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Abstract. The growing diversity of connected devices leads to complex
network deployments, often made up of endpoints that implement in-
compatible network application protocols. Communication between het-
erogeneous network protocols was traditionally enabled by hardware
translators or gateways. However, such solutions are increasingly unfit
to address the security, scalability, and latency requirements of modern
software-driven deployments. To address these shortcomings we propose
Chuchotage, a protocol translation architecture for secure and scalable
machine-to-machine communication. Chuchotage enables in-line TLS in-
terception and confidential protocol translation for software-defined net-
works. Translation is done in ephemeral, flow-specific Trusted Execu-
tion Environments and scales with the number of network flows. Our
evaluation of Chuchotage implementing an HTTP to CoAP translation
indicates a minimal transmission and translation overhead, allowing its
integration with legacy or outdated deployments.

Keywords: Protocol conversion · IoT · Application layer protocols ·
Software Defined Networking · TLS· Cross-Layer Optimization

1 Introduction

Despite efforts towards standardization and interoperability, many applications
use proprietary protocols and incompatible data models for information ex-
change [25]. This is particularly acute to address in growing density of connected
embedded devices or “things”. Such devices are increasingly expected to commu-
nicate in a machine-to-machine (M2M) pattern. Communication among devices,
or between devices and back-end systems that use incompatible protocols can
be enabled through protocol translation. This is commonly realized either with
hardware translators, virtual gateways1, or distributed software applications [34].
Existing approaches for protocol translation are unfit to address the scalability,
latency, and security requirements of current and emerging deployment topolo-
gies [7]. Such solutions display at least one of the following limitations.

1 Communication servers including a virtual gateway to perform protocol translation.
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1. in-line translation solutions do not support encrypted network traffic;

2. solutions to circumvent limitation (1) rely on deploying trusted certificates
to unprotected devices on the network path and increase the attack surface;

3. cloud-based protocol translation solutions support translation over secure
network communication by terminating TLS connections in a single cen-
tralized component. This increases communication latency between network
endpoints and introduces a single point of failure.

Addressing the above challenges is a prerequisite to enable wide-scale device
connectivity. This requires support for secure and fast in-line software network
protocol translation of encrypted traffic; support for communication over several
application layer protocols while maintaining latency requirements; and finally
support for distributed protocol translation. Our goal is to enable secure massive
M2M communication using protocol translation capable of dynamically adapting
to new devices and network topologies. Our contributions are as follows:

– we introduce Chuchotage2, an efficient and secure protocol translator archi-
tecture addressing scalability, latency, and security requirements of large-
scale networks; Chuchotage builds on earlier work in Software Defined Net-
working, Trusted Execution Environments, and TLS interception;

– Chuchotage performs in-line protocol translation while supporting secure
distributed network communication throughout the network fabric, avoiding
translation in a logically or physically centralized back-end;

– we introduce flow-specific, on-demand translator boxes created by software
switches on the network path for TLS interception and protocol translation.

– we integrate secure protocol translation in OpenFlow [22] by reusing and
extending its signaling. This allows to maintain backward compatibility.

Our solution relies on three principles: (i) secure TLS interception with the
use of TEEs; (ii) high-performance confidential protocol translation, and (iii)
fault-tolerant distributed architecture with the help of SDN networking. A TEE
provides confidentiality and integrity with the use of an isolated execution envi-
ronment. The loaded code and data to the TEE can be protected from various
attacks. In our architecture, we use TEEs to securely decrypt, translate data,
and re-encrypt it with a high level of confidentiality and integrity.

In SDN networking, network intelligence is logically centralized, thus ab-
stracting the network infrastructure from network applications [16]. In SDN, the
controller has a global view and can decide what suits best for the network. The
OpenFlow protocol is usually used in SDN to link the controller and other com-
ponents, e.g. switches, and routers. OpenFlow is compatible with both hardware
and software switches. In Chuchotage, the software switch (Open vSwitch [31]
in our implementation) makes informed decisions on application layer protocol
translation to provide a high-performance and fault tolerant architecture. To the

2 The term chuchotage is a form of interpreting where the linguist is near a small
target audience and whispers a simultaneous interpretation of what is being said.
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best of our knowledge, this is the first work that integrates datapath flow match-
ing with secure protocol translation. To improve the performance, we introduce
a cross-layer optimization for switch actions described in Section 4.

The rest of this paper is structured as follows: in Section 2 we introduce
the relevant background and problem, followed by a review of the related work
in Section 3. We describe the design of Chuchotage in Section 4. We discuss
in Section 5 the design choices of the Chuchotage implementation, followed by
performance and security evaluation in Section 6. We conclude in Section 7.

2 Background

We define interoperability in IoT networks as the capability of heterogeneous de-
vices and applications to communicate and exchange data or services. Tolk et al.
presented interoperability as a layered model with two main layers: technical and
semantic interoperability [30]. Technical interoperability enables compatibility
of heterogeneous devices through common communication protocols and stan-
dards. Semantic interoperability enables heterogeneous services and applications
to exchange information in a meaningful way [1].

Data or information models used by heterogeneous IoT devices are often
incompatible, thus limiting semantic interoperability. Semantic protocol trans-
lators are a possible solution; they are able to convert information formats,
allowing communication between heterogeneous endpoints. Such translators in-
gest a standardized way of representing vocabularies of processes or messages.
However, despite ongoing efforts for IoT semantic translation, we are yet to see
a unified secure platform compatible with most common IoT protocols. We next
briefly introduce several interoperability solutions.

Physical gateways: A traditional way of interoperability is the use of hardware
gateways that act as an intermediate component between endpoint devices [25].
Hardware gateways can translate protocols with different standards and speci-
fications, they are commonly one-to-one protocol translators that do not scale
(new protocols require adding new hardware); moreover, they require special
hardware connectors, thus increasing both the overhead and complexity.

Protocol translators: Protocol translators replace traditional interoperability so-
lutions, such as gateways; they are intermediate components that perform direct
protocol to protocol translation. Depending on where the translation is done,
protocol translators are either: a) cloud back-end translators or b) middleboxes.
In the first case, the traffic is re-routed to the cloud back-end for translation.
In the second case, a middlebox is a hardware component or software network
function placed on the communication path between the endpoints.

We review existing protocol translators in Section 3.1. These translators ei-
ther do not consider security or do not scale. Some perform the translation below
the application layer, thus adding further network complexity.

For further information about common IoT protocols and different interoper-
ability solutions at different protocol layers refer to Appendix A.1. We propose
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the Chuchotage architecture to enable protocol interoperability on the appli-
cation layer. We target the application layer as it has the highest impact on
application performance [12].

2.1 Threat Model

Our threat model considers two aspects - security of the network communication,
and security of protocol translation. We assume the Dolev-Yao model [9], with
an adversary capable of intercepting, and synthesizing any message, being only
limited by the constraints of the cryptographic methods used. Considering pro-
tocol translation, we assume limited physical access to the platform, akin to the
tasks of a legitimate third party user, and excluding physically modifying, prob-
ing, or monitoring the system. The adversary is capable of exploiting software
vulnerabilities in the host operating system and software network components
(network switch and network functions), reloading the switch binary, accessing
the host memory, and starting arbitrary processes on the host. The attacker
may modify any firmware of software component on the network platforms, in-
cluding the hypervisor for virtualized set-ups. This threat model is aligned with
the threat models of both process-based trusted execution environments (such
as Intel SGX [3] or Keystone [27]) as well as virtualization-based trusted execu-
tion environments (AMD SEV-SNP [2], Intel TDX [33] and IBM PEF [14]). The
Chuchotage architecture may be tuned to use other TEE implementations. Con-
sidering the growing diversity of TEE implementations [33] and their various
approaches to defending or preventing side-channel attacks, we exclude side-
channel attacks. Likewise, we exclude attacks on control-plane components of
SDN deployments (such as the SDN controller) or ancillary components (such
as the Certificate Authority); these components are trusted and attacks on them
can be prevented using best-practice operational security. Translator boxes are
not trusted and translation cannot be done securely without a TEE.

3 Related work

3.1 Protocol Translation

An early work on protocol conversion was presented in 1988 by Lam [17], propos-
ing a formal model to achieve interoperability between processes with different
protocols. Its’ limitation was that it needs to be implemented as a process or as
a low layer protocol in the physical layer, thus adding complexity and overhead
to the network.

In [7], the authors proposed a protocol translator for industrial IoT protocols.
They proposed the use of an intermediate format in order to translate more than
three protocols rather than direct protocol-to-protocol translation. The solution
satisfies interoperability features including transparency, scalability, reporting,
verifiability, and QoS, however without addressing any security aspects, which
Chuchotage explicitly addresses.
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Muppet [32] is an edge-based multi-protocol switching architecture that can
be used for IoT service automation. Muppet is a P4-based switch which can
communicate with IoT devices using different protocols, where switches are man-
aged by an SDN controller. Muppet was designed for translation between Zig-
bee [26] and Bluetooth low energy (BLE) [11] protocols or translation between
BLE/Zigbee and IP protocols and is therefore complementary to Chuchotage,
which works at the application layer. However, similar to [7], Muppet does not
support protocol translation over TLS communication.

3.2 TLS Interception

HTTPS interception is implemented for purposes such as content filtering, mal-
ware detection, DDoS mitigation, load balancing, etc [5], and despite the relative
maturity of the topic, research on TLS interception proxies gained further atten-
tion in recent years. The ME-TLS protocol [20] supports TLS 1.3 and enables
endpoints to introduce middleboxes into a session given the consent of both par-
ties. Endpoints can control middlebox access permissions on traffic data, and ver-
ify the middlebox service chain. The protocol is based on monitoring handshake
messages passively without modifying the handshake of TLS 1.3. An implicit
version negotiation mechanism in the ME-TLS handshake protocol enables it to
interoperate with TLS endpoints seamlessly. However, ME-TLS requires deploy-
ing the Boneh–Franklin identity-based encryption (BF-IBE) [15] instead of the
widely adopted Public Key Infrastructure (PKI) approach.

maTLS is an extension to TLS that allows middlebox visibility and auditabil-
ity by enabling a client to authenticate all middleboxes through a dedicated
middlebox certificate. The use of middlebox certificates eliminates the insecure
practice of installing custom root certificates or servers sharing their private keys
with third parties. Furthermore, the middlebox-aware TLS (maTLS) protocol
enables auditing the security behaviors of middleboxes [19].

IA2-TLS [4] is an encryption-based approach to enable in-line packet inspec-
tion. IA2-TLS is based on binding an inspection key to the random nonces that
are generated by the endpoints during a TLS handshake. The advantage of this
approach is the capacity to introspect traffic both inline and offline, at any lo-
cation along the network path. This approach requires modifying the client and
server TLS implementation. Similar to many other TLS interception approaches,
it is not practical considering the lack of backward compatibility.

Considering the properties and backward compatibility of the ME-TLS pro-
tocol, we use it for the remainder of this paper as the reference TLS interception
protocol. Other approaches to TLS interception are complementary.

4 Chuchotage Protocol Translator

4.1 Architecture

Figure 1 illustrates the Chuchotage architecture, relying on principles introduced
in Section 1: (i) secure and protocol-compliant TLS interception; (ii) efficient
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confidential protocol translation; and (iii) fault-tolerant distributed architecture.
The proposed architecture assumes that network switches are configured A with
an action to translate network flows between endpoints that use incompatible
application layer network protocols B (we use OpenvSwitch for implementation).
When invoked, the action triggers the creation of a translator box C in a trusted
execution environment (Intel SGX in our implementation). The translator box
is subsequently attested by a verifier network function and provisioned with
credentials for TLS interception D . The translator box is network-flow specific,
translates subsequent communication between the endpoints E and terminates
once the network flow is cleared from the switch flow table, as described next.

Dynamic Translator Box Creation We use TEEs to run translator boxes
that decrypt the TLS traffic on the respective flow, use application protocol
translators to convert it to the target protocol, and re-encrypt it before for-
warding. A translator box is instantiated whenever the translation action is
triggered by a new network flow matching the flow table rule. Depending on the
implementation, translator boxes are instantiated either as a child process of the
switch daemon (in-switch) or external to the switch. In-switch translator boxes
are instantiated by the ovs-vswitch daemon, while external translator boxes are
instantiated by the network controller. Translator boxes are deployed in TEEs
to ensure execution isolation, confidentiality, and integrity of packet data.

To instantiate a translator box, the parent process first invokes the creation
of a TEE and deploys the translation logic configured for the pair of application
layer protocols in the respective network flow. Next, a verifier network function
attests the integrity and authenticity of the translator box [6]. Following a suc-
cessful attestation, a trusted certificate authority network function provisions
the cryptographic artifacts necessary for intercepting the TLS communication
between endpoints. The exact artifacts depend on the approach for TLS inter-
ception, as described next in Section 4.1. The parent process of the translator
box terminates it once the respective flow is evicted from the datapath cache.

In our current implementation, we used Intel SGX enclaves to create TEEs.
SGX enclaves rely on a trusted computing base of code and data loaded at en-
clave creation time. Program execution within an enclave is transparent to the
underlying operating system and other mutually distrusting enclaves running
on the platform. The CPU is an enclave’s root of trust; it prevents access to
the enclave’s memory by the operating system and other enclaves. Library op-
erating systems were used in this context to facilitate both the portability and
performance of legacy applications in SGX enclaves [27].

TLS Interception We focus on the TLS v1.2 [8] and v1.3 [10] for transport
security due to their wide adoption. We further use the ME-TLS [20] protocol
extension for TLS interception in protocol translator boxes. The use of ME-TLS
allows delivering session key materials to translator boxes in-band and does
not require additional TLS connections or round-trips. Moreover, this allows
retaining backward compatibility with TLS 1.3 [10] through implicit protocol
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Fig. 1: Conceptual illustration of the Chuchotage architecture

version negotiation. In case one of the endpoints does not support ME-TLS,
communication remains encrypted but without protocol translation.

Following the TLS1.3 specification [10], ME-TLS reuses the TLS 1.3 Finished
message to achieve two additional goals, endpoint authentication and transla-
tor box negotiation (agreement between client and server about the transla-
tor boxes to be used). For middlebox negotiation, the ClientFinished and
ServerFinished messages each contain two middlebox lists specifying the trans-
lator involved in each direction of the network path. Once both client and server
endpoints complete the translator box negotiation by including the list of cho-
sen translator boxes to the ClientFinished and ServerFinished messages,
they distribute the necessary session key materials to selected translator boxes.
ME-TLS achieves this through an additional SessionKeyDistribution message
sent by the endpoints to the translator boxes on the communication path. The
SessionKeyDistribution message is an application data message (not a hand-
shake message); the record field of the message contains a byte sequence, which is
an HMAC generated from the shared secret between the client and server (ssibecs )
and a string constant to differentiate from other application data records, fol-
lowed by encrypted session key materials for the translator boxes. The ME-TLS
protocol uses a property of the BF-IBE scheme [15] that allows endpoints and
translator boxes to establish a shared secret between each other through zero-
round secret negotiation. In BF-IBE, a trusted authority called a private key
generator (PKG) generates private keys for endpoints and translator boxes us-
ing their identities and a master key. The endpoints (client and server) can then
use the shared secret to encrypt the session key materials communicated to the
translator box instances.
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Translator Box Integration with OvS Translator boxes are created follow-
ing the translate action in the flow rules and are instantiated during the transport
layer protocol handshake between two communicating endpoints, regardless of
the application layer protocol they use. An incoming packet to the switch is
first matched against the available rules (see Appendix A.2). A match against a
rule that contains the translate action on the datapath triggers the creation of
a flow-specific translator box. The translator box can be created either on the
datapath in kernel space or user space, depending on the TEE implementation.
When using Intel SGX, translator boxes are created in user space enclaves, since
SGX enclaves can only run as user processes. While this may affect their per-
formance (due to IO penalties inherent to the Intel SGX model), recent work
indicates that modifying software network components deployed in TEEs can
help to improve their IO performance [29]. Next, a verifier network function of
the network controller attests the enclave to make sure it is trustworthy, then
the enclave receives the key shares through key provisioning that allows it to
compute session key materials and decrypt the TLS communication between
the endpoints in the respective flow Figure 1. Attestation and key provisioning
are done in parallel with the ongoing transport layer protocol handshake. All
subsequent packets in the respective flow will be processed by the translator box.

Protocol to Protocol Translation Once a translator box inside the enclave
receives a packet from the respective flow, it first decrypts the packet using the
session key materials computed from the key shared received from the network
controller. Next, the translator box parses the decrypted packet, extracts the
application data, and formats it into the destination protocol format. Finally,
the formatted packet is re-encrypted and returned to the switch data path to be
forwarded to its destination.

4.2 Challenges

The design of Chuchotage addresses several important challenges, namely en-
abling distributed protocol translation and combining TLS interception with
attestation primitives of the trusted execution environments. We address dis-
tribution and scalability by introducing the concept of ephemeral, flow-specific,
on-demand translator boxes created by software switches on the network path.
To achieve scalability in high density networks, multiple switches, and SDN con-
trollers can be used in the network depending on the network topology and
available resources. Chuchotage combines the ME-TLS protocol for TLS inter-
ception [20] with the SGX attestation protocol to provide an uninterrupted chain
of trust that includes the communicating endpoints, the translator box, and the
certificate authority by the communicating parties.

4.3 Operating flow

In the following operating flow description, we assume that a network adminis-
trator uses a deployment blueprint to define flow rules for the endpoints included
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in the topology. For the types of devices and communication protocols known
beforehand, the network administrator specifies a translate action for the flows
that require translation. Note that two distinct translation policies will be speci-
fied for each source-destination pair in a flow where endpoints implement distinct
application layer protocols. In the following operating flow description, we as-
sume the latest version of TLS, version 1.3; while other TLS versions can be
made compatible with this operating flow, this requires additional adjustments.

In-line operating flow The sequence diagram in Figure 2 illustrates how transla-
tor boxes instantiated by the switch obtain the session keys negotiated between
two endpoints, client and server:

Client Switch Controller Translator boxC Translator boxS Server

1 SYN

2

3 Provision translator box

4 SYN

7 SYN ACK

5 Provision PKG

6 Provision PKG

Transport session establishmentTransport session establishment

8 ClientTLS request + implicit version negotiation

9 ServerTLS response, translator boxs

10 ClientDataMessage, translator boxc

11 Compute Session Key

12 Compute Session Key

13 ServerDataMessage

TLS session establishmentTLS session establishment

Fig. 2: Chuchotage operating flow

– The Client initiates a communication session by sending a TCP SYN packet
to Server (step 1).

– A Switch on the network path matches the SYN packet against entries in
its Microflow cache. Since the Client did not communicate with the Server
earlier, the search continues in the Megaflow cache and ultimately in the
OpenFlow flow tables, where it matches the translation policy defined by the
network administrator (step 2). The results of Megaflow cache lookup will be
cached in Microflow cache. The switch triggers the controller to instantiate
the translator boxes (step 3).

– The SYN packet is immediately forwarded to the destination; this avoids
introducing additional latency (step 4).
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– The controller instantiates translator boxes for the flows tc (client-server,
step 5) and ts (server-client, step 6). The controller instantiates the translator
box in a TEE, attests it [6, 3] and provisions key shares generated by the
PKG [15].

– The server returns a SYN ACK reply, the transport session is established at
this point (step 7).

– The TLS negotiation starts; the negotiation follows the TLS 1.3 with the
ME-TLS extensions [20] (step 8). The Client TLS request includes an im-
plicit version negotiation to check that the Server supports the ME-TLS
extensions. The Server TLS response follows the TLS 1.3 specification and
additionally specifies the identifier of the server translator box (step 9).

– Next the Client starts sending encrypted application data (step 10).
– The ClientDataMessage packet containing application data is matched in

the Microflow cache of the switch and processed by translator box tc. At this
point, tc obtains its session key material from the SessionKeyDistribution
message and generates the key distribution bytes using the shared secret be-
tween itself and the endpoints (step 11). It derives the application traffic
secrets, allowing it to derive symmetric keys to encrypt and decrypt applica-
tion data on the client-server path. The session key is used for the remainder
of the TLS session.

– Having decrypted the data, tc converts the application data to Server appli-
cation protocol format, re-encrypts it, and forwards the packet to the Server;

– The Server returns the application data encrypted with a TLS session key.
The ServerDataMessage application data packet is matched in the Mi-
croflow cache of the Switch and processed by translator box ts; ts obtains
its session key material from the SessionKeyDistribution message, gen-
erates the key distribution bytes using the shared secret between itself and
the endpoints, and derives the application traffic secrets allowing it to derive
symmetric keys to encrypt and decrypt application data on the server-client
path. The session key is used for the remainder of the TLS session (step 12);

– ts converts the decrypted application data to the client’s application protocol
format, re-encrypts it and forwards it to the client (step 13);

– Translation of application data continues for the remainder of the TLS ses-
sion; the translator boxes are terminated once the network flow is evicted
from the Switch flow cache.

In case of DTLS, the operating flow is modified such that the translator boxes
are created after the ClientHello message.

5 Implementation

For evaluation purposes, we implemented Chuchotage with two popular IoT
protocols, CoAP and HTTP. Our implementation includes the following compo-
nents. A client, an HTTP client representing an IoT device contacts a server with
a different protocol, a Server, A CoAP server is listening for client connections.
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Open vSwitch (OvS): endpoints are connected to OvS through the same bridge
and OvS is responsible for forwarding incoming client or server packets to the
translator box, as well as forwarding outgoing packets from the translator box
to their destinations; SDN controller : an SDN controller manages the network
flows to improve network performance. For that we used Ryu3, an open source
controller. Whenever OvS does not find any matching entry in its flow caches
to handle packets in need of translation it contacts the controller, which will
trigger a translation. Translator box : via the translation process, the controller
creates a translator box responsible for translating the traffic between client and
server. In the translator box, we used an HTTP to CoAP parser/formatter li-
brary4, capable of parsing and converting HTTP to CoAP messages and vice
versa. TEE : to ensure execution isolation as well as confidentiality and integrity
during packet translation, we ported the protocol translator to an SGX enclave
using the Occlum library OS [27]. Occlum5 is a memory-safe library OS for SGX.
Note that for implementing other protocol translation (other than CoAP and
HTTP), a new parser/formatter is required but the rest of the components will
remain unchanged.

5.1 Implementation choices

In Chuchotage, the translator box can be instantiated either by the network
controller (external) or OvS (in-switch [28]). In our prototype implementation,
the SDN controller deploys an SGX enclave with the translator code and at-
tests it, as deploying, managing, and debugging external translators is easier for
network administrators. Attestation can be done locally or remotely based on
the location of the appraiser and of the target enclave [6]. In our prototype im-
plementation, the SDN controller (appraiser) and translator box (target) both
exist on the same platform and hence we used local attestation with a trusted en-
clave that exists on the SDN controller and keypair provisioning. As mentioned
above, the TEE hosting the translator box can be instantiated using several
alternative approaches, both virtualization-based [33] or process-based [18, 21].
Enterprise deployments should consider remote attestation of translator boxes,
or a combination of both as supported by some virtualization-based TEEs [14].
The choice of TEEs depends on constraints on application portability, security,
performance, etc.

For TLS interception, we assume that session key materials are distributed
to the involving parties including the client, server, and SDN controller prior
to the handshake procedure and ME-TLS overhead is explicitly excluded in our
evaluation since it only affects the handshake, not the actual communication.

Our translation policy is defined by using features extracted from the traf-
fic flow, namely a combination of specific source and destination IP addresses
and port numbers. When an incoming flow matching these features triggers the

3 https://ryu-sdn.org/
4 https://github.com/keith-cullen/FreeCoAP
5 https://github.com/occlum/occlum
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translation action and the packets in the matching flow are forwarded to the
translator. After translation, the packets are sent back to the switch to be for-
warded to their own destination. While distinct translator boxes can be created
for inbound and outbound flows (client to server or server to client, see Sec-
tion 4.3), we use one translator box for both in- and outbound flows.

5.2 Testbed

Our testbed consists of four docker containers representing client, server, a Ryu
controller, and a translator box deployed in an SGX enclave (see Figure 3), as it
can be seen in Figure 3 the testbed is compatible with different pairs of clients
and servers. OvS was installed on the host OS and the four docker containers
are connected to the OvS via one bridge (br0 in Figure 3). Each container is
connected to the bridge through its own virtual interface, indicated as vethp in
Figure 3. Whenever a flow needs to be translated, Ryu creates and attests an
SGX enclave inside container 3. The translation is done inside the enclave and
the flow to be translated is afterwards forwarded through container 3.

Fig. 3: Testbed Overview

6 Evaluation

6.1 Performance Evaluation

We conducted several tests to evaluate the performance of Chuchotage. In the
first test, we send packet batches of different sizes (100, 1000, and 10000 packets)
from the client to the server and measured the translation time for the entire
batch. We also measure the transmission time, i.e. the time between sending
the first and last packets excluding the handshake. In this test, the client sends
empty HTTP GET messages translated to CoAP confirmable Reset messages.

We measured translation and transmission time both with and without SGX,
to measure the effect of the TEE on the performance (see Figure 4). Without a
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TEE, the translator box is created inside container 3 in Figure 3. As illustrated
in Figure 4, both translation and transmission times slightly increase with the
use of a TEE (Intel SGX in this prototype); however, this increase is acceptable
in most IoT networks considering the added benefit of protecting network traffic
confidentiality. Error bars are based on standard deviation.

We also compared our results with the transmission time of a vanilla CoAP
to CoAP communication. Confirmable CoAP Reset messages were sent from a
CoAP client to the CoAP server. The transmission time for transferring 100,
1000, and 10000 packets respectively are: 0.00719, 0.07428, and 0.70909 seconds.
We consider these values as a reference point for the added overhead by the
translation procedure compared to a vanilla CoAP to CoAP transfer.

In a second test, we send batches of 100 packets of different sizes (128, 256,
and 512 Bytes) from client to server and record their translation and transmission
time with and without using a TEE. In this test, we send HTTP POST requests
from the client to the server and they are translated to CoAP confirmable POST
requests. The results of this test show that using a TEE (Intel SGX in this
prototype) results in increasing both the translation and transmission time (see
Figure 5). Packet data length does not affect the translation time.

In a third test, we measured the time to complete a successful handshake. The
handshake takes place between the client, server, and translator box; however,
the translator box is transparent for the client and server. The overall hand-
shake time (an average of 10 handshakes) including local attestation (0.0164
seconds), enclave creation (0.80410 seconds), and additional communication be-
tween the Chuchotage components averages 2.83574 seconds. This is roughly
equal to transferring and translating 10000 packets; a vanilla CoAP to CoAP
handshake averages to 0.000907 seconds. However, the handshake is only per-
formed once before translating all subsequent packets in the flow.

The performance of our proposed protocol translator is not comparable to
centralized approaches, such as gateway or proxy-based approaches, since they
are not suitable for large heterogeneous distribution deployments and often do
not consider security of network traffic. Chuchotage is not also comparable to
other existing protocol translation solutions, as earlier highlighted in Section 3.1.

6.2 Security Evaluation

Reflecting the structure of the threat model (Section 2.1) we discuss the security
of network communication and of protocol translation.

Network Security Chuchotage uses TLS 1.3 [10] to implement transport layer
security - including key establishment - and inherits its confidentiality and in-
tegrity properties. On the other hand, Chuchotage also inherits any potential
vulnerabilities yet to be discovered in TLS 1.3 ; this underscores the importance
of following vulnerability management best practices. The security of ME-TLS
extensions to TLS 1.3 is reviewed in detail in [20]. There are several types of net-
work based attacks that can target Chuchotage, such as Denial of Service (DoS)
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(a) Translation time (b) Transmission time

Fig. 4: Translation and Transmission Time of Translating Different Number of Packets

(a) Translation time (b) Transmission time

Fig. 5: Translation and Transmission Time of Translating Different Packet Sizes

or traffic flooding. Similar to other contexts, DoS attacks can be mitigated by
DoS prevention techniques including intrusion detection and prevention systems,
using load balancers, filtering, etc.

Protocol Translation Availability of a Chuchotage deployment can be ensured
through network deployment best practices. High availability is an inherent ca-
pability of Chuchotage as translator boxes are instantiated and deployed in TEEs
by switches throughout the network topology.

Translator boxes are central to the security of protocol translation and net-
work communication in Chuchotage. Integrity of the protocol translation soft-
ware deployed in translator boxes is verified through attestation [6]. The chain
of trust evaluated through attestation is specific to the platform implementation
of the TEE. During protocol translation confidentiality of provisioned crypto-
graphic material and intercepted network traffic is ensured through TEE isola-
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tion mechanisms that include memory isolation on hardware or firmware level,
run-time memory encryption, and cache flushing upon execution transition [33].

In our current prototype implementation, we use Intel SGX enclaves as a
TEE implementation target. SGX is vulnerable to a wide category of attacks
reviewed in [24]. Chuchotage can be vulnerable to any attacks applicable to
SGX. However, there are a number of mitigation techniques that can be used to
mitigate attacks on realistic applications deployed in SGX enclaves [13].

7 Conclusion

In this paper, we proposed Chuchotage, an in-line application layer protocol
translator with transport layer security. Chuchotage relies on secure TLS in-
terception, efficient protocol translation, and fault-tolerant distributed architec-
ture. In Chuchotage we translate, and re-encrypt network flows with minimal
latency, on the network path. Scalability is guaranteed by growing the number
of translator boxes with the number of flows; translator boxes are instantiated
by individual software network switches in the deployment. Depending on the
capabilities of the underlying platform and their support for TEEs, Chuchotage
allows creating translator boxes either in-switch or external to the switch, in
kernel space or user space. We implemented a Chuchotage prototype for HTTP
to CoAP translation with Intel SGX enclaves and Open vSwitch. Our evalua-
tion indicates a slight increase in the translation and transmission time. This
overhead depends primarily on the choice of TEE in the implementation.
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A Appendix

A.1 Common IoT Communication Protocols

In the TCP/IP network model, the physical or data link layer is responsible
for physical transmissions; characteristics of applications - such as latency and
availability - directly impact traffic characteristics on the link layer. The network
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layer is responsible for routing and forwarding packets; considering that IoT
devices are often resource-constrained, the information necessary for routing
should be kept at a minimum. Finally, transport layer protocols (such as TCP
and UDP) manage end-to-end communication between network endpoints.

Physical network gateways are commonly used for interoperability in the
physical and network layers or transport layer [25]. Gateways have limited scala-
bility [25]: as the number of IoT devices increases, special connectors are required
for their interaction, thus adding both cost and complexity to the network.

Application communication between network endpoints is implemented on
the application layer. Middleware can perform translation in the application
layer; however, connecting middleware components risks further reducing inter-
operability by locking applications to a specific technology. Interception proxies
are an alternative for application layer translation; however, proxies cause delays
since all traffic transits through proxies even when translation is unnecessary [7].

Proxies and middleware currently available for application layer protocol
translation are increasingly unsuitable for secure, distributed, and transparent
application layer protocol translation.

Several application layer protocols - namely HTTP, CoAP, MQTT, and
AMQP - have been widely reviewed in academic publications and adopted in
large scale deployments. We compare these protocols in Table 1.

Table 1: IoT protocols comparisons
IoT protocols HTTP CoAP MQTT AMQP

Transport layer TCP UDP TCP TCP
Security TLS/SSL DTLS TLS/SSL TLS/SSL
Architecture Req/Res Req/Res Pub/Sub Pub/Sub
QoS No Yes Yes Yes
Low Power/Lossy Networks Fair Excellent Fair Fair
Dynamic discovery No Yes No No

A.2 Open vSwitch Overview

OpenvSwitch (OvS) is an open source programmable switch [31] that implements
packet forwarding on the datapath; it is a flow-based switch, where clients install
flows determining forwarding decisions. Flows are installed in a cache level struc-
ture that assists the datapath to execute actions on received packets, e.g. allow,
drop, etc. For each ingress packet, the datapath consults its cache and forwards
the packet to its destination if matching entries exist. For each cache miss, the
datapath issues an upcall and forwards the packet to ovs-vswitchd. A datapath
can be deployed as a kernel module or in user space with additional firmware
support. Packet classification in OvS is computationally expensive, mostly due
to the many types of matching fields. Matching is implemented in a hash table of
flow rules, with matching fields hashed as keys. OvS uses a modified Tuple Space
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Search (TSS) algorithm for packet classification. The algorithm searches through
the hash map tables based on the maximum entry’s priority and terminates after
finding the highest priority matching flow rule. Early OvS releases implemented
OpenFlow processing exclusively as a kernel module. However, the difficulty of
developing and updating kernel modules motivated moving packet classification
to user space. A multi-level cache structure kernel implementation compensates
the resulting performance impact. The cache structure consists of two levels with
increasing lookup costs: a microflow cache (or Exact Match Cache) and a larger
megaflow cache. The megaflow cache matches multiple flows with wildcards [23].

Open vSwitch Forwarding Figure 6 illustrates the OvS internals. An incoming
packet reaches the datapath from either a physical or virtual NIC (1). In the
datapath, the switch runs a first search based on an exact match (2). If there is a
matching entry in the microflow cache, the packet is sent to the specific table in
the megaflow cache to retrieve the required actions. Otherwise, the forwarding
process performs a second search in the next cache line (3). Failing to find a
match, the datapath uses upcalls (4) to inform the ovs-vswitchd that it cannot
handle the packet. The ovs-vswitchd uses the classification process (5) to obtain
a matching rule via its flow tables. Next, ovs-vswitchd returns to the datapath,
inserts the entry in the cache (6), and returns the packet to the kernel (7). Finally,
the datapath forwards the packet to the intended destination (8). Failing to find
matching information in the flow tables, ovs-vswitchd sends a packet-in request
to the network controller to get a matching rule for the unknown packet.

Fig. 6: An overview of Open vSwitch internals


