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Abstract—The 5G technology has tapped into millimeter wave
(mmWave) spectrum to create additional bandwidth for improved
network capacity. The use of mmWave for specific applications
including vehicular networks has widely discussed. However,
applying mmWave to vehicular networks faces challenges of high
mobility nodes and narrow coverage along the mmWave beams.
In this paper, we focus on a mmWave small cell base station
deployed in a city area to support vehicular network application.
We propose profiling vehicle mobility for a machine learning
agent to learn the performance of serving vehicles with different
mobility profiles and utilize the past experiences to select appro-
priate mmWave beam to service a vehicle. Our machine learning
agent is based on multi-armed bandit learning model, where
classical multi-armed bandit and contextual multi-armed bandit
are used. Particularly for the contextual multi-armed bandit, the
contexts are vehicle mobility information. We show that the local
street layout has naturally constrained vehicle movement creating
distinct mobility information for vehicles, and the vehicle mobility
information is highly related to communication performance. By
using vehicle mobility information, the machine learning agent
is able to identify vehicles that can remain within a beam for
longer time period to avoid frequent handovers.

Index Terms—Beam Handover, mmWave Networks, 5G.

I. INTRODUCTION

Networks nowadays are confronted with higher traffic de-
mands, which requires various advancement to current cellular
networks [1]. Increasing capacity demand is considered to be
met by various enhancements, such as network densification,
massive MIMO and beamforming techniques, utilizing higher
frequency bands and carrier aggregation [1], [2].

Network densification through the dense deployment of
small cells is one of the approaches to meet the increasing
capacity demand [3]. Small cells are initially intended to be
utilized in hotspot areas to support high data rates. Due to
intensive traffic demand, small cells are also deployed under
the macro layer creating Heterogeneous Network (HetNet) to
offload macro cells.

Limited by spectrum availability and high data rate support
in the current sub-6GHz microwave bands, millimetre wave
(mmWave) small cells have become one of the promising
candidates for 5G systems. In contrast, users often suffer from
high propagation loss at higher frequencies (� 6GHz) [4].
As a remedy, directional transmission, i.e. mmWave beam,
is adopted in mmWave but it introduces new challenges to
support some important 5G applications such as vehicle-to-
everything (V2X) communication in vehicular network appli-

cations. The narrow coverage of mmWave beam along the
beam and fast moving vehicles can lead to a short period
of sojourn time for a vehicle within a beam which in turns
causes frequent handover and high overhead [5]. Traditional
approach of choosing a beam that can achieve the strongest
SNR may not always result in selecting the vehicle with the
longest sojourn time, due to the local street layout, a vehicle
with the the strongest SNR may move out of the beam quickly.
Thus a different strategy is needed for the beam selection in
vehicular network applications.

To harness the benefit of artificial intelligence, multi-armed
bandit (MAB) machine learning technique has been considered
in beam selection for mmWave systems [6], [7]. The goal of
MAB learner is to learn the environment and apply past ex-
perience to make decision. There is also an associate question
on how much effort of learning is needed to achieve efficient
exploitation the system and minimize the regret. The study of
balance between exploration and exploitation is particularly
important when the resources in terms of time or number of
actions for exploration and exploitation are limited. In [6], the
adaptive beam selection is modelled as a contextual multi-
armed bandit (C-MAB) problem. The traffic pattern, precisely
the travelling direction of a vehicle, is included in the contex-
tual information in their proposed contextual online learning
algorithm. A mmWave BS, a learning agent, autonomously
learns the relationship of beam selection and the data rate
performance for given context information (traffic pattern and
permanent/temporary blockage). Since this algorithm learns
the expected beam performance in different contexts over time,
it actually does not require a training phase and is highlighted
as a fast learning algorithm.

In [7], the broadcasting clustering possibility of neigh-
bouring vehicles is additionally considered and a two-layer
MAB algorithm is proposed. This study assumes that mmWave
broadcasting would be useful when multiple vehicles want to
download a popular same contents (e.g. movies) of high data
rate. First, similar to [6], a mmWave BS learns the correlation
between the beam allocation and the achievable throughput
and then adapts to the dynamic blockages and traffic patterns
without any prior knowledge of its surrounding blockage.
Then, the mmWave BS learns the appropriate beams to cover
multiple vehicles requiring to download the same contents
throughput broadcasting in the cells and the best broadcast
angle along these beams. The work emphasizes use of social



preference information of vehicles to enhance learning and
decision making for broadcasting.

While we see several past attempts to introduce C-MAB
in mmWave V2X application for beam selection decision
making, the use of contexts is limited. We notice that the
contexts describing vehicle mobility features also implicitly
encapsulates the information of local street layout. This is
because the local street layout constrains the vehicle mobility,
vehicle mobility information can be used to predict a vehicle
movement and indicate communication performance. In this
paper, we demonstrate the application of C-MAB to explicitly
use sufficient vehicle mobility context in order to indirectly
achieve learning of vehicle mobility behaviour on the sur-
rounding local street and improve the V2X communication.

Different from other works, we focus on using C-MAB to
select the appropriate vehicle context in a realistic simulation
setup. We first apply classical MAB to show the benefit of
learning from past experiences. We then extend the model
by profiling the mobility of vehicles and use the profiles as
contexts in C-MAB. We show that C-MAB further improves
the performance of MAB in terms of beam sojourn time by
50%. The remainder of the paper is organized as follows.
Section II describes the considered scenario and formulation
of beam allocation problem. In Section III, the proposed beam
selection algorithm based on context-aware multi-arm bandit is
elaborated. The performance validation are explained in Sec-
tion IV to show the effectiveness of our proposed algorithm.
Finally, we draw important conclusions in Section V.

II. SCENARIO SETUP AND PROBLEM FORMULATION

We consider a mmWave small cell deployed to offload the
V2X data traffic from an existing macro base station. For cost
effective consideration, the small cell implements most basic
functions, some features such as beam steering will not be
available. Similar to [7], we assume that the small cell base
station has a number of antennas pointing at different fixed
directions, and it has a lower number of RF chains installed
than the number of antennas. Each antenna may consist of
a set of antenna elements creating a beam at a direction. As
defined in [7], the coverage of a beam is called a beam section,
and ideally, they do not overlap with each other. Due to the
limited number of RF chains, only subset of antennas can be
activated at one time. We focus on using the mmWave small
cell for downlink transmissions.

Fig. 1 illustrates our scenario setting. In this scenario, the
mmWave small cell is deployed around Guildford town center
in UK. It has six antennas, each faces a different direction
to cover the entire surrounding. With two RF chains, at one
time it can only activate two beams to serve two vehicles.
The shaded areas in the figure demonstrates two active beams
serving two vehicles. The shaded areas are only the illustrative
coverage, the actual coverage of service area depends on the
channel model and antenna settings.

We consider 3GPP Band n257 operating at 28 GHz with
50 Mbps of bandwidth setting. We use pathloss model for

TABLE I
PARAMETERS USED IN THE SIMULATION.

Parameter Value
Carrier frequency, fc 28 GHz
Channel bandwidth 50 MHz
Transmit power 30 dBm for BS, 20 dBm for vehicle
Transmitter antenna gain 14 dB
Thermal noise -97.2 dBm (for 50 MHz bandwidth)
Noise figure 4 dB at BS, 7 dB at vehicle
SNR threshold -5 dB

urban micro (UMi) given by [8]

PL(d) = 32.4 + 20 log(fc) + 20 log(d) +Xg (1)

where fc is the carrier frequency in GHz, d is the distance
between the transmitter and receiver antennas in meters, and
Xg describes the channel fading. The channel fading setting
is given by Table I in [8], however we do not include channel
fading. We assume antenna height difference of 5m between
the base station and vehicle, thus with a distance d̂ between
two nodes, d =

√
d̂2 + 52.

We follow the mmWave beamforming model used in [7].
In the study, the beamforming gain GBF of the antenna is
calculated based on [9] by

GBF (∆θ) =
2π

B3dB
10
−0.1η

(
∆θ
B3dB

)2

(2)

where B3dB is the beamwidth of 3dB of the antenna, ∆θ is
the off-center angle which measures the angle between the
beam center direction and its pointing direction to the serving
vehicle within its beam sector, and η is a constant carrying a
value of 12. For 6-sector setting, B3dB is set to 35◦ [10] or
0.61 radian.

While the base station has antennas with fixed pointing
direction, we assume that vehicles have a steerable beam
antenna that can track and steer towards the base station
during the communication with the base station. With the
settings described above, the SNR of a serving vehicle can
be computed by

SNR = p0 − PL(d) +Gtx +GBF (∆θ) +Grx −N (3)

where Gtx and Grx are the transmitter and receiver antenna
gains respectively, N is the noise including thermal noise and
the receiver noise figure. Since vehicles tracks and steers their
beams to the base station while receiving a transmission, the
receiver antenna gain also include beamforming gain, and here
we set to the beamforming gain. The parameters used in the
simulation is given in Table I.

Using mmWave small cell for V2X application faces a
unique challenge that the small cell must use a narrow beam
to serve fast moving vehicles, and often the sojourn time
of a moving vehicle within a narrow beam is short, leading
to frequent handover and high overhead. Due to the user
mobility, channel state changes rapidly, and thus a conservative
approach of using the most robust modulation scheme rather
than an adaptive modulation scheme may be more suitable.



Fig. 1. A scenario of beam selection (among 6 beams) for Guildford town
center, UK.

As a result, to maximize the data transmission between the
small cell and its serving vehicles, the radio resource allocation
strategy for this setup shall aim at serving vehicles that have
the longest possible sojourn time within a beam.

For reliability consideration, we assume that adaptive mod-
ulation is not used. Instead, the base station uses the most
robust modulation scheme for communication regardless of
the reporting SNR. Let R be the corresponding fixed data rate
for all beams when serving a vehicle resides within its beam
sector. Vehicles moving out of the beam service area shall
achieve zero rate. Let B be a set of beams of the mmWave
small cell base station, n be the maximum number of active
beams can be used by the base station at one time, and βi(t)
be the transmission rate of beam i at time t. Thus we have
βi(t) = R if beam i is serving a vehicle at time t, otherwise
βi(t) = 0 if either it is performing handover procedure and
waiting the data for the vehicle to be rerouted from the macro
base station, or it is inactive, or there is no vehicle within its
beam sector to serve. The radio resource allocation strategy is
thus to maximize the overall data transmission from all beams
given a certain time period T , which is

max

(∑
i∈B

∫ T

0

βi(t)dt

)
. (4)

As each handover event incurs blackout time resulting in
βi(t) = 0 during the event, maximizing the above can also
be achieved by minimizing the number of handover events
since the data rate remains constant during a service. In other
words, the vehicle sojourn time within a beam should be kept
as long as possible to minimize the handover frequency.

The small cell base station attempts to maximize its service
by utilizing all active beams whenever possible. When a
serving vehicle has left the beam sector, the beam serving
the vehicle turns inactive, and the base station can activate a

beam from all available beams to serve another vehicle. The
base station may unbiasedly pick an available beam to serve a
vehicle in its beam sector. It may also select the vehicle with
the highest SNR to pair with the available beam for service.
As we shall show later the traditional approach of selecting
the highest SNR may not work well for mmWave vehicular
networks due to the narrow beamwidth.

Since the mobility of vehicles is constrained to the local
street layout, it is beneficial to utilize the information of local
street layout as part of the consideration for selecting a vehicle
to serve. However, acquiring and processing local street layout
for this purpose can be tedious, we propose using mobility
information of vehicles which indirectly captures the local
street layout instead. To achieve that, we profile vehicles based
on their mobility information and use the profile as a context
to pair a vehicle with a beam. Mobility information to be used
for the context may include the speed, orientation, location and
distance away from the small cell base station derived from
the location or measured through timing advance.

III. PROPOSED MULTI-ARMED BANDIT LEARNING
DESIGN

We apply both classical MAB and C-MAB models to
achieve learning of the best outcome to service vehicles. Given
that our objective is to select vehicles with the longest sojourn
time within a beam, the reward is the connection duration
experienced by a serviced vehicle. For C-MAB, mobility
context of the vehicle is also used.

While MAB is an online learner, it requires initial learning
phase for effective exploitation. In our application, the setting
of learning phase is not particularly critical since the layout
of the surrounding street will remain unchanged for a long
time. Once learned, the knowledge remains valid for a long
time. Thus as a new MAB learner is introduced to a new
environment, the MAB learner should concentrate on learning
the environment. With sufficient learning, the learner can then
proceed to exploit the learned knowledge while revising its
knowledge based on the new findings during exploitation. Thus
we choose Epsilon-First learning strategy [11] for both the
proposed MAB models.

A. Classical MAB Learning Algorithm

In our classical MAB learning, the arms in MAB are B,
which is a set containing all mmWave beams in the base
station. During the learning phase, the MAB learner performs
full exploration of the beam selection and learn the outcome
via the rewards [12]. Whenever a beam has ended its service,
the base station randomly pick an available beam, say b and a
vehicle within the beam sector to serve the vehicle. The beam
continues to serve the vehicle until the vehicle has moved out
of the beam sector, then the connection time is recorded and
provided to MAB learner as the reward of selecting beam b, rb.
The reward for each beam is recorded in a setR = {rb|b ∈ B}.

With Epsilon-First strategy, the learning phase has a pre-
determined period [11]. After the learning phase has ended,
the base station switches to exploitation phase. In this phase,



whenever a beam is available for service, the base station
greedily chooses the beam that has the best reward on average
so far. If there is no vehicle in its beam sector, then the beam
with the next best reward is sought, and the process repeats
until a beam is chosen. In the case that no vehicle is found in
all available beams, no additional beam will be activated until
a vehicle appears in an available beam sector. Algorithm 1
illustrates the algorithm of the MAB model.

Algorithm 1 MAB for Beam and Vehicle Selection
Input (for exploration and exploitation):

A set of available beams, B.
Output (for exploration and exploitation):

Selected (beam,vehicle) pair, or None.
1: procedure EXPLORATION
2: while B 6= ∅ do
3: Randomly select a beam b from B
4: if No vehicle is available in beam b then
5: B← B \ {b}
6: else
7: Randomly select a vehicle v in b
8: return (b, v)
9: end if

10: end while
11: return None
12: end procedure
13:
14: procedure EXPLOITATION
15: while B 6= ∅ do
16: b← arg max{rb|b ∈ B}
17: if No vehicle is available in beam b then
18: B← B \ {b}
19: else
20: Randomly select a vehicle v in b
21: return (b, v)
22: end if
23: end while
24: return None
25: end procedure
26:
27: procedure UPDATEREWARD(beam b, reward r)
28: rb ← rb·kb+r

kb+1 . rb is set to 0 initially
29: kb ← kb + 1 . kb is set to 0 initially
30: end procedure
31:

B. Contextual MAB Learning Algorithm

Contextual MAB extends classical MAB by including con-
texts when making decision. In our design, we use mobility
information as the contexts. We profile each vehicle based
on its mobility information. While the arms of the C-MAB
are B, contexts are inspected to decide which beam is used to
service a vehicle with a specific mobility profile. Let C be a set
containing all contexts, and 〈b, c〉 be an ordered pair of beam
b and context c. The reward is recorded for all combinations

of beams and contexts. We denote RC = {r〈b,c〉|b ∈ B, c ∈ C}
to be the set containing all rewards.

When a beam becomes available, the base station checks the
context c of each vehicle in each available beam b, and collect
the corresponding past average reward r〈b,c〉. The collected
corresponding rewards are ranked, and the vehicle associated
with the profile carrying the highest reward is selected. In case
that multiple vehicles are associated with the selected profile,
one of those vehicles is selected randomly for service. Once
the decision is made, the vehicle is immediately scheduled for
service. The service continues until the vehicle has moved out
of the beam sector. Then the beam reports the connection time
as the reward for its selection. The algorithm for C-MAB is
presented in Algorithm 2. We omit the exploration procedure
as it is the same as that of MAB in Algorithm 1.

The mobility information to be used for contexts may
include features such as speed, orientation and location in-
formation. The choice of contexts is flexible and dependent
on local street layout. Including more features allows more
precise separation among vehicles with different performance
characteristics, but it introduces a longer learning period
to capture the performance characteristics. Thus, selection
of features should be prioritized to those features that can
significantly influence the performances.

Algorithm 2 Contextual MAB for Beam and Vehicle Selection
Input (for exploitation):

A set of available beams, B.
Output (for exploitation):

Selected (beam,vehicle) pair, or None.
1: procedure EXPLORATION
2: //same with MAB in Algorithm 1
3: end procedure
4: procedure EXPLOITATION
5: RC ← {r〈b,c〉|b ∈ B, c ∈ C}
6: while RC 6= ∅ do
7: 〈b, c〉 ← arg maxRC

8: if No vehicle is associated to c in beam b then
9: RC ← RC \ {r〈b,c〉}

10: else
11: Randomly select a vehicle v in b with c
12: return (b, v)
13: end if
14: end while
15: return None
16: end procedure
17:
18: procedure UPDATEREWARD(beam b, context c, reward r)
19: r〈b,c〉 ←

r〈b,c〉·k〈b,c〉+r
k〈b,c〉+1 . r〈b,c〉 is set to 0 initially

20: k〈b,c〉 ← k〈b,c〉 + 1 . k〈b,c〉 is set to 0 initially
21: end procedure
22:



IV. RESULT DISCUSSION

In the section, we present our findings on applying MAB
and C-MAB machine learning models for small cell beam
selection. The scenario for our experiment is presented in
Fig. 1. In our scenario, we focus on a single mmWave small
cell base station with 6 beams. At one time, the base station
can only activate 2 beams for service. Vehicles are created and
absorbed at certain locations on the map. Those locations are
the main entrance point to the city and the exit point from the
city. Besides, we also included several main parking spots in
the city as vehicle creation and absorption locations. A pair
of vehicle creation and absorption locations is used to create
a route simulating a vehicle either passing through the city,
entering to or exiting from the city. We use A-STAR path
finding algorithm [13] to establish the route for vehicles. The
speed of each vehicle is set randomly between 30 to 50 km/h
(considering speed limit around city area). We assume that
each of these vehicles requires downlink data service when
entering the small cell.

We use our own developed Python Mobility Simulation
Platform (PyMoSim1) for the simulation. In our simulation,
there are over a hundred of vehicles continuously moving on
the map. We simulate 10 hours of operation where the base
station begins with full exploration for learning, and then it
switches to full exploitation after 3 hours which is the first
30% of the simulation time. As Epsilon-First strategy stops
triggering exploration after the learning phase, this enables us
to focus on the study of learning effectiveness acquired during
the learning phase.

We compare our MAB and C-MAB algorithms with tra-
ditional best SNR and also random beam selection schemes.
In best SNR, the base station greedily selects a vehicle that
reports the highest SNR. For our C-MAB, we use orientation
and distance from the small cell to form a context. For the
orientation, we profile a vehicle into one of the four directions
of movement (north-east, north-west, south-east, south-west),
and for the distance, we propose the base station to use timing
advance to profile a vehicle into one of the three ranges (near,
middle, far) with approximately same length for each range.
We do not use speed as a feature since we found its impact
on the performance is low as the speed range of vehicles is
narrow due to the low speed limits around the city area.

For the performance measure, we focus on the beam sojourn
time of connections. Fig. 2 plots the mean beam sojourn
time of connections of the random selection scheme, best
SNR scheme, and our proposed MAB and C-MAB algorithms
over the course of the simulation. At the beginning, both
MAB and C-MAB perform similarly to the random selection
scheme since both learners are operating in full exploration
in the first 30% of the simulation duration. Upon switching
to exploitation, the mean beam sojourn time of both MAB
and C-MAB algorithms jumps as both learners begin applying
the learned knowledge to make selection decision. Since C-

1We plan to release the full source code of PyMoSim and our scenario
setup code in the near future.
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MAB algorithm is able to select a vehicle based on contexts,
it doubles the duration of mean beam sojourn time when
comparing to that of the random selection scheme. It also
outperforms classical MAB by about 40%.

Interestingly, we see that the performance of best SNR
records the lowest among all. This is mainly due to the
unfavorable street layout for best SNR scheme. As best SNR
scheme designs to select vehicles closer to the base station for
stronger signals. Based on the street layout in Fig. 1, vehicles
in Beam-1 and Beam-6 have a high chance to be selected.
However, most of these vehicles move across the beam quickly
and thus the beam sojourn time is short. This also shows the
importance of knowing the local street layout for base station
to operate efficiently in V2X application.

To understand the benefit of profiling vehicles, we show the
breakdown of the average beam sojourn time for each beam
in Figs. 3-4. From Fig. 3 which presents results using MAB,
focusing on Beam-1, we see that it performs poorly during the
learning phase. Thus in the exploitation phase, the base station
avoids utilizing it where the results showing zero indicate no
utilization. The poor performance from Beam-1 can be easily
understood by inspecting the local street layout presented in
Fig. 1. We see that most vehicles moving on the main road in
the east-west movement only remain briefly in Beam-1, and
thus the sojourn time is very short. Some vehicles moving on
the other main road in Beam-1 in north-south movement may
have longer sojourn time, but since MAB does not differentiate
the two, the resultant average sojourn time remains low.

However for C-MAB, since contexts are explicitly used,
C-MAB can differentiate between east-west movement and
north-south movement, and hence Beam-1 is efficiently uti-
lized in C-MAB as seen in Fig. 4. Unlike MAB that eventually
focuses on specific beams, C-MAB is able to select vehicles
experiencing long sojourn time in the past in all beams, and
thus C-MAB utilizes a wider range of beams than MAB.

V. CONCLUSIONS

In this paper, we developed machine learning algorithms
based on MAB models to improve the performance of
mmWave small cell communication for vehicular network
applications. Due to the narrow coverage along the mmWave
beams and fast moving vehicles, connections experienced
frequent handover as the sojourn time of a fast moving vehicle
in a narrow mmWave beam is often short. Since the movement
of vehicles were constrained on the roads, depending on the
local street layout, some vehicles remained in the same beam
for much longer time than others.

Utilizing the vehicle mobility information, we proposed
applying MAB learning models for the machine learning agent
to learn from the past experiences when making decision.
We applied classical MAB and C-MAB. For the C-MAB,
we explicitly use mobility information as the contexts. With
our scenario of a small cell deployed at a city center, we
found that vehicle speeds had insignificant impact to the
performance. However, the vehicle moving direction and its
distance from the small cell are sufficient to avoid selecting

short beam sojourn time. We also found that the traditional
approach of selecting best SNR may not be practical since
vehicles near the base station may move out of the coverage
quickly. Aiming for longer beam sojourn time, our results
confirmed using mobility information as contexts in C-MAB
model outperformed classical MAB, best SNR and random
beam selection.
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