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Ines Fortin� and Jaroslava Hlouskova�
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Abstract

We study the asset allocation of an investor with prospect theory (PT) preferences.

First, we solve analytically the two-asset problem of the PT investor for one risk-free and

one risky asset and find that loss aversion and the reference return affect differently less

ambitious investors and more ambitious investors. Second, we empirically investigate

the performance of a PT portfolio when diversifying among a stock market index, a

government bond and gold, in Europe and the US. We focus on investors with PT

preferences under different scenarios regarding the reference return and the degree of

loss aversion and compare their portfolio performance with the performance of investors

under CVaR, risk neutral, linear loss averse and in particular mean-variance (MV)

preferences. We find that, in the US, PT portfolios significantly outperform (in terms

of returns) mean-variance portfolios in the majority of cases. Also with respect to risk-

adjusted performance, PT investment outperforms MV investment in the US. Similar

results, however, can not be observed in Europe. Finally, we analyze asymmetric effects

along economic uncertainty and observe that PT investment leads to higher returns

than MV investment in times of larger economic uncertainty, especially in the US.
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1 Introduction

The mainstream expected utility model cannot explain many aspects of financial market

characteristics. An alternative that has been proposed to describe investors’ behavior under

risk is prospect theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992). This

theory can explain many of the anomalies observed in asset returns including the equity

premium puzzle (Benartzi and Thaler, 1995; Barberis et al., 2001; An et al., 2020; Barberis

et al., 2021). Experiments by Kahneman and Tversky found that the utility function

does not depend on the absolute level of terminal wealth, as is hypothesized with the

expected utility model, but depends on the change in the level of wealth. In addition,

the probabilities assigned to the utility of the outcomes are expressed within a weighted

function. These weight functions allow one to capture the tendency of people to underreact

when faced with large probabilities and overreact to small probability events.1 Kahneman

and Tversky proposed a utility function that is defined over terminal wealth in relation

to some reference level, such as the status quo, i.e., investors have reference-dependent

preferences. In addition, they found that investors exhibit loss aversion, meaning that

their disutility of a loss is greater than their utility of a gain of the same magnitude, i.e.,

investors are more sensitive when they experience a loss in financial wealth than when they

experience a gain. Even when there is no commonly accepted measure of loss aversion

in the literature and there are many different alternatives introduced (Abdellaoui et al.,

2007), the main characteristic seems to be that the utility function is steeper in the domain

of losses than in the domain of gains. The simplest form of such loss aversion is linear loss

aversion, where the marginal utility of gains and losses is fixed. The optimal asset allocation

decision under linear loss aversion has been studied widely, see, for example, Siegmann and

Lucas (2005), Fortin and Hlouskova (2011), Best et al. (2014), and Best and Grauer (2016).

Further, Kahnemann and Tversky found that investors prefer risk aversion options when

they are confronted with gains while they are more willing to select risk-seeking options when

confronted with losses. This behavior can be captured by an S-shaped utility function. We

generalize linear loss aversion to S-shaped loss aversion and study optimal asset allocation

in this setup.

In order to explain stock market anomalies Barberis et al. (2021) introduce a new model

of asset prices in which investors evaluate risk according to prospect theory. This model

incorporates all elements of prospect theory, accounts for investors’ prior gains and losses,

and makes quantitative predictions about an asset’s average return based on empirical

estimates of the asset’s return volatility, return skewness, and past capital gain. With this

1This is referred to in the literature as cumulative prospect theory. However, in our study we do not use
weight functions (subjective probabilities).
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model, average assets’ returns can thus be predicted under prospect theory preferences,

as with the capital asset pricing model under mean-variance preferences. In our study,

however, we consider the asset allocation problem of a given prospect theory investor, which

is different from equilibrium asset pricing models.

Other studies examine the investor’s asset allocation problem using the continuous-time

framework and the martingale method (under the assumption that the market is complete)

to solve the S-shaped utility maximization problem. For example, Berkelaar et al. (2004)

derive the optimal investment strategies for two prospect theory utility functions. Chen

et al. (2017) examine S-shaped preferences with a minimum performance constraint and

inflation risk. He and Kou (2018) investigate the S-shaped utility maximization under a

minimum guarantee. Dong and Zheng (2019) include short-selling and portfolio insurance

constraints in the model, and Dong and Zheng (2020) impose trading and Value-at-Risk

constraints; both apply the dual control method to solve the corresponding constrained

optimization problem. In this framework, however, the solutions for the optimal wealth

and trading strategy are not given directly, as in our discrete one-period setup.

There seem to be only very few studies which examine asset allocation under prospect

theory preferences empirically.2 For example, De Giorgi and Hens (2009) consider data of

private clients and measure the clients’ added value from holding prospect theory portfolio

as compared to a mean-variance asset allocation; they find considerable monetary gains.

In the empirical part of our study we also take the mean-variance portfolio as the main

benchmark when assessing the performance of prospect theory portfolios and find that

PT portfolios outperform mean-variance portfolios with respect to different performance

measures. Grishina et al. (2017) compute prospect theory portfolios composed of up to 225

stocks using a differential evolution algorithm and a genetic algorithm. They take the stock

index (in which the individual stocks are included) as the reference point, compare prospect

theory models with index tracking models, and find that prospect theory portfolios perform

better than index tracking models in bullish markets, and worse in bearish markets. We

also compute prospect theory portfolios empirically, for three assets (stock, bond, gold) in

the European and the US markets. We compare these portfolios with other benchmark

portfolios, in particular with the traditional mean-variance portfolios, in terms of different

performance measures. In addition, we look at potential differences between the prospect

theory and mean-variance portfolios in periods of high and low economic uncertainty.

The remaining paper is organized as follows. In Section 2 we explore the two-asset

2As the S-shaped prospect theory utility function is not concave and the problem cannot be easily trans-
formed to a sufficiently smooth higher dimensional concave problem, grid search algorithms or alternative
special algorithms are necessary to solve the problem. These are computationally intensive, however, in
particular for a large number of assets. In the empirical part of our paper we use the grid search method
while Grishina et al. (2017), for instance, employ intelligent algorithms.
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problem of an S-shaped prospect theory investor, with a risky and a risk-free asset, and

derive properties of the optimal weight of the risky asset under the assumption of binomially

and (generally) continuously distributed returns, both for the case when the reference point

is equal to the risk-free rate and for the case when it is not. In Section 3 we implement

different trading strategies of the prospect theory investor, who reallocates her portfolio on

a monthly basis, and study the performance of the resulting optimal portfolio with respect

to different performance measures that are based solely on portfolio returns (mean, median,

realized returns), on risk-adjusted returns (Omega measure, Sharpe ratio, Sortino ratio,

conditional value-at-risk) or on risk (volatility, downside volatility). We also compare the

performance of the prospect theory portfolio with the performance of risk neutral, linear

loss averse, conditional value-at-risk portfolios and, in particular, with the performance of

traditional mean-variance portfolios. Finally, we analyze asymmetric effects along economic

uncertainty by assessing whether prospect theory investors achieve higher returns in times

of larger economic uncertainty, or in times of smaller economic uncertainty, than mean-

variance investors. Section 4 provides a summary of the results and concludes.

2 Portfolio optimization under prospect theory preferences

We consider a loss averse investor characterized by the following S-shaped prospect theory

value function of portfolio return rp

v(rp) =


(rp−r̂)1−γ

1−γ , rp > r̂

−λ (r̂−rp)1−γ
1−γ , rp ≤ r̂

 =
1

1− γ

[
|r̂ − rp|1−γ − (1 + λ)

(
[r̂ − rp]+

)1−γ]
(2.1)

where r̂ ∈ R is the reference return with respect to which relative gains and losses are coded,

γ ∈ (0, 1) is a parameter determining the curvature of the utility function for relative gains

and losses (diminishing sensitivity parameter),3 and [t]+ denotes the maximum of 0 and t.

Parameter λ > 1 is the penalty parameter that captures the degree of loss aversion making

thus utility steeper in the loss domain (rp < r̂) than in the gain domain (rp > r̂). The

investor’s reduction in utility arising from a loss is greater (in absolute terms) than the

marginal utility from a financial gain or, in other words, the investor is more sensitive when

experiencing a loss than when experiencing a gain of the same size. Investors also display

risk aversion in the domain of gains (the value function is concave for rp > r̂) but become

risk lovers when they deal with losses (the value function is convex for rp < r̂). See Figure 1

3We assume that γ ∈ (0, 1) in order to be consistent with the experimental findings of Tversky and
Kahneman (1992). Booij and van de Kuilen (2009) find the γ parameter to be (statistically) significantly
less than unity.
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for a graphical illustration of the value function, which is non-differentiable at the reference

return.

Figure 1: Value function of S-shaped prospect theory investor

We study the optimal asset allocation behavior of an investor with S-shaped prospect

theory preferences. This behavior depends on the reference return r̂ and, in particular, on

whether this reference return is below, equal to, or above the risk-free interest rate. The

position of the investor’s reference return with respect to the risk-free rate is determined

exogenously by the investor’s incentive, e.g., investors with their reference return being

below the risk-free rate (r̂ < r0) can be viewed as less ambitious investors while investors

with their reference return being above the risk-free rate (r̂ > r0) can be viewed as more

ambitious investors.

Investors maximize their expected utility of returns

max
x

{
E
(
v(r′x)

) ∣∣∣Ax ≤ b
}

(2.2)

where x = (x1, . . . , xn)′, with xi denoting the proportion of wealth invested in asset i,4

i = 1, . . . , n, and r is the n−dimensional random vector of net returns, subject to the usual

asset constraints Ax ≤ b, where A ∈ Rm×n, b ∈ Rm. Note that in general the proportion

invested in a given asset may be negative or larger than one due to short-selling.

4Throughout this paper, prime (′) is used to denote matrix transposition and any unprimed vector is a
column vector.
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2.1 Analytical solution for one risk-free and one risky asset

To better understand the attitude with respect to risk of an investor with prospect theory

preferences, we consider a simple two-asset world, where one asset is risk-free and the

other is risky, and analyze what proportion of wealth is invested in the risky asset under

prospect theory utility. Another motivation for looking at this problem is the following.

When Tobin’s separation theorem holds, the investor’s investment decision problem can be

simplified to deciding which proportion to invest in the safe asset and which to invest in

some risky portfolio. As Levy et al. (2004) have shown, Tobin’s separation principle does

hold under the assumption of the Tversky and Kahneman’s prospect theory utility.

Let r0 be the certain (deterministic) return of the risk-free asset and let r be the (stochas-

tic) return of the risky asset. Then the portfolio return is R(x) = xr + (1 − x)r0 =

r0 + (r − r0)x, where x is the proportion of wealth invested in the risky asset, and the

maximization problem of the investor with prospect theory preferences is

max
x

{
E (v ((R(x)))) = E

(
v
(
r0 +

(
r − r0

)
x
))
|x ∈ R

}
(2.3)

with value function v(·) given by (2.1). As will be seen later, results will be sensitive to the

position of the reference return with respect to the risk-free rate. A good interpretation of

this position comes from writing down the portfolio return net of the reference return and

seeing what happens if the investor stays out of the market (x = 0)

R(x)− r̂|x=0 = r0 − r̂

Thus, if the residual of the relative portfolio return with respect to the reference point r̂

with zero risky investment is positive, i.e., r̂ < r0, and hence the investor is modest in

setting her return goals, then even when she stays out of the market she will be in her

comfort zone. On the other hand if the investor is more ambitious in setting her goals, i.e.,

r̂ > r0, then the residual of the relative portfolio return with respect to the reference point

with zero risky investment is negative and thus if she stays out of the market she will be

not that well off and be in her discomfort zone.

The following two cases present characterizations of the optimal solution when the risky

asset’s return is binomially distributed (discrete distribution) and when it is (generally)

continuously distributed.
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The risky asset is binomially distributed

First we assume, for the sake of simplicity and because in this case we can show a number

of results analytically, that the return of the risky asset follows a binomial distribution.

We assume two states of nature: a good state of nature which yields return rg such that

rg > r0 and which occurs with probability p, and a bad state of nature which yields return

rb such that rb < r0 and which occurs with probability 1− p, i.e., rb < r0 < rg. In the good

state of nature the portfolio thus yields return Rg(x) = r0 + (rg − r0)x with probability

p and in the bad state of nature it yields return Rb(x) = r0 − (r0 − rb)x with probability

1 − p. Thus, based on (2.3), the expected prospect theory utility (value function) of the

two-asset portfolio including the risk-free asset and the binomially distributed risky asset is

the following continuous function

E (v (R(x))) =



1
1−γ

[
p (Rg(x)− r̂)1−γ + (1− p)(Rb(x)− r̂)1−γ

]
, Rg(x) ≥ r̂, Rb(x) ≥ r̂

1
1−γ

[
p(Rg(x)− r̂)1−γ − λ(1− p)(r̂ −Rb(x))1−γ

]
, Rg(x) ≥ r̂, Rb(x) ≤ r̂

1
1−γ

[
−λp(r̂ −Rg(x))1−γ + (1− p)(Rb(x)− r̂)1−γ

]
, Rg(x) ≤ r̂, Rb(x) ≥ r̂

−λ 1
1−γ

[
p(r̂ −Rg(x))1−γ + (1− p)(r̂ −Rb(x))1−γ

]
, Rg(x) ≤ r̂, Rb(x) ≤ r̂



(2.4)

To proceed with the analysis, we define the following threshold

Kγ =
(1− p)(r0 − rb)1−γ

p(rg − r0)1−γ
(2.5)

The next proposition presents the analytical solution of the prospect theory investor with

preferences described by (2.1) and (2.3), who is less ambitious, i.e., her reference return is

below the risk-free rate, and who is also sufficiently loss averse, i.e., λ is large enough.

Proposition 2.1 Let E(r) > r0, r̂ < r0, and λ > max {Kγ , 1/Kγ}, where Kγ is defined by

(2.5). Then there exists the only solution x∗ of (2.3) such that

x∗ =

(
1−K1/γ

0

)
(r0 − r̂)

r0 − rb +K
1/γ
0 (rg − r0)

> 0 (2.6)

Proof: See Appendix A. �

Note that solution (2.6) does not depend on the degree of loss aversion, λ, but a suffi-

ciently large degree of loss aversion is needed to guarantee the monotonic properties of the
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prospect theory utility function in its certain domains. See the proof of proposition 2.1 in

Appendix A for more detail.

Based on (2.6) we can formulate the following corollary, which formally states that when

the reference return is below the risk-free rate then the investor is not sensitive to the degree

of loss aversion (λ) and that she becomes more conservative with an increasing reference

return, i.e., her investment in the risky asset decreases.

Corollary 2.1 Let assumptions of proposition 2.1 be satisfied. Then the optimal solution

of (2.3), x∗, has the following properties

dx∗

dλ
= 0

and

dx∗

dr̂
= −

(
1−K1/γ

0

)
r0 − rb +K

1/γ
0 (rg − r0)

< 0 (2.7)

Note that if ṽ(·) is the power utility, namely ṽ(y) = y1−γ

1−γ , then the solution of the

maximization of the expected power utility under the binomially distributed risky asset as

specified above, namely max{E(ṽ(R(x)) |x ∈ R}, is x̃∗ =

(
1−K1/γ

0

)
r0

r0−rb+K
1/γ
0 (rg−r0)

and thus for

r̂ < r0 we have x∗ < x̃∗ when r̂ > 0.5 The proportion invested in the risky asset is thus

smaller for the less ambitious prospect theory investor than for the investor characterized

by power utility, as long as the reference return is positive.

The following proposition states that for a zero excess reference return (r̂ = r0) the

prospect theory investor stays out of the market (x∗ = 0), i.e., everything is invested in the

risk-free asset.6

Proposition 2.2 Let r̂ = r0 and λ ≥ max {Kγ , 1/Kγ}, where Kγ is defined by (2.5). Then

the solution of (2.3) is x∗ = 0.

Proof: See Appendix A. �

Note that this is the only case when the portfolio of the prospect theory investor coincides

with the portfolio of the mean-variance investor.7

5Note in addition that x∗ ≥ x̃∗ when r̂ ≤ 0.
6This is also the case for the linear loss averse investor (γ = 0), see Fortin and Hlouskova (2011), but

not for the loss averse investor with quadratic shortfall, where the optimal investment in the risky asset is
strictly positive, see Fortin and Hlouskova (2015).

7As the variance of the portfolio return rp = xr + (1 − x)r0 is x2Var(r), the minimum variance of the
mean-variance portfolio is reached at x = 0.
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Before proceeding further let us introduce the following notation

(x∗)+ =
r̂ − r0

rg − r0
×
λ1/γ +

(
1
K0

)1/γ
λ1/γ −

(
1
Kγ

)1/γ (2.8)

(x∗)− = − r̂ − r
0

r0 − rb
× λ1/γ +K

1/γ
0

λ1/γ −K1/γ
γ

(2.9)

p̄ =

(
r0 − rb

)1−γ
(r0 − rb)1−γ + (rg − r0)1−γ

(2.10)

Note that for the more ambitious investor, i.e., r̂ > r0, is (x∗)+ > 0 when λ > 1/Kγ and

(x∗)− > 0 when λ > Kγ .

The following proposition presents the analytical solution of the investor with prospect

theory preferences, see (2.1) and (2.3), who is more ambitious, i.e., her reference return

exceeds the risk-free rate, and who is also sufficiently loss averse.

Proposition 2.3 Let r̂ > r0 and λ > max {Kγ , 1/Kγ}, where Kγ is defined by (2.5). Then

there exists the solution x∗ of (2.3) such that

x∗


= (x∗)+ > 0, for p > p̄

= (x∗)− < 0, for p < p̄

∈ {(x∗)+, (x∗)−} for p = p̄

 (2.11)

which is unique for p 6= p̄.

Proof: See Appendix A. �

Proposition (2.3) implies that the more ambitious sufficiently loss averse investor pur-

chases the risky asset when the probability of the good state to occur is sufficiently large.

In the other case, i.e., when the probability of the good state to occur is sufficiently small,

she takes a short position in the stock market.

Based on (2.11) we can formulate the following corollary, which presents the sensitivity

of the risky investment of the more ambitious investor (r̂ > r0) with respect to her degree

of loss aversion and her reference rate.

Corollary 2.2 Let the assumptions of proposition 2.3 be satisfied. Then the optimal solu-
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tion has the following properties:

dx∗

dλ
=



− 1
γ
rg−rb
rg−r0 ×

λ1/γ−1

K
1/γ
0

[
λ1/γ−

(
1
Kγ

)1/γ]2 < 0, for p > p̄

1
γ
rg−rb
r0−rb

× K
1/γ
0 λ1/γ−1[

λ1/γ−K1/γ
γ

]2 > 0, for p < p̄


(2.12)

and

dx∗

dr̂
=


1

rg−r0 ×
λ1/γ+

(
1
K0

)1/γ
λ1/γ−

(
1
Kγ

)1/γ > 0, for p > p̄

− 1
r0−rb

× λ1/γ+K
1/γ
0

λ1/γ−K1/γ
γ

< 0, for p < p̄


(2.13)

Corollary 2.2 implies the following findings regarding the comparative statics for the more

ambitious investor. For a sufficiently large probability of the good state to occur the risk

taking (i.e., the investment in the risky asset, x∗) decreases with an increasing degree of

loss aversion while risk taking increases with an increasing level of ambition, r̂. On the

other hand, when the probability of the good state to occur is sufficiently small then the

risk taking increases with an increasing loss aversion while it decreases with an increasing

level of ambition.

Table 1 summarizes and contrasts the optimal investments into the risky asset of the

linear loss averse (LLA) and the prospect theory (PT) investors (for more detail regarding

the LLA investor see Fortin and Hlouskova, 2011). Note that the investment in the risky

asset of the less ambitious LLA investor exceeds the investment in the risky asset of the

less ambitious PT investor. The opposite holds for the more ambitious investor when the

probability of the good state to occur is sufficiently large, i.e., when p > p̄. If p < p̄ then

the PT investor takes a short position and thus the risk taking of the LLA investor again

exceeds the risk taking of the PT investor. Note in addition that only when the reference

return coincides with the risk-free rate is the investment in the risky asset the same for both

investors, namely staying out of the market. Risk taking for the LLA investor is always

positive when the reference return does not coincide with the risk-free rate.

The risky asset is continuously distributed

Now we assume that the risky asset’s return r is continuously distributed with proba-

bility density function f(·) and cumulative distribution function F (·) such that E(|r|) =∫ +∞
−∞ |r|f(r)dr < +∞ and F (c) < 1 for any c ∈ R. These assumptions are satisfied when for

10



assumptions on r̂ additional assumptions solutions

r̂ < r0 E(r) > r0 0 < x∗ < x∗LLA = r0−r̂
r0−rb

r̂ = r0 x∗ = x∗LLA = 0

r̂ > r0 p > p̄ (x∗)+ = x∗ > x∗LLA = r̂−r0
rg−r0 > 0

r̂ > r0 p < p̄ (x∗)− = x∗ < 0 < x∗LLA = r̂−r0
rg−r0

Table 1: Summary of optimal solutions under S-shaped prospect theory and linear loss
aversion.
We assume that λ > max{Kγ , 1/Kγ , 1/K0}. Note that x∗ is given by (2.6) when r̂ < r0;
(x∗)+ is given by (2.8), (x∗)− by (2.9), p̄ by (2.10) and x∗LLA is given in Fortin and Hlouskova
(2011).

instance the risky asset’s return follows a normal distribution or a Gamma distribution.

Let rp be a continuous random variable describing the stochastic portfolio return and

frp(·) be its probability density function. Then based on (2.1) we define the expected

prospect theory utility of return rp as

E(v(rp)) =
1

1− γ

(
−λ
∫ r̂

−∞
(r̂ − z)1−γfrp(z)dz +

∫ +∞

r̂
(z − r̂)1−γfrp(z)dz

)
(2.14)

and thus based on (2.14) the expected prospect theory utility function of portfolio return

R(x) is

E(v(R(x))) =



(−x)1−γ
1−γ

[∫ z(x)
−∞ (z(x)− r)1−γ f(r)dr − λ

∫ +∞
z(x) (r − z(x))1−γ f(r)dr

]
, x < 0

1
1−γ

(
r0 − r̂

)1−γ
, x = 0 and r̂ ≤ r0

− λ
1−γ

(
r̂ − r0

)1−γ
, x = 0 and r̂ > r0

x1−γ

1−γ

[
−λ
∫ z(x)
−∞ (z(x)− r)1−γ f(r)dr +

∫ +∞
z(x) (r − z(x))1−γ f(r)dr

]
, x > 0



(2.15)

where z(x) = r̂−r0
x + r0. It is easy to see that E(v(R(x))) is continuous in x, also for x = 0.

The problem we want to solve is

max
x
{E(v(R(x))) |x ∈ R } (2.16)

The case when r̂ = r0 is already solved in the literature (see Bernard and Ghossoub, 2010,

or He and Zhou, 2011) and, as in the discrete case, the PT investor stays out of the market.

This holds also for the mean-variance investor. We summarize it in the following proposition,
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where

Kγ =

∫ r0
−∞(r0 − r)1−γf(r)dr∫ +∞
r0 (r − r0)1−γf(r)dr

(2.17)

Proposition 2.4 Let r̂ = r0 and λ > max
{
Kγ ,

1
Kγ

}
where Kγ is given by (2.17). Then

x∗ = 0 is the solution of problem (2.16).

Proof: See Appendix A. �

For r̂ 6= r0 we can find the solution only in its implicit form but we can still perform

comparative statics and show how the solution depends on the degree of loss aversion λ,

and the reference return r̂.

The following propositions present sufficient conditions for the existence of a global

maximum or at least local maxima of problem (2.16), namely strictly positive investment

in the risky asset x∗ that satisfies the following equation

λ

∫ z(x∗)

−∞

r − r0

[z(x∗)− r]γ
f(r)dr +

∫ +∞

z(x∗)

r − r0

[r − z(x∗)]γ
f(r)dr = 0 (2.18)

where z(x∗) = r̂−r0
x∗ + r0. In more detail, the proposition below states that the optimal

investment in the risky asset of a sufficiently loss averse less ambitious investor is strictly

positive. To ease the exposition we introduce the following notation

K̂γ = max
c

{
Kγ(c) =

∫ c
−∞(c− r)1−γf(r)dr − (c− r0)1−γ∫ +∞

c (r − c)1−γf(r)dr

∣∣∣ c ≥ r0} (2.19)

Proposition 2.5 Let E(r) > r0, r̂ < r0, and λ > max{K̂γ , 1/Kγ}, where Kγ is given by

(2.17) and K̂γ is given by (2.19). Then there exists a finite positive global maximum of

problem (2.16), i.e., x∗ > 0, which satisfies equation (2.18).

Proof: See Appendix A. �

Note that Kγ(r0) = Kγ and thus from the assumption of proposition 2.5 it follows that

λ > Kγ . Lemma 4.1 (see Appendix A) shows that K̂γ < +∞, i.e., K̂γ is bounded from

above and thus there exist such λs that the assumption λ > max{K̂γ , 1/Kγ} of proposition

2.5 is satisfied.

The following proposition presents results again in the implicit form, for both less and

more ambitious investors.

12



Proposition 2.6 Let E(r) > r0, r̂ 6= r0, and λ > max{Kγ , 1/Kγ}, where Kγ is given by

(2.17). Then there exists at least one local maximum of problem (2.16) such that x∗ > 0

and any positive local maximum x∗ > 0 satisfies (2.18). If there exists also a local maximum

such that (x∗)− < 0 then it satisfies the following equation

∫ z((x∗)−)

−∞

r − r0

[z((x∗)−)− r]γ
f(r)dr + λ

∫ +∞

z((x∗)−)

r − r0

[r − z((x∗)−)]γ
f(r)dr = 0 (2.20)

where z((x∗)−) = r̂−r0
(x∗)−+r0. Finally, any global maximum is finite, i.e. E(v(R(x∗))) < +∞.

Proof: See Appendix A. �

The last proposition presents the sensitivity analysis of risky investment of both less and

more ambitious investors with respect to their degrees of loss aversion and reference rates.

Proposition 2.7 Let x∗ > 0 be the optimal solution of (2.16) such that (2.18) is satisfied,

r̂ 6= r0, and let

lim
r→±∞

|r|2−γf(r) = 0 (2.21)

Then x∗ has the following properties

dx∗

dλ
< 0 (2.22)

and

dx∗

dr̂
=

 < 0, if r̂ < r0

> 0, if r̂ > r0

 (2.23)

Proof: See Appendix A. �

Proposition 2.7 implies that any positive solution (investment in the risky asset) of (2.16)

satisfying (2.18) decreases with an increasing degree of loss aversion and it also decreases

with an increasing reference return for the less ambitious investor while the investment in the

risky asset increases with an increasing reference return for the more ambitious investor.

The reference return thus plays an important role in asset allocation. In particular, the

proportion invested in the risky asset has a V-shaped pattern with respect to the reference

return level. For relatively low reference returns, the investor prefers to accept more risk

to earn more, rather than switch away from the stock market. For relatively high reference

returns, the investor puts more money into the risky asset due to her risk-seeking behavior

in the domain of losses.
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A complete summary of the results including comparative statics with respect to loss

aversion (λ) and the level of ambition (r̂) for both the prospect theory investor and the

linear loss averse investor8 can be found in Table 2.

conditions on λ conditions on r̂ binomial continuous

S-shaped prospect theory
x∗ x∗

λ > max{Kγ , K̂γ , 1/Kγ} r̂ < r0 > 0 > 0
λ > 1/Kγ , p > p̄ r̂ > r0 > 0 −
λ > Kγ , p < p̄ r̂ > r0 < 0 −
λ > max{Kγ , 1/Kγ} r̂ 6= r0 − > 0

r̂ = r0 = 0 = 0
dx∗/dλ dx∗/dλ

λ > max{Kγ , K̂γ , 1/Kγ} r̂ < r0 = 0 < 0∗

λ > 1/Kγ , p > p̄ r̂ > r0 < 0 −
λ > Kγ , p < p̄ r̂ > r0 > 0 −
λ > max{Kγ , 1/Kγ} r̂ 6= r0 − < 0∗

r̂ = r0 = 0 = 0
dx∗/dr̂ dx∗/dr̂

λ > max{Kγ , K̂γ , 1/Kγ} r̂ < r0 < 0 < 0∗

λ > 1/Kγ , p > p̄ r̂ > r0 > 0 −
λ > Kγ , p < p̄ r̂ > r0 < 0 −
λ > max{Kγ , 1/Kγ} r̂ > r0 − > 0∗

r̂ = r0 = 0 = 0
linear loss aversion

x∗ x∗

λ > 1/K0 r̂ 6= r0 > 0 > 0
r̂ = r0 = 0 = 0

dx∗/dλ dx∗/dλ
λ > 1/K0 r̂ 6= r0 = 0 < 0

r̂ = r0 = 0 = 0
dx∗/dr̂ dx∗/dr̂

λ > 1/K0 r̂ < r0 < 0 < 0
r̂ > r0 > 0 > 0
r̂ = r0 = 0 = 0

Table 2: Summary of optimal solutions and sensitivities under S-shaped prospect theory
and linear loss aversion.
We assume that E(r) > r0 and λ > 1. Note that Kγ for the binomial case is defined by
(2.5) while for continuous case it is defined by (2.17). In addition, K̂γ is defined by (2.19)
and p̄ by (2.10). 0∗ denotes the cases when an additional assumption is required, namely
limr→±∞ |r|2−γf(r) = 0.

8For more detail regarding the LLA investor see again Fortin and Hlouskova (2011).
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3 Empirical application

In this section we investigate the performance of an optimal asset portfolio constructed by

an investor with S-shaped prospect theory preferences. We study the benchmark scenario,

where the penalty parameter is constant and the reference return is equal to zero percent,

and three modified versions of the benchmark scenario. The first modification uses the risk-

free interest rate as the reference point (risk-free scenario), the remaining two modifications

employ time-changing versions of the penalty parameter, which depend on previous gains

and losses, while the reference return is either zero, the risk-free interest rate or the portfolio

return of the previous period. So, we consider two constant scenarios and two dynamic

scenarios with respect to the penalty parameter. The first dynamic scenario describes the

usual conservative loss averse investor, who becomes even more loss averse after losses

(conservative scenario), while the second dynamic scenario describes a more aggressive non-

conventional risk-seeking investor, who becomes less loss averse after losses and accepts

further risk and gambles which offer a chance to break even (aggressive scenario). Our

conservative and aggressive (break-even) scenarios are modified versions of the scenarios

suggested by Barberis and Huang (2001) and Zhang and Semmler (2009), respectively.9

We consider the following scenarios, where the degree of the investor’s loss aversion is

updated according to certain rules based on the portfolio performance (gains or losses) of

the previous period while the reference return is either zero, r̂t = 0, or the risk-free interest

rate, r̂t = r0t , or it is the portfolio return of the previous period, r̂t = rpt−1. Thus, the value

function adjusted for the time-changing penalty parameter and a certain reference return is

v(rpt ) =


(rpt−r̂t)1−γ

1−γ , rpt ≥ r̂t

−λt (r̂t−r
p
t )

1−γ

1−γ , rpt < r̂t

The conservative scenario is modeled as follows. If the investor has experienced gains,

then her penalty parameter is equal to the pre-specified λ while, on the other hand, if

the investor has experienced losses, then her loss aversion and thus her penalty parameter

increases, i.e.,

λt =

 λ, rpt−1 ≥ r
p
t−2 (gains)

λ+ (zt−1 − 1) , rpt−1 < rpt−2 (losses, λ increases)
(3.24)

9Note that although this analysis covers many empirical aspects of the problem a more thorough analysis
is required to shed light on all details and we will deal with this in our future research. For example, as we
focus mainly on loss aversion, the dynamic scenarios in our study update only the investor’s loss aversion,
and only after prior losses. They do not update the reference return and do not apply dynamic updates of
both the reference return and loss aversion after prior gains. So we can not study here the house money
effect, for instance.
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Conservative investor Aggressive investor

Figure 2: Value function of conservative and aggressive investors.
The value function after prior gains is plotted as a solid line, the value function after prior
losses as a dashed line; r̂ denotes the reference return.

where zt =
1+rpt−1

1+rpt
≥ 010 and λt ≥ λ. See the left plot in Figure 2 where the dashed line

represents the higher loss aversion of a conservative investor after prior losses. At the same

time the reference return of the conservative investor is either equal to zero, r̂t = 0, or to the

risk-free interest rate, r̂t = r0, or to the portfolio return of the previous period, r̂t = rpt−1.

The following scenario is partly based on the “break-even” effect as described in Zhang

and Semmler (2009) and we refer to it as the aggressive scenario. The main idea is that

sometimes both private and institutional investors may become more risk-seeking after

losses in order to make up for previous losses. In other words, even if they have experienced

a loss in the previous period, investors may be ready to incur further risks and accept

gambles which offer them a chance to break even. In this case the loss implies a decreasing

loss aversion due to the investor’s increased risk-seeking. The gain, on the other hand,

is treated as in the conservative scenario, i.e., the degree of loss aversion remains at the

pre-specified level. The time-changing penalty parameter is then

λt =

 λ, rpt−1 ≥ r
p
t−2 (gains)

λ+
(

1
zt−1
− 1
)
, rpt−1 < rpt−2 (losses, λ decreases)

(3.25)

See the right plot in Figure 2 where the dashed line represents the lower loss aversion after

prior losses of an aggressive investor. The reference return in the aggressive scenario is again

either equal to zero or to the risk-free interest rate or to the portfolio return of the previous

period. Note that in this case is λt ≤ λ and thus the investor decreases her degree of loss

aversion. With the current lambda adjustment a sufficient condition for λt ≥ 1 is λ ≥ 2.11

10Note that in case of gains; i.e., rpt−1 ≥ r
p
t−2, is zt−1 ≤ 1 and in case of losses; i.e., rpt−1 < rpt−2, is zt−1 > 1.

11Note that this assumption might be violated in our empirical applications only for λ = 1.5, which we
handle in our code such that if λt happens to be below one then we impose λt = 1.
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In the empirical analysis we consider two geographical markets, the European and the

US markets, where the euro area represents the European (EU) market. We consider three

different types of assets among which the investor may select: a stock market index, a 10-

year government bond12 and gold.13 We impose a budget constraint, i.e., x1 + x2 + x3 =

1, and a no-short sale restriction, i.e., xi ≥ 0, i = 1, 2, 3.14 Returns are computed as

rt = Pt/Pt−1 − 1, where Pt is the monthly closing price at time t. All prices are extracted

from Refinitiv Datastream from January 1983 to December 2020. The overall stock market

indices for the EU and the US are as calculated by Datastream. Prices in the European

markets are quoted in, or transformed to, Euro; prices in the US markets are quoted in US

dollar, hence we consider European and US investors who completely hedge their respective

currency risk. Figure 3 presents the price developments of the three assets for both the EU

and the US, Table 9 in Appendix B provides the data description and the data sources,

and Table 10 reports the summary statistics of asset returns including correlations. In

general, the stock index exhibits a comparatively high risk and return, the government

bond shows a much lower risk and return, and gold exhibits a relatively high risk but

also a small return. The correlations between the stock index and the government bond

as well as between the stock index and gold are slightly negative but close to zero, and

the correlation between the government bond and gold is approximately 0.06 (in both the

European and US markets, respectively). The relatively low correlations suggest that –

at least in mean-variance portfolios – all three assets should be included in the optimal

portfolio at non-negligible rates for diversification reasons.

The investor is assumed to re-optimize her portfolio once a month using monthly closing

prices and considers an optimization sample of 36 months, i.e., three years. This yields an

out-of-sample evaluation period from January 1986 until December 2020. We use different

values of λ in all scenarios to allow for different degrees of loss aversion. Specifically, we let

the penalty parameter be equal to 1.5, 2, 2.25, 2.5 and 3.15 In addition we account for the

following values of the risk aversion/risk loving – or diminishing sensitivity – parameter,

namely γ = 0, 0.1, 0.5 and 0.9. The case γ = 0 represents a linear loss averse (LLA) investor

and if, in addition, λ = 1 then the investor becomes risk neutral (linear).

For the European and US prospect theory investors we report optimization results for

different scenarios, as described above. In particular, we present descriptive statistics in-

12We use the German 10-year government bond as a proxy, because euro area government bonds do not
exist and we want to have an investable asset not some artificial aggregate.

13Note that gold has a low correlation with equity and bond prices, see Table 10, and hence including gold
in the portfolio provides a natural hedge. Gold is also considered a safe haven in turbulent times.

14To solve problem (2.2) numerically, we apply the grid search method. The whole procedure is imple-
mented in MATLAB R2021a and EViews 12.

15Note that the value λ = 2.25 is the one estimated by Kahneman and Tversky (see Tversky and Kahne-
man, 1992). Chapman et al. (2018) provide a median estimate of λ = 1.99 for the US in lab experiments.
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EU US

Figure 3: Asset prices in the EU (left) and the US (right). Stock prices are shown on the
left axis, bond and gold prices are shown on the right axis.

cluding mean, standard deviation, downside volatility, conditional value at risk, and various

risk-adjusted performance measures of the optimal portfolio returns as well as the average

optimal portfolio weights. Risk-adjusted performance measures include the Sharpe and

Sortino ratios and the Omega measure.16

3.1 Portfolio performance and asset allocation

As the main focus of our empirical analysis are S-shaped prospect theory (PT) investors,

not linear loss aversion (LLA) investors, we present the results regarding the performance

of PT portfolios and of benchmark portfolios, such as mean-variance (MV) and conditional

value-at-risk (CVaR) models, in Tables 4 to 7. However, if the portfolio of the LLA investor

(including the risk neutral investor who is a special case of the LLA investor) achieves the

best performance then we explicitly mention this in the text.

Prospect theory versus mean-variance investment

Our empirical results suggest that PT investment leads to clearly higher means of portfolio

returns, but also to much higher risk (measured by the volatility of portfolio returns) than

traditional MV investment, for all types of PT investors17 and for both the EU and US

markets. If we consider risk-adjusted performance measures like Omega, the Sharpe ratio

and the Sortino ratio, however, then the geographical market seems to matter. In this case

MV investment outperforms PT investment in the EU, while PT investment outperforms

16The Sortino ratio is a modified version of the Sharpe ratio which uses downside volatility with respect to
a target return (instead of standard deviation) as the denominator. The Omega measure is a ratio of upside
potential of portfolio return relative to its downside potential with respect to a target return (see Shadwick
and Keating, 2002). In our applications we take the risk-free interest rate as the target return.

17By all types of PT investors we mean investors with respect to all different values (under consideration)
of r̂, λ and γ, as well as both types of scenarios (constant and dynamic).
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MV investment in the US in most cases. Considering the benchmark scenario in PT invest-

ment with γ = 0.5, for example, we observe an average mean of portfolio returns (over the

different degrees of loss aversion) of 7.7% (9.8%) in the EU (US) market versus a mean of

6.2% (7.0%) for MV investment. The Sharpe ratio in this case is 49.9 (59.7) for PT invest-

ment versus 62.7 (57.4) for MV investment on average (again over the different degrees of

loss aversion) in the EU (US) market. See Tables 11 and 12. We also observe that portfolio

returns of PT investors significantly outperform portfolio returns of MV investors in the US

market. For more details see Table 3 and the corresponding discussion in the subsection on

means.

In addition, the PT investor shows a clearly different investment behavior with respect

to implied asset weights from the MV investor. Figure 6 shows the optimal portfolio weights

of stocks, bonds and gold for a PT investor (characterized by λ = 2.25, γ = 0.5 and r̂ = 0)

and for an MV investor.18 While the PT investor holds large proportions of stocks during

certain time periods and her asset weights may sometimes vary strongly over short periods,

the MV investor holds rather large proportions of bonds throughout the total time period

and her asset weights do not change a lot over short periods.19 In this particular case the

means and standard deviations (in brackets) of the portfolio weights implied by the PT

investor operating in the EU market are 32.9 (30.0), 56.9 (30.0), and 10.3 (11.9) for stocks,

bonds, and gold, respectively. The corresponding numbers implied by MV investing are

10.6 (8.5), 80.7 (7.4), and 8.8 (7.1). If one invests in the US market the numbers implied

by PT investing are 46.0 (31.6), 41.8 (32.2), and 12.3 (16.9) for stocks, bonds, and gold,

respectively; the ones implied by MV investing are 20.7 (10.5), 64.6 (10.5), and 14.6 (14.2).

See Tables 11 and 12. We can explain the “smooth” investment behavior of the MV investor,

dominated by bonds, by her strong preferences for a low portfolio risk (measured by the

variance of portfolio returns), which clearly favors bonds whose risk is constantly small and

much lower than that of stocks and gold. The PT investor, however, seems to be driven

more by the different levels of stock returns resulting, sometimes, in large changes in stock

weights. This conjecture is verified by the high correlation between prospect theory stock

weights and stock returns over some rolling window. For example, the correlation between

the stock weight at a given time and the average of stock returns over the previous three

18Note that the particular example of the PT investor shows an investment behavior very similar to other
types of PT investors, including conservative and aggressive types. So the following discussion holds overall
for all PT investors.

19These different weight patterns across PT and MV investors are also suggested by the simple means and
standard deviations of the portfolio weights presented in the bottom parts of Tables 11–18. In particular
the high standard deviation of the weights implied by the PT investor vis-a-vis the much lower standard
deviation of the weights implied by the MV investor reflects the non-smooth investment behavior of PT
investors versus the smooth investment behavior of MV investors. For stocks and bonds, the standard
deviation of the weight of the MV investor is often only a third, or even a forth, of the standard deviation
of the weight of the PT investor.
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years is 0.62 and 0.53 for the EU and the US, respectively.20 We take a three-year return

average as also the portfolio optimization process uses a rolling window of three years.

Different scenarios in prospect theory investment

Our empirical results suggest that for a given level of diminishing sensitivity and a given

degree of loss aversion21 the reference return seems to be a crucial factor in determining the

performance of PT investment. This is in line with our theoretical finding that the optimal

solution of a prospect theory investor in the two-asset case depends on her reference level.

In particular the reference return seems to be more of a game changer than the investor’s

behavior regarding her update (or not) in her degree of loss aversion, i.e., whether the

investor follows a constant or a conservative or an aggressive strategy. However, this is an

observation based on the specific (limited) scenarios we consider, see footnote 9. For the

reference return being equal to zero or the risk-free interest rate, the constant and dynamic

scenarios yield very similar performance for both the European and the US markets. See

Figure 4, which shows Omega measures for different PT investors with γ = 0.5.22 Only

when the reference return is equal to the portfolio return of the previous period is the

situation different. In this case the difference between the performance of conservative and

aggressive investors is more pronounced. In the US market the Omegas implied by aggressive

investment are always (i.e., for all degrees of loss aversion) larger than the Omegas implied

by conservative investment, while in the European market the Omegas implied by aggressive

investment are larger for smaller degrees of loss aversion and smaller for higher degrees of

loss aversion.23 The similarities for zero and risk-free reference returns (across constant

and dynamic scenarios) are mainly due to the small differences in the respective penalty

parameters across the scenarios,24 combined with portfolio returns being rather close to the

reference return. In the case of the reference return being equal to the portfolio return of

the previous period, the differences between the corresponding penalty parameters across

20These correlations are true for the specific examples shown in the graphs in Figure 6, for other types
of PT investors the correlations are also large; and they are usually larger for smaller values of γ and for a
lower degree of loss aversion. For example, for the reported type of PT investors with γ = 0.1 (instead of
γ = 0.5) the correlations would be 0.78 and 0.65, for the EU and the US, respectively.

21By a “given degree of loss aversion” in dynamic scenarios we understand the degree of loss aversion after
prior gains, which is constant. Also the degree of loss aversion after prior losses is usually very close to this
value, see footnote 24.

22Similar observations apply for other performance measures.
23The investors’ characteristics for which the aggressive scenarios lead to a better performance are, how-

ever, not similar across the three levels of diminishing sensitivity.
24Across all different types of investors (with respect to different γ, λ and r̂) the loss aversion parameter

is at most by 0.33 larger than the initially given value in the conservative scenarios, and it is at most by
0.25 smaller than the initially given value in the aggressive scenarios. Mostly, however, the deviations from
the initial lambda are much smaller. In at least 90% of the deviations upwards (conservative scenario) the
deviations are smaller than 0.08 (for a given investor), and in at least 90% of the deviations downwards
(aggressive scenario) the absolute deviations are smaller than 0.07 (for a given investor).
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conservative and aggressive scenarios are also small (maybe slightly larger than for r̂ = 0

and r̂ = r0), but the portfolio returns are much further away from the reference returns,

and thus the resulting differences in performance measures are more pronounced.

Prospect theory investment in the EU and US markets

When comparing prospect theory investment in the two markets, EU and US, we notice

that the means of portfolio returns are clearly larger in the US than in the EU markets,

and also risk-adjusted performance measures are mostly larger in the US than in Europe,25

If one targets risk measures like volatility, however, then the European market seems to be

the better choice, as volatilities are smaller in Europe than in the US. See Figure 5, which

shows different performance measures (mean, Sharpe ratio, Omega measure, volatility) of

portfolio returns implied by PT investment (γ = 0.5) for the zero and the risk-free reference

returns, for different degrees of loss aversion, for the EU and the US markets.

With respect to the best performance we observe that PT investors show a different

behavior in the EU and US markets. The best risk-adjusted performance26 in the EU

market is implied by the PT investor following the conservative scenario with the largest

diminishing sensitivity (γ = 0.9), the largest degree of loss aversion (λ = 3) and a zero

reference return, see Table 5. On the other hand, the best risk-adjusted performance in

the US market is implied by the PT investor following the aggressive scenario with the

largest diminishing sensitivity (γ = 0.9), λ = 2 and the risk-free reference return (see again

Table 5). Though in both markets the largest risk-adjusted performance is implied by

PT investors with the highest diminishing sensitivity, in the EU market the conservative

strategy seems to be the way to go while in the US market the aggressive strategy provides

the best (risk-adjusted) performance. Note also that the EU investor is more loss averse

than the US investor and the reference return of the EU investor is always constant, namely

zero, while it coincides with the risk-free investment (and thus is time changing) in the

case of the US investor. Note finally that the EU investor allocates on average 60% of her

investment in the bond market (followed by 29% in the stock market and 11% in gold) while

the more aggressive US investor allocates on average 50% of her investment in the stock

market (followed by 35% in the bond market and 15% in gold), see Tables 14 and 18.

25Only for the highest degree of loss aversion (λ = 3), risk-adjusted performance may be slightly better in
Europe.

26What follows is equally true for the Omega measure, the Sharpe ratio and the Sortino ratio, for both
the EU and US markets.
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Mean

The best model for the EU market in terms of the largest mean of portfolio returns for any

given level of γ, is the risk neutral (linear) model, which shows a mean of 12.9%. For the US

market the largest mean, namely 13.6%, which is observed for an investor with γ = 0.1, is

obtained by the PT model with λ = 1.5 under the conservative scenario with the reference

level being the portfolio return from the previous period. For γ = 0.5, 0.9 the model with

the largest mean in the US market is the linear model with a slightly smaller mean of 13.3%.

The results (in terms of annual averages) are presented in Table 4. For the EU market the

best models are found for the aggressive scenario with r̂ = rp for γ = 0.1, 0.9, and for the

aggressive scenario with r̂ = 0 for γ = 0.5. Also for the US market the aggressive scenario

is the one which implies the highest means (except for case γ = 0.1 when the best model

is implied by the conservative scenario with r̂ = rp). Note that for a given investor the

means of PT portfolio returns in the US are by roughly two to three percentage points

larger than the corresponding means of portfolio returns in the EU. Note in addition that

the mean in general decreases with increasing λ, keeping other model parameters fixed (see

Tables 11–18). This is in line with our theoretical results for the two-asset case and follows

from Proposition 2.7, see (2.22).27

In the US market, PT portfolios perform significantly better than MV portfolios in the

majority of cases, at the 10% significance level.28 For a PT investor with γ = 0.1 this

is true for all scenarios and for degrees of loss aversion of up to 2.25, for a PT investor

with γ = 0.5 it is true nearly all the time, and for a PT investor with γ = 0.9 it is true

for all portfolios except the ones generated by scenarios with a zero reference return, see

Table 3. In the EU market, however, PT portfolios hardly ever significantly outperform

MV portfolios, except for three cases, namely for an investor with γ = 0.9 and λ = 3,

where the reference return is equal to zero (including the benchmark scenario as well as the

conservative and aggressive scenarios), see Table 3. This difference between the portfolio

performance implied by various types of PT investors in the EU and US is probably partly

due to the higher returns of stock markets in the US than in the EU.

Median

The largest median of portfolio returns in the EU market, namely 14.9%, is achieved by

the risk neutral investor for all degrees of diminishing sensitivity. This is also the case for

27Note that the expected portfolio return is E(rp) = xE(r − r0) + r0 and thus for E(r) > r0 and dx
dλ

< 0,

see (2.22), it follows that dE(rp)
dλ

< 0.
28Most of the time this is true for the 5% or 1% significance levels. We perform a Diebold-Mariano test

(see Diebold and Mariano, 1995) to investigate whether returns of prospect theory investors exceed returns
of mean-variance investors.
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the US market for γ = 0.5, 0.9, with the median being 18.7%. However, for γ = 0.1 the

largest median (18.9%) is achieved by the PT investor with λ = 1.5 and r̂ = rp under the

aggressive scenario. We present a summary of the models (except LLA models) yielding

largest medians in Table 4. The best models for the EU are implied by aggressive scenarios

for γ = 0.1, 0.5, and by the risk-free scenario for γ = 0.9. The reference return of these

models is the portfolio return of the previous period for γ = 0.1 and it is the risk-free rate

for γ = 0.5, 0.9. All models implying the largest median in the EU have the lowest degree

of loss aversion, namely λ = 1.5. For the US market the largest medians are found for the

aggressive scenario with r̂ = rp and λ = 1.5 for γ = 0.1, 0.5, and for the aggressive scenario

with r̂ = rp and λ = 2.25 for γ = 0.9. Medians of best models in the US are by roughly

four percentage points larger than medians in the EU, for a given degree of diminishing

sensitivity.

Largest means and medians of portfolio returns are implied in most cases by aggressive

scenarios. Note that in both markets for γ = 0.1, the largest mean and median are implied

by the same PT model with λ = 1.5 under the aggressive scenario with r̂ = rp.29 Note, in

addition, that the largest median for any given degree of diminishing sensitivity is implied

by the PT model with λ = 1.5 for the EU and by the PT model under the aggressive

scenario with r̂ = rp for the US.

Risk-adjusted performance measures (Omega measure, Sharpe ratio, Sortino

ratio, CVaR)

For the EU market the model that implies the largest Omega for γ = 0.1, namely 167.9,

is the linear model. The risk neutral investor also achieves the largest Sharpe and Sortino

ratios for γ = 0.1, 0.5, namely 63.2 (Sharpe ratio) and 98.6 (Sortino ratio). Note that

these are the only cases with respect to all risk-adjusted measures, when the best models

are not among the PT models. We report the results related to risk-adjusted performance

in Table 5. For the EU the largest Omega, Sharpe and Sortino ratios are implied by the

PT investor under the conservative scenario with r̂ = 0, λ = 3 and γ = 0.9.30 For a

smaller degree of diminishing sensitivity the best risk-adjusted performance is obtained by

the mean-variance model. For the US the best performance with respect to Omega, the

Sharpe and Sortino ratios for γ = 0.1 is obtained by the PT investor under the conservative

scenario with r̂ = rp and λ = 1.5, while the best performance for γ = 0.9 is obtained by

the PT model under the aggressive scenario with r̂ = r0 and λ = 2. The largest CVaR

29Note that for the US market the largest mean (13.62%) is implied by the conservative scenario for
γ = 0.1. However, the aggressive scenario with identical characteristics concerning diminishing sensitivity,
loss aversion and the reference return implies nearly the same mean, namely 13.60%, which is only 0.02
percentage points lower.

30This is also the case for γ = 0.5 when the performance measure is Omega.
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for both the EU and the US are achieved by the mean-variance investor for all degrees of

diminishing sensitivity. Note that CVaR mostly increases with increasing λ (when all other

model parameters are fixed), see Tables 11–18.

Risk measures (volatility and downside volatility)

The smallest risk measures for all degrees of diminishing sensitivity are implied by the

mean-variance model in both the EU and the US markets. See Table 6 for a more detailed

presentation. This does not come as a surprise as the mean-variance model explicitly targets

the minimization of the variance, which is closely related to the reported risk measures. Note

that volatility and downside volatility decrease with increasing λ (when all other model

parameters are fixed).

Annual realized returns over the last 10, 5, 3 and 1 year(s)

We report the results with respect to the largest realized returns in Table 7. Regarding

the EU market, in most cases the risk neutral investor achieves the largest realized returns

(7.2% for the last 5 and 10 years, 7.8% for the last 3 years and 6.7% for the last year).

The only exceptions are returns over the last year and the last 3 years for γ = 0.9, when

the PT model with λ = 1.5 and r̂ = rp under the aggressive scenario achieves the largest

realized returns (10.6% for last 3 years and 14.7% for the last year). Regarding the US

market, the LLA model implies the largest returns only for γ = 0.5, when considering the

last 10 years (11.6%); and for γ = 0.1, when looking at the last 5 years (11.5%). In both

cases the LLA investor is characterized by the aggressive scenario with λ = 1.5 and r̂ = rp.

Note that the PT model with the same characteristics implies the largest realized returns

over the last 10 years when γ = 0.1 and implies also the largest mean. Except for one case,

the reference returns of investors with the largest realized returns are the portfolio returns

from the previous period.

Note finally that in the vast majority of cases the means of PT portfolio returns ex-

ceed (sometimes quite substantially) the realized PT portfolio returns (on average by three

percentage points), see Tables 11–18.31

31The rest of the tables presenting results of portfolio performance for a specific γ and scenario can be
obtained from the authors upon request.
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EU market US market

r̂ = 0

r̂ = r0

r̂ = rp

Figure 4: Conservative versus aggressive prospect theory investing: Omega measure.
The graphs show the Omega measures of portfolio returns implied by conservative and
aggressive prospect theory investing (γ = 0.5) for different degrees of loss aversion (shown
on the x-axis) and for a given reference return (top row: r̂ = 0, middle row: r̂ = r0, bottom
row: r̂ = rp) in the EU market (left) and the US market (right).
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Mean Sharpe ratio

Omega measure Volatility

Figure 5: Prospect theory investing in the EU and the US.
The graphs show the means, Sharpe ratios, Omega measures, and volatilities of portfolio
returns implied by a prospect theory investor (γ = 0.5) with reference returns of zero percent
and the risk-free rate, for different degrees of loss aversion (shown on the x-axis) in the EU
market (solid lines) and the US market (broken lines).
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EU prospect theory investor US prospect theory investor

EU mean-variance investor US mean-variance investor

Figure 6: Optimal portfolio weights for prospect theory and mean-variance investors.
The graph shows optimal asset weights for investors in the EU (left) and in the US (right)
markets. The prospect theory investor is characterized by λ = 2.25, γ = 0.5 and a zero
reference return.
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scenario: benchmark risk-free conservative aggressive
reference return: r̂ = 0 r̂ = r0 r̂ = 0 r̂ = r0 r̂ = rp r̂ = 0 r̂ = r0 r̂ = rp

EU
γ = 0.1
λ = 1.5 2.25 2.54 2.01 2.38 3.70 2.31 2.49 3.91
λ = 2 2.02 1.89 1.80 1.85 1.93 1.82 1.78 1.92
λ = 2.25 1.35 1.51 1.50 1.59 1.57 1.33 1.57 1.35
λ = 2.5 1.20 1.35 1.28 1.37 0.95 1.23 1.33 1.08
λ = 3 0.79 0.74 0.76 0.70 1.06 0.79 0.71 1.07
γ = 0.5
λ = 1.5 1.55 1.78 1.69 1.72 1.18 1.68 1.69 1.75
λ = 2 1.77 1.45 1.82 1.59 0.26 1.83 1.70 1.43
λ = 2.25 0.97 1.43 0.95 1.49 0.46 1.01 1.38 0.23
λ = 2.5 1.57 1.72 1.56 1.79 0.60 1.33 1.73 0.02
λ = 3 1.32 1.38 1.53 1.43 0.38 1.31 1.40 0.33
γ = 0.9
λ = 1.5 1.77 2.16 2.12 1.91 1.94 2.00 2.16 0.79
λ = 2 1.28 1.90 1.37 2.15 0.16 1.47 1.99 1.09
λ = 2.25 1.90 1.72 1.82 1.75 -0.93 1.79 2.05 0.92
λ = 2.5 1.79 2.07 1.80 1.98 1.29 1.55 2.05 2.30
λ = 3 2.06∗ 1.63 2.29∗∗ 1.80 0.84 1.99∗ 1.53 1.13

US
γ = 0.1
λ = 1.5 5.01∗∗∗ 5.27∗∗∗ 4.70∗∗∗ 5.03∗∗∗ 6.27∗∗∗ 5.20∗∗∗ 5.31∗∗∗ 6.25∗∗∗

λ = 2 2.94∗∗ 3.03∗∗ 2.88∗ 3.36∗∗ 4.20∗∗ 2.94∗∗ 3.10∗∗ 4.02∗∗

λ = 2.25 2.50∗ 2.94∗∗ 2.45∗ 2.72∗ 3.44∗∗ 2.54∗ 2.91∗∗ 3.59∗∗

λ = 2.5 1.82 2.18 1.73 2.08 2.71∗ 1.81 2.30∗ 2.59
λ = 3 1.41 1.56 1.31 1.52 2.48∗ 1.39 1.63 2.34
γ = 0.5
λ = 1.5 2.92∗ 3.84∗∗ 3.03∗ 3.88∗∗ 2.68 3.16∗ 3.91∗∗ 4.23∗∗

λ = 2 3.30∗∗ 3.04∗ 3.21∗∗ 3.21∗∗ 4.03∗∗ 3.24∗∗ 3.07∗∗ 4.00∗∗

λ = 2.25 2.77∗∗ 3.21∗∗ 2.66∗ 3.10∗∗ 4.10∗∗ 2.68∗ 3.04∗∗ 4.29∗∗

λ = 2.5 2.53∗ 3.23∗∗ 2.51∗ 3.18∗∗ 4.01∗∗ 2.35∗ 3.08∗∗ 4.66∗∗∗

λ = 3 1.82 2.82∗∗ 1.77 2.83∗∗ 2.90∗ 2.10∗ 2.83∗∗ 3.21∗

γ = 0.9
λ = 1.5 2.46 4.28∗∗∗ 2.47 4.10∗∗∗ 3.62∗ 2.48 4.38∗∗∗ 3.39∗

λ = 2 1.98 4.34∗∗∗ 1.97 4.27∗∗∗ 3.44∗ 1.93 4.36∗∗∗ 2.02
λ = 2.25 1.65 3.96∗∗∗ 1.77 4.12∗∗∗ 4.28∗∗ 1.58 4.09∗∗∗ 3.41∗

λ = 2.5 1.80 4.08∗∗∗ 1.80 4.15∗∗∗ 4.05∗∗ 1.71 4.20∗∗∗ 3.26∗

λ = 3 1.54 2.83∗ 1.39 2.89∗∗ 2.23 1.65 2.87∗ 3.89∗∗

Table 3: Diebold-Mariano test for prospect theory returns being larger than mean-variance
returns.
The table shows annualized estimated coefficients ĉ from the regression rPTt −rMV

t = c+εt.
One (two, three) stars indicate significance at the 10% (5%, 1%) level, based on the HAC
adjustment. Red numbers indicate the largest value for a given γ over all λs and scenarios.
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Mean Scenario Model Median Scenario Model

EU
γ = 0.1 10.30 aggressive λ = 1.5, r̂ = rp 10.62 aggressive λ = 1.5, r̂ = rp

γ = 0.5 8.11 aggressive λ = 2, , r̂ = 0 9.49 aggressive λ = 1.5, r̂ = r0

γ = 0.9 8.61 aggressive λ = 2.5, r̂ = rp 9.53 risk-free λ = 1.5, r̂ = r0

US
γ = 0.1 13.62 conservative λ = 1.5, r̂ = rp 18.86 aggressive λ = 1.5, r̂ = rp

γ = 0.5 11.91 aggressive λ = 2.5, r̂ = rp 13.57 aggressive λ = 1.5, r̂ = rp

γ = 0.9 11.61 aggressive λ = 1.5, r̂ = r0 14.30 aggressive λ = 2.5, r̂ = rp

Table 4: Best performing scenarios and models with respect to the mean and median for
the EU and the US markets. Presented values for means and medians are annual averages
in percent.

Omega Scenario Model CVaR Scenario Model

EU
γ = 0.1 159.23 MV -27.23 MV
γ = 0.5 169.79 conservative λ = 3, r̂ = 0 -27.23 MV
γ = 0.9 180.76 conservative λ = 3, r̂ = 0 -27.23 MV
US
γ = 0.1 173.28 conservative λ = 1.5, r̂ = rp -31.16 MV
γ = 0.5 172.36 benchmark λ = 2, r̂ = 0 -31.16 MV
γ = 0.9 181.59 aggressive λ = 2, r̂ = r0 -31.16 MV

Sharpe Scenario Model Sortino Scenario Model

EU
γ = 0.1 62.74 MV 97.70 MV
γ = 0.5 62.74 MV 97.70 MV
γ = 0.9 69.82 conservative λ = 3, r̂ = 0 116.87 conservative λ = 3, r̂ = r0

US
γ = 0.1 68.70 conservative λ = 1.5, r̂ = rp 103.06 conservative λ = 1.5, r̂ = rp

γ = 0.5 67.57 aggressive λ = 2.5, r̂ = rp 106.28 aggressive λ = 2.5, r̂ = rp

γ = 0.9 71.71 aggressive λ = 2, r̂ = r0 109.87 aggressive λ = 2, r̂ = r0

Table 5: Best performing scenarios and models with respect to risk-adjusted performance
measures (Omega, CVaR, Sharpe ratio, Sortino ratio) for the EU and the US markets.

Volatility Model Downside volatility Model

EU
γ = 0.1 4.79 MV 2.69 MV
γ = 0.5 4.79 MV 2.69 MV
γ = 0.9 4.79 MV 2.69 MV
US
γ = 0.1 5.77 MV 3.14 MV
γ = 0.5 5.77 MV 3.14 MV
γ = 0.9 5.77 MV 3.14 MV

Table 6: Best performing models with respect to risk measures (volatility and downside
volatility) for the EU and the US markets.
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EU US
Return Scenario Model Return Scenario Model

Last 10 years: 2011–2020
γ = 0.1 5.67 MV 12.11 conservative λ = 1.5, r̂ = rp

γ = 0.5 6.01 aggressive λ = 3, r̂ = 0 11.10 conservative λ = 2, r̂ = rp

γ = 0.9 6.72 aggressive λ = 2.5, r̂ = rp 14.07 conservative λ = 2.5, r̂ = rp

Last 5 years: 2016–2020
γ = 0.1 3.65 risk-free λ = 3, r̂ = r0 10.36 conservative λ = 1.5, r̂ = rp

cons., aggr. λ = 3, r̂ = r0

γ = 0.5 4.72 benchmark λ = 3, r̂ = 0 11.73 aggressive λ = 2.5, r̂ = rp

aggressive λ = 3, r̂ = 0
γ = 0.9 6.82 aggressive λ = 2.5, r̂ = rp 14.46 conservative λ = 2.5, r̂ = rp

Last 3 years: 2018–2020
γ = 0.1 3.86 aggressive λ = 3, r̂ = r0 10.19 conservative λ = 2.25, r̂ = rp

γ = 0.5 4.57 aggressive λ = 3, r̂ = 0 11.95 aggressive λ = 2.5, r̂ = rp

γ = 0.9 10.63 aggressive λ = 1.5, r̂ = rp 14.74 conservative λ = 2, r̂ = rp

Last year: 2020
γ = 0.1 1.13 MV 16.67 risk-free λ = 3, r̂ = r0

conservative λ = 3, r̂ = r0

γ = 0.5 5.55 aggressive λ = 1.5, r̂ = 0 15.05 MV
γ = 0.9 14.65 aggressive λ = 1.5, r̂ = rp 23.32 conservative λ = 2.5, r̂ = rp

Table 7: Best performing scenarios and models with respect to realized annual returns
over the last 10, 5, 3 and 1 year(s) for the EU and the US markets.
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3.2 Asymmetric effects along economic uncertainty

We would like to analyze the extent to which the excess portfolio returns of prospect the-

ory investing with respect to mean-variance investing depends on the state of the economy,

namely economic uncertainty. We aim at assessing whether prospect theory investment pro-

vides larger returns in times of higher economic uncertainty – or in times of lower economic

uncertainty – than returns implied by mean-variance investment. Interest in economic un-

certainty has been spurred by a growing body of evidence showing that uncertainty rises

sharply in recessions. Currently, popular measures of economic uncertainty are news-based

economic policy uncertainty indices or the volatility of sovereign credit default swap spreads

or indices measuring the degree of predictability of uncertainty, see Baker et al. (2016),

Böck et al. (2021), and Jurado et al. (2015). We use the third type of indicator to measure

economic (in)stability in the EU and the US.32 We evaluate the statistical significance of

optimal portfolio return differences between returns implied by the prospect theory prefer-

ences, rPTt (λ, r̂, γ, scenario), and returns implied by mean-variance preferences, rMV
t , (the

benchmark model) in times of high and low economic uncertainty. To do so we estimate

the following regression

rPTt (λ, r̂, γ, scenario)− rMV
t = c0 + c1Dt + εt (3.26)

where the explanatory variable Dt is the dummy variable representing periods of high

uncertainty, if Dt = 1, and periods of low uncertainty, if Dt = 0. We consider λ ∈

{1.5, 2, 2.25, 2.5, 3}, γ ∈ {0.1, 0.5, 0.9} and the scenario is either the benchmark, the risk-

free, the conservative or the aggressive scenario. The dummy variable is derived using the

estimator of a threshold level from the self-exiting threshold autoregression in levels33 with

p lags and with k lags in the threshold variable

ut =


φ01 +

∑p
i=1 φi1ut−i + εt, for ut−k ≥ γφ

φ02 +
∑p

i=1 φi2ut−i + εt, for ut−k < γφ

(3.27)

where ut is the uncertainty index, and the estimator of γφ, namely γ̂φ, is the value of ut−k

that minimizes the sum of squared residuals in the non-linear regression (3.27).34 Thus,

Dt = 1 when ut−k ≥ γ̂φ and Dt = 0 when ut−k < γ̂φ. A positive and significant estimate

32The economic uncertainty indicator for the EU was calculated in Fortin et al. (2021). The corresponding
indicator for the US (total macro uncertainty) was obtained from https://www.sydneyludvigson.com/

macro-and-financial-uncertainty-indexes
33Uncertainty indicators for both markets (EU and US) are stationary variables.
34In the same way we determine lag lengths p and k.
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of c1 in equation (3.26) suggests that the prospect theory investor achieves higher portfolio

returns than the MV investor in high uncertainty periods while a negative and significant

estimate of c1 suggests that the prospect theory investor achieves higher portfolio returns

than the MV investor in low uncertainty periods.

We find the following results, see Table 8. For γ = 0.1 we do not find any evidence about

significantly different PT and MV returns in either high uncertainty or low uncertainty

periods. In all cases and in both markets are estimates of c1, namely ĉ1, insignificant, and

in most cases is ĉ1 > 0 in both markets. For γ = 0.5 are estimates of c1 positive in all cases

in the EU and in most cases in the US market, but ĉ1 is significantly positive only in one

case, namely for λ = 1.5 and r̂ = rp under the conservative scenario in the EU market.

Hence, in this case the PT investor achieves significantly higher portfolio returns than the

MV investor in periods of high economic uncertainty. Finally, for γ = 0.9 are estimates of

c1 positive in the majority of cases in the EU market and in all cases in the US market,

and ĉ1 is significantly positive in two cases for the EU market, namely when λ = 3 and the

investor is conservative, and when λ = 2.5 and the investor is aggressive, where in both

cases the reference return is the portfolio return from the previous period. Note that the

latter aggressive scenario (γ = 0.9, λ = 2.5, r̂ = rp) implies also the largest mean of portfolio

returns and the largest realized annual returns over the last 10 and 5 years, see Tables 4, 7

and 15.35 For the US market, the PT investor significantly outperforms the MV investor (in

terms of returns) in periods of high economic uncertainty, when the reference return is the

risk-free rate and λ ∈ {2, 2.25, 2.5}.36 Note that the aggressive scenario with the risk-free

reference return implies also the largest risk-adjusted performance (Omega, Sharpe ratio

and Sortino ratio) when λ = 2, see Tables 5 and 18.

35The median of this aggressive scenario, i.e., when γ = 0.9, λ = 2.5 and r̂ = rp, is 9.52% and thus is only
by 0.01 percentage points smaller than the largest median for γ = 0.9, see Table 4.

36In addition, the PT investor significantly outperforms the MV investor (in terms of returns) in periods
of high economic uncertainty when the investor is aggressive with r̂ = rp and λ = 1.5.

32



scenario: benchmark risk-free conservative aggressive
reference return: r̂ = 0 r̂ = r0 r̂ = 0 r̂ = r0 r̂ = rp r̂ = 0 r̂ = r0 r̂ = rp

EU
γ = 0.1
λ = 1.5 7.36 7.64 4.42 6.47 12.30 10.82 11.18 13.66
λ = 2 0.69 0.47 0.55 0.64 4.80 0.66 0.60 5.85
λ = 2.25 1.43 1.65 1.20 1.77 2.73 1.27 1.81 2.21
λ = 2.5 1.32 2.33 1.27 2.38 1.19 1.35 2.09 2.09
λ = 3 1.07 1.14 1.02 1.24 -0.43 1.11 1.01 -0.33
γ = 0.5
λ = 1.5 3.54 3.03 2.97 1.30 10.50∗ 3.58 2.66 5.80
λ = 2 1.31 0.58 1.21 0.87 5.96 1.89 0.66 10.32
λ = 2.25 1.91 1.08 1.93 0.78 5.91 2.21 1.20 3.29
λ = 2.5 3.50 3.04 3.53 3.35 5.46 3.44 3.10 4.98
λ = 3 2.64 2.54 2.63 2.40 5.56 2.62 2.41 6.14
γ = 0.9
λ = 1.5 0.92 0.17 0.55 -1.10 8.47 0.78 0.25 6.97
λ = 2 0.31 2.15 -0.33 1.96 -7.88 -0.56 2.05 2.97
λ = 2.25 0.98 0.43 1.21 0.27 0.38 0.51 1.01 4.15
λ = 2.5 1.17 3.11 1.16 2.70 5.32 1.12 3.54 7.96∗

λ = 3 1.42 -1.31 0.94 0.61 9.52∗ 1.55 -1.09 6.09
US

γ = 0.1
λ = 1.5 0.11 0.00 -0.94 -0.35 0.19 0.61 0.45 0.32
λ = 2 0.55 0.11 0.61 0.25 -0.19 0.31 -0.04 0.16
λ = 2.25 0.30 0.81 0.25 0.59 -0.87 0.71 1.25 -1.32
λ = 2.5 0.49 0.64 0.33 0.48 -1.29 0.44 0.62 -0.73
λ = 3 -0.21 -0.71 -0.54 -0.71 -0.45 -0.23 -0.55 -0.94
γ = 0.5
λ = 1.5 2.85 -0.26 2.79 -0.21 3.73 4.49 0.35 6.83
λ = 2 2.52 3.05 2.60 2.76 3.18 2.52 2.99 4.93
λ = 2.25 1.85 2.29 2.15 2.42 5.42 1.74 2.97 6.20
λ = 2.5 1.64 2.22 1.62 2.39 5.32 1.67 2.34 7.07
λ = 3 1.15 1.24 1.11 1.23 2.32 1.23 1.31 3.23
γ = 0.9
λ = 1.5 3.24 7.67 3.63 7.72 8.87 4.68 8.71 10.78∗

λ = 2 1.75 8.99∗ 1.56 9.03∗ 4.88 1.43 8.97∗ 2.33
λ = 2.25 1.51 9.01∗ 1.47 9.13∗ 7.23 0.99 8.90∗ 1.51
λ = 2.5 1.48 10.02∗ 1.03 8.97∗ 4.84 0.82 8.95∗ 7.25
λ = 3 0.85 6.17 0.77 6.15 1.72 0.62 6.19 6.04

Table 8: Test for prospect theory returns being larger than mean-variance returns in times
of high economic uncertainty.
The table shows annualized estimated coefficients ĉ1 from the regression rPTt − rMV

t =
c0 +c1Dt+εt. A star indicates significance at the 10% level, based on the HAC adjustment.
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4 Conclusion

In this paper we investigate the behavior of an S-shaped prospect theory investor. In the

theoretical part we derive the analytical closed form solution for a two-asset portfolio con-

sisting of one risky asset and one risk-free asset. We examine the properties of the optimal

weight of the risky asset under the assumptions of binomially and (generally) continuously

distributed returns of the risky asset. For the assumption of binomial returns we find that

the reference return plays a crucial role: we derive analytical solutions for the cases when

the reference return is below the risk free-rate (less ambitious investor), when it coincides

with the risk-free rate and when it exceeds the risk-free rate (more ambitious investor).

We find that under certain conditions the risky investment of the less ambitious investor is

strictly positive and does not depend on her degree of loss aversion and that her exposure

to the risky asset decreases when her level of ambition (reference return) increases. When

the reference return coincides with the risk-free rate then investor is out of the market and

invests everything into the risk-free asset, as the mean-variance investor. Finally, risky in-

vestment of the more ambitious investor can be both strictly positive, when the probability

of the good state to occur is sufficiently large, and strictly negative when the probability of

the good state to occur is sufficiently small. In the former case the exposure to the risky

asset decreases with an increasing degree of loss aversion and increases with an increasing

level of ambition. In the latter case the behavior is opposite. The results for the S-shaped

prospect theory (PT) investor are then compared with the results for the linear loss averse

(LLA) investor. In addition to assuming binomial returns we examine the optimal portfolio

choice under the assumption of a (general) continuous distribution for the return of the

risky asset. In this case, however, the optimal exposure into the risky asset can only be

expressed in an implicit form when the reference return differs from the risk-free interest.

We can still derive comparative statics and find again that the reference return plays an

important role.

In the empirical part we investigate the performance of optimal asset portfolios implied

by PT preferences. We study two scenarios with a constant penalty parameter, where

the reference return is either equal to zero or equal to the risk-free interest rate, and two

dynamic scenarios, where the penalty parameter is time-changing conditional on previous

gains and losses and the reference return is either zero, the risk-free rate or the portfolio

return of the previous period. In one of the two dynamic scenarios the PT investor becomes

more loss averse after losses (conservative scenario), in the other the PT investor becomes

less loss averse after losses (aggressive scenario). The investor selects among three risky

assets, a stock market index, a government bond index and gold, and she operates either
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in the EU or in the US market. We consider various performance measures, including risk-

adjusted measures like the Omega measure and the Sharpe and Sortino ratios. In addition

to PT portfolios, we examine optimal portfolios implied by LLA, risk neutral, conditional

value-at-risk and, in particular, traditional mean-variance (MV) preferences.

There are many different findings. First, PT investment leads to clearly higher means

of portfolio returns, but also to much higher risk, than MV investment, for all types of

PT investors and for both the EU and US markets. We actually find that, in the US

market, returns of PT portfolios are significantly larger than returns of MV portfolios for

almost all types of PT investors while this is hardly the case in the EU. If we consider

risk-adjusted performance, PT investment (mostly) outperforms MV investment in the US

while MV investment outperforms PT investment in the EU. Then, rather surprisingly, the

performance of optimal portfolios in the two dynamic scenarios is very similar, when the

reference return is either zero or the risk-free rate, in both the EU and the US markets.

So in these cases conservative and aggressive types of behavior lead to similar performance

results. The situation is different when the reference return is equal to the portfolio return

of the previous period. In this case the conservative and aggressive scenarios lead to (more)

different performance measures, which is mainly due to the rather large distance of the

portfolio return from the reference return. Our results also suggest that PT and MV

investors show clearly different types of behavior with respect to portfolio re-balancing.

While the PT investor holds large proportions of stocks during certain time periods and her

asset weights may sometimes vary strongly over short periods, the MV investor holds rather

large proportion of bonds all the time and her asset weights do not change substantially over

short periods. Also unexpectedly, the risk neutral investor performs quite well empirically.

In the EU market she performs best (also in terms of risk-adjusted performance) in most

of the cases37 while in the US the prospect theory investor usually performs best.38

In addition we examine whether PT and MV investing yield different returns in times of

high/low economic uncertainty and we find that, especially in the US market, PT investment

leads to higher portfolio returns than MV investment in times of larger economic uncertainty.

So in times of higher uncertainty PT investment seems to be particularly beneficial.

Note that although our empirical analysis covers many aspects of the prospect theory

asset allocation problem, a more thorough analysis is required to shed light on all details.

For example, as we focus mainly on loss aversion, the dynamic scenarios in our study update

only the investor’s loss aversion parameter (and only after prior losses). They do not update

the reference return and do not apply dynamic updates of both the reference return and loss

37In the others the PT investor performs best.
38The risk neutral investor does not much worse, however, in most cases.
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aversion after both prior gains and losses. These effects will be explored in future research.
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Appendix A

Proof of proposition 2.1: To calculate the expected value of v(R(x)) with respect to the

binomial distribution, we evaluate four options following from (2.4): (i) Rb(x) > r̂ and

Rg(x) > r̂, (ii) Rb(x) ≤ r̂ and Rg(x) > r̂, (iii) Rb(x) > r̂ and Rg(x) ≤ r̂, and (iv)

Rb(x) ≤ r̂ and Rg(x) ≤ r̂. Case (i) can occur only when x ∈
[
r̂−r0
rg−r0 ,

r0−r̂
r0−rb

]
, case (ii)

occurs when x ≥ max
{
r0−r̂
r0−rb

, r̂−r
0

rg−r0

}
, case (iii) occurs when x ≤ min

{
r0−r̂
r0−rb

, r̂−r
0

rg−r0

}
, and

case (iv) occurs when x ∈
[
r0−r̂
r0−rb

, r̂−r
0

rg−r0

]
. Note that for r̂ < r0, which is the assumption

of this proposition, is case (iv) infeasible. Based on these we thus solve the following three

maximization problems

max : E(v(R(x))) = 1
1−γ

[
(1− p)(r0 − r̂ − (r0 − rb)x)1−γ + p(r0 − r̂ + (rg − r0)x)1−γ

]
such that : − r0−r̂

rg−r0 ≤ x ≤
r0−r̂
r0−rb

 (i)

max : E(v(R(x))) = 1
1−γ

[
−λ(1− p)(r̂ − r0 + (r0 − rb)x)1−γ + p(r0 − r̂ + (rg − r0)x)1−γ

]
such that : x ≥ r0−r̂

r0−rb

 (ii)

max : E(v(R(x))) = 1
1−γ

[
(1− p)(r0 − r̂ − (r0 − rb)x)1−γ − λp(r̂ − r0 − (rg − r0)x)1−γ

]
such that : x ≤ − r0−r̂

rg−r0

 (iii)

The idea of the proof is to show now that (i) is a concave problem with an unique maximum

and as the objective function of (iii) is increasing at its domain and the objective function of

(ii) is decreasing at its domain, and as E(v(R(x))) is continuous function, then the maximum

of problem (i) coincides with the maximum of (2.3).

By differentiating the objective function of problem (i) we obtain

d

dx
E(v(R(x))) = −(1− p)[r0 − r̂− (r0 − rb)x]−γ(r0 − rb) + p[r0 − r̂+ (rg − r0)x]−γ(rg − r0)

and

d2

dx2
E(v(R(x))) = −γ(1− p)[r0 − r̂ − (r0 − rb)x]−1−γ(r0 − rb)2

−γp[r0 − r̂ + (rg − r0)x]−1−γ(rg − r0)2 < 0

which implies that (i) is a concave programming problem and thus the maximum satisfies
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the following first order conditions

d

dx
E(v(R(x))) = −(1− p)[r0 − r̂ − (r0 − rb)x]−γ(r0 − rb) + p[r0 − r̂ + (rg − r0)x]−γ(rg − r0) = 0

Thus,

(p(rg − r0))1/γ
[
r0 − r̂ − (r0 − rb)x

]
= ((1− p)(r0 − rb))1/γ

[
r0 − r̂ + (rg − r0)x

]
which implies

x =
(p(rg − r0))1/γ − ((1− p)(r0 − rb))1/γ[

(p(rg − r0))1/γ(r0 − rb) + ((1− p)(r0 − rb))1/γ(rg − r0)
](r0 − r̂)

=

(
1−K1/γ

0

)
(r0 − r̂)

r0 − rb +K
1/γ
0 (rg − r0)

(4.28)

and this coincides with (2.6). Note that the conditions of the proposition imply that 0 <

K0 < 1 (following from rb < r0 < rg and E(r) > r0) and thus x∗ > 0.

Problem (iii) is increasing at its domain if

d

dx
E(v(R(x))) = −(1−p)[r0− r̂−(r0−rb)x]−γ(r0−rb)+λp[r̂−r0−(rg−r0)x]−γ(rg−r0) > 0

which is guaranteed if

λ >
(1− p)

[
r̂ − r0 − (rg − r0)x

]γ
(r0 − rb)

p [r0 − r̂ − (r0 − rb)x]γ (rg − r0)
=

 r̂−r0
rg−r0 − x
r0−r̂
r0−rb

− x

γ

Kγ (4.29)

It follows from the assumptions of the theorem that λ > Kγ and as
r̂−r0
rg−r0

−x
r0−r̂
r0−rb

−x
< 1 then (4.29)

is satisfied and thus the objective function of (iii) is increasing.

Problem (ii) is decreasing at its domain if

d

dx
E(v(R(x))) = −λ(1−p)[r̂−r0+(r0−rb)x]−γ(r0−rb)+p[r0− r̂+(rg−r0)x]−γ(rg−r0) < 0

which is guaranteed if

λ >
p(r̂ − r0 + (r0 − rb)x)γ(rg − r0)

(1− p)(r0 − r̂ + (rg − r0)x)γ(r0 − rb)
=

(
r̂−r0
r0−rb

+ x

r0−r̂
rg−r0 + x

)γ
1

Kγ
(4.30)

It follows from assumptions of the theorem that λ > 1
Kγ

and as
r̂−r0
r0−rb

+x

r0−r̂
rg−r0

+x
< 1 then (4.30) is
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satisfied and thus the objective function of (ii) is decreasing. This finishes the proof. �

Proof of proposition 2.2: Note that solving (2.3) boils down to solving problems (ii)

and (iii) for r0 = r̂ as in cases (i) and (iv) is x = 0 the optimal solution. As the objective

function of (iii) is increasing for x ≤ 0 and the objective function of (ii) is decreasing for

x ≥ 0 then this implies that zero is the solution of (2.3). This finishes the proof. �

Proof of proposition 2.3: Based on (2.4) we consider the following four cases: (i) Rb(x) >

r̂ and Rg(x) > r̂, (ii) Rb(x) ≤ r̂ and Rg(x) > r̂, (iii) Rb(x) > r̂ and Rg(x) ≤ r̂, and (iv)

Rb(x) ≤ r̂ and Rg(x) ≤ r̂. Case (i) can occur only when x ∈
[
r̂−r0
rg−r0 ,−

r̂−r0
r0−rb

]
, case (ii)

occurs when x ≥ r̂−r0
rg−r0 , case (iii) occurs when x ≤ − r̂−r0

r0−rb
, and case (iv) occurs when

x ∈
[
− r̂−r0
r0−rb

, r̂−r
0

rg−r0

]
. Note that for r̂ > r0, which is the assumption of this proposition, is

case (i) infeasible. Based on these we thus solve the following three maximization problems

max : E(v(R(x))) = 1
1−γ

[
−λ(1− p)(r̂ − r0 + (r0 − rb)x)1−γ + p(r0 − r̂ + (rg − r0)x)1−γ

]
such that : x ≥ r̂−r0

rg−r0

 (ii)

max : E(v(R(x))) = 1
1−γ

[
(1− p)(r0 − r̂ − (r0 − rb)x)1−γ − λp(r̂ − r0 − (rg − r0)x)1−γ

]
such that : x ≤ r0−r̂

r0−rb

 (iii)

max : E(v(R(x))) = −λ
1−γ

[
(1− p)(r̂ − r0 + (r0 − rb)x)1−γ + p(r̂ − r0 − (rg − r0)x)1−γ

]
such that : − r̂−r0

r0−rb
≤ x ≤ r̂−r0

rg−r0

 (iv)

By differentiating (iv) we obtain

d

dx
E(v(R(x))) = −λ

[
(1− p)[r̂ − r0 + (r0 − rb)x]−γ(r0 − rb)− p[r̂ − r0 − (rg − r0)x]−γ(rg − r0)

]
and

1

γ

d2

dx2
E(v(R(x))) = λ(1− p)[r̂ − r0 + (r0 − rb)x]−1−γ(r0 − rb)2

+λp[r̂ − r0 − (rg − r0)x]−1−γ(rg − r0)2 > 0 (4.31)

which implies that (iv) is a convex programming problem and thus the maximum is reached

in one of the corner points; i.e., − r̂−r0
r0−rb

or r̂−r0
rg−r0 .

The first order conditions (FOC) for (iii) are

d

dx
E(v(R(x))) = −(1−p)[r0− r̂−(r0−rb)x]−γ(r0−rb)+λp[r̂−r0−(rg−r0)x]−γ(rg−r0) = 0
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It can be shown that (x∗)− satisfies the FOC and that (iii) is concave; i.e.,

1
γ
d2

dx2
E(v(R(x))) =

−(1− p)[r0 − r̂ − (r0 − rb)x]−1−γ(r0 − rb)2 + λp[r̂ − r0 − (rg − r0)x]−1−γ(rg − r0)2

< 0

for λ > Kγ and x > xL ≡

[
1+
(

λ
K−1

)1/(1+γ)]
(r̂−r0)

rg−r0−
(

λ
K−1

)1/(1+γ)
(r0−rb)

= − r̂−r0
r0−rb

×

(
λ

1
1+γ +K

1
1+γ
−1

)
(
λ

1
1+γ −K

1
1+γ
γ

) and that

xL < (x∗)− < r0−r̂
r0−rb

for λ > Kγ . Note in addition that (iii) is a convex problem for x < xL

and that limx→−∞ E(v(R(x))) = −∞. This shows that (x∗)− is the only maximum of (iii).

The first order conditions (FOC) for (ii) are

d

dx
E(v(R(x))) = −λ(1−p)[r̂−r0+(r0−rb)x]−γ(r0−rb)+p[r0− r̂+(rg−r0)x]−γ(rg−r0) = 0

It can be shown that (x∗)+ satisfies the FOC and that (ii) is concave; i.e.,

1
γ
d2

dx2
E(v(R(x))) =

λ(1− p)[r̂ − r0 + (r0 − rb)x]−1−γ(r0 − rb)2 − p[r0 − r̂ + (rg − r0)x]−1−γ(rg − r0)2

< 0

for λ > 1/Kγ and x < xU ≡

[
1+
(

1
λK−1

)1/(1+γ)]
(r̂−r0)

rg−r0−
(

1
λK−1

)1/(1+γ)
(r0−rb)

= r̂−r0
rg−r0 ×

(
λ

1
1+γ +

(
1

K−1

) 1
1+γ

)
(
λ

1
1+γ −

(
1
Kγ

) 1
1+γ

)
and that r̂−r0

rg−r0 < (x∗)+ < xU for λ > 1/Kγ . Note in addition that (ii) is a convex

problem for x > xU and that limx→−∞ E(v(R(x))) = −∞. This shows that (x∗)+ is

the only maximum of (ii) and thus the global maximum of (2.3) is achieved at x∗ =

argmax{E(v(R((x∗)+))),E(v(R((x∗)−))).

Next we analyze when E(v(R((x∗)+))) > E(v(R((x∗)−))). It can be shown that

E(v(R((x∗)+))) = −1− p
1− γ

[
(rg − rb)(r̂ − r0)

rg − r0

]1−γ [
λ1/γ −

(
1

Kγ

)1/γ
]γ

< 0 as λ >
1

Kγ

and

E(v(R((x∗)−))) = −1− p
1− γ

[
(rg − rb)(r̂ − r0)

rg − r0

]1−γ [(
λ

Kγ

)1/γ

− 1

]γ
< 0 as λ > Kγ
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and thus showing E(v(R((x∗)+))) > E(v(R((x∗)−))) boils down to proving that

λ1/γ −
(

1

Kγ

)1/γ

<

(
λ

Kγ

)1/γ

− 1

or

λ1/γ
(

1−K1/γ
γ

)
> K1/γ

γ − 1

where the last inequality is implied by Kγ < 1 which follows from p > p̄.39 The other cases

follow directly. This concludes the proof. �

Proof of proposition 2.4: Note that the derivative of E(v(R(x))) with respect to x when

r̂ = r0 is

d

dx
E(v(R(x))) =


(−x)−γ

[
λ
∫ +∞
r0 (r − r0)1−γf(r)dr −

∫ r0
−∞(r0 − r)1−γf(r)dr

]
, x < 0

x−γ
[∫ +∞
r0 (r − r0)1−γf(r)dr − λ

∫ r0
−∞(r0 − r)1−γf(r)dr

]
, x > 0

(4.32)

and thus d
dxE(v(R(x))) > 0 for x < 0 and λ > Kγ , and d

dxE(v(R(x))) < 0 for x > 0 and

λ > 1/Kγ . E(v(R(x))) is continuous for x = 0 as

lim
x→0+

E(v(R(x))) = lim
x→0−

E(v(R(x))) = 0 = E(v(R(0)))

which follows from (2.15) and the assumption r̂ = r0. Then, based on this and (4.32) is the

maximum of (2.16) reached at zero when λ > max
{
Kγ ,

1
Kγ

}
. This finishes the proof. �

Proof of proposition 2.5: The expected prospect theory utility function (2.15) is contin-

uous as

lim
x→0+

E(v(R(x))) = lim
x→0−

E(v(R(x))) =
(r0 − r̂)1−γ

1− γ
= E(v(R(0))) (4.33)

which follows from (2.15) and the assumption r̂ < r0. Note that E(v(R(x))) < E(v(R(0)))

for x < 0 if

(1− γ)E(v(R(x))) = (−x)1−γ
∫ z(x)

−∞
[z(x)− r]1−γ f(r)dr − (−x)1−γλ

∫ +∞

z(x)
[r − z(x)]1−γ f(r)dr

< (r0 − r̂)1−γ

39Note that Kγ < 1 if and only if p > p̄, Kγ > 1 if and only if p < p̄, and Kγ = 1 if and only if p = p̄.
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where z(x) = r0−r̂
−x + r0. Thus

λ >

∫ z(x)
−∞ [z(x)− r]1−γ f(r)dr −

[
z(x)− r0

]1−γ∫ +∞
z(x) [r − z(x)]1−γ f(r)dr

= Kγ (z(x)) (4.34)

as
∫ +∞
z(x) [r − z(x)]1−γ f(r)dr > 0.40 The assumption of the theorem, namely λ > K̂γ and

the definition of K̂γ , see (2.19), imply that (4.34) holds and thus E(v(R(x))) < E(v(R(0)))

for x < 0.

Note that based on Leibniz integral rule the derivative of E(v(R(x))) with respect to x

is

d

dx
E(v(R(x))) =



1
(−x)γ

∫ z(x)
−∞

r−r0
[z(x)−r]γ f(r)dr + λ

xγ

∫ +∞
z(x)

r−r0
[r−z(x)]γ f(r)dr, x < 0

E(r)−r0
(r0−r̂)γ > 0, x = 0, r̂ < r0

λ E(r)−r0
(r̂−r0)γ > 0, x = 0, r̂ > r0

λ
xγ

∫ z(x)
−∞

r−r0
[z(x)−r]γ f(r)dr + 1

xγ

∫ +∞
z(x)

r−r0
[r−z(x)]γ f(r)dr, x > 0



(4.35)

where z(x) = r0−r̂
−x + r0. This follows from E(r) > r0 and

lim
x→0+

d

dx
E(v(R(x))) = lim

x→0−

d

dx
E(v(R(x))) =

∫ +∞

−∞

r − r0

(r0 − r̂)γ
f(r)dr =

E(r)− r0

(r0 − r̂)γ
> 0

(4.36)

for r̂ < r0 and from

lim
x→0+

d

dx
E(v(R(x))) = lim

x→0−

d

dx
E(v(R(x))) = λ

∫ +∞

−∞

r − r0

(r̂ − r0)γ
f(r)dr = λ

E(r)− r0

(r̂ − r0)γ
> 0

(4.37)

for r̂ > r0. Thus, for any r̂ 6= r0 is E(v(R(x))) increasing in zero. Note in addition that

based on (2.15) we obtain the following

lim
x→+∞

E(v(R(x))) = +∞×

[
−λ
∫ r0

−∞

(
r0 − r

)1−γ
f(r)dr +

∫ +∞

r0

(
r − r0

)1−γ
f(r)dr

]
= −∞

(4.38)

40Let φ(c) =
∫ +∞
c

(r − c)1−γf(r)dr and let us assume that there exists c0 ∈ R such that φ(c0) = 0.

Then f(r) = 0 for any r ≥ c0 and F (c0) =
∫ c0
−∞ f(r)dr =

∫ +∞
−∞ f(r)dr = 1, which is a contradiction to the

assumption of the distribution of the risky asset’s return. Thus, φ(c) > 0 for any c ∈ R.
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as λ > 1/Kγ ; i.e., the expression in the brackets is negative.41

Thus based on the fact that E(v(R(x))) < E(v(R(0))) for x < 0, E(v(R(x))) being

continuous (also at zero, see (4.33)), increasing at zero, see (4.35), for x = 0, and achieving

−∞ in infinity, see (4.38), it follows then that the solution x∗ of (2.16) is positive and

such that the first order conditions are satisfied; i.e., d
dxE(v(R(x∗))) = 0 for x∗ > 0, which

coincides with (2.18). This finishes the proof. �

Lemma 4.1 Let E(r) > r0. Then the function Kγ : [r0,+∞)→ R

Kγ(c) =

∫ c
−∞(c− r)1−γf(r)dr − (c− r0)1−γ∫∞

c (r − c)1−γf(r)dr

is bounded from above; i.e., there exists a constant M ≥ 0 such that Kγ(c) ≤ M for any

c ∈ [r0,+∞).

Proof: Note that c ∈ R and that the denominator of Kγ(c), namely
∫ +∞
c (r−c)1−γf(r)dr,

is strictly positive and that both integrals
∫ c
−∞(c − r)1−γf(r)dr and

∫ +∞
c (r − c)1−γf(r)dr

are nonnegative and finite for any c ∈ R. The latter is a consequence of the assumption

E(|r|) =
∫ +∞
−∞ |r|f(r)dr < +∞ and the inequality |r − c|1−γ ≤ Cγ(1 + |c| + |r|) for any

r, c ∈ R where Cγ > 0 is a constant.

Let c ≥ r0 be fixed. The function H(r) ≡ (c− r)1−γ is concave on the set (−∞, c). We

remind ourselves Jensen’s inequality∫ c

−∞
H(r)g(r)dr ≤ H

(∫ c

−∞
rg(r)dr

)

where g(r) = f(r)/F (c) ≥ 0 is such that
∫ c
−∞ g(r)dr = (1/F (c))

∫ c
−∞ f(r)dr = 1. Therefore

∫ c

−∞
(c− r)1−γf(r)dr ≤ F (c)

(
c−

∫ c

−∞
rg(r)dr

)1−γ
= (F (c))γ

(∫ c

−∞
(c− r)f(r)dr

)1−γ

≤
(∫ c

−∞
(c− r)f(r)dr

)1−γ
(4.39)

For c ≥ 0 we have∫ c

−∞
(c− r)f(r)dr − (c− r0) = c(F (c)− 1) + r0 −

∫ c

−∞
rf(r)dr ≤ r0 −

∫ c

−∞
rf(r)dr(4.40)

Since E(r) > r0, there exists c∗ ≥ max{0, r0} such that
∫ c
−∞ rf(r)dr > r0 for any c ≥ c∗.

41Note that this property holds also for r̂ > r0.
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This and (4.40) imply that for any c ≥ c∗∫ c

−∞
(c− r)f(r)dr < c− r0

which gives, together with (4.39), the following∫ c

−∞
(c− r)1−γf(r)dr − (c− r0)1−γ < 0 for any c ≥ c∗.

Since the denominator of Kγ(c) is strictly positive the function Kγ(c) is continuous on a

compact interval [r0, c∗]. Hence it attains its maximum M ≥ 0 on [r0, c∗]. As Kγ(c) < 0 for

c ≥ c∗ the lemma follows. �

Proof of proposition 2.6: Based on (2.15) the following holds

lim
x→−∞

E(v(R(x))) = +∞×

[∫ r0

−∞

(
r0 − r

)1−γ
f(r)dr − λ

∫ +∞

r0

(
r − r0

)1−γ
f(r)dr

]
= −∞

(4.41)

The same holds also when x reaches +∞, see (4.38). Then, it follows based on this, the

continuity of E(v(R(x))) and the fact that E(v(R(x))) is increasing at zero, see (4.36) and

(4.37), that there is at least one local maximum x∗ of problem (2.16) such that x∗ > 0 and

(2.18) is satisfied. In addition, continuity of E(v(R(x))) and (4.41) imply that if there is any

local maxima of problem (2.16), (x∗)−, such that (x∗)− < 0, then the first order conditions

hold and (2.20) is satisfied. Finally, continuity of E(v(R(x))), (4.38) and (4.41) imply that

any global maxima is finite. This concludes the proof. �

Proof of proposition 2.7: The proof is based on implicit function differentiation and

equation (2.18). Let x∗ > 0 be a solution of

d

dx
E(v(R(x))) = 0

and let it be fixed for all the following analysis. Thus, the first order conditions are satisfied

and

G(λ, r̂, x) ≡ λ

∫ z(x)

−∞

r − r0

[z(x)− r]γ
f(r)dr +

∫ +∞

z(x)

r − r0

[r − z(x)]γ
f(r)dr = 0 (4.42)

where z(x) = r0 + r̂−r0
x . Then

dx

dλ
= −

dG
dλ
dG
dx

and
dx

dr̂
= −

dG
dr̂
dG
dx

(4.43)
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where r̂ is fixed in the first case and λ is fixed in the second case. Note that G(λ,r̂,x)
xγ =

d
dxE(v(R(x))) and as x∗ is the point of local maximum then d2E(v(R(x))

dx2
< 0 for x = x∗ which

implies then that dG(λ,r̂,x)
dx < 0. Namely

d2E(v(R(x))

dx2
=

d

dx

(
x−γG(λ, r̂, x)

)
= −x−1−γγG(λ, r̂, x) + x−γ

dG(λ, r̂, x)

dx

= −γ
x

d

dx
E(v(R(x))) + x−γ

dG(λ, r̂, x)

dx
= x−γ

dG(λ, r̂, x)

dx
< 0

(4.42) implies that

dG(λ, r̂, x)

dλ
=

∫ z(x)

−∞

r − r0

[z(x)− r]γ
f(r)dr (4.44)

For r̂ < r0 and x > 0 is z(x) < r0 and thus based on (4.44) is dG(λ,r̂,x)
dλ < 0. On the

other hand, for r̂ > r0 and x > 0 is z(x) > r0 and thus
∫ +∞
z(x)

r−r0
[r−z(x)]γ f(r)dr > 0. This

and equation (4.42) imply that λ
∫ z(x)
−∞

r−r0
[z(x)−r]γ f(r)dr < 0 and thus dG(λ,r̂,x)

dλ < 0. This and

(4.43) imply that dx
dλ < 0.

Note that ∫
r − r0

[r − z(x)]γ
dr =

[r − z(x)]2−γ

2− γ
+

[r − z(x)]1−γ [z(x)− r0]
1− γ∫

r0 − r
([z(x)− r]γ

dr = − [z(x)− r]2−γ

2− γ
+

[z(x)− r]1−γ [z(x)− r0]
1− γ

Using this and condition (2.21) when implying per partes on (4.42) gives

G(λ, r̂, x) = −
∫ +∞

z(x)

(
[r − z(x)]2−γ

2− γ
+

[r − z(x)]1−γ [z(x)− r0]
1− γ

)
df(r)

dr
dr

+λ

∫ z(x)

−∞

(
− [z(x)− r]2−γ

2− γ
+

[z(x)− r]1−γ [z(x)− r0]
1− γ

)
df(r)

dr
dr = 0

(4.45)
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As dz(x)
dx = r0−r̂

(x∗)2 and dz(x)
dr̂ = 1

x∗ , equation G(λ, r̂, x) = 0 given by (4.45) implies

dG
dx |x=x∗ = dz(x)

dx

[
λ
∫ z(x)
−∞

(
γ

1−γ [z(x)− r]1−γ + z(x)−r0
[z(x)−r]γ

)
df(r)
dr dr

−
∫ +∞
z(x)

(
γ

1−γ [r − z(x)]1−γ − z(x)−r0
[r−z(x)]γ

)
df(r)
dr dr

]

dG
dr̂ |x=x∗ = dz(x)

dr̂

[
λ
∫ z(x)
−∞

(
γ

1−γ [z(x)− r]1−γ + z(x)−r0
[z(x)−r]γ

)
df(r)
dr dr

−
∫ +∞
z(x)

(
γ

1−γ [r − z(x)]1−γ − z(x)−r0
[r−z(x)]γ

)
df(r)
dr dr

]



(4.46)

Based on (4.43) and (4.46) the following holds

dx∗

dr̂
=

x∗

r̂ − r0

 < 0, if r̂ < r0

> 0, if r̂ > r0

This concludes the proof. �
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Appendix B: Data description and summary statistics

Abbr Variable Unit Note Source Code Start Freq
EU Markets
stock EU stock market ind Index Ref DS TOTMKEM(RI)˜E 1983:1 m
bond German gov bond ind Index Total ret ind, 10 yrs Ref DS BMBD10Y(RI) 1983:1 m
gold Gold bullion LBM EUR A.M. official fixing Ref DS: ICE GOLDBLN(OF)˜E 1983:1 m
risk-free one-month LIBOR Percent Ref DS: ICE BBDEM1M 1986:1 m
US Markets
stock US stock market ind Index Ref DS TOTMKUS(RI) 1983:1 m
bond US gov bond ind Index Total ret ind, 10 yrs Ref DS BMUS10Y(RI) 1983:1 m
gold Gold bullion LBM USD A.M. official fixing Ref DS: ICE GOLDBLN(OF) 1983:1 m
risk-free one-month LIBOR Percent Ref DS: ICE BBUSD1M 1986:1 m

Table 9: Data description and sources.
Abbr = Abbreviation, freq = frequency, gov = government, ind = index, ret = return, yrs
= years, Ref DS = Refinitiv Datastream, EUR = Euro, USD = US dollar, LBM = London
Bullion Market, ICE = ICE Benchmark Administration Ltd., m = monthly. Monthly values
are end-of-month values for a given month. Returns are calculated as 100 (Pt/Pt−1 − 1),
where Pt is the price of the index observed in month t, and are quoted in percent. Note
that the risk-free rate is used in the evaluation process, not in the optimization process. It
is only available from January 1986, which is why we start with the asset data in January
1983, granting us an optimization period of three years. Assets in Europe are quoted in
Euro (Deutsche Mark), assets in the US are quoted in US dollar. Prices for gold are quoted
in Euro or US dollar per troy ounce.
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EU markets US markets
stock bond gold risk-free stock bond gold risk-free

Performance of one-month returns (in percent p.a.)
Mean 12.28 6.62 4.77 3.04 13.61 7.36 5.13 3.50
Std.dev. 16.80 5.44 15.85 0.79 14.87 7.50 15.62 0.77
Skewness -0.61 -0.18 0.22 0.57 -0.68 0.24 0.13 0.27
Kurtosis 1.89 0.11 1.34 -0.39 2.31 0.95 1.61 -1.13
VaR -60.92 -22.29 -56.98 -0.42 -58.08 -28.95 -53.76 0.17
CVaR -76.81 -28.13 -69.38 -0.50 -71.08 -38.44 -68.32 0.16
Minimum -93.99 -49.47 -89.62 -0.59 -93.40 -58.63 -91.77 0.14
Maximum 546.04 90.58 653.20 9.88 376.67 209.02 731.56 10.06

Percentiles (in percent p.a.)
5 -60.92 -22.29 -56.98 -0.42 -58.08 -28.95 -53.76 0.17
10 -43.88 -17.59 -44.99 -0.40 -41.24 -21.81 -43.82 0.20
25 -17.40 -6.51 -23.90 0.35 -15.64 -8.46 -24.90 0.66
50 18.58 8.56 1.92 3.18 18.54 6.07 -0.39 3.19
75 57.11 21.18 39.20 4.57 52.22 24.19 42.22 5.68
90 104.72 32.64 101.53 7.93 102.38 46.48 104.64 7.13
95 149.39 40.55 157.25 9.06 134.23 65.99 157.16 8.31

Correlations across EU and US assets
stock, EU
bond, EU -0.07
gold, EU -0.08 0.06
risk-free, EU -0.04 0.07 -0.06
stock, US 0.74 -0.09 -0.13 -0.03
bond, US -0.17 0.67 -0.02 0.10 -0.04
gold, US -0.13 0.05 0.79 -0.05 -0.06 0.06
risk-free, US 0.02 -0.01 -0.07 0.72 0.02 0.07 -0.07

Table 10: Summary statistics for EU and US markets.
Statistics are calculated on the basis of monthly returns and then annualized using discrete
compounding, for the period January 1983 to December 2020 (for the period January 1986 to
December 2020 in case of the risk-free rate). The annualized standard deviation is calculated
by multiplying the monthly standard deviation with

√
12. Skewness and kurtosis are not

adjusted. The risk-free rate, originally given in percent p.a., is first converted to percent
per month using discrete compounding and then the statistics are computed similarly to
the other data.
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Appendix C: Empirical results

MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.5
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance of one-month returns (in percent p.a.)
Mean 6.17 5.75 12.92 9.42 8.36 7.69 7.36 7.03 7.81 8.04 7.19 7.84 7.57
Omega 159.23 143.34 167.86 150.45 151.48 149.66 148.38 149.69 146.31 157.46 147.98 164.78 165.16
Sharpe ratio 62.74 46.93 63.16 45.99 46.14 44.15 42.63 44.06 41.74 50.63 41.82 57.01 58.13
Sortino ratio 97.70 72.35 98.64 70.31 68.96 65.16 62.46 61.82 59.84 78.42 60.14 90.83 91.60

Additional descriptive statistics (in percent p.a.)
Median 7.32 6.10 14.93 9.51 8.99 8.44 8.74 9.02 9.11 8.34 7.81 7.74 7.86
Volatility 4.79 5.54 15.19 13.47 11.21 10.23 9.83 8.79 11.09 9.58 9.63 8.16 7.54
Down. vol. 2.69 3.16 9.35 8.48 7.17 6.61 6.40 5.97 7.38 5.82 6.38 4.77 4.45
CVaR -27.23 -31.10 -69.37 -66.91 -59.46 -56.03 -54.62 -51.37 -61.23 -52.28 -53.48 -44.46 -42.27
Skewness -0.34 -0.10 -0.31 -0.27 -0.56 -0.71 -0.78 -1.53 -0.83 -0.07 -1.05 0.00 -0.11
Kurtosis 3.59 4.10 5.19 6.86 10.15 12.95 14.71 19.12 11.00 9.17 15.82 10.71 10.96

Realized returns (in percent p.a.)
Last 10 years 5.67 5.18 7.19 4.52 4.15 4.50 4.51 5.03 4.44 5.19 4.94 5.73 5.99
Last 5 years 3.49 3.47 7.18 1.12 2.24 2.57 2.37 3.52 3.04 2.04 2.39 4.06 4.72
Last 3 years 3.23 3.50 7.83 1.26 2.62 2.84 2.21 3.56 3.77 2.50 2.90 4.35 4.57
Last year 1.13 -3.83 6.70 1.54 -2.41 -2.96 -3.95 -0.44 5.52 -0.79 -0.69 4.54 4.72

Mean portfolio weights (in percent)
Stock 10.55 14.66 66.19 48.11 38.54 34.13 31.41 27.84 41.47 35.20 32.85 28.73 25.07
Bond 80.65 70.40 11.43 31.28 47.28 53.33 56.53 60.86 45.82 54.30 56.88 61.17 65.10
Gold 8.80 14.95 22.38 20.61 14.18 12.54 12.06 11.29 12.70 10.50 10.27 10.10 9.83
Standard deviation of portfolio weights
Stock 8.51 8.57 47.31 42.57 36.20 32.03 29.62 26.03 35.64 31.51 29.95 25.98 21.28
Bond 7.42 16.49 31.82 38.66 35.41 32.54 30.91 27.89 35.98 31.51 29.99 26.93 22.73
Gold 7.10 12.71 41.68 35.66 22.75 18.67 16.54 13.65 18.27 12.80 11.92 11.03 10.05

Table 11: Portfolio performance of PT portfolios in the EU: benchmark scenario, r̂ = 0,
γ = 0.5.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.5
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.95 7.35 13.34 12.34 10.08 9.35 8.62 8.46 10.06 10.46 9.90 9.64 8.89
Omega 155.26 159.99 163.86 167.92 158.80 155.92 152.46 155.95 158.69 172.36 166.71 166.93 160.51
Sharpe ratio 57.37 58.99 62.23 63.43 55.15 53.36 50.51 53.19 54.56 65.46 61.21 61.06 56.38
Sortino ratio 91.75 93.98 92.15 94.49 78.09 75.44 71.24 77.06 78.40 99.15 91.38 91.46 84.18

Additional Descriptive Statistics
Median 6.17 6.91 18.72 14.24 11.46 10.57 10.60 10.04 10.69 9.91 9.69 9.34 8.45
Volatility 5.77 6.28 15.33 13.50 11.59 10.66 9.83 9.04 11.66 10.31 10.14 9.76 9.27
Down. vol. 3.14 3.49 9.90 8.65 7.78 7.13 6.55 5.82 7.72 6.40 6.38 6.10 5.79
CVaR -31.16 -33.82 -71.48 -66.52 -62.15 -59.59 -56.00 -51.24 -63.19 -55.62 -55.97 -53.93 -51.32
Skewness -0.02 -0.07 -0.68 -0.78 -1.30 -1.16 -1.12 -0.93 -1.03 -0.69 -0.73 -0.75 -0.70
Kurtosis 4.54 6.10 5.20 6.92 9.93 8.40 8.76 8.79 7.97 6.83 6.98 7.52 7.74

Realized Returns
Last 10 Years 7.72 7.64 9.21 10.24 6.84 6.01 6.06 6.26 6.79 6.81 6.78 6.91 6.95
Last 5 Years 8.00 7.41 8.90 9.79 6.75 6.70 6.40 6.82 5.14 7.43 7.72 8.04 7.86
Last 3 Years 9.43 9.14 4.50 8.29 6.83 7.34 6.31 7.19 3.74 7.77 7.79 8.88 8.86
Last Year 15.05 14.66 -7.97 4.01 6.44 7.70 11.76 14.08 -9.99 4.27 5.03 8.04 11.14

Mean Portfolio Weights
Stock 20.74 25.78 65.48 58.99 49.04 45.89 42.21 38.63 50.92 46.34 45.95 43.47 41.47
Bond 64.64 55.68 6.43 17.51 34.52 38.67 43.72 48.52 34.06 40.48 41.79 45.35 48.38
Gold 14.62 18.54 28.10 23.51 16.44 15.44 14.08 12.84 15.02 13.18 12.26 11.18 10.15
Standard Deviation of Portfolio Weights
Stock 10.49 13.46 47.54 41.39 35.08 32.53 29.84 27.02 33.99 32.18 31.57 30.32 28.81
Bond 10.46 16.18 24.53 30.12 31.74 31.62 30.70 28.92 33.51 32.64 32.23 31.42 29.72
Gold 14.20 15.77 44.95 35.11 22.64 20.09 17.29 14.89 22.62 18.65 16.88 15.45 13.61

Table 12: Portfolio performance of PT portfolios in the US: benchmark scenario, r̂ = 0,
γ = 0.5.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.5
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.17 5.75 12.92 9.60 8.21 7.63 7.26 7.03 7.95 8.11 7.24 7.58 7.55
Omega 159.23 143.34 167.86 151.30 148.71 148.22 146.86 149.66 147.31 158.64 148.55 159.35 164.86
Sharpe ratio 62.74 46.93 63.16 46.46 43.84 43.05 41.55 44.04 42.59 51.45 42.25 52.91 57.90
Sortino ratio 97.70 72.35 98.64 71.85 64.67 63.28 60.73 61.77 61.31 79.82 60.74 82.43 91.23

Additional Descriptive Statistics
Median 7.32 6.10 14.93 9.51 8.99 8.44 8.62 9.02 8.96 8.64 7.85 7.76 7.86
Volatility 4.79 5.54 15.19 13.71 11.45 10.34 9.87 8.79 11.19 9.55 9.64 8.32 7.54
Down. vol. 2.69 3.16 9.35 8.53 7.44 6.71 6.43 5.97 7.42 5.80 6.38 5.00 4.45
CVaR -27.23 -31.10 -69.37 -66.91 -61.36 -57.11 -54.86 -51.37 -61.30 -52.12 -53.64 -46.30 -42.17
Skewness -0.34 -0.10 -0.31 -0.16 -0.62 -0.71 -0.78 -1.53 -0.81 -0.07 -1.05 -0.11 -0.11
Kurtosis 3.59 4.10 5.19 6.83 9.81 12.53 14.54 19.14 10.67 9.26 15.78 10.46 11.01

Realized Returns
Last 10 Years 5.67 5.18 7.19 4.47 4.40 4.46 4.25 5.03 4.42 5.06 4.84 5.85 6.01
Last 5 Years 3.49 3.47 7.18 1.28 2.56 2.53 2.29 3.52 2.83 2.18 2.47 4.06 4.72
Last 3 Years 3.23 3.50 7.83 1.54 3.16 2.84 2.21 3.56 3.43 2.73 3.05 4.35 4.57
Last Year 1.13 -3.83 6.70 1.63 -0.92 -2.95 -3.95 -0.44 5.55 -0.79 -0.68 4.54 4.72

Mean Portfolio Weights
Stock 10.55 14.66 66.19 48.54 39.01 34.45 31.50 27.84 41.94 35.13 33.18 28.98 25.10
Bond 80.65 70.40 11.43 30.54 46.54 52.96 56.43 60.88 45.19 54.39 56.53 60.93 65.06
Gold 8.80 14.95 22.38 20.93 14.45 12.59 12.07 11.28 12.87 10.49 10.29 10.09 9.84
Standard Deviation of Portfolio Weights
Stock 8.51 8.57 47.31 42.69 36.65 32.23 29.77 26.03 36.21 31.67 30.22 26.22 21.30
Bond 7.42 16.49 31.82 38.54 35.70 32.62 31.03 27.90 36.54 31.69 30.19 27.08 22.75
Gold 7.10 12.71 41.68 36.14 23.41 18.83 16.60 13.66 18.67 12.84 11.92 11.04 10.04

Table 13: Portfolio performance of PT portfolios in the EU: aggressive scenario, r̂ = 0,
γ = 0.5.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.9
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.17 5.75 12.92 9.20 8.29 7.73 7.30 7.00 8.41 7.62 8.10 8.08 8.59
Omega 159.23 143.34 167.86 148.83 151.48 150.25 148.25 149.33 167.98 159.76 169.07 170.64 180.76
Sharpe ratio 62.74 46.93 63.16 44.76 46.08 44.57 42.69 43.78 60.04 54.74 61.86 63.01 69.82
Sortino ratio 97.70 72.35 98.64 67.84 68.92 65.82 61.93 61.24 97.31 85.46 100.05 103.25 116.87

Additional Descriptive Statistics
Median 7.32 6.10 14.93 9.43 8.99 8.57 8.74 9.02 7.54 7.47 8.19 8.01 8.10
Volatility 4.79 5.54 15.19 13.36 11.07 10.22 9.70 8.76 8.66 8.11 7.92 7.74 7.70
Down. vol. 2.69 3.16 9.35 8.48 7.08 6.60 6.37 5.96 4.99 4.85 4.55 4.38 4.26
CVaR -27.23 -31.10 -69.37 -66.97 -58.74 -56.03 -54.58 -51.37 -46.04 -45.33 -42.81 -41.48 -40.60
Skewness -0.34 -0.10 -0.31 -0.31 -0.56 -0.71 -0.91 -1.56 -0.08 -0.29 -0.13 -0.07 -0.03
Kurtosis 3.59 4.10 5.19 6.96 10.44 12.99 15.14 19.33 8.15 8.79 8.86 9.07 9.20

Realized Returns
Last 10 Years 5.67 5.18 7.19 4.08 4.24 4.56 4.55 5.06 6.01 4.73 5.20 5.11 5.80
Last 5 Years 3.49 3.47 7.18 0.59 2.41 2.57 2.37 3.58 3.55 3.00 2.42 2.38 4.35
Last 3 Years 3.23 3.50 7.83 0.46 2.74 2.84 2.21 3.66 3.21 1.30 2.73 2.20 4.30
Last Year 1.13 -3.83 6.70 -0.03 -2.41 -2.96 -3.95 -0.08 0.92 -1.55 -0.82 1.01 1.40

Mean Portfolio Weights
Stock 10.55 14.66 66.19 48.01 37.96 34.05 31.08 27.79 33.24 31.56 31.21 29.57 28.57
Bond 80.65 70.40 11.43 32.05 47.93 53.47 56.83 60.89 55.53 57.97 58.24 59.49 60.45
Gold 8.80 14.95 22.38 19.94 14.11 12.47 12.09 11.32 11.23 10.47 10.55 10.94 10.98
Standard Deviation of Portfolio Weights
Stock 8.51 8.57 47.31 42.50 35.64 32.01 29.24 26.00 29.19 27.34 26.62 25.53 24.56
Bond 7.42 16.49 31.82 38.72 35.13 32.54 30.65 27.89 29.80 27.84 27.51 27.12 26.55
Gold 7.10 12.71 41.68 34.71 22.61 18.59 16.49 13.64 12.10 10.26 9.88 10.13 10.01

Table 14: Portfolio performance of PT portfolios in the EU: conservative scenario, r̂ = 0,
γ = 0.9.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.9
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.17 5.75 12.92 10.64 8.80 7.98 7.69 7.67 7.01 7.32 7.15 8.61 7.37
Omega 159.23 143.34 167.86 154.49 145.96 142.39 142.32 145.74 133.27 137.20 132.84 149.42 134.43
Sharpe ratio 62.74 46.93 63.16 50.99 43.32 40.26 39.63 41.73 33.94 37.56 33.62 48.27 36.66
Sortino ratio 97.70 72.35 98.64 78.31 65.27 59.44 58.59 61.50 47.94 54.91 46.61 70.65 54.89

Additional Descriptive Statistics
Median 7.32 6.10 14.93 11.38 9.30 9.39 8.48 7.73 7.52 6.94 9.45 9.52 7.56
Volatility 4.79 5.54 15.19 14.47 12.91 11.91 11.38 10.76 11.31 11.05 11.84 11.17 11.47
Down. vol. 2.69 3.16 9.35 9.06 8.23 7.74 7.37 6.98 7.60 7.14 8.15 7.24 7.25
CVaR -27.23 -31.10 -69.37 -68.48 -65.40 -62.51 -60.50 -58.07 -62.14 -59.64 -66.05 -60.57 -58.45
Skewness -0.34 -0.10 -0.31 -0.26 -0.35 -0.53 -0.56 -0.67 -0.73 -0.37 -0.79 -0.59 -0.16
Kurtosis 3.59 4.10 5.19 5.92 7.18 8.56 9.64 11.29 6.67 6.18 6.56 6.46 4.12

Realized Returns
Last 10 Years 5.67 5.18 7.19 5.24 4.34 3.70 4.10 4.31 6.09 4.15 2.82 6.72 1.45
Last 5 Years 3.49 3.47 7.18 3.30 1.42 1.09 1.29 1.24 4.88 5.95 2.41 6.82 1.92
Last 3 Years 3.23 3.50 7.83 3.46 1.49 1.67 1.86 1.13 10.63 6.68 0.27 7.72 1.11
Last Year 1.13 -3.83 6.70 1.64 -2.24 -2.67 -1.70 -3.18 14.65 9.66 -6.03 8.64 -5.77

Mean Portfolio Weights
Stock 10.55 14.66 66.19 58.53 49.56 45.64 42.82 39.17 46.83 49.49 54.97 50.24 43.97
Bond 80.65 70.40 11.43 19.91 33.51 40.12 43.65 47.76 32.24 34.39 27.51 33.83 30.97
Gold 8.80 14.95 22.38 21.56 16.93 14.24 13.53 13.07 20.93 16.12 17.52 15.94 25.05
Standard Deviation of Portfolio Weights
Stock 8.51 8.57 47.31 44.54 40.25 38.21 36.81 34.76 34.32 30.43 30.12 34.01 33.56
Bond 7.42 16.49 31.82 35.28 37.49 36.90 35.73 34.32 28.93 28.79 31.25 31.41 32.02
Gold 7.10 12.71 41.68 38.36 29.91 23.31 20.51 18.26 26.66 23.66 23.79 23.52 32.61

Table 15: Portfolio performance of PT portfolios in the EU: aggressive scenario, r̂ = rp,
γ = 0.9.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.1
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.95 7.35 13.34 12.80 10.83 9.99 9.67 9.21 13.62 11.42 10.62 9.84 9.59
Omega 155.26 159.99 163.86 168.67 158.29 153.98 152.85 152.83 173.28 162.62 158.52 153.11 155.29
Sharpe ratio 57.37 58.99 62.23 64.53 55.06 51.99 51.27 52.14 68.70 58.49 55.32 51.39 54.33
Sortino ratio 91.75 93.98 92.15 96.39 80.40 75.33 73.80 76.80 103.06 85.94 79.56 73.87 79.66

Additional Descriptive Statistics
Median 6.17 6.91 18.72 15.84 12.83 11.98 11.80 10.62 18.32 13.61 13.00 11.54 11.37
Volatility 5.77 6.28 15.33 13.96 12.89 12.09 11.66 10.62 14.26 13.12 12.46 11.95 10.87
Down. vol. 3.14 3.49 9.90 8.93 8.42 7.92 7.68 6.76 9.08 8.52 8.25 7.89 6.97
CVaR -31.16 -33.82 -71.48 -67.74 -65.21 -63.20 -62.07 -56.69 -68.40 -65.81 -64.42 -62.98 -58.76
Skewness -0.02 -0.07 -0.68 -0.74 -0.88 -0.87 -0.90 -0.67 -0.73 -0.85 -1.06 -0.95 -0.69
Kurtosis 4.54 6.10 5.20 6.33 7.58 6.90 7.00 6.19 6.03 7.35 8.09 7.26 5.75

Realized Returns
Last 10 Years 7.72 7.64 9.21 11.45 9.74 8.38 7.77 6.55 12.11 10.26 9.26 8.50 7.25
Last 5 Years 8.00 7.41 8.90 11.10 10.06 7.98 7.65 7.35 10.36 9.40 9.89 7.95 7.44
Last 3 Years 9.43 9.14 4.50 9.01 9.93 7.08 6.98 6.98 7.83 9.15 10.19 6.78 6.82
Last Year 15.05 14.66 -7.97 6.43 9.55 7.79 10.61 10.82 1.80 7.74 12.09 7.10 10.59

Mean Portfolio Weights
Stock 20.74 25.78 65.48 62.20 56.26 53.50 51.30 48.13 63.17 57.86 54.70 53.21 49.58
Bond 64.64 55.68 6.43 13.27 24.26 28.84 32.03 37.04 12.62 22.78 27.16 30.21 35.58
Gold 14.62 18.54 28.10 24.53 19.49 17.66 16.67 14.83 24.21 19.36 18.14 16.59 14.84
Standard Deviation of Portfolio Weights
Stock 10.49 13.46 47.54 43.36 39.25 38.20 36.98 34.86 43.78 39.64 38.95 37.79 36.50
Bond 10.46 16.18 24.53 29.23 30.23 30.65 30.87 30.82 28.43 30.85 31.88 31.47 31.87
Gold 14.20 15.77 44.95 37.77 28.15 24.45 21.95 18.59 39.02 28.95 25.75 22.53 18.63

Table 16: Portfolio performance of PT portfolios in the US: conservative scenario, r̂ = rp,
γ = 0.1.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.9
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.95 7.35 13.34 12.80 10.83 9.99 9.67 9.21 10.80 10.62 11.50 11.26 9.33
Omega 155.26 159.99 163.86 168.67 158.29 153.98 152.85 152.83 155.45 156.70 166.15 160.22 149.15
Sharpe ratio 57.37 58.99 62.23 64.53 55.06 51.99 51.27 52.14 54.34 53.61 61.81 56.63 48.26
Sortino ratio 91.75 93.98 92.15 96.39 80.40 75.33 73.80 76.80 79.55 78.69 92.38 84.10 68.63

Additional Descriptive Statistics
Median 6.17 6.91 18.72 15.84 12.83 11.98 11.80 10.62 12.38 12.39 14.18 14.30 11.64
Volatility 5.77 6.28 15.33 13.96 12.89 12.09 11.66 10.62 13.04 12.86 12.53 13.22 11.72
Down. vol. 3.14 3.49 9.90 8.93 8.42 7.92 7.68 6.76 8.47 8.35 7.98 8.52 7.80
CVaR -31.16 -33.82 -71.48 -67.74 -65.21 -63.20 -62.07 -56.69 -66.08 -66.22 -63.73 -66.51 -63.81
Skewness -0.02 -0.07 -0.68 -0.74 -0.88 -0.87 -0.90 -0.67 -0.74 -0.66 -0.65 -0.67 -0.82
Kurtosis 4.54 6.10 5.20 6.33 7.58 6.90 7.00 6.19 5.58 6.47 6.24 6.49 6.05

Realized Returns
Last 10 Years 7.72 7.64 9.21 11.45 9.74 8.38 7.77 6.55 6.28 10.15 10.79 14.07 7.52
Last 5 Years 8.00 7.41 8.90 11.10 10.06 7.98 7.65 7.35 8.68 14.24 13.75 14.46 10.14
Last 3 Years 9.43 9.14 4.50 9.01 9.93 7.08 6.98 6.98 7.64 14.74 14.23 14.64 8.43
Last Year 15.05 14.66 -7.97 6.43 9.55 7.79 10.61 10.82 2.42 23.21 21.50 23.32 5.02

Mean Portfolio Weights
Stock 20.74 25.78 65.48 62.20 56.26 53.50 51.30 48.13 60.10 62.74 62.13 57.80 55.61
Bond 64.64 55.68 6.43 13.27 24.26 28.84 32.03 37.04 17.03 21.72 19.35 19.64 33.60
Gold 14.62 18.54 28.10 24.53 19.49 17.66 16.67 14.83 22.87 15.54 18.51 22.56 10.80
Standard Deviation of Portfolio Weights
Stock 10.49 13.46 47.54 43.36 39.25 38.20 36.98 34.86 39.11 36.66 36.68 40.37 39.95
Bond 10.46 16.18 24.53 29.23 30.23 30.65 30.87 30.82 26.05 29.42 25.40 30.34 38.58
Gold 14.20 15.77 44.95 37.77 28.15 24.45 21.95 18.59 28.86 25.41 27.18 32.78 18.09

Table 17: Portfolio performance of PT portfolios in the US: conservative scenario, r̂ = rp,
γ = 0.9.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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MV CVaR Risk Linear loss aversion S-shaped prospect theory, γ = 0.9
neutral λ λ

1.5 2 2.25 2.5 3 1.5 2 2.25 2.5 3

Performance Measures
Mean 6.95 7.35 13.34 12.59 10.07 9.69 8.90 8.40 11.61 11.59 11.31 11.42 10.00
Omega 155.26 159.99 163.86 169.14 158.63 159.29 155.41 154.70 177.74 181.59 178.08 181.25 166.21
Sharpe ratio 57.37 58.99 62.23 64.42 54.93 56.23 52.99 52.16 68.64 71.71 69.19 70.90 60.85
Sortino ratio 91.75 93.98 92.15 95.90 77.63 80.79 75.45 74.72 102.56 109.87 104.77 108.20 89.07

Additional Descriptive Statistics
Median 6.17 6.91 18.72 15.24 11.87 10.84 10.18 9.92 11.64 11.16 11.15 10.80 9.91
Volatility 5.77 6.28 15.33 13.65 11.60 10.69 9.88 9.11 11.46 10.95 10.95 10.84 10.36
Down. vol. 3.14 3.49 9.90 8.76 7.81 7.02 6.53 5.94 7.25 6.73 6.81 6.68 6.65
CVaR -31.16 -33.82 -71.48 -67.17 -62.55 -59.44 -56.53 -52.42 -60.75 -58.00 -58.98 -58.35 -58.12
Skewness -0.02 -0.07 -0.68 -0.78 -1.31 -1.02 -1.04 -1.01 -0.82 -0.64 -0.66 -0.64 -0.88
Kurtosis 4.54 6.10 5.20 6.72 9.91 7.56 8.18 8.94 7.42 6.95 6.84 6.96 7.08

Realized Returns
Last 10 Years 7.72 7.64 9.21 10.73 6.96 6.18 6.34 6.41 7.95 8.07 7.59 7.78 6.04
Last 5 Years 8.00 7.41 8.90 10.22 6.92 6.80 6.87 7.11 8.94 9.33 8.06 8.42 4.96
Last 3 Years 9.43 9.14 4.50 8.99 7.15 7.44 7.08 7.66 9.26 9.70 9.08 9.13 3.80
Last Year 15.05 14.66 -7.97 5.74 6.11 7.35 12.35 15.97 8.26 9.22 9.23 9.24 -5.39

Mean Portfolio Weights
Stock 20.74 25.78 65.48 59.55 49.35 46.49 42.62 38.55 51.55 49.99 49.92 49.93 48.08
Bond 64.64 55.68 6.43 17.00 34.55 38.61 43.84 49.43 31.86 35.23 35.58 36.15 38.15
Gold 14.62 18.54 28.10 23.45 16.11 14.90 13.54 12.02 16.59 14.78 14.50 13.92 13.77
Standard Deviation of Portfolio Weights
Stock 10.49 13.46 47.54 41.64 35.13 33.23 30.54 27.69 30.48 30.47 30.33 30.32 29.50
Bond 10.46 16.18 24.53 30.67 32.38 32.24 31.26 29.39 27.29 27.58 27.47 27.67 27.71
Gold 14.20 15.77 44.95 35.56 22.46 19.80 17.16 14.55 21.21 19.01 18.44 17.66 16.92

Table 18: Portfolio performance of PT portfolios in the US: aggressive scenario, r̂ = r0,
γ = 0.9.
The table reports statistics of a monthly reallocated optimal portfolio based on an opti-
mization period of 36 months as well as the average and standard deviation of the optimal
asset weights. The table also reports results for portfolios implied by mean-variance (MV),
conditional value-at-risk (CVaR), risk neutral, and linear loss averse investors. The evalua-
tion period covers January 1986 to December 2020. Statistics are calculated on the basis of
monthly returns and then annualized assuming discrete compounding. The annual standard
deviation is computed as σpa =

√
12σpm.
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