modeled by Gaus-
sian PDFs, i.e.,

f(zdm,n|dk,n, uk,n) =
(
2πσ2

dk,n

)− 1
2 e

−(zdm,n−dk,n)2

2σ2
dk,n (7)
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and

f(zϕm,n|ϕk,n, uk,n) =
(
2πσ2

ϕk,n

)− 1
2 e

−(zϕm,n−ϕk,n)2

2σ2ϕk,n . (8)

The variances depend on uk,n and are determined based on the Fisher informa-
tion, respectively, given by σ2

dk,n=c2/(8π2β2
bwu

2
k,n) and σ2

ϕk,n
=c2/(8π2f2

c u
2
k,n

× D2(ϕk,n)), where the latter is a function of the PMPC state k,n [32], [40].
Here, β2

bw is the mean square bandwidth of the signal s̃(t) and D2(ϕk,n) is the
squared array aperture. The likelihood function f(zum,n|uk,n) of the normal-
ized amplitude measurement zum,n is modeled by a truncated Rician PDF [28,
Ch. 1.6.7], i.e.,

f(zum,n|uk,n) =

zum,n
σ2
uk,n

e

(−(z2um,n+u2k,n)

2σ2uk,n

)
I0(

zum,nuk,n
σ2
uk,n

)

pd(uk,n)
(9)

for zum,n >
√
ude, where the squared scale parameter σ2

uk,n depends on uk,n and

is determined based on the Fisher information given by σ2
uk,n = 1

2 + 1
4NsH

u2
k,n,

I0(·) represents the 0th-order modified first-kind Bessel function, and ude is
the detection threshold of the snapshot-based estimator. The derivation of
the squared scale parameter is given in Appendix D. The detection probability
(i.e., the probability that a PMPC yk,n generates a measurement zm,n) is
modeled by a Rician cummulative distribution function (CDF), i.e., pd(uk,n) =
Q1(uk,n/σuk,n,

√
ude/σuk,n) [31], [32], [36], where the CDF Q1(·, ·) denotes the

Marcum Q-function [28, Ch. 1.6.7]. Note that pd(uk,n) is directly related to
the MPC’s visibility and the component SNR as well as to the snapshot-based
estimator.

False alarm measurements originating from the snapshot-based paramet-
ric channel estimator are assumed statistically independent of PMPC states.
They are modeled by a Poisson point process with mean fan and PDF ffa(zm,n),
which is assumed to factorize as ffa(zm,n) = ffad(zdm,n)ffaϕ(zϕm,n)ffau(zum,n),

where ffad(zdm,n)=1/dmax and ffaϕ(zϕm,n)=1/2π are assumed to be uniform

on [0, dmax] and on [0, 2π), respectively. With noise only, the Rician PDF in
(9) degenerates to a Rayleigh PDF, thus the false alarm PDF ffau(zum,n) of
the normalized amplitude is given as ffau(zum,n)=2zum,n exp(−z2

um,n)/pfa for
zum,n>

√
ude where pfa = exp(−ude) denotes the false alarm probability [28,

Ch. 1.6.7]. The amplitude information can significantly improve the detect-
ability of MPCs with low component SNRs as shown in Section 7.2 using very
challenging simulation setups (see Fig. 5).

The FAR fan is assumed unknown, time-varying, and automatically adapted
online in the proposed algorithm. It evolves across time according to the state-
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transition PDF f(µfan|µfan−1). The state vector for all times up to n is given

as µfa1:n , [fa1 · · · fan]T.

3.4 New PMPCs

Newly detected PMPCs at time n, i.e., PMPCs that generate measurements
for the first time at time n, are modeled by a Poisson point process with
mean n and PDF fn(xm,n). The mean n is assumed to be a known constant.
Following [8], [29], newly detected PMPCs are represented by new PMPC states
ym,n , [xT

m,n rm,n]T, m ∈ {1, . . . ,Mn}. Each new PMPC ym,n corresponds to
a measurement zm,n, thus the number of new PMPCs at time n equals to the
number of measurements Mn. Here, rm,n = 1 means that the measurement
zm,n was generated by a newly detected PMPC. The state vector of all new

PMPCs at time n is given by yn , [yT
1,n · · · yT

Mn,n]T and state vector for all times

up to n by y1:n , [yT
1 · · · yT

n ]T. The new PMPCs become legacy PMPCs at time
n+1, accordingly the number of legacy PMPCs is updated as Kn = Kn−1+Mn.
(The number of PMPCs is bounded by a pruning operation as it is detailed
in Section 4.2.) The vector containing all PMPC states at time n is given by
yn , [yT

n
yT
n ]T, where yk,n with k ∈ {1, . . . ,Kn}, and state vector for all times

up to n by y1:n , [yT
1 · · · yT

n ]T.

3.5 Data Association Uncertainty

Estimation of multiple PMPC states is complicated by the DA uncertainty,
i.e., it is unknown which measurement zm,n originated from which PMPC.
Furthermore, it is not known if a measurement did not originate from a PMPC
(false alarm), or if a PMPC did not generate any measurement (missed de-
tection). The associations between measurements and legacy PMPCs are de-
scribed by the PMPC-oriented association vector an , [a1,n · · · aKn−1,n]T with

entries ak,n , m ∈ {1, . . . ,Mn}, if legacy PMPC k generates measurement

m, or ak,n , 0, if legacy PMPC k does not generate any measurement. In
line with [8], [29], [41], the associations can be equivalently described by a
measurement-oriented association vector bn , [b1,n · · · bMn,n]T with entries

bm,n , k ∈ {1, . . . ,Kn−1}, if measurement m is generated by legacy PMPC k,

or bm,n , 0, if measurement m is not generated by any legacy PMPC. Fur-
thermore, we assume that at any time n, each PMPC can generate at most
one measurement, and each measurement can be generated by at most one
PMPC [8], [29], [41]. This is enforced by the exclusion functions Ψ(an, bn) and

Γan(rm,n). The function Ψ(an, bn) =
∏Kn−1

k=1

∏Mn

m=1 ψ(ak,n, bm,n) is defined as
ψ(ak,n, bm,n) = 0, if ak,n = m and bm,n 6= k or bm,n = k and ak,n 6= m, oth-
erwise it equals 1. The function Γan(rm,n) = 0, if rm,n = 1 and ak,n = m,
otherwise it equals 1. The “redundant formulation” of using an together with
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bn is the key to make the algorithm scalable for large numbers of PMPCs
and measurements. The association vectors for all times up to n are given
by a1:n , [aT

1 · · · aT
n ]T and b1:n , [bT

1 · · · bT
n ]T. A figure that conceptually

illustrates the DAs between measurements and PMPCs is given in [42].

4 Joint Posterior PDF and Problem Formulation

4.1 Joint Posterior PDF and Factor Graph

Here, we assume that the measurements z1:n , [zT
1 , . . . ,z

T
n ]T for all times up

to n are observed and thus fixed. By using common assumptions [8], [28], [29],
the joint posterior PDF of y1:n, a1:n, b1:n, µfa1:n, and m1:n conditioned on the
observed measurement vector z1:n is given by

f(y1:n,a1:n, b1:n,µfa1:n,m1:n|z1:n)

= f(y
1:n
,y1:n,a1:n, b1:n,µfa1:n,m1:n|z1:n)

∝ f(z1:n|y1:n
,y1:n,a1:n, b1:n,m1:n)f(y

1:n
,y1:n,a1:n, b1:n,µfa1:n,m1:n).

(10)

After inserting the expressions (42) and (52) and performing some simple ma-
nipulations, the joint posterior PDF in (10) can be rewritten as

f(y
1:n
,y1:n,a1:n, b1:n,µfa1:n,m1:n|z1:n)

∝ f(µfa1)

M1∏

l=1

h(yl,1, bl,1, µfa1; z1)

n∏

n′=2

f(µfan′ |µfan′−1)

×



Kn′−1∏

k′=1

f(y
k′,n′
|yk′,n′−1)





Kn′−1∏

k=1

g(y
k,n′

, ak,n′ , µfan′ ; zn′)

×
Mn′∏

m=1

ψ(ak,n′ , bm,n′)






Mn′∏

m′=1

h(ym′,n′ , bm′,n′ , µfan′ ; zn′)


 (11)

where the functions g(y
k,n
, ak,n, µfan; zn) and h(ym,n, bm,n, µfan; zn) will be

discussed next.
The pseudo likelihood functions g(y

k,n
, ak,n, µfan; zn) = g(xk,n, rk,n, ak,n,

µfan; zn) and h(ym,n, bm,n, µfan; zn) = h(xm,n, rm,n, bm,n, µfan; zn) are given
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by

g(xk,n, rk,n = 1, ak,n, µfan; zn)

=





n(µfan)f(zm,n|xk,n)pd(uk,n)

µfanffa(zm,n)
, ak,n = m

n(µfan)
(
1− pd(uk,n)

)
, ak,n = 0

(12)

and g(xk,n, rk,n = 0, ak,n, µfan; zn) = 1̄(ak,n)n(µfan) with a factor related to

FAR n(µfan) , (e−µfanµfa
Mn
n )1/(Kn−1+Mn) and by

h(xm,n, rm,n = 1, bm,n, µfan; zn)

=





0, bm,n = k
n(µfan)µnfn(xm,n)f(zm,n|xm,n)

µfanffa(zm,n)
, bm,n = 0

(13)

and h(xm,n, rm,n = 0, bm,n, µfan; zn) = n(µfan), respectively. The factor graph
[43], [44] representing the factorization in (11) is shown in Fig. 1. The detailed
derivations of the joint posterior PDF in (11) and the pseudo likelihood func-
tions in (12) and (13) are provided in the Appendix in Section A, Section B,
and Section C.

4.2 PMPC Detection and State Estimation

The problem considered is the sequential detection of PMPCs and estimation
of their states yk,n, k ∈ {1, . . . ,Kn−1 + Mn} along with the estimation of the
FAR fan based on the measurement vector z1:n. This relies on the marginal
posterior existence probabilities p(rk,n = 1|z1:n), the marginal posterior PDFs
f(xk,n|rk,n = 1, z1:n) and f(µfan|z1:n). More specifically, a PMPC is detected
if p(rk,n = 1|z1:n) > pde [45], where pde is the existence probability threshold
not to be confused with ude the detection threshold of the snapshot-based es-
timator. The probabilities p(rk,n = 1|z1:n) are obtained from the marginal
posterior PDFs of the PMPC states, f(yk,n|z1:n) = f(xk,n, rk,n|z1:n), accord-
ing to

p(rk,n = 1|z1:n) =
〈
f(xk,n, rk,n = 1|z1:n)

〉
1R5×1 (xk,n)

(14)

and the marginal posterior PDFs f(xk,n|rk,n = 1, z1:n) are obtained from
f(xk,n, rk,n|z1:n) as

f(xk,n|rk,n = 1, z1:n) =
f(xk,n, rk,n = 1|z1:n)

p(rk,n = 1|z1:n)
. (15)
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Figure 1: Factor graph representation of the factorized joint posterior PDF (11).
For simplicity, the following short notations are used: K , Kn−1, M ,Mn; variable
nodes: ak , ak,n, bm , bm,n, µfa , µfan, y

k
, y

k,n
, ym , ym,n; factor nodes: fk ,

f(y
k,n
|yk,n−1), gk , g(xk,n, rk,n, ak,n, µfan;zn), hm , h(xm,n, rm,n, bm,n, µfan;zn),

fµfa , f(µfan|µfan−1), Ψk,m , Ψ(ak,n, bm,n); prediction: χk , χ(xk,n, rk,n),

χµfa , χ(µfan); measurement evaluation: βk , β(ak), ξm , ξ(bm); loopy DA:
νm,k , νm→k(ak,n), ζk,m , ζk→m(bm,n), ηk , η(ak), ςm , ς(bm); measurement
update: γk , γ(xk,n, rk,n), ρk , ρk(µfan), φm , φ(xm,n, rm,n), κm , κm(µfan);

belief calculation: q−
k
, q(xk,n−1, rk,n−1), q

k
, q(xk,n, rk,n), qm , q(xm,n, rm,n),

q−µfa
, q(µfan−1), qµfa , q(µfan).

The number of detected PMPCs represents the estimated NoM given by L̂n.
The states uk,n and θk,n of the detected PMPCs are estimated by means of the
MMSE estimator [46], i.e.,

uMMSE
k,n ,

〈
uk,n

〉
f(xk,n|rk,n=1,z1:n)

(16)

θMMSE
k,n ,

〈
θk,n

〉
f(xk,n|rk,n=1,z1:n)

(17)

with θMMSE
k,n = [dMMSE

k,n ϕMMSE
k,n ]T ∈ R2×1, respectively. Note that the es-

timated component SNRs is given by SNR MMSE
k,n =

(
uMMSE
k,n

)2
. Finally, the

estimate of the FAR fan is given by

µfa
MMSE
n ,

〈
µfan

〉
f(µfan|z1:n)

. (18)

To initialize the dispersion parameters of the snapshot-based channel es-
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timator (see Section 2.2), the prior PDF is assumed to be Gaussian with
vector-valued mean given by the MMSE estimate θMMSE

k,n−1 ∈ R2×1 and covari-

ance matrix Σk,n−1 = diag{σd
MMSE
k,n−1 σϕ

MMSE
k,n−1 } ∈ R2×2 of the parameters with

k ∈ {1, . . . , L̂n−1}, where σd
MMSE
k,n =

(〈
(dk,n − dMMSE

k,n )2
〉
f(xk,n|rk,n=1,z1:n)

) 1
2

and σϕ
MMSE
k,n =

(〈
(ϕk,n − ϕMMSE

k,n )2
〉
f(xk,n|rk,n=1,z1:n)

) 1
2 .

As the number of PMPCs grows with time n (at each time by Kn = Kn−1 +
Mn), PMPCs with p(rk,n = 1|z1:n) below a threshold ppr are removed from
the state space (“pruned”).

5 The Proposed Sum-Product Algorithm

The posterior PDFs f(xk,n, rk,n|z1:n), f(xm,n, rm,n|z1:n), and f(µfan|z1:n) in-
volved in (14), (15) and (18) are marginal PDFs of the joint posterior PDF
f(y1:n,a1:n, b1:n,µfa1:n,m1:n|z1:n). Since direct marginali- zation of the joint
posterior PDF is infeasible, we use loopy (iterative) BP [43] by means of the
sum-product algorithm rules [43], [44] on the factor graph shown in Fig. 1. Due
to the loops inside the factor graph, the resulting beliefs q(y

k,n
) = q(xk,n, rk,n),

q(ym,n) = q(xm,n, rm,n), and q(µfan) are only approximations of the respective
posterior marginal PDFs, and there is no canonical order in which the messages
should be computed [43]. For the proposed algorithm, we specify the following
order: (i) messages are not sent backward in time; (ii) iterative message passing
is only performed for probabilistic DA at each time n. Combining the specified
order with the generic BP rules for calculating messages and beliefs yields the
following calculations at each time n (which are in parts in line with [8], [29,
Ch. III]):

1. Prediction: First, a prediction step is performed. The prediction for the
FAR is given by

χ(µfan) =
〈
f(µfan|µfan−1)

〉
q(µfan−1)

(19)

and for all the legacy PMPCs is given by

χ(xk,n, rk,n)

=
∑

rk,n−1∈{0,1}

〈
f(xk,n, rk,n|xk,n−1, rk,n−1)

〉
q(xk,n−1,rk,n−1)

(20)

where q(µfan−1) and q(xk,n−1, rk,n−1) were calculated at the previous
time n − 1. After substituting the PMPC state-transition PDFs in (20)
with (4) and (5), respectively, we obtain the prediction messages for leg-
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acy PMPCs as

χ(xk,n, 1) = ps

〈
f(xk,n|xk,n−1)

〉
q(xk,n−1,1)

(21)

and χ(xk,n, 0) = χk,nfD(xk,n) with

χk,n = (1− ps)
〈
q(xk,n−1, 1)

〉
1R5×1 (xk,n−1)

+ q
k,n−1

(22)

where χk,n,
〈
χ(xk,n, 0)

〉
1R5×1 (xk,n)

and q
k,n−1

,
〈
q(xk,n−1, 0)

〉
1R5×1 (xk,n−1)

.

After the prediction step, the following steps are performed for all legacy
and new PMPCs in parallel:

2. Measurement Evaluation: For legacy PMPCs, the messages β(ak,n) passed
from the factor nodes g(xk,n, rk,n, ak,n, µfan; zn) to the PMPC-oriented
DA variable nodes ak,n are calculated by

β(ak,n) =
〈〈
g(xk,n, 1, ak,n, µfan; zn)

〉
χ(xk,n,1)

〉
χ(µfan)

+ 1̄(ak,n)
〈〈
χ(xk,n, 0)n(µfan)

〉
1R5×1 (xk,n)

〉
χ(µfan)

. (23)

For new PMPCs, the messages ξ(bm,n) passed from the factor nodes
h(xm,n, rm,n, bm,n, µfan; zn) to the measurement-oriented DA variable
nodes bm,n are calculated according to

ξ(bm,n) =
∑

rm,n∈{0,1}

〈〈
h(xm,n, rm,n, bm,n, µfan; zn)

〉
1R5×1 (xm,n)

〉
χ(µfan)

.

(24)

More specifically, for bm,n = k it becomes ξ(bm,n)=
〈
n(µfan)χ(µfan)

〉
1R(µfan)

and for bm,n = 0 it becomes

ξ(bm,n) =
〈
n(µfan)χ(µfan)

〉
1R(µfan)

+
〈〈µnfn(xm,n)n(µfan)

µfan

× f(zm,n|xm,n)

ffa(zm,n)

〉
1R5×1 (xm,n)

〉
χ(µfan)

. (25)

3. Iterative Probabilistic DA: With the messages β(ak,n) and ξ(bm,n), the
probabilistic DA messages η(ak,n) and ς(bm,n) are obtained with an effi-
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cient loopy BP-based algorithm as shown in [8], [35], [41]

η(ak,n) =

Mn∏

m=1

ν
(p)
ψm→k

(ak,n) (26)

ς(bm,n) =

Kn−1∏

k=1

ζ
(p)
ψk→m

(bm,n) (27)

where ν
(p)
ψm→k

(ak,n) and ζ
(p)
ψk→m

(bm,n) denote the messages passed from
ψ(ak,n, bm,n) to the variable nodes ak,n and bm,n at each iteration p ∈
{1, . . . , P}, respectively.

4. Measurement Update: For legacy PMPCs, the messages γ(xk,n, rk,n)
passed from the factor nodes g(xk,n, rk,n, ak,n, µfan; zn) to the variable
nodes y

k,n
are calculated by

γ(xk,n, 1) =

Mn∑

ak,n=0

η(ak,n)
〈
g(xk,n, 1, ak,n, µfan; zn)

〉
χ(µfan)

(28)

and γ(xk,n, 0) = γk,nfD(xk,n) with

γk,n =
〈
γ(xk,n, 0)

〉
1R5×1 (xk,n)

= η(0)
〈
n(µfan)

〉
χ(µfan)

. (29)

For new PMPCs, the messages φ(xm,n, rm,n) passed from the factor nodes
h(xm,n, rm,n, bm,n, µfan; zn) to the variable nodes ym,n are calculated by

φ(xm,n, 1) = ς(0)
〈
h(xm,n, 1, bm,n, µfan; zn)

〉
χ(µfan)

(30)

and φ(xm,n, 0) = φm,nfD(xm,n) with

φm,n ,
〈
φ(xm,n, 0)

〉
1R5×1 (xm,n)

=

Kn−1∑

bm,n=0

ς(bm,n)
〈
n(µfan)

〉
χ(µfan)

. (31)

For the FAR fan, the messages ρk(µfan) and κm(µfan) passed from the
factor nodes g(xk,n, rk,n, ak,n, µfan; zn) and h(xm,n, rm,n, bm,n, µfan; zn),
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respectively, to the variable node µfan are calculated by

ρk(µfan) =

Mn∑

ak,n=0

η(ak,n)
∑

rk,n∈{0,1}

〈
g(xk,n, rk,n, ak,n, µfan; zn)

〉
χ(xk,n,rk,n)

(32)

and

κm(µfan) = n(µfan)ς(0)
〈µnf(zm,n|xm,n)

µfanffa(zm,n)

〉
fn(xm,n)

+

Kn−1∑

bm,n=0

ς(bm,n)n(µfan) . (33)

5. Belief Calculation: With all the messages above, the approximations of
the marginal posterior PDFs needed for the MMSE estimations in Sec-
tion 4.2 are calculated as follows. The beliefs q(y

k,n
) = q(xk,n, rk,n) ap-

proximating the marginal posterior PDFs f(y
k,n
|z1:n) = f(xk,n, rk,n|z1:n)

for legacy PMPCs are obtained as

q(xk,n, 1) =
1

Ck,n
χ(xk,n, 1)γ(xk,n, 1) (34)

and q(xk,n, 0) = q
k,n
fD(xk,n) with q

k,n
=

1

Ck,n
χk,nγk,n. The normal-

ization constant is given as Ck,n =
〈
γ(xk,n, 1)〉χ(xk,n,1) + χk,nγk,n. The

beliefs q(ym,n) = q(xm,n, rm,n) approximating the marginal posterior
PDFs f(ym,n|z1:n) = f(xm,n, rm,n|z1:n) for new PMPCs are obtained as

q(xm,n, 1) =
1

Cm,n
φ(xm,n, 1) (35)

and q(xm,n, 0) = qm,nfD(xm,n) with qm,n =
1

Cm,n
φm,n. The normaliza-

tion constant is given as Cm,n =
〈
φ(xm,n, 1)

〉
1R5×1 (xm,n)

+φm,n. Finally,

the belief q(µfan) approximating the marginal posterior PDF f(µfan|z1:n)
for the FAR is obtained as

q(µfan) = χ(µfan)

Kn−1∏

k=1

ρk(µfan)

Mn∏

m=1

κm(µfan). (36)
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6 Particle-based Implementation

Since integrations involved in the calculations of the messages and beliefs can-
not be obtained analytically, we use a computationally efficient sequential
particle-based message passing implementation which provides approximate
computation. In what follows, we present particle-based implementations for
FAR related steps (19), (32), (33) and (36). The implementation of all other
steps in Section 5, and the calculation of posterior existence probabilities of
PMPCs are performed in line with [35, Section VI]. Similarly to [8], our im-
plementation uses a “stacked state” [47] comprising the PMPC states and the
FAR state.

1. Prediction: The belief q(µfan−1) calculated at the previous time n −
1 is represented by J particles and weights, i.e., {µ̂fa

(j)
n−1, ŵfa

(j)
n−1}Jj=1.

At time n, for each particle µ̂fa
(j)
n−1, j ∈ {1, . . . , J} one particle µ

′
fa

(j)

n

with corresponding weight w
′
fa

(j)

n = ŵfa
(j)
n−1 is drawn from f(µfan|µfan−1),

and {µ′fa
(j)

n , w
′
fa

(j)

n }Jj=1 represent the prediction message χ(µfan) in (19).
Note that the proposal distribution underlying the weight calculation is
f(µfan|µfan−1).

2. Measurement Update: The non-normalized weights corresponding to the
messages for legacy PMPCs ρk(µfan) in (32) and new PMPCs κm(µfan)
in (33) are calculated by

wfa
(j)
k,n =

Mn∑

ak,n=0

η(ak,n)g(x
(j)
k,n, 1, ak,n, µfa

(j)
n ; zn)w

(j)
k,n

+ n(µfa
(j)
n )

(1−∑J
j=0 w

(j)
k,n)

J
(37)

and

wfa
(j)
m,n = n(µfa

(j)
n )

µnf(zm,n|x(j)
m,n)

µfa
(j)
n ffa(zm,n)

fn(x(j)
m,n) +

Kn−1∑

bm,n=0

ς(bm,n)n(µfa
(j)
n )

(38)

respectively. The weighted particles {x(j)
k,n, w

(j)
k,n}Jj=1 represent the pre-

diction messages χ(xk,n, rk,n) of legacy PMPCs in (20), thus their pre-

dicted existence probabilities can be approximated as
∑J
j=0 w

(j)
k,n, and (1−

∑J
j=0 w

(j)
k,n)/J is the weight of particles representing χ(xk,n, 0). Moreover,
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the weighted particles {x(j)
m,n, w

(j)
k,n = 1/J}Jj=1 with equal weights repres-

ent the states of new PMPCs.

3. Belief Calculation and State Estimation: The above approximate mes-
sages are further used for calculating the non-normalized weights corres-
ponding to the belief q(µfan) in (36), given by

wfa
(j)
n = w

′
fa

(j)

n

Kn−1∏

k=1

wfa
(j)
k,n

Mn∏

m=1

wfa
(j)
m,n. (39)

After normalization wfa
(j)
n = wfa

(j)
n /

∑J
j=0 wfa

(j)
n , an approximation of the

MMSE state estimate µfa
MMSE
n in (18) is given by

µfa
MMSE
n ≈

J∑

j=0

wfa
(j)
n µ

′
fa

(j)

n . (40)

To avoid the particle degeneracy effect, a resampling step [35] is performed as

a final preparation for the next time n+ 1 leading to {µ̂fa
(j)
n , ŵfa

(j)
n = 1/J}Jj=1

representing the belief q(µfan). Assuming a fixed number P of message passing
iterations for DA, the computational complexity of calculating the (approxim-
ate) marginal posterior PDFs scales only linearly in the number of particles.
Moreover, the complexity of the iterative DA given by the operations in (26)
and (27) scales as O(Kn−1Mn), i.e., quadratically in the number of PMPCs
[29], [35], [41].

7 Experimental Results

The performance of the proposed algorithm is validated using both synthetic
and real radio measurements. For synthetic measurements, the performance
is further compared with the posterior-CRLB [48] and that of the KEST al-
gorithm [27].

7.1 Analysis Setup

Common Simulation Setup

For synthetic and real measurements, the following setups and parameters are
commonly used. We assume that MPC dispersion parameters with according
velocities and normalized amplitudes evolve independently across time and to
each other. More specifically, the state-transition PDF of θk,n (with according
velocities vdk,n and vϕk,n) is chosen to be a nearly-constant velocity model.
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The state-transition PDF of the normalized amplitude uk,n is chosen to be
uk,n = uk,n−1 +εuk,n, where the noise uk,n is iid across k and n, zero-mean, and

Gaussian with variance σ2
uk,n. Based on the models above, the state-transition

PDF of legacy PMPC state xk,n is collectively given as xk,n = Fxk,n−1 + Γεn,

where the transition matrices F ∈ R5×5 and Γ ∈ R5×3 are formulated as in
[23], [49, Section 6.3.2] with sampling period ∆T = 1 s. The driving process
εn ∈ R3×1 is iid across k and n, zero-mean and Gaussian with covariance
matrix diag{σ2

d, σ
2
ϕ, σ

2
uk,n}. In addition, the state-transition PDF of the FAR

fan is given as µfan = µfan−1 + εfan, where fan is iid across n, zero-mean, and
Gaussian with variance σ2

fa.13 For computational efficiency of the particle-
based implementation, the likelihood function (9) of the normalized amplitude
is approximated by a truncated Gaussian PDF, i.e.,

f(zum,n|uk,n) =

1
σuk,n

√
2π

exp
(−(zum,n−uk,n)2

2σ2
uk,n

)

pd(uk,n)
(41)

for zum,n >
√
ude, where pd(uk,n) = Q((

√
ude − uk,n)/σuk,n) is the CDF of

Gaussian distribution. The birth PDF of a new PMPCs fn(xm,n) = 1/(2πdmax)
is assumed to be uniform on [0, 2πdmax). The particles for the initial state xm,n
of a new PMPC are drawn from a 5-D Gaussian PDF with means [zdm,nzϕm,n
zum,n 0 0]T and variances [σ2

dm,nσ
2
ϕm,n

σ2
um,nσ

2
vd
σ2

vϕ ]T, where σ2
dm,n, σ2

ϕm,n

and σ2
um,n are calculated using the amplitude measurements zum,n (see Sec-

tion 3.3). The particles for the initial FAR fan state are drawn from a Gaussian
PDF with mean M1/2 and variance σ2

faini
. The other simulation parameters

are as follows: the survival probability ps = 0.999, the existence probability
threshold pde = 0.5, the pruning threshold ppr = 10−4, the mean number of
newly detected MPCs µn = 0.008, the maximum number of message passing
iterations for DA P = 5000 and the PDFs of the states are represented by
J = 10000 particles each.

For each simulation run, AWGN is generated with noise variance σ2 spe-

cified by the SNR output defined as SNR1m = 10 log10

( |αLoS|2‖sLoS‖2
σ2

)
, where

the amplitude αLoS and the signal vector sLoS of the line-of-sight (LoS) path
are computed at 1 m distance. For comparability with other papers presenting
parametric channel estimation methods as for example [21], [25], [27], we also
define the input SNR, i.e., SNRin

1m =SNR1m−10 log10(NsH), the input compon-

ent SNRs SNRin
l,n=10 log10

(
S̃NRl,n/(NsH)

)
and the input detection threshold

uin
de =10 log10

(
ude/(NsH)

)
excluding the array and frequency sample gain.

13Incorporating the interacting multiple model (IMM) [37] into the algorithm can help
to resolve the motion uncertainties of the unknown variable states, therefore the demand
on presetting and tunning of noise variances for the state-transition PDFs can be relaxed.
However, it is out of the scope of this paper and can be considered as a future extension.
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Figure 2: Results for fully synthetic measurements with the proposed algorithm
given SNRin

1m = 5.4 dB. The estimates of (a) distances, (b) AoAs, and (c) input
component SNRs. The black solid lines denote the true MPC parameters. The
gray dots denote the false alarm measurements. The estimates of different MPCs
are denoted with densely-dashed lines with square markers in different colors. The
horizontal dashed and dash-dotted lines in (c) indicate the detection thresholds of
−20 dB and −14.4 dB, respectively.

Metrics

The performance of different methods is measured using the OSPA metric [50],
which can efficiently capture the estimation errors of the NoM and MPC states
when comparing with the true MPC states at each time. We use OSPA metric
order 2 and cutoff parameters 0.1 m and 10◦ for distance and AoA respectively,
where cutoff parameters denote the weightings of how the metric penalizes the
NoM estimation errors as opposed to MPC state estimation errors. In addition,
we compute the posterior-CRLB [48] as a performance benchmark. The error

bounds for distance and AoA at time n are given as εdn = (
tr[Jp

−1
n ]1:Ln
Ln

)
1
2 and

εϕn = (
tr[Jp

−1
n ]Ln+1:2Ln

Ln
)

1
2 , where Jpn denotes the posterior FIM. The mean

OSPA (MOSPA) errors, mean error bounds (MEBs), and the mean estimate
of each unknown variable are obtained by averaging over all simulation runs.

7.2 Performance for Synthetic Measurements

We assume that the static single-antenna Tx transmits s̃(t) to the Rx equipped
with a 3 × 3 uniform rectangular array with inter-element spacing of 2 cm.
Over 364 time steps, 7 MPCs with different lifetimes and time-varying dis-
tances and AoAs were synthesized. The amplitude of each MPC is assumed
to follow free-space pathloss and is attenuated by 3 dB after each reflection.
Furthermore, we have designed two intersections between MPCs in their dis-
tance and AoA parameters at time n = 83 and n = 125, respectively. For the
intersection at time n = 83, the distances intersect simultaneously with the
amplitudes. For the transmit signal s̃(t), we use a root-raised-cosine pulse with
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a roll-off factor of 0.6 and pulse duration of Tp = 2 ns (bandwidth of 500 MHz)
at center frequency of fc = 6 GHz. With sampling period Ts = 1.25 ns, the
number of samples per array element is Ns = 46. In [11], [39], a detec-
tion threshold uin

de is determined for SR-SBL channel estimation algorithms
for single-snapshot wideband MIMO measurements. Given the signal para-
meters, number of antennas, and array-layout as defined above, this detection
threshold uin

de for a chosen false alarm probability of 10−2 is given as −14.4 dB.
MPCs below uin

de are mostly miss detected and therefore barely utilized as
measurements in the proposed algorithm. To support the detection and es-
timation of low SNR MPCs, the detection threshold can be relaxed. This
will inevitably bring more false alarm measurements, but the proposed al-
gorithm can efficiently filter them out even under low SNRin

1m conditions as
shown in the following experimental results. We performed 100 simulation
runs for each SNRin

1m ∈ {−0.6, 2.4, 3.9, 5.4, 8.4, 13.4, 15.4, 18.4} dB with para-
meters: dmax = 17 m, σfaini

= 0.5, σfa = 0.15, σd = 0.002 m/s2, σϕ = 0.17◦/s2,
σuk,n = 0.02uMMSE

k,n−1 , σvd
= 0.01 m/s, σvϕ = 0.6◦/s.14 Note that the first four

SNRin
1m values represent extreme testing setups, where the true component

SNRs (output) of some MPCs are even below or close to 0 dB SNR output.

Fully Synthetic Measurements

First, we present the simulation results using fully synthetic measurements
without involving the snapshot-based channel estimator. In each simulation
run, MPC-oriented measurements were generated by adding Gaussian noises
to the true MPC parameters, where the noise variances were state-dependent
and computed as in Section 3.3. In addition, false alarm measurements were
generated with increasing FAR µfan from 1.5 to 3. More specifically, the dis-
tances and AoAs of false alarm measurements were drawn from uniform dis-
tributions in the validation region, and the norm amplitudes were generated
with Rayleigh distribution with squared scale parameter 1/2 using a detection
threshold of uin

de = −20 dB.

Fig. 2 shows the results of an exemplary simulation run given SNRin
1m =

5.4 dB. It is seen that the proposed algorithm exhibits high detection and estim-
ation accuracy for medium and high SNR MPCs. The “weakest” MPC—with
component SNR below the detection threshold of −20 dB—is stably detected
shortly after the beginning although the related measurements are mostly miss
detected in the SR-SBL. In addition, the proposed algorithm excellently copes
with intersecting MPCs. Fig. 3 further presents the MOSPA errors and the
mean estimates of the NoM and the FAR given SNRin

1m = {5.4, 13.4, 18.4} dB.
Given medium and high SNRin

1m values, the NoM is accurately estimated and

14The heuristic approach to scale the standard deviation σuk,n by the MMSE estimates

uMMSE
k,n−1 was chosen since the range of normalized amplitude values tends to be very large.
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Figure 3: Results for fully synthetic measurements with the proposed algorithm
(prop. alg.) given SNRin

1m = {5.4, 13.4, 18.4} dB. MOSPA errors of the estimated (a)
distances, (b) AoAs, and (c) input component SNRs. Mean estimates of the NoM
(d) and the FAR (e).

the MOSPA errors attain the MEBs. For distance, AoA and component SNR,
the MOSPA errors are mostly below 2 cm, 2◦ and −35 dB, respectively. Given
SNRin

1m = 5.4 dB, the MOSPA errors remain on the MEB-levels mostly, des-
pite a few peaks due to the underestimated NoM. Furthermore, the FAR is
accurately estimated for all conditions.

Synthetic Radio Measurements

Next, we show the overall performance of the proposed two-stage algorithm by
involving the snapshot-based channel estimator. In each simulation run, radio
measurements were synthesized by applying true MPC parameters to the radio
signal model (2) with given SNRin

1m. The measurements zm,n at each time n
were provided by a snapshot-based SR-SBL channel estimator in line with the
implementation in [30]. We relaxed the detection threshold to uin

de = −18 dB

for SNRin
1m values above 5 dB and uin

de = −20 dB otherwise. For comparison, we
implemented the KEST algorithm according to [19] and [27] which performs
detection of MPCs and sequential estimation of their distances, AoAs and
amplitudes. For NoM estimation in the KEST algorithm, the penalty factor
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Figure 4: Results for synthetic radio measurements given SNRin
1m =

{5.4, 13.4, 18.4} dB. MOSPA errors of the estimated (a) distances, (b) AoAs, and
(c) input component SNRs. Mean estimates of the NoM (d).

for a NoM change was set to pchg = 0.1, and the penalty pord for a higher NoM
was chosen according to the MDL principle [19], [27].

For comparison between the proposed algorithm and the KEST algorithm
of an exemplary simulation run, the reader is referred to Appendix E in [42].
Fig. 4 shows the MOSPA errors, MEBs and the mean estimate of the NoM
for each SNRin

1m ∈ {5.4, 13.4, 18.4} dB. The peaks of MOSPA errors indicate
the NoM estimation errors which mostly happen when there is MPC birth
or death. For medium and high SNRin

1m, it shows that the MOSPA errors of
the proposed algorithm are mostly below 2 cm, 2◦ and −35 dB respectively for
distance, AoA and input component SNR. The KEST algorithm shows com-
parable results except for the high error peaks around the intersecting MPCs
at time n = 83. At low SNR, the MOSPA errors versus time n of the proposed
algorithm are slightly above the MEBs since the “weakest” MPCs—with com-
ponent SNRs well below the relaxed detection thresholds—are occasionally not
detected, however, the KEST algorithm has much larger MOSPA errors, since
it almost never detects these MPCs.

Finally, Fig. 5 shows component SNRs of the MPCs, the mean cardinality
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Figure 5: Results for synthetic radio measurements: The average (averaged over all
time steps) (a) true input component SNRs of 7 MPCs, (b) mean cardinality error
of the NoM, and (c) and (d) MOSPA errors and MEBs. In (a), the dash-dotted
line indicates the theoretical detection threshold of −14.4 dB, and the dashed lines
indicate the relaxed detection thresholds of −20 dB and −18 dB, respectively.

error [50] in the NoM, and MOSPA errors averaged over all time steps versus
SNR (SNRin

1m ∈ {−0.6, 2.4, 3.9, 5.4, 8.4, 13.4, 15.4, 18.4} dB). Fig. 5a shows that
quite a few of the MPCs have component SNRs that are below the relaxed
detection thresholds (some even far below the theoretical threshold) for the
first five SNRin

1m values. These MPCs are mostly miss detected by the KEST
algorithm, leading to a much higher mean cardinality error [50] as shown in
Fig. 5b and therefore also to much higher MOSPA errors, as shown in Fig. 5c
and Fig. 5d, than that of the proposed algorithm. By setting the cutoff para-
meters to larger values, i.e., 0.3 m and 30◦, the mean cardinality error and
MOSPA errors are better visualized. At high SNRin

1m values both algorithms
mostly detected all MPCs. However, the proposed algorithm still outperforms
the KEST algorithm since its MOSPA errors are lower when MPCs are inter-
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Figure 6: Floor plan of the measurement environment and the results of the proposed
algorithm using real radio measurements of setup-2 (1 GHz bandwidth, 5 × 5 array)
at time n = 50. For each of the 10 detected MPCs, the estimated state is transformed
into a two-dim. coordinate and associated with a geometrically calculated VA.

secting. In summary, the proposed algorithm outperforms the KEST algorithm
in all testing conditions and attains the MEBs for SNRin

1m above 5 dB. A study
of the runtimes for both algorithms can be found in Appendix E in [42]. For
instance, the runtimes per time step (for MATLAB implementations) of both
algorithms for SNRin

1m = 18.4 dB, obtained by averaging over all simulation
runs and time steps, are both approximately 2 s / step.

7.3 Performance for Real UWB Radio Measurements

For further validation of the proposed algorithm, we use real radio measure-
ments collected in a seminar room at TU Graz, Austria. The floor plan is
depicted in Fig. 6, including the positions of the static Tx and a few mirror
images of the Tx, i.e., VAs, which model the MPCs due to specular reflections.
More details about the measurement environment and VA calculations can be
found in [8], [51], [52]. On the Tx side, a dipole-like antenna with an approxim-
ately uniform radiation pattern in the azimuth plane and zeros in the floor and
ceiling directions was used. At each Rx position, a same antenna was mounted
on a plotter and moved yielding a virtual uniform rectangular array with an
inter-element spacing of 2 cm. The UWB signals are measured at 100 Rx pos-
itions along a 2 m trajectory using an M-sequence correlative channel sounder
with frequency range 3.1–10.6 GHz. We selected a subband with bandwidth
B = 1/Tp using filtering with a root-raised-cosine pulse with a roll-off factor of
0.6 and pulse duration Tp at center frequency of fc = 6 GHz. The following two
measurement setups are used: (i) setup-1: Tp = 2 ns, B = 0.5 GHz, Ns = 94,

3×3 array, SNRin
1m = 0.7 dB, uin

de = −16 dB; (ii) setup-2: Tp = 1 ns, B = 1 GHz,

Ns = 187, 5 × 5 array, SNRin
1m = −6.7 dB, uin

de = −20 dB. Since no significant
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AWGN was observed from the filtered signal, artificial AWGN generated with
SNR1m was added. The simulation parameters are as follows: dmax = 30 m,
σd = 0.03 m/s2, σϕ = 1◦/s2, σuk,n = 0.1uMMSE

k,n−1 , σfa = 1, σvd
= 0.1 m/s,

σvϕ = 6◦/s.
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Figure 7: Results for real radio measurements. (a) and (b) depict the delay and
angular power spectra versus time for setup-2. Corresponding to the distinct peaks
and their variations in the spectra, a few exemplary distance and AoA paths (white
dashed lines) are calculated with geometrically expected VAs, of which the orders are
highlighted with markers listed in Fig. 6. The distance and AoA estimates of the
detected MPCs are shown for setup-1 in (c) and (d), and for setup-2 in (e) and (f),
among which the estimates associated with the geometrically calculated paths in (a)
and (c) are highlighted with markers.
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Fig. 7 shows the estimated delays and AoAs of the detected MPCs for
setup-1 and setup-2. The backgrounds of Fig. 7a and Fig. 7b are the delay and
angular power spectra versus time respectively for setup-2, where the peaks
and variations representing individual MPC paths are readily visible in delay
domain with good resolution capability of UWB signals, but hardly resolved
in angular domain with limited array aperture. As can be observed, some
distinct peaks align with the MPC paths predicted with up to 3rd-order geo-
metrically expected VAs, and related to the estimated MPC paths highlighted
with markers in Fig. 7c and Fig. 7d for setup-1 and in Fig. 7e and Fig. 7f for
setup-2. The intersecting 1st-order MPCs and a few short-lived MPCs around
5 m are nearby in both delay and angular domains. They are better resolved
for setup-2 with larger signal bandwidth and array size, however oscillation on
the estimates still exist especially in the angular domain as for setup-1. Fig. 6
zooms into the performance of a single snapshot for setup-2, where the MMSE
estimates of the detected MPC states at time n = 50 after being transformed
into two-dimensional coordinates are shown. Within the 10 detected MPCs,
the LoS component and MPCs related to the three 1st-order VAs w.r.t. sur-
rounding walls are accurately estimated. Most of the other detected MPCs are
also well explained by some higher order VAs (up to order five). However, due
to imperfect antenna-calibration leading to time-dispersive system response,
“ghost” components are sometimes detected alongside significant MPCs. The
estimated MPCs associated with the 2nd and the upper 3rd-order VAs are re-
lated to the complex room structure in the left-upper corner. Note that the
lower wall has high attenuation coefficient and therefore no related MPCs are
detected (as for example the MPC related to the 1st-order VA of the lower wall
which has parameters around 14 m and 270◦). The estimated FARs for both
measurement setups converge rapidly and remain around one over time. The
small and stable values can be explained by the high detection threshold uin

de

used in the SBL channel estimator and the static measurement scenario. More
details can be found in Appendix E in [42]. The proposed algorithm is capable
of detecting MPCs and estimating their parameters that very well resemble the
geometry, and capturing their dynamic behaviors related to the surrounding
environment.

8 Conclusions

We proposed a BP-based algorithm for sequential detection and estimation of
MPC parameters based on radio signals, which adopts a two-stage structure
combining a snapshot-based SR-SBL channel estimator with a BP-based se-
quential detection and estimation algorithm. Using amplitude information and
the augmentation of PMPC states with a binary existence variable enable the
reliable detection of “weak” MPCs with very low component SNRs. Simula-
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tion results using synthetic measurements show that the algorithm excellently
copes with a high number of false alarm measurements and intersecting MPCs
with parameters nearby in the dispersion space. It is capable of estimating
the parameters of MPCs on posterior-CRLB-levels even for low SNR MPCs.
We have shown that the performance of the proposed algorithm compares well
to existing state-of-the-art algorithms for high SNR MPCs, but it significantly
outperforms them for medium and low SNR MPCs. The results using real
radio measurements show that the algorithm demonstrates excellent perform-
ance in challenging indoor-environments by detecting many geometry-related
MPCs up to reflection-order five and estimating their dispersion parameters
with high accuracy. Possible directions for future research include extending
the proposed algorithm to a more general inhomogeneous false alarm intensity
[53] coping with false alarms resulting from model mismatches in the radio
signal such as DMC or incorporating correlations between measurements [54].
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Appendix

We provide derivations of the joint prior PDF and the joint likelihood function
in Section A and Section B respectively, which lead to the factorized expressions
of the joint posterior PDF (11) and the pseudo likelihood functions (12) and
(13) in Section C. In Section D, we derive the squared scale parameter of the
truncated Rician PDF in (9).

A Joint Prior PDF

Before presenting derivations, we first define a few sets as follows: Dan,rn ,
{k ∈ {1, . . . ,Kn−1} : rk,n = 1, ak,n 6= 0} denotes the existing legacy PMPCs

set, and Nrn , {m ∈ {1, . . . ,Mn} : rm,n = 1, bm,n = 0} denotes the existing
new PMPCs set. Correspondingly, the sets of non-existing legacy PMPCs
are given by Dan,rn , {1, . . . ,Kn−1} \ Dan,rn , and the sets of non-existing

new PMPCs are given as N rn , {1, . . . ,Mn} \ Nrn . Hence, the number of
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false alarm measurements can be represented with the sets as kfan = Mn −
|Dan,rn | − |Nrn |, and the number of PMPCs states is given as Kn−1 + Mn =

|Dan,rn |+ |Dan,rn |+ |Nrn |+ |N rn |.
Assuming that the new PMPCs states yn and the PMPC-oriented associ-

ation variables an are conditionally independent given the legacy PMPCs state
y
n
, the joint prior PDF of y

1:n
, y1:n, a1:n, b1:n, fa1:n, and the number of the

measurements m1:n factorizes as

f(y1:n,a1:n, b1:n,µfa1:n,m1:n)

= f(y
1:n
,y1:n,a1:n, b1:n,µfa1:n,m1:n)

= f(µfa1)f(x1|r1,M1)p(r1,a1, b1,M1|µfa1)

n∏

n′=2

f(µfan′ |µfan′−1)

×



Kn′−1∏

k=1

f(y
k,n′
|yk,n′−1)


 f(xn′ |rn′ ,Mn′)p(rn′ ,an′ , bn′ ,Mn′ |µfan′ ,yn′)

(42)

where p(r1,a1, b1,M1|µfa1,y1
) = p(r1,a1, b1,M1|µfa1) since no legacy PMPCs

exist at time n = 1. We determine the prior PDF of new PMPCs f(xn|rn,Mn)
and the joint conditional prior PMF p(rn,an, bn,Mn|µfan,yn) as follows.

Before the current measurements are observed, the number of measurements
Mn is random. The Poisson PMF of the number of existing new PMPCs

evaluated at |Nrn | is given by p(|Nrn |) = µ
|Nrn |
n /|Nrn |!eµn . The prior PDF of

the new PMPC state xn conditioned on rn and Mn is expressed as

f(xn|rn,Mn) =
∏

m∈Nrn

fn(xm,n)
∏

m′∈Nrn

fD(xm′,n). (43)

The PMF for the number of false alarm measurements is given by p(kfan) =

µfa
kfan
n /kfan!eµfan . The joint conditional prior PMF of the binary existence

variables of new PMPCs rn , [r1,n · · · rMn,n], the DA vectors an and bn and
the number of the measurements Mn conditioned on fan and y

n
is obtained as
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[8], [28], [29]

p(rn,an, bn,Mn|µfan,yn)

= χrn,an,Mn


 ∏

m∈Nrn

Γan(rm,n)




 ∏

k∈Dan,rn

pd(uk,n)




×Ψ(an, bn)


 ∏

k′∈Dan,rn

(
1(ak′,n)− rk′,npd(uk′,n)

)

 . (44)

The normalization constant χrn,an,Mn combining the two Poisson PMFs above
is given by

χrn,an,Mn
=
(
e−µn/Mn!

) (
(µn/µfan)|Nrn |µfa

−|Dan,rn
|

n

) (
e−µfanµfa

Mn
n

)
(45)

where the first part (the terms in the first brackets) is fixed after observing
the current measurements given the assumption that the mean number of
newly detected PMPCs n is a known constant. The second part can be merged
with factors in the sets Nrn and Dan,rn , respectively. The third part equals

to n(µfan)(Kn−1+Mn) where n(µfan) , (e−µfanµfa
Mn
n )1/(Kn−1+Mn) is the FAR-

related normalization constant. The two exclusion functions Ψ(an, bn) and
Γan(rm,n) = 0 ensure that p(rn,an, bn,Mn|µfan,yn) 6= 0 if and only if a meas-

urement is generated by only one PMPC (either a legacy or a new one), and a
PMPC generates no more than one measurement.

The product of the prior PDF of new PMPCs (43) and the joint conditional
prior PMF (44) after merging factors can be written up to the normalization
constant as

p(rn,an, bn,Mn|µfan,yn)f(xn|rn,Mn)

∝


ψ(an, bn)

∏

k∈Dan,rn

n(µfan)pd(uk,n)

µfan

×
∏

k′∈Dan,rn

n(µfan)
(
1̄(ak′,n)− rk′,npd(uk′,n)

)



×


 ∏

m∈Nrn

n(µfan)µnfn(xm,n)

µfan

Γan(rm,n)
∏

m′∈Nrn

n(µfan)fD(xm′,n)


 .

(46)
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With some simple manipulations using the definitions of exclusion functions
Ψ(an, bn) and Γan(rm,n) (see Section 3.5), Eq. (46) can be rewritten as the
product of factors related to the legacy PMPCs and to the new PMPCs, re-
spectively, i.e.,

p(rn,an, bn,Mn|µfan,yn)f(xn|rn,Mn)

∝



Kn−1∏

k=1

g1(y
k,n
, ak,n, µfan;Mn)

Mn∏

m=1

ψ(ak,n, bm,n)




×
(

Mn∏

m′=1

h1(ym′,n, bm′,n, µfan;Mn)

)
(47)

with g1(y
k,n
, ak,n, µfan;Mn)=g1(xk,n, rk,n, ak,n, µfan;Mn) given by

g1(xk,n, rk,n = 1, ak,n, µfan;Mn) ,





n(µfan)pd(uk,n)

µfan

, ak,n = m

n(µfan)
(
1− pd(uk,n)

)
, ak,n = 0

(48)

and g1(xk,n, rk,n = 0, ak,n, µfan;Mn) , 1̄(ak,n)n(µfan), and h1(ym,n, bm,n, µfan;
Mn) = h1(xm,n, rm,n, bm,n, µfan;Mn) is given by

h1(xm,n, rm,n = 1, bm,n, µfan;Mn) ,





0, bm,n = k
n(µfan)µnfn(xm,n)

µfan

, bm,n = 0
(49)

and h1(xm,n, rm,n = 0, bm,n, µfan;Mn) , n(µfan).
Finally, by inserting (47) into (42), the joint prior PDF can be rewritten as

f(y
1:n
,y1:n,a1:n, b1:n,µfa1:n,m1:n)

∝ f(µfa1)

M1∏

l=1

h1(yl,1, bl,1, µfa1;M1)

n∏

n′=2

f(µfan′ |µfan′−1)

×



Kn′−1∏

k′=1

f(y
k′,n′
|yk′,n′−1)





Kn′−1∏

k=1

g1(y
k,n′

, ak,n′ , µfan′ ;Mn′)

×
Mn′∏

m=1

ψ(ak,n′ , bm,n′)






Mn′∏

m′=1

h1(ym′,n′ , bm′,n′ , µfan′ ;Mn′)


 . (50)
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B Joint Likelihood Function

Assume that the measurements zn are independent across n, the conditional
PDF of z1:n given y

1:n
, y1:n, a1:n, b1:n, and the number of measurements m1:n

is given by

f(z1:n|y1:n
,y1:n,a1:n, b1:n,m1:n) =

n∏

n′=1

f(zn′ |yn′ ,yn′ ,an′ , bn′ ,Mn′) . (51)

Note that f(z1|y1
,y1,a1, b1,M1) = f(z1|y1,a1, b1,M1) since no legacy PMPCs

exist at time n = 1. The conditional PDF f(zm,n|xk,n) characterizing the stat-
istical relation between the measurements zm,n and the PMPC states xk,n is
a central element in the conditional PDF of the measurement vector zn given
y
n
, yn, an, bn, and the number of the measurements Mn. Assuming that the

measurements zm,n are conditionally independent across m given y
k,n

, ym,n,

ak,n, bm,n, and Mn [28], Eq. (51) factorizes as

f(z1:n|y1:n
,y1:n,a1:n, b1:n,m1:n)

= C(z1)


 ∏

m∈Nr1

f(zm,1|xm,1)

ffa(zm,1)




n∏

n′=2

C(zn′)

×


 ∏

k∈Da
n′ ,rn′

f(zak,n′ ,n′ |xk,n′)
ffa(zak,n′ ,n′)




 ∏

m∈Nr
n′

f(zm,n′ |xm,n′)
ffa(zm,n′)


 , (52)

and the conditional PDF at each time n ≥ 2 factorizes as [28]

f(zn|yn,yn,an, bn,Mn)

= C(zn)


 ∏

k∈Dan,rn

f(zak,n,n|xk,n)

ffa(zak,n,n)




 ∏

m∈Nrn

f(zm,n|xm,n)

ffa(zm,n)


 . (53)

Since the normalization factor C(zn) =
∏Mn

m=1 ffa(zm,n) depending on zn and
Mn is fixed after the current measurement zn is observed, the likelihood func-
tion in (53) can be rewritten up to the normalization constant as

f(zn|yn,yn,an, bn,Mn)

∝



Kn−1∏

k=1

g2(y
k,n
, ak,n; zn)






Mn∏

m=1

h2(ym,n, bm,n; zn)


 (54)
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where the factor related to legacy PMPC states g2(y
k,n
, ak,n; zn) = g2(xk,n, rk,n,

ak,n; zn) is given by

g2(xk,n, rk,n = 1, ak,n; zn) ,





f(zm,n|xk,n)

ffa(zm,n)
, ak,n = m

1, ak,n = 0

(55)

and g2(xk,n, rk,n = 0, ak,n; zn) , 1. The factor related to new PMPC states
h2(ym,n, bm,n; zn) = h2(xm,n, rm,n, bm,n; zn) is given by

h2(xm,n, rm,n = 1, bm,n; zn) ,





1, bm,n = k
f(zm,n|xm,n)

ffa(zm,n)
, bm,n = 0

(56)

and h2(xm,n, rm,n = 0, bm,n; zn) , 1. Inserting (54) (55) and (56) into (51),
the conditional PDF can be rewritten as the joint likelihood function

f(z1:n|y1:n
,y1:n,a1:n, b1:n,m1:n)

∝
(

M1∏

m=1

h2(xm,1, rm,1, bm,1; z1)

)
n∏

n′=2



Kn′−1∏

k=1

g2(xk,n′ , rk,n′ , ak,n′ ; zn′)




×




Mn′∏

m′=1

h2(xm′,n′ , rm′,n′ , bm′,n′ ; zn′)


 . (57)
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C Joint Posterior PDF

Finally, by substituting the joint prior PDF with (50) and the joint likelihood
function with (57), the joint posterior PDF (10) can be rewritten as

f(y1:n,a1:n, b1:n,µfa1:n,m1:n|z1:n)

∝ f(µfa1)

(
M1∏

l=1

h1(yl,1, bl,1, µfa1;M1)h2(yl,1, bl,1; z1)

)

×
n∏

n′=2

f(µfan′ |µfan′−1)



Kn′−1∏

k′=1

f(y
k′,n′
|yk′,n′−1)




×



Kn′−1∏

k=1

g1(y
k,n′

, ak,n′ , µfan′ ;Mn′)g2(y
k,n′

, ak,n′ ; zn′)

Mn′∏

m=1

ψ(ak,n′ , bm,n′)




×




Mn′∏

m′=1

h1(ym′,n′ , bm′,n′ , µfan′ ;Mn′)h2(ym′,n′ , bm′,n′ ; zn′)


 . (58)

The factors related to the legacy PMPCs and to the new PMPCs can be sim-
plified as g(y

k,n
, ak,n, µfan; zn) , g1(y

k,n
, ak,n, µfan;Mn)g2(y

k,n
, ak,n; zn) and

h(ym,n, bm,n, µfan; zn) , h1(ym,n, bm,n, µfan;Mn)h2(ym,n, bm,n; zn), respect-
ively (see Fig. 1).

D Squared Scale Parameter of the Truncated Rician PDF

Here, we derive the squared scale parameter of the truncated Rician PDF in
(9) in Section 3.3. We follow [46, Ch. 3.8] and approximate the squared scale
parameter using the Fisher information which is sufficiently accurate for large
amplitudes and large NsH.15 For simplicity, we assume that the MPCs are well
separated in dispersion space, so that their mutual correlations are negligible.
We first determine the FIM for ξl,n = [<{α̃l,n} ={α̃l,n} σ2]T, where <{α̃l,n}
and ={α̃l,n} denote the real and imaginary parts of the complex amplitudes
α̃l,n, and then apply the chain rule [46] to get the FIM for ũl,n. According to

15Note that for unknown noise variance the distribution of the normalized amplitude meas-
urement zum,n is not described by a Rician distribution anymore. More specifically, the stat-
istic of two times the squared PMPC-oriented normalized amplitude measurements 2z2

um,n

is described by a non-central Fisher distribution [55], [56, Ch. 15.10.3]. For large NsH, the
statistic of 2z2

um,n can be well approximated by a non-central χ2 distribution [45, Ch. 2.2]
and therefore the statistic of the normalized amplitude measurement zum,n by a Rician
distribution. However, the proof and the details are out-of-scope of this paper.
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[46], the elements of the FIM for ξ̃l,n are given by

[Jl,n(ξl,n)]i,j = 2<
{
∂ α̃l,ns

H(θ̃l,n)

∂[ξl,n]i
C−1 ∂s(θ̃l,n)α̃l,n

∂[ξl,n]j

}

+ tr

{
C−1 ∂C

−1

∂[ξl,n]i
C−1 ∂C

−1

∂[ξl,n]j

}
(59)

where i, j ∈ {1, 2, 3}. After some straightforward calculations (59) can be
rewritten as

Jl,n(ξl,n) = diag

{
2‖s(θ̃l,n)‖2

σ2
,

2‖s(θ̃l,n)‖2
σ2

,
NsH

σ4

}
. (60)

The CRLB for ũl,n is obtained by applying the chain rule, i.e.,

σ2
ul,n , Jũ

−1
l,n(ũl,n) = tHl,nJ

−1
l,n (ξl,n)tl,n =

1

2
+

ũ2
l,n

4NsH
(61)

where the Jacobian tl,n containing the partial derivatives is

tl,n ,

[
∂ũl,n

∂<{α̃l,n}
∂ũl,n

∂={α̃l,n}
∂ũl,n
∂σ2

]T

=

[
<{α̃l,n}‖s(θ̃l,n)‖

|α̃l,n|σ
={α̃l,n}‖s(θ̃l,n)‖

|α̃l,n|σ
−|α̃l,n| ‖s(θ̃l,n)‖

2σ3

]T

. (62)

Note that the second term
ũ2
l,n

4NsH
in (61) characterizes the effect of the noise

variance estimation, which becomes significant for high component SNRs, and
converges to zero for low component SNRs or a large NsH. Thus, for PMPC-
oriented measurements the squared scale parameter of the truncated Rician
PDF in (9) is given by (61) and for false alarm measurements the squared scale
parameter of the Rayleigh PDF is given by 1/2.
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